diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/ChangeLog | 4 | ||||
-rw-r--r-- | src/algebra/aggcat.spad.pamphlet | 82 | ||||
-rw-r--r-- | src/algebra/array2.spad.pamphlet | 4 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 2720 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 5788 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 6 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 7923 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 19776 |
8 files changed, 18164 insertions, 18139 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index b9fc989d..962dbffc 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,5 +1,9 @@ 2013-05-17 Gabriel Dos Reis <gdr@integrable-solutions.net> + * algebra/aggcat.spad.pamphlet: Replace uses of parts by members. + +2013-05-17 Gabriel Dos Reis <gdr@integrable-solutions.net> + * algebra/attreg.spad.pamphlet (AttributeRegistry): Remove shallowlyMutble. * algebra/aggcat.spad.pamphlet (BagAggregate): Extend diff --git a/src/algebra/aggcat.spad.pamphlet b/src/algebra/aggcat.spad.pamphlet index 77a0b829..9c220908 100644 --- a/src/algebra/aggcat.spad.pamphlet +++ b/src/algebra/aggcat.spad.pamphlet @@ -133,15 +133,14 @@ HomogeneousAggregate(S:Type): Category == Aggregate with eval(u:%,l:List Equation S):% == map(eval(#1,l),u) if % has finiteAggregate then - #c == # parts c - any?(f, c) == or/[f x for x in parts c] - every?(f, c) == and/[f x for x in parts c] - count(f:S -> Boolean, c:%) == +/[1 for x in parts c | f x] - members x == parts x + #c == # members c + any?(f, c) == or/[f x for x in members c] + every?(f, c) == and/[f x for x in members c] + count(f:S -> Boolean, c:%) == +/[1 for x in members c | f x] if S has BasicType then x = y == - #x = #y and (and/[a = b for a in parts x for b in parts y]) + #x = #y and (and/[a = b for a in members x for b in members y]) if S has BasicType then count(s:S, x:%) == count(s = #1, x) @@ -150,7 +149,7 @@ HomogeneousAggregate(S:Type): Category == Aggregate with if S has CoercibleTo(OutputForm) then coerce(x:%):OutputForm == bracket - commaSeparate [a::OutputForm for a in parts x]$List(OutputForm) + commaSeparate [a::OutputForm for a in members x]$List(OutputForm) @ @@ -200,7 +199,7 @@ FiniteAggregate(S: Type): Category == Exports where #x == # members x any?(f, x) == or/[f e for e in members x] every?(f, x) == and/[f e for e in members x] - count(f:S -> Boolean, x:%) == +/[1 for e in parts x | f e] + count(f:S -> Boolean, x:%) == +/[1 for e in members x | f e] if S has BasicType then count(s:S, x:%) == count(s = #1, x) member?(e, x) == any?(e = #1,x) @@ -299,22 +298,22 @@ Collection(S:Type): Category == HomogeneousAggregate(S) with if S has ConvertibleTo InputForm then ConvertibleTo InputForm add if % has finiteAggregate then - #c == # parts c - count(f:S -> Boolean, c:%) == +/[1 for x in parts c | f x] - any?(f, c) == or/[f x for x in parts c] - every?(f, c) == and/[f x for x in parts c] - find(f:S -> Boolean, c:%) == find(f, parts c) - reduce(f:(S,S)->S, x:%) == reduce(f, parts x) - reduce(f:(S,S)->S, x:%, s:S) == reduce(f, parts x, s) + #c == # members c + count(f:S -> Boolean, c:%) == +/[1 for x in members c | f x] + any?(f, c) == or/[f x for x in members c] + every?(f, c) == and/[f x for x in members c] + find(f:S -> Boolean, c:%) == find(f, members c) + reduce(f:(S,S)->S, x:%) == reduce(f, members x) + reduce(f:(S,S)->S, x:%, s:S) == reduce(f, members x, s) remove(f:S->Boolean, x:%) == - construct remove(f, parts x) + construct remove(f, members x) select(f:S->Boolean, x:%) == - construct select(f, parts x) + construct select(f, members x) if S has SetCategory then remove(s:S, x:%) == remove(#1 = s, x) - reduce(f:(S,S)->S, x:%, s1:S, s2:S) == reduce(f, parts x, s1, s2) - removeDuplicates(x) == construct removeDuplicates parts x + reduce(f:(S,S)->S, x:%, s1:S, s2:S) == reduce(f, members x, s1, s2) + removeDuplicates(x) == construct removeDuplicates members x @ @@ -564,10 +563,10 @@ DictionaryOperations(S:SetCategory): Category == construct l == dictionary l dictionary() == empty() if % has finiteAggregate then - copy d == dictionary parts d + copy d == dictionary members d coerce(s:%):OutputForm == prefix("dictionary"@String :: OutputForm, - [x::OutputForm for x in parts s]) + [x::OutputForm for x in members s]) @ @@ -606,16 +605,16 @@ Dictionary(S:SetCategory): Category == --extract! d == -- empty? d => error "empty dictionary" - -- remove!(x := first parts d, d, 1) + -- remove!(x := first members d, d, 1) -- x s = t == eq?(s,t) => true #s ~= #t => false - and/[member?(x, t) for x in parts s] + and/[member?(x, t) for x in members s] remove!(f:S->Boolean, t:%) == - for m in parts t repeat if f m then remove!(m, t) + for m in members t repeat if f m then remove!(m, t) t @ @@ -785,30 +784,30 @@ FiniteSetAggregate(S:SetCategory): Category == cardinality s == #s construct l == (s := set(); for x in l repeat insert!(x,s); s) count(x:S, s:%) == (member?(x, s) => 1; 0) - subset?(s, t) == #s < #t and (and/[member?(x, t) for x in parts s]) + subset?(s, t) == #s < #t and (and/[member?(x, t) for x in members s]) coerce(s:%):OutputForm == - brace [x::OutputForm for x in parts s]$List(OutputForm) + brace [x::OutputForm for x in members s]$List(OutputForm) intersect(s, t) == i := {} - for x in parts s | member?(x, t) repeat insert!(x, i) + for x in members s | member?(x, t) repeat insert!(x, i) i difference(s:%, t:%) == m := copy s - for x in parts t repeat remove!(x, m) + for x in members t repeat remove!(x, m) m symmetricDifference(s, t) == d := copy s - for x in parts t repeat + for x in members t repeat if member?(x, s) then remove!(x, d) else insert!(x, d) d union(s:%, t:%) == u := copy s - for x in parts t repeat insert!(x, u) + for x in members t repeat insert!(x, u) u if S has Finite then @@ -820,16 +819,18 @@ FiniteSetAggregate(S:SetCategory): Category == lookup s == n:PositiveInteger := 1 - for x in parts s repeat n := n + 2 ** ((lookup(x) - 1)::NonNegativeInteger) + for x in members s repeat n := n + 2 ** ((lookup(x) - 1)::NonNegativeInteger) n if S has OrderedSet then max s == - empty?(l := parts s) => error "Empty set" + l := members s + empty? l => error "Empty set" reduce("max", l) min s == - empty?(l := parts s) => error "Empty set" + l := members s + empty? l => error "Empty set" reduce("min", l) @ @@ -882,7 +883,6 @@ OrderedMultisetAggregate(S:OrderedSet): Category == -- max: % -> S ++ smallest entry in the set -- duplicates: % -> List Record(entry:S,count:NonNegativeInteger) ++ to become an in order iterator - -- parts: % -> List S ++ in order iterator min: % -> S ++ min(u) returns the smallest entry in the multiset aggregate u. @@ -929,7 +929,7 @@ KeyedDictionary(Key:SetCategory, Entry:SetCategory): Category == r case Entry and r::Entry = p.entry if % has finiteAggregate then - keys t == [x.key for x in parts t] + keys t == [x.key for x in members t] elt(t, k) == (r := search(k, t)) case Entry => r::Entry @@ -1090,7 +1090,7 @@ IndexedAggregate(Index: SetCategory, Entry: Type): Category == elt(a, i, x) == (index?(i, a) => qelt(a, i); x) if % has finiteAggregate then - entries x == parts x + entries x == members x if Entry has SetCategory then entry?(x, a) == member?(x, a) @@ -1178,9 +1178,9 @@ TableAggregate(Key:SetCategory, Entry:SetCategory): Category == -- for k in keys t | not key?(k, s) repeat z.k := f(t.k, x) -- z - parts(t:%):List Record(key:Key,entry:Entry) == [[k, t.k] for k in keys t] - parts(t:%):List Entry == [t.k for k in keys t] - entries(t:%):List Entry == parts(t) + members(t:%):List Record(key:Key,entry:Entry) == [[k, t.k] for k in keys t] + members(t:%):List Entry == [t.k for k in keys t] + entries(t:%):List Entry == members(t) s:% = t:% == eq?(s,t) => true @@ -1210,7 +1210,7 @@ TableAggregate(Key:SetCategory, Entry:SetCategory): Category == [first ks, t first ks] find(f: Record(key:Key,entry:Entry)->Boolean, t:%): Union(Record(key:Key,entry:Entry), "failed") == - for ke in parts(t)@List(Record(key:Key,entry:Entry)) repeat if f ke then return ke + for ke in members(t)@List(Record(key:Key,entry:Entry)) repeat if f ke then return ke "failed" index?(k: Key, t: %): Boolean == @@ -2052,7 +2052,7 @@ import FiniteLinearAggregate OneDimensionalArrayAggregate(S:Type): Category == Join(FiniteLinearAggregate S,ShallowlyMutableAggregate S) add - parts x == [qelt(x, i) for i in minIndex x .. maxIndex x] + members x == [qelt(x, i) for i in minIndex x .. maxIndex x] sort!(f, a) == quickSort(f, a)$FiniteLinearAggregateSort(S, %) any?(f, a) == diff --git a/src/algebra/array2.spad.pamphlet b/src/algebra/array2.spad.pamphlet index 217d9cad..4828c081 100644 --- a/src/algebra/array2.spad.pamphlet +++ b/src/algebra/array2.spad.pamphlet @@ -32,9 +32,7 @@ TwoDimensionalArrayCategory(R,Row,Col): Category == Definition where R : Type Row : FiniteLinearAggregate R Col : FiniteLinearAggregate R - Definition == FiniteAggregate R with - shallowlyMutable - ++ one may destructively alter arrays + Definition == Join(FiniteAggregate R,ShallowlyMutableAggregate R) with --% Array creation new: (NonNegativeInteger,NonNegativeInteger,R) -> % ++ new(m,n,r) is an m-by-n array all of whose entries are r diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index ed2de6cb..81be998a 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(1961975 . 3577831632) +(1962315 . 3577834557) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-3996 . T) (-3995 . T)) +((-3997 . T) (-3996 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-3992 . T) (-3990 . T) (-3989 . T) ((-3997 "*") . T) (-3988 . T) (-3993 . T) (-3987 . T)) +((-3993 . T) (-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3989 . T) (-3994 . T) (-3988 . T)) NIL (-30) ((|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3092) +(-32 R -3093) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (QUOTE (-950 (-484))))) +((|HasCategory| |#1| (QUOTE (-951 (-485))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -3995))) +((|HasAttribute| |#1| (QUOTE -3996))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Maybe| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \\spad{nothing} if \\spad{u} has no key \\spad{k}."))) -((-3995 . T) (-3996 . T)) +((-3996 . T) (-3997 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-3989 . T) (-3990 . T) (-3992 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) NIL NIL -(-40 -3092 UP UPUP -2614) +(-40 -3093 UP UPUP -2615) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-3988 |has| (-350 |#2|) (-312)) (-3993 |has| (-350 |#2|) (-312)) (-3987 |has| (-350 |#2|) (-312)) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1090)))))) (|HasCategory| (-350 |#2|) (QUOTE (-580 (-484)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-950 (-350 (-484)))))) (|HasCategory| (-350 |#2|) (QUOTE (-950 (-350 (-484))))) (|HasCategory| (-350 |#2|) (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090)))))) -(-41 R -3092) +((-3989 |has| (-350 |#2|) (-312)) (-3994 |has| (-350 |#2|) (-312)) (-3988 |has| (-350 |#2|) (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091)))))) (|HasCategory| (-350 |#2|) (QUOTE (-581 (-485)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091)))))) +(-41 R -3093) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -364) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -364) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,31 +106,31 @@ NIL ((|HasCategory| |#1| (QUOTE (-258)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-3992 |has| |#1| (-495)) (-3990 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) +((-3993 |has| |#1| (-496)) (-3991 . T) (-3990 . T)) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-3995 . T) (-3996 . T)) -((OR (-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-756)))) (-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))))) +((-3996 . T) (-3997 . T)) +((OR (-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-757)))) (-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) +((|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3989 . T) (-3990 . T) (-3992 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-484))))) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-3992 . T)) +((-3993 . T)) NIL (-51) ((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3092) +(-54 |Base| R -3093) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression."))) NIL NIL @@ -153,33 +153,33 @@ NIL NIL NIL (-56 S R |Row| |Col|) -((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $ |#2|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#4|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#3|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|column| ((|#4| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#3| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#2| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#2| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#2|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) +((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $ |#2|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#4|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#3|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|column| ((|#4| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#3| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#2| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#2| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#2|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}"))) NIL NIL (-57 R |Row| |Col|) -((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-3996 . T) (-3995 . T)) +((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}"))) +((-3997 . T) (-3996 . T)) NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-3996 . T) (-3995 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns."))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-61 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL ((|HasCategory| |#1| (QUOTE (-312)))) (-62 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-3995 . T) (-3996 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-63 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -202,11 +202,11 @@ NIL NIL (-68) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-3995 . T) ((-3997 "*") . T) (-3992 . T) (-3990 . T) (-3989 . T) (-3988 . T) (-3993 . T) (-3987 . T) (-3986 . T) (-3985 . T) (-3984 . T) (-3983 . T) (-3991 . T) (-3994 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3982 . T)) +((-3996 . T) ((-3998 "*") . T) (-3993 . T) (-3991 . T) (-3990 . T) (-3989 . T) (-3994 . T) (-3988 . T) (-3987 . T) (-3986 . T) (-3985 . T) (-3984 . T) (-3992 . T) (-3995 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3983 . T)) NIL (-69 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-3992 . T)) +((-3993 . T)) NIL (-70 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -222,24 +222,24 @@ NIL NIL (-73 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-74 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-3997 "*")))) +((|HasAttribute| |#1| (QUOTE (-3998 "*")))) (-75 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}."))) NIL NIL (-76 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}."))) -((-3996 . T)) +((-3997 . T)) NIL (-77) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1090)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1066))) (|HasCategory| (-484) (QUOTE (-796 (-330)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1090)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1090)))) (|HasCategory| (-484) (QUOTE (-455 (-1090) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118))))) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118))))) (-78) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -254,11 +254,11 @@ NIL NIL (-81) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1013)))) (|HasCategory| (-85) (QUOTE (-553 (-473)))) (|HasCategory| (-85) (QUOTE (-756))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-85) (QUOTE (-1013))) (|HasCategory| (-85) (QUOTE (-552 (-772)))) (|HasCategory| (-85) (QUOTE (-72)))) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1014)))) (|HasCategory| (-85) (QUOTE (-554 (-474)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-1014))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-72)))) (-82 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-3990 . T) (-3989 . T)) +((-3991 . T) (-3990 . T)) NIL (-83 S) ((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) @@ -280,22 +280,22 @@ NIL ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-88 -3092 UP) +(-88 -3093 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-89 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-90 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| (-89 |#1|) (QUOTE (-821))) (|HasCategory| (-89 |#1|) (QUOTE (-950 (-1090)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-473)))) (|HasCategory| (-89 |#1|) (QUOTE (-933))) (|HasCategory| (-89 |#1|) (QUOTE (-740))) (|HasCategory| (-89 |#1|) (QUOTE (-756))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-740))) (|HasCategory| (-89 |#1|) (QUOTE (-756)))) (|HasCategory| (-89 |#1|) (QUOTE (-950 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-1066))) (|HasCategory| (-89 |#1|) (QUOTE (-796 (-330)))) (|HasCategory| (-89 |#1|) (QUOTE (-796 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-89 |#1|) (QUOTE (-580 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-811 (-1090)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-809 (-1090)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -455) (QUOTE (-1090)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-258))) (|HasCategory| (-89 |#1|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-821)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))))) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-89 |#1|) (QUOTE (-822))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-1091)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-474)))) (|HasCategory| (-89 |#1|) (QUOTE (-934))) (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757)))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-1067))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-330)))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-89 |#1|) (QUOTE (-581 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-812 (-1091)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-810 (-1091)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-258))) (|HasCategory| (-89 |#1|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))))) (-91 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -3996))) +((|HasAttribute| |#1| (QUOTE -3997))) (-92 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -306,15 +306,15 @@ NIL NIL (-94 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-95 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-96) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-3996 . T) (-3995 . T)) +((-3997 . T) (-3996 . T)) NIL (-97 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}."))) @@ -322,24 +322,24 @@ NIL NIL (-98 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}."))) -((-3996 . T) (-3995 . T)) +((-3997 . T) (-3996 . T)) NIL (-99 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-100 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-101) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256."))) NIL NIL (-102) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-3996 . T) (-3995 . T)) -((OR (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-756)))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1013))))) (|HasCategory| (-101) (QUOTE (-552 (-772)))) (|HasCategory| (-101) (QUOTE (-553 (-473)))) (OR (|HasCategory| (-101) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1013)))) (|HasCategory| (-101) (QUOTE (-756))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1013))) (|HasCategory| (-101) (QUOTE (-72))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1013))))) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-757)))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1014))))) (|HasCategory| (-101) (QUOTE (-553 (-773)))) (|HasCategory| (-101) (QUOTE (-554 (-474)))) (OR (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1014)))) (|HasCategory| (-101) (QUOTE (-757))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1014))) (|HasCategory| (-101) (QUOTE (-72))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1014))))) (-103) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL @@ -358,13 +358,13 @@ NIL NIL (-107) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-3997 "*") . T)) +(((-3998 "*") . T)) NIL -(-108 |minix| -2621 R) +(-108 |minix| -2622 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree."))) NIL NIL -(-109 |minix| -2621 S T$) +(-109 |minix| -2622 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL @@ -386,8 +386,8 @@ NIL NIL (-114) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-3995 . T) (-3985 . T) (-3996 . T)) -((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-320)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) (|HasCategory| (-117) (QUOTE (-553 (-473)))) (|HasCategory| (-117) (QUOTE (-320))) (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1013))) (|HasCategory| (-117) (QUOTE (-552 (-772)))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) +((-3996 . T) (-3986 . T) (-3997 . T)) +((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-320)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014))))) (|HasCategory| (-117) (QUOTE (-554 (-474)))) (|HasCategory| (-117) (QUOTE (-320))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014))))) (-115 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL @@ -402,7 +402,7 @@ NIL NIL (-118) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-3992 . T)) +((-3993 . T)) NIL (-119 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x."))) @@ -410,9 +410,9 @@ NIL NIL (-120) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-3992 . T)) +((-3993 . T)) NIL -(-121 -3092 UP UPUP) +(-121 -3093 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -423,14 +423,14 @@ NIL (-123 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasAttribute| |#1| (QUOTE -3995))) +((|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasAttribute| |#1| (QUOTE -3996))) (-124 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-125 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-3990 . T) (-3989 . T) (-3992 . T)) +((-3991 . T) (-3990 . T) (-3993 . T)) NIL (-126) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -452,7 +452,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-131 R -3092) +(-131 R -3093) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -483,10 +483,10 @@ NIL (-138 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3991)) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-495)))) +((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-496)))) (-139 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-3988 OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3991 |has| |#1| (-6 -3991)) (-3994 |has| |#1| (-6 -3994)) (-1376 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3995 |has| |#1| (-6 -3995)) (-1377 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-140 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -498,8 +498,8 @@ NIL NIL (-142 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-3988 OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3991 |has| |#1| (-6 -3991)) (-3994 |has| |#1| (-6 -3994)) (-1376 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1090))))) (|HasCategory| |#1| (QUOTE (-811 (-1090))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-821))))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasAttribute| |#1| (QUOTE -3991)) (|HasAttribute| |#1| (QUOTE -3994)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1090))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +((-3989 OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3995 |has| |#1| (-6 -3995)) (-1377 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (|HasCategory| |#1| (QUOTE (-812 (-1091))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-822))))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-974))) (-12 (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasAttribute| |#1| (QUOTE -3995)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) (-143 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL @@ -514,7 +514,7 @@ NIL NIL (-146) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +(((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-147) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -522,7 +522,7 @@ NIL NIL (-148 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-3997 "*") . T) (-3988 . T) (-3993 . T) (-3987 . T) (-3989 . T) (-3990 . T) (-3992 . T)) +(((-3998 "*") . T) (-3989 . T) (-3994 . T) (-3988 . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-149) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -539,7 +539,7 @@ NIL (-152 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-857 |#2|) (|%list| (QUOTE -796) (|devaluate| |#1|)))) +((|HasCategory| (-858 |#2|) (|%list| (QUOTE -797) (|devaluate| |#1|)))) (-153 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -576,7 +576,7 @@ NIL ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-162 R -3092) +(-162 R -3093) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -604,23 +604,23 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) NIL NIL -(-169 -3092 UP UPUP R) +(-169 -3093 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-170 -3092 FP) +(-170 -3093 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-171) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1090)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1066))) (|HasCategory| (-484) (QUOTE (-796 (-330)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1090)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1090)))) (|HasCategory| (-484) (QUOTE (-455 (-1090) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118))))) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118))))) (-172) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-173 R -3092) +(-173 R -3093) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -634,19 +634,19 @@ NIL NIL (-176 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-3995 . T) (-3996 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-177 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-3992 . T)) +((-3993 . T)) NIL -(-178 R -3092) +(-178 R -3093) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-179) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3770 . T) (-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3771 . T) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-180) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -654,19 +654,19 @@ NIL NIL (-181 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-495))) (|HasAttribute| |#1| (QUOTE (-3997 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3998 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72)))) (-182 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-183 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-3996 . T)) +((-3997 . T)) NIL (-184 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-3992 . T)) +((-3993 . T)) NIL (-185 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) @@ -678,7 +678,7 @@ NIL NIL (-187 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-3990 . T) (-3989 . T)) +((-3991 . T) (-3990 . T)) NIL (-188 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) @@ -690,7 +690,7 @@ NIL NIL (-190) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-3992 . T)) +((-3993 . T)) NIL (-191) ((|constructor| (NIL "Dioid is the class of semirings where the addition operation induces a canonical order relation."))) @@ -699,28 +699,28 @@ NIL (-192 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -3995))) +((|HasAttribute| |#1| (QUOTE -3996))) (-193 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-3996 . T)) +((-3997 . T)) NIL (-194) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-195 S -2621 R) +(-195 S -2622 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim."))) NIL -((|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasAttribute| |#3| (QUOTE -3992)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1013)))) -(-196 -2621 R) +((|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasAttribute| |#3| (QUOTE -3993)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) +(-196 -2622 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim."))) -((-3989 |has| |#2| (-961)) (-3990 |has| |#2| (-961)) (-3992 |has| |#2| (-6 -3992)) (-3995 . T)) +((-3990 |has| |#2| (-962)) (-3991 |has| |#2| (-962)) (-3993 |has| |#2| (-6 -3993)) (-3996 . T)) NIL -(-197 -2621 R) +(-197 -2622 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-3989 |has| |#2| (-961)) (-3990 |has| |#2| (-961)) (-3992 |has| |#2| (-6 -3992)) (-3995 . T)) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3992)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) -(-198 -2621 A B) +((-3990 |has| |#2| (-962)) (-3991 |has| |#2| (-962)) (-3993 |has| |#2| (-6 -3993)) (-3996 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3993)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) +(-198 -2622 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL @@ -734,7 +734,7 @@ NIL NIL (-201) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-3988 . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-202 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -742,20 +742,20 @@ NIL NIL (-203 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-3996 . T) (-3995 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (-204 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-205 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-3990 . T) (-3989 . T)) +((-3991 . T) (-3990 . T)) NIL (-206 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3997 "*") |has| |#2| (-146)) (-3988 |has| |#2| (-495)) (-3993 |has| |#2| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-330)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-496)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) (-207) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'."))) NIL @@ -770,23 +770,23 @@ NIL NIL (-210 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-3992 OR (-2562 (|has| |#4| (-961)) (|has| |#4| (-190))) (|has| |#4| (-6 -3992)) (-2562 (|has| |#4| (-961)) (|has| |#4| (-809 (-1090))))) (-3989 |has| |#4| (-961)) (-3990 |has| |#4| (-961)) (-3995 . T)) -((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-312))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312)))) (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-717))) (OR (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-756)))) (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-320))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-484)))) (|HasCategory| |#4| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-484)))) (|HasCategory| |#4| (QUOTE (-961))))) (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-811 (-1090)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-809 (-1090))))) (|HasCategory| |#4| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#4| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-484)))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1090)))) (|HasCategory| |#4| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#4| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasAttribute| |#4| (QUOTE -3992)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-961))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1090)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) +((-3993 OR (-2563 (|has| |#4| (-962)) (|has| |#4| (-190))) (|has| |#4| (-6 -3993)) (-2563 (|has| |#4| (-962)) (|has| |#4| (-810 (-1091))))) (-3990 |has| |#4| (-962)) (-3991 |has| |#4| (-962)) (-3996 . T)) +((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-312))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312)))) (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-718))) (OR (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-757)))) (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-320))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-810 (-1091))))) (|HasCategory| |#4| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasAttribute| |#4| (QUOTE -3993)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (-211 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-3992 OR (-2562 (|has| |#3| (-961)) (|has| |#3| (-190))) (|has| |#3| (-6 -3992)) (-2562 (|has| |#3| (-961)) (|has| |#3| (-809 (-1090))))) (-3989 |has| |#3| (-961)) (-3990 |has| |#3| (-961)) (-3995 . T)) -((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (OR (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756)))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-809 (-1090))))) (|HasCategory| |#3| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#3| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1090)))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasAttribute| |#3| (QUOTE -3992)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-552 (-772)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) +((-3993 OR (-2563 (|has| |#3| (-962)) (|has| |#3| (-190))) (|has| |#3| (-6 -3993)) (-2563 (|has| |#3| (-962)) (|has| |#3| (-810 (-1091))))) (-3990 |has| |#3| (-962)) (-3991 |has| |#3| (-962)) (-3996 . T)) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasAttribute| |#3| (QUOTE -3993)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (-212 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-190)))) (-213 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) NIL (-214 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-3995 . T) (-3996 . T)) +((-3996 . T) (-3997 . T)) NIL (-215 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -827,15 +827,15 @@ NIL (-224 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-189)))) +((|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-189)))) (-225 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL (-226 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| |#3| (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#3| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#3| (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#3| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#3| (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#3| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#3| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#3| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) (-227 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -848,11 +848,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-230 R -3092) +(-230 R -3093) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-231 R -3092) +(-231 R -3093) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -875,10 +875,10 @@ NIL (-236 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013)))) +((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014)))) (-237 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-3996 . T)) +((-3997 . T)) NIL (-238 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -899,14 +899,14 @@ NIL (-242 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -3996))) +((|HasAttribute| |#1| (QUOTE -3997))) (-243 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-244 S R |Mod| -2037 -3518 |exactQuo|) +(-244 S R |Mod| -2038 -3519 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-245 S) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) @@ -914,7 +914,7 @@ NIL NIL (-246) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-3988 . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-247) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -926,16 +926,16 @@ NIL NIL (-249 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-3992 OR (|has| |#1| (-961)) (|has| |#1| (-413))) (-3989 |has| |#1| (-961)) (-3990 |has| |#1| (-961))) -((|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-663)))) (|HasCategory| |#1| (QUOTE (-413))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-254))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-663)))) +((-3993 OR (|has| |#1| (-962)) (|has| |#1| (-413))) (-3990 |has| |#1| (-962)) (-3991 |has| |#1| (-962))) +((|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664)))) (|HasCategory| |#1| (QUOTE (-413))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-254))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-664)))) (-250 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL (-251 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-3995 . T) (-3996 . T)) -((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772))))) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773))))) (-252) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL @@ -943,16 +943,16 @@ NIL (-253 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) +((|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (-254) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-255 -3092 S) +(-255 -3093 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-256 E -3092) +(-256 E -3093) ((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -962,7 +962,7 @@ NIL NIL (-258) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-259 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -972,7 +972,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-261 -3092) +(-261 -3093) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -986,12 +986,12 @@ NIL NIL (-264 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-950 (-1090)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-473)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-933))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-740))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-756))) (OR (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-740))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-756)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-950 (-484)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-1066))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-796 (-330)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-796 (-484)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-580 (-484)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-811 (-1090)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-809 (-1090)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -455) (QUOTE (-1090)) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -260) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-258))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-118))))) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-822))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-474)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-934))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-757))) (OR (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-757)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-1067))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-330)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-581 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-812 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-810 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -260) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-258))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-118))))) (-265 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-3992 OR (-12 (|has| |#1| (-495)) (OR (|has| |#1| (-961)) (|has| |#1| (-413)))) (|has| |#1| (-961)) (|has| |#1| (-413))) (-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) ((-3997 "*") |has| |#1| (-495)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-495)) (-3987 |has| |#1| (-495))) -((OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961))))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-484)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-484))))) +((-3993 OR (-12 (|has| |#1| (-496)) (OR (|has| |#1| (-962)) (|has| |#1| (-413)))) (|has| |#1| (-962)) (|has| |#1| (-413))) (-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) ((-3998 "*") |has| |#1| (-496)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-496)) (-3988 |has| |#1| (-496))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962))))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485))))) (-266 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1000,7 +1000,7 @@ NIL ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-268 R -3092) +(-268 R -3093) ((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1010,8 +1010,8 @@ NIL NIL (-270 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|))))))) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|))))))) (-271 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1022,8 +1022,8 @@ NIL NIL (-273 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative."))) -((-3990 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| (-484) (QUOTE (-716)))) +((-3991 . T) (-3990 . T)) +((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-717)))) (-274 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1031,26 +1031,26 @@ NIL (-275 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-694) (QUOTE (-716)))) +((|HasCategory| (-695) (QUOTE (-717)))) (-276 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146)))) +((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146)))) (-277 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3989 . T) (-3990 . T) (-3992 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-278 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-3996 . T) (-3995 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-279 S -3092) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-279 S -3093) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-320)))) -(-280 -3092) +(-280 -3093) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-281 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) @@ -1060,7 +1060,7 @@ NIL ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-283 -3092 UP UPUP R) +(-283 -3093 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL @@ -1068,33 +1068,33 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-285 S -3092 UP UPUP R) +(-285 S -3093 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-286 -3092 UP UPUP R) +(-286 -3093 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL (-287 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-288 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-289 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-320)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-320))) (|HasCategory| (-817 |#1|) (QUOTE (-118)))) -(-290 S -3092 UP UPUP) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-320)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-320))) (|HasCategory| (-818 |#1|) (QUOTE (-118)))) +(-290 S -3093 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-312)))) -(-291 -3092 UP UPUP) +(-291 -3093 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-3988 |has| (-350 |#2|) (-312)) (-3993 |has| (-350 |#2|) (-312)) (-3987 |has| (-350 |#2|) (-312)) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 |has| (-350 |#2|) (-312)) (-3994 |has| (-350 |#2|) (-312)) (-3988 |has| (-350 |#2|) (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-292 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) @@ -1102,15 +1102,15 @@ NIL NIL (-293 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-320)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-320))) (|HasCategory| (-817 |#1|) (QUOTE (-118)))) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-320)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-320))) (|HasCategory| (-818 |#1|) (QUOTE (-118)))) (-294 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) ((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) (-295 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) ((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) (-296 GF) ((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) @@ -1126,43 +1126,43 @@ NIL NIL (-299) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-300 R UP -3092) +(-300 R UP -3093) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-301 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-320)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-320))) (|HasCategory| (-817 |#1|) (QUOTE (-118)))) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-320)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-320))) (|HasCategory| (-818 |#1|) (QUOTE (-118)))) (-302 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) ((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) (-303 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) ((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) (-304 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) ((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) (-305 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-306 -3092 GF) +(-306 -3093 GF) ((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-307 -3092 FP FPP) +(-307 -3093 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL (-308 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) ((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118)))) (-309 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}."))) @@ -1170,7 +1170,7 @@ NIL NIL (-310 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-3992 . T)) +((-3993 . T)) NIL (-311 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1178,7 +1178,7 @@ NIL NIL (-312) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-313 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) @@ -1191,10 +1191,10 @@ NIL (-315 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-495)))) +((|HasCategory| |#2| (QUOTE (-496)))) (-316 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-3992 |has| |#1| (-495)) (-3990 . T) (-3989 . T)) +((-3993 |has| |#1| (-496)) (-3991 . T) (-3990 . T)) NIL (-317 A S) ((|constructor| (NIL "A finite aggregate is a homogeneous aggregate with a finite number of elements.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} \\indented{1}{in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} holds. For collections,{}} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) holds for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\spad{p(x)} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#u} returns the number of items in \\spad{u}."))) @@ -1202,7 +1202,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-72)))) (-318 S) ((|constructor| (NIL "A finite aggregate is a homogeneous aggregate with a finite number of elements.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} \\indented{1}{in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} holds. For collections,{}} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) holds for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\spad{p(x)} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#u} returns the number of items in \\spad{u}."))) -((-3995 . T)) +((-3996 . T)) NIL (-319 S) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1218,15 +1218,15 @@ NIL ((|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-312)))) (-322 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-3989 . T) (-3990 . T) (-3992 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL (-323 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013)))) +((|HasAttribute| |#1| (QUOTE -3997)) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014)))) (-324 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-3995 . T)) +((-3996 . T)) NIL (-325 S A R B) ((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1234,7 +1234,7 @@ NIL NIL (-326 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3990 . T) (-3989 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3991 . T) (-3990 . T)) NIL (-327 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1243,14 +1243,14 @@ NIL (-328 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (QUOTE (-580 (-484))))) +((|HasCategory| |#2| (QUOTE (-581 (-485))))) (-329 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL (-330) ((|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3978 . T) (-3986 . T) (-3770 . T) (-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3979 . T) (-3987 . T) (-3771 . T) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-331 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) @@ -1262,15 +1262,15 @@ NIL NIL (-333 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-3990 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) +((-3991 . T) (-3990 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) (-334 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-3990 . T) (-3989 . T)) +((-3991 . T) (-3990 . T)) ((|HasCategory| |#1| (QUOTE (-146)))) (-335 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-3990 . T) (-3989 . T)) +((-3991 . T) (-3990 . T)) NIL (-336 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) @@ -1279,7 +1279,7 @@ NIL (-337 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-756)))) +((|HasCategory| |#1| (QUOTE (-757)))) (-338) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL @@ -1290,13 +1290,13 @@ NIL NIL (-340 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-3990 . T) (-3989 . T)) +((-3991 . T) (-3990 . T)) NIL -(-341 -3092 UP UPUP R) +(-341 -3093 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-342 -3092 UP) +(-342 -3093 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1310,28 +1310,28 @@ NIL NIL (-345) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-346 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -3978)) (|HasAttribute| |#1| (QUOTE -3986))) +((|HasAttribute| |#1| (QUOTE -3979)) (|HasAttribute| |#1| (QUOTE -3987))) (-347) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3770 . T) (-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3771 . T) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-348 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-455 (-1090) $))) (|HasCategory| |#1| (QUOTE (-260 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-1134))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-1134)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-392)))) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-456 (-1091) $))) (|HasCategory| |#1| (QUOTE (-260 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-1135))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-392)))) (-349 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL (-350 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-3982 -12 (|has| |#1| (-6 -3993)) (|has| |#1| (-392)) (|has| |#1| (-6 -3982))) (-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-950 (-1090)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-740))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-740))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-483))) (-12 (|HasAttribute| |#1| (QUOTE -3982)) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392)))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +((-3983 -12 (|has| |#1| (-6 -3994)) (|has| |#1| (-392)) (|has| |#1| (-6 -3983))) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-951 (-1091)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-484))) (-12 (|HasAttribute| |#1| (QUOTE -3983)) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392)))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) (-351 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL @@ -1342,28 +1342,28 @@ NIL NIL (-353 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-3989 . T) (-3990 . T) (-3992 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL (-354 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) +((|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-355 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-356 R -3092 UP A) +(-356 R -3093 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-3992 . T)) +((-3993 . T)) NIL (-357 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-358 R -3092 UP A |ibasis|) +(-358 R -3093 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (|%list| (QUOTE -950) (|devaluate| |#2|)))) +((|HasCategory| |#4| (|%list| (QUOTE -951) (|devaluate| |#2|)))) (-359 AR R AS S) ((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL @@ -1374,7 +1374,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-312)))) (-361 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-3992 |has| |#1| (-495)) (-3990 . T) (-3989 . T)) +((-3993 |has| |#1| (-496)) (-3991 . T) (-3990 . T)) NIL (-362 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) @@ -1383,10 +1383,10 @@ NIL (-363 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) +((|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (-364 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-3992 OR (|has| |#1| (-961)) (|has| |#1| (-413))) (-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) ((-3997 "*") |has| |#1| (-495)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-495)) (-3987 |has| |#1| (-495))) +((-3993 OR (|has| |#1| (-962)) (|has| |#1| (-413))) (-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) ((-3998 "*") |has| |#1| (-496)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-496)) (-3988 |has| |#1| (-496))) NIL (-365 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) @@ -1403,36 +1403,36 @@ NIL (-368 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-320)))) +((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320)))) (-369 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-3995 . T) (-3985 . T) (-3996 . T)) +((-3996 . T) (-3986 . T) (-3997 . T)) NIL (-370 S A R B) ((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-371 R -3092) +(-371 R -3093) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-372 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-3982 -12 (|has| |#1| (-6 -3982)) (|has| |#2| (-6 -3982))) (-3989 . T) (-3990 . T) (-3992 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -3982)) (|HasAttribute| |#2| (QUOTE -3982)))) -(-373 R -3092) +((-3983 -12 (|has| |#1| (-6 -3983)) (|has| |#2| (-6 -3983))) (-3990 . T) (-3991 . T) (-3993 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -3983)) (|HasAttribute| |#2| (QUOTE -3983)))) +(-373 R -3093) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-374 R -3092) +(-374 R -3093) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-375 R -3092) +(-375 R -3093) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-376 R -3092) +(-376 R -3093) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1440,10 +1440,10 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-378 R -3092 UP) +(-378 R -3093 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (QUOTE (-950 (-48))))) +((|HasCategory| |#2| (QUOTE (-951 (-48))))) (-379) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL @@ -1460,7 +1460,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-383 R UP -3092) +(-383 R UP -3093) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1498,16 +1498,16 @@ NIL NIL (-392) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-393 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-3992 |has| (-350 (-857 |#1|)) (-495)) (-3990 . T) (-3989 . T)) -((|HasCategory| (-350 (-857 |#1|)) (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-350 (-857 |#1|)) (QUOTE (-495)))) +((-3993 |has| (-350 (-858 |#1|)) (-496)) (-3991 . T) (-3990 . T)) +((|HasCategory| (-350 (-858 |#1|)) (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-350 (-858 |#1|)) (QUOTE (-496)))) (-394 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3997 "*") |has| |#2| (-146)) (-3988 |has| |#2| (-495)) (-3993 |has| |#2| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-330)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-496)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) (-395 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional."))) NIL @@ -1534,7 +1534,7 @@ NIL NIL (-401 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-3990 . T) (-3989 . T)) +((-3991 . T) (-3990 . T)) NIL (-402 E V R P Q) ((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1542,8 +1542,8 @@ NIL NIL (-403 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}."))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72)))) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72)))) (-404 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}."))) NIL @@ -1572,7 +1572,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-411 |lv| -3092 R) +(-411 |lv| -3093 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1582,23 +1582,23 @@ NIL NIL (-413) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-3992 . T)) +((-3993 . T)) NIL (-414 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|))))))) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|))))))) (-415 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-3995 . T) (-3996 . T)) -((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772))))) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773))))) (-416 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72)))) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72)))) (-417) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL (-418) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) @@ -1606,29 +1606,29 @@ NIL NIL (-419 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-3995 . T) (-3996 . T)) -((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772))))) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773))))) (-420) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-421 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3997 "*") |has| |#2| (-146)) (-3988 |has| |#2| (-495)) (-3993 |has| |#2| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-330)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-422 -2621 S) +(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-496)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-422 -2622 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3989 |has| |#2| (-961)) (-3990 |has| |#2| (-961)) (-3992 |has| |#2| (-6 -3992)) (-3995 . T)) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3992)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) +((-3990 |has| |#2| (-962)) (-3991 |has| |#2| (-962)) (-3993 |has| |#2| (-6 -3993)) (-3996 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3993)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (-423) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL (-424 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-3995 . T) (-3996 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-425 -3092 UP UPUP R) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-425 -3093 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1638,12 +1638,12 @@ NIL NIL (-427) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1090)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1066))) (|HasCategory| (-484) (QUOTE (-796 (-330)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1090)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1090)))) (|HasCategory| (-484) (QUOTE (-455 (-1090) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118))))) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118))))) (-428 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -3995)) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) +((|HasAttribute| |#1| (QUOTE -3996)) (|HasAttribute| |#1| (QUOTE -3997)) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (-429 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1664,3109 +1664,3113 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-434 -3092 UP |AlExt| |AlPol|) +(-434 -3093 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-435) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-484))))) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485))))) (-436 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) -((-3996 . T) (-3995 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (-437 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's."))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-438 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-439 R UP -3092) +(-439 R UP -3093) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-440 K R UP L) +(-440 |mn|) +((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data."))) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1014)))) (|HasCategory| (-85) (QUOTE (-554 (-474)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-1014))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-72)))) +(-441 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-441) +(-442) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-442 R Q A B) +(-443 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL NIL -(-443 -3092 |Expon| |VarSet| |DPoly|) +(-444 -3093 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (QUOTE (-553 (-1090))))) -(-444 |vl| |nv|) +((|HasCategory| |#3| (QUOTE (-554 (-1091))))) +(-445 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-445 T$) +(-446 T$) ((|constructor| (NIL "This is the category of all domains that implement idempotent operations."))) -(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3056 (|f| |x| |x|) |x|))) . T)) +(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3057 (|f| |x| |x|) |x|))) . T)) NIL -(-446) +(-447) ((|constructor| (NIL "This domain provides representation for plain identifiers. It differs from Symbol in that it does not support any form of scripting. It is a plain basic data structure. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-447 A S) +(-448 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) -(-448 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) +(-449 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) -(-449 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) +(-450 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|IndexedProductTerm| |#1| |#2|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-450 A S) +(-451 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support.")) (|combineWithIf| (($ $ $ (|Mapping| |#1| |#1| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{combineWithIf(u,v,f,p)} returns the result of combining index-wise,{} coefficients of \\spad{u} and \\spad{u} if when satisfy the predicate \\spad{p}. Those pairs of coefficients which fail\\spad{p} are implicitly ignored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) -(-451 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) +(-452 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) -(-452 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) +(-453 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) -(-453 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) +(-454 A S) ((|constructor| (NIL "An indexed product term is a utility domain used in the representation of indexed direct product objects.")) (|coefficient| ((|#1| $) "\\spad{coefficient t} returns the coefficient of the tern \\spad{t}.")) (|index| ((|#2| $) "\\spad{index t} returns the index of the term \\spad{t}.")) (|term| (($ |#2| |#1|) "\\spad{term(s,a)} constructs a term with index \\spad{s} and coefficient \\spad{a}."))) NIL NIL -(-454 S A B) +(-455 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-455 A B) +(-456 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-456 S E |un|) +(-457 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-716)))) -(-457 S |mn|) +((|HasCategory| |#2| (QUOTE (-717)))) +(-458 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-3996 . T) (-3995 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-458) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-459) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-459 |p| |n|) +(-460 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((OR (|HasCategory| (-517 |#1|) (QUOTE (-118))) (|HasCategory| (-517 |#1|) (QUOTE (-320)))) (|HasCategory| (-517 |#1|) (QUOTE (-120))) (|HasCategory| (-517 |#1|) (QUOTE (-320))) (|HasCategory| (-517 |#1|) (QUOTE (-118)))) -(-460 R |Row| |Col| M) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((OR (|HasCategory| (-518 |#1|) (QUOTE (-118))) (|HasCategory| (-518 |#1|) (QUOTE (-320)))) (|HasCategory| (-518 |#1|) (QUOTE (-120))) (|HasCategory| (-518 |#1|) (QUOTE (-320))) (|HasCategory| (-518 |#1|) (QUOTE (-118)))) +(-461 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -3996))) -(-461 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -3997))) +(-462 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -3996))) -(-462) +((|HasAttribute| |#7| (QUOTE -3997))) +(-463) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-463) +(-464) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-464 S) +(-465 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-465) +(-466) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-466 GF) +(-467 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\",{} Information and Computation 78,{} pp.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} pp.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field GF."))) NIL NIL -(-467) +(-468) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file `f'.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-468 R) +(-469 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} := increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} := increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-469 |Varset|) +(-470 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-694) (QUOTE (-1013))))) -(-470 K -3092 |Par|) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-695) (QUOTE (-1014))))) +(-471 K -3093 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-471) +(-472) NIL NIL NIL -(-472) +(-473) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-473) +(-474) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}'s are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) (|One| (($) "\\spad{1} returns the input form corresponding to 1.")) (|Zero| (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-474 R) +(-475 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-475 |Coef| UTS) +(-476 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-476 K -3092 |Par|) +(-477 K -3093 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-477 R BP |pMod| |nextMod|) +(-478 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the gcd of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the gcd of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-478 OV E R P) +(-479 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-479 K UP |Coef| UTS) +(-480 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-480 |Coef| UTS) +(-481 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-481 R UP) +(-482 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-482 S) +(-483 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-483) +(-484) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-3993 . T) (-3994 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-484) +(-485) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-3983 . T) (-3987 . T) (-3982 . T) (-3993 . T) (-3994 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3984 . T) (-3988 . T) (-3983 . T) (-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-485) +(-486) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-486) +(-487) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-487) +(-488) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-488) +(-489) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-489 |Key| |Entry| |addDom|) +(-490 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-3995 . T) (-3996 . T)) -((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772))))) -(-490 R -3092) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773))))) +(-491 R -3093) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-491 R0 -3092 UP UPUP R) +(-492 R0 -3093 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-492) +(-493) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-493 R) +(-494 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3770 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3771 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-494 S) +(-495 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-495) +(-496) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-496 R -3092) +(-497 R -3093) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-497 I) +(-498 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-498 R -3092 L) +(-499 R -3093 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -600) (|devaluate| |#2|)))) -(-499) +((|HasCategory| |#3| (|%list| (QUOTE -601) (|devaluate| |#2|)))) +(-500) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-500 -3092 UP UPUP R) +(-501 -3093 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-501 -3092 UP) +(-502 -3093 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-502 R -3092 L) +(-503 R -3093 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -600) (|devaluate| |#2|)))) -(-503 R -3092) +((|HasCategory| |#3| (|%list| (QUOTE -601) (|devaluate| |#2|)))) +(-504 R -3093) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-569))))) -(-504 -3092 UP) +((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-1054)))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-570))))) +(-505 -3093 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-505 S) +(-506 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-506 -3092) +(-507 -3093) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-507 R) +(-508 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3770 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3771 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-508) +(-509) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-509 R -3092) +(-510 R -3093) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-950 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-495)))) -(-510 -3092 UP) +((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-496)))) +(-511 -3093 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-511 R -3092) +(-512 R -3093) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-512) +(-513) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-513) +(-514) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if `f' is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by `f' as a binary file."))) NIL NIL -(-514) +(-515) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-515) +(-516) ((|constructor| (NIL "This domain provides representation for ARPA Internet \\spad{IP4} addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the \\spad{IP4} address of host `h'.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address `x'.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-516 |p| |unBalanced?|) +(-517 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-517 |p|) +(-518 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) ((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-320)))) -(-518) +(-519) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-519 -3092) +(-520 -3093) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-3990 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-950 (-1090))))) -(-520 E -3092) +((-3991 . T) (-3990 . T)) +((|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-951 (-1091))))) +(-521 E -3093) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-521 R -3092) +(-522 R -3093) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL NIL -(-522) +(-523) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-523 I) +(-524 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-524 GF) +(-525 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-525 R) +(-526 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-120)))) -(-526) +(-527) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young's natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young's natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young's natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-527 R E V P TS) +(-528 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-528) +(-529) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-529 E V R P) +(-530 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-530 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (|HasCategory| (-484) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484)))))) (-531 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (|HasCategory| (-485) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485)))))) +(-532 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-3997 "*") |has| |#1| (-495)) (-3988 |has| |#1| (-495)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-495)))) -(-532) +(((-3998 "*") |has| |#1| (-496)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-496)))) +(-533) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-533 A B) +(-534 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-534 A B C) +(-535 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-535 R -3092 FG) +(-536 R -3093 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-536 S) +(-537 S) ((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-537 S |Index| |Entry|) +(-538 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-756))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#3| (QUOTE (-1013)))) -(-538 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -3997)) (|HasCategory| |#2| (QUOTE (-757))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#3| (QUOTE (-1014)))) +(-539 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-539) +(-540) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-540 R A) +(-541 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-3992 OR (-2562 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) (-3990 . T) (-3989 . T)) -((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) -(-541) +((-3993 OR (-2563 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) (-3991 . T) (-3990 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) +(-542) ((|constructor| (NIL "This is the datatype for the JVM bytecodes."))) NIL NIL -(-542) +(-543) ((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package"))) NIL NIL -(-543) +(-544) ((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant."))) NIL NIL -(-544) +(-545) ((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-545) +(-546) ((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-546) +(-547) ((|constructor| (NIL "This is the datatype for the JVM opcodes."))) NIL NIL -(-547 |Entry|) +(-548 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-3995 . T) (-3996 . T)) -((-12 (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3860 (-1073))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-1073) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72)))) -(-548 S |Key| |Entry|) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3861 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72)))) +(-549 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-549 |Key| |Entry|) +(-550 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-3996 . T)) +((-3997 . T)) NIL -(-550 S) +(-551 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484)))))) -(-551 R S) +((|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485)))))) +(-552 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-552 S) +(-553 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-553 S) +(-554 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-554 -3092 UP) +(-555 -3093 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-555 S) +(-556 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-556) +(-557) ((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-557 S) +(-558 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-558 A R S) +(-559 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-755)))) -(-559 S R) +((-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-756)))) +(-560 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-560 R) +(-561 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-3992 . T)) +((-3993 . T)) NIL -(-561 R -3092) +(-562 R -3093) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-562 R UP) +(-563 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-3990 . T) (-3989 . T) ((-3997 "*") . T) (-3988 . T) (-3992 . T)) -((|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) -(-563 R E V P TS ST) +((-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3989 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) +(-564 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional."))) NIL NIL -(-564 OV E Z P) +(-565 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-565) +(-566) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-566 |VarSet| R |Order|) +(-567 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-3992 . T)) +((-3993 . T)) NIL -(-567 R |ls|) +(-568 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}."))) NIL NIL -(-568 R -3092) +(-569 R -3093) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-569) +(-570) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-570 |lv| -3092) +(-571 |lv| -3093) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-571) +(-572) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-3995 . T) (-3996 . T)) -((-12 (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-552 (-772)))) (|HasCategory| (-51) (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-553 (-473)))) (-12 (|HasCategory| (-51) (QUOTE (-260 (-51)))) (|HasCategory| (-51) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-1013))) (|HasCategory| (-1073) (QUOTE (-756))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (QUOTE (-72))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-552 (-772))))) -(-572 R A) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))) (|HasCategory| (-51) (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-554 (-474)))) (-12 (|HasCategory| (-51) (QUOTE (-260 (-51)))) (|HasCategory| (-51) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (QUOTE (-72))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-553 (-773))))) +(-573 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-3992 OR (-2562 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) (-3990 . T) (-3989 . T)) -((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) -(-573 S R) +((-3993 OR (-2563 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) (-3991 . T) (-3990 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) +(-574 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-312)))) -(-574 R) +(-575 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3990 . T) (-3989 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3991 . T) (-3990 . T)) NIL -(-575 R FE) +(-576 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-576 R) +(-577 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-577 |vars|) +(-578 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis."))) NIL NIL -(-578 S R) +(-579 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2560 (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-312)))) -(-579 K B) +((-2561 (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-312)))) +(-580 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) -((-3990 . T) (-3989 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-577 |#2|) (QUOTE (-1013))))) -(-580 R) +((-3991 . T) (-3990 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-578 |#2|) (QUOTE (-1014))))) +(-581 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-581 K B) +(-582 K B) ((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}."))) -((-3990 . T) (-3989 . T)) +((-3991 . T) (-3990 . T)) NIL -(-582 S) +(-583 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-583 S) +(-584 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-3996 . T) (-3995 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-584 A B) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-585 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-585 A B) +(-586 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-586 A B C) +(-587 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-587 T$) +(-588 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-588 S) +(-589 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-589 S) +(-590 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-3995 . T) (-3996 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-590 R) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-591 R) ((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline"))) NIL NIL -(-591 S E |un|) +(-592 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-592 A S) +(-593 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -3996))) -(-593 S) +((|HasAttribute| |#1| (QUOTE -3997))) +(-594 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-594 M R S) +(-595 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-3990 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-714)))) -(-595 R -3092 L) +((-3991 . T) (-3990 . T)) +((|HasCategory| |#1| (QUOTE (-715)))) +(-596 R -3093 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-596 A -2492) +(-597 A -2493) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312)))) -(-597 A) +((-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312)))) +(-598 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312)))) -(-598 A M) +((-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312)))) +(-599 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312)))) -(-599 S A) +((-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312)))) +(-600 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-312)))) -(-600 A) +(-601 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-3989 . T) (-3990 . T) (-3992 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-601 -3092 UP) +(-602 -3093 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-602 A L) +(-603 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-603 S) +(-604 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-604) +(-605) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-605 R) +(-606 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-606 |VarSet| R) +(-607 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3990 . T) (-3989 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3991 . T) (-3990 . T)) ((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-146)))) -(-607 A S) +(-608 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-608 S) +(-609 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-3996 . T) (-3995 . T)) +((-3997 . T) (-3996 . T)) NIL -(-609 -3092 |Row| |Col| M) +(-610 -3093 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-610 -3092) +(-611 -3093) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-611 R E OV P) +(-612 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-612 |n| R) +(-613 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-3992 . T) (-3995 . T) (-3989 . T) (-3990 . T)) -((|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3997 #1="*"))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-495))) (OR (|HasAttribute| |#2| (QUOTE (-3997 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) -(-613) +((-3993 . T) (-3996 . T) (-3990 . T) (-3991 . T)) +((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3998 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496))) (OR (|HasAttribute| |#2| (QUOTE (-3998 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) +(-614) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-614 |VarSet|) +(-615 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-615 A S) +(-616 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-616 S) +(-617 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-617) +(-618) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-618 |VarSet|) +(-619 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-619 A) +(-620 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-620 A C) +(-621 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-621 A B C) +(-622 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-622) +(-623) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-623 A) +(-624 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-624 A C) +(-625 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-625 A B C) +(-626 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-626 S R |Row| |Col|) +(-627 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise."))) NIL -((|HasAttribute| |#2| (QUOTE (-3997 "*"))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-495)))) -(-627 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-3998 "*"))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496)))) +(-628 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise."))) -((-3996 . T) (-3995 . T)) +((-3997 . T) (-3996 . T)) NIL -(-628 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-629 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-629 R |Row| |Col| M) +(-630 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-495)))) -(-630 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-3996 . T) (-3995 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-495))) (|HasAttribute| |#1| (QUOTE (-3997 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496)))) (-631 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3998 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-632 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-632 T$) +(-633 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%."))) NIL NIL -(-633 R Q) +(-634 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-634 S) +(-635 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-3996 . T)) +((-3997 . T)) NIL -(-635 U) +(-636 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-636) +(-637) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-637 OV E -3092 PG) +(-638 OV E -3093 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-638 R) +(-639 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-639 S D1 D2 I) +(-640 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-640 S) +(-641 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-641 S) +(-642 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-642 S T$) +(-643 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) NIL NIL -(-643 S -2669 I) +(-644 S -2670 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-644 E OV R P) +(-645 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-645 R) +(-646 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-3989 . T) (-3990 . T) (-3992 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-646 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-647 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-647) +(-648) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-648 R |Mod| -2037 -3518 |exactQuo|) +(-649 R |Mod| -2038 -3519 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-649 R P) +(-650 R P) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3991 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| (-994) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-650 IS E |ff|) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-651 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-651 R M) +(-652 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) (-3992 . T)) +((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T)) ((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) -(-652 R |Mod| -2037 -3518 |exactQuo|) +(-653 R |Mod| -2038 -3519 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-3992 . T)) +((-3993 . T)) NIL -(-653 S R) +(-654 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-654 R) +(-655 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-3990 . T) (-3989 . T)) +((-3991 . T) (-3990 . T)) NIL -(-655 -3092) +(-656 -3093) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-3992 . T)) +((-3993 . T)) NIL -(-656 S) +(-657 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-657) +(-658) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-658 S) +(-659 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-659) +(-660) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-660 S R UP) +(-661 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL ((|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320)))) -(-661 R UP) +(-662 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-3988 |has| |#1| (-312)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 |has| |#1| (-312)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-662 S) +(-663 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity."))) NIL NIL -(-663) +(-664) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity."))) NIL NIL -(-664 T$) +(-665 T$) ((|constructor| (NIL "This domain implements monoid operations.")) (|monoidOperation| (($ (|Mapping| |#1| |#1| |#1|) |#1|) "\\spad{monoidOperation(f,e)} constructs a operation from the binary mapping \\spad{f} with neutral value \\spad{e}."))) -(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3056 (|f| |x| (-2412 |f|)) |x|) (|exit| 1 (-3056 (|f| (-2412 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3056 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3057 (|f| |x| (-2413 |f|)) |x|) (|exit| 1 (-3057 (|f| (-2413 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3057 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-665 T$) +(-666 T$) ((|constructor| (NIL "This is the category of all domains that implement monoid operations")) (|neutralValue| ((|#1| $) "\\spad{neutralValue f} returns the neutral value of the monoid operation \\spad{f}."))) -(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3056 (|f| |x| (-2412 |f|)) |x|) (|exit| 1 (-3056 (|f| (-2412 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3056 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3057 (|f| |x| (-2413 |f|)) |x|) (|exit| 1 (-3057 (|f| (-2413 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3057 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-666 -3092 UP) +(-667 -3093 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-667 |VarSet| E1 E2 R S PR PS) +(-668 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-668 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-669 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-669 E OV R PPR) +(-670 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-670 |vl| R) +(-671 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-3997 "*") |has| |#2| (-146)) (-3988 |has| |#2| (-495)) (-3993 |has| |#2| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-330)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-671 E OV R PRF) +(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-496)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-672 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-672 E OV R P) +(-673 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-673 R S M) +(-674 R S M) ((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-674 R M) +(-675 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) (-3992 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-756)))) -(-675 S) -((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-3995 . T) (-3985 . T) (-3996 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-757)))) (-676 S) +((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) +((-3996 . T) (-3986 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-677 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-3985 . T) (-3996 . T)) +((-3986 . T) (-3997 . T)) NIL -(-677) +(-678) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-678 S) +(-679 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-679 |Coef| |Var|) +(-680 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3990 . T) (-3989 . T) (-3992 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3991 . T) (-3990 . T) (-3993 . T)) NIL -(-680 OV E R P) +(-681 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-681 E OV R P) +(-682 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-682 S R) +(-683 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-683 R) +(-684 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-3990 . T) (-3989 . T)) +((-3991 . T) (-3990 . T)) NIL -(-684 S) +(-685 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-685) +(-686) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-686 S) +(-687 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-687) +(-688) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-688 |Par|) +(-689 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-689 -3092) +(-690 -3093) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-690 P -3092) +(-691 P -3093) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''."))) NIL NIL -(-691 T$) +(-692 T$) NIL NIL NIL -(-692 UP -3092) +(-693 UP -3093) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-693 R) +(-694 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-694) +(-695) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-3997 "*") . T)) +(((-3998 "*") . T)) NIL -(-695 R -3092) +(-696 R -3093) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-696) +(-697) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-697 S) +(-698 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-698 R |PolR| E |PolE|) +(-699 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-699 R E V P TS) +(-700 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-700 -3092 |ExtF| |SUEx| |ExtP| |n|) +(-701 -3093 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-701 BP E OV R P) +(-702 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-702 |Par|) +(-703 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable."))) NIL NIL -(-703 R |VarSet|) +(-704 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| |#2| (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-1090))))) (|HasCategory| |#2| (QUOTE (-553 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-1090))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-1090)))) (-2560 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-1090)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-553 (-1090)))) (-2560 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484)))))) (-2560 (|HasCategory| |#1| (QUOTE (-38 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-1090)))) (-2560 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484)))))) (-2560 (|HasCategory| |#1| (QUOTE (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-1090)))) (-2560 (|HasCategory| |#1| (QUOTE (-904 (-484))))))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-704 R) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1091))))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1091))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-2561 (|HasCategory| |#1| (QUOTE (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2561 (|HasCategory| |#1| (QUOTE (-905 (-485))))))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-705 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3991 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| (-994) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-705 R S) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-706 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-706 R) +(-707 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484)))))) -(-707 R E V P) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) +(-708 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-3996 . T) (-3995 . T)) +((-3997 . T) (-3996 . T)) NIL -(-708 S) +(-709 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-146)))) -(-709) +((-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-146)))) +(-710) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-710) +(-711) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-711) +(-712) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-712 |Curve|) +(-713 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-713 S) +(-714 S) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-714) +(-715) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-715 S) +(-716 S) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-716) +(-717) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-717) +(-718) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-718) +(-719) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-719 S R) +(-720 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-320)))) -(-720 R) +((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320)))) +(-721 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-3989 . T) (-3990 . T) (-3992 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-721) +(-722) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-722 R) +(-723 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-350 (-484)))))) (OR (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-350 (-484))))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) -(-723 OR R OS S) +((-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-350 (-485)))))) (OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) +(-724 OR R OS S) ((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-724 R -3092 L) +(-725 R -3093 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-725 R -3092) +(-726 R -3093) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-726 R -3092) +(-727 R -3093) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-727 -3092 UP UPUP R) +(-728 -3093 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-728 -3092 UP L LQ) +(-729 -3093 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-729 -3092 UP L LQ) +(-730 -3093 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-730 -3092 UP) +(-731 -3093 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-731 -3092 L UP A LO) +(-732 -3093 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-732 -3092 UP) +(-733 -3093 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-733 -3092 LO) +(-734 -3093 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-734 -3092 LODO) +(-735 -3093 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-735 -2621 S |f|) +(-736 -2622 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3989 |has| |#2| (-961)) (-3990 |has| |#2| (-961)) (-3992 |has| |#2| (-6 -3992)) (-3995 . T)) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3992)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) -(-736 R) +((-3990 |has| |#2| (-962)) (-3991 |has| |#2| (-962)) (-3993 |has| |#2| (-6 -3993)) (-3996 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3993)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) +(-737 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| (-738 (-1090)) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-738 (-1090)) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-738 (-1090)) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-738 (-1090)) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-738 (-1090)) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-737 |Kernels| R |var|) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-739 (-1091)) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-739 (-1091)) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-739 (-1091)) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-739 (-1091)) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-739 (-1091)) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-738 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-3997 "*") |has| |#2| (-312)) (-3988 |has| |#2| (-312)) (-3993 |has| |#2| (-312)) (-3987 |has| |#2| (-312)) (-3992 . T) (-3990 . T) (-3989 . T)) +(((-3998 "*") |has| |#2| (-312)) (-3989 |has| |#2| (-312)) (-3994 |has| |#2| (-312)) (-3988 |has| |#2| (-312)) (-3993 . T) (-3991 . T) (-3990 . T)) ((|HasCategory| |#2| (QUOTE (-312)))) -(-738 S) +(-739 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-739 S) +(-740 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-756)))) -(-740) +((|HasCategory| |#1| (QUOTE (-757)))) +(-741) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-741 P R) +(-742 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-3989 . T) (-3990 . T) (-3992 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) ((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-190)))) -(-742 S) +(-743 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-3995 . T) (-3985 . T) (-3996 . T)) +((-3996 . T) (-3986 . T) (-3997 . T)) NIL -(-743 R) +(-744 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-3992 |has| |#1| (-755))) -((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-755)))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-483)))) -(-744 R S) +((-3993 |has| |#1| (-756))) +((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-484)))) +(-745 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-745 R) +(-746 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) (-3992 . T)) +((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T)) ((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120)))) -(-746 A S) +(-747 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-747 S) +(-748 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-748) +(-749) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages)."))) NIL NIL -(-749) +(-750) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'."))) NIL NIL -(-750 R) +(-751 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-3992 |has| |#1| (-755))) -((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-755)))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-483)))) -(-751 R S) +((-3993 |has| |#1| (-756))) +((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-484)))) +(-752 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-752) +(-753) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-753 -2621 S) +(-754 -2622 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-754) +(-755) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-755) +(-756) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline"))) -((-3992 . T)) +((-3993 . T)) NIL -(-756) +(-757) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) NIL NIL -(-757 T$ |f|) +(-758 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -((|HasCategory| |#1| (QUOTE (-552 (-772))))) -(-758 S) +((|HasCategory| |#1| (QUOTE (-553 (-773))))) +(-759 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-759) +(-760) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-760 S R) +(-761 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146)))) -(-761 R) +((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146)))) +(-762 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-3989 . T) (-3990 . T) (-3992 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-762 R C) +(-763 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) -(-763 R |sigma| -3244) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) +(-764 R |sigma| -3245) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312)))) -(-764 |x| R |sigma| -3244) +((-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312)))) +(-765 |x| R |sigma| -3245) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-312)))) -(-765 R) +((-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-312)))) +(-766 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484)))))) -(-766) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) +(-767) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-767) +(-768) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-768) +(-769) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-769 S) +(-770 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-770) +(-771) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-771) +(-772) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-772) +(-773) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-773 |VariableList|) +(-774 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-774) +(-775) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-775 R |vl| |wl| |wtlevel|) +(-776 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) (-3992 . T)) +((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T)) ((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) -(-776 R PS UP) +(-777 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-777 R |x| |pt|) +(-778 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-778 |p|) +(-779 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-779 |p|) +(-780 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-780 |p|) +(-781 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| (-778 |#1|) (QUOTE (-821))) (|HasCategory| (-778 |#1|) (QUOTE (-950 (-1090)))) (|HasCategory| (-778 |#1|) (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-120))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-473)))) (|HasCategory| (-778 |#1|) (QUOTE (-933))) (|HasCategory| (-778 |#1|) (QUOTE (-740))) (|HasCategory| (-778 |#1|) (QUOTE (-756))) (OR (|HasCategory| (-778 |#1|) (QUOTE (-740))) (|HasCategory| (-778 |#1|) (QUOTE (-756)))) (|HasCategory| (-778 |#1|) (QUOTE (-950 (-484)))) (|HasCategory| (-778 |#1|) (QUOTE (-1066))) (|HasCategory| (-778 |#1|) (QUOTE (-796 (-330)))) (|HasCategory| (-778 |#1|) (QUOTE (-796 (-484)))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-778 |#1|) (QUOTE (-580 (-484)))) (|HasCategory| (-778 |#1|) (QUOTE (-189))) (|HasCategory| (-778 |#1|) (QUOTE (-811 (-1090)))) (|HasCategory| (-778 |#1|) (QUOTE (-190))) (|HasCategory| (-778 |#1|) (QUOTE (-809 (-1090)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -455) (QUOTE (-1090)) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -778) (|devaluate| |#1|)) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (QUOTE (-258))) (|HasCategory| (-778 |#1|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-821)))) (|HasCategory| (-778 |#1|) (QUOTE (-118))))) -(-781 |p| PADIC) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-779 |#1|) (QUOTE (-822))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-1091)))) (|HasCategory| (-779 |#1|) (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-120))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-474)))) (|HasCategory| (-779 |#1|) (QUOTE (-934))) (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757)))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-1067))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-330)))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-779 |#1|) (QUOTE (-581 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-189))) (|HasCategory| (-779 |#1|) (QUOTE (-812 (-1091)))) (|HasCategory| (-779 |#1|) (QUOTE (-190))) (|HasCategory| (-779 |#1|) (QUOTE (-810 (-1091)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -779) (|devaluate| |#1|)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (QUOTE (-258))) (|HasCategory| (-779 |#1|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (|HasCategory| (-779 |#1|) (QUOTE (-118))))) +(-782 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-950 (-1090)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-796 (-330)))) (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-483))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-782 S T$) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-951 (-1091)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-484))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-783 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772)))))) -(-783) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))))) +(-784) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) NIL NIL -(-784) +(-785) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-785) +(-786) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-786 CF1 CF2) +(-787 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-787 |ComponentFunction|) +(-788 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-788 CF1 CF2) +(-789 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-789 |ComponentFunction|) +(-790 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-790) +(-791) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-791 CF1 CF2) +(-792 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-792 |ComponentFunction|) +(-793 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-793) +(-794) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-794 R) +(-795 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-795 R S L) +(-796 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-796 S) +(-797 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-797 |Base| |Subject| |Pat|) +(-798 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2560 (|HasCategory| |#2| (QUOTE (-950 (-1090))))) (-2560 (|HasCategory| |#2| (QUOTE (-961))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (-2560 (|HasCategory| |#2| (QUOTE (-950 (-1090)))))) (|HasCategory| |#2| (QUOTE (-950 (-1090))))) -(-798 R S) +((-12 (-2561 (|HasCategory| |#2| (QUOTE (-951 (-1091))))) (-2561 (|HasCategory| |#2| (QUOTE (-962))))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (-2561 (|HasCategory| |#2| (QUOTE (-951 (-1091)))))) (|HasCategory| |#2| (QUOTE (-951 (-1091))))) +(-799 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-799 R A B) +(-800 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))]."))) NIL NIL -(-800 R) +(-801 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) (|One| (($) "1")) (|Zero| (($) "0"))) NIL NIL -(-801 R -2669) +(-802 R -2670) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-802 R S) +(-803 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-803 |VarSet|) +(-804 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) (|One| (($) "\\spad{1} returns the empty list."))) NIL NIL -(-804 UP R) +(-805 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-805 A T$ S) +(-806 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-806 T$ S) +(-807 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-807 UP -3092) +(-808 UP -3093) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-808 R S) +(-809 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-3990 . T) (-3989 . T)) +((-3991 . T) (-3990 . T)) NIL -(-809 S) +(-810 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-3992 . T)) +((-3993 . T)) NIL -(-810 A S) +(-811 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-811 S) +(-812 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-812 S) +(-813 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-813 S) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-814 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-3992 . T)) -((OR (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-756)))) -(-814 |n| R) +((-3993 . T)) +((OR (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-757)))) +(-815 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-815 S) +(-816 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-3992 . T)) +((-3993 . T)) NIL -(-816 S) +(-817 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-817 |p|) +(-818 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) ((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-320)))) -(-818 R E |VarSet| S) +(-819 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-819 R S) +(-820 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-820 S) +(-821 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-118)))) -(-821) +(-822) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-822 R0 -3092 UP UPUP R) +(-823 R0 -3093 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-823 UP UPUP R) +(-824 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-824 UP UPUP) +(-825 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-825 R) +(-826 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-826 R) +(-827 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-827 E OV R P) +(-828 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-828) +(-829) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-829 -3092) +(-830 -3093) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-830) +(-831) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-3997 "*") . T)) +(((-3998 "*") . T)) NIL -(-831 R) +(-832 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-832) +(-833) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-833 |xx| -3092) +(-834 |xx| -3093) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-834 -3092 P) +(-835 -3093 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-835 R |Var| |Expon| GR) +(-836 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-836) +(-837) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-837 S) +(-838 S) ((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-838) +(-839) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-839) +(-840) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-840) +(-841) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-841 R -3092) +(-842 R -3093) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-842 S A B) +(-843 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-843 S R -3092) +(-844 S R -3093) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-844 I) +(-845 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-845 S E) +(-846 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-846 S R L) +(-847 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-847 S E V R P) +(-848 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -796) (|devaluate| |#1|)))) -(-848 -2669) +((|HasCategory| |#3| (|%list| (QUOTE -797) (|devaluate| |#1|)))) +(-849 -2670) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-849 R -3092 -2669) +(-850 R -3093 -2670) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-850 S R Q) +(-851 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-851 S) +(-852 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-852 S R P) +(-853 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-853) +(-854) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-854 R) +(-855 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-3996 . T) (-3995 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-855 |lv| R) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-856 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-856 |TheField| |ThePols|) +(-857 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-755)))) -(-857 R) +((|HasCategory| |#1| (QUOTE (-756)))) +(-858 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| (-1090) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-1090) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-1090) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-1090) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-1090) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-858 R S) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-1091) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-1091) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1091) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1091) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-1091) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-859 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-859 |x| R) +(-860 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-860 S R E |VarSet|) +(-861 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-821))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-796 (-330)))) (|HasCategory| |#2| (QUOTE (-796 (-330)))) (|HasCategory| |#4| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| |#4| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#4| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) -(-861 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-822))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| |#4| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) +(-862 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) NIL -(-862 E V R P -3092) +(-863 E V R P -3093) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-863 E |Vars| R P S) +(-864 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-864 E V R P -3092) +(-865 E V R P -3093) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-392)))) -(-865) +(-866) ((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'."))) NIL NIL -(-866) +(-867) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-867 R E) +(-868 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-6 -3993)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3993))) -(-868 R L) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3994))) +(-869 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-869 S) +(-870 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed"))) -((-3996 . T) (-3995 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-870 A B) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-871 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-871) +(-872) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx."))) NIL NIL -(-872 -3092) +(-873 -3093) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}."))) NIL NIL -(-873 I) +(-874 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-874) +(-875) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-875 A B) +(-876 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-3992 -12 (|has| |#2| (-413)) (|has| |#1| (-413)))) -((OR (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-756))))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663))))) (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663))))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-756))))) -(-876) +((-3993 -12 (|has| |#2| (-413)) (|has| |#1| (-413)))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757))))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757))))) +(-877) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-877 T$) +(-878 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-878 T$) +(-879 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-879 S T$) +(-880 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-880) +(-881) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-881 S) +(-882 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-3995 . T) (-3996 . T)) +((-3996 . T) (-3997 . T)) NIL -(-882 R |polR|) +(-883 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL ((|HasCategory| |#1| (QUOTE (-392)))) -(-883) +(-884) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-884) +(-885) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-885 S |Coef| |Expon| |Var|) +(-886 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-886 |Coef| |Expon| |Var|) +(-887 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3989 . T) (-3990 . T) (-3992 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-887) +(-888) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-888 S R E |VarSet| P) +(-889 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-495)))) -(-889 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-496)))) +(-890 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-3995 . T)) +((-3996 . T)) NIL -(-890 R E V P) +(-891 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-392)))) -(-891 K) +(-892 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-892 |VarSet| E RC P) +(-893 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-893 R) +(-894 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-3996 . T) (-3995 . T)) +((-3997 . T) (-3996 . T)) NIL -(-894 R1 R2) +(-895 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-895 R) +(-896 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-896 K) +(-897 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-897 R E OV PPR) +(-898 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-898 K R UP -3092) +(-899 K R UP -3093) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-899 R |Var| |Expon| |Dpoly|) +(-900 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258))))) -(-900 |vl| |nv|) +(-901 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-901 R E V P TS) +(-902 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-902) +(-903) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-903 A S) +(-904 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-950 (-1090)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1066)))) -(-904 S) +((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-951 (-1091)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1067)))) +(-905 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-905 A B R S) +(-906 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-906 |n| K) +(-907 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-907) +(-908) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-908 S) +(-909 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-3995 . T) (-3996 . T)) +((-3996 . T) (-3997 . T)) NIL -(-909 R) +(-910 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-3988 |has| |#1| (-246)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-483)))) -(-910 S R) +((-3989 |has| |#1| (-246)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-484)))) +(-911 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-246)))) -(-911 R) +((|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-246)))) +(-912 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-3988 |has| |#1| (-246)) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 |has| |#1| (-246)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-912 QR R QS S) +(-913 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-913 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-3995 . T) (-3996 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) (-914 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-915 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-915) +(-916) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-916 -3092 UP UPUP |radicnd| |n|) +(-917 -3093 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-3988 |has| (-350 |#2|) (-312)) (-3993 |has| (-350 |#2|) (-312)) (-3987 |has| (-350 |#2|) (-312)) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1090)))))) (|HasCategory| (-350 |#2|) (QUOTE (-580 (-484)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-950 (-350 (-484)))))) (|HasCategory| (-350 |#2|) (QUOTE (-950 (-350 (-484))))) (|HasCategory| (-350 |#2|) (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090)))))) -(-917 |bb|) +((-3989 |has| (-350 |#2|) (-312)) (-3994 |has| (-350 |#2|) (-312)) (-3988 |has| (-350 |#2|) (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091)))))) (|HasCategory| (-350 |#2|) (QUOTE (-581 (-485)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091)))))) +(-918 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1090)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1066))) (|HasCategory| (-484) (QUOTE (-796 (-330)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1090)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1090)))) (|HasCategory| (-484) (QUOTE (-455 (-1090) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118))))) -(-918) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118))))) +(-919) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-919) +(-920) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-920 RP) +(-921 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-921 S) +(-922 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-922 A S) +(-923 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-1013)))) -(-923 S) +((|HasAttribute| |#1| (QUOTE -3997)) (|HasCategory| |#2| (QUOTE (-1014)))) +(-924 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-924 S) +(-925 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-925) +(-926) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-3988 . T) (-3993 . T) (-3987 . T) (-3990 . T) (-3989 . T) ((-3997 "*") . T) (-3992 . T)) +((-3989 . T) (-3994 . T) (-3988 . T) (-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3993 . T)) NIL -(-926 R -3092) +(-927 R -3093) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-927 R -3092) +(-928 R -3093) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-928 -3092 UP) +(-929 -3093 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-929 -3092 UP) +(-930 -3093 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-930 S) +(-931 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-931 F1 UP UPUP R F2) +(-932 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-932) +(-933) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-933) +(-934) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-934 |Pol|) +(-935 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-935 |Pol|) +(-936 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-936) +(-937) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-937 |TheField|) +(-938 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-3988 . T) (-3993 . T) (-3987 . T) (-3990 . T) (-3989 . T) ((-3997 "*") . T) (-3992 . T)) -((OR (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| (-350 (-484)) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| (-350 (-484)) (QUOTE (-950 (-350 (-484))))) (|HasCategory| (-350 (-484)) (QUOTE (-950 (-484))))) -(-938 -3092 L) +((-3989 . T) (-3994 . T) (-3988 . T) (-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3993 . T)) +((OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-350 (-485)) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-350 (-485)) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 (-485)) (QUOTE (-951 (-485))))) +(-939 -3093 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-939 S) +(-940 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(r,s)} reset the reference \\spad{r} to refer to \\spad{s}")) (|deref| ((|#1| $) "\\spad{deref(r)} returns the object referenced by \\spad{r}")) (|ref| (($ |#1|) "\\spad{ref(s)} creates a reference to the object \\spad{s}."))) NIL NIL -(-940 R E V P) +(-941 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-941) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-942) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-942 R) +(-943 R) ((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-3997 "*")))) -(-943 R) +((|HasAttribute| |#1| (QUOTE (-3998 "*")))) +(-944 R) ((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258)))) -(-944 S) +(-945 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-945 S) +(-946 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-946 S) +(-947 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-947 -3092 |Expon| |VarSet| |FPol| |LFPol|) +(-948 -3093 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +(((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-948) +(-949) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-949 A S) +(-950 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-950 S) +(-951 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-951 Q R) +(-952 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-952 R) +(-953 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-953) +(-954) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-954 UP) +(-955 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-955 R) +(-956 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-956 T$) +(-957 T$) ((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'."))) NIL NIL -(-957 T$) +(-958 T$) ((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-958 R |ls|) +(-959 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-1013))) (|HasCategory| (-703 |#1| (-773 |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -703) (|devaluate| |#1|) (|%list| (QUOTE -773) (|devaluate| |#2|)))))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-553 (-473)))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-773 |#2|) (QUOTE (-320))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-72)))) -(-959) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1014))) (|HasCategory| (-704 |#1| (-774 |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|)))))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-554 (-474)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-774 |#2|) (QUOTE (-320))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-72)))) +(-960) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-960 S) +(-961 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-961) +(-962) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-3992 . T)) +((-3993 . T)) NIL -(-962 |xx| -3092) +(-963 |xx| -3093) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-963 S) +(-964 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-964 S |m| |n| R |Row| |Col|) +(-965 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix."))) NIL -((|HasCategory| |#4| (QUOTE (-258))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-495))) (|HasCategory| |#4| (QUOTE (-146)))) -(-965 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-258))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-146)))) +(-966 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix."))) -((-3995 . T) (-3990 . T) (-3989 . T)) +((-3996 . T) (-3991 . T) (-3990 . T)) NIL -(-966 |m| |n| R) +(-967 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-3995 . T) (-3990 . T) (-3989 . T)) -((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-258))) (|HasCategory| |#3| (QUOTE (-495))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-552 (-772))))) -(-967 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-3996 . T) (-3991 . T) (-3990 . T)) +((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-258))) (|HasCategory| |#3| (QUOTE (-496))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-553 (-773))))) +(-968 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-968 R) +(-969 R) ((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline"))) NIL NIL -(-969 S) +(-970 S) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}."))) NIL NIL -(-970) +(-971) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}."))) NIL NIL -(-971 S T$) +(-972 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1013)))) -(-972 S) +((|HasCategory| |#1| (QUOTE (-1014)))) +(-973 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-973) +(-974) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-974 |TheField| |ThePolDom|) +(-975 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-975) +(-976) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-3983 . T) (-3987 . T) (-3982 . T) (-3993 . T) (-3994 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3984 . T) (-3988 . T) (-3983 . T) (-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-976 S R E V) +(-977 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-904 (-484)))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#4| (QUOTE (-553 (-1090))))) -(-977 R E V) +((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-905 (-485)))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-554 (-1091))))) +(-978 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) NIL -(-978) +(-979) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-979 S |TheField| |ThePols|) +(-980 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-980 |TheField| |ThePols|) +(-981 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-981 R E V P TS) +(-982 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-982 S R E V P) +(-983 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-983 R E V P) +(-984 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-3996 . T) (-3995 . T)) +((-3997 . T) (-3996 . T)) NIL -(-984 R E V P TS) +(-985 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-985) +(-986) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-986) +(-987) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-987 |Base| R -3092) +(-988 |Base| R -3093) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-988 |f|) +(-989 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-989 |Base| R -3092) +(-990 |Base| R -3093) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-990 R |ls|) +(-991 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-991 R UP M) +(-992 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-3988 |has| |#1| (-312)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))))) -(-992 UP SAE UPA) +((-3989 |has| |#1| (-312)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))))) +(-993 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-993 UP SAE UPA) +(-994 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-994) +(-995) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-995) +(-996) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-996 S) +(-997 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-997) +(-998) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-998 R) +(-999 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-999 R) +(-1000 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| (-1000 (-1090)) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-1000 (-1090)) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-1000 (-1090)) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-1000 (-1090)) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-1000 (-1090)) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1000 S) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-1001 (-1091)) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-1001 (-1091)) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1001 (-1091)) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1001 (-1091)) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-1001 (-1091)) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1001 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1001 S) +(-1002 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1013)))) -(-1002 R S) +((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1014)))) +(-1003 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-755)))) -(-1003) +((|HasCategory| |#1| (QUOTE (-756)))) +(-1004) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1004 S) +(-1005 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1001 |#1|) (QUOTE (-1013)))) -(-1005 R S) +((|HasCategory| (-1002 |#1|) (QUOTE (-1014)))) +(-1006 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1006 S) +(-1007 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1007 S L) +(-1008 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1008) +(-1009) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1009 S) +(-1010 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-3995 . T) (-3985 . T) (-3996 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-1010 A S) +((-3996 . T) (-3986 . T) (-3997 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-1011 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1011 S) +(-1012 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-3985 . T)) +((-3986 . T)) NIL -(-1012 S) +(-1013 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1013) +(-1014) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1014 |m| |n|) +(-1015 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1015) +(-1016) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1016 |Str| |Sym| |Int| |Flt| |Expr|) +(-1017 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1017 |Str| |Sym| |Int| |Flt| |Expr|) +(-1018 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1018 R E V P TS) +(-1019 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1019 R E V P TS) +(-1020 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1020 R E V P) +(-1021 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-3996 . T) (-3995 . T)) +((-3997 . T) (-3996 . T)) NIL -(-1021) +(-1022) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1022 T$) +(-1023 T$) ((|constructor| (NIL "This domain implements semigroup operations.")) (|semiGroupOperation| (($ (|Mapping| |#1| |#1| |#1|)) "\\spad{semiGroupOperation f} constructs a semigroup operation out of a binary homogeneous mapping known to be associative."))) -(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3056 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3057 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-1023 T$) +(-1024 T$) ((|constructor| (NIL "This is the category of all domains that implement semigroup operations"))) -(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3056 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) +(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3057 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T)) NIL -(-1024 S) +(-1025 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1025) +(-1026) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1026 |dimtot| |dim1| S) +(-1027 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3989 |has| |#3| (-961)) (-3990 |has| |#3| (-961)) (-3992 |has| |#3| (-6 -3992)) (-3995 . T)) -((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-552 (-772)))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (OR (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756)))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-809 (-1090))))) (|HasCategory| |#3| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#3| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasAttribute| |#3| (QUOTE -3992)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) -(-1027 R |x|) +((-3990 |has| |#3| (-962)) (-3991 |has| |#3| (-962)) (-3993 |has| |#3| (-6 -3993)) (-3996 . T)) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasAttribute| |#3| (QUOTE -3993)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) +(-1028 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-392)))) -(-1028) +(-1029) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'."))) NIL NIL -(-1029) +(-1030) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}"))) NIL NIL -(-1030 R -3092) +(-1031 R -3093) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1031 R) +(-1032 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1032) +(-1033) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1033) +(-1034) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-3983 . T) (-3987 . T) (-3982 . T) (-3993 . T) (-3994 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3984 . T) (-3988 . T) (-3983 . T) (-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1034 S) +(-1035 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-3995 . T) (-3996 . T)) +((-3996 . T) (-3997 . T)) NIL -(-1035 S) +(-1036 S) ((|constructor| (NIL "This category describes the class of homogeneous aggregates that support in place mutation that do not change their general shapes.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\spad{f(x)}"))) -((-3996 . T)) +((-3997 . T)) NIL -(-1036 S |ndim| R |Row| |Col|) +(-1037 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-312))) (|HasAttribute| |#3| (QUOTE (-3997 "*"))) (|HasCategory| |#3| (QUOTE (-146)))) -(-1037 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-312))) (|HasAttribute| |#3| (QUOTE (-3998 "*"))) (|HasCategory| |#3| (QUOTE (-146)))) +(-1038 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) -((-3995 . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3996 . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1038 R |Row| |Col| M) +(-1039 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1039 R |VarSet|) +(-1040 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| |#2| (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1040 |Coef| |Var| SMP) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1041 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-312)))) -(-1041 R E V P) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312)))) +(-1042 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-3996 . T) (-3995 . T)) +((-3997 . T) (-3996 . T)) NIL -(-1042 UP -3092) +(-1043 UP -3093) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1043 R) +(-1044 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1044 R) +(-1045 R) ((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1045 R) +(-1046 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1046 S A) +(-1047 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-756)))) -(-1047 R) +((|HasCategory| |#1| (QUOTE (-757)))) +(-1048 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1048 R) +(-1049 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1049) +(-1050) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1050) +(-1051) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1051) +(-1052) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement."))) NIL NIL -(-1052) +(-1053) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1053) +(-1054) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1054 V C) +(-1055 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1055 V C) +(-1056 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| (-1054 |#1| |#2|) (|%list| (QUOTE -260) (|%list| (QUOTE -1054) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-1013)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-1013))) (OR (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-1013)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-552 (-772)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-72)))) -(-1056 |ndim| R) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| (-1055 |#1| |#2|) (|%list| (QUOTE -260) (|%list| (QUOTE -1055) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014))) (OR (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-553 (-773)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-72)))) +(-1057 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-3992 . T) (-3984 |has| |#2| (-6 (-3997 "*"))) (-3995 . T) (-3989 . T) (-3990 . T)) -((|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3997 #1="*"))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasAttribute| |#2| (QUOTE (-3997 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) -(-1057 S) +((-3993 . T) (-3985 |has| |#2| (-6 (-3998 "*"))) (-3996 . T) (-3990 . T) (-3991 . T)) +((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3998 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasAttribute| |#2| (QUOTE (-3998 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) +(-1058 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1058) +(-1059) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-3996 . T) (-3995 . T)) +((-3997 . T) (-3996 . T)) NIL -(-1059 R E V P TS) +(-1060 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1060 R E V P) +(-1061 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-1061) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-1062) ((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:"))) NIL NIL -(-1062 S) +(-1063 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-3995 . T) (-3996 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-1063 A S) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1064 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1064 S) +(-1065 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1065 |Key| |Ent| |dent|) +(-1066 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-3995 . T) (-3996 . T)) -((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772))))) -(-1066) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773))))) +(-1067) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1067) +(-1068) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1068 |Coef|) +(-1069 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1069 S) -((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-3996 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72)))) (-1070 S) +((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) +((-3997 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1071 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1071 A B) +(-1072 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1072 A B C) +(-1073 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1073) +(-1074) ((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-3996 . T) (-3995 . T)) -((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-756)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) (|HasCategory| (-117) (QUOTE (-552 (-772)))) (|HasCategory| (-117) (QUOTE (-553 (-473)))) (OR (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1013)))) (|HasCategory| (-117) (QUOTE (-756))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1013))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) -(-1074 |Entry|) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-757)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014))))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-554 (-474)))) (OR (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014)))) (|HasCategory| (-117) (QUOTE (-757))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014))))) +(-1075 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-3995 . T) (-3996 . T)) -((-12 (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3860 (-1073))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1013))) (|HasCategory| (-1073) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-552 (-772))))) -(-1075 A) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3861 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773))))) +(-1076 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484)))))) -(-1076 |Coef|) +((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) +(-1077 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1077 |Coef|) +(-1078 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1078 R UP) +(-1079 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-258)))) -(-1079 |n| R) +(-1080 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1080 S1 S2) +(-1081 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t"))) NIL NIL -(-1081) +(-1082) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1082 |Coef| |var| |cen|) +(-1083 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-3997 "*") OR (-2562 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-740))) (|has| |#1| (-146)) (-2562 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-821)))) (-3988 OR (-2562 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-740))) (|has| |#1| (-495)) (-2562 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-821)))) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-950 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-553 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-756))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (|%list| (QUOTE -455) (QUOTE (-1090)) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-796 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-756)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-821)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1083 R -3092) +(((-3998 "*") OR (-2563 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2563 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-822)))) (-3989 OR (-2563 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-741))) (|has| |#1| (-496)) (-2563 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-822)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-757)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1084 R -3093) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1084 R) +(-1085 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1085 R) +(-1086 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3991 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| (-994) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1086 R S) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1087 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1087 E OV R P) +(-1088 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1088 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|))))))) (-1089 |Coef| |var| |cen|) +((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|))))))) +(-1090 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|)))) (|HasCategory| (-694) (QUOTE (-1025))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|))))))) -(-1090) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1026))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|))))))) +(-1091) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1091 R) +(-1092 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1092 R) +(-1093 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-6 -3993)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-884) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3993))) -(-1093) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-885) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3994))) +(-1094) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1094) +(-1095) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1095) +(-1096) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1096 N) +(-1097 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1097 N) +(-1098 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'."))) NIL NIL -(-1098) +(-1099) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1099 R) +(-1100 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1100) +(-1101) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1101 S) +(-1102 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1102 |Key| |Entry|) +(-1103 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-3995 . T) (-3996 . T)) -((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772))))) -(-1103 S) +((-3996 . T) (-3997 . T)) +((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773))))) +(-1104 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1104 S) +(-1105 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1105 R) +(-1106 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1106 S |Key| |Entry|) +(-1107 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}."))) NIL NIL -(-1107 |Key| |Entry|) +(-1108 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}."))) -((-3995 . T) (-3996 . T)) +((-3996 . T) (-3997 . T)) NIL -(-1108 |Key| |Entry|) +(-1109 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1109) +(-1110) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1110 S) +(-1111 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1111) +(-1112) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1112 R) +(-1113 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1113) +(-1114) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1114 S) +(-1115 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1115) +(-1116) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1116 S) -((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72)))) (-1117 S) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1118 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1118) +(-1119) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1119 R -3092) +(-1120 R -3093) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1120 R |Row| |Col| M) +(-1121 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1121 R -3092) +(-1122 R -3093) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (|%list| (QUOTE -553) (|%list| (QUOTE -800) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -796) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -553) (|%list| (QUOTE -800) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -796) (|devaluate| |#1|))))) -(-1122 |Coef|) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -797) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -797) (|devaluate| |#1|))))) +(-1123 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-312)))) -(-1123 S R E V P) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312)))) +(-1124 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-320)))) -(-1124 R E V P) +(-1125 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-3996 . T) (-3995 . T)) +((-3997 . T) (-3996 . T)) NIL -(-1125 |Curve|) +(-1126 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1126) +(-1127) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1127 S) +(-1128 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-552 (-772))))) -(-1128 -3092) +((|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773))))) +(-1129 -3093) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1129) +(-1130) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1130) +(-1131) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1131 S) +(-1132 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}"))) NIL -((|HasCategory| |#1| (QUOTE (-756)))) -(-1132) +((|HasCategory| |#1| (QUOTE (-757)))) +(-1133) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1133 S) +(-1134 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1134) +(-1135) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1135) +(-1136) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1136) +(-1137) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1137) +(-1138) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1138) +(-1139) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1139 |Coef| |var| |cen|) +(-1140 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-3997 "*") OR (-2562 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-740))) (|has| |#1| (-146)) (-2562 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-821)))) (-3988 OR (-2562 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-740))) (|has| |#1| (-495)) (-2562 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-821)))) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-950 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-553 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-756))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (|%list| (QUOTE -455) (QUOTE (-1090)) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-796 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-756)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-821)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-118))))) -(-1140 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-3998 "*") OR (-2563 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2563 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-822)))) (-3989 OR (-2563 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-741))) (|has| |#1| (-496)) (-2563 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-822)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-757)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118))))) +(-1141 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1141 |Coef|) +(-1142 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1142 S |Coef| UTS) +(-1143 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-312)))) -(-1143 |Coef| UTS) +(-1144 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1144 |Coef| UTS) +(-1145 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-740))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-756))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-796 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-821))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189)))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118)))))) -(-1145 ZP) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-822))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189)))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118)))))) +(-1146 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1146 S) +(-1147 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1013)))) -(-1147 R S) +((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1014)))) +(-1148 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-755)))) -(-1148 |x| R) +((|HasCategory| |#1| (QUOTE (-756)))) +(-1149 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-3997 "*") |has| |#2| (-146)) (-3988 |has| |#2| (-495)) (-3991 |has| |#2| (-312)) (-3993 |has| |#2| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-330)))) (|HasCategory| (-994) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) -(-1149 |x| R |y| S) +(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-496)) (-3992 |has| |#2| (-312)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) +(-1150 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1150 R Q UP) +(-1151 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1151 R UP) +(-1152 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1152 R UP) +(-1153 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1153 R U) +(-1154 R U) ((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all."))) NIL NIL -(-1154 S R) +(-1155 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1066)))) -(-1155 R) +((|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1067)))) +(-1156 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3991 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T)) NIL -(-1156 R PR S PS) +(-1157 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1157 S |Coef| |Expon|) +(-1158 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#2|) (QUOTE (-1090)))))) -(-1158 |Coef| |Expon|) +((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1026))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#2|) (QUOTE (-1091)))))) +(-1159 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3989 . T) (-3990 . T) (-3992 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1159 RC P) +(-1160 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1160 |Coef| |var| |cen|) +(-1161 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|))))))) -(-1161 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|))))))) +(-1162 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1162 |Coef|) +(-1163 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1163 S |Coef| ULS) +(-1164 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1164 |Coef| ULS) +(-1165 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1165 |Coef| ULS) +(-1166 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484)))))) -(-1166 R FE |var| |cen|) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) +(-1167 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-3997 "*") |has| (-1160 |#2| |#3| |#4|) (-146)) (-3988 |has| (-1160 |#2| |#3| |#4|) (-495)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-484))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-484))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-950 (-350 (-484)))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-950 (-350 (-484))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-950 (-484)))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-312))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-392))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-495)))) -(-1167 A S) +(((-3998 "*") |has| (-1161 |#2| |#3| |#4|) (-146)) (-3989 |has| (-1161 |#2| |#3| |#4|) (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-951 (-485)))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-312))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-392))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-496)))) +(-1168 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -3996))) -(-1168 S) +((|HasAttribute| |#1| (QUOTE -3997))) +(-1169 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1169 |Coef| |var| |cen|) +(-1170 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3989 . T) (-3990 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|)))) (|HasCategory| (-694) (QUOTE (-1025))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|))))))) -(-1170 |Coef1| |Coef2| UTS1 UTS2) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1026))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|))))))) +(-1171 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1171 S |Coef|) +(-1172 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (QUOTE (-29 (-484)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasSignature| |#2| (|%list| (QUOTE -3081) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1090))))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-312)))) -(-1172 |Coef|) +((|HasCategory| |#2| (QUOTE (-29 (-485)))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasSignature| |#2| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1091))))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312)))) +(-1173 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-495)) (-3989 . T) (-3990 . T) (-3992 . T)) +(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1173 |Coef| UTS) +(-1174 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1174 -3092 UP L UTS) +(-1175 -3093 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-495)))) -(-1175) +((|HasCategory| |#1| (QUOTE (-496)))) +(-1176) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1176 |sym|) +(-1177 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1177 S R) +(-1178 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1178 R) +((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1179 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-3996 . T) (-3995 . T)) +((-3997 . T) (-3996 . T)) NIL -(-1179 R) +(-1180 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-3996 . T) (-3995 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) -(-1180 A B) +((-3997 . T) (-3996 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) +(-1181 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1181) +(-1182) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1182) +(-1183) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1183) +(-1184) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1184) +(-1185) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1185) +(-1186) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1186 A S) +(-1187 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1187 S) +(-1188 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-3990 . T) (-3989 . T)) +((-3991 . T) (-3990 . T)) NIL -(-1188 R) +(-1189 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1189 K R UP -3092) +(-1190 K R UP -3093) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1190) +(-1191) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1191) +(-1192) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1192 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1193 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) (-3992 . T)) +((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T)) ((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) -(-1193 R E V P) +(-1194 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}."))) -((-3996 . T) (-3995 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-1194 R) +((-3997 . T) (-3996 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-1195 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)"))) -((-3989 . T) (-3990 . T) (-3992 . T)) +((-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1195 |vl| R) +(-1196 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-3992 . T) (-3988 |has| |#2| (-6 -3988)) (-3990 . T) (-3989 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3988))) -(-1196 R |VarSet| XPOLY) +((-3993 . T) (-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3989))) +(-1197 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1197 S -3092) +(-1198 S -3093) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120)))) -(-1198 -3092) +(-1199 -3093) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL -(-1199 |vl| R) +(-1200 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-3988 |has| |#2| (-6 -3988)) (-3990 . T) (-3989 . T) (-3992 . T)) +((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T)) NIL -(-1200 |VarSet| R) +(-1201 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-3988 |has| |#2| (-6 -3988)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-654 (-350 (-484))))) (|HasAttribute| |#2| (QUOTE -3988))) -(-1201 R) +((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-655 (-350 (-485))))) (|HasAttribute| |#2| (QUOTE -3989))) +(-1202 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-3988 |has| |#1| (-6 -3988)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3988))) -(-1202 |vl| R) +((-3989 |has| |#1| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3989))) +(-1203 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-3988 |has| |#2| (-6 -3988)) (-3990 . T) (-3989 . T) (-3992 . T)) +((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T)) NIL -(-1203 R E) +(-1204 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-3992 . T) (-3993 |has| |#1| (-6 -3993)) (-3988 |has| |#1| (-6 -3988)) (-3990 . T) (-3989 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasAttribute| |#1| (QUOTE -3993)) (|HasAttribute| |#1| (QUOTE -3988))) -(-1204 |VarSet| R) +((-3993 . T) (-3994 |has| |#1| (-6 -3994)) (-3989 |has| |#1| (-6 -3989)) (-3991 . T) (-3990 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasAttribute| |#1| (QUOTE -3994)) (|HasAttribute| |#1| (QUOTE -3989))) +(-1205 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-3988 |has| |#2| (-6 -3988)) (-3990 . T) (-3989 . T) (-3992 . T)) -((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3988))) -(-1205) +((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T)) +((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3989))) +(-1206) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1206 A) +(-1207 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1207 R |ls| |ls2|) +(-1208 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1208 R) +(-1209 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1209 |p|) +(-1210 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T)) +(((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T)) NIL NIL NIL @@ -4784,4 +4788,4 @@ NIL NIL NIL NIL -((-3 NIL 1961955 1961960 1961965 1961970) (-2 NIL 1961935 1961940 1961945 1961950) (-1 NIL 1961915 1961920 1961925 1961930) (0 NIL 1961895 1961900 1961905 1961910) (-1209 "ZMOD.spad" 1961704 1961717 1961833 1961890) (-1208 "ZLINDEP.spad" 1960802 1960813 1961694 1961699) (-1207 "ZDSOLVE.spad" 1950763 1950785 1960792 1960797) (-1206 "YSTREAM.spad" 1950258 1950269 1950753 1950758) (-1205 "YDIAGRAM.spad" 1949892 1949901 1950248 1950253) (-1204 "XRPOLY.spad" 1949112 1949132 1949748 1949817) (-1203 "XPR.spad" 1946907 1946920 1948830 1948929) (-1202 "XPOLYC.spad" 1946226 1946242 1946833 1946902) (-1201 "XPOLY.spad" 1945781 1945792 1946082 1946151) (-1200 "XPBWPOLY.spad" 1944252 1944272 1945587 1945656) (-1199 "XFALG.spad" 1941300 1941316 1944178 1944247) (-1198 "XF.spad" 1939763 1939778 1941202 1941295) (-1197 "XF.spad" 1938206 1938223 1939647 1939652) (-1196 "XEXPPKG.spad" 1937465 1937491 1938196 1938201) (-1195 "XDPOLY.spad" 1937079 1937095 1937321 1937390) (-1194 "XALG.spad" 1936747 1936758 1937035 1937074) (-1193 "WUTSET.spad" 1932750 1932767 1936381 1936408) (-1192 "WP.spad" 1931957 1932001 1932608 1932675) (-1191 "WHILEAST.spad" 1931755 1931764 1931947 1931952) (-1190 "WHEREAST.spad" 1931426 1931435 1931745 1931750) (-1189 "WFFINTBS.spad" 1929089 1929111 1931416 1931421) (-1188 "WEIER.spad" 1927311 1927322 1929079 1929084) (-1187 "VSPACE.spad" 1926984 1926995 1927279 1927306) (-1186 "VSPACE.spad" 1926677 1926690 1926974 1926979) (-1185 "VOID.spad" 1926354 1926363 1926667 1926672) (-1184 "VIEWDEF.spad" 1921555 1921564 1926344 1926349) (-1183 "VIEW3D.spad" 1905516 1905525 1921545 1921550) (-1182 "VIEW2D.spad" 1893415 1893424 1905506 1905511) (-1181 "VIEW.spad" 1891135 1891144 1893405 1893410) (-1180 "VECTOR2.spad" 1889774 1889787 1891125 1891130) (-1179 "VECTOR.spad" 1888493 1888504 1888744 1888771) (-1178 "VECTCAT.spad" 1886405 1886416 1888461 1888488) (-1177 "VECTCAT.spad" 1884126 1884139 1886184 1886189) (-1176 "VARIABLE.spad" 1883906 1883921 1884116 1884121) (-1175 "UTYPE.spad" 1883550 1883559 1883896 1883901) (-1174 "UTSODETL.spad" 1882845 1882869 1883506 1883511) (-1173 "UTSODE.spad" 1881061 1881081 1882835 1882840) (-1172 "UTSCAT.spad" 1878540 1878556 1880959 1881056) (-1171 "UTSCAT.spad" 1875687 1875705 1878108 1878113) (-1170 "UTS2.spad" 1875282 1875317 1875677 1875682) (-1169 "UTS.spad" 1870294 1870322 1873814 1873911) (-1168 "URAGG.spad" 1865015 1865026 1870284 1870289) (-1167 "URAGG.spad" 1859700 1859713 1864971 1864976) (-1166 "UPXSSING.spad" 1857468 1857494 1858904 1859037) (-1165 "UPXSCONS.spad" 1855286 1855306 1855659 1855808) (-1164 "UPXSCCA.spad" 1853857 1853877 1855132 1855281) (-1163 "UPXSCCA.spad" 1852570 1852592 1853847 1853852) (-1162 "UPXSCAT.spad" 1851159 1851175 1852416 1852565) (-1161 "UPXS2.spad" 1850702 1850755 1851149 1851154) (-1160 "UPXS.spad" 1848057 1848085 1848893 1849042) (-1159 "UPSQFREE.spad" 1846472 1846486 1848047 1848052) (-1158 "UPSCAT.spad" 1844267 1844291 1846370 1846467) (-1157 "UPSCAT.spad" 1841763 1841789 1843868 1843873) (-1156 "UPOLYC2.spad" 1841234 1841253 1841753 1841758) (-1155 "UPOLYC.spad" 1836314 1836325 1841076 1841229) (-1154 "UPOLYC.spad" 1831312 1831325 1836076 1836081) (-1153 "UPMP.spad" 1830244 1830257 1831302 1831307) (-1152 "UPDIVP.spad" 1829809 1829823 1830234 1830239) (-1151 "UPDECOMP.spad" 1828070 1828084 1829799 1829804) (-1150 "UPCDEN.spad" 1827287 1827303 1828060 1828065) (-1149 "UP2.spad" 1826651 1826672 1827277 1827282) (-1148 "UP.spad" 1824121 1824136 1824508 1824661) (-1147 "UNISEG2.spad" 1823618 1823631 1824077 1824082) (-1146 "UNISEG.spad" 1822971 1822982 1823537 1823542) (-1145 "UNIFACT.spad" 1822074 1822086 1822961 1822966) (-1144 "ULSCONS.spad" 1815920 1815940 1816290 1816439) (-1143 "ULSCCAT.spad" 1813657 1813677 1815766 1815915) (-1142 "ULSCCAT.spad" 1811502 1811524 1813613 1813618) (-1141 "ULSCAT.spad" 1809742 1809758 1811348 1811497) (-1140 "ULS2.spad" 1809256 1809309 1809732 1809737) (-1139 "ULS.spad" 1801289 1801317 1802234 1802657) (-1138 "UINT8.spad" 1801166 1801175 1801279 1801284) (-1137 "UINT64.spad" 1801042 1801051 1801156 1801161) (-1136 "UINT32.spad" 1800918 1800927 1801032 1801037) (-1135 "UINT16.spad" 1800794 1800803 1800908 1800913) (-1134 "UFD.spad" 1799859 1799868 1800720 1800789) (-1133 "UFD.spad" 1798986 1798997 1799849 1799854) (-1132 "UDVO.spad" 1797867 1797876 1798976 1798981) (-1131 "UDPO.spad" 1795448 1795459 1797823 1797828) (-1130 "TYPEAST.spad" 1795367 1795376 1795438 1795443) (-1129 "TYPE.spad" 1795299 1795308 1795357 1795362) (-1128 "TWOFACT.spad" 1793951 1793966 1795289 1795294) (-1127 "TUPLE.spad" 1793458 1793469 1793863 1793868) (-1126 "TUBETOOL.spad" 1790325 1790334 1793448 1793453) (-1125 "TUBE.spad" 1788972 1788989 1790315 1790320) (-1124 "TSETCAT.spad" 1777043 1777060 1788940 1788967) (-1123 "TSETCAT.spad" 1765100 1765119 1776999 1777004) (-1122 "TS.spad" 1763728 1763744 1764694 1764791) (-1121 "TRMANIP.spad" 1758092 1758109 1763416 1763421) (-1120 "TRIMAT.spad" 1757055 1757080 1758082 1758087) (-1119 "TRIGMNIP.spad" 1755582 1755599 1757045 1757050) (-1118 "TRIGCAT.spad" 1755094 1755103 1755572 1755577) (-1117 "TRIGCAT.spad" 1754604 1754615 1755084 1755089) (-1116 "TREE.spad" 1753244 1753255 1754276 1754303) (-1115 "TRANFUN.spad" 1753083 1753092 1753234 1753239) (-1114 "TRANFUN.spad" 1752920 1752931 1753073 1753078) (-1113 "TOPSP.spad" 1752594 1752603 1752910 1752915) (-1112 "TOOLSIGN.spad" 1752257 1752268 1752584 1752589) (-1111 "TEXTFILE.spad" 1750818 1750827 1752247 1752252) (-1110 "TEX1.spad" 1750374 1750385 1750808 1750813) (-1109 "TEX.spad" 1747568 1747577 1750364 1750369) (-1108 "TBCMPPK.spad" 1745669 1745692 1747558 1747563) (-1107 "TBAGG.spad" 1744912 1744935 1745637 1745664) (-1106 "TBAGG.spad" 1744175 1744200 1744902 1744907) (-1105 "TANEXP.spad" 1743583 1743594 1744165 1744170) (-1104 "TALGOP.spad" 1743307 1743318 1743573 1743578) (-1103 "TABLEAU.spad" 1742788 1742799 1743297 1743302) (-1102 "TABLE.spad" 1741063 1741086 1741333 1741360) (-1101 "TABLBUMP.spad" 1737842 1737853 1741053 1741058) (-1100 "SYSTEM.spad" 1737070 1737079 1737832 1737837) (-1099 "SYSSOLP.spad" 1734553 1734564 1737060 1737065) (-1098 "SYSPTR.spad" 1734452 1734461 1734543 1734548) (-1097 "SYSNNI.spad" 1733675 1733686 1734442 1734447) (-1096 "SYSINT.spad" 1733079 1733090 1733665 1733670) (-1095 "SYNTAX.spad" 1729413 1729422 1733069 1733074) (-1094 "SYMTAB.spad" 1727481 1727490 1729403 1729408) (-1093 "SYMS.spad" 1723510 1723519 1727471 1727476) (-1092 "SYMPOLY.spad" 1722643 1722654 1722725 1722852) (-1091 "SYMFUNC.spad" 1722144 1722155 1722633 1722638) (-1090 "SYMBOL.spad" 1719639 1719648 1722134 1722139) (-1089 "SUTS.spad" 1716752 1716780 1718171 1718268) (-1088 "SUPXS.spad" 1714094 1714122 1714943 1715092) (-1087 "SUPFRACF.spad" 1713199 1713217 1714084 1714089) (-1086 "SUP2.spad" 1712591 1712604 1713189 1713194) (-1085 "SUP.spad" 1709675 1709686 1710448 1710601) (-1084 "SUMRF.spad" 1708649 1708660 1709665 1709670) (-1083 "SUMFS.spad" 1708278 1708295 1708639 1708644) (-1082 "SULS.spad" 1700298 1700326 1701256 1701679) (-1081 "syntax.spad" 1700067 1700076 1700288 1700293) (-1080 "SUCH.spad" 1699757 1699772 1700057 1700062) (-1079 "SUBSPACE.spad" 1691888 1691903 1699747 1699752) (-1078 "SUBRESP.spad" 1691058 1691072 1691844 1691849) (-1077 "STTFNC.spad" 1687526 1687542 1691048 1691053) (-1076 "STTF.spad" 1683625 1683641 1687516 1687521) (-1075 "STTAYLOR.spad" 1676302 1676313 1683532 1683537) (-1074 "STRTBL.spad" 1674689 1674706 1674838 1674865) (-1073 "STRING.spad" 1673557 1673566 1673942 1673969) (-1072 "STREAM3.spad" 1673130 1673145 1673547 1673552) (-1071 "STREAM2.spad" 1672258 1672271 1673120 1673125) (-1070 "STREAM1.spad" 1671964 1671975 1672248 1672253) (-1069 "STREAM.spad" 1668960 1668971 1671567 1671582) (-1068 "STINPROD.spad" 1667896 1667912 1668950 1668955) (-1067 "STEPAST.spad" 1667130 1667139 1667886 1667891) (-1066 "STEP.spad" 1666447 1666456 1667120 1667125) (-1065 "STBL.spad" 1664825 1664853 1664992 1665019) (-1064 "STAGG.spad" 1663524 1663535 1664815 1664820) (-1063 "STAGG.spad" 1662221 1662234 1663514 1663519) (-1062 "STACK.spad" 1661643 1661654 1661893 1661920) (-1061 "SRING.spad" 1661403 1661412 1661633 1661638) (-1060 "SREGSET.spad" 1659135 1659152 1661037 1661064) (-1059 "SRDCMPK.spad" 1657712 1657732 1659125 1659130) (-1058 "SRAGG.spad" 1652895 1652904 1657680 1657707) (-1057 "SRAGG.spad" 1648098 1648109 1652885 1652890) (-1056 "SQMATRIX.spad" 1645775 1645793 1646691 1646778) (-1055 "SPLTREE.spad" 1640517 1640530 1645313 1645340) (-1054 "SPLNODE.spad" 1637137 1637150 1640507 1640512) (-1053 "SPFCAT.spad" 1635946 1635955 1637127 1637132) (-1052 "SPECOUT.spad" 1634498 1634507 1635936 1635941) (-1051 "SPADXPT.spad" 1626589 1626598 1634488 1634493) (-1050 "spad-parser.spad" 1626054 1626063 1626579 1626584) (-1049 "SPADAST.spad" 1625755 1625764 1626044 1626049) (-1048 "SPACEC.spad" 1609970 1609981 1625745 1625750) (-1047 "SPACE3.spad" 1609746 1609757 1609960 1609965) (-1046 "SORTPAK.spad" 1609295 1609308 1609702 1609707) (-1045 "SOLVETRA.spad" 1607058 1607069 1609285 1609290) (-1044 "SOLVESER.spad" 1605514 1605525 1607048 1607053) (-1043 "SOLVERAD.spad" 1601540 1601551 1605504 1605509) (-1042 "SOLVEFOR.spad" 1600002 1600020 1601530 1601535) (-1041 "SNTSCAT.spad" 1599602 1599619 1599970 1599997) (-1040 "SMTS.spad" 1597919 1597945 1599196 1599293) (-1039 "SMP.spad" 1595727 1595747 1596117 1596244) (-1038 "SMITH.spad" 1594572 1594597 1595717 1595722) (-1037 "SMATCAT.spad" 1592690 1592720 1594516 1594567) (-1036 "SMATCAT.spad" 1590740 1590772 1592568 1592573) (-1035 "aggcat.spad" 1590416 1590427 1590720 1590735) (-1034 "SKAGG.spad" 1589385 1589396 1590384 1590411) (-1033 "SINT.spad" 1588684 1588693 1589251 1589380) (-1032 "SIMPAN.spad" 1588412 1588421 1588674 1588679) (-1031 "SIGNRF.spad" 1587537 1587548 1588402 1588407) (-1030 "SIGNEF.spad" 1586823 1586840 1587527 1587532) (-1029 "syntax.spad" 1586240 1586249 1586813 1586818) (-1028 "SIG.spad" 1585602 1585611 1586230 1586235) (-1027 "SHP.spad" 1583546 1583561 1585558 1585563) (-1026 "SHDP.spad" 1573039 1573066 1573556 1573653) (-1025 "SGROUP.spad" 1572647 1572656 1573029 1573034) (-1024 "SGROUP.spad" 1572253 1572264 1572637 1572642) (-1023 "catdef.spad" 1571963 1571975 1572074 1572248) (-1022 "catdef.spad" 1571519 1571531 1571784 1571958) (-1021 "SGCF.spad" 1564658 1564667 1571509 1571514) (-1020 "SFRTCAT.spad" 1563604 1563621 1564626 1564653) (-1019 "SFRGCD.spad" 1562667 1562687 1563594 1563599) (-1018 "SFQCMPK.spad" 1557480 1557500 1562657 1562662) (-1017 "SEXOF.spad" 1557323 1557363 1557470 1557475) (-1016 "SEXCAT.spad" 1555151 1555191 1557313 1557318) (-1015 "SEX.spad" 1555043 1555052 1555141 1555146) (-1014 "SETMN.spad" 1553503 1553520 1555033 1555038) (-1013 "SETCAT.spad" 1552988 1552997 1553493 1553498) (-1012 "SETCAT.spad" 1552471 1552482 1552978 1552983) (-1011 "SETAGG.spad" 1549020 1549031 1552451 1552466) (-1010 "SETAGG.spad" 1545577 1545590 1549010 1549015) (-1009 "SET.spad" 1543886 1543897 1544983 1545022) (-1008 "syntax.spad" 1543589 1543598 1543876 1543881) (-1007 "SEGXCAT.spad" 1542745 1542758 1543579 1543584) (-1006 "SEGCAT.spad" 1541670 1541681 1542735 1542740) (-1005 "SEGBIND2.spad" 1541368 1541381 1541660 1541665) (-1004 "SEGBIND.spad" 1541126 1541137 1541315 1541320) (-1003 "SEGAST.spad" 1540856 1540865 1541116 1541121) (-1002 "SEG2.spad" 1540291 1540304 1540812 1540817) (-1001 "SEG.spad" 1540104 1540115 1540210 1540215) (-1000 "SDVAR.spad" 1539380 1539391 1540094 1540099) (-999 "SDPOL.spad" 1537073 1537083 1537363 1537490) (-998 "SCPKG.spad" 1535163 1535173 1537063 1537068) (-997 "SCOPE.spad" 1534341 1534349 1535153 1535158) (-996 "SCACHE.spad" 1533038 1533048 1534331 1534336) (-995 "SASTCAT.spad" 1532948 1532956 1533028 1533033) (-994 "SAOS.spad" 1532821 1532829 1532938 1532943) (-993 "SAERFFC.spad" 1532535 1532554 1532811 1532816) (-992 "SAEFACT.spad" 1532237 1532256 1532525 1532530) (-991 "SAE.spad" 1529888 1529903 1530498 1530633) (-990 "RURPK.spad" 1527548 1527563 1529878 1529883) (-989 "RULESET.spad" 1527002 1527025 1527538 1527543) (-988 "RULECOLD.spad" 1526855 1526867 1526992 1526997) (-987 "RULE.spad" 1525104 1525127 1526845 1526850) (-986 "RTVALUE.spad" 1524840 1524848 1525094 1525099) (-985 "syntax.spad" 1524558 1524566 1524830 1524835) (-984 "RSETGCD.spad" 1521001 1521020 1524548 1524553) (-983 "RSETCAT.spad" 1510970 1510986 1520969 1520996) (-982 "RSETCAT.spad" 1500959 1500977 1510960 1510965) (-981 "RSDCMPK.spad" 1499460 1499479 1500949 1500954) (-980 "RRCC.spad" 1497845 1497874 1499450 1499455) (-979 "RRCC.spad" 1496228 1496259 1497835 1497840) (-978 "RPTAST.spad" 1495931 1495939 1496218 1496223) (-977 "RPOLCAT.spad" 1475436 1475450 1495799 1495926) (-976 "RPOLCAT.spad" 1454734 1454750 1475099 1475104) (-975 "ROMAN.spad" 1454063 1454071 1454600 1454729) (-974 "ROIRC.spad" 1453144 1453175 1454053 1454058) (-973 "RNS.spad" 1452121 1452129 1453046 1453139) (-972 "RNS.spad" 1451184 1451194 1452111 1452116) (-971 "RNGBIND.spad" 1450345 1450358 1451139 1451144) (-970 "RNG.spad" 1449954 1449962 1450335 1450340) (-969 "RNG.spad" 1449561 1449571 1449944 1449949) (-968 "RMODULE.spad" 1449343 1449353 1449551 1449556) (-967 "RMCAT2.spad" 1448764 1448820 1449333 1449338) (-966 "RMATRIX.spad" 1447574 1447592 1447916 1447955) (-965 "RMATCAT.spad" 1443212 1443242 1447530 1447569) (-964 "RMATCAT.spad" 1438740 1438772 1443060 1443065) (-963 "RLINSET.spad" 1438445 1438455 1438730 1438735) (-962 "RINTERP.spad" 1438334 1438353 1438435 1438440) (-961 "RING.spad" 1437805 1437813 1438314 1438329) (-960 "RING.spad" 1437284 1437294 1437795 1437800) (-959 "RIDIST.spad" 1436677 1436685 1437274 1437279) (-958 "RGCHAIN.spad" 1435232 1435247 1436125 1436152) (-957 "RGBCSPC.spad" 1435022 1435033 1435222 1435227) (-956 "RGBCMDL.spad" 1434585 1434596 1435012 1435017) (-955 "RFFACTOR.spad" 1434048 1434058 1434575 1434580) (-954 "RFFACT.spad" 1433784 1433795 1434038 1434043) (-953 "RFDIST.spad" 1432781 1432789 1433774 1433779) (-952 "RF.spad" 1430456 1430466 1432771 1432776) (-951 "RETSOL.spad" 1429876 1429888 1430446 1430451) (-950 "RETRACT.spad" 1429305 1429315 1429866 1429871) (-949 "RETRACT.spad" 1428732 1428744 1429295 1429300) (-948 "RETAST.spad" 1428545 1428553 1428722 1428727) (-947 "RESRING.spad" 1427893 1427939 1428483 1428540) (-946 "RESLATC.spad" 1427218 1427228 1427883 1427888) (-945 "REPSQ.spad" 1426950 1426960 1427208 1427213) (-944 "REPDB.spad" 1426658 1426668 1426940 1426945) (-943 "REP2.spad" 1416373 1416383 1426500 1426505) (-942 "REP1.spad" 1410594 1410604 1416323 1416328) (-941 "REP.spad" 1408149 1408157 1410584 1410589) (-940 "REGSET.spad" 1405975 1405991 1407783 1407810) (-939 "REF.spad" 1405494 1405504 1405965 1405970) (-938 "REDORDER.spad" 1404701 1404717 1405484 1405489) (-937 "RECLOS.spad" 1403598 1403617 1404301 1404394) (-936 "REALSOLV.spad" 1402739 1402747 1403588 1403593) (-935 "REAL0Q.spad" 1400038 1400052 1402729 1402734) (-934 "REAL0.spad" 1396883 1396897 1400028 1400033) (-933 "REAL.spad" 1396756 1396764 1396873 1396878) (-932 "RDUCEAST.spad" 1396478 1396486 1396746 1396751) (-931 "RDIV.spad" 1396134 1396158 1396468 1396473) (-930 "RDIST.spad" 1395702 1395712 1396124 1396129) (-929 "RDETRS.spad" 1394567 1394584 1395692 1395697) (-928 "RDETR.spad" 1392707 1392724 1394557 1394562) (-927 "RDEEFS.spad" 1391807 1391823 1392697 1392702) (-926 "RDEEF.spad" 1390818 1390834 1391797 1391802) (-925 "RCFIELD.spad" 1388037 1388045 1390720 1390813) (-924 "RCFIELD.spad" 1385342 1385352 1388027 1388032) (-923 "RCAGG.spad" 1383279 1383289 1385332 1385337) (-922 "RCAGG.spad" 1381143 1381155 1383198 1383203) (-921 "RATRET.spad" 1380504 1380514 1381133 1381138) (-920 "RATFACT.spad" 1380197 1380208 1380494 1380499) (-919 "RANDSRC.spad" 1379517 1379525 1380187 1380192) (-918 "RADUTIL.spad" 1379274 1379282 1379507 1379512) (-917 "RADIX.spad" 1376319 1376332 1377864 1377957) (-916 "RADFF.spad" 1374236 1374272 1374354 1374510) (-915 "RADCAT.spad" 1373832 1373840 1374226 1374231) (-914 "RADCAT.spad" 1373426 1373436 1373822 1373827) (-913 "QUEUE.spad" 1372840 1372850 1373098 1373125) (-912 "QUATCT2.spad" 1372461 1372479 1372830 1372835) (-911 "QUATCAT.spad" 1370632 1370642 1372391 1372456) (-910 "QUATCAT.spad" 1368568 1368580 1370329 1370334) (-909 "QUAT.spad" 1367175 1367185 1367517 1367582) (-908 "QUAGG.spad" 1366009 1366019 1367143 1367170) (-907 "QQUTAST.spad" 1365778 1365786 1365999 1366004) (-906 "QFORM.spad" 1365397 1365411 1365768 1365773) (-905 "QFCAT2.spad" 1365090 1365106 1365387 1365392) (-904 "QFCAT.spad" 1363793 1363803 1364992 1365085) (-903 "QFCAT.spad" 1362129 1362141 1363330 1363335) (-902 "QEQUAT.spad" 1361688 1361696 1362119 1362124) (-901 "QCMPACK.spad" 1356603 1356622 1361678 1361683) (-900 "QALGSET2.spad" 1354599 1354617 1356593 1356598) (-899 "QALGSET.spad" 1350704 1350736 1354513 1354518) (-898 "PWFFINTB.spad" 1348120 1348141 1350694 1350699) (-897 "PUSHVAR.spad" 1347459 1347478 1348110 1348115) (-896 "PTRANFN.spad" 1343595 1343605 1347449 1347454) (-895 "PTPACK.spad" 1340683 1340693 1343585 1343590) (-894 "PTFUNC2.spad" 1340506 1340520 1340673 1340678) (-893 "PTCAT.spad" 1339761 1339771 1340474 1340501) (-892 "PSQFR.spad" 1339076 1339100 1339751 1339756) (-891 "PSEUDLIN.spad" 1337962 1337972 1339066 1339071) (-890 "PSETPK.spad" 1324667 1324683 1337840 1337845) (-889 "PSETCAT.spad" 1319067 1319090 1324647 1324662) (-888 "PSETCAT.spad" 1313441 1313466 1319023 1319028) (-887 "PSCURVE.spad" 1312440 1312448 1313431 1313436) (-886 "PSCAT.spad" 1311223 1311252 1312338 1312435) (-885 "PSCAT.spad" 1310096 1310127 1311213 1311218) (-884 "PRTITION.spad" 1308794 1308802 1310086 1310091) (-883 "PRTDAST.spad" 1308513 1308521 1308784 1308789) (-882 "PRS.spad" 1298131 1298148 1308469 1308474) (-881 "PRQAGG.spad" 1297566 1297576 1298099 1298126) (-880 "PROPLOG.spad" 1297170 1297178 1297556 1297561) (-879 "PROPFUN2.spad" 1296793 1296806 1297160 1297165) (-878 "PROPFUN1.spad" 1296199 1296210 1296783 1296788) (-877 "PROPFRML.spad" 1294767 1294778 1296189 1296194) (-876 "PROPERTY.spad" 1294263 1294271 1294757 1294762) (-875 "PRODUCT.spad" 1291960 1291972 1292244 1292299) (-874 "PRINT.spad" 1291712 1291720 1291950 1291955) (-873 "PRIMES.spad" 1289973 1289983 1291702 1291707) (-872 "PRIMELT.spad" 1288094 1288108 1289963 1289968) (-871 "PRIMCAT.spad" 1287737 1287745 1288084 1288089) (-870 "PRIMARR2.spad" 1286504 1286516 1287727 1287732) (-869 "PRIMARR.spad" 1285559 1285569 1285729 1285756) (-868 "PREASSOC.spad" 1284941 1284953 1285549 1285554) (-867 "PR.spad" 1283459 1283471 1284158 1284285) (-866 "PPCURVE.spad" 1282596 1282604 1283449 1283454) (-865 "PORTNUM.spad" 1282387 1282395 1282586 1282591) (-864 "POLYROOT.spad" 1281236 1281258 1282343 1282348) (-863 "POLYLIFT.spad" 1280501 1280524 1281226 1281231) (-862 "POLYCATQ.spad" 1278627 1278649 1280491 1280496) (-861 "POLYCAT.spad" 1272129 1272150 1278495 1278622) (-860 "POLYCAT.spad" 1265151 1265174 1271519 1271524) (-859 "POLY2UP.spad" 1264603 1264617 1265141 1265146) (-858 "POLY2.spad" 1264200 1264212 1264593 1264598) (-857 "POLY.spad" 1261868 1261878 1262383 1262510) (-856 "POLUTIL.spad" 1260833 1260862 1261824 1261829) (-855 "POLTOPOL.spad" 1259581 1259596 1260823 1260828) (-854 "POINT.spad" 1258464 1258474 1258551 1258578) (-853 "PNTHEORY.spad" 1255166 1255174 1258454 1258459) (-852 "PMTOOLS.spad" 1253941 1253955 1255156 1255161) (-851 "PMSYM.spad" 1253490 1253500 1253931 1253936) (-850 "PMQFCAT.spad" 1253081 1253095 1253480 1253485) (-849 "PMPREDFS.spad" 1252543 1252565 1253071 1253076) (-848 "PMPRED.spad" 1252030 1252044 1252533 1252538) (-847 "PMPLCAT.spad" 1251107 1251125 1251959 1251964) (-846 "PMLSAGG.spad" 1250692 1250706 1251097 1251102) (-845 "PMKERNEL.spad" 1250271 1250283 1250682 1250687) (-844 "PMINS.spad" 1249851 1249861 1250261 1250266) (-843 "PMFS.spad" 1249428 1249446 1249841 1249846) (-842 "PMDOWN.spad" 1248718 1248732 1249418 1249423) (-841 "PMASSFS.spad" 1247693 1247709 1248708 1248713) (-840 "PMASS.spad" 1246711 1246719 1247683 1247688) (-839 "PLOTTOOL.spad" 1246491 1246499 1246701 1246706) (-838 "PLOT3D.spad" 1242955 1242963 1246481 1246486) (-837 "PLOT1.spad" 1242128 1242138 1242945 1242950) (-836 "PLOT.spad" 1237051 1237059 1242118 1242123) (-835 "PLEQN.spad" 1224453 1224480 1237041 1237046) (-834 "PINTERPA.spad" 1224237 1224253 1224443 1224448) (-833 "PINTERP.spad" 1223859 1223878 1224227 1224232) (-832 "PID.spad" 1222833 1222841 1223785 1223854) (-831 "PICOERCE.spad" 1222490 1222500 1222823 1222828) (-830 "PI.spad" 1222107 1222115 1222464 1222485) (-829 "PGROEB.spad" 1220716 1220730 1222097 1222102) (-828 "PGE.spad" 1212389 1212397 1220706 1220711) (-827 "PGCD.spad" 1211343 1211360 1212379 1212384) (-826 "PFRPAC.spad" 1210492 1210502 1211333 1211338) (-825 "PFR.spad" 1207195 1207205 1210394 1210487) (-824 "PFOTOOLS.spad" 1206453 1206469 1207185 1207190) (-823 "PFOQ.spad" 1205823 1205841 1206443 1206448) (-822 "PFO.spad" 1205242 1205269 1205813 1205818) (-821 "PFECAT.spad" 1202952 1202960 1205168 1205237) (-820 "PFECAT.spad" 1200690 1200700 1202908 1202913) (-819 "PFBRU.spad" 1198578 1198590 1200680 1200685) (-818 "PFBR.spad" 1196138 1196161 1198568 1198573) (-817 "PF.spad" 1195712 1195724 1195943 1196036) (-816 "PERMGRP.spad" 1190482 1190492 1195702 1195707) (-815 "PERMCAT.spad" 1189143 1189153 1190462 1190477) (-814 "PERMAN.spad" 1187699 1187713 1189133 1189138) (-813 "PERM.spad" 1183509 1183519 1187532 1187547) (-812 "PENDTREE.spad" 1182923 1182933 1183203 1183208) (-811 "PDSPC.spad" 1181736 1181746 1182913 1182918) (-810 "PDSPC.spad" 1180547 1180559 1181726 1181731) (-809 "PDRING.spad" 1180389 1180399 1180527 1180542) (-808 "PDMOD.spad" 1180205 1180217 1180357 1180384) (-807 "PDECOMP.spad" 1179675 1179692 1180195 1180200) (-806 "PDDOM.spad" 1179113 1179126 1179665 1179670) (-805 "PDDOM.spad" 1178549 1178564 1179103 1179108) (-804 "PCOMP.spad" 1178402 1178415 1178539 1178544) (-803 "PBWLB.spad" 1177000 1177017 1178392 1178397) (-802 "PATTERN2.spad" 1176738 1176750 1176990 1176995) (-801 "PATTERN1.spad" 1175082 1175098 1176728 1176733) (-800 "PATTERN.spad" 1169657 1169667 1175072 1175077) (-799 "PATRES2.spad" 1169329 1169343 1169647 1169652) (-798 "PATRES.spad" 1166912 1166924 1169319 1169324) (-797 "PATMATCH.spad" 1165153 1165184 1166664 1166669) (-796 "PATMAB.spad" 1164582 1164592 1165143 1165148) (-795 "PATLRES.spad" 1163668 1163682 1164572 1164577) (-794 "PATAB.spad" 1163432 1163442 1163658 1163663) (-793 "PARTPERM.spad" 1161488 1161496 1163422 1163427) (-792 "PARSURF.spad" 1160922 1160950 1161478 1161483) (-791 "PARSU2.spad" 1160719 1160735 1160912 1160917) (-790 "script-parser.spad" 1160239 1160247 1160709 1160714) (-789 "PARSCURV.spad" 1159673 1159701 1160229 1160234) (-788 "PARSC2.spad" 1159464 1159480 1159663 1159668) (-787 "PARPCURV.spad" 1158926 1158954 1159454 1159459) (-786 "PARPC2.spad" 1158717 1158733 1158916 1158921) (-785 "PARAMAST.spad" 1157845 1157853 1158707 1158712) (-784 "PAN2EXPR.spad" 1157257 1157265 1157835 1157840) (-783 "PALETTE.spad" 1156371 1156379 1157247 1157252) (-782 "PAIR.spad" 1155445 1155458 1156014 1156019) (-781 "PADICRC.spad" 1152850 1152868 1154013 1154106) (-780 "PADICRAT.spad" 1150910 1150922 1151123 1151216) (-779 "PADICCT.spad" 1149459 1149471 1150836 1150905) (-778 "PADIC.spad" 1149162 1149174 1149385 1149454) (-777 "PADEPAC.spad" 1147851 1147870 1149152 1149157) (-776 "PADE.spad" 1146603 1146619 1147841 1147846) (-775 "OWP.spad" 1145851 1145881 1146461 1146528) (-774 "OVERSET.spad" 1145424 1145432 1145841 1145846) (-773 "OVAR.spad" 1145205 1145228 1145414 1145419) (-772 "OUTFORM.spad" 1134613 1134621 1145195 1145200) (-771 "OUTBFILE.spad" 1134047 1134055 1134603 1134608) (-770 "OUTBCON.spad" 1133117 1133125 1134037 1134042) (-769 "OUTBCON.spad" 1132185 1132195 1133107 1133112) (-768 "OUT.spad" 1131303 1131311 1132175 1132180) (-767 "OSI.spad" 1130778 1130786 1131293 1131298) (-766 "OSGROUP.spad" 1130696 1130704 1130768 1130773) (-765 "ORTHPOL.spad" 1129207 1129217 1130639 1130644) (-764 "OREUP.spad" 1128701 1128729 1128928 1128967) (-763 "ORESUP.spad" 1128043 1128067 1128422 1128461) (-762 "OREPCTO.spad" 1125932 1125944 1127963 1127968) (-761 "OREPCAT.spad" 1120119 1120129 1125888 1125927) (-760 "OREPCAT.spad" 1114196 1114208 1119967 1119972) (-759 "ORDTYPE.spad" 1113433 1113441 1114186 1114191) (-758 "ORDTYPE.spad" 1112668 1112678 1113423 1113428) (-757 "ORDSTRCT.spad" 1112454 1112469 1112617 1112622) (-756 "ORDSET.spad" 1112154 1112162 1112444 1112449) (-755 "ORDRING.spad" 1111971 1111979 1112134 1112149) (-754 "ORDMON.spad" 1111826 1111834 1111961 1111966) (-753 "ORDFUNS.spad" 1110958 1110974 1111816 1111821) (-752 "ORDFIN.spad" 1110778 1110786 1110948 1110953) (-751 "ORDCOMP2.spad" 1110071 1110083 1110768 1110773) (-750 "ORDCOMP.spad" 1108597 1108607 1109679 1109708) (-749 "OPSIG.spad" 1108259 1108267 1108587 1108592) (-748 "OPQUERY.spad" 1107840 1107848 1108249 1108254) (-747 "OPERCAT.spad" 1107306 1107316 1107830 1107835) (-746 "OPERCAT.spad" 1106770 1106782 1107296 1107301) (-745 "OP.spad" 1106512 1106522 1106592 1106659) (-744 "ONECOMP2.spad" 1105936 1105948 1106502 1106507) (-743 "ONECOMP.spad" 1104742 1104752 1105544 1105573) (-742 "OMSAGG.spad" 1104530 1104540 1104698 1104737) (-741 "OMLO.spad" 1103963 1103975 1104416 1104455) (-740 "OINTDOM.spad" 1103726 1103734 1103889 1103958) (-739 "OFMONOID.spad" 1101865 1101875 1103682 1103687) (-738 "ODVAR.spad" 1101126 1101136 1101855 1101860) (-737 "ODR.spad" 1100770 1100796 1100938 1101087) (-736 "ODPOL.spad" 1098418 1098428 1098758 1098885) (-735 "ODP.spad" 1088055 1088075 1088428 1088525) (-734 "ODETOOLS.spad" 1086704 1086723 1088045 1088050) (-733 "ODESYS.spad" 1084398 1084415 1086694 1086699) (-732 "ODERTRIC.spad" 1080431 1080448 1084355 1084360) (-731 "ODERED.spad" 1079830 1079854 1080421 1080426) (-730 "ODERAT.spad" 1077463 1077480 1079820 1079825) (-729 "ODEPRRIC.spad" 1074556 1074578 1077453 1077458) (-728 "ODEPRIM.spad" 1071954 1071976 1074546 1074551) (-727 "ODEPAL.spad" 1071340 1071364 1071944 1071949) (-726 "ODEINT.spad" 1070775 1070791 1071330 1071335) (-725 "ODEEF.spad" 1066270 1066286 1070765 1070770) (-724 "ODECONST.spad" 1065815 1065833 1066260 1066265) (-723 "OCTCT2.spad" 1065456 1065474 1065805 1065810) (-722 "OCT.spad" 1063771 1063781 1064485 1064524) (-721 "OCAMON.spad" 1063619 1063627 1063761 1063766) (-720 "OC.spad" 1061415 1061425 1063575 1063614) (-719 "OC.spad" 1058950 1058962 1061112 1061117) (-718 "OASGP.spad" 1058765 1058773 1058940 1058945) (-717 "OAMONS.spad" 1058287 1058295 1058755 1058760) (-716 "OAMON.spad" 1058045 1058053 1058277 1058282) (-715 "OAMON.spad" 1057801 1057811 1058035 1058040) (-714 "OAGROUP.spad" 1057339 1057347 1057791 1057796) (-713 "OAGROUP.spad" 1056875 1056885 1057329 1057334) (-712 "NUMTUBE.spad" 1056466 1056482 1056865 1056870) (-711 "NUMQUAD.spad" 1044442 1044450 1056456 1056461) (-710 "NUMODE.spad" 1035794 1035802 1044432 1044437) (-709 "NUMFMT.spad" 1034634 1034642 1035784 1035789) (-708 "NUMERIC.spad" 1026749 1026759 1034440 1034445) (-707 "NTSCAT.spad" 1025257 1025273 1026717 1026744) (-706 "NTPOLFN.spad" 1024834 1024844 1025200 1025205) (-705 "NSUP2.spad" 1024226 1024238 1024824 1024829) (-704 "NSUP.spad" 1017663 1017673 1022083 1022236) (-703 "NSMP.spad" 1014575 1014594 1014867 1014994) (-702 "NREP.spad" 1012977 1012991 1014565 1014570) (-701 "NPCOEF.spad" 1012223 1012243 1012967 1012972) (-700 "NORMRETR.spad" 1011821 1011860 1012213 1012218) (-699 "NORMPK.spad" 1009763 1009782 1011811 1011816) (-698 "NORMMA.spad" 1009451 1009477 1009753 1009758) (-697 "NONE1.spad" 1009127 1009137 1009441 1009446) (-696 "NONE.spad" 1008868 1008876 1009117 1009122) (-695 "NODE1.spad" 1008355 1008371 1008858 1008863) (-694 "NNI.spad" 1007250 1007258 1008329 1008350) (-693 "NLINSOL.spad" 1005876 1005886 1007240 1007245) (-692 "NFINTBAS.spad" 1003436 1003453 1005866 1005871) (-691 "NETCLT.spad" 1003410 1003421 1003426 1003431) (-690 "NCODIV.spad" 1001634 1001650 1003400 1003405) (-689 "NCNTFRAC.spad" 1001276 1001290 1001624 1001629) (-688 "NCEP.spad" 999442 999456 1001266 1001271) (-687 "NASRING.spad" 999046 999054 999432 999437) (-686 "NASRING.spad" 998648 998658 999036 999041) (-685 "NARNG.spad" 998048 998056 998638 998643) (-684 "NARNG.spad" 997446 997456 998038 998043) (-683 "NAALG.spad" 997011 997021 997414 997441) (-682 "NAALG.spad" 996596 996608 997001 997006) (-681 "MULTSQFR.spad" 993554 993571 996586 996591) (-680 "MULTFACT.spad" 992937 992954 993544 993549) (-679 "MTSCAT.spad" 991031 991052 992835 992932) (-678 "MTHING.spad" 990690 990700 991021 991026) (-677 "MSYSCMD.spad" 990124 990132 990680 990685) (-676 "MSETAGG.spad" 989969 989979 990092 990119) (-675 "MSET.spad" 987915 987925 989663 989702) (-674 "MRING.spad" 984892 984904 987623 987690) (-673 "MRF2.spad" 984454 984468 984882 984887) (-672 "MRATFAC.spad" 984000 984017 984444 984449) (-671 "MPRFF.spad" 982040 982059 983990 983995) (-670 "MPOLY.spad" 979844 979859 980203 980330) (-669 "MPCPF.spad" 979108 979127 979834 979839) (-668 "MPC3.spad" 978925 978965 979098 979103) (-667 "MPC2.spad" 978579 978612 978915 978920) (-666 "MONOTOOL.spad" 976930 976947 978569 978574) (-665 "catdef.spad" 976363 976374 976584 976925) (-664 "catdef.spad" 975761 975772 976017 976358) (-663 "MONOID.spad" 975082 975090 975751 975756) (-662 "MONOID.spad" 974401 974411 975072 975077) (-661 "MONOGEN.spad" 973149 973162 974261 974396) (-660 "MONOGEN.spad" 971919 971934 973033 973038) (-659 "MONADWU.spad" 969999 970007 971909 971914) (-658 "MONADWU.spad" 968077 968087 969989 969994) (-657 "MONAD.spad" 967237 967245 968067 968072) (-656 "MONAD.spad" 966395 966405 967227 967232) (-655 "MOEBIUS.spad" 965131 965145 966375 966390) (-654 "MODULE.spad" 965001 965011 965099 965126) (-653 "MODULE.spad" 964891 964903 964991 964996) (-652 "MODRING.spad" 964226 964265 964871 964886) (-651 "MODOP.spad" 962883 962895 964048 964115) (-650 "MODMONOM.spad" 962614 962632 962873 962878) (-649 "MODMON.spad" 959684 959696 960399 960552) (-648 "MODFIELD.spad" 959046 959085 959586 959679) (-647 "MMLFORM.spad" 957906 957914 959036 959041) (-646 "MMAP.spad" 957648 957682 957896 957901) (-645 "MLO.spad" 956107 956117 957604 957643) (-644 "MLIFT.spad" 954719 954736 956097 956102) (-643 "MKUCFUNC.spad" 954254 954272 954709 954714) (-642 "MKRECORD.spad" 953842 953855 954244 954249) (-641 "MKFUNC.spad" 953249 953259 953832 953837) (-640 "MKFLCFN.spad" 952217 952227 953239 953244) (-639 "MKBCFUNC.spad" 951712 951730 952207 952212) (-638 "MHROWRED.spad" 950223 950233 951702 951707) (-637 "MFINFACT.spad" 949623 949645 950213 950218) (-636 "MESH.spad" 947418 947426 949613 949618) (-635 "MDDFACT.spad" 945637 945647 947408 947413) (-634 "MDAGG.spad" 944928 944938 945617 945632) (-633 "MCDEN.spad" 944138 944150 944918 944923) (-632 "MAYBE.spad" 943438 943449 944128 944133) (-631 "MATSTOR.spad" 940754 940764 943428 943433) (-630 "MATRIX.spad" 939533 939543 940017 940044) (-629 "MATLIN.spad" 936901 936925 939417 939422) (-628 "MATCAT2.spad" 936183 936231 936891 936896) (-627 "MATCAT.spad" 927879 927901 936151 936178) (-626 "MATCAT.spad" 919447 919471 927721 927726) (-625 "MAPPKG3.spad" 918362 918376 919437 919442) (-624 "MAPPKG2.spad" 917700 917712 918352 918357) (-623 "MAPPKG1.spad" 916528 916538 917690 917695) (-622 "MAPPAST.spad" 915867 915875 916518 916523) (-621 "MAPHACK3.spad" 915679 915693 915857 915862) (-620 "MAPHACK2.spad" 915448 915460 915669 915674) (-619 "MAPHACK1.spad" 915092 915102 915438 915443) (-618 "MAGMA.spad" 912898 912915 915082 915087) (-617 "MACROAST.spad" 912493 912501 912888 912893) (-616 "LZSTAGG.spad" 909747 909757 912483 912488) (-615 "LZSTAGG.spad" 906999 907011 909737 909742) (-614 "LWORD.spad" 903744 903761 906989 906994) (-613 "LSTAST.spad" 903528 903536 903734 903739) (-612 "LSQM.spad" 901806 901820 902200 902251) (-611 "LSPP.spad" 901341 901358 901796 901801) (-610 "LSMP1.spad" 899184 899198 901331 901336) (-609 "LSMP.spad" 898041 898069 899174 899179) (-608 "LSAGG.spad" 897710 897720 898009 898036) (-607 "LSAGG.spad" 897399 897411 897700 897705) (-606 "LPOLY.spad" 896361 896380 897255 897324) (-605 "LPEFRAC.spad" 895632 895642 896351 896356) (-604 "LOGIC.spad" 895234 895242 895622 895627) (-603 "LOGIC.spad" 894834 894844 895224 895229) (-602 "LODOOPS.spad" 893764 893776 894824 894829) (-601 "LODOF.spad" 892810 892827 893721 893726) (-600 "LODOCAT.spad" 891476 891486 892766 892805) (-599 "LODOCAT.spad" 890140 890152 891432 891437) (-598 "LODO2.spad" 889454 889466 889861 889900) (-597 "LODO1.spad" 888895 888905 889175 889214) (-596 "LODO.spad" 888320 888336 888616 888655) (-595 "LODEEF.spad" 887122 887140 888310 888315) (-594 "LO.spad" 886523 886537 887056 887083) (-593 "LNAGG.spad" 882710 882720 886513 886518) (-592 "LNAGG.spad" 878861 878873 882666 882671) (-591 "LMOPS.spad" 875629 875646 878851 878856) (-590 "LMODULE.spad" 875413 875423 875619 875624) (-589 "LMDICT.spad" 874794 874804 875042 875069) (-588 "LLINSET.spad" 874501 874511 874784 874789) (-587 "LITERAL.spad" 874407 874418 874491 874496) (-586 "LIST3.spad" 873718 873732 874397 874402) (-585 "LIST2MAP.spad" 870645 870657 873708 873713) (-584 "LIST2.spad" 869347 869359 870635 870640) (-583 "LIST.spad" 867229 867239 868572 868599) (-582 "LINSET.spad" 867008 867018 867219 867224) (-581 "LINFORM.spad" 866471 866483 866976 867003) (-580 "LINEXP.spad" 865214 865224 866461 866466) (-579 "LINELT.spad" 864585 864597 865097 865124) (-578 "LINDEP.spad" 863434 863446 864497 864502) (-577 "LINBASIS.spad" 863070 863085 863424 863429) (-576 "LIMITRF.spad" 861017 861027 863060 863065) (-575 "LIMITPS.spad" 859927 859940 861007 861012) (-574 "LIECAT.spad" 859411 859421 859853 859922) (-573 "LIECAT.spad" 858923 858935 859367 859372) (-572 "LIE.spad" 856927 856939 858201 858343) (-571 "LIB.spad" 855086 855094 855532 855559) (-570 "LGROBP.spad" 852439 852458 855076 855081) (-569 "LFCAT.spad" 851498 851506 852429 852434) (-568 "LF.spad" 850453 850469 851488 851493) (-567 "LEXTRIPK.spad" 846076 846091 850443 850448) (-566 "LEXP.spad" 844095 844122 846056 846071) (-565 "LETAST.spad" 843794 843802 844085 844090) (-564 "LEADCDET.spad" 842200 842217 843784 843789) (-563 "LAZM3PK.spad" 840944 840966 842190 842195) (-562 "LAUPOL.spad" 839611 839624 840511 840580) (-561 "LAPLACE.spad" 839194 839210 839601 839606) (-560 "LALG.spad" 838970 838980 839174 839189) (-559 "LALG.spad" 838754 838766 838960 838965) (-558 "LA.spad" 838194 838208 838676 838715) (-557 "KVTFROM.spad" 837937 837947 838184 838189) (-556 "KTVLOGIC.spad" 837481 837489 837927 837932) (-555 "KRCFROM.spad" 837227 837237 837471 837476) (-554 "KOVACIC.spad" 835958 835975 837217 837222) (-553 "KONVERT.spad" 835680 835690 835948 835953) (-552 "KOERCE.spad" 835417 835427 835670 835675) (-551 "KERNEL2.spad" 835120 835132 835407 835412) (-550 "KERNEL.spad" 833840 833850 834969 834974) (-549 "KDAGG.spad" 832949 832971 833820 833835) (-548 "KDAGG.spad" 832066 832090 832939 832944) (-547 "KAFILE.spad" 830956 830972 831191 831218) (-546 "JVMOP.spad" 830869 830877 830946 830951) (-545 "JVMMDACC.spad" 829923 829931 830859 830864) (-544 "JVMFDACC.spad" 829239 829247 829913 829918) (-543 "JVMCSTTG.spad" 827968 827976 829229 829234) (-542 "JVMCFACC.spad" 827414 827422 827958 827963) (-541 "JVMBCODE.spad" 827325 827333 827404 827409) (-540 "JORDAN.spad" 825142 825154 826603 826745) (-539 "JOINAST.spad" 824844 824852 825132 825137) (-538 "IXAGG.spad" 822977 823001 824834 824839) (-537 "IXAGG.spad" 820965 820991 822824 822829) (-536 "ITUPLE.spad" 820141 820151 820955 820960) (-535 "ITRIGMNP.spad" 818988 819007 820131 820136) (-534 "ITFUN3.spad" 818494 818508 818978 818983) (-533 "ITFUN2.spad" 818238 818250 818484 818489) (-532 "ITFORM.spad" 817593 817601 818228 818233) (-531 "ITAYLOR.spad" 815587 815602 817457 817554) (-530 "ISUPS.spad" 808036 808051 814573 814670) (-529 "ISUMP.spad" 807537 807553 808026 808031) (-528 "ISAST.spad" 807256 807264 807527 807532) (-527 "IRURPK.spad" 805973 805992 807246 807251) (-526 "IRSN.spad" 803977 803985 805963 805968) (-525 "IRRF2F.spad" 802470 802480 803933 803938) (-524 "IRREDFFX.spad" 802071 802082 802460 802465) (-523 "IROOT.spad" 800410 800420 802061 802066) (-522 "IRFORM.spad" 799734 799742 800400 800405) (-521 "IR2F.spad" 798948 798964 799724 799729) (-520 "IR2.spad" 797976 797992 798938 798943) (-519 "IR.spad" 795812 795826 797858 797885) (-518 "IPRNTPK.spad" 795572 795580 795802 795807) (-517 "IPF.spad" 795137 795149 795377 795470) (-516 "IPADIC.spad" 794906 794932 795063 795132) (-515 "IP4ADDR.spad" 794463 794471 794896 794901) (-514 "IOMODE.spad" 793985 793993 794453 794458) (-513 "IOBFILE.spad" 793370 793378 793975 793980) (-512 "IOBCON.spad" 793235 793243 793360 793365) (-511 "INVLAPLA.spad" 792884 792900 793225 793230) (-510 "INTTR.spad" 786278 786295 792874 792879) (-509 "INTTOOLS.spad" 784086 784102 785905 785910) (-508 "INTSLPE.spad" 783414 783422 784076 784081) (-507 "INTRVL.spad" 782980 782990 783328 783409) (-506 "INTRF.spad" 781412 781426 782970 782975) (-505 "INTRET.spad" 780844 780854 781402 781407) (-504 "INTRAT.spad" 779579 779596 780834 780839) (-503 "INTPM.spad" 778042 778058 779300 779305) (-502 "INTPAF.spad" 775918 775936 777971 777976) (-501 "INTHERTR.spad" 775192 775209 775908 775913) (-500 "INTHERAL.spad" 774862 774886 775182 775187) (-499 "INTHEORY.spad" 771301 771309 774852 774857) (-498 "INTG0.spad" 765065 765083 771230 771235) (-497 "INTFACT.spad" 764132 764142 765055 765060) (-496 "INTEF.spad" 762543 762559 764122 764127) (-495 "INTDOM.spad" 761166 761174 762469 762538) (-494 "INTDOM.spad" 759851 759861 761156 761161) (-493 "INTCAT.spad" 758118 758128 759765 759846) (-492 "INTBIT.spad" 757625 757633 758108 758113) (-491 "INTALG.spad" 756813 756840 757615 757620) (-490 "INTAF.spad" 756313 756329 756803 756808) (-489 "INTABL.spad" 754695 754726 754858 754885) (-488 "INT8.spad" 754575 754583 754685 754690) (-487 "INT64.spad" 754454 754462 754565 754570) (-486 "INT32.spad" 754333 754341 754444 754449) (-485 "INT16.spad" 754212 754220 754323 754328) (-484 "INT.spad" 753738 753746 754078 754207) (-483 "INS.spad" 751241 751249 753640 753733) (-482 "INS.spad" 748830 748840 751231 751236) (-481 "INPSIGN.spad" 748300 748313 748820 748825) (-480 "INPRODPF.spad" 747396 747415 748290 748295) (-479 "INPRODFF.spad" 746484 746508 747386 747391) (-478 "INNMFACT.spad" 745459 745476 746474 746479) (-477 "INMODGCD.spad" 744963 744993 745449 745454) (-476 "INFSP.spad" 743260 743282 744953 744958) (-475 "INFPROD0.spad" 742340 742359 743250 743255) (-474 "INFORM1.spad" 741965 741975 742330 742335) (-473 "INFORM.spad" 739176 739184 741955 741960) (-472 "INFINITY.spad" 738728 738736 739166 739171) (-471 "INETCLTS.spad" 738705 738713 738718 738723) (-470 "INEP.spad" 737251 737273 738695 738700) (-469 "INDE.spad" 736900 736917 737161 737166) (-468 "INCRMAPS.spad" 736337 736347 736890 736895) (-467 "INBFILE.spad" 735433 735441 736327 736332) (-466 "INBFF.spad" 731283 731294 735423 735428) (-465 "INBCON.spad" 729549 729557 731273 731278) (-464 "INBCON.spad" 727813 727823 729539 729544) (-463 "INAST.spad" 727474 727482 727803 727808) (-462 "IMPTAST.spad" 727182 727190 727464 727469) (-461 "IMATQF.spad" 726276 726320 727138 727143) (-460 "IMATLIN.spad" 724897 724921 726232 726237) (-459 "IFF.spad" 724310 724326 724581 724674) (-458 "IFAST.spad" 723924 723932 724300 724305) (-457 "IFARRAY.spad" 721451 721466 723149 723176) (-456 "IFAMON.spad" 721313 721330 721407 721412) (-455 "IEVALAB.spad" 720726 720738 721303 721308) (-454 "IEVALAB.spad" 720137 720151 720716 720721) (-453 "indexedp.spad" 719693 719705 720127 720132) (-452 "IDPOAMS.spad" 719371 719383 719605 719610) (-451 "IDPOAM.spad" 719013 719025 719283 719288) (-450 "IDPO.spad" 718427 718439 718925 718930) (-449 "IDPC.spad" 717142 717154 718417 718422) (-448 "IDPAM.spad" 716809 716821 717054 717059) (-447 "IDPAG.spad" 716478 716490 716721 716726) (-446 "IDENT.spad" 716130 716138 716468 716473) (-445 "catdef.spad" 715901 715912 716013 716125) (-444 "IDECOMP.spad" 713140 713158 715891 715896) (-443 "IDEAL.spad" 708102 708141 713088 713093) (-442 "ICDEN.spad" 707315 707331 708092 708097) (-441 "ICARD.spad" 706708 706716 707305 707310) (-440 "IBPTOOLS.spad" 705315 705332 706698 706703) (-439 "IBATOOL.spad" 702300 702319 705305 705310) (-438 "IBACHIN.spad" 700807 700822 702290 702295) (-437 "array2.spad" 700292 700314 700479 700506) (-436 "IARRAY1.spad" 699371 699386 699517 699544) (-435 "IAN.spad" 697753 697761 699202 699295) (-434 "IALGFACT.spad" 697364 697397 697743 697748) (-433 "HYPCAT.spad" 696788 696796 697354 697359) (-432 "HYPCAT.spad" 696210 696220 696778 696783) (-431 "HOSTNAME.spad" 696026 696034 696200 696205) (-430 "HOMOTOP.spad" 695769 695779 696016 696021) (-429 "HOAGG.spad" 693051 693061 695759 695764) (-428 "HOAGG.spad" 690083 690095 692793 692798) (-427 "HEXADEC.spad" 688308 688316 688673 688766) (-426 "HEUGCD.spad" 687399 687410 688298 688303) (-425 "HELLFDIV.spad" 687005 687029 687389 687394) (-424 "HEAP.spad" 686462 686472 686677 686704) (-423 "HEADAST.spad" 686003 686011 686452 686457) (-422 "HDP.spad" 675636 675652 676013 676110) (-421 "HDMP.spad" 673183 673198 673799 673926) (-420 "HB.spad" 671458 671466 673173 673178) (-419 "HASHTBL.spad" 669792 669823 670003 670030) (-418 "HASAST.spad" 669508 669516 669782 669787) (-417 "HACKPI.spad" 668999 669007 669410 669503) (-416 "GTSET.spad" 667926 667942 668633 668660) (-415 "GSTBL.spad" 666297 666332 666471 666498) (-414 "GSERIES.spad" 663669 663696 664488 664637) (-413 "GROUP.spad" 662942 662950 663649 663664) (-412 "GROUP.spad" 662223 662233 662932 662937) (-411 "GROEBSOL.spad" 660717 660738 662213 662218) (-410 "GRMOD.spad" 659298 659310 660707 660712) (-409 "GRMOD.spad" 657877 657891 659288 659293) (-408 "GRIMAGE.spad" 650790 650798 657867 657872) (-407 "GRDEF.spad" 649169 649177 650780 650785) (-406 "GRAY.spad" 647640 647648 649159 649164) (-405 "GRALG.spad" 646735 646747 647630 647635) (-404 "GRALG.spad" 645828 645842 646725 646730) (-403 "GPOLSET.spad" 645286 645309 645498 645525) (-402 "GOSPER.spad" 644563 644581 645276 645281) (-401 "GMODPOL.spad" 643711 643738 644531 644558) (-400 "GHENSEL.spad" 642794 642808 643701 643706) (-399 "GENUPS.spad" 639087 639100 642784 642789) (-398 "GENUFACT.spad" 638664 638674 639077 639082) (-397 "GENPGCD.spad" 638266 638283 638654 638659) (-396 "GENMFACT.spad" 637718 637737 638256 638261) (-395 "GENEEZ.spad" 635677 635690 637708 637713) (-394 "GDMP.spad" 633066 633083 633840 633967) (-393 "GCNAALG.spad" 626989 627016 632860 632927) (-392 "GCDDOM.spad" 626181 626189 626915 626984) (-391 "GCDDOM.spad" 625435 625445 626171 626176) (-390 "GBINTERN.spad" 621455 621493 625425 625430) (-389 "GBF.spad" 617238 617276 621445 621450) (-388 "GBEUCLID.spad" 615120 615158 617228 617233) (-387 "GB.spad" 612646 612684 615076 615081) (-386 "GAUSSFAC.spad" 611959 611967 612636 612641) (-385 "GALUTIL.spad" 610285 610295 611915 611920) (-384 "GALPOLYU.spad" 608739 608752 610275 610280) (-383 "GALFACTU.spad" 606952 606971 608729 608734) (-382 "GALFACT.spad" 597165 597176 606942 606947) (-381 "FUNDESC.spad" 596843 596851 597155 597160) (-380 "FUNCTION.spad" 596692 596704 596833 596838) (-379 "FT.spad" 594992 595000 596682 596687) (-378 "FSUPFACT.spad" 593906 593925 594942 594947) (-377 "FST.spad" 591992 592000 593896 593901) (-376 "FSRED.spad" 591472 591488 591982 591987) (-375 "FSPRMELT.spad" 590338 590354 591429 591434) (-374 "FSPECF.spad" 588429 588445 590328 590333) (-373 "FSINT.spad" 588089 588105 588419 588424) (-372 "FSERIES.spad" 587280 587292 587909 588008) (-371 "FSCINT.spad" 586597 586613 587270 587275) (-370 "FSAGG2.spad" 585332 585348 586587 586592) (-369 "FSAGG.spad" 584449 584459 585288 585327) (-368 "FSAGG.spad" 583528 583540 584369 584374) (-367 "FS2UPS.spad" 578043 578077 583518 583523) (-366 "FS2EXPXP.spad" 577184 577207 578033 578038) (-365 "FS2.spad" 576839 576855 577174 577179) (-364 "FS.spad" 571111 571121 576618 576834) (-363 "FS.spad" 565185 565197 570694 570699) (-362 "FRUTIL.spad" 564139 564149 565175 565180) (-361 "FRNAALG.spad" 559416 559426 564081 564134) (-360 "FRNAALG.spad" 554705 554717 559372 559377) (-359 "FRNAAF2.spad" 554153 554171 554695 554700) (-358 "FRMOD.spad" 553561 553591 554082 554087) (-357 "FRIDEAL2.spad" 553165 553197 553551 553556) (-356 "FRIDEAL.spad" 552390 552411 553145 553160) (-355 "FRETRCT.spad" 551909 551919 552380 552385) (-354 "FRETRCT.spad" 551335 551347 551808 551813) (-353 "FRAMALG.spad" 549715 549728 551291 551330) (-352 "FRAMALG.spad" 548127 548142 549705 549710) (-351 "FRAC2.spad" 547732 547744 548117 548122) (-350 "FRAC.spad" 545719 545729 546106 546279) (-349 "FR2.spad" 545055 545067 545709 545714) (-348 "FR.spad" 538843 538853 544116 544185) (-347 "FPS.spad" 535682 535690 538733 538838) (-346 "FPS.spad" 532549 532559 535602 535607) (-345 "FPC.spad" 531595 531603 532451 532544) (-344 "FPC.spad" 530727 530737 531585 531590) (-343 "FPATMAB.spad" 530489 530499 530717 530722) (-342 "FPARFRAC.spad" 529331 529348 530479 530484) (-341 "FORDER.spad" 529022 529046 529321 529326) (-340 "FNLA.spad" 528446 528468 528990 529017) (-339 "FNCAT.spad" 527041 527049 528436 528441) (-338 "FNAME.spad" 526933 526941 527031 527036) (-337 "FMONOID.spad" 526614 526624 526889 526894) (-336 "FMONCAT.spad" 523783 523793 526604 526609) (-335 "FMCAT.spad" 521459 521477 523751 523778) (-334 "FM1.spad" 520824 520836 521393 521420) (-333 "FM.spad" 520439 520451 520678 520705) (-332 "FLOATRP.spad" 518182 518196 520429 520434) (-331 "FLOATCP.spad" 515621 515635 518172 518177) (-330 "FLOAT.spad" 512712 512720 515487 515616) (-329 "FLINEXP.spad" 512434 512444 512702 512707) (-328 "FLINEXP.spad" 512113 512125 512383 512388) (-327 "FLASORT.spad" 511439 511451 512103 512108) (-326 "FLALG.spad" 509109 509128 511365 511434) (-325 "FLAGG2.spad" 507826 507842 509099 509104) (-324 "FLAGG.spad" 504892 504902 507806 507821) (-323 "FLAGG.spad" 501859 501871 504775 504780) (-322 "FINRALG.spad" 499944 499957 501815 501854) (-321 "FINRALG.spad" 497955 497970 499828 499833) (-320 "FINITE.spad" 497107 497115 497945 497950) (-319 "FINITE.spad" 496257 496267 497097 497102) (-318 "aggcat.spad" 494423 494433 496237 496252) (-317 "FINAGG.spad" 492564 492576 494380 494385) (-316 "FINAALG.spad" 481749 481759 492506 492559) (-315 "FINAALG.spad" 470946 470958 481705 481710) (-314 "FILECAT.spad" 469480 469497 470936 470941) (-313 "FILE.spad" 469063 469073 469470 469475) (-312 "FIELD.spad" 468469 468477 468965 469058) (-311 "FIELD.spad" 467961 467971 468459 468464) (-310 "FGROUP.spad" 466624 466634 467941 467956) (-309 "FGLMICPK.spad" 465419 465434 466614 466619) (-308 "FFX.spad" 464805 464820 465138 465231) (-307 "FFSLPE.spad" 464316 464337 464795 464800) (-306 "FFPOLY2.spad" 463376 463393 464306 464311) (-305 "FFPOLY.spad" 454718 454729 463366 463371) (-304 "FFP.spad" 454126 454146 454437 454530) (-303 "FFNBX.spad" 452649 452669 453845 453938) (-302 "FFNBP.spad" 451173 451190 452368 452461) (-301 "FFNB.spad" 449641 449662 450857 450950) (-300 "FFINTBAS.spad" 447155 447174 449631 449636) (-299 "FFIELDC.spad" 444740 444748 447057 447150) (-298 "FFIELDC.spad" 442411 442421 444730 444735) (-297 "FFHOM.spad" 441183 441200 442401 442406) (-296 "FFF.spad" 438626 438637 441173 441178) (-295 "FFCGX.spad" 437484 437504 438345 438438) (-294 "FFCGP.spad" 436384 436404 437203 437296) (-293 "FFCG.spad" 435179 435200 436068 436161) (-292 "FFCAT2.spad" 434926 434966 435169 435174) (-291 "FFCAT.spad" 428091 428113 434765 434921) (-290 "FFCAT.spad" 421335 421359 428011 428016) (-289 "FF.spad" 420786 420802 421019 421112) (-288 "FEVALAB.spad" 420494 420504 420776 420781) (-287 "FEVALAB.spad" 419978 419990 420262 420267) (-286 "FDIVCAT.spad" 418074 418098 419968 419973) (-285 "FDIVCAT.spad" 416168 416194 418064 418069) (-284 "FDIV2.spad" 415824 415864 416158 416163) (-283 "FDIV.spad" 415282 415306 415814 415819) (-282 "FCTRDATA.spad" 414290 414298 415272 415277) (-281 "FCOMP.spad" 413669 413679 414280 414285) (-280 "FAXF.spad" 406704 406718 413571 413664) (-279 "FAXF.spad" 399791 399807 406660 406665) (-278 "FARRAY.spad" 397983 397993 399016 399043) (-277 "FAMR.spad" 396127 396139 397881 397978) (-276 "FAMR.spad" 394255 394269 396011 396016) (-275 "FAMONOID.spad" 393939 393949 394209 394214) (-274 "FAMONC.spad" 392259 392271 393929 393934) (-273 "FAGROUP.spad" 391899 391909 392155 392182) (-272 "FACUTIL.spad" 390111 390128 391889 391894) (-271 "FACTFUNC.spad" 389313 389323 390101 390106) (-270 "EXPUPXS.spad" 386205 386228 387504 387653) (-269 "EXPRTUBE.spad" 383493 383501 386195 386200) (-268 "EXPRODE.spad" 380661 380677 383483 383488) (-267 "EXPR2UPS.spad" 376783 376796 380651 380656) (-266 "EXPR2.spad" 376488 376500 376773 376778) (-265 "EXPR.spad" 372133 372143 372847 373134) (-264 "EXPEXPAN.spad" 369078 369103 369710 369803) (-263 "EXITAST.spad" 368814 368822 369068 369073) (-262 "EXIT.spad" 368485 368493 368804 368809) (-261 "EVALCYC.spad" 367945 367959 368475 368480) (-260 "EVALAB.spad" 367525 367535 367935 367940) (-259 "EVALAB.spad" 367103 367115 367515 367520) (-258 "EUCDOM.spad" 364693 364701 367029 367098) (-257 "EUCDOM.spad" 362345 362355 364683 364688) (-256 "ES2.spad" 361858 361874 362335 362340) (-255 "ES1.spad" 361428 361444 361848 361853) (-254 "ES.spad" 354299 354307 361418 361423) (-253 "ES.spad" 347091 347101 354212 354217) (-252 "ERROR.spad" 344418 344426 347081 347086) (-251 "EQTBL.spad" 342754 342776 342963 342990) (-250 "EQ2.spad" 342472 342484 342744 342749) (-249 "EQ.spad" 337378 337388 340173 340279) (-248 "EP.spad" 333704 333714 337368 337373) (-247 "ENV.spad" 332382 332390 333694 333699) (-246 "ENTIRER.spad" 332050 332058 332326 332377) (-245 "ENTIRER.spad" 331762 331772 332040 332045) (-244 "EMR.spad" 331050 331091 331688 331757) (-243 "ELTAGG.spad" 329304 329323 331040 331045) (-242 "ELTAGG.spad" 327522 327543 329260 329265) (-241 "ELTAB.spad" 326997 327010 327512 327517) (-240 "ELFUTS.spad" 326432 326451 326987 326992) (-239 "ELEMFUN.spad" 326121 326129 326422 326427) (-238 "ELEMFUN.spad" 325808 325818 326111 326116) (-237 "ELAGG.spad" 323779 323789 325788 325803) (-236 "ELAGG.spad" 321687 321699 323698 323703) (-235 "ELABOR.spad" 321033 321041 321677 321682) (-234 "ELABEXPR.spad" 319965 319973 321023 321028) (-233 "EFUPXS.spad" 316741 316771 319921 319926) (-232 "EFULS.spad" 313577 313600 316697 316702) (-231 "EFSTRUC.spad" 311592 311608 313567 313572) (-230 "EF.spad" 306368 306384 311582 311587) (-229 "EAB.spad" 304668 304676 306358 306363) (-228 "DVARCAT.spad" 301674 301684 304658 304663) (-227 "DVARCAT.spad" 298678 298690 301664 301669) (-226 "DSMP.spad" 296411 296425 296716 296843) (-225 "DSEXT.spad" 295713 295723 296401 296406) (-224 "DSEXT.spad" 294935 294947 295625 295630) (-223 "DROPT1.spad" 294600 294610 294925 294930) (-222 "DROPT0.spad" 289465 289473 294590 294595) (-221 "DROPT.spad" 283424 283432 289455 289460) (-220 "DRAWPT.spad" 281597 281605 283414 283419) (-219 "DRAWHACK.spad" 280905 280915 281587 281592) (-218 "DRAWCX.spad" 278383 278391 280895 280900) (-217 "DRAWCURV.spad" 277930 277945 278373 278378) (-216 "DRAWCFUN.spad" 267462 267470 277920 277925) (-215 "DRAW.spad" 260338 260351 267452 267457) (-214 "DQAGG.spad" 258516 258526 260306 260333) (-213 "DPOLCAT.spad" 253873 253889 258384 258511) (-212 "DPOLCAT.spad" 249316 249334 253829 253834) (-211 "DPMO.spad" 242019 242035 242157 242363) (-210 "DPMM.spad" 234735 234753 234860 235066) (-209 "DOMTMPLT.spad" 234506 234514 234725 234730) (-208 "DOMCTOR.spad" 234261 234269 234496 234501) (-207 "DOMAIN.spad" 233372 233380 234251 234256) (-206 "DMP.spad" 230965 230980 231535 231662) (-205 "DMEXT.spad" 230832 230842 230933 230960) (-204 "DLP.spad" 230192 230202 230822 230827) (-203 "DLIST.spad" 228813 228823 229417 229444) (-202 "DLAGG.spad" 227230 227240 228803 228808) (-201 "DIVRING.spad" 226772 226780 227174 227225) (-200 "DIVRING.spad" 226358 226368 226762 226767) (-199 "DISPLAY.spad" 224548 224556 226348 226353) (-198 "DIRPROD2.spad" 223366 223384 224538 224543) (-197 "DIRPROD.spad" 212736 212752 213376 213473) (-196 "DIRPCAT.spad" 212019 212035 212634 212731) (-195 "DIRPCAT.spad" 210928 210946 211545 211550) (-194 "DIOSP.spad" 209753 209761 210918 210923) (-193 "DIOPS.spad" 208749 208759 209733 209748) (-192 "DIOPS.spad" 207719 207731 208705 208710) (-191 "catdef.spad" 207577 207585 207709 207714) (-190 "DIFRING.spad" 207415 207423 207557 207572) (-189 "DIFFSPC.spad" 206994 207002 207405 207410) (-188 "DIFFSPC.spad" 206571 206581 206984 206989) (-187 "DIFFMOD.spad" 206060 206070 206539 206566) (-186 "DIFFDOM.spad" 205225 205236 206050 206055) (-185 "DIFFDOM.spad" 204388 204401 205215 205220) (-184 "DIFEXT.spad" 204207 204217 204368 204383) (-183 "DIAGG.spad" 203837 203847 204187 204202) (-182 "DIAGG.spad" 203475 203487 203827 203832) (-181 "DHMATRIX.spad" 201852 201862 202997 203024) (-180 "DFSFUN.spad" 195492 195500 201842 201847) (-179 "DFLOAT.spad" 192099 192107 195382 195487) (-178 "DFINTTLS.spad" 190330 190346 192089 192094) (-177 "DERHAM.spad" 188244 188276 190310 190325) (-176 "DEQUEUE.spad" 187633 187643 187916 187943) (-175 "DEGRED.spad" 187250 187264 187623 187628) (-174 "DEFINTRF.spad" 184832 184842 187240 187245) (-173 "DEFINTEF.spad" 183370 183386 184822 184827) (-172 "DEFAST.spad" 182754 182762 183360 183365) (-171 "DECIMAL.spad" 180983 180991 181344 181437) (-170 "DDFACT.spad" 178804 178821 180973 180978) (-169 "DBLRESP.spad" 178404 178428 178794 178799) (-168 "DBASIS.spad" 178030 178045 178394 178399) (-167 "DBASE.spad" 176694 176704 178020 178025) (-166 "DATAARY.spad" 176180 176193 176684 176689) (-165 "CYCLOTOM.spad" 175686 175694 176170 176175) (-164 "CYCLES.spad" 172478 172486 175676 175681) (-163 "CVMP.spad" 171895 171905 172468 172473) (-162 "CTRIGMNP.spad" 170395 170411 171885 171890) (-161 "CTORKIND.spad" 169998 170006 170385 170390) (-160 "CTORCAT.spad" 169239 169247 169988 169993) (-159 "CTORCAT.spad" 168478 168488 169229 169234) (-158 "CTORCALL.spad" 168067 168077 168468 168473) (-157 "CTOR.spad" 167758 167766 168057 168062) (-156 "CSTTOOLS.spad" 167003 167016 167748 167753) (-155 "CRFP.spad" 160775 160788 166993 166998) (-154 "CRCEAST.spad" 160495 160503 160765 160770) (-153 "CRAPACK.spad" 159562 159572 160485 160490) (-152 "CPMATCH.spad" 159063 159078 159484 159489) (-151 "CPIMA.spad" 158768 158787 159053 159058) (-150 "COORDSYS.spad" 153777 153787 158758 158763) (-149 "CONTOUR.spad" 153204 153212 153767 153772) (-148 "CONTFRAC.spad" 148954 148964 153106 153199) (-147 "CONDUIT.spad" 148712 148720 148944 148949) (-146 "COMRING.spad" 148386 148394 148650 148707) (-145 "COMPPROP.spad" 147904 147912 148376 148381) (-144 "COMPLPAT.spad" 147671 147686 147894 147899) (-143 "COMPLEX2.spad" 147386 147398 147661 147666) (-142 "COMPLEX.spad" 143092 143102 143336 143594) (-141 "COMPILER.spad" 142641 142649 143082 143087) (-140 "COMPFACT.spad" 142243 142257 142631 142636) (-139 "COMPCAT.spad" 140318 140328 141980 142238) (-138 "COMPCAT.spad" 138134 138146 139798 139803) (-137 "COMMUPC.spad" 137882 137900 138124 138129) (-136 "COMMONOP.spad" 137415 137423 137872 137877) (-135 "COMMAAST.spad" 137178 137186 137405 137410) (-134 "COMM.spad" 136989 136997 137168 137173) (-133 "COMBOPC.spad" 135912 135920 136979 136984) (-132 "COMBINAT.spad" 134679 134689 135902 135907) (-131 "COMBF.spad" 132101 132117 134669 134674) (-130 "COLOR.spad" 130938 130946 132091 132096) (-129 "COLONAST.spad" 130604 130612 130928 130933) (-128 "CMPLXRT.spad" 130315 130332 130594 130599) (-127 "CLLCTAST.spad" 129977 129985 130305 130310) (-126 "CLIP.spad" 126085 126093 129967 129972) (-125 "CLIF.spad" 124740 124756 126041 126080) (-124 "CLAGG.spad" 121277 121287 124730 124735) (-123 "CLAGG.spad" 117698 117710 121153 121158) (-122 "CINTSLPE.spad" 117053 117066 117688 117693) (-121 "CHVAR.spad" 115191 115213 117043 117048) (-120 "CHARZ.spad" 115106 115114 115171 115186) (-119 "CHARPOL.spad" 114632 114642 115096 115101) (-118 "CHARNZ.spad" 114394 114402 114612 114627) (-117 "CHAR.spad" 111762 111770 114384 114389) (-116 "CFCAT.spad" 111090 111098 111752 111757) (-115 "CDEN.spad" 110310 110324 111080 111085) (-114 "CCLASS.spad" 108490 108498 109752 109791) (-113 "CATEGORY.spad" 107564 107572 108480 108485) (-112 "CATCTOR.spad" 107455 107463 107554 107559) (-111 "CATAST.spad" 107081 107089 107445 107450) (-110 "CASEAST.spad" 106795 106803 107071 107076) (-109 "CARTEN2.spad" 106185 106212 106785 106790) (-108 "CARTEN.spad" 101937 101961 106175 106180) (-107 "CARD.spad" 99232 99240 101911 101932) (-106 "CAPSLAST.spad" 99014 99022 99222 99227) (-105 "CACHSET.spad" 98638 98646 99004 99009) (-104 "CABMON.spad" 98193 98201 98628 98633) (-103 "BYTEORD.spad" 97868 97876 98183 98188) (-102 "BYTEBUF.spad" 95915 95923 97121 97148) (-101 "BYTE.spad" 95390 95398 95905 95910) (-100 "BTREE.spad" 94528 94538 95062 95089) (-99 "BTOURN.spad" 93599 93608 94200 94227) (-98 "BTCAT.spad" 93157 93166 93567 93594) (-97 "BTCAT.spad" 92735 92746 93147 93152) (-96 "BTAGG.spad" 92202 92209 92703 92730) (-95 "BTAGG.spad" 91689 91698 92192 92197) (-94 "BSTREE.spad" 90496 90505 91361 91388) (-93 "BRILL.spad" 88702 88712 90486 90491) (-92 "BRAGG.spad" 87659 87668 88692 88697) (-91 "BRAGG.spad" 86580 86591 87615 87620) (-90 "BPADICRT.spad" 84640 84651 84886 84979) (-89 "BPADIC.spad" 84313 84324 84566 84635) (-88 "BOUNDZRO.spad" 83970 83986 84303 84308) (-87 "BOP1.spad" 81429 81438 83960 83965) (-86 "BOP.spad" 76572 76579 81419 81424) (-85 "BOOLEAN.spad" 76121 76128 76562 76567) (-84 "BOOLE.spad" 75772 75779 76111 76116) (-83 "BOOLE.spad" 75421 75430 75762 75767) (-82 "BMODULE.spad" 75134 75145 75389 75416) (-81 "BITS.spad" 74566 74573 74780 74807) (-80 "catdef.spad" 74449 74459 74556 74561) (-79 "catdef.spad" 74200 74210 74439 74444) (-78 "BINDING.spad" 73622 73629 74190 74195) (-77 "BINARY.spad" 71857 71864 72212 72305) (-76 "BGAGG.spad" 71177 71186 71837 71852) (-75 "BGAGG.spad" 70505 70516 71167 71172) (-74 "BEZOUT.spad" 69646 69672 70455 70460) (-73 "BBTREE.spad" 66589 66598 69318 69345) (-72 "BASTYPE.spad" 66089 66096 66579 66584) (-71 "BASTYPE.spad" 65587 65596 66079 66084) (-70 "BALFACT.spad" 65047 65059 65577 65582) (-69 "AUTOMOR.spad" 64498 64507 65027 65042) (-68 "ATTREG.spad" 61484 61491 64262 64493) (-67 "ATTRAST.spad" 61201 61208 61474 61479) (-66 "ATRIG.spad" 60671 60678 61191 61196) (-65 "ATRIG.spad" 60139 60148 60661 60666) (-64 "ASTCAT.spad" 60043 60050 60129 60134) (-63 "ASTCAT.spad" 59945 59954 60033 60038) (-62 "ASTACK.spad" 59349 59358 59617 59644) (-61 "ASSOCEQ.spad" 58183 58194 59305 59310) (-60 "ARRAY2.spad" 57706 57715 57855 57882) (-59 "ARRAY12.spad" 56419 56430 57696 57701) (-58 "ARRAY1.spad" 55298 55307 55644 55671) (-57 "ARR2CAT.spad" 51264 51285 55266 55293) (-56 "ARR2CAT.spad" 47250 47273 51254 51259) (-55 "ARITY.spad" 46622 46629 47240 47245) (-54 "APPRULE.spad" 45906 45928 46612 46617) (-53 "APPLYORE.spad" 45525 45538 45896 45901) (-52 "ANY1.spad" 44596 44605 45515 45520) (-51 "ANY.spad" 43447 43454 44586 44591) (-50 "ANTISYM.spad" 41892 41908 43427 43442) (-49 "ANON.spad" 41601 41608 41882 41887) (-48 "AN.spad" 40069 40076 41432 41525) (-47 "AMR.spad" 38254 38265 39967 40064) (-46 "AMR.spad" 36302 36315 38017 38022) (-45 "ALIST.spad" 33540 33561 33890 33917) (-44 "ALGSC.spad" 32675 32701 33412 33465) (-43 "ALGPKG.spad" 28458 28469 32631 32636) (-42 "ALGMFACT.spad" 27651 27665 28448 28453) (-41 "ALGMANIP.spad" 25152 25167 27495 27500) (-40 "ALGFF.spad" 22970 22997 23187 23343) (-39 "ALGFACT.spad" 22089 22099 22960 22965) (-38 "ALGEBRA.spad" 21922 21931 22045 22084) (-37 "ALGEBRA.spad" 21787 21798 21912 21917) (-36 "ALAGG.spad" 21303 21324 21755 21782) (-35 "AHYP.spad" 20684 20691 21293 21298) (-34 "AGG.spad" 19393 19400 20674 20679) (-33 "AGG.spad" 18066 18075 19349 19354) (-32 "AF.spad" 16511 16526 18015 18020) (-31 "ADDAST.spad" 16197 16204 16501 16506) (-30 "ACPLOT.spad" 15074 15081 16187 16192) (-29 "ACFS.spad" 12931 12940 14976 15069) (-28 "ACFS.spad" 10874 10885 12921 12926) (-27 "ACF.spad" 7628 7635 10776 10869) (-26 "ACF.spad" 4468 4477 7618 7623) (-25 "ABELSG.spad" 4009 4016 4458 4463) (-24 "ABELSG.spad" 3548 3557 3999 4004) (-23 "ABELMON.spad" 2976 2983 3538 3543) (-22 "ABELMON.spad" 2402 2411 2966 2971) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 1962295 1962300 1962305 1962310) (-2 NIL 1962275 1962280 1962285 1962290) (-1 NIL 1962255 1962260 1962265 1962270) (0 NIL 1962235 1962240 1962245 1962250) (-1210 "ZMOD.spad" 1962044 1962057 1962173 1962230) (-1209 "ZLINDEP.spad" 1961142 1961153 1962034 1962039) (-1208 "ZDSOLVE.spad" 1951103 1951125 1961132 1961137) (-1207 "YSTREAM.spad" 1950598 1950609 1951093 1951098) (-1206 "YDIAGRAM.spad" 1950232 1950241 1950588 1950593) (-1205 "XRPOLY.spad" 1949452 1949472 1950088 1950157) (-1204 "XPR.spad" 1947247 1947260 1949170 1949269) (-1203 "XPOLYC.spad" 1946566 1946582 1947173 1947242) (-1202 "XPOLY.spad" 1946121 1946132 1946422 1946491) (-1201 "XPBWPOLY.spad" 1944592 1944612 1945927 1945996) (-1200 "XFALG.spad" 1941640 1941656 1944518 1944587) (-1199 "XF.spad" 1940103 1940118 1941542 1941635) (-1198 "XF.spad" 1938546 1938563 1939987 1939992) (-1197 "XEXPPKG.spad" 1937805 1937831 1938536 1938541) (-1196 "XDPOLY.spad" 1937419 1937435 1937661 1937730) (-1195 "XALG.spad" 1937087 1937098 1937375 1937414) (-1194 "WUTSET.spad" 1933090 1933107 1936721 1936748) (-1193 "WP.spad" 1932297 1932341 1932948 1933015) (-1192 "WHILEAST.spad" 1932095 1932104 1932287 1932292) (-1191 "WHEREAST.spad" 1931766 1931775 1932085 1932090) (-1190 "WFFINTBS.spad" 1929429 1929451 1931756 1931761) (-1189 "WEIER.spad" 1927651 1927662 1929419 1929424) (-1188 "VSPACE.spad" 1927324 1927335 1927619 1927646) (-1187 "VSPACE.spad" 1927017 1927030 1927314 1927319) (-1186 "VOID.spad" 1926694 1926703 1927007 1927012) (-1185 "VIEWDEF.spad" 1921895 1921904 1926684 1926689) (-1184 "VIEW3D.spad" 1905856 1905865 1921885 1921890) (-1183 "VIEW2D.spad" 1893755 1893764 1905846 1905851) (-1182 "VIEW.spad" 1891475 1891484 1893745 1893750) (-1181 "VECTOR2.spad" 1890114 1890127 1891465 1891470) (-1180 "VECTOR.spad" 1888833 1888844 1889084 1889111) (-1179 "VECTCAT.spad" 1886745 1886756 1888801 1888828) (-1178 "VECTCAT.spad" 1884466 1884479 1886524 1886529) (-1177 "VARIABLE.spad" 1884246 1884261 1884456 1884461) (-1176 "UTYPE.spad" 1883890 1883899 1884236 1884241) (-1175 "UTSODETL.spad" 1883185 1883209 1883846 1883851) (-1174 "UTSODE.spad" 1881401 1881421 1883175 1883180) (-1173 "UTSCAT.spad" 1878880 1878896 1881299 1881396) (-1172 "UTSCAT.spad" 1876027 1876045 1878448 1878453) (-1171 "UTS2.spad" 1875622 1875657 1876017 1876022) (-1170 "UTS.spad" 1870634 1870662 1874154 1874251) (-1169 "URAGG.spad" 1865355 1865366 1870624 1870629) (-1168 "URAGG.spad" 1860040 1860053 1865311 1865316) (-1167 "UPXSSING.spad" 1857808 1857834 1859244 1859377) (-1166 "UPXSCONS.spad" 1855626 1855646 1855999 1856148) (-1165 "UPXSCCA.spad" 1854197 1854217 1855472 1855621) (-1164 "UPXSCCA.spad" 1852910 1852932 1854187 1854192) (-1163 "UPXSCAT.spad" 1851499 1851515 1852756 1852905) (-1162 "UPXS2.spad" 1851042 1851095 1851489 1851494) (-1161 "UPXS.spad" 1848397 1848425 1849233 1849382) (-1160 "UPSQFREE.spad" 1846812 1846826 1848387 1848392) (-1159 "UPSCAT.spad" 1844607 1844631 1846710 1846807) (-1158 "UPSCAT.spad" 1842103 1842129 1844208 1844213) (-1157 "UPOLYC2.spad" 1841574 1841593 1842093 1842098) (-1156 "UPOLYC.spad" 1836654 1836665 1841416 1841569) (-1155 "UPOLYC.spad" 1831652 1831665 1836416 1836421) (-1154 "UPMP.spad" 1830584 1830597 1831642 1831647) (-1153 "UPDIVP.spad" 1830149 1830163 1830574 1830579) (-1152 "UPDECOMP.spad" 1828410 1828424 1830139 1830144) (-1151 "UPCDEN.spad" 1827627 1827643 1828400 1828405) (-1150 "UP2.spad" 1826991 1827012 1827617 1827622) (-1149 "UP.spad" 1824461 1824476 1824848 1825001) (-1148 "UNISEG2.spad" 1823958 1823971 1824417 1824422) (-1147 "UNISEG.spad" 1823311 1823322 1823877 1823882) (-1146 "UNIFACT.spad" 1822414 1822426 1823301 1823306) (-1145 "ULSCONS.spad" 1816260 1816280 1816630 1816779) (-1144 "ULSCCAT.spad" 1813997 1814017 1816106 1816255) (-1143 "ULSCCAT.spad" 1811842 1811864 1813953 1813958) (-1142 "ULSCAT.spad" 1810082 1810098 1811688 1811837) (-1141 "ULS2.spad" 1809596 1809649 1810072 1810077) (-1140 "ULS.spad" 1801629 1801657 1802574 1802997) (-1139 "UINT8.spad" 1801506 1801515 1801619 1801624) (-1138 "UINT64.spad" 1801382 1801391 1801496 1801501) (-1137 "UINT32.spad" 1801258 1801267 1801372 1801377) (-1136 "UINT16.spad" 1801134 1801143 1801248 1801253) (-1135 "UFD.spad" 1800199 1800208 1801060 1801129) (-1134 "UFD.spad" 1799326 1799337 1800189 1800194) (-1133 "UDVO.spad" 1798207 1798216 1799316 1799321) (-1132 "UDPO.spad" 1795788 1795799 1798163 1798168) (-1131 "TYPEAST.spad" 1795707 1795716 1795778 1795783) (-1130 "TYPE.spad" 1795639 1795648 1795697 1795702) (-1129 "TWOFACT.spad" 1794291 1794306 1795629 1795634) (-1128 "TUPLE.spad" 1793798 1793809 1794203 1794208) (-1127 "TUBETOOL.spad" 1790665 1790674 1793788 1793793) (-1126 "TUBE.spad" 1789312 1789329 1790655 1790660) (-1125 "TSETCAT.spad" 1777383 1777400 1789280 1789307) (-1124 "TSETCAT.spad" 1765440 1765459 1777339 1777344) (-1123 "TS.spad" 1764068 1764084 1765034 1765131) (-1122 "TRMANIP.spad" 1758432 1758449 1763756 1763761) (-1121 "TRIMAT.spad" 1757395 1757420 1758422 1758427) (-1120 "TRIGMNIP.spad" 1755922 1755939 1757385 1757390) (-1119 "TRIGCAT.spad" 1755434 1755443 1755912 1755917) (-1118 "TRIGCAT.spad" 1754944 1754955 1755424 1755429) (-1117 "TREE.spad" 1753584 1753595 1754616 1754643) (-1116 "TRANFUN.spad" 1753423 1753432 1753574 1753579) (-1115 "TRANFUN.spad" 1753260 1753271 1753413 1753418) (-1114 "TOPSP.spad" 1752934 1752943 1753250 1753255) (-1113 "TOOLSIGN.spad" 1752597 1752608 1752924 1752929) (-1112 "TEXTFILE.spad" 1751158 1751167 1752587 1752592) (-1111 "TEX1.spad" 1750714 1750725 1751148 1751153) (-1110 "TEX.spad" 1747908 1747917 1750704 1750709) (-1109 "TBCMPPK.spad" 1746009 1746032 1747898 1747903) (-1108 "TBAGG.spad" 1745252 1745275 1745977 1746004) (-1107 "TBAGG.spad" 1744515 1744540 1745242 1745247) (-1106 "TANEXP.spad" 1743923 1743934 1744505 1744510) (-1105 "TALGOP.spad" 1743647 1743658 1743913 1743918) (-1104 "TABLEAU.spad" 1743128 1743139 1743637 1743642) (-1103 "TABLE.spad" 1741403 1741426 1741673 1741700) (-1102 "TABLBUMP.spad" 1738182 1738193 1741393 1741398) (-1101 "SYSTEM.spad" 1737410 1737419 1738172 1738177) (-1100 "SYSSOLP.spad" 1734893 1734904 1737400 1737405) (-1099 "SYSPTR.spad" 1734792 1734801 1734883 1734888) (-1098 "SYSNNI.spad" 1734015 1734026 1734782 1734787) (-1097 "SYSINT.spad" 1733419 1733430 1734005 1734010) (-1096 "SYNTAX.spad" 1729753 1729762 1733409 1733414) (-1095 "SYMTAB.spad" 1727821 1727830 1729743 1729748) (-1094 "SYMS.spad" 1723850 1723859 1727811 1727816) (-1093 "SYMPOLY.spad" 1722983 1722994 1723065 1723192) (-1092 "SYMFUNC.spad" 1722484 1722495 1722973 1722978) (-1091 "SYMBOL.spad" 1719979 1719988 1722474 1722479) (-1090 "SUTS.spad" 1717092 1717120 1718511 1718608) (-1089 "SUPXS.spad" 1714434 1714462 1715283 1715432) (-1088 "SUPFRACF.spad" 1713539 1713557 1714424 1714429) (-1087 "SUP2.spad" 1712931 1712944 1713529 1713534) (-1086 "SUP.spad" 1710015 1710026 1710788 1710941) (-1085 "SUMRF.spad" 1708989 1709000 1710005 1710010) (-1084 "SUMFS.spad" 1708618 1708635 1708979 1708984) (-1083 "SULS.spad" 1700638 1700666 1701596 1702019) (-1082 "syntax.spad" 1700407 1700416 1700628 1700633) (-1081 "SUCH.spad" 1700097 1700112 1700397 1700402) (-1080 "SUBSPACE.spad" 1692228 1692243 1700087 1700092) (-1079 "SUBRESP.spad" 1691398 1691412 1692184 1692189) (-1078 "STTFNC.spad" 1687866 1687882 1691388 1691393) (-1077 "STTF.spad" 1683965 1683981 1687856 1687861) (-1076 "STTAYLOR.spad" 1676642 1676653 1683872 1683877) (-1075 "STRTBL.spad" 1675029 1675046 1675178 1675205) (-1074 "STRING.spad" 1673897 1673906 1674282 1674309) (-1073 "STREAM3.spad" 1673470 1673485 1673887 1673892) (-1072 "STREAM2.spad" 1672598 1672611 1673460 1673465) (-1071 "STREAM1.spad" 1672304 1672315 1672588 1672593) (-1070 "STREAM.spad" 1669300 1669311 1671907 1671922) (-1069 "STINPROD.spad" 1668236 1668252 1669290 1669295) (-1068 "STEPAST.spad" 1667470 1667479 1668226 1668231) (-1067 "STEP.spad" 1666787 1666796 1667460 1667465) (-1066 "STBL.spad" 1665165 1665193 1665332 1665359) (-1065 "STAGG.spad" 1663864 1663875 1665155 1665160) (-1064 "STAGG.spad" 1662561 1662574 1663854 1663859) (-1063 "STACK.spad" 1661983 1661994 1662233 1662260) (-1062 "SRING.spad" 1661743 1661752 1661973 1661978) (-1061 "SREGSET.spad" 1659475 1659492 1661377 1661404) (-1060 "SRDCMPK.spad" 1658052 1658072 1659465 1659470) (-1059 "SRAGG.spad" 1653235 1653244 1658020 1658047) (-1058 "SRAGG.spad" 1648438 1648449 1653225 1653230) (-1057 "SQMATRIX.spad" 1646115 1646133 1647031 1647118) (-1056 "SPLTREE.spad" 1640857 1640870 1645653 1645680) (-1055 "SPLNODE.spad" 1637477 1637490 1640847 1640852) (-1054 "SPFCAT.spad" 1636286 1636295 1637467 1637472) (-1053 "SPECOUT.spad" 1634838 1634847 1636276 1636281) (-1052 "SPADXPT.spad" 1626929 1626938 1634828 1634833) (-1051 "spad-parser.spad" 1626394 1626403 1626919 1626924) (-1050 "SPADAST.spad" 1626095 1626104 1626384 1626389) (-1049 "SPACEC.spad" 1610310 1610321 1626085 1626090) (-1048 "SPACE3.spad" 1610086 1610097 1610300 1610305) (-1047 "SORTPAK.spad" 1609635 1609648 1610042 1610047) (-1046 "SOLVETRA.spad" 1607398 1607409 1609625 1609630) (-1045 "SOLVESER.spad" 1605854 1605865 1607388 1607393) (-1044 "SOLVERAD.spad" 1601880 1601891 1605844 1605849) (-1043 "SOLVEFOR.spad" 1600342 1600360 1601870 1601875) (-1042 "SNTSCAT.spad" 1599942 1599959 1600310 1600337) (-1041 "SMTS.spad" 1598259 1598285 1599536 1599633) (-1040 "SMP.spad" 1596067 1596087 1596457 1596584) (-1039 "SMITH.spad" 1594912 1594937 1596057 1596062) (-1038 "SMATCAT.spad" 1593030 1593060 1594856 1594907) (-1037 "SMATCAT.spad" 1591080 1591112 1592908 1592913) (-1036 "aggcat.spad" 1590756 1590767 1591060 1591075) (-1035 "SKAGG.spad" 1589725 1589736 1590724 1590751) (-1034 "SINT.spad" 1589024 1589033 1589591 1589720) (-1033 "SIMPAN.spad" 1588752 1588761 1589014 1589019) (-1032 "SIGNRF.spad" 1587877 1587888 1588742 1588747) (-1031 "SIGNEF.spad" 1587163 1587180 1587867 1587872) (-1030 "syntax.spad" 1586580 1586589 1587153 1587158) (-1029 "SIG.spad" 1585942 1585951 1586570 1586575) (-1028 "SHP.spad" 1583886 1583901 1585898 1585903) (-1027 "SHDP.spad" 1573379 1573406 1573896 1573993) (-1026 "SGROUP.spad" 1572987 1572996 1573369 1573374) (-1025 "SGROUP.spad" 1572593 1572604 1572977 1572982) (-1024 "catdef.spad" 1572303 1572315 1572414 1572588) (-1023 "catdef.spad" 1571859 1571871 1572124 1572298) (-1022 "SGCF.spad" 1564998 1565007 1571849 1571854) (-1021 "SFRTCAT.spad" 1563944 1563961 1564966 1564993) (-1020 "SFRGCD.spad" 1563007 1563027 1563934 1563939) (-1019 "SFQCMPK.spad" 1557820 1557840 1562997 1563002) (-1018 "SEXOF.spad" 1557663 1557703 1557810 1557815) (-1017 "SEXCAT.spad" 1555491 1555531 1557653 1557658) (-1016 "SEX.spad" 1555383 1555392 1555481 1555486) (-1015 "SETMN.spad" 1553843 1553860 1555373 1555378) (-1014 "SETCAT.spad" 1553328 1553337 1553833 1553838) (-1013 "SETCAT.spad" 1552811 1552822 1553318 1553323) (-1012 "SETAGG.spad" 1549360 1549371 1552791 1552806) (-1011 "SETAGG.spad" 1545917 1545930 1549350 1549355) (-1010 "SET.spad" 1544226 1544237 1545323 1545362) (-1009 "syntax.spad" 1543929 1543938 1544216 1544221) (-1008 "SEGXCAT.spad" 1543085 1543098 1543919 1543924) (-1007 "SEGCAT.spad" 1542010 1542021 1543075 1543080) (-1006 "SEGBIND2.spad" 1541708 1541721 1542000 1542005) (-1005 "SEGBIND.spad" 1541466 1541477 1541655 1541660) (-1004 "SEGAST.spad" 1541196 1541205 1541456 1541461) (-1003 "SEG2.spad" 1540631 1540644 1541152 1541157) (-1002 "SEG.spad" 1540444 1540455 1540550 1540555) (-1001 "SDVAR.spad" 1539720 1539731 1540434 1540439) (-1000 "SDPOL.spad" 1537412 1537423 1537703 1537830) (-999 "SCPKG.spad" 1535502 1535512 1537402 1537407) (-998 "SCOPE.spad" 1534680 1534688 1535492 1535497) (-997 "SCACHE.spad" 1533377 1533387 1534670 1534675) (-996 "SASTCAT.spad" 1533287 1533295 1533367 1533372) (-995 "SAOS.spad" 1533160 1533168 1533277 1533282) (-994 "SAERFFC.spad" 1532874 1532893 1533150 1533155) (-993 "SAEFACT.spad" 1532576 1532595 1532864 1532869) (-992 "SAE.spad" 1530227 1530242 1530837 1530972) (-991 "RURPK.spad" 1527887 1527902 1530217 1530222) (-990 "RULESET.spad" 1527341 1527364 1527877 1527882) (-989 "RULECOLD.spad" 1527194 1527206 1527331 1527336) (-988 "RULE.spad" 1525443 1525466 1527184 1527189) (-987 "RTVALUE.spad" 1525179 1525187 1525433 1525438) (-986 "syntax.spad" 1524897 1524905 1525169 1525174) (-985 "RSETGCD.spad" 1521340 1521359 1524887 1524892) (-984 "RSETCAT.spad" 1511309 1511325 1521308 1521335) (-983 "RSETCAT.spad" 1501298 1501316 1511299 1511304) (-982 "RSDCMPK.spad" 1499799 1499818 1501288 1501293) (-981 "RRCC.spad" 1498184 1498213 1499789 1499794) (-980 "RRCC.spad" 1496567 1496598 1498174 1498179) (-979 "RPTAST.spad" 1496270 1496278 1496557 1496562) (-978 "RPOLCAT.spad" 1475775 1475789 1496138 1496265) (-977 "RPOLCAT.spad" 1455073 1455089 1475438 1475443) (-976 "ROMAN.spad" 1454402 1454410 1454939 1455068) (-975 "ROIRC.spad" 1453483 1453514 1454392 1454397) (-974 "RNS.spad" 1452460 1452468 1453385 1453478) (-973 "RNS.spad" 1451523 1451533 1452450 1452455) (-972 "RNGBIND.spad" 1450684 1450697 1451478 1451483) (-971 "RNG.spad" 1450293 1450301 1450674 1450679) (-970 "RNG.spad" 1449900 1449910 1450283 1450288) (-969 "RMODULE.spad" 1449682 1449692 1449890 1449895) (-968 "RMCAT2.spad" 1449103 1449159 1449672 1449677) (-967 "RMATRIX.spad" 1447913 1447931 1448255 1448294) (-966 "RMATCAT.spad" 1443551 1443581 1447869 1447908) (-965 "RMATCAT.spad" 1439079 1439111 1443399 1443404) (-964 "RLINSET.spad" 1438784 1438794 1439069 1439074) (-963 "RINTERP.spad" 1438673 1438692 1438774 1438779) (-962 "RING.spad" 1438144 1438152 1438653 1438668) (-961 "RING.spad" 1437623 1437633 1438134 1438139) (-960 "RIDIST.spad" 1437016 1437024 1437613 1437618) (-959 "RGCHAIN.spad" 1435571 1435586 1436464 1436491) (-958 "RGBCSPC.spad" 1435361 1435372 1435561 1435566) (-957 "RGBCMDL.spad" 1434924 1434935 1435351 1435356) (-956 "RFFACTOR.spad" 1434387 1434397 1434914 1434919) (-955 "RFFACT.spad" 1434123 1434134 1434377 1434382) (-954 "RFDIST.spad" 1433120 1433128 1434113 1434118) (-953 "RF.spad" 1430795 1430805 1433110 1433115) (-952 "RETSOL.spad" 1430215 1430227 1430785 1430790) (-951 "RETRACT.spad" 1429644 1429654 1430205 1430210) (-950 "RETRACT.spad" 1429071 1429083 1429634 1429639) (-949 "RETAST.spad" 1428884 1428892 1429061 1429066) (-948 "RESRING.spad" 1428232 1428278 1428822 1428879) (-947 "RESLATC.spad" 1427557 1427567 1428222 1428227) (-946 "REPSQ.spad" 1427289 1427299 1427547 1427552) (-945 "REPDB.spad" 1426997 1427007 1427279 1427284) (-944 "REP2.spad" 1416712 1416722 1426839 1426844) (-943 "REP1.spad" 1410933 1410943 1416662 1416667) (-942 "REP.spad" 1408488 1408496 1410923 1410928) (-941 "REGSET.spad" 1406314 1406330 1408122 1408149) (-940 "REF.spad" 1405833 1405843 1406304 1406309) (-939 "REDORDER.spad" 1405040 1405056 1405823 1405828) (-938 "RECLOS.spad" 1403937 1403956 1404640 1404733) (-937 "REALSOLV.spad" 1403078 1403086 1403927 1403932) (-936 "REAL0Q.spad" 1400377 1400391 1403068 1403073) (-935 "REAL0.spad" 1397222 1397236 1400367 1400372) (-934 "REAL.spad" 1397095 1397103 1397212 1397217) (-933 "RDUCEAST.spad" 1396817 1396825 1397085 1397090) (-932 "RDIV.spad" 1396473 1396497 1396807 1396812) (-931 "RDIST.spad" 1396041 1396051 1396463 1396468) (-930 "RDETRS.spad" 1394906 1394923 1396031 1396036) (-929 "RDETR.spad" 1393046 1393063 1394896 1394901) (-928 "RDEEFS.spad" 1392146 1392162 1393036 1393041) (-927 "RDEEF.spad" 1391157 1391173 1392136 1392141) (-926 "RCFIELD.spad" 1388376 1388384 1391059 1391152) (-925 "RCFIELD.spad" 1385681 1385691 1388366 1388371) (-924 "RCAGG.spad" 1383618 1383628 1385671 1385676) (-923 "RCAGG.spad" 1381482 1381494 1383537 1383542) (-922 "RATRET.spad" 1380843 1380853 1381472 1381477) (-921 "RATFACT.spad" 1380536 1380547 1380833 1380838) (-920 "RANDSRC.spad" 1379856 1379864 1380526 1380531) (-919 "RADUTIL.spad" 1379613 1379621 1379846 1379851) (-918 "RADIX.spad" 1376658 1376671 1378203 1378296) (-917 "RADFF.spad" 1374575 1374611 1374693 1374849) (-916 "RADCAT.spad" 1374171 1374179 1374565 1374570) (-915 "RADCAT.spad" 1373765 1373775 1374161 1374166) (-914 "QUEUE.spad" 1373179 1373189 1373437 1373464) (-913 "QUATCT2.spad" 1372800 1372818 1373169 1373174) (-912 "QUATCAT.spad" 1370971 1370981 1372730 1372795) (-911 "QUATCAT.spad" 1368907 1368919 1370668 1370673) (-910 "QUAT.spad" 1367514 1367524 1367856 1367921) (-909 "QUAGG.spad" 1366348 1366358 1367482 1367509) (-908 "QQUTAST.spad" 1366117 1366125 1366338 1366343) (-907 "QFORM.spad" 1365736 1365750 1366107 1366112) (-906 "QFCAT2.spad" 1365429 1365445 1365726 1365731) (-905 "QFCAT.spad" 1364132 1364142 1365331 1365424) (-904 "QFCAT.spad" 1362468 1362480 1363669 1363674) (-903 "QEQUAT.spad" 1362027 1362035 1362458 1362463) (-902 "QCMPACK.spad" 1356942 1356961 1362017 1362022) (-901 "QALGSET2.spad" 1354938 1354956 1356932 1356937) (-900 "QALGSET.spad" 1351043 1351075 1354852 1354857) (-899 "PWFFINTB.spad" 1348459 1348480 1351033 1351038) (-898 "PUSHVAR.spad" 1347798 1347817 1348449 1348454) (-897 "PTRANFN.spad" 1343934 1343944 1347788 1347793) (-896 "PTPACK.spad" 1341022 1341032 1343924 1343929) (-895 "PTFUNC2.spad" 1340845 1340859 1341012 1341017) (-894 "PTCAT.spad" 1340100 1340110 1340813 1340840) (-893 "PSQFR.spad" 1339415 1339439 1340090 1340095) (-892 "PSEUDLIN.spad" 1338301 1338311 1339405 1339410) (-891 "PSETPK.spad" 1325006 1325022 1338179 1338184) (-890 "PSETCAT.spad" 1319406 1319429 1324986 1325001) (-889 "PSETCAT.spad" 1313780 1313805 1319362 1319367) (-888 "PSCURVE.spad" 1312779 1312787 1313770 1313775) (-887 "PSCAT.spad" 1311562 1311591 1312677 1312774) (-886 "PSCAT.spad" 1310435 1310466 1311552 1311557) (-885 "PRTITION.spad" 1309133 1309141 1310425 1310430) (-884 "PRTDAST.spad" 1308852 1308860 1309123 1309128) (-883 "PRS.spad" 1298470 1298487 1308808 1308813) (-882 "PRQAGG.spad" 1297905 1297915 1298438 1298465) (-881 "PROPLOG.spad" 1297509 1297517 1297895 1297900) (-880 "PROPFUN2.spad" 1297132 1297145 1297499 1297504) (-879 "PROPFUN1.spad" 1296538 1296549 1297122 1297127) (-878 "PROPFRML.spad" 1295106 1295117 1296528 1296533) (-877 "PROPERTY.spad" 1294602 1294610 1295096 1295101) (-876 "PRODUCT.spad" 1292299 1292311 1292583 1292638) (-875 "PRINT.spad" 1292051 1292059 1292289 1292294) (-874 "PRIMES.spad" 1290312 1290322 1292041 1292046) (-873 "PRIMELT.spad" 1288433 1288447 1290302 1290307) (-872 "PRIMCAT.spad" 1288076 1288084 1288423 1288428) (-871 "PRIMARR2.spad" 1286843 1286855 1288066 1288071) (-870 "PRIMARR.spad" 1285898 1285908 1286068 1286095) (-869 "PREASSOC.spad" 1285280 1285292 1285888 1285893) (-868 "PR.spad" 1283798 1283810 1284497 1284624) (-867 "PPCURVE.spad" 1282935 1282943 1283788 1283793) (-866 "PORTNUM.spad" 1282726 1282734 1282925 1282930) (-865 "POLYROOT.spad" 1281575 1281597 1282682 1282687) (-864 "POLYLIFT.spad" 1280840 1280863 1281565 1281570) (-863 "POLYCATQ.spad" 1278966 1278988 1280830 1280835) (-862 "POLYCAT.spad" 1272468 1272489 1278834 1278961) (-861 "POLYCAT.spad" 1265490 1265513 1271858 1271863) (-860 "POLY2UP.spad" 1264942 1264956 1265480 1265485) (-859 "POLY2.spad" 1264539 1264551 1264932 1264937) (-858 "POLY.spad" 1262207 1262217 1262722 1262849) (-857 "POLUTIL.spad" 1261172 1261201 1262163 1262168) (-856 "POLTOPOL.spad" 1259920 1259935 1261162 1261167) (-855 "POINT.spad" 1258803 1258813 1258890 1258917) (-854 "PNTHEORY.spad" 1255505 1255513 1258793 1258798) (-853 "PMTOOLS.spad" 1254280 1254294 1255495 1255500) (-852 "PMSYM.spad" 1253829 1253839 1254270 1254275) (-851 "PMQFCAT.spad" 1253420 1253434 1253819 1253824) (-850 "PMPREDFS.spad" 1252882 1252904 1253410 1253415) (-849 "PMPRED.spad" 1252369 1252383 1252872 1252877) (-848 "PMPLCAT.spad" 1251446 1251464 1252298 1252303) (-847 "PMLSAGG.spad" 1251031 1251045 1251436 1251441) (-846 "PMKERNEL.spad" 1250610 1250622 1251021 1251026) (-845 "PMINS.spad" 1250190 1250200 1250600 1250605) (-844 "PMFS.spad" 1249767 1249785 1250180 1250185) (-843 "PMDOWN.spad" 1249057 1249071 1249757 1249762) (-842 "PMASSFS.spad" 1248032 1248048 1249047 1249052) (-841 "PMASS.spad" 1247050 1247058 1248022 1248027) (-840 "PLOTTOOL.spad" 1246830 1246838 1247040 1247045) (-839 "PLOT3D.spad" 1243294 1243302 1246820 1246825) (-838 "PLOT1.spad" 1242467 1242477 1243284 1243289) (-837 "PLOT.spad" 1237390 1237398 1242457 1242462) (-836 "PLEQN.spad" 1224792 1224819 1237380 1237385) (-835 "PINTERPA.spad" 1224576 1224592 1224782 1224787) (-834 "PINTERP.spad" 1224198 1224217 1224566 1224571) (-833 "PID.spad" 1223172 1223180 1224124 1224193) (-832 "PICOERCE.spad" 1222829 1222839 1223162 1223167) (-831 "PI.spad" 1222446 1222454 1222803 1222824) (-830 "PGROEB.spad" 1221055 1221069 1222436 1222441) (-829 "PGE.spad" 1212728 1212736 1221045 1221050) (-828 "PGCD.spad" 1211682 1211699 1212718 1212723) (-827 "PFRPAC.spad" 1210831 1210841 1211672 1211677) (-826 "PFR.spad" 1207534 1207544 1210733 1210826) (-825 "PFOTOOLS.spad" 1206792 1206808 1207524 1207529) (-824 "PFOQ.spad" 1206162 1206180 1206782 1206787) (-823 "PFO.spad" 1205581 1205608 1206152 1206157) (-822 "PFECAT.spad" 1203291 1203299 1205507 1205576) (-821 "PFECAT.spad" 1201029 1201039 1203247 1203252) (-820 "PFBRU.spad" 1198917 1198929 1201019 1201024) (-819 "PFBR.spad" 1196477 1196500 1198907 1198912) (-818 "PF.spad" 1196051 1196063 1196282 1196375) (-817 "PERMGRP.spad" 1190821 1190831 1196041 1196046) (-816 "PERMCAT.spad" 1189482 1189492 1190801 1190816) (-815 "PERMAN.spad" 1188038 1188052 1189472 1189477) (-814 "PERM.spad" 1183848 1183858 1187871 1187886) (-813 "PENDTREE.spad" 1183262 1183272 1183542 1183547) (-812 "PDSPC.spad" 1182075 1182085 1183252 1183257) (-811 "PDSPC.spad" 1180886 1180898 1182065 1182070) (-810 "PDRING.spad" 1180728 1180738 1180866 1180881) (-809 "PDMOD.spad" 1180544 1180556 1180696 1180723) (-808 "PDECOMP.spad" 1180014 1180031 1180534 1180539) (-807 "PDDOM.spad" 1179452 1179465 1180004 1180009) (-806 "PDDOM.spad" 1178888 1178903 1179442 1179447) (-805 "PCOMP.spad" 1178741 1178754 1178878 1178883) (-804 "PBWLB.spad" 1177339 1177356 1178731 1178736) (-803 "PATTERN2.spad" 1177077 1177089 1177329 1177334) (-802 "PATTERN1.spad" 1175421 1175437 1177067 1177072) (-801 "PATTERN.spad" 1169996 1170006 1175411 1175416) (-800 "PATRES2.spad" 1169668 1169682 1169986 1169991) (-799 "PATRES.spad" 1167251 1167263 1169658 1169663) (-798 "PATMATCH.spad" 1165492 1165523 1167003 1167008) (-797 "PATMAB.spad" 1164921 1164931 1165482 1165487) (-796 "PATLRES.spad" 1164007 1164021 1164911 1164916) (-795 "PATAB.spad" 1163771 1163781 1163997 1164002) (-794 "PARTPERM.spad" 1161827 1161835 1163761 1163766) (-793 "PARSURF.spad" 1161261 1161289 1161817 1161822) (-792 "PARSU2.spad" 1161058 1161074 1161251 1161256) (-791 "script-parser.spad" 1160578 1160586 1161048 1161053) (-790 "PARSCURV.spad" 1160012 1160040 1160568 1160573) (-789 "PARSC2.spad" 1159803 1159819 1160002 1160007) (-788 "PARPCURV.spad" 1159265 1159293 1159793 1159798) (-787 "PARPC2.spad" 1159056 1159072 1159255 1159260) (-786 "PARAMAST.spad" 1158184 1158192 1159046 1159051) (-785 "PAN2EXPR.spad" 1157596 1157604 1158174 1158179) (-784 "PALETTE.spad" 1156710 1156718 1157586 1157591) (-783 "PAIR.spad" 1155784 1155797 1156353 1156358) (-782 "PADICRC.spad" 1153189 1153207 1154352 1154445) (-781 "PADICRAT.spad" 1151249 1151261 1151462 1151555) (-780 "PADICCT.spad" 1149798 1149810 1151175 1151244) (-779 "PADIC.spad" 1149501 1149513 1149724 1149793) (-778 "PADEPAC.spad" 1148190 1148209 1149491 1149496) (-777 "PADE.spad" 1146942 1146958 1148180 1148185) (-776 "OWP.spad" 1146190 1146220 1146800 1146867) (-775 "OVERSET.spad" 1145763 1145771 1146180 1146185) (-774 "OVAR.spad" 1145544 1145567 1145753 1145758) (-773 "OUTFORM.spad" 1134952 1134960 1145534 1145539) (-772 "OUTBFILE.spad" 1134386 1134394 1134942 1134947) (-771 "OUTBCON.spad" 1133456 1133464 1134376 1134381) (-770 "OUTBCON.spad" 1132524 1132534 1133446 1133451) (-769 "OUT.spad" 1131642 1131650 1132514 1132519) (-768 "OSI.spad" 1131117 1131125 1131632 1131637) (-767 "OSGROUP.spad" 1131035 1131043 1131107 1131112) (-766 "ORTHPOL.spad" 1129546 1129556 1130978 1130983) (-765 "OREUP.spad" 1129040 1129068 1129267 1129306) (-764 "ORESUP.spad" 1128382 1128406 1128761 1128800) (-763 "OREPCTO.spad" 1126271 1126283 1128302 1128307) (-762 "OREPCAT.spad" 1120458 1120468 1126227 1126266) (-761 "OREPCAT.spad" 1114535 1114547 1120306 1120311) (-760 "ORDTYPE.spad" 1113772 1113780 1114525 1114530) (-759 "ORDTYPE.spad" 1113007 1113017 1113762 1113767) (-758 "ORDSTRCT.spad" 1112793 1112808 1112956 1112961) (-757 "ORDSET.spad" 1112493 1112501 1112783 1112788) (-756 "ORDRING.spad" 1112310 1112318 1112473 1112488) (-755 "ORDMON.spad" 1112165 1112173 1112300 1112305) (-754 "ORDFUNS.spad" 1111297 1111313 1112155 1112160) (-753 "ORDFIN.spad" 1111117 1111125 1111287 1111292) (-752 "ORDCOMP2.spad" 1110410 1110422 1111107 1111112) (-751 "ORDCOMP.spad" 1108936 1108946 1110018 1110047) (-750 "OPSIG.spad" 1108598 1108606 1108926 1108931) (-749 "OPQUERY.spad" 1108179 1108187 1108588 1108593) (-748 "OPERCAT.spad" 1107645 1107655 1108169 1108174) (-747 "OPERCAT.spad" 1107109 1107121 1107635 1107640) (-746 "OP.spad" 1106851 1106861 1106931 1106998) (-745 "ONECOMP2.spad" 1106275 1106287 1106841 1106846) (-744 "ONECOMP.spad" 1105081 1105091 1105883 1105912) (-743 "OMSAGG.spad" 1104869 1104879 1105037 1105076) (-742 "OMLO.spad" 1104302 1104314 1104755 1104794) (-741 "OINTDOM.spad" 1104065 1104073 1104228 1104297) (-740 "OFMONOID.spad" 1102204 1102214 1104021 1104026) (-739 "ODVAR.spad" 1101465 1101475 1102194 1102199) (-738 "ODR.spad" 1101109 1101135 1101277 1101426) (-737 "ODPOL.spad" 1098757 1098767 1099097 1099224) (-736 "ODP.spad" 1088394 1088414 1088767 1088864) (-735 "ODETOOLS.spad" 1087043 1087062 1088384 1088389) (-734 "ODESYS.spad" 1084737 1084754 1087033 1087038) (-733 "ODERTRIC.spad" 1080770 1080787 1084694 1084699) (-732 "ODERED.spad" 1080169 1080193 1080760 1080765) (-731 "ODERAT.spad" 1077802 1077819 1080159 1080164) (-730 "ODEPRRIC.spad" 1074895 1074917 1077792 1077797) (-729 "ODEPRIM.spad" 1072293 1072315 1074885 1074890) (-728 "ODEPAL.spad" 1071679 1071703 1072283 1072288) (-727 "ODEINT.spad" 1071114 1071130 1071669 1071674) (-726 "ODEEF.spad" 1066609 1066625 1071104 1071109) (-725 "ODECONST.spad" 1066154 1066172 1066599 1066604) (-724 "OCTCT2.spad" 1065795 1065813 1066144 1066149) (-723 "OCT.spad" 1064110 1064120 1064824 1064863) (-722 "OCAMON.spad" 1063958 1063966 1064100 1064105) (-721 "OC.spad" 1061754 1061764 1063914 1063953) (-720 "OC.spad" 1059289 1059301 1061451 1061456) (-719 "OASGP.spad" 1059104 1059112 1059279 1059284) (-718 "OAMONS.spad" 1058626 1058634 1059094 1059099) (-717 "OAMON.spad" 1058384 1058392 1058616 1058621) (-716 "OAMON.spad" 1058140 1058150 1058374 1058379) (-715 "OAGROUP.spad" 1057678 1057686 1058130 1058135) (-714 "OAGROUP.spad" 1057214 1057224 1057668 1057673) (-713 "NUMTUBE.spad" 1056805 1056821 1057204 1057209) (-712 "NUMQUAD.spad" 1044781 1044789 1056795 1056800) (-711 "NUMODE.spad" 1036133 1036141 1044771 1044776) (-710 "NUMFMT.spad" 1034973 1034981 1036123 1036128) (-709 "NUMERIC.spad" 1027088 1027098 1034779 1034784) (-708 "NTSCAT.spad" 1025596 1025612 1027056 1027083) (-707 "NTPOLFN.spad" 1025173 1025183 1025539 1025544) (-706 "NSUP2.spad" 1024565 1024577 1025163 1025168) (-705 "NSUP.spad" 1018002 1018012 1022422 1022575) (-704 "NSMP.spad" 1014914 1014933 1015206 1015333) (-703 "NREP.spad" 1013316 1013330 1014904 1014909) (-702 "NPCOEF.spad" 1012562 1012582 1013306 1013311) (-701 "NORMRETR.spad" 1012160 1012199 1012552 1012557) (-700 "NORMPK.spad" 1010102 1010121 1012150 1012155) (-699 "NORMMA.spad" 1009790 1009816 1010092 1010097) (-698 "NONE1.spad" 1009466 1009476 1009780 1009785) (-697 "NONE.spad" 1009207 1009215 1009456 1009461) (-696 "NODE1.spad" 1008694 1008710 1009197 1009202) (-695 "NNI.spad" 1007589 1007597 1008668 1008689) (-694 "NLINSOL.spad" 1006215 1006225 1007579 1007584) (-693 "NFINTBAS.spad" 1003775 1003792 1006205 1006210) (-692 "NETCLT.spad" 1003749 1003760 1003765 1003770) (-691 "NCODIV.spad" 1001973 1001989 1003739 1003744) (-690 "NCNTFRAC.spad" 1001615 1001629 1001963 1001968) (-689 "NCEP.spad" 999781 999795 1001605 1001610) (-688 "NASRING.spad" 999385 999393 999771 999776) (-687 "NASRING.spad" 998987 998997 999375 999380) (-686 "NARNG.spad" 998387 998395 998977 998982) (-685 "NARNG.spad" 997785 997795 998377 998382) (-684 "NAALG.spad" 997350 997360 997753 997780) (-683 "NAALG.spad" 996935 996947 997340 997345) (-682 "MULTSQFR.spad" 993893 993910 996925 996930) (-681 "MULTFACT.spad" 993276 993293 993883 993888) (-680 "MTSCAT.spad" 991370 991391 993174 993271) (-679 "MTHING.spad" 991029 991039 991360 991365) (-678 "MSYSCMD.spad" 990463 990471 991019 991024) (-677 "MSETAGG.spad" 990308 990318 990431 990458) (-676 "MSET.spad" 988254 988264 990002 990041) (-675 "MRING.spad" 985231 985243 987962 988029) (-674 "MRF2.spad" 984793 984807 985221 985226) (-673 "MRATFAC.spad" 984339 984356 984783 984788) (-672 "MPRFF.spad" 982379 982398 984329 984334) (-671 "MPOLY.spad" 980183 980198 980542 980669) (-670 "MPCPF.spad" 979447 979466 980173 980178) (-669 "MPC3.spad" 979264 979304 979437 979442) (-668 "MPC2.spad" 978918 978951 979254 979259) (-667 "MONOTOOL.spad" 977269 977286 978908 978913) (-666 "catdef.spad" 976702 976713 976923 977264) (-665 "catdef.spad" 976100 976111 976356 976697) (-664 "MONOID.spad" 975421 975429 976090 976095) (-663 "MONOID.spad" 974740 974750 975411 975416) (-662 "MONOGEN.spad" 973488 973501 974600 974735) (-661 "MONOGEN.spad" 972258 972273 973372 973377) (-660 "MONADWU.spad" 970338 970346 972248 972253) (-659 "MONADWU.spad" 968416 968426 970328 970333) (-658 "MONAD.spad" 967576 967584 968406 968411) (-657 "MONAD.spad" 966734 966744 967566 967571) (-656 "MOEBIUS.spad" 965470 965484 966714 966729) (-655 "MODULE.spad" 965340 965350 965438 965465) (-654 "MODULE.spad" 965230 965242 965330 965335) (-653 "MODRING.spad" 964565 964604 965210 965225) (-652 "MODOP.spad" 963222 963234 964387 964454) (-651 "MODMONOM.spad" 962953 962971 963212 963217) (-650 "MODMON.spad" 960023 960035 960738 960891) (-649 "MODFIELD.spad" 959385 959424 959925 960018) (-648 "MMLFORM.spad" 958245 958253 959375 959380) (-647 "MMAP.spad" 957987 958021 958235 958240) (-646 "MLO.spad" 956446 956456 957943 957982) (-645 "MLIFT.spad" 955058 955075 956436 956441) (-644 "MKUCFUNC.spad" 954593 954611 955048 955053) (-643 "MKRECORD.spad" 954181 954194 954583 954588) (-642 "MKFUNC.spad" 953588 953598 954171 954176) (-641 "MKFLCFN.spad" 952556 952566 953578 953583) (-640 "MKBCFUNC.spad" 952051 952069 952546 952551) (-639 "MHROWRED.spad" 950562 950572 952041 952046) (-638 "MFINFACT.spad" 949962 949984 950552 950557) (-637 "MESH.spad" 947757 947765 949952 949957) (-636 "MDDFACT.spad" 945976 945986 947747 947752) (-635 "MDAGG.spad" 945267 945277 945956 945971) (-634 "MCDEN.spad" 944477 944489 945257 945262) (-633 "MAYBE.spad" 943777 943788 944467 944472) (-632 "MATSTOR.spad" 941093 941103 943767 943772) (-631 "MATRIX.spad" 939872 939882 940356 940383) (-630 "MATLIN.spad" 937240 937264 939756 939761) (-629 "MATCAT2.spad" 936522 936570 937230 937235) (-628 "MATCAT.spad" 928218 928240 936490 936517) (-627 "MATCAT.spad" 919786 919810 928060 928065) (-626 "MAPPKG3.spad" 918701 918715 919776 919781) (-625 "MAPPKG2.spad" 918039 918051 918691 918696) (-624 "MAPPKG1.spad" 916867 916877 918029 918034) (-623 "MAPPAST.spad" 916206 916214 916857 916862) (-622 "MAPHACK3.spad" 916018 916032 916196 916201) (-621 "MAPHACK2.spad" 915787 915799 916008 916013) (-620 "MAPHACK1.spad" 915431 915441 915777 915782) (-619 "MAGMA.spad" 913237 913254 915421 915426) (-618 "MACROAST.spad" 912832 912840 913227 913232) (-617 "LZSTAGG.spad" 910086 910096 912822 912827) (-616 "LZSTAGG.spad" 907338 907350 910076 910081) (-615 "LWORD.spad" 904083 904100 907328 907333) (-614 "LSTAST.spad" 903867 903875 904073 904078) (-613 "LSQM.spad" 902145 902159 902539 902590) (-612 "LSPP.spad" 901680 901697 902135 902140) (-611 "LSMP1.spad" 899523 899537 901670 901675) (-610 "LSMP.spad" 898380 898408 899513 899518) (-609 "LSAGG.spad" 898049 898059 898348 898375) (-608 "LSAGG.spad" 897738 897750 898039 898044) (-607 "LPOLY.spad" 896700 896719 897594 897663) (-606 "LPEFRAC.spad" 895971 895981 896690 896695) (-605 "LOGIC.spad" 895573 895581 895961 895966) (-604 "LOGIC.spad" 895173 895183 895563 895568) (-603 "LODOOPS.spad" 894103 894115 895163 895168) (-602 "LODOF.spad" 893149 893166 894060 894065) (-601 "LODOCAT.spad" 891815 891825 893105 893144) (-600 "LODOCAT.spad" 890479 890491 891771 891776) (-599 "LODO2.spad" 889793 889805 890200 890239) (-598 "LODO1.spad" 889234 889244 889514 889553) (-597 "LODO.spad" 888659 888675 888955 888994) (-596 "LODEEF.spad" 887461 887479 888649 888654) (-595 "LO.spad" 886862 886876 887395 887422) (-594 "LNAGG.spad" 883049 883059 886852 886857) (-593 "LNAGG.spad" 879200 879212 883005 883010) (-592 "LMOPS.spad" 875968 875985 879190 879195) (-591 "LMODULE.spad" 875752 875762 875958 875963) (-590 "LMDICT.spad" 875133 875143 875381 875408) (-589 "LLINSET.spad" 874840 874850 875123 875128) (-588 "LITERAL.spad" 874746 874757 874830 874835) (-587 "LIST3.spad" 874057 874071 874736 874741) (-586 "LIST2MAP.spad" 870984 870996 874047 874052) (-585 "LIST2.spad" 869686 869698 870974 870979) (-584 "LIST.spad" 867568 867578 868911 868938) (-583 "LINSET.spad" 867347 867357 867558 867563) (-582 "LINFORM.spad" 866810 866822 867315 867342) (-581 "LINEXP.spad" 865553 865563 866800 866805) (-580 "LINELT.spad" 864924 864936 865436 865463) (-579 "LINDEP.spad" 863773 863785 864836 864841) (-578 "LINBASIS.spad" 863409 863424 863763 863768) (-577 "LIMITRF.spad" 861356 861366 863399 863404) (-576 "LIMITPS.spad" 860266 860279 861346 861351) (-575 "LIECAT.spad" 859750 859760 860192 860261) (-574 "LIECAT.spad" 859262 859274 859706 859711) (-573 "LIE.spad" 857266 857278 858540 858682) (-572 "LIB.spad" 855425 855433 855871 855898) (-571 "LGROBP.spad" 852778 852797 855415 855420) (-570 "LFCAT.spad" 851837 851845 852768 852773) (-569 "LF.spad" 850792 850808 851827 851832) (-568 "LEXTRIPK.spad" 846415 846430 850782 850787) (-567 "LEXP.spad" 844434 844461 846395 846410) (-566 "LETAST.spad" 844133 844141 844424 844429) (-565 "LEADCDET.spad" 842539 842556 844123 844128) (-564 "LAZM3PK.spad" 841283 841305 842529 842534) (-563 "LAUPOL.spad" 839950 839963 840850 840919) (-562 "LAPLACE.spad" 839533 839549 839940 839945) (-561 "LALG.spad" 839309 839319 839513 839528) (-560 "LALG.spad" 839093 839105 839299 839304) (-559 "LA.spad" 838533 838547 839015 839054) (-558 "KVTFROM.spad" 838276 838286 838523 838528) (-557 "KTVLOGIC.spad" 837820 837828 838266 838271) (-556 "KRCFROM.spad" 837566 837576 837810 837815) (-555 "KOVACIC.spad" 836297 836314 837556 837561) (-554 "KONVERT.spad" 836019 836029 836287 836292) (-553 "KOERCE.spad" 835756 835766 836009 836014) (-552 "KERNEL2.spad" 835459 835471 835746 835751) (-551 "KERNEL.spad" 834179 834189 835308 835313) (-550 "KDAGG.spad" 833288 833310 834159 834174) (-549 "KDAGG.spad" 832405 832429 833278 833283) (-548 "KAFILE.spad" 831295 831311 831530 831557) (-547 "JVMOP.spad" 831208 831216 831285 831290) (-546 "JVMMDACC.spad" 830262 830270 831198 831203) (-545 "JVMFDACC.spad" 829578 829586 830252 830257) (-544 "JVMCSTTG.spad" 828307 828315 829568 829573) (-543 "JVMCFACC.spad" 827753 827761 828297 828302) (-542 "JVMBCODE.spad" 827664 827672 827743 827748) (-541 "JORDAN.spad" 825481 825493 826942 827084) (-540 "JOINAST.spad" 825183 825191 825471 825476) (-539 "IXAGG.spad" 823316 823340 825173 825178) (-538 "IXAGG.spad" 821304 821330 823163 823168) (-537 "ITUPLE.spad" 820480 820490 821294 821299) (-536 "ITRIGMNP.spad" 819327 819346 820470 820475) (-535 "ITFUN3.spad" 818833 818847 819317 819322) (-534 "ITFUN2.spad" 818577 818589 818823 818828) (-533 "ITFORM.spad" 817932 817940 818567 818572) (-532 "ITAYLOR.spad" 815926 815941 817796 817893) (-531 "ISUPS.spad" 808375 808390 814912 815009) (-530 "ISUMP.spad" 807876 807892 808365 808370) (-529 "ISAST.spad" 807595 807603 807866 807871) (-528 "IRURPK.spad" 806312 806331 807585 807590) (-527 "IRSN.spad" 804316 804324 806302 806307) (-526 "IRRF2F.spad" 802809 802819 804272 804277) (-525 "IRREDFFX.spad" 802410 802421 802799 802804) (-524 "IROOT.spad" 800749 800759 802400 802405) (-523 "IRFORM.spad" 800073 800081 800739 800744) (-522 "IR2F.spad" 799287 799303 800063 800068) (-521 "IR2.spad" 798315 798331 799277 799282) (-520 "IR.spad" 796151 796165 798197 798224) (-519 "IPRNTPK.spad" 795911 795919 796141 796146) (-518 "IPF.spad" 795476 795488 795716 795809) (-517 "IPADIC.spad" 795245 795271 795402 795471) (-516 "IP4ADDR.spad" 794802 794810 795235 795240) (-515 "IOMODE.spad" 794324 794332 794792 794797) (-514 "IOBFILE.spad" 793709 793717 794314 794319) (-513 "IOBCON.spad" 793574 793582 793699 793704) (-512 "INVLAPLA.spad" 793223 793239 793564 793569) (-511 "INTTR.spad" 786617 786634 793213 793218) (-510 "INTTOOLS.spad" 784425 784441 786244 786249) (-509 "INTSLPE.spad" 783753 783761 784415 784420) (-508 "INTRVL.spad" 783319 783329 783667 783748) (-507 "INTRF.spad" 781751 781765 783309 783314) (-506 "INTRET.spad" 781183 781193 781741 781746) (-505 "INTRAT.spad" 779918 779935 781173 781178) (-504 "INTPM.spad" 778381 778397 779639 779644) (-503 "INTPAF.spad" 776257 776275 778310 778315) (-502 "INTHERTR.spad" 775531 775548 776247 776252) (-501 "INTHERAL.spad" 775201 775225 775521 775526) (-500 "INTHEORY.spad" 771640 771648 775191 775196) (-499 "INTG0.spad" 765404 765422 771569 771574) (-498 "INTFACT.spad" 764471 764481 765394 765399) (-497 "INTEF.spad" 762882 762898 764461 764466) (-496 "INTDOM.spad" 761505 761513 762808 762877) (-495 "INTDOM.spad" 760190 760200 761495 761500) (-494 "INTCAT.spad" 758457 758467 760104 760185) (-493 "INTBIT.spad" 757964 757972 758447 758452) (-492 "INTALG.spad" 757152 757179 757954 757959) (-491 "INTAF.spad" 756652 756668 757142 757147) (-490 "INTABL.spad" 755034 755065 755197 755224) (-489 "INT8.spad" 754914 754922 755024 755029) (-488 "INT64.spad" 754793 754801 754904 754909) (-487 "INT32.spad" 754672 754680 754783 754788) (-486 "INT16.spad" 754551 754559 754662 754667) (-485 "INT.spad" 754077 754085 754417 754546) (-484 "INS.spad" 751580 751588 753979 754072) (-483 "INS.spad" 749169 749179 751570 751575) (-482 "INPSIGN.spad" 748639 748652 749159 749164) (-481 "INPRODPF.spad" 747735 747754 748629 748634) (-480 "INPRODFF.spad" 746823 746847 747725 747730) (-479 "INNMFACT.spad" 745798 745815 746813 746818) (-478 "INMODGCD.spad" 745302 745332 745788 745793) (-477 "INFSP.spad" 743599 743621 745292 745297) (-476 "INFPROD0.spad" 742679 742698 743589 743594) (-475 "INFORM1.spad" 742304 742314 742669 742674) (-474 "INFORM.spad" 739515 739523 742294 742299) (-473 "INFINITY.spad" 739067 739075 739505 739510) (-472 "INETCLTS.spad" 739044 739052 739057 739062) (-471 "INEP.spad" 737590 737612 739034 739039) (-470 "INDE.spad" 737239 737256 737500 737505) (-469 "INCRMAPS.spad" 736676 736686 737229 737234) (-468 "INBFILE.spad" 735772 735780 736666 736671) (-467 "INBFF.spad" 731622 731633 735762 735767) (-466 "INBCON.spad" 729888 729896 731612 731617) (-465 "INBCON.spad" 728152 728162 729878 729883) (-464 "INAST.spad" 727813 727821 728142 728147) (-463 "IMPTAST.spad" 727521 727529 727803 727808) (-462 "IMATQF.spad" 726615 726659 727477 727482) (-461 "IMATLIN.spad" 725236 725260 726571 726576) (-460 "IFF.spad" 724649 724665 724920 725013) (-459 "IFAST.spad" 724263 724271 724639 724644) (-458 "IFARRAY.spad" 721790 721805 723488 723515) (-457 "IFAMON.spad" 721652 721669 721746 721751) (-456 "IEVALAB.spad" 721065 721077 721642 721647) (-455 "IEVALAB.spad" 720476 720490 721055 721060) (-454 "indexedp.spad" 720032 720044 720466 720471) (-453 "IDPOAMS.spad" 719710 719722 719944 719949) (-452 "IDPOAM.spad" 719352 719364 719622 719627) (-451 "IDPO.spad" 718766 718778 719264 719269) (-450 "IDPC.spad" 717481 717493 718756 718761) (-449 "IDPAM.spad" 717148 717160 717393 717398) (-448 "IDPAG.spad" 716817 716829 717060 717065) (-447 "IDENT.spad" 716469 716477 716807 716812) (-446 "catdef.spad" 716240 716251 716352 716464) (-445 "IDECOMP.spad" 713479 713497 716230 716235) (-444 "IDEAL.spad" 708441 708480 713427 713432) (-443 "ICDEN.spad" 707654 707670 708431 708436) (-442 "ICARD.spad" 707047 707055 707644 707649) (-441 "IBPTOOLS.spad" 705654 705671 707037 707042) (-440 "boolean.spad" 705167 705180 705300 705327) (-439 "IBATOOL.spad" 702152 702171 705157 705162) (-438 "IBACHIN.spad" 700659 700674 702142 702147) (-437 "array2.spad" 700144 700166 700331 700358) (-436 "IARRAY1.spad" 699223 699238 699369 699396) (-435 "IAN.spad" 697605 697613 699054 699147) (-434 "IALGFACT.spad" 697216 697249 697595 697600) (-433 "HYPCAT.spad" 696640 696648 697206 697211) (-432 "HYPCAT.spad" 696062 696072 696630 696635) (-431 "HOSTNAME.spad" 695878 695886 696052 696057) (-430 "HOMOTOP.spad" 695621 695631 695868 695873) (-429 "HOAGG.spad" 692903 692913 695611 695616) (-428 "HOAGG.spad" 689935 689947 692645 692650) (-427 "HEXADEC.spad" 688160 688168 688525 688618) (-426 "HEUGCD.spad" 687251 687262 688150 688155) (-425 "HELLFDIV.spad" 686857 686881 687241 687246) (-424 "HEAP.spad" 686314 686324 686529 686556) (-423 "HEADAST.spad" 685855 685863 686304 686309) (-422 "HDP.spad" 675488 675504 675865 675962) (-421 "HDMP.spad" 673035 673050 673651 673778) (-420 "HB.spad" 671310 671318 673025 673030) (-419 "HASHTBL.spad" 669644 669675 669855 669882) (-418 "HASAST.spad" 669360 669368 669634 669639) (-417 "HACKPI.spad" 668851 668859 669262 669355) (-416 "GTSET.spad" 667778 667794 668485 668512) (-415 "GSTBL.spad" 666149 666184 666323 666350) (-414 "GSERIES.spad" 663521 663548 664340 664489) (-413 "GROUP.spad" 662794 662802 663501 663516) (-412 "GROUP.spad" 662075 662085 662784 662789) (-411 "GROEBSOL.spad" 660569 660590 662065 662070) (-410 "GRMOD.spad" 659150 659162 660559 660564) (-409 "GRMOD.spad" 657729 657743 659140 659145) (-408 "GRIMAGE.spad" 650642 650650 657719 657724) (-407 "GRDEF.spad" 649021 649029 650632 650637) (-406 "GRAY.spad" 647492 647500 649011 649016) (-405 "GRALG.spad" 646587 646599 647482 647487) (-404 "GRALG.spad" 645680 645694 646577 646582) (-403 "GPOLSET.spad" 645138 645161 645350 645377) (-402 "GOSPER.spad" 644415 644433 645128 645133) (-401 "GMODPOL.spad" 643563 643590 644383 644410) (-400 "GHENSEL.spad" 642646 642660 643553 643558) (-399 "GENUPS.spad" 638939 638952 642636 642641) (-398 "GENUFACT.spad" 638516 638526 638929 638934) (-397 "GENPGCD.spad" 638118 638135 638506 638511) (-396 "GENMFACT.spad" 637570 637589 638108 638113) (-395 "GENEEZ.spad" 635529 635542 637560 637565) (-394 "GDMP.spad" 632918 632935 633692 633819) (-393 "GCNAALG.spad" 626841 626868 632712 632779) (-392 "GCDDOM.spad" 626033 626041 626767 626836) (-391 "GCDDOM.spad" 625287 625297 626023 626028) (-390 "GBINTERN.spad" 621307 621345 625277 625282) (-389 "GBF.spad" 617090 617128 621297 621302) (-388 "GBEUCLID.spad" 614972 615010 617080 617085) (-387 "GB.spad" 612498 612536 614928 614933) (-386 "GAUSSFAC.spad" 611811 611819 612488 612493) (-385 "GALUTIL.spad" 610137 610147 611767 611772) (-384 "GALPOLYU.spad" 608591 608604 610127 610132) (-383 "GALFACTU.spad" 606804 606823 608581 608586) (-382 "GALFACT.spad" 597017 597028 606794 606799) (-381 "FUNDESC.spad" 596695 596703 597007 597012) (-380 "FUNCTION.spad" 596544 596556 596685 596690) (-379 "FT.spad" 594844 594852 596534 596539) (-378 "FSUPFACT.spad" 593758 593777 594794 594799) (-377 "FST.spad" 591844 591852 593748 593753) (-376 "FSRED.spad" 591324 591340 591834 591839) (-375 "FSPRMELT.spad" 590190 590206 591281 591286) (-374 "FSPECF.spad" 588281 588297 590180 590185) (-373 "FSINT.spad" 587941 587957 588271 588276) (-372 "FSERIES.spad" 587132 587144 587761 587860) (-371 "FSCINT.spad" 586449 586465 587122 587127) (-370 "FSAGG2.spad" 585184 585200 586439 586444) (-369 "FSAGG.spad" 584301 584311 585140 585179) (-368 "FSAGG.spad" 583380 583392 584221 584226) (-367 "FS2UPS.spad" 577895 577929 583370 583375) (-366 "FS2EXPXP.spad" 577036 577059 577885 577890) (-365 "FS2.spad" 576691 576707 577026 577031) (-364 "FS.spad" 570963 570973 576470 576686) (-363 "FS.spad" 565037 565049 570546 570551) (-362 "FRUTIL.spad" 563991 564001 565027 565032) (-361 "FRNAALG.spad" 559268 559278 563933 563986) (-360 "FRNAALG.spad" 554557 554569 559224 559229) (-359 "FRNAAF2.spad" 554005 554023 554547 554552) (-358 "FRMOD.spad" 553413 553443 553934 553939) (-357 "FRIDEAL2.spad" 553017 553049 553403 553408) (-356 "FRIDEAL.spad" 552242 552263 552997 553012) (-355 "FRETRCT.spad" 551761 551771 552232 552237) (-354 "FRETRCT.spad" 551187 551199 551660 551665) (-353 "FRAMALG.spad" 549567 549580 551143 551182) (-352 "FRAMALG.spad" 547979 547994 549557 549562) (-351 "FRAC2.spad" 547584 547596 547969 547974) (-350 "FRAC.spad" 545571 545581 545958 546131) (-349 "FR2.spad" 544907 544919 545561 545566) (-348 "FR.spad" 538695 538705 543968 544037) (-347 "FPS.spad" 535534 535542 538585 538690) (-346 "FPS.spad" 532401 532411 535454 535459) (-345 "FPC.spad" 531447 531455 532303 532396) (-344 "FPC.spad" 530579 530589 531437 531442) (-343 "FPATMAB.spad" 530341 530351 530569 530574) (-342 "FPARFRAC.spad" 529183 529200 530331 530336) (-341 "FORDER.spad" 528874 528898 529173 529178) (-340 "FNLA.spad" 528298 528320 528842 528869) (-339 "FNCAT.spad" 526893 526901 528288 528293) (-338 "FNAME.spad" 526785 526793 526883 526888) (-337 "FMONOID.spad" 526466 526476 526741 526746) (-336 "FMONCAT.spad" 523635 523645 526456 526461) (-335 "FMCAT.spad" 521311 521329 523603 523630) (-334 "FM1.spad" 520676 520688 521245 521272) (-333 "FM.spad" 520291 520303 520530 520557) (-332 "FLOATRP.spad" 518034 518048 520281 520286) (-331 "FLOATCP.spad" 515473 515487 518024 518029) (-330 "FLOAT.spad" 512564 512572 515339 515468) (-329 "FLINEXP.spad" 512286 512296 512554 512559) (-328 "FLINEXP.spad" 511965 511977 512235 512240) (-327 "FLASORT.spad" 511291 511303 511955 511960) (-326 "FLALG.spad" 508961 508980 511217 511286) (-325 "FLAGG2.spad" 507678 507694 508951 508956) (-324 "FLAGG.spad" 504744 504754 507658 507673) (-323 "FLAGG.spad" 501711 501723 504627 504632) (-322 "FINRALG.spad" 499796 499809 501667 501706) (-321 "FINRALG.spad" 497807 497822 499680 499685) (-320 "FINITE.spad" 496959 496967 497797 497802) (-319 "FINITE.spad" 496109 496119 496949 496954) (-318 "aggcat.spad" 494275 494285 496089 496104) (-317 "FINAGG.spad" 492416 492428 494232 494237) (-316 "FINAALG.spad" 481601 481611 492358 492411) (-315 "FINAALG.spad" 470798 470810 481557 481562) (-314 "FILECAT.spad" 469332 469349 470788 470793) (-313 "FILE.spad" 468915 468925 469322 469327) (-312 "FIELD.spad" 468321 468329 468817 468910) (-311 "FIELD.spad" 467813 467823 468311 468316) (-310 "FGROUP.spad" 466476 466486 467793 467808) (-309 "FGLMICPK.spad" 465271 465286 466466 466471) (-308 "FFX.spad" 464657 464672 464990 465083) (-307 "FFSLPE.spad" 464168 464189 464647 464652) (-306 "FFPOLY2.spad" 463228 463245 464158 464163) (-305 "FFPOLY.spad" 454570 454581 463218 463223) (-304 "FFP.spad" 453978 453998 454289 454382) (-303 "FFNBX.spad" 452501 452521 453697 453790) (-302 "FFNBP.spad" 451025 451042 452220 452313) (-301 "FFNB.spad" 449493 449514 450709 450802) (-300 "FFINTBAS.spad" 447007 447026 449483 449488) (-299 "FFIELDC.spad" 444592 444600 446909 447002) (-298 "FFIELDC.spad" 442263 442273 444582 444587) (-297 "FFHOM.spad" 441035 441052 442253 442258) (-296 "FFF.spad" 438478 438489 441025 441030) (-295 "FFCGX.spad" 437336 437356 438197 438290) (-294 "FFCGP.spad" 436236 436256 437055 437148) (-293 "FFCG.spad" 435031 435052 435920 436013) (-292 "FFCAT2.spad" 434778 434818 435021 435026) (-291 "FFCAT.spad" 427943 427965 434617 434773) (-290 "FFCAT.spad" 421187 421211 427863 427868) (-289 "FF.spad" 420638 420654 420871 420964) (-288 "FEVALAB.spad" 420346 420356 420628 420633) (-287 "FEVALAB.spad" 419830 419842 420114 420119) (-286 "FDIVCAT.spad" 417926 417950 419820 419825) (-285 "FDIVCAT.spad" 416020 416046 417916 417921) (-284 "FDIV2.spad" 415676 415716 416010 416015) (-283 "FDIV.spad" 415134 415158 415666 415671) (-282 "FCTRDATA.spad" 414142 414150 415124 415129) (-281 "FCOMP.spad" 413521 413531 414132 414137) (-280 "FAXF.spad" 406556 406570 413423 413516) (-279 "FAXF.spad" 399643 399659 406512 406517) (-278 "FARRAY.spad" 397835 397845 398868 398895) (-277 "FAMR.spad" 395979 395991 397733 397830) (-276 "FAMR.spad" 394107 394121 395863 395868) (-275 "FAMONOID.spad" 393791 393801 394061 394066) (-274 "FAMONC.spad" 392111 392123 393781 393786) (-273 "FAGROUP.spad" 391751 391761 392007 392034) (-272 "FACUTIL.spad" 389963 389980 391741 391746) (-271 "FACTFUNC.spad" 389165 389175 389953 389958) (-270 "EXPUPXS.spad" 386057 386080 387356 387505) (-269 "EXPRTUBE.spad" 383345 383353 386047 386052) (-268 "EXPRODE.spad" 380513 380529 383335 383340) (-267 "EXPR2UPS.spad" 376635 376648 380503 380508) (-266 "EXPR2.spad" 376340 376352 376625 376630) (-265 "EXPR.spad" 371985 371995 372699 372986) (-264 "EXPEXPAN.spad" 368930 368955 369562 369655) (-263 "EXITAST.spad" 368666 368674 368920 368925) (-262 "EXIT.spad" 368337 368345 368656 368661) (-261 "EVALCYC.spad" 367797 367811 368327 368332) (-260 "EVALAB.spad" 367377 367387 367787 367792) (-259 "EVALAB.spad" 366955 366967 367367 367372) (-258 "EUCDOM.spad" 364545 364553 366881 366950) (-257 "EUCDOM.spad" 362197 362207 364535 364540) (-256 "ES2.spad" 361710 361726 362187 362192) (-255 "ES1.spad" 361280 361296 361700 361705) (-254 "ES.spad" 354151 354159 361270 361275) (-253 "ES.spad" 346943 346953 354064 354069) (-252 "ERROR.spad" 344270 344278 346933 346938) (-251 "EQTBL.spad" 342606 342628 342815 342842) (-250 "EQ2.spad" 342324 342336 342596 342601) (-249 "EQ.spad" 337230 337240 340025 340131) (-248 "EP.spad" 333556 333566 337220 337225) (-247 "ENV.spad" 332234 332242 333546 333551) (-246 "ENTIRER.spad" 331902 331910 332178 332229) (-245 "ENTIRER.spad" 331614 331624 331892 331897) (-244 "EMR.spad" 330902 330943 331540 331609) (-243 "ELTAGG.spad" 329156 329175 330892 330897) (-242 "ELTAGG.spad" 327374 327395 329112 329117) (-241 "ELTAB.spad" 326849 326862 327364 327369) (-240 "ELFUTS.spad" 326284 326303 326839 326844) (-239 "ELEMFUN.spad" 325973 325981 326274 326279) (-238 "ELEMFUN.spad" 325660 325670 325963 325968) (-237 "ELAGG.spad" 323631 323641 325640 325655) (-236 "ELAGG.spad" 321539 321551 323550 323555) (-235 "ELABOR.spad" 320885 320893 321529 321534) (-234 "ELABEXPR.spad" 319817 319825 320875 320880) (-233 "EFUPXS.spad" 316593 316623 319773 319778) (-232 "EFULS.spad" 313429 313452 316549 316554) (-231 "EFSTRUC.spad" 311444 311460 313419 313424) (-230 "EF.spad" 306220 306236 311434 311439) (-229 "EAB.spad" 304520 304528 306210 306215) (-228 "DVARCAT.spad" 301526 301536 304510 304515) (-227 "DVARCAT.spad" 298530 298542 301516 301521) (-226 "DSMP.spad" 296263 296277 296568 296695) (-225 "DSEXT.spad" 295565 295575 296253 296258) (-224 "DSEXT.spad" 294787 294799 295477 295482) (-223 "DROPT1.spad" 294452 294462 294777 294782) (-222 "DROPT0.spad" 289317 289325 294442 294447) (-221 "DROPT.spad" 283276 283284 289307 289312) (-220 "DRAWPT.spad" 281449 281457 283266 283271) (-219 "DRAWHACK.spad" 280757 280767 281439 281444) (-218 "DRAWCX.spad" 278235 278243 280747 280752) (-217 "DRAWCURV.spad" 277782 277797 278225 278230) (-216 "DRAWCFUN.spad" 267314 267322 277772 277777) (-215 "DRAW.spad" 260190 260203 267304 267309) (-214 "DQAGG.spad" 258368 258378 260158 260185) (-213 "DPOLCAT.spad" 253725 253741 258236 258363) (-212 "DPOLCAT.spad" 249168 249186 253681 253686) (-211 "DPMO.spad" 241871 241887 242009 242215) (-210 "DPMM.spad" 234587 234605 234712 234918) (-209 "DOMTMPLT.spad" 234358 234366 234577 234582) (-208 "DOMCTOR.spad" 234113 234121 234348 234353) (-207 "DOMAIN.spad" 233224 233232 234103 234108) (-206 "DMP.spad" 230817 230832 231387 231514) (-205 "DMEXT.spad" 230684 230694 230785 230812) (-204 "DLP.spad" 230044 230054 230674 230679) (-203 "DLIST.spad" 228665 228675 229269 229296) (-202 "DLAGG.spad" 227082 227092 228655 228660) (-201 "DIVRING.spad" 226624 226632 227026 227077) (-200 "DIVRING.spad" 226210 226220 226614 226619) (-199 "DISPLAY.spad" 224400 224408 226200 226205) (-198 "DIRPROD2.spad" 223218 223236 224390 224395) (-197 "DIRPROD.spad" 212588 212604 213228 213325) (-196 "DIRPCAT.spad" 211871 211887 212486 212583) (-195 "DIRPCAT.spad" 210780 210798 211397 211402) (-194 "DIOSP.spad" 209605 209613 210770 210775) (-193 "DIOPS.spad" 208601 208611 209585 209600) (-192 "DIOPS.spad" 207571 207583 208557 208562) (-191 "catdef.spad" 207429 207437 207561 207566) (-190 "DIFRING.spad" 207267 207275 207409 207424) (-189 "DIFFSPC.spad" 206846 206854 207257 207262) (-188 "DIFFSPC.spad" 206423 206433 206836 206841) (-187 "DIFFMOD.spad" 205912 205922 206391 206418) (-186 "DIFFDOM.spad" 205077 205088 205902 205907) (-185 "DIFFDOM.spad" 204240 204253 205067 205072) (-184 "DIFEXT.spad" 204059 204069 204220 204235) (-183 "DIAGG.spad" 203689 203699 204039 204054) (-182 "DIAGG.spad" 203327 203339 203679 203684) (-181 "DHMATRIX.spad" 201704 201714 202849 202876) (-180 "DFSFUN.spad" 195344 195352 201694 201699) (-179 "DFLOAT.spad" 191951 191959 195234 195339) (-178 "DFINTTLS.spad" 190182 190198 191941 191946) (-177 "DERHAM.spad" 188096 188128 190162 190177) (-176 "DEQUEUE.spad" 187485 187495 187768 187795) (-175 "DEGRED.spad" 187102 187116 187475 187480) (-174 "DEFINTRF.spad" 184684 184694 187092 187097) (-173 "DEFINTEF.spad" 183222 183238 184674 184679) (-172 "DEFAST.spad" 182606 182614 183212 183217) (-171 "DECIMAL.spad" 180835 180843 181196 181289) (-170 "DDFACT.spad" 178656 178673 180825 180830) (-169 "DBLRESP.spad" 178256 178280 178646 178651) (-168 "DBASIS.spad" 177882 177897 178246 178251) (-167 "DBASE.spad" 176546 176556 177872 177877) (-166 "DATAARY.spad" 176032 176045 176536 176541) (-165 "CYCLOTOM.spad" 175538 175546 176022 176027) (-164 "CYCLES.spad" 172330 172338 175528 175533) (-163 "CVMP.spad" 171747 171757 172320 172325) (-162 "CTRIGMNP.spad" 170247 170263 171737 171742) (-161 "CTORKIND.spad" 169850 169858 170237 170242) (-160 "CTORCAT.spad" 169091 169099 169840 169845) (-159 "CTORCAT.spad" 168330 168340 169081 169086) (-158 "CTORCALL.spad" 167919 167929 168320 168325) (-157 "CTOR.spad" 167610 167618 167909 167914) (-156 "CSTTOOLS.spad" 166855 166868 167600 167605) (-155 "CRFP.spad" 160627 160640 166845 166850) (-154 "CRCEAST.spad" 160347 160355 160617 160622) (-153 "CRAPACK.spad" 159414 159424 160337 160342) (-152 "CPMATCH.spad" 158915 158930 159336 159341) (-151 "CPIMA.spad" 158620 158639 158905 158910) (-150 "COORDSYS.spad" 153629 153639 158610 158615) (-149 "CONTOUR.spad" 153056 153064 153619 153624) (-148 "CONTFRAC.spad" 148806 148816 152958 153051) (-147 "CONDUIT.spad" 148564 148572 148796 148801) (-146 "COMRING.spad" 148238 148246 148502 148559) (-145 "COMPPROP.spad" 147756 147764 148228 148233) (-144 "COMPLPAT.spad" 147523 147538 147746 147751) (-143 "COMPLEX2.spad" 147238 147250 147513 147518) (-142 "COMPLEX.spad" 142944 142954 143188 143446) (-141 "COMPILER.spad" 142493 142501 142934 142939) (-140 "COMPFACT.spad" 142095 142109 142483 142488) (-139 "COMPCAT.spad" 140170 140180 141832 142090) (-138 "COMPCAT.spad" 137986 137998 139650 139655) (-137 "COMMUPC.spad" 137734 137752 137976 137981) (-136 "COMMONOP.spad" 137267 137275 137724 137729) (-135 "COMMAAST.spad" 137030 137038 137257 137262) (-134 "COMM.spad" 136841 136849 137020 137025) (-133 "COMBOPC.spad" 135764 135772 136831 136836) (-132 "COMBINAT.spad" 134531 134541 135754 135759) (-131 "COMBF.spad" 131953 131969 134521 134526) (-130 "COLOR.spad" 130790 130798 131943 131948) (-129 "COLONAST.spad" 130456 130464 130780 130785) (-128 "CMPLXRT.spad" 130167 130184 130446 130451) (-127 "CLLCTAST.spad" 129829 129837 130157 130162) (-126 "CLIP.spad" 125937 125945 129819 129824) (-125 "CLIF.spad" 124592 124608 125893 125932) (-124 "CLAGG.spad" 121129 121139 124582 124587) (-123 "CLAGG.spad" 117550 117562 121005 121010) (-122 "CINTSLPE.spad" 116905 116918 117540 117545) (-121 "CHVAR.spad" 115043 115065 116895 116900) (-120 "CHARZ.spad" 114958 114966 115023 115038) (-119 "CHARPOL.spad" 114484 114494 114948 114953) (-118 "CHARNZ.spad" 114246 114254 114464 114479) (-117 "CHAR.spad" 111614 111622 114236 114241) (-116 "CFCAT.spad" 110942 110950 111604 111609) (-115 "CDEN.spad" 110162 110176 110932 110937) (-114 "CCLASS.spad" 108342 108350 109604 109643) (-113 "CATEGORY.spad" 107416 107424 108332 108337) (-112 "CATCTOR.spad" 107307 107315 107406 107411) (-111 "CATAST.spad" 106933 106941 107297 107302) (-110 "CASEAST.spad" 106647 106655 106923 106928) (-109 "CARTEN2.spad" 106037 106064 106637 106642) (-108 "CARTEN.spad" 101789 101813 106027 106032) (-107 "CARD.spad" 99084 99092 101763 101784) (-106 "CAPSLAST.spad" 98866 98874 99074 99079) (-105 "CACHSET.spad" 98490 98498 98856 98861) (-104 "CABMON.spad" 98045 98053 98480 98485) (-103 "BYTEORD.spad" 97720 97728 98035 98040) (-102 "BYTEBUF.spad" 95767 95775 96973 97000) (-101 "BYTE.spad" 95242 95250 95757 95762) (-100 "BTREE.spad" 94380 94390 94914 94941) (-99 "BTOURN.spad" 93451 93460 94052 94079) (-98 "BTCAT.spad" 93009 93018 93419 93446) (-97 "BTCAT.spad" 92587 92598 92999 93004) (-96 "BTAGG.spad" 92054 92061 92555 92582) (-95 "BTAGG.spad" 91541 91550 92044 92049) (-94 "BSTREE.spad" 90348 90357 91213 91240) (-93 "BRILL.spad" 88554 88564 90338 90343) (-92 "BRAGG.spad" 87511 87520 88544 88549) (-91 "BRAGG.spad" 86432 86443 87467 87472) (-90 "BPADICRT.spad" 84492 84503 84738 84831) (-89 "BPADIC.spad" 84165 84176 84418 84487) (-88 "BOUNDZRO.spad" 83822 83838 84155 84160) (-87 "BOP1.spad" 81281 81290 83812 83817) (-86 "BOP.spad" 76424 76431 81271 81276) (-85 "BOOLEAN.spad" 75973 75980 76414 76419) (-84 "BOOLE.spad" 75624 75631 75963 75968) (-83 "BOOLE.spad" 75273 75282 75614 75619) (-82 "BMODULE.spad" 74986 74997 75241 75268) (-81 "BITS.spad" 74418 74425 74632 74659) (-80 "catdef.spad" 74301 74311 74408 74413) (-79 "catdef.spad" 74052 74062 74291 74296) (-78 "BINDING.spad" 73474 73481 74042 74047) (-77 "BINARY.spad" 71709 71716 72064 72157) (-76 "BGAGG.spad" 71029 71038 71689 71704) (-75 "BGAGG.spad" 70357 70368 71019 71024) (-74 "BEZOUT.spad" 69498 69524 70307 70312) (-73 "BBTREE.spad" 66441 66450 69170 69197) (-72 "BASTYPE.spad" 65941 65948 66431 66436) (-71 "BASTYPE.spad" 65439 65448 65931 65936) (-70 "BALFACT.spad" 64899 64911 65429 65434) (-69 "AUTOMOR.spad" 64350 64359 64879 64894) (-68 "ATTREG.spad" 61336 61343 64114 64345) (-67 "ATTRAST.spad" 61053 61060 61326 61331) (-66 "ATRIG.spad" 60523 60530 61043 61048) (-65 "ATRIG.spad" 59991 60000 60513 60518) (-64 "ASTCAT.spad" 59895 59902 59981 59986) (-63 "ASTCAT.spad" 59797 59806 59885 59890) (-62 "ASTACK.spad" 59201 59210 59469 59496) (-61 "ASSOCEQ.spad" 58035 58046 59157 59162) (-60 "ARRAY2.spad" 57558 57567 57707 57734) (-59 "ARRAY12.spad" 56271 56282 57548 57553) (-58 "ARRAY1.spad" 55150 55159 55496 55523) (-57 "ARR2CAT.spad" 51190 51211 55118 55145) (-56 "ARR2CAT.spad" 47250 47273 51180 51185) (-55 "ARITY.spad" 46622 46629 47240 47245) (-54 "APPRULE.spad" 45906 45928 46612 46617) (-53 "APPLYORE.spad" 45525 45538 45896 45901) (-52 "ANY1.spad" 44596 44605 45515 45520) (-51 "ANY.spad" 43447 43454 44586 44591) (-50 "ANTISYM.spad" 41892 41908 43427 43442) (-49 "ANON.spad" 41601 41608 41882 41887) (-48 "AN.spad" 40069 40076 41432 41525) (-47 "AMR.spad" 38254 38265 39967 40064) (-46 "AMR.spad" 36302 36315 38017 38022) (-45 "ALIST.spad" 33540 33561 33890 33917) (-44 "ALGSC.spad" 32675 32701 33412 33465) (-43 "ALGPKG.spad" 28458 28469 32631 32636) (-42 "ALGMFACT.spad" 27651 27665 28448 28453) (-41 "ALGMANIP.spad" 25152 25167 27495 27500) (-40 "ALGFF.spad" 22970 22997 23187 23343) (-39 "ALGFACT.spad" 22089 22099 22960 22965) (-38 "ALGEBRA.spad" 21922 21931 22045 22084) (-37 "ALGEBRA.spad" 21787 21798 21912 21917) (-36 "ALAGG.spad" 21303 21324 21755 21782) (-35 "AHYP.spad" 20684 20691 21293 21298) (-34 "AGG.spad" 19393 19400 20674 20679) (-33 "AGG.spad" 18066 18075 19349 19354) (-32 "AF.spad" 16511 16526 18015 18020) (-31 "ADDAST.spad" 16197 16204 16501 16506) (-30 "ACPLOT.spad" 15074 15081 16187 16192) (-29 "ACFS.spad" 12931 12940 14976 15069) (-28 "ACFS.spad" 10874 10885 12921 12926) (-27 "ACF.spad" 7628 7635 10776 10869) (-26 "ACF.spad" 4468 4477 7618 7623) (-25 "ABELSG.spad" 4009 4016 4458 4463) (-24 "ABELSG.spad" 3548 3557 3999 4004) (-23 "ABELMON.spad" 2976 2983 3538 3543) (-22 "ABELMON.spad" 2402 2411 2966 2971) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 5162c393..4e68d5a8 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,298 +1,299 @@ -(200505 . 3577831635) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) +(200821 . 3577834560) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) ((((-350 |#2|) |#3|) . T)) -((((-350 (-484))) |has| (-350 |#2|) (-950 (-350 (-484)))) (((-484)) |has| (-350 |#2|) (-950 (-484))) (((-350 |#2|)) . T)) +((((-350 (-485))) |has| (-350 |#2|) (-951 (-350 (-485)))) (((-485)) |has| (-350 |#2|) (-951 (-485))) (((-350 |#2|)) . T)) ((((-350 |#2|)) . T)) -((((-484)) |has| (-350 |#2|) (-580 (-484))) (((-350 |#2|)) . T)) +((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T)) ((((-350 |#2|)) . T)) ((((-350 |#2|) |#3|) . T)) (|has| (-350 |#2|) (-120)) ((((-350 |#2|) |#3|) . T)) (|has| (-350 |#2|) (-118)) -((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) (|has| (-350 |#2|) (-190)) ((($) OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189)))) (OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189))) ((((-350 |#2|)) . T)) -((($ (-1090)) OR (|has| (-350 |#2|) (-809 (-1090))) (|has| (-350 |#2|) (-811 (-1090))))) -((((-1090)) OR (|has| (-350 |#2|) (-809 (-1090))) (|has| (-350 |#2|) (-811 (-1090))))) -((((-1090)) |has| (-350 |#2|) (-809 (-1090)))) +((($ (-1091)) OR (|has| (-350 |#2|) (-810 (-1091))) (|has| (-350 |#2|) (-812 (-1091))))) +((((-1091)) OR (|has| (-350 |#2|) (-810 (-1091))) (|has| (-350 |#2|) (-812 (-1091))))) +((((-1091)) |has| (-350 |#2|) (-810 (-1091)))) ((((-350 |#2|)) . T)) (((|#3|) . T)) -((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T)) -((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-772)) . T)) -((((-350 |#2|)) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -((((-484)) |has| (-350 |#2|) (-580 (-484))) (((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T)) +((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) +((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-773)) . T)) +((((-350 |#2|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) (((|#1| |#2| |#3|) . T)) -((((-484) |#1|) . T)) +((((-485) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1056 |#2| |#1|)) . T) ((|#1|) . T)) -((((-772)) . T)) -((((-1056 |#2| |#1|)) . T) ((|#1|) . T) (((-484)) . T)) +((((-1057 |#2| |#1|)) . T) ((|#1|) . T)) +((((-773)) . T)) +((((-1057 |#2| |#1|)) . T) ((|#1|) . T) (((-485)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-772)) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-773)) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) (((-1146 (-484)) $) . T) ((|#1| |#2|) . T)) -((((-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) (((-1147 (-485)) $) . T) ((|#1| |#2|) . T)) +((((-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((((-142 (-330))) . T) (((-179)) . T) (((-330)) . T)) -((((-350 (-484))) . T) (((-484)) . T)) -((($) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((($) . T) (((-350 (-484))) . T)) -((($) . T) (((-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484)) (-350 (-484))) . T) (($ $) . T)) +((((-350 (-485))) . T) (((-485)) . T)) +((($) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((($) . T) (((-350 (-485))) . T)) +((($) . T) (((-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) ((($) . T)) -((($ $) . T) (((-550 $) $) . T)) -((((-350 (-484))) . T) (((-484)) . T) (((-550 $)) . T)) -((((-1039 (-484) (-550 $))) . T) (($) . T) (((-484)) . T) (((-350 (-484))) . T) (((-550 $)) . T)) -((((-772)) . T)) -((((-772)) . T)) -(((|#1|) . T)) -((((-772)) . T)) -(((|#1|) . T) (((-484)) . T) (($) . T)) +((($ $) . T) (((-551 $) $) . T)) +((((-350 (-485))) . T) (((-485)) . T) (((-551 $)) . T)) +((((-1040 (-485) (-551 $))) . T) (($) . T) (((-485)) . T) (((-350 (-485))) . T) (((-551 $)) . T)) +((((-773)) . T)) +((((-773)) . T)) +(((|#1|) . T)) +((((-773)) . T)) +(((|#1|) . T) (((-485)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-484)) . T)) +(((|#1|) . T) (((-485)) . T)) (((|#1|) . T)) -((((-772)) . T)) -((((-694)) . T)) -((((-694)) . T)) -((((-772)) . T)) +((((-773)) . T)) +((((-695)) . T)) +((((-695)) . T)) +((((-773)) . T)) (((|#1|) . T)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) (((|#1|) . T)) -((((-473)) |has| |#1| (-553 (-473)))) -((((-484) |#1|) . T)) -((((-1146 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) +((((-474)) |has| |#1| (-554 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) +(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(|has| |#1| (-1013)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(|has| |#1| (-1014)) +(((|#1|) . T)) (((|#1|) . T)) (((|#1| (-58 |#1|) (-58 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(|has| |#1| (-1014)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) (((|#1| |#1|) . T)) -((((-772)) . T)) +((((-773)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(|has| |#1| (-1014)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-917 2)) . T) (((-350 (-484))) . T) (((-772)) . T)) -((((-484)) . T)) -((((-484)) . T)) +((((-918 2)) . T) (((-350 (-485))) . T) (((-773)) . T)) +((((-485)) . T)) +((((-485)) . T)) ((($) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((((-484)) . T) (((-350 (-484))) . T) (($) . T)) -((((-484)) . T) (((-350 (-484))) . T) (($) . T)) -((((-484) (-484)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-473)) . T) (((-800 (-484))) . T) (((-330)) . T) (((-179)) . T)) -((((-350 (-484))) . T) (((-484)) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((((-484)) . T)) -((((-772)) . T)) -((((-772)) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((((-485)) . T) (((-350 (-485))) . T) (($) . T)) +((((-485)) . T) (((-350 (-485))) . T) (($) . T)) +((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T)) +((((-350 (-485))) . T) (((-485)) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((((-485)) . T)) +((((-773)) . T)) +((((-773)) . T)) (((|#1| |#1| |#1|) . T)) (((|#1|) . T)) ((((-85)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-772)) . T)) +((((-773)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-484) (-85)) . T)) -((((-484) (-85)) . T)) -((((-484) (-85)) . T) (((-1146 (-484)) $) . T)) -((((-473)) . T)) +((((-485) (-85)) . T)) +((((-485) (-85)) . T)) +((((-485) (-85)) . T) (((-1147 (-485)) $) . T)) +((((-474)) . T)) ((((-85)) . T)) ((((-85)) . T)) -((((-473)) . T)) -((((-772)) . T)) -((((-1090)) . T)) -((((-772)) . T)) +((((-474)) . T)) +((((-773)) . T)) +((((-1091)) . T)) +((((-773)) . T)) ((($) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-484)) . T) (($) . T)) +((((-485)) . T) (($) . T)) (((|#1|) . T)) -((((-772)) . T)) +((((-773)) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) -((((-89 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) (((-89 |#1|)) . T) (((-350 (-484))) . T)) -((((-89 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-89 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-89 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-89 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-89 |#1|) (-89 |#1|)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T)) +((((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) (((-89 |#1|)) . T) (((-350 (-485))) . T)) +((((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-89 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-89 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-89 |#1|) (-89 |#1|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) ((((-89 |#1|)) . T)) -((((-1090) (-89 |#1|)) |has| (-89 |#1|) (-455 (-1090) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|)))) +((((-1091) (-89 |#1|)) |has| (-89 |#1|) (-456 (-1091) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|)))) ((((-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|)))) ((((-89 |#1|) $) |has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|)))) ((((-89 |#1|)) . T)) -((($) . T) (((-89 |#1|)) . T) (((-350 (-484))) . T)) +((($) . T) (((-89 |#1|)) . T) (((-350 (-485))) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) -((((-484)) . T) (((-89 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) +((((-485)) . T) (((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) ((((-89 |#1|)) . T)) ((((-89 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(|has| |#1| (-1014)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(|has| |#1| (-1014)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(|has| |#1| (-1014)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-772)) . T)) +((((-773)) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-484) (-101)) . T)) -((((-1146 (-484)) $) . T) (((-484) (-101)) . T)) -((((-484) (-101)) . T)) +((((-485) (-101)) . T)) +((((-1147 (-485)) $) . T) (((-485) (-101)) . T)) +((((-485) (-101)) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-1073)) . T) (((-869 (-101))) . T) (((-772)) . T)) +((((-1074)) . T) (((-870 (-101))) . T) (((-773)) . T)) ((((-101)) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-772)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-694)) . T)) -((((-694)) . T)) -((((-772)) . T)) -((((-484) |#3|) . T)) -((((-484) (-694)) . T) ((|#3| (-694)) . T)) -((((-772)) . T)) +((((-773)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-695)) . T)) +((((-695)) . T)) +((((-773)) . T)) +((((-485) |#3|) . T)) +((((-485) (-695)) . T) ((|#3| (-695)) . T)) +((((-773)) . T)) (((|#3|) . T)) -((((-583 $)) . T) (((-583 |#3|)) . T) (((-1056 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T)) -(((|#3| (-694)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-446)) . T)) -((((-157)) . T) (((-772)) . T)) -((((-772)) . T)) +((((-584 $)) . T) (((-584 |#3|)) . T) (((-1057 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T)) +(((|#3| (-695)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-447)) . T)) +((((-157)) . T) (((-773)) . T)) +((((-773)) . T)) ((((-117)) . T)) ((((-117)) . T)) ((((-117)) . T)) @@ -302,9 +303,9 @@ ((((-117)) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-583 (-117))) . T) (((-1073)) . T)) -((((-772)) . T)) -((((-772)) . T)) +((((-584 (-117))) . T) (((-1074)) . T)) +((((-773)) . T)) +((((-773)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -312,667 +313,668 @@ (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) -(((|#2|) . T) (((-484)) . T)) +(((|#2|) . T) (((-485)) . T)) (((|#2|) . T) (($) . T)) -((((-772)) . T)) -(((|#2|) . T) (($) . T) (((-484)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) +((((-773)) . T)) +(((|#2|) . T) (($) . T) (((-485)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) (OR (|has| |#1| (-118)) (|has| |#1| (-299))) -((((-772)) . T)) +((((-773)) . T)) (|has| |#1| (-120)) (((|#1|) . T)) -((((-1090)) |has| |#1| (-809 (-1090)))) -((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090))))) -((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090))))) +((((-1091)) |has| |#1| (-810 (-1091)))) +((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) +((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-299))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-299)))) (OR (|has| |#1| (-190)) (|has| |#1| (-299))) (OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299))) (OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) -(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) +(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) +(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299))) (OR (|has| |#1| (-312)) (|has| |#1| (-299))) -(OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312)) (|has| |#1| (-299))) +(OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312)) (|has| |#1| (-299))) (OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((|#1|) . T)) -((((-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) (((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) (((|#1|) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) -(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) -(((|#1|) . T)) -((((-484)) |has| |#1| (-796 (-484))) (((-330)) |has| |#1| (-796 (-330)))) -(((|#1|) . T)) -((((-484)) . T) (($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-950 (-350 (-484))))) ((|#1|) . T)) -(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484))))) -(((|#1| (-1085 |#1|)) . T)) -(((|#1| (-1085 |#1|)) . T)) -((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($ $) . T) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -(((|#1| (-1085 |#1|)) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) +(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) +(((|#1|) . T)) +((((-485)) |has| |#1| (-797 (-485))) (((-330)) |has| |#1| (-797 (-330)))) +(((|#1|) . T)) +((((-485)) . T) (($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T)) +(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) +(((|#1| (-1086 |#1|)) . T)) +(((|#1| (-1086 |#1|)) . T)) +((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($ $) . T) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +(((|#1| (-1086 |#1|)) . T)) (|has| |#1| (-299)) (|has| |#1| (-299)) (|has| |#1| (-299)) (OR (|has| |#1| (-320)) (|has| |#1| (-299))) (((|#1|) . T)) -((((-142 (-179))) |has| |#1| (-933)) (((-142 (-330))) |has| |#1| (-933)) (((-473)) |has| |#1| (-553 (-473))) (((-1085 |#1|)) . T) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))) (((-800 (-330))) |has| |#1| (-553 (-800 (-330))))) -(-12 (|has| |#1| (-258)) (|has| |#1| (-821))) -(-12 (|has| |#1| (-915)) (|has| |#1| (-1115))) -(|has| |#1| (-1115)) -(|has| |#1| (-1115)) -(|has| |#1| (-1115)) -(|has| |#1| (-1115)) -(|has| |#1| (-1115)) -(|has| |#1| (-1115)) -(((|#1|) . T)) -((((-772)) . T)) -((((-350 (-484))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T)) -((((-350 (-484))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T)) -((((-772)) . T)) -((($) . T) (((-350 (-484))) . T) (((-350 |#1|)) . T) ((|#1|) . T)) -((($) . T) (((-350 (-484))) . T) (((-350 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) (((-350 (-484)) (-350 (-484))) . T) (((-350 |#1|) (-350 |#1|)) . T) ((|#1| |#1|) . T)) -((((-350 (-484))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-484)) . T) (($) . T)) -((((-350 (-484))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-484)) . T)) -((((-350 (-484))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T)) -((((-772)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-446)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-583 |#1|)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-917 10)) . T) (((-350 (-484))) . T) (((-772)) . T)) -((((-484)) . T)) -((((-484)) . T)) +((((-142 (-179))) |has| |#1| (-934)) (((-142 (-330))) |has| |#1| (-934)) (((-474)) |has| |#1| (-554 (-474))) (((-1086 |#1|)) . T) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330))))) +(-12 (|has| |#1| (-258)) (|has| |#1| (-822))) +(-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) +(|has| |#1| (-1116)) +(|has| |#1| (-1116)) +(|has| |#1| (-1116)) +(|has| |#1| (-1116)) +(|has| |#1| (-1116)) +(|has| |#1| (-1116)) +(((|#1|) . T)) +((((-773)) . T)) +((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T)) +((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T)) +((((-773)) . T)) +((($) . T) (((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T)) +((($) . T) (((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) (((-350 (-485)) (-350 (-485))) . T) (((-350 |#1|) (-350 |#1|)) . T) ((|#1| |#1|) . T)) +((((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-485)) . T) (($) . T)) +((((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-485)) . T)) +((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T)) +((((-773)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-447)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-584 |#1|)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-918 10)) . T) (((-350 (-485))) . T) (((-773)) . T)) +((((-485)) . T)) +((((-485)) . T)) ((($) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((((-484)) . T) (((-350 (-484))) . T) (($) . T)) -((((-484)) . T) (((-350 (-484))) . T) (($) . T)) -((((-484) (-484)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-473)) . T) (((-800 (-484))) . T) (((-330)) . T) (((-179)) . T)) -((((-350 (-484))) . T) (((-484)) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((((-484)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(|has| |#1| (-1013)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((((-485)) . T) (((-350 (-485))) . T) (($) . T)) +((((-485)) . T) (((-350 (-485))) . T) (($) . T)) +((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T)) +((((-350 (-485))) . T) (((-485)) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((((-485)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(|has| |#1| (-1014)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-265 |#1|)) . T)) -((((-772)) . T)) -((((-265 |#1|)) . T) (((-484)) . T) (($) . T)) +((((-773)) . T)) +((((-265 |#1|)) . T) (((-485)) . T) (($) . T)) ((((-265 |#1|)) . T) (($) . T)) -((((-265 |#1|)) . T) (((-484)) . T)) +((((-265 |#1|)) . T) (((-485)) . T)) ((((-265 |#1|)) . T)) ((($) . T)) -((((-484)) . T) (((-350 (-484))) . T)) +((((-485)) . T) (((-350 (-485))) . T)) ((((-330)) . T)) -((($) . T) (((-350 (-484))) . T)) -((($) . T) (((-350 (-484))) . T)) -((($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-473)) . T) (((-179)) . T) (((-330)) . T) (((-800 (-330))) . T)) -((((-772)) . T)) -((((-350 (-484))) . T) (((-484)) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T) (((-484)) . T)) -(((|#1| (-1179 |#1|) (-1179 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -(((|#1|) . T)) -(((|#1| (-1179 |#1|) (-1179 |#1|)) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) -(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) -(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))) -((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) (((-1179 |#2|)) . T)) -(((|#2|) |has| |#2| (-961))) -((((-1090)) -12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961)))) -((((-1090)) OR (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))))) -((($ (-1090)) OR (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))))) -(((|#2|) |has| |#2| (-961))) -(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))) -((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))) -(|has| |#2| (-961)) -(|has| |#2| (-961)) -(|has| |#2| (-961)) -(|has| |#2| (-961)) -(|has| |#2| (-961)) -((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-961))) +((($) . T) (((-350 (-485))) . T)) +((($) . T) (((-350 (-485))) . T)) +((($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-474)) . T) (((-179)) . T) (((-330)) . T) (((-801 (-330))) . T)) +((((-773)) . T)) +((((-350 (-485))) . T) (((-485)) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T) (((-485)) . T)) +(((|#1| (-1180 |#1|) (-1180 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1014)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +(((|#1|) . T)) +(((|#1| (-1180 |#1|) (-1180 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) +(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))) +((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) (((-1180 |#2|)) . T)) +(((|#2|) |has| |#2| (-962))) +((((-1091)) -12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962)))) +((((-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))))) +((($ (-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))))) +(((|#2|) |has| |#2| (-962))) +(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))) +((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))) +(|has| |#2| (-962)) +(|has| |#2| (-962)) +(|has| |#2| (-962)) +(|has| |#2| (-962)) +(|has| |#2| (-962)) +((((-485)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (|has| |#2| (-320)) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) (((|#2|) . T)) -(((|#2|) |has| |#2| (-961))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961)))) -(((|#2|) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961)))) -(((|#2|) |has| |#2| (-1013))) -((((-484)) OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1013)) (((-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013)))) -(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (((-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013)))) -((((-484) |#2|) . T)) -((((-484) |#2|) . T)) -((((-484) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)))) +(((|#2|) |has| |#2| (-962))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962)))) +(((|#2|) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962)))) +(((|#2|) |has| |#2| (-1014))) +((((-485)) OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1014)) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014)))) +(((|#2|) |has| |#2| (-1014)) (((-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014)))) +((((-485) |#2|) . T)) +((((-485) |#2|) . T)) +((((-485) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)))) (((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)))) -(|has| |#2| (-717)) -(|has| |#2| (-717)) -(OR (|has| |#2| (-717)) (|has| |#2| (-756))) -(OR (|has| |#2| (-717)) (|has| |#2| (-756))) -(|has| |#2| (-717)) -(|has| |#2| (-717)) +(|has| |#2| (-718)) +(|has| |#2| (-718)) +(OR (|has| |#2| (-718)) (|has| |#2| (-757))) +(OR (|has| |#2| (-718)) (|has| |#2| (-757))) +(|has| |#2| (-718)) +(|has| |#2| (-718)) (((|#2|) |has| |#2| (-312))) (((|#1| |#2|) . T)) -((((-583 |#1|)) . T)) -((((-583 |#1|)) . T)) +((((-584 |#1|)) . T)) +((((-584 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) -((((-583 |#1|)) . T) (((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) +(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) +((((-584 |#1|)) . T) (((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) (((|#1|) . T)) -((((-473)) |has| |#1| (-553 (-473)))) -((((-484) |#1|) . T)) -((((-1146 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) +((((-474)) |has| |#1| (-554 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-473)) |has| |#2| (-553 (-473))) (((-800 (-330))) |has| |#2| (-553 (-800 (-330)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484))))) +((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485))))) ((($) . T)) -(((|#2| (-197 (-3957 |#1|) (-694))) . T)) +(((|#2| (-197 (-3958 |#1|) (-695))) . T)) (((|#2|) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484)) (-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) -(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -(((|#2| (-197 (-3957 |#1|) (-694))) . T)) +(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) +(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +(((|#2| (-197 (-3958 |#1|) (-695))) . T)) (((|#2|) . T)) -((($) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) -(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-821))) -((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T)) -((((-773 |#1|)) . T)) -((($ (-773 |#1|)) . T)) -((((-773 |#1|)) . T)) -(|has| |#2| (-821)) -(|has| |#2| (-821)) -((((-350 (-484))) |has| |#2| (-950 (-350 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T)) -((((-484)) . T) (((-350 (-484))) OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T)) -(((|#2| (-197 (-3957 |#1|) (-694)) (-773 |#1|)) . T)) -((((-772)) . T)) -((((-446)) . T)) -((((-157)) . T) (((-772)) . T)) -((((-694) (-1095)) . T)) -((((-772)) . T)) -(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-961)))) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-663)) (|has| |#4| (-961)))) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-961)))) -((((-772)) . T) (((-1179 |#4|)) . T)) -(((|#4|) |has| |#4| (-961))) -((((-1090)) -12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961)))) -((((-1090)) OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961))))) -((($ (-1090)) OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961))))) -(((|#4|) |has| |#4| (-961))) -(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) -((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961))))) -(|has| |#4| (-961)) -(|has| |#4| (-961)) -(|has| |#4| (-961)) -(|has| |#4| (-961)) -(|has| |#4| (-961)) -(((|#3|) . T) ((|#2|) . T) (((-484)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-663)) (|has| |#4| (-961))) (($) |has| |#4| (-961))) -(-12 (|has| |#4| (-190)) (|has| |#4| (-961))) +((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) +(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) +(OR (|has| |#2| (-392)) (|has| |#2| (-822))) +((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T)) +((((-774 |#1|)) . T)) +((($ (-774 |#1|)) . T)) +((((-774 |#1|)) . T)) +(|has| |#2| (-822)) +(|has| |#2| (-822)) +((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T)) +((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T)) +(((|#2| (-197 (-3958 |#1|) (-695)) (-774 |#1|)) . T)) +((((-773)) . T)) +((((-447)) . T)) +((((-157)) . T) (((-773)) . T)) +((((-695) (-1096)) . T)) +((((-773)) . T)) +(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-962)))) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-664)) (|has| |#4| (-962)))) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-962)))) +((((-773)) . T) (((-1180 |#4|)) . T)) +(((|#4|) |has| |#4| (-962))) +((((-1091)) -12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962)))) +((((-1091)) OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962))))) +((($ (-1091)) OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962))))) +(((|#4|) |has| |#4| (-962))) +(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) +((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962))))) +(|has| |#4| (-962)) +(|has| |#4| (-962)) +(|has| |#4| (-962)) +(|has| |#4| (-962)) +(|has| |#4| (-962)) +(((|#3|) . T) ((|#2|) . T) (((-485)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-664)) (|has| |#4| (-962))) (($) |has| |#4| (-962))) +(-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (|has| |#4| (-320)) (((|#4|) . T)) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) (((|#4|) . T)) -(((|#4|) |has| |#4| (-961))) -(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-961))) (($) |has| |#4| (-961)) (((-484)) -12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961)))) -(((|#4|) |has| |#4| (-961)) (((-484)) -12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961)))) -(((|#4|) |has| |#4| (-1013))) -((((-484)) OR (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) (|has| |#4| (-961))) ((|#4|) |has| |#4| (-1013)) (((-350 (-484))) -12 (|has| |#4| (-950 (-350 (-484)))) (|has| |#4| (-1013)))) -(((|#4|) |has| |#4| (-1013)) (((-484)) -12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) (((-350 (-484))) -12 (|has| |#4| (-950 (-350 (-484)))) (|has| |#4| (-1013)))) -((((-484) |#4|) . T)) -((((-484) |#4|) . T)) -((((-484) |#4|) . T)) -(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-663)))) +(((|#4|) |has| |#4| (-962))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-962))) (($) |has| |#4| (-962)) (((-485)) -12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962)))) +(((|#4|) |has| |#4| (-962)) (((-485)) -12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962)))) +(((|#4|) |has| |#4| (-1014))) +((((-485)) OR (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) (|has| |#4| (-962))) ((|#4|) |has| |#4| (-1014)) (((-350 (-485))) -12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014)))) +(((|#4|) |has| |#4| (-1014)) (((-485)) -12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) (((-350 (-485))) -12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014)))) +((((-485) |#4|) . T)) +((((-485) |#4|) . T)) +((((-485) |#4|) . T)) +(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-664)))) (((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)))) -(|has| |#4| (-717)) -(|has| |#4| (-717)) -(OR (|has| |#4| (-717)) (|has| |#4| (-756))) -(OR (|has| |#4| (-717)) (|has| |#4| (-756))) -(|has| |#4| (-717)) -(|has| |#4| (-717)) +(|has| |#4| (-718)) +(|has| |#4| (-718)) +(OR (|has| |#4| (-718)) (|has| |#4| (-757))) +(OR (|has| |#4| (-718)) (|has| |#4| (-757))) +(|has| |#4| (-718)) +(|has| |#4| (-718)) (((|#4|) |has| |#4| (-312))) (((|#1| |#4|) . T)) -(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961)))) -((((-772)) . T) (((-1179 |#3|)) . T)) -(((|#3|) |has| |#3| (-961))) -((((-1090)) -12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961)))) -((((-1090)) OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))))) -((($ (-1090)) OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))))) -(((|#3|) |has| |#3| (-961))) -(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) -((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961))))) -(|has| |#3| (-961)) -(|has| |#3| (-961)) -(|has| |#3| (-961)) -(|has| |#3| (-961)) -(|has| |#3| (-961)) -(((|#2|) . T) (((-484)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961))) (($) |has| |#3| (-961))) -(-12 (|has| |#3| (-190)) (|has| |#3| (-961))) +(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962)))) +((((-773)) . T) (((-1180 |#3|)) . T)) +(((|#3|) |has| |#3| (-962))) +((((-1091)) -12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962)))) +((((-1091)) OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))))) +((($ (-1091)) OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))))) +(((|#3|) |has| |#3| (-962))) +(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) +((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962))))) +(|has| |#3| (-962)) +(|has| |#3| (-962)) +(|has| |#3| (-962)) +(|has| |#3| (-962)) +(|has| |#3| (-962)) +(((|#2|) . T) (((-485)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962))) (($) |has| |#3| (-962))) +(-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (|has| |#3| (-320)) (((|#3|) . T)) -(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013)))) -(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013)))) +(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014)))) +(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014)))) (((|#3|) . T)) -(((|#3|) |has| |#3| (-961))) -(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))) (($) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961)))) -(((|#3|) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961)))) -(((|#3|) |has| |#3| (-1013))) -((((-484)) OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ((|#3|) |has| |#3| (-1013)) (((-350 (-484))) -12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013)))) -(((|#3|) |has| |#3| (-1013)) (((-484)) -12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (((-350 (-484))) -12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013)))) -((((-484) |#3|) . T)) -((((-484) |#3|) . T)) -((((-484) |#3|) . T)) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)))) +(((|#3|) |has| |#3| (-962))) +(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))) (($) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962)))) +(((|#3|) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962)))) +(((|#3|) |has| |#3| (-1014))) +((((-485)) OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ((|#3|) |has| |#3| (-1014)) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014)))) +(((|#3|) |has| |#3| (-1014)) (((-485)) -12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014)))) +((((-485) |#3|) . T)) +((((-485) |#3|) . T)) +((((-485) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)))) (((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) -(|has| |#3| (-717)) -(|has| |#3| (-717)) -(OR (|has| |#3| (-717)) (|has| |#3| (-756))) -(OR (|has| |#3| (-717)) (|has| |#3| (-756))) -(|has| |#3| (-717)) -(|has| |#3| (-717)) +(|has| |#3| (-718)) +(|has| |#3| (-718)) +(OR (|has| |#3| (-718)) (|has| |#3| (-757))) +(OR (|has| |#3| (-718)) (|has| |#3| (-757))) +(|has| |#3| (-718)) +(|has| |#3| (-718)) (((|#3|) |has| |#3| (-312))) (((|#1| |#3|) . T)) -((((-772)) . T)) +((((-773)) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-772)) . T)) +((((-773)) . T)) (|has| |#1| (-190)) ((($) . T)) -(((|#1| (-469 |#3|) |#3|) . T)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -((((-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) (((-330)) -12 (|has| |#1| (-796 (-330))) (|has| |#3| (-796 (-330))))) -((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) ((|#3|) . T)) -((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (($ |#3|) . T)) -((((-1090)) |has| |#1| (-809 (-1090))) ((|#3|) . T)) +(((|#1| (-470 |#3|) |#3|) . T)) +(|has| |#1| (-822)) +(|has| |#1| (-822)) +((((-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) (((-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330))))) +((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) ((|#3|) . T)) +((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ |#3|) . T)) +((((-1091)) |has| |#1| (-810 (-1091))) ((|#3|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-190)) ((|#2| |#1|) |has| |#1| (-190)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-821))) -((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T)) +(OR (|has| |#1| (-392)) (|has| |#1| (-822))) +((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-469 |#3|)) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(((|#1| (-470 |#3|)) . T)) +(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((((-484)) . T) (($) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -(((|#1|) . T)) -(((|#1| (-469 |#3|)) . T)) -((((-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) (((-800 (-330))) -12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#3| (-553 (-800 (-330))))) (((-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473))))) -((((-1039 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((|#2|) . T)) -((((-1039 |#1| |#2|)) . T) (((-484)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ((|#2|) . T)) -(((|#1| |#2| |#3| (-469 |#3|)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) +((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +(((|#1|) . T)) +(((|#1| (-470 |#3|)) . T)) +((((-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) (((-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) (((-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474))))) +((((-1040 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#2|) . T)) +((((-1040 |#1| |#2|)) . T) (((-485)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ((|#2|) . T)) +(((|#1| |#2| |#3| (-470 |#3|)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) (((|#2| |#2|) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) -((($) . T) (((-484)) . T)) +((($) . T) (((-485)) . T)) ((($) . T)) -((((-772)) . T)) +((((-773)) . T)) (((|#1|) |has| |#1| (-312))) -((((-1090)) |has| |#1| (-809 (-1090)))) -((($ (-1090)) |has| |#1| (-809 (-1090)))) -((((-1090)) |has| |#1| (-809 (-1090)))) +((((-1091)) |has| |#1| (-810 (-1091)))) +((($ (-1091)) |has| |#1| (-810 (-1091)))) +((((-1091)) |has| |#1| (-810 (-1091)))) (((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)))) (((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961)))) -(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961)))) -((((-484)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)))) -(OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-961))) -(OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-961))) -(OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-961))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962)))) +(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962)))) +((((-485)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))) +(OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) +(OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) +(OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) (|has| |#1| (-413)) -(OR (|has| |#1| (-413)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961))) -(OR (|has| |#1| (-413)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)) (|has| |#1| (-1025))) -(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961))) -(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961))) -(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-961))) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)) (|has| |#1| (-1025)) (|has| |#1| (-1013))) -((((-85)) |has| |#1| (-1013)) (((-772)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)) (|has| |#1| (-1025)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)) (|has| |#1| (-1025)) (|has| |#1| (-1013))) -((((-1090) |#1|) |has| |#1| (-455 (-1090) |#1|))) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-772)) . T)) +(OR (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) +(OR (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026))) +(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) +(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) +(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) (((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026)) (|has| |#1| (-1014))) +((((-85)) |has| |#1| (-1014)) (((-773)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026)) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026)) (|has| |#1| (-1014))) +((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-773)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-772)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-772)) . T)) -(|has| (-1166 |#1| |#2| |#3| |#4|) (-118)) -(|has| (-1166 |#1| |#2| |#3| |#4|) (-120)) -((((-1166 |#1| |#2| |#3| |#4|)) . T)) -((((-1166 |#1| |#2| |#3| |#4|)) . T)) -((((-1166 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) (((-1166 |#1| |#2| |#3| |#4|)) . T) (((-350 (-484))) . T)) -((((-1166 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-1166 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-1166 |#1| |#2| |#3| |#4|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-1166 |#1| |#2| |#3| |#4|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T)) -((((-1166 |#1| |#2| |#3| |#4|)) . T)) -((((-1090) (-1166 |#1| |#2| |#3| |#4|)) |has| (-1166 |#1| |#2| |#3| |#4|) (-455 (-1090) (-1166 |#1| |#2| |#3| |#4|))) (((-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) |has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|)))) -((((-1166 |#1| |#2| |#3| |#4|)) |has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|)))) -((((-1166 |#1| |#2| |#3| |#4|) $) |has| (-1166 |#1| |#2| |#3| |#4|) (-241 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)))) -((((-1166 |#1| |#2| |#3| |#4|)) . T)) -((($) . T) (((-1166 |#1| |#2| |#3| |#4|)) . T) (((-350 (-484))) . T)) -((((-1166 |#1| |#2| |#3| |#4|)) . T)) -((((-1166 |#1| |#2| |#3| |#4|)) . T)) -((((-1166 |#1| |#2| |#3| |#4|)) . T)) -((((-1160 |#2| |#3| |#4|)) . T) (((-484)) . T) (((-1166 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-1160 |#2| |#3| |#4|)) . T) (((-1166 |#1| |#2| |#3| |#4|)) . T)) -((((-1166 |#1| |#2| |#3| |#4|)) . T)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(((|#1|) |has| |#1| (-495))) -(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) -((((-772)) . T)) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) -(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-413)) (|has| |#1| (-495)) (|has| |#1| (-961)) (|has| |#1| (-1025))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-413)) (|has| |#1| (-495)) (|has| |#1| (-961)) (|has| |#1| (-1025))) -(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) +((((-773)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-773)) . T)) +(|has| (-1167 |#1| |#2| |#3| |#4|) (-118)) +(|has| (-1167 |#1| |#2| |#3| |#4|) (-120)) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +((((-1091) (-1167 |#1| |#2| |#3| |#4|)) |has| (-1167 |#1| |#2| |#3| |#4|) (-456 (-1091) (-1167 |#1| |#2| |#3| |#4|))) (((-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) |has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|)))) +((((-1167 |#1| |#2| |#3| |#4|)) |has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|)))) +((((-1167 |#1| |#2| |#3| |#4|) $) |has| (-1167 |#1| |#2| |#3| |#4|) (-241 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)))) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +((($) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +((((-1161 |#2| |#3| |#4|)) . T) (((-485)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-1161 |#2| |#3| |#4|)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T)) +((((-1167 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(((|#1|) |has| |#1| (-496))) +(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) +((((-773)) . T)) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) +(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-413)) (|has| |#1| (-496)) (|has| |#1| (-962)) (|has| |#1| (-1026))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-413)) (|has| |#1| (-496)) (|has| |#1| (-962)) (|has| |#1| (-1026))) +(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) (|has| |#1| (-118)) (|has| |#1| (-120)) -((((-550 $) $) . T) (($ $) . T)) +((((-551 $) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-350 (-484))) |has| |#1| (-495))) -((((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-961))) (((-350 (-484))) |has| |#1| (-495))) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-350 (-484))) |has| |#1| (-495))) -(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-350 (-484))) |has| |#1| (-495))) -(|has| |#1| (-495)) -(((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-495)) (($) |has| |#1| (-495))) -(((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-495)) (($) |has| |#1| (-495))) -(((|#1| |#1|) |has| |#1| (-146)) (((-350 (-484)) (-350 (-484))) |has| |#1| (-495)) (($ $) |has| |#1| (-495))) -(|has| |#1| (-495)) -(((|#1|) |has| |#1| (-961))) -((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-961))) (((-350 (-484))) |has| |#1| (-495)) (((-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) -(((|#1|) |has| |#1| (-961)) (((-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) -(((|#1|) . T)) -((((-484)) |has| |#1| (-796 (-484))) (((-330)) |has| |#1| (-796 (-330)))) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)) (((-350 (-485))) |has| |#1| (-496))) +((((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-962))) (((-350 (-485))) |has| |#1| (-496))) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)) (((-350 (-485))) |has| |#1| (-496))) +(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)) (((-350 (-485))) |has| |#1| (-496))) +(|has| |#1| (-496)) +(((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-496)) (($) |has| |#1| (-496))) +(((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-496)) (($) |has| |#1| (-496))) +(((|#1| |#1|) |has| |#1| (-146)) (((-350 (-485)) (-350 (-485))) |has| |#1| (-496)) (($ $) |has| |#1| (-496))) +(|has| |#1| (-496)) +(((|#1|) |has| |#1| (-962))) +((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-962))) (((-350 (-485))) |has| |#1| (-496)) (((-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) +(((|#1|) |has| |#1| (-962)) (((-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) +(((|#1|) . T)) +((((-485)) |has| |#1| (-797 (-485))) (((-330)) |has| |#1| (-797 (-330)))) (((|#1|) . T)) (|has| |#1| (-413)) -((((-1090)) |has| |#1| (-961))) -((($ (-1090)) |has| |#1| (-961))) -((((-1090)) |has| |#1| (-961))) +((((-1091)) |has| |#1| (-962))) +((($ (-1091)) |has| |#1| (-962))) +((((-1091)) |has| |#1| (-962))) (((|#1|) . T)) -((((-473)) |has| |#1| (-553 (-473))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))) (((-800 (-330))) |has| |#1| (-553 (-800 (-330))))) -((((-48)) -12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (((-550 $)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) OR (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (|has| |#1| (-950 (-350 (-484))))) (((-350 (-857 |#1|))) |has| |#1| (-495)) (((-857 |#1|)) |has| |#1| (-961)) (((-1090)) . T)) -((((-48)) -12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (((-484)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-950 (-484))) (|has| |#1| (-961))) ((|#1|) . T) (((-550 $)) . T) (($) |has| |#1| (-495)) (((-350 (-484))) OR (|has| |#1| (-495)) (|has| |#1| (-950 (-350 (-484))))) (((-350 (-857 |#1|))) |has| |#1| (-495)) (((-857 |#1|)) |has| |#1| (-961)) (((-1090)) . T)) +((((-474)) |has| |#1| (-554 (-474))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330))))) +((((-48)) -12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (((-551 $)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) OR (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-350 (-858 |#1|))) |has| |#1| (-496)) (((-858 |#1|)) |has| |#1| (-962)) (((-1091)) . T)) +((((-48)) -12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (((-485)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-951 (-485))) (|has| |#1| (-962))) ((|#1|) . T) (((-551 $)) . T) (($) |has| |#1| (-496)) (((-350 (-485))) OR (|has| |#1| (-496)) (|has| |#1| (-951 (-350 (-485))))) (((-350 (-858 |#1|))) |has| |#1| (-496)) (((-858 |#1|)) |has| |#1| (-962)) (((-1091)) . T)) (((|#1|) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (|has| |#1| (-312)) (|has| |#1| (-312)) -((((-772)) . T)) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +((((-773)) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) (|has| |#1| (-312)) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(((|#1| (-350 (-484))) . T)) -(((|#1| (-350 (-484))) . T)) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(((|#1| (-350 (-485))) . T)) +(((|#1| (-350 (-485))) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) . T)) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T)) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T)) -((((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -(((|#1| (-350 (-484)) (-994)) . T)) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))) -((($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))) -((((-350 (-484)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) -(((|#1|) . T)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-484)) . T)) -((((-484) (-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-772)) . T)) -((((-484)) . T)) -((((-772)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-694)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(((|#1|) . T)) -((((-473)) |has| |#1| (-553 (-473)))) -((((-484) |#1|) . T)) -((((-1146 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-484)) . T)) -((((-772)) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T)) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T)) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T)) +((((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +(((|#1| (-350 (-485)) (-995)) . T)) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) +((($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) +((((-350 (-485)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) +(((|#1|) . T)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-485)) . T)) +((((-485) (-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-773)) . T)) +((((-485)) . T)) +((((-773)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-695)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(((|#1|) . T)) +((((-474)) |has| |#1| (-554 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-485)) . T)) +((((-773)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-817 |#1|)) . T)) -((((-817 |#1|)) . T)) -((((-817 |#1|)) . T)) -((((-817 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-817 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-772)) . T)) -((((-817 |#1|)) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T)) +((((-818 |#1|)) . T)) +((((-818 |#1|)) . T)) +((((-818 |#1|)) . T)) +((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-773)) . T)) +((((-818 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) (|has| $ (-120)) ((($) . T)) -((((-817 |#1|)) . T)) -((((-817 |#1|)) . T)) -((((-817 |#1|)) . T)) -((((-817 |#1|)) . T)) -((((-817 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-817 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-772)) . T)) -((((-817 |#1|)) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T)) +((((-818 |#1|)) . T)) +((((-818 |#1|)) . T)) +((((-818 |#1|)) . T)) +((((-818 |#1|)) . T)) +((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-773)) . T)) +((((-818 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) (|has| $ (-120)) ((($) . T)) -((((-817 |#1|)) . T)) +((((-818 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -((((-772)) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +((((-773)) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) (|has| |#1| (-120)) (|has| |#1| (-320)) (|has| |#1| (-320)) @@ -986,16 +988,16 @@ (((|#1|) . T)) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -((((-772)) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +((((-773)) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) (|has| |#1| (-120)) (|has| |#1| (-320)) (|has| |#1| (-320)) @@ -1004,37 +1006,37 @@ ((($) |has| |#1| (-320))) (|has| |#1| (-320)) (((|#1|) . T)) -((((-817 |#1|)) . T)) -((((-817 |#1|)) . T)) -((((-817 |#1|)) . T)) -((((-817 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-817 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-772)) . T)) -((((-817 |#1|)) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T)) +((((-818 |#1|)) . T)) +((((-818 |#1|)) . T)) +((((-818 |#1|)) . T)) +((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-773)) . T)) +((((-818 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) (|has| $ (-120)) ((($) . T)) -((((-817 |#1|)) . T)) +((((-818 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -((((-772)) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +((((-773)) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) (|has| |#1| (-120)) (|has| |#1| (-320)) (|has| |#1| (-320)) @@ -1048,16 +1050,16 @@ (((|#1|) . T)) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -((((-772)) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +((((-773)) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) (|has| |#1| (-120)) (|has| |#1| (-320)) (|has| |#1| (-320)) @@ -1071,16 +1073,16 @@ (((|#1|) . T)) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -((((-772)) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +((((-773)) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) (|has| |#1| (-120)) (|has| |#1| (-320)) (|has| |#1| (-320)) @@ -1094,16 +1096,16 @@ (((|#1|) . T)) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) (OR (|has| |#1| (-118)) (|has| |#1| (-320))) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -((((-772)) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +((((-773)) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) (|has| |#1| (-120)) (|has| |#1| (-320)) (|has| |#1| (-320)) @@ -1114,549 +1116,562 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-772)) . T)) -((((-772)) . T)) +((((-773)) . T)) +((((-773)) . T)) ((((-338) |#1|) . T)) ((((-179)) . T)) ((($) . T)) -((((-484)) . T) (((-350 (-484))) . T)) +((((-485)) . T) (((-350 (-485))) . T)) ((((-330)) . T)) -((($) . T) (((-350 (-484))) . T)) -((($) . T) (((-350 (-484))) . T)) -((($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-473)) . T) (((-1073)) . T) (((-179)) . T) (((-330)) . T) (((-800 (-330))) . T)) -((((-179)) . T) (((-772)) . T)) -((((-350 (-484))) . T) (((-484)) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T) (((-484)) . T)) +((($) . T) (((-350 (-485))) . T)) +((($) . T) (((-350 (-485))) . T)) +((($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-474)) . T) (((-1074)) . T) (((-179)) . T) (((-330)) . T) (((-801 (-330))) . T)) +((((-179)) . T) (((-773)) . T)) +((((-350 (-485))) . T) (((-485)) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-583 (-453 |#1| |#2|))) . T)) +((((-584 (-454 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-772)) . T)) -(((|#1|) . T) (((-484)) . T)) +((((-773)) . T)) +(((|#1|) . T) (((-485)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-772)) . T)) -((((-484)) . T) ((|#1|) . T)) +((((-773)) . T)) +((((-485)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-772)) . T)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) +((((-773)) . T)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1073)) . T)) -((((-1073)) . T)) -((((-1073)) . T) (((-772)) . T)) +((((-1074)) . T)) +((((-1074)) . T)) +((((-1074)) . T) (((-773)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-772)) . T)) -(((|#3|) . T) (((-484)) . T)) +((((-773)) . T)) +(((|#3|) . T) (((-485)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) (((|#3|) . T)) ((((-350 |#2|)) . T)) ((($) . T)) -((((-772)) . T)) -(|has| |#1| (-1134)) -((((-473)) |has| |#1| (-553 (-473))) (((-179)) |has| |#1| (-933)) (((-330)) |has| |#1| (-933))) -(|has| |#1| (-933)) -(OR (|has| |#1| (-392)) (|has| |#1| (-1134))) -((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T)) +((((-773)) . T)) +(|has| |#1| (-1135)) +((((-474)) |has| |#1| (-554 (-474))) (((-179)) |has| |#1| (-934)) (((-330)) |has| |#1| (-934))) +(|has| |#1| (-934)) +(OR (|has| |#1| (-392)) (|has| |#1| (-1135))) +((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T)) (((|#1|) . T)) ((($ $) |has| |#1| (-241 $ $)) ((|#1| $) |has| |#1| (-241 |#1| |#1|))) ((($) |has| |#1| (-260 $)) ((|#1|) |has| |#1| (-260 |#1|))) -((((-1090) $) |has| |#1| (-455 (-1090) $)) (($ $) |has| |#1| (-260 $)) ((|#1| |#1|) |has| |#1| (-260 |#1|)) (((-1090) |#1|) |has| |#1| (-455 (-1090) |#1|))) +((((-1091) $) |has| |#1| (-456 (-1091) $)) (($ $) |has| |#1| (-260 $)) ((|#1| |#1|) |has| |#1| (-260 |#1|)) (((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|))) (((|#1|) . T)) (|has| |#1| (-190)) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) (((|#1|) . T)) -((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090))))) -((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090))))) -((((-1090)) |has| |#1| (-809 (-1090)))) +((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) +((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) +((((-1091)) |has| |#1| (-810 (-1091)))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-772)) . T)) -(((|#1|) . T) (((-484)) . T) (($) . T)) +((((-773)) . T)) +(((|#1|) . T) (((-485)) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((|#1|) . T) (((-484)) . T) (($) . T)) -((((-772)) . T)) +((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T) (($) . T)) +((((-773)) . T)) (|has| |#1| (-118)) -(OR (|has| |#1| (-120)) (|has| |#1| (-740))) +(OR (|has| |#1| (-120)) (|has| |#1| (-741))) (((|#1|) . T)) -((((-1090)) |has| |#1| (-809 (-1090)))) -((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090))))) -((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090))))) +((((-1091)) |has| |#1| (-810 (-1091)))) +((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) +((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) (|has| |#1| (-190)) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) ((|#1|) . T) (((-350 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T)) -(((|#1|) . T)) -((((-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) ((|#1|) . T) (((-350 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) +(((|#1|) . T)) +((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) (((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-350 (-484))) . T) (((-484)) |has| |#1| (-580 (-484)))) -(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) +((($) . T) ((|#1|) . T) (((-350 (-485))) . T) (((-485)) |has| |#1| (-581 (-485)))) +(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) (((|#1|) . T)) -((((-484)) |has| |#1| (-796 (-484))) (((-330)) |has| |#1| (-796 (-330)))) -(|has| |#1| (-740)) -(|has| |#1| (-740)) -(|has| |#1| (-740)) -(OR (|has| |#1| (-740)) (|has| |#1| (-756))) -(OR (|has| |#1| (-740)) (|has| |#1| (-756))) -(|has| |#1| (-740)) -(|has| |#1| (-740)) -(|has| |#1| (-740)) +((((-485)) |has| |#1| (-797 (-485))) (((-330)) |has| |#1| (-797 (-330)))) +(|has| |#1| (-741)) +(|has| |#1| (-741)) +(|has| |#1| (-741)) +(OR (|has| |#1| (-741)) (|has| |#1| (-757))) +(OR (|has| |#1| (-741)) (|has| |#1| (-757))) +(|has| |#1| (-741)) +(|has| |#1| (-741)) +(|has| |#1| (-741)) (((|#1|) . T)) -(|has| |#1| (-821)) -(|has| |#1| (-933)) -((((-473)) |has| |#1| (-553 (-473))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))) (((-800 (-330))) |has| |#1| (-553 (-800 (-330)))) (((-330)) |has| |#1| (-933)) (((-179)) |has| |#1| (-933))) -((((-484)) . T) ((|#1|) . T) (($) . T) (((-350 (-484))) . T) (((-1090)) |has| |#1| (-950 (-1090)))) -((((-350 (-484))) |has| |#1| (-950 (-484))) (((-484)) |has| |#1| (-950 (-484))) (((-1090)) |has| |#1| (-950 (-1090))) ((|#1|) . T)) -(|has| |#1| (-1066)) +(|has| |#1| (-822)) +(|has| |#1| (-934)) +((((-474)) |has| |#1| (-554 (-474))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))) (((-330)) |has| |#1| (-934)) (((-179)) |has| |#1| (-934))) +((((-485)) . T) ((|#1|) . T) (($) . T) (((-350 (-485))) . T) (((-1091)) |has| |#1| (-951 (-1091)))) +((((-350 (-485))) |has| |#1| (-951 (-485))) (((-485)) |has| |#1| (-951 (-485))) (((-1091)) |has| |#1| (-951 (-1091))) ((|#1|) . T)) +(|has| |#1| (-1067)) (((|#1|) . T)) -((((-772)) . T)) -((((-772)) . T)) +((((-773)) . T)) +((((-773)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-772)) . T)) +((((-773)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-485)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-484)) . T)) -(((|#1|) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-484) (-350 (-857 |#1|))) . T)) -((((-350 (-857 |#1|))) . T)) -((((-350 (-857 |#1|))) . T)) -((((-350 (-857 |#1|))) . T)) -((((-1056 |#2| (-350 (-857 |#1|)))) . T) (((-350 (-857 |#1|))) . T)) -((((-772)) . T)) -((((-1056 |#2| (-350 (-857 |#1|)))) . T) (((-350 (-857 |#1|))) . T) (((-484)) . T)) -((((-350 (-857 |#1|))) . T)) -((((-350 (-857 |#1|))) . T)) -((((-350 (-857 |#1|)) (-350 (-857 |#1|))) . T)) -((((-350 (-857 |#1|))) . T)) -((((-350 (-857 |#1|))) . T)) -((((-473)) |has| |#2| (-553 (-473))) (((-800 (-330))) |has| |#2| (-553 (-800 (-330)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484))))) +(((|#1|) . T) (((-485)) . T)) +(((|#1|) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-485) (-350 (-858 |#1|))) . T)) +((((-350 (-858 |#1|))) . T)) +((((-350 (-858 |#1|))) . T)) +((((-350 (-858 |#1|))) . T)) +((((-1057 |#2| (-350 (-858 |#1|)))) . T) (((-350 (-858 |#1|))) . T)) +((((-773)) . T)) +((((-1057 |#2| (-350 (-858 |#1|)))) . T) (((-350 (-858 |#1|))) . T) (((-485)) . T)) +((((-350 (-858 |#1|))) . T)) +((((-350 (-858 |#1|))) . T)) +((((-350 (-858 |#1|)) (-350 (-858 |#1|))) . T)) +((((-350 (-858 |#1|))) . T)) +((((-350 (-858 |#1|))) . T)) +((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485))))) ((($) . T)) (((|#2| |#3|) . T)) (((|#2|) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484)) (-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) -(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) +(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) +(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) (((|#2| |#3|) . T)) (((|#2|) . T)) -((($) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) -(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-821))) -((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T)) -((((-773 |#1|)) . T)) -((($ (-773 |#1|)) . T)) -((((-773 |#1|)) . T)) -(|has| |#2| (-821)) -(|has| |#2| (-821)) -((((-350 (-484))) |has| |#2| (-950 (-350 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T)) -((((-484)) . T) (((-350 (-484))) OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T)) -(((|#2| |#3| (-773 |#1|)) . T)) +((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) +(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) +(OR (|has| |#2| (-392)) (|has| |#2| (-822))) +((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T)) +((((-774 |#1|)) . T)) +((($ (-774 |#1|)) . T)) +((((-774 |#1|)) . T)) +(|has| |#2| (-822)) +(|has| |#2| (-822)) +((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T)) +((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T)) +(((|#2| |#3| (-774 |#1|)) . T)) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) -((((-772)) . T)) -(((|#2|) . T) (((-484)) . T) ((|#6|) . T)) +((((-773)) . T)) +(((|#2|) . T) (((-485)) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#4|) . T)) -((((-583 |#4|)) . T) (((-772)) . T)) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) +((((-584 |#4|)) . T) (((-773)) . T)) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) (((|#4|) . T)) -((((-473)) |has| |#4| (-553 (-473)))) +((((-474)) |has| |#4| (-554 (-474)))) (((|#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-772)) . T)) +((((-773)) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (|has| |#1| (-312)) (|has| |#1| (-312)) -((((-772)) . T)) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +((((-773)) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) (|has| |#1| (-312)) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(((|#1| (-350 (-484))) . T)) -(((|#1| (-350 (-484))) . T)) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(((|#1| (-350 (-485))) . T)) +(((|#1| (-350 (-485))) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -((($) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) . T)) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T)) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T)) -((((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) -(((|#1| (-350 (-484)) (-994)) . T)) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))) -((($ (-1176 |#2|)) . T) (($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))) -((((-350 (-484)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) -(((|#1|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-772)) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +((($) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T)) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T)) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T)) +((((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146))) +(((|#1| (-350 (-485)) (-995)) . T)) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) +((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) +((((-350 (-485)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) +(((|#1|) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-773)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-473)) |has| |#4| (-553 (-473)))) +((((-474)) |has| |#4| (-554 (-474)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) (((|#4|) . T)) -((((-772)) . T) (((-583 |#4|)) . T)) +((((-773)) . T) (((-584 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-473)) . T) (((-350 (-1085 (-484)))) . T) (((-179)) . T) (((-330)) . T)) -((((-350 (-484))) . T) (((-484)) . T)) -((((-330)) . T) (((-179)) . T) (((-772)) . T)) -((($) . T) (((-350 (-484))) . T)) -((($) . T) (((-350 (-484))) . T)) -((($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (((-484)) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (((-484)) . T) (($) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-772)) . T)) +((((-474)) . T) (((-350 (-1086 (-485)))) . T) (((-179)) . T) (((-330)) . T)) +((((-350 (-485))) . T) (((-485)) . T)) +((((-330)) . T) (((-179)) . T) (((-773)) . T)) +((($) . T) (((-350 (-485))) . T)) +((($) . T) (((-350 (-485))) . T)) +((($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (((-485)) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (((-485)) . T) (($) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-773)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-473)) |has| |#2| (-553 (-473))) (((-800 (-330))) |has| |#2| (-553 (-800 (-330)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484))))) +((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485))))) ((($) . T)) -(((|#2| (-422 (-3957 |#1|) (-694))) . T)) +(((|#2| (-422 (-3958 |#1|) (-695))) . T)) (((|#2|) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484)) (-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) -(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -(((|#2| (-422 (-3957 |#1|) (-694))) . T)) +(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) +(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +(((|#2| (-422 (-3958 |#1|) (-695))) . T)) (((|#2|) . T)) -((($) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) -(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-821))) -((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T)) -((((-773 |#1|)) . T)) -((($ (-773 |#1|)) . T)) -((((-773 |#1|)) . T)) -(|has| |#2| (-821)) -(|has| |#2| (-821)) -((((-350 (-484))) |has| |#2| (-950 (-350 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T)) -((((-484)) . T) (((-350 (-484))) OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T)) -(((|#2| (-422 (-3957 |#1|) (-694)) (-773 |#1|)) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) -(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) -(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))) -((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) (((-1179 |#2|)) . T)) -(((|#2|) |has| |#2| (-961))) -((((-1090)) -12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961)))) -((((-1090)) OR (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))))) -((($ (-1090)) OR (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))))) -(((|#2|) |has| |#2| (-961))) -(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))) -((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))) -(|has| |#2| (-961)) -(|has| |#2| (-961)) -(|has| |#2| (-961)) -(|has| |#2| (-961)) -(|has| |#2| (-961)) -((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-961))) +((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) +(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) +(OR (|has| |#2| (-392)) (|has| |#2| (-822))) +((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T)) +((((-774 |#1|)) . T)) +((($ (-774 |#1|)) . T)) +((((-774 |#1|)) . T)) +(|has| |#2| (-822)) +(|has| |#2| (-822)) +((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T)) +((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T)) +(((|#2| (-422 (-3958 |#1|) (-695)) (-774 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) +(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))) +((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) (((-1180 |#2|)) . T)) +(((|#2|) |has| |#2| (-962))) +((((-1091)) -12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962)))) +((((-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))))) +((($ (-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))))) +(((|#2|) |has| |#2| (-962))) +(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))) +((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))) +(|has| |#2| (-962)) +(|has| |#2| (-962)) +(|has| |#2| (-962)) +(|has| |#2| (-962)) +(|has| |#2| (-962)) +((((-485)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (|has| |#2| (-320)) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) (((|#2|) . T)) -(((|#2|) |has| |#2| (-961))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961)))) -(((|#2|) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961)))) -(((|#2|) |has| |#2| (-1013))) -((((-484)) OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1013)) (((-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013)))) -(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (((-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013)))) -((((-484) |#2|) . T)) -((((-484) |#2|) . T)) -((((-484) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)))) +(((|#2|) |has| |#2| (-962))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962)))) +(((|#2|) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962)))) +(((|#2|) |has| |#2| (-1014))) +((((-485)) OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1014)) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014)))) +(((|#2|) |has| |#2| (-1014)) (((-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014)))) +((((-485) |#2|) . T)) +((((-485) |#2|) . T)) +((((-485) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)))) (((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)))) -(|has| |#2| (-717)) -(|has| |#2| (-717)) -(OR (|has| |#2| (-717)) (|has| |#2| (-756))) -(OR (|has| |#2| (-717)) (|has| |#2| (-756))) -(|has| |#2| (-717)) -(|has| |#2| (-717)) +(|has| |#2| (-718)) +(|has| |#2| (-718)) +(OR (|has| |#2| (-718)) (|has| |#2| (-757))) +(OR (|has| |#2| (-718)) (|has| |#2| (-757))) +(|has| |#2| (-718)) +(|has| |#2| (-718)) (((|#2|) |has| |#2| (-312))) (((|#1| |#2|) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(|has| |#1| (-1014)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-484)) . T)) -((((-772)) . T)) +((((-485)) . T)) +((((-773)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-917 16)) . T) (((-350 (-484))) . T) (((-772)) . T)) -((((-484)) . T)) -((((-484)) . T)) +((((-918 16)) . T) (((-350 (-485))) . T) (((-773)) . T)) +((((-485)) . T)) +((((-485)) . T)) ((($) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((((-484)) . T) (((-350 (-484))) . T) (($) . T)) -((((-484)) . T) (((-350 (-484))) . T) (($) . T)) -((((-484) (-484)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-473)) . T) (((-800 (-484))) . T) (((-330)) . T) (((-179)) . T)) -((((-350 (-484))) . T) (((-484)) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((((-484)) . T)) -((((-1073)) . T) (((-772)) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((((-485)) . T) (((-350 (-485))) . T) (($) . T)) +((((-485)) . T) (((-350 (-485))) . T) (($) . T)) +((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T)) +((((-350 (-485))) . T) (((-485)) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((((-485)) . T)) +((((-1074)) . T) (((-773)) . T)) ((($) . T)) ((((-142 (-330))) . T) (((-179)) . T) (((-330)) . T)) -((((-350 (-484))) . T) (((-484)) . T)) -((($) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((($) . T) (((-350 (-484))) . T)) -((($) . T) (((-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484)) (-350 (-484))) . T) (($ $) . T)) +((((-350 (-485))) . T) (((-485)) . T)) +((($) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((($) . T) (((-350 (-485))) . T)) +((($) . T) (((-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) ((($) . T)) -((($ $) . T) (((-550 $) $) . T)) -((((-350 (-484))) . T) (((-484)) . T) (((-550 $)) . T)) -((((-1039 (-484) (-550 $))) . T) (($) . T) (((-484)) . T) (((-350 (-484))) . T) (((-550 $)) . T)) -((((-772)) . T)) +((($ $) . T) (((-551 $) $) . T)) +((((-350 (-485))) . T) (((-485)) . T) (((-551 $)) . T)) +((((-1040 (-485) (-551 $))) . T) (($) . T) (((-485)) . T) (((-350 (-485))) . T) (((-551 $)) . T)) +((((-773)) . T)) (((|#1|) . T)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) (((|#1|) . T)) -((((-473)) |has| |#1| (-553 (-473)))) -((((-484) |#1|) . T)) -((((-1146 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) +((((-474)) |has| |#1| (-554 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) +(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(|has| |#1| (-1013)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(|has| |#1| (-1014)) +(((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2| |#3|) . T)) -((((-1073)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-583 (-453 |#1| |#2|))) . T)) +((((-85)) . T)) +((((-85)) . T)) +((((-85)) . T)) +((((-773)) . T)) +((((-85)) . T)) +((((-85)) . T)) +((((-485) (-85)) . T)) +((((-485) (-85)) . T)) +((((-485) (-85)) . T) (((-1147 (-485)) $) . T)) +((((-474)) . T)) +((((-85)) . T)) +((((-85)) . T)) +((((-1074)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-584 (-454 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-772)) . T)) -((((-484)) . T)) -((((-583 (-453 |#1| |#2|))) . T)) +((((-773)) . T)) +((((-485)) . T)) +((((-584 (-454 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-772)) . T)) -((((-583 (-453 |#1| |#2|))) . T)) -(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) -((((-772)) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))) +((((-773)) . T)) +((((-584 (-454 |#1| |#2|))) . T)) +(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) +((((-773)) -12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))) (((|#1| |#2|) . T)) -((((-583 (-453 |#1| |#2|))) . T)) +((((-584 (-454 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-772)) . T)) -((((-583 (-453 |#1| |#2|))) . T)) +((((-773)) . T)) +((((-584 (-454 |#1| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-772)) . T)) -((((-782 |#2| |#1|)) . T)) -((((-772)) . T)) +((((-773)) . T)) +((((-783 |#2| |#1|)) . T)) +((((-773)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(((|#1|) . T)) +((((-474)) |has| |#1| (-554 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) (((|#1|) . T)) -((((-473)) |has| |#1| (-553 (-473)))) -((((-484) |#1|) . T)) -((((-1146 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-517 |#1|)) . T)) -((((-517 |#1|)) . T)) -((((-517 |#1|)) . T)) -((((-517 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-517 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-517 |#1|) (-517 |#1|)) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-517 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-517 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-772)) . T)) -((((-517 |#1|)) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -((((-517 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-517 |#1|)) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-518 |#1|)) . T)) +((((-518 |#1|)) . T)) +((((-518 |#1|)) . T)) +((((-518 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-518 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-518 |#1|) (-518 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-773)) . T)) +((((-518 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) (|has| $ (-120)) ((($) . T)) -((((-517 |#1|)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-772)) . T)) -((((-583 (-453 (-694) |#1|))) . T)) -((((-694) |#1|) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-515)) . T)) -((((-1015)) . T)) -((((-583 $)) . T) (((-1073)) . T) (((-1090)) . T) (((-484)) . T) (((-179)) . T) (((-772)) . T)) -((((-484) $) . T) (((-583 (-484)) $) . T)) -((((-772)) . T)) -((((-1073) (-1090) (-484) (-179) (-772)) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T)) +((((-518 |#1|)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-773)) . T)) +((((-584 (-454 (-695) |#1|))) . T)) +((((-695) |#1|) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-516)) . T)) +((((-1016)) . T)) +((((-584 $)) . T) (((-1074)) . T) (((-1091)) . T) (((-485)) . T) (((-179)) . T) (((-773)) . T)) +((((-485) $) . T) (((-584 (-485)) $) . T)) +((((-773)) . T)) +((((-1074) (-1091) (-485) (-179) (-773)) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -1664,201 +1679,201 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-484)) . T) (($) . T)) -((((-484)) . T)) -((($) . T) (((-484)) . T)) -((((-484)) . T)) -((((-473)) . T) (((-484)) . T) (((-800 (-484))) . T) (((-330)) . T) (((-179)) . T)) -((((-484)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-772)) . T)) +((((-485)) . T) (($) . T)) +((((-485)) . T)) +((($) . T) (((-485)) . T)) +((((-485)) . T)) +((((-474)) . T) (((-485)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T)) +((((-485)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-773)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-772)) . T)) -((((-484)) . T) (($) . T)) +((((-773)) . T)) +((((-485)) . T) (($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-484)) . T) (($) . T)) -((((-484)) . T)) +((((-485)) . T) (($) . T)) +((((-485)) . T)) (((|#1|) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) ((($) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-484)) . T) (($) . T)) +((((-485)) . T) (($) . T)) (((|#1|) . T)) -((((-484)) . T)) +((((-485)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-120)) ((($) . T)) -((((-772)) . T)) +((((-773)) . T)) ((($) . T)) -((($) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) . T)) -((($) . T) (((-350 (-484))) . T)) -((($) . T) (((-350 (-484))) . T)) -((($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-484)) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T)) -((((-350 (-484))) . T)) -((((-772)) . T)) -((((-484)) . T) (((-350 (-484))) . T)) -((((-350 (-484))) . T)) -((((-350 (-484))) . T)) -((((-350 (-484))) . T)) -((((-1095)) . T)) -((((-1095)) . T)) -((((-1095)) . T) (((-772)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -(|has| |#1| (-15 * (|#1| (-484) |#1|))) -((((-772)) . T)) -((($) |has| |#1| (-15 * (|#1| (-484) |#1|)))) -(|has| |#1| (-15 * (|#1| (-484) |#1|))) -((($ $) . T) (((-484) |#1|) . T)) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) -((($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) -(((|#1| (-484) (-994)) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T)) -((($) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T)) +((($) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) . T)) +((($) . T) (((-350 (-485))) . T)) +((($) . T) (((-350 (-485))) . T)) +((($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-485)) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T)) +((((-350 (-485))) . T)) +((((-773)) . T)) +((((-485)) . T) (((-350 (-485))) . T)) +((((-350 (-485))) . T)) +((((-350 (-485))) . T)) +((((-350 (-485))) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T) (((-773)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +(|has| |#1| (-15 * (|#1| (-485) |#1|))) +((((-773)) . T)) +((($) |has| |#1| (-15 * (|#1| (-485) |#1|)))) +(|has| |#1| (-15 * (|#1| (-485) |#1|))) +((($ $) . T) (((-485) |#1|) . T)) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) +((($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) +(((|#1| (-485) (-995)) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) +((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-495))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -((((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -((((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -(((|#1| (-484)) . T)) -(((|#1| (-484)) . T)) -((($) |has| |#1| (-495))) -((($) |has| |#1| (-495))) -((($) |has| |#1| (-495))) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -((($) |has| |#1| (-495)) ((|#1|) . T)) -((($) |has| |#1| (-495)) ((|#1|) . T)) -((($ $) |has| |#1| (-495)) ((|#1| |#1|) . T)) -((($) |has| |#1| (-495)) (((-484)) . T)) +(OR (|has| |#1| (-146)) (|has| |#1| (-496))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +((((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +(((|#1| (-485)) . T)) +(((|#1| (-485)) . T)) +((($) |has| |#1| (-496))) +((($) |has| |#1| (-496))) +((($) |has| |#1| (-496))) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +((($) |has| |#1| (-496)) ((|#1|) . T)) +((($) |has| |#1| (-496)) ((|#1|) . T)) +((($ $) |has| |#1| (-496)) ((|#1| |#1|) . T)) +((($) |has| |#1| (-496)) (((-485)) . T)) (((|#1|) . T) (($) . T)) -((((-772)) . T)) -(((|#1|) . T) (($) . T) (((-484)) . T)) -((((-1095)) . T)) -((((-1095)) . T)) -((((-1095)) . T) (((-772)) . T)) -((((-772)) . T)) -((((-1095)) . T)) -((((-1130)) . T) (((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-484) |#1|) |has| |#2| (-361 |#1|))) +((((-773)) . T)) +(((|#1|) . T) (($) . T) (((-485)) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T) (((-773)) . T)) +((((-773)) . T)) +((((-1096)) . T)) +((((-1131)) . T) (((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-485) |#1|) |has| |#2| (-361 |#1|))) (((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-361 |#1|)))) (((|#1|) |has| |#2| (-361 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-772)) . T)) -(((|#1|) . T) (((-484)) . T)) +(((|#2|) . T) (((-773)) . T)) +(((|#1|) . T) (((-485)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) ((((-101)) . T)) ((((-101)) . T)) -((((-101)) . T) (((-772)) . T)) -((((-772)) . T)) -((((-101)) . T) (((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-101)) . T) (((-541)) . T)) -((((-101)) . T) (((-541)) . T)) -((((-101)) . T) (((-541)) . T) (((-772)) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T)) -((((-1073) |#1|) . T)) -((((-1073) |#1|) . T)) -((((-1073) |#1|) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) |has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) |has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-1073) |#1|) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T)) -((((-1073) |#1|) . T)) -((((-772)) . T)) -((((-338) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T)) -((((-473)) |has| |#1| (-553 (-473))) (((-800 (-330))) |has| |#1| (-553 (-800 (-330)))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484))))) -(((|#1|) . T)) -((((-772)) . T)) -((((-772)) . T)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) +((((-101)) . T) (((-773)) . T)) +((((-773)) . T)) +((((-101)) . T) (((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-101)) . T) (((-542)) . T)) +((((-101)) . T) (((-542)) . T)) +((((-101)) . T) (((-542)) . T) (((-773)) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-1074) |#1|) . T)) +((((-1074) |#1|) . T)) +((((-1074) |#1|) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-1074) |#1|) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-1074) |#1|) . T)) +((((-773)) . T)) +((((-338) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-474)) |has| |#1| (-554 (-474))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485))))) +(((|#1|) . T)) +((((-773)) . T)) +((((-773)) . T)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) (((|#2|) . T)) (((|#2|) . T)) -((((-772)) . T)) +((((-773)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) -(((|#2|) . T) (((-484)) . T) (($) . T)) +(((|#2|) . T) (((-485)) . T) (($) . T)) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-484)) . T)) +(((|#2|) . T) (((-485)) . T)) (((|#2|) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#2|) . T) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T)) +(((|#2|) . T) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T)) (((|#1|) . T)) ((((-350 |#2|)) . T)) ((($) . T)) @@ -1868,68 +1883,68 @@ ((($) . T)) ((($) . T)) (|has| |#2| (-190)) -(((|#2|) . T) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((|#1|) . T) (($) . T) (((-484)) . T)) +(((|#2|) . T) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (($) . T) (((-485)) . T)) ((($) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T)) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) (((|#2|) . T)) -((($ (-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090))))) -((((-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090))))) -((((-1090)) |has| |#2| (-809 (-1090)))) +((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) +((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) +((((-1091)) |has| |#2| (-810 (-1091)))) (((|#2|) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-772)) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) . T)) -((((-772)) . T)) -((((-1073) (-51)) . T)) -((((-1073) (-51)) . T)) -((((-1090) (-51)) . T) (((-1073) (-51)) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) . T) (((-51)) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) |has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))))) -((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) |has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))))) -((((-1073) (-51)) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) . T)) -((((-1073) (-51)) . T)) -((((-484) |#1|) |has| |#2| (-361 |#1|))) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-773)) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) . T)) +((((-773)) . T)) +((((-1074) (-51)) . T)) +((((-1074) (-51)) . T)) +((((-1091) (-51)) . T) (((-1074) (-51)) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) . T) (((-51)) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) |has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))))) +((((-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) |has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))))) +((((-1074) (-51)) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) . T)) +((((-1074) (-51)) . T)) +((((-485) |#1|) |has| |#2| (-361 |#1|))) (((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-361 |#1|)))) (((|#1|) |has| |#2| (-361 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-772)) . T)) -(((|#1|) . T) (((-484)) . T)) +(((|#2|) . T) (((-773)) . T)) +(((|#1|) . T) (((-485)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-773 |#1|)) . T)) -((((-772)) . T)) -((((-583 (-453 |#1| (-577 |#2|)))) . T)) -(((|#1| (-577 |#2|)) . T)) -((((-577 |#2|)) . T)) +((((-774 |#1|)) . T)) +((((-773)) . T)) +((((-584 (-454 |#1| (-578 |#2|)))) . T)) +(((|#1| (-578 |#2|)) . T)) +((((-578 |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-772)) . T)) -(((|#1|) . T) (((-484)) . T)) +((((-773)) . T)) +(((|#1|) . T) (((-485)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-579 |#1| |#2|) |#1|) . T)) +((((-580 |#1| |#2|) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-772)) . T)) -(((|#1|) . T) (((-484)) . T)) +((((-773)) . T)) +(((|#1|) . T) (((-485)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) @@ -1937,229 +1952,230 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) +(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) (((|#1|) . T)) -((((-473)) |has| |#1| (-553 (-473)))) -((((-484) |#1|) . T)) -((((-1146 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) +((((-474)) |has| |#1| (-554 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1095)) . T)) -(((|#1|) . T) (((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) +((((-1096)) . T)) +(((|#1|) . T) (((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-473)) |has| |#1| (-553 (-473)))) +((((-474)) |has| |#1| (-554 (-474)))) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(|has| |#1| (-1013)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(|has| |#1| (-1014)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-772)) . T)) -(|has| |#1| (-714)) -(|has| |#1| (-714)) -(|has| |#1| (-714)) -(|has| |#1| (-714)) -(|has| |#1| (-714)) -(|has| |#1| (-714)) +((((-773)) . T)) +(|has| |#1| (-715)) +(|has| |#1| (-715)) +(|has| |#1| (-715)) +(|has| |#1| (-715)) +(|has| |#1| (-715)) +(|has| |#1| (-715)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-772)) . T)) -((((-484)) . T) ((|#2|) . T)) +((((-773)) . T)) +((((-485)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T)) +((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-772)) . T)) +((((-773)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-485)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((|#1|) . T) (((-484)) . T)) +((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T)) +((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-772)) . T)) +((((-773)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-485)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((|#1|) . T) (((-484)) . T)) +((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) -((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T)) +((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-772)) . T)) +((((-773)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-484)) . T) (($) . T)) +(((|#1|) . T) (((-485)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((|#1|) . T) (((-484)) . T)) +((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -((((-614 |#1|)) . T)) -((((-614 |#1|)) . T)) -(((|#2| (-614 |#1|)) . T)) +((((-615 |#1|)) . T)) +((((-615 |#1|)) . T)) +(((|#2| (-615 |#1|)) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-772)) . T)) -((((-484)) . T) ((|#2|) . T)) +((((-773)) . T)) +((((-485)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-484) |#2|) . T)) +((((-485) |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-3997 "*")))) +(((|#2|) |has| |#2| (-6 (-3998 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-630 |#2|)) . T) (((-772)) . T)) -((($) . T) (((-484)) . T) ((|#2|) . T)) +((((-631 |#2|)) . T) (((-773)) . T)) +((($) . T) (((-485)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1090)) |has| |#2| (-809 (-1090)))) -((((-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090))))) -((($ (-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090))))) +((((-1091)) |has| |#2| (-810 (-1091)))) +((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) +((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) (((|#2|) . T)) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (|has| |#2| (-190)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) -(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) +((($) . T) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) +(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) (((|#2|) . T)) -((((-484)) . T) ((|#2|) . T) (((-350 (-484))) |has| |#2| (-950 (-350 (-484))))) -(((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-350 (-484))) |has| |#2| (-950 (-350 (-484))))) +((((-485)) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-951 (-350 (-485))))) +(((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485))))) (((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) (((|#2|) . T)) (((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-772)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-772)) . T)) -((((-1095)) . T)) -((((-1130)) . T) (((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-473)) |has| |#1| (-553 (-473)))) -(((|#1| (-1179 |#1|) (-1179 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -(((|#1|) . T)) -(((|#1| (-1179 |#1|) (-1179 |#1|)) . T)) -((((-772)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-772)) . T)) -((((-772)) . T)) -((($) . T) (((-350 (-484))) . T)) -((($) . T) (((-350 (-484))) . T)) -((($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (((-484)) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (((-484)) . T) (($) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-773)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-773)) . T)) +((((-1096)) . T)) +((((-1131)) . T) (((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-474)) |has| |#1| (-554 (-474)))) +(((|#1| (-1180 |#1|) (-1180 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1014)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +(((|#1|) . T)) +(((|#1| (-1180 |#1|) (-1180 |#1|)) . T)) +((((-773)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-773)) . T)) +((((-773)) . T)) +((($) . T) (((-350 (-485))) . T)) +((($) . T) (((-350 (-485))) . T)) +((($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (((-485)) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (((-485)) . T) (($) . T)) (|has| |#1| (-320)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-772)) . T)) -((((-350 $) (-350 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T)) +((((-773)) . T)) +((((-350 $) (-350 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-821))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-822))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (|has| |#1| (-312)) -(((|#1| (-694) (-994)) . T)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (((-994)) . T)) -((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (($ (-994)) . T)) -((((-1090)) |has| |#1| (-809 (-1090))) (((-994)) . T)) -((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-694)) . T)) +(((|#1| (-695) (-995)) . T)) +(|has| |#1| (-822)) +(|has| |#1| (-822)) +((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-995)) . T)) +((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-995)) . T)) +((((-1091)) |has| |#1| (-810 (-1091))) (((-995)) . T)) +((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-695)) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -(((|#2|) . T) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-994)) . T) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484)))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((((-484)) . T) (($) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -(((|#1|) . T)) -((((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484))))) -(((|#1| (-694)) . T)) -((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T)) +(((|#2|) . T) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-995)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485)))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +(((|#1|) . T)) +((((-995)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) +(((|#1| (-695)) . T)) +((((-995) |#1|) . T) (((-995) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1066)) +(|has| |#1| (-1067)) (((|#1|) . T)) -((((-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) . T)) -((((-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) . T)) -((((-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) . T) (((-772)) . T)) +((((-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) . T)) +((((-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) . T)) +((((-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) . T) (((-773)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -2170,51 +2186,51 @@ (|has| |#1| (-120)) (((|#2| |#2|) . T)) ((((-86)) . T) ((|#1|) . T)) -((((-86)) . T) ((|#1|) . T) (((-484)) . T)) +((((-86)) . T) ((|#1|) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-772)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T)) -((((-484)) . T)) +((((-773)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T)) +((((-485)) . T)) ((($) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T)) -((((-772)) . T)) -((((-1022 |#1|)) . T) (((-772)) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T)) +((((-773)) . T)) +((((-1023 |#1|)) . T) (((-773)) . T)) (((|#1|) . T)) (((|#1| |#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-473)) |has| |#2| (-553 (-473))) (((-800 (-330))) |has| |#2| (-553 (-800 (-330)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484))))) +((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485))))) ((($) . T)) -(((|#2| (-469 (-773 |#1|))) . T)) +(((|#2| (-470 (-774 |#1|))) . T)) (((|#2|) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T)) (|has| |#2| (-118)) (|has| |#2| (-120)) -(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484)) (-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) -(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))) -(((|#2| (-469 (-773 |#1|))) . T)) +(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) +(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))) +(((|#2| (-470 (-774 |#1|))) . T)) (((|#2|) . T)) -((($) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) -(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) -(OR (|has| |#2| (-392)) (|has| |#2| (-821))) -((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T)) -((((-773 |#1|)) . T)) -((($ (-773 |#1|)) . T)) -((((-773 |#1|)) . T)) -(|has| |#2| (-821)) -(|has| |#2| (-821)) -((((-350 (-484))) |has| |#2| (-950 (-350 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T)) -((((-484)) . T) (((-350 (-484))) OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T)) -(((|#2| (-469 (-773 |#1|)) (-773 |#1|)) . T)) +((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) +(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) +(OR (|has| |#2| (-392)) (|has| |#2| (-822))) +((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T)) +((((-774 |#1|)) . T)) +((($ (-774 |#1|)) . T)) +((((-774 |#1|)) . T)) +(|has| |#2| (-822)) +(|has| |#2| (-822)) +((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T)) +((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T)) +(((|#2| (-470 (-774 |#1|)) (-774 |#1|)) . T)) (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -2225,210 +2241,210 @@ (|has| |#1| (-118)) (|has| |#1| (-120)) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) ((|#2|) . T) (((-484)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-772)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T)) +((((-773)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-473)) |has| |#1| (-553 (-473)))) +((((-474)) |has| |#1| (-554 (-474)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-772)) . T)) -((((-772)) . T)) -(((|#1| (-469 |#2|) |#2|) . T)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -((((-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484)))) (((-330)) -12 (|has| |#1| (-796 (-330))) (|has| |#2| (-796 (-330))))) +((((-773)) . T)) +((((-773)) . T)) +(((|#1| (-470 |#2|) |#2|) . T)) +(|has| |#1| (-822)) +(|has| |#1| (-822)) +((((-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))) (((-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330))))) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-821))) -((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T)) +(OR (|has| |#1| (-392)) (|has| |#1| (-822))) +((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-469 |#2|)) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(((|#1| (-470 |#2|)) . T)) +(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((((-1039 |#1| |#2|)) . T) (((-857 |#1|)) |has| |#2| (-553 (-1090))) (((-772)) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (((-484)) . T) (($) . T)) -((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (($) . T)) -((((-1039 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) (((-484)) . T)) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -(((|#1|) . T)) -((((-1039 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484))))) -(((|#1| (-469 |#2|)) . T)) +((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((((-1040 |#1| |#2|)) . T) (((-858 |#1|)) |has| |#2| (-554 (-1091))) (((-773)) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T)) +((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T)) +((((-1040 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-485)) . T)) +((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +(((|#1|) . T)) +((((-1040 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) +(((|#1| (-470 |#2|)) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) ((($) . T)) -((((-857 |#1|)) |has| |#2| (-553 (-1090))) (((-1073)) -12 (|has| |#1| (-950 (-484))) (|has| |#2| (-553 (-1090)))) (((-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) (((-800 (-330))) -12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) (((-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473))))) -(((|#1| (-469 |#2|) |#2|) . T)) +((((-858 |#1|)) |has| |#2| (-554 (-1091))) (((-1074)) -12 (|has| |#1| (-951 (-485))) (|has| |#2| (-554 (-1091)))) (((-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) (((-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) (((-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474))))) +(((|#1| (-470 |#2|) |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-1085 |#1|)) . T) (((-772)) . T)) -((((-350 $) (-350 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T)) +((((-1086 |#1|)) . T) (((-773)) . T)) +((((-350 $) (-350 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-821))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-822))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (|has| |#1| (-312)) -(((|#1| (-694) (-994)) . T)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (((-994)) . T)) -((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (($ (-994)) . T)) -((((-1090)) |has| |#1| (-809 (-1090))) (((-994)) . T)) -((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-694)) . T)) +(((|#1| (-695) (-995)) . T)) +(|has| |#1| (-822)) +(|has| |#1| (-822)) +((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-995)) . T)) +((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-995)) . T)) +((((-1091)) |has| |#1| (-810 (-1091))) (((-995)) . T)) +((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-695)) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((((-1085 |#1|)) . T) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-994)) . T) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484)))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((((-484)) . T) (($) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -(((|#1|) . T)) -((((-1085 |#1|)) . T) (((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484))))) -(((|#1| (-694)) . T)) -((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T)) +((((-1086 |#1|)) . T) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-995)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485)))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +(((|#1|) . T)) +((((-1086 |#1|)) . T) (((-995)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) +(((|#1| (-695)) . T)) +((((-995) |#1|) . T) (((-995) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1066)) +(|has| |#1| (-1067)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T) ((|#1|) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -((((-473)) |has| |#1| (-553 (-473)))) +((((-474)) |has| |#1| (-554 (-474)))) (|has| |#1| (-320)) (((|#1|) . T)) -((((-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) (((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) -((((-909 |#1|)) . T) ((|#1|) . T)) -((((-909 |#1|)) . T) (((-484)) . T) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| (-909 |#1|) (-950 (-350 (-484)))))) -((((-909 |#1|)) . T) ((|#1|) . T) (((-484)) OR (|has| |#1| (-950 (-484))) (|has| (-909 |#1|) (-950 (-484)))) (((-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| (-909 |#1|) (-950 (-350 (-484)))))) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(((|#1|) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) -(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961))) -(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961)))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))) -((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) (((-1179 |#2|)) . T)) -(((|#2|) |has| |#2| (-961))) -((((-1090)) -12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961)))) -((((-1090)) OR (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))))) -((($ (-1090)) OR (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))))) -(((|#2|) |has| |#2| (-961))) -(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))) -((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))) -(|has| |#2| (-961)) -(|has| |#2| (-961)) -(|has| |#2| (-961)) -(|has| |#2| (-961)) -(|has| |#2| (-961)) -((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961))) -(-12 (|has| |#2| (-190)) (|has| |#2| (-961))) +((((-910 |#1|)) . T) ((|#1|) . T)) +((((-910 |#1|)) . T) (((-485)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| (-910 |#1|) (-951 (-350 (-485)))))) +((((-910 |#1|)) . T) ((|#1|) . T) (((-485)) OR (|has| |#1| (-951 (-485))) (|has| (-910 |#1|) (-951 (-485)))) (((-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| (-910 |#1|) (-951 (-350 (-485)))))) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(((|#1|) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) +(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962))) +(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962)))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))) +((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) (((-1180 |#2|)) . T)) +(((|#2|) |has| |#2| (-962))) +((((-1091)) -12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962)))) +((((-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))))) +((($ (-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))))) +(((|#2|) |has| |#2| (-962))) +(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))) +((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))) +(|has| |#2| (-962)) +(|has| |#2| (-962)) +(|has| |#2| (-962)) +(|has| |#2| (-962)) +(|has| |#2| (-962)) +((((-485)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962))) +(-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (|has| |#2| (-320)) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) (((|#2|) . T)) -(((|#2|) |has| |#2| (-961))) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961)))) -(((|#2|) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961)))) -(((|#2|) |has| |#2| (-1013))) -((((-484)) OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1013)) (((-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013)))) -(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (((-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013)))) -((((-484) |#2|) . T)) -((((-484) |#2|) . T)) -((((-484) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)))) +(((|#2|) |has| |#2| (-962))) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962)))) +(((|#2|) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962)))) +(((|#2|) |has| |#2| (-1014))) +((((-485)) OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1014)) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014)))) +(((|#2|) |has| |#2| (-1014)) (((-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014)))) +((((-485) |#2|) . T)) +((((-485) |#2|) . T)) +((((-485) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)))) (((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)))) -(|has| |#2| (-717)) -(|has| |#2| (-717)) -(OR (|has| |#2| (-717)) (|has| |#2| (-756))) -(OR (|has| |#2| (-717)) (|has| |#2| (-756))) -(|has| |#2| (-717)) -(|has| |#2| (-717)) +(|has| |#2| (-718)) +(|has| |#2| (-718)) +(OR (|has| |#2| (-718)) (|has| |#2| (-757))) +(OR (|has| |#2| (-718)) (|has| |#2| (-757))) +(|has| |#2| (-718)) +(|has| |#2| (-718)) (((|#2|) |has| |#2| (-312))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-772)) . T)) +((((-773)) . T)) (|has| |#1| (-190)) ((($) . T)) -(((|#1| (-469 (-738 (-1090))) (-738 (-1090))) . T)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (((-738 (-1090))) . T)) -((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (($ (-738 (-1090))) . T)) -((((-1090)) |has| |#1| (-809 (-1090))) (((-738 (-1090))) . T)) -((($ $) . T) (((-1090) $) |has| |#1| (-190)) (((-1090) |#1|) |has| |#1| (-190)) (((-738 (-1090)) |#1|) . T) (((-738 (-1090)) $) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-821))) -((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-469 (-738 (-1090)))) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(((|#1| (-470 (-739 (-1091))) (-739 (-1091))) . T)) +(|has| |#1| (-822)) +(|has| |#1| (-822)) +((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-739 (-1091))) . T)) +((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-739 (-1091))) . T)) +((((-1091)) |has| |#1| (-810 (-1091))) (((-739 (-1091))) . T)) +((($ $) . T) (((-1091) $) |has| |#1| (-190)) (((-1091) |#1|) |has| |#1| (-190)) (((-739 (-1091)) |#1|) . T) (((-739 (-1091)) $) . T)) +(OR (|has| |#1| (-392)) (|has| |#1| (-822))) +((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-470 (-739 (-1091)))) . T)) +(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((((-484)) . T) (($) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -(((|#1|) . T)) -(((|#1| (-469 (-738 (-1090)))) . T)) -((((-1039 |#1| (-1090))) . T) (((-738 (-1090))) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-1090)) . T)) -((((-1039 |#1| (-1090))) . T) (((-484)) . T) (((-738 (-1090))) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) (((-1090)) . T)) -(((|#1| (-1090) (-738 (-1090)) (-469 (-738 (-1090)))) . T)) +((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +(((|#1|) . T)) +(((|#1| (-470 (-739 (-1091)))) . T)) +((((-1040 |#1| (-1091))) . T) (((-739 (-1091))) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-1091)) . T)) +((((-1040 |#1| (-1091))) . T) (((-485)) . T) (((-739 (-1091))) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-1091)) . T)) +(((|#1| (-1091) (-739 (-1091)) (-470 (-739 (-1091)))) . T)) (|has| |#2| (-312)) (|has| |#2| (-312)) (|has| |#2| (-312)) (|has| |#2| (-312)) -((((-350 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312))) -((((-350 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312))) -((((-350 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312))) +((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312))) +((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312))) +((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312))) (|has| |#2| (-312)) (|has| |#2| (-312)) (|has| |#2| (-312)) @@ -2436,19 +2452,19 @@ (|has| |#2| (-312)) (((|#2|) . T)) ((($) . T)) -((((-350 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312)) ((|#2|) . T) (((-484)) . T)) -((((-350 (-484))) |has| |#2| (-312)) (($) . T)) -(((|#2|) . T) (((-772)) . T)) -((((-350 (-484))) |has| |#2| (-312)) (($) . T) (((-484)) . T)) -((((-350 (-484))) |has| |#2| (-312)) (($) . T)) -((((-350 (-484))) |has| |#2| (-312)) (($) . T)) -((((-350 (-484)) (-350 (-484))) |has| |#2| (-312)) (($ $) . T)) +((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312)) ((|#2|) . T) (((-485)) . T)) +((((-350 (-485))) |has| |#2| (-312)) (($) . T)) +(((|#2|) . T) (((-773)) . T)) +((((-350 (-485))) |has| |#2| (-312)) (($) . T) (((-485)) . T)) +((((-350 (-485))) |has| |#2| (-312)) (($) . T)) +((((-350 (-485))) |has| |#2| (-312)) (($) . T)) +((((-350 (-485)) (-350 (-485))) |has| |#2| (-312)) (($ $) . T)) ((($) . T)) -((((-772)) . T)) +((((-773)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-772)) . T)) +((((-773)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2459,36 +2475,36 @@ (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T) ((|#2|) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2|) |has| |#2| (-146))) -((((-484)) . T) ((|#2|) |has| |#2| (-146))) +((((-485)) . T) ((|#2|) |has| |#2| (-146))) (((|#2|) . T)) -(|has| |#1| (-755)) -((($) |has| |#1| (-755))) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(OR (|has| |#1| (-21)) (|has| |#1| (-755))) -(OR (|has| |#1| (-21)) (|has| |#1| (-755))) -(OR (|has| |#1| (-21)) (|has| |#1| (-755))) -((($) |has| |#1| (-755)) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-755)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-755))) -((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T)) -((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-772)) . T)) +(|has| |#1| (-756)) +((($) |has| |#1| (-756))) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(OR (|has| |#1| (-21)) (|has| |#1| (-756))) +(OR (|has| |#1| (-21)) (|has| |#1| (-756))) +(OR (|has| |#1| (-21)) (|has| |#1| (-756))) +((($) |has| |#1| (-756)) (((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-756)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-756))) +((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T)) +((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-773)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -2499,457 +2515,457 @@ (|has| |#1| (-120)) (((|#1| |#1|) . T)) ((((-86)) . T) ((|#1|) . T)) -((((-86)) . T) ((|#1|) . T) (((-484)) . T)) +((((-86)) . T) ((|#1|) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-772)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T)) -((((-772)) . T)) -((((-446)) . T)) -(|has| |#1| (-755)) -((($) |has| |#1| (-755))) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(|has| |#1| (-755)) -(OR (|has| |#1| (-21)) (|has| |#1| (-755))) -(OR (|has| |#1| (-21)) (|has| |#1| (-755))) -(OR (|has| |#1| (-21)) (|has| |#1| (-755))) -((($) |has| |#1| (-755)) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-755)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-755))) -((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T)) -((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-772)) . T)) -(((|#1|) . T)) -((((-772)) |has| |#1| (-552 (-772))) ((|#1|) . T)) +((((-773)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T)) +((((-773)) . T)) +((((-447)) . T)) +(|has| |#1| (-756)) +((($) |has| |#1| (-756))) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(|has| |#1| (-756)) +(OR (|has| |#1| (-21)) (|has| |#1| (-756))) +(OR (|has| |#1| (-21)) (|has| |#1| (-756))) +(OR (|has| |#1| (-21)) (|has| |#1| (-756))) +((($) |has| |#1| (-756)) (((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-756)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-756))) +((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T)) +((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-773)) . T)) +(((|#1|) . T)) +((((-773)) |has| |#1| (-553 (-773))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T) ((|#1|) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -((((-484)) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-950 (-350 (-484))))) -(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484))))) +((((-485)) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) +(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) (((|#1|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T) ((|#2|) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2|) |has| |#2| (-146))) (((|#2|) . T)) -((((-1176 |#1|)) . T) (((-484)) . T) ((|#2|) . T) (((-350 (-484))) |has| |#2| (-950 (-350 (-484))))) -(((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-350 (-484))) |has| |#2| (-950 (-350 (-484))))) +((((-1177 |#1|)) . T) (((-485)) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-951 (-350 (-485))))) +(((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485))))) (((|#2|) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-800 (-484))) . T) (((-800 (-330))) . T) (((-473)) . T) (((-1090)) . T)) -((((-772)) . T)) -((((-772)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-801 (-485))) . T) (((-801 (-330))) . T) (((-474)) . T) (((-1091)) . T)) +((((-773)) . T)) +((((-773)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1| |#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) -((((-857 |#1|)) . T)) -(((|#1|) |has| |#1| (-146)) (((-857 |#1|)) . T) (((-484)) . T)) +((((-858 |#1|)) . T)) +(((|#1|) |has| |#1| (-146)) (((-858 |#1|)) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -((((-857 |#1|)) . T) (((-772)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T)) +((((-858 |#1|)) . T) (((-773)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T)) ((($) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-484)) . T) (($) . T)) -(((|#1|) . T)) -((((-772)) . T)) -((((-778 |#1|)) . T)) -((((-778 |#1|)) . T)) -((((-778 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) (((-778 |#1|)) . T) (((-350 (-484))) . T)) -((((-778 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-778 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-778 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-778 |#1|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-778 |#1|) (-778 |#1|)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T)) -((((-778 |#1|)) . T)) -((((-1090) (-778 |#1|)) |has| (-778 |#1|) (-455 (-1090) (-778 |#1|))) (((-778 |#1|) (-778 |#1|)) |has| (-778 |#1|) (-260 (-778 |#1|)))) -((((-778 |#1|)) |has| (-778 |#1|) (-260 (-778 |#1|)))) -((((-778 |#1|) $) |has| (-778 |#1|) (-241 (-778 |#1|) (-778 |#1|)))) -((((-778 |#1|)) . T)) -((($) . T) (((-778 |#1|)) . T) (((-350 (-484))) . T)) -((((-778 |#1|)) . T)) -((((-778 |#1|)) . T)) -((((-778 |#1|)) . T)) -((((-484)) . T) (((-778 |#1|)) . T) (($) . T) (((-350 (-484))) . T)) -((((-778 |#1|)) . T)) -((((-778 |#1|)) . T)) -((((-772)) . T)) +((((-485)) . T) (($) . T)) +(((|#1|) . T)) +((((-773)) . T)) +((((-779 |#1|)) . T)) +((((-779 |#1|)) . T)) +((((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) (((-779 |#1|)) . T) (((-350 (-485))) . T)) +((((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-779 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-779 |#1|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-779 |#1|) (-779 |#1|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) +((((-779 |#1|)) . T)) +((((-1091) (-779 |#1|)) |has| (-779 |#1|) (-456 (-1091) (-779 |#1|))) (((-779 |#1|) (-779 |#1|)) |has| (-779 |#1|) (-260 (-779 |#1|)))) +((((-779 |#1|)) |has| (-779 |#1|) (-260 (-779 |#1|)))) +((((-779 |#1|) $) |has| (-779 |#1|) (-241 (-779 |#1|) (-779 |#1|)))) +((((-779 |#1|)) . T)) +((($) . T) (((-779 |#1|)) . T) (((-350 (-485))) . T)) +((((-779 |#1|)) . T)) +((((-779 |#1|)) . T)) +((((-779 |#1|)) . T)) +((((-485)) . T) (((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T)) +((((-779 |#1|)) . T)) +((((-779 |#1|)) . T)) +((((-773)) . T)) (|has| |#2| (-118)) -(OR (|has| |#2| (-120)) (|has| |#2| (-740))) +(OR (|has| |#2| (-120)) (|has| |#2| (-741))) (((|#2|) . T)) -((((-1090)) |has| |#2| (-809 (-1090)))) -((((-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090))))) -((($ (-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090))))) +((((-1091)) |has| |#2| (-810 (-1091)))) +((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) +((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) (((|#2|) . T)) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (|has| |#2| (-190)) -(((|#2|) . T) (($) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) ((|#2|) . T) (((-350 (-484))) . T)) -(((|#2|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#2|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#2|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#2|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#2| |#2|) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T)) +(((|#2|) . T) (($) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) ((|#2|) . T) (((-350 (-485))) . T)) +(((|#2|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#2|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#2|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#2|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#2| |#2|) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) (((|#2|) . T)) -((((-1090) |#2|) |has| |#2| (-455 (-1090) |#2|)) ((|#2| |#2|) |has| |#2| (-260 |#2|))) +((((-1091) |#2|) |has| |#2| (-456 (-1091) |#2|)) ((|#2| |#2|) |has| |#2| (-260 |#2|))) (((|#2|) |has| |#2| (-260 |#2|))) (((|#2| $) |has| |#2| (-241 |#2| |#2|))) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-350 (-484))) . T) (((-484)) |has| |#2| (-580 (-484)))) -(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) +((($) . T) ((|#2|) . T) (((-350 (-485))) . T) (((-485)) |has| |#2| (-581 (-485)))) +(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) (((|#2|) . T)) -((((-484)) |has| |#2| (-796 (-484))) (((-330)) |has| |#2| (-796 (-330)))) -(|has| |#2| (-740)) -(|has| |#2| (-740)) -(|has| |#2| (-740)) -(OR (|has| |#2| (-740)) (|has| |#2| (-756))) -(OR (|has| |#2| (-740)) (|has| |#2| (-756))) -(|has| |#2| (-740)) -(|has| |#2| (-740)) -(|has| |#2| (-740)) +((((-485)) |has| |#2| (-797 (-485))) (((-330)) |has| |#2| (-797 (-330)))) +(|has| |#2| (-741)) +(|has| |#2| (-741)) +(|has| |#2| (-741)) +(OR (|has| |#2| (-741)) (|has| |#2| (-757))) +(OR (|has| |#2| (-741)) (|has| |#2| (-757))) +(|has| |#2| (-741)) +(|has| |#2| (-741)) +(|has| |#2| (-741)) (((|#2|) . T)) -(|has| |#2| (-821)) -(|has| |#2| (-933)) -((((-473)) |has| |#2| (-553 (-473))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484)))) (((-800 (-330))) |has| |#2| (-553 (-800 (-330)))) (((-330)) |has| |#2| (-933)) (((-179)) |has| |#2| (-933))) -((((-484)) . T) ((|#2|) . T) (($) . T) (((-350 (-484))) . T) (((-1090)) |has| |#2| (-950 (-1090)))) -((((-350 (-484))) |has| |#2| (-950 (-484))) (((-484)) |has| |#2| (-950 (-484))) (((-1090)) |has| |#2| (-950 (-1090))) ((|#2|) . T)) -(|has| |#2| (-1066)) +(|has| |#2| (-822)) +(|has| |#2| (-934)) +((((-474)) |has| |#2| (-554 (-474))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-330)) |has| |#2| (-934)) (((-179)) |has| |#2| (-934))) +((((-485)) . T) ((|#2|) . T) (($) . T) (((-350 (-485))) . T) (((-1091)) |has| |#2| (-951 (-1091)))) +((((-350 (-485))) |has| |#2| (-951 (-485))) (((-485)) |has| |#2| (-951 (-485))) (((-1091)) |has| |#2| (-951 (-1091))) ((|#2|) . T)) +(|has| |#2| (-1067)) (((|#2|) . T)) -(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) -(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) -((((-772)) OR (-12 (|has| |#1| (-552 (-772))) (|has| |#2| (-552 (-772)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))))) +(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) +(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) +((((-773)) OR (-12 (|has| |#1| (-553 (-773))) (|has| |#2| (-553 (-773)))) (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))))) ((((-130)) . T)) -((((-772)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-1090)) . T) ((|#1|) . T)) -((((-1090)) . T) ((|#1|) . T)) -((((-772)) . T)) -((((-614 |#1|)) . T)) -((((-614 |#1|)) . T)) -((((-772)) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -((((-1116 |#1|)) . T) (((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(|has| |#1| (-1013)) +((((-773)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-1091)) . T) ((|#1|) . T)) +((((-1091)) . T) ((|#1|) . T)) +((((-773)) . T)) +((((-615 |#1|)) . T)) +((((-615 |#1|)) . T)) +((((-773)) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +((((-1117 |#1|)) . T) (((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(|has| |#1| (-1014)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -((((-772)) . T)) -(OR (|has| |#1| (-320)) (|has| |#1| (-756))) -(OR (|has| |#1| (-320)) (|has| |#1| (-756))) +((((-773)) . T)) +(OR (|has| |#1| (-320)) (|has| |#1| (-757))) +(OR (|has| |#1| (-320)) (|has| |#1| (-757))) (((|#1|) . T)) -((((-772)) . T)) -((((-484)) . T)) +((((-773)) . T)) +((((-485)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-120)) ((($) . T)) -((((-772)) . T)) +((((-773)) . T)) ((($) . T)) -((($) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) . T)) -((($) . T) (((-350 (-484))) . T)) -((($) . T) (((-350 (-484))) . T)) -((($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-350 (-484))) . T) (($) . T)) -((((-484)) . T) (((-350 (-484))) . T) (($) . T)) -((((-772)) . T)) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-583 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(((|#1|) . T)) -((((-473)) |has| |#1| (-553 (-473)))) -((((-484) |#1|) . T)) -((((-1146 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-473)) |has| |#1| (-553 (-473))) (((-800 (-330))) |has| |#1| (-553 (-800 (-330)))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484))))) +((($) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) . T)) +((($) . T) (((-350 (-485))) . T)) +((($) . T) (((-350 (-485))) . T)) +((($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-350 (-485))) . T) (($) . T)) +((((-485)) . T) (((-350 (-485))) . T) (($) . T)) +((((-773)) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-584 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(((|#1|) . T)) +((((-474)) |has| |#1| (-554 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-474)) |has| |#1| (-554 (-474))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485))))) ((($) . T)) -(((|#1| (-469 (-1090))) . T)) +(((|#1| (-470 (-1091))) . T)) (((|#1|) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))) -((((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))) -(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))) -(((|#1| (-469 (-1090))) . T)) -(((|#1|) . T)) -((($) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) -(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) -(OR (|has| |#1| (-392)) (|has| |#1| (-821))) -((($ $) . T) (((-1090) $) . T) (((-1090) |#1|) . T)) -((((-1090)) . T)) -((($ (-1090)) . T)) -((((-1090)) . T)) -((((-330)) |has| |#1| (-796 (-330))) (((-484)) |has| |#1| (-796 (-484)))) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T) (((-1090)) . T)) -((((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ((|#1|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-1090)) . T)) -(((|#1| (-469 (-1090)) (-1090)) . T)) -((((-1033)) . T) (((-772)) . T)) +(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) +((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) +(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) +(((|#1| (-470 (-1091))) . T)) +(((|#1|) . T)) +((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) +(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) +(OR (|has| |#1| (-392)) (|has| |#1| (-822))) +((($ $) . T) (((-1091) $) . T) (((-1091) |#1|) . T)) +((((-1091)) . T)) +((($ (-1091)) . T)) +((((-1091)) . T)) +((((-330)) |has| |#1| (-797 (-330))) (((-485)) |has| |#1| (-797 (-485)))) +(|has| |#1| (-822)) +(|has| |#1| (-822)) +((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T) (((-1091)) . T)) +((((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-1091)) . T)) +(((|#1| (-470 (-1091)) (-1091)) . T)) +((((-1034)) . T) (((-773)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(OR (|has| |#1| (-146)) (|has| |#1| (-495))) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(OR (|has| |#1| (-146)) (|has| |#1| (-496))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((((-772)) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (($) . T)) -((($) |has| |#1| (-495)) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) (((-484)) . T)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -(((|#1|) . T)) -(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484))))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((((-773)) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T)) +((($) |has| |#1| (-496)) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-485)) . T)) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +(((|#1|) . T)) +(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) (((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) (((|#1|) . T)) -((((-473)) |has| |#1| (-553 (-473)))) -((((-484) |#1|) . T)) -((((-1146 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) +((((-474)) |has| |#1| (-554 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) +(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-717)) (|has| |#2| (-717))) -(-12 (|has| |#1| (-717)) (|has| |#2| (-717))) -(OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) -(OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) -(-12 (|has| |#1| (-717)) (|has| |#2| (-717))) -(-12 (|has| |#1| (-717)) (|has| |#2| (-717))) -((((-484)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +(-12 (|has| |#1| (-718)) (|has| |#2| (-718))) +(-12 (|has| |#1| (-718)) (|has| |#2| (-718))) +(OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) +(OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) +(-12 (|has| |#1| (-718)) (|has| |#2| (-718))) +(-12 (|has| |#1| (-718)) (|has| |#2| (-718))) +((((-485)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) -(OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) -(OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) +(OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) +(OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) -((((-772)) . T)) -((((-772)) . T)) -(((|#1|) . T)) -((((-772)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-583 (-830))) . T) (((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) +((((-773)) . T)) +((((-773)) . T)) +(((|#1|) . T)) +((((-773)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-584 (-831))) . T) (((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) ((((-197 |#1| |#2|) |#2|) . T)) -((((-772)) . T)) -((((-484)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-772)) . T)) +((((-773)) . T)) +((((-485)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-773)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -((((-473)) |has| |#1| (-553 (-473)))) +((((-474)) |has| |#1| (-554 (-474)))) (((|#1|) . T)) -((((-1090)) |has| |#1| (-809 (-1090)))) -((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090))))) -((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090))))) +((((-1091)) |has| |#1| (-810 (-1091)))) +((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) +((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091))))) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) (|has| |#1| (-190)) (|has| |#1| (-312)) (OR (|has| |#1| (-246)) (|has| |#1| (-312))) -((((-484)) . T) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-950 (-350 (-484)))))) -(((|#1|) . T) (((-350 (-484))) |has| |#1| (-312))) -(((|#1|) . T) (((-350 (-484))) |has| |#1| (-312))) -((($) . T) (((-484)) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-312))) -(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-484))) |has| |#1| (-312))) -(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-484))) |has| |#1| (-312))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-484)) (-350 (-484))) |has| |#1| (-312))) -(((|#1|) . T) (((-350 (-484))) |has| |#1| (-312))) -(((|#1|) . T)) -((((-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) +((((-485)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485)))))) +(((|#1|) . T) (((-350 (-485))) |has| |#1| (-312))) +(((|#1|) . T) (((-350 (-485))) |has| |#1| (-312))) +((($) . T) (((-485)) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-312))) +(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-485))) |has| |#1| (-312))) +(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-485))) |has| |#1| (-312))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-485)) (-350 (-485))) |has| |#1| (-312))) +(((|#1|) . T) (((-350 (-485))) |has| |#1| (-312))) +(((|#1|) . T)) +((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|))) (((|#1|) |has| |#1| (-260 |#1|))) (((|#1| $) |has| |#1| (-241 |#1| |#1|))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-312)) (((-484)) |has| |#1| (-580 (-484)))) -(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) +((($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-312)) (((-485)) |has| |#1| (-581 (-485)))) +(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) (((|#1|) . T)) -(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484))))) -(|has| |#1| (-756)) -(|has| |#1| (-756)) +(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) +(|has| |#1| (-757)) +(|has| |#1| (-757)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(|has| |#1| (-1014)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-350 |#2|) |#3|) . T)) -((((-350 (-484))) |has| (-350 |#2|) (-950 (-350 (-484)))) (((-484)) |has| (-350 |#2|) (-950 (-484))) (((-350 |#2|)) . T)) +((((-350 (-485))) |has| (-350 |#2|) (-951 (-350 (-485)))) (((-485)) |has| (-350 |#2|) (-951 (-485))) (((-350 |#2|)) . T)) ((((-350 |#2|)) . T)) -((((-484)) |has| (-350 |#2|) (-580 (-484))) (((-350 |#2|)) . T)) +((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T)) ((((-350 |#2|)) . T)) ((((-350 |#2|) |#3|) . T)) (|has| (-350 |#2|) (-120)) ((((-350 |#2|) |#3|) . T)) (|has| (-350 |#2|) (-118)) -((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) (|has| (-350 |#2|) (-190)) ((($) OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189)))) (OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189))) ((((-350 |#2|)) . T)) -((($ (-1090)) OR (|has| (-350 |#2|) (-809 (-1090))) (|has| (-350 |#2|) (-811 (-1090))))) -((((-1090)) OR (|has| (-350 |#2|) (-809 (-1090))) (|has| (-350 |#2|) (-811 (-1090))))) -((((-1090)) |has| (-350 |#2|) (-809 (-1090)))) +((($ (-1091)) OR (|has| (-350 |#2|) (-810 (-1091))) (|has| (-350 |#2|) (-812 (-1091))))) +((((-1091)) OR (|has| (-350 |#2|) (-810 (-1091))) (|has| (-350 |#2|) (-812 (-1091))))) +((((-1091)) |has| (-350 |#2|) (-810 (-1091)))) ((((-350 |#2|)) . T)) (((|#3|) . T)) -((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T)) -((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-772)) . T)) -((((-350 |#2|)) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -((((-484)) |has| (-350 |#2|) (-580 (-484))) (((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T)) -((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T)) +((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) +((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-773)) . T)) +((((-350 |#2|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T)) +((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T)) (((|#1| |#2| |#3|) . T)) -((((-350 (-484))) . T) (((-772)) . T)) -((((-484)) . T)) -((((-484)) . T)) +((((-350 (-485))) . T) (((-773)) . T)) +((((-485)) . T)) +((((-485)) . T)) ((($) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((((-484)) . T) (((-350 (-484))) . T) (($) . T)) -((((-484)) . T) (((-350 (-484))) . T) (($) . T)) -((((-484) (-484)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-484)) . T)) -((((-473)) . T) (((-800 (-484))) . T) (((-330)) . T) (((-179)) . T)) -((((-350 (-484))) . T) (((-484)) . T)) -((((-484)) . T) (($) . T) (((-350 (-484))) . T)) -((((-484)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-772)) . T)) -(((|#1|) . T) (($) . T) (((-484)) . T) (((-350 (-484))) . T)) -(((|#1|) . T) (($) . T) (((-350 (-484))) . T) (((-484)) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) . T) (((-484) (-484)) . T) (($ $) . T)) -(((|#1|) . T) (((-484)) . T) (((-350 (-484))) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) . T)) -(((|#1|) . T) (((-484)) OR (|has| |#1| (-950 (-484))) (|has| (-350 (-484)) (-950 (-484)))) (((-350 (-484))) . T)) -((((-772)) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((((-485)) . T) (((-350 (-485))) . T) (($) . T)) +((((-485)) . T) (((-350 (-485))) . T) (($) . T)) +((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-485)) . T)) +((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T)) +((((-350 (-485))) . T) (((-485)) . T)) +((((-485)) . T) (($) . T) (((-350 (-485))) . T)) +((((-485)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-773)) . T)) +(((|#1|) . T) (($) . T) (((-485)) . T) (((-350 (-485))) . T)) +(((|#1|) . T) (($) . T) (((-350 (-485))) . T) (((-485)) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) . T) (((-485) (-485)) . T) (($ $) . T)) +(((|#1|) . T) (((-485)) . T) (((-350 (-485))) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) . T)) +(((|#1|) . T) (((-485)) OR (|has| |#1| (-951 (-485))) (|has| (-350 (-485)) (-951 (-485)))) (((-350 (-485))) . T)) +((((-773)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-583 |#4|)) . T) (((-772)) . T)) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) +((((-584 |#4|)) . T) (((-773)) . T)) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) (((|#4|) . T)) -((((-473)) |has| |#4| (-553 (-473)))) +((((-474)) |has| |#4| (-554 (-474)))) (((|#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) @@ -2959,46 +2975,46 @@ (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-772)) . T)) -(((|#1|) . T) (((-484)) . T) (($) . T)) +((((-773)) . T)) +(((|#1|) . T) (((-485)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-484)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -(((|#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T)) -((((-703 |#1| (-773 |#2|))) . T)) -((((-583 (-703 |#1| (-773 |#2|)))) . T) (((-772)) . T)) -((((-703 |#1| (-773 |#2|))) |has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|))))) -((((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) |has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|))))) -((((-703 |#1| (-773 |#2|))) . T)) -((((-473)) |has| (-703 |#1| (-773 |#2|)) (-553 (-473)))) -((((-703 |#1| (-773 |#2|))) . T)) -(((|#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T)) -(((|#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T)) -((((-473)) |has| |#3| (-553 (-473)))) +(((|#1|) . T) (((-485)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +(((|#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T)) +((((-704 |#1| (-774 |#2|))) . T)) +((((-584 (-704 |#1| (-774 |#2|)))) . T) (((-773)) . T)) +((((-704 |#1| (-774 |#2|))) |has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|))))) +((((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) |has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|))))) +((((-704 |#1| (-774 |#2|))) . T)) +((((-474)) |has| (-704 |#1| (-774 |#2|)) (-554 (-474)))) +((((-704 |#1| (-774 |#2|))) . T)) +(((|#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T)) +(((|#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T)) +((((-474)) |has| |#3| (-554 (-474)))) (((|#3|) |has| |#3| (-312))) (((|#3| |#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-630 |#3|)) . T) (((-772)) . T)) -((((-484)) . T) ((|#3|) . T)) +((((-631 |#3|)) . T) (((-773)) . T)) +((((-485)) . T) ((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013)))) -(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013)))) +(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014)))) +(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014)))) (((|#3|) . T)) (((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) (((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) (((|#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) . T)) -(|has| |#1| (-1013)) -((((-772)) |has| |#1| (-1013))) -(|has| |#1| (-1013)) -((((-772)) . T)) +(|has| |#1| (-1014)) +((((-773)) |has| |#1| (-1014))) +(|has| |#1| (-1014)) +((((-773)) . T)) (((|#1| |#2|) . T)) -((((-1090)) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T)) +((((-1091)) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3006,31 +3022,31 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-484)) . T) (($) . T)) -((((-484)) . T)) -((($) . T) (((-484)) . T)) -((((-484)) . T)) -((((-473)) . T) (((-484)) . T) (((-800 (-484))) . T) (((-330)) . T) (((-179)) . T)) -((((-484)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) +((((-485)) . T) (($) . T)) +((((-485)) . T)) +((($) . T) (((-485)) . T)) +((((-485)) . T)) +((((-474)) . T) (((-485)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T)) +((((-485)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) ((((-249 |#3|)) . T)) ((((-249 |#3|)) . T)) (((|#3| |#3|) . T)) -((((-772)) . T)) -((((-772)) . T)) +((((-773)) . T)) +((((-773)) . T)) (((|#3| |#3|) . T)) -((((-772)) . T)) -((((-772)) . T)) +((((-773)) . T)) +((((-773)) . T)) (((|#2|) . T)) (((|#1|) |has| |#1| (-312))) -((((-1090)) -12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090))))) -((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))))) -((($ (-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))))) +((((-1091)) -12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))))) +((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))))) +((($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))))) (((|#1|) |has| |#1| (-312))) (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ((($) OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299)))) @@ -3049,164 +3065,164 @@ (OR (|has| |#1| (-118)) (|has| |#1| (-299))) (|has| |#1| (-299)) (((|#1| |#2|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($ $) . T) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) -((($) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) -((((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-950 (-350 (-484))))) ((|#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($ $) . T) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T)) +((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T)) +((((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T)) (|has| |#1| (-120)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((($) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) -(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) +((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) +(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) (((|#1|) . T)) -(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484))))) +(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) (((|#1| |#2|) . T)) -((((-1090)) . T)) -((((-772)) . T)) -((((-772)) . T)) +((((-1091)) . T)) +((((-773)) . T)) +((((-773)) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-190)) (|has| |#1| (-189))) ((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)))) -((((-772)) . T)) +((((-773)) . T)) (|has| |#1| (-190)) ((($) . T)) -(((|#1| (-469 (-1000 (-1090))) (-1000 (-1090))) . T)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (((-1000 (-1090))) . T)) -((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (($ (-1000 (-1090))) . T)) -((((-1090)) |has| |#1| (-809 (-1090))) (((-1000 (-1090))) . T)) -((($ $) . T) (((-1090) $) |has| |#1| (-190)) (((-1090) |#1|) |has| |#1| (-190)) (((-1000 (-1090)) |#1|) . T) (((-1000 (-1090)) $) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-821))) -((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-469 (-1000 (-1090)))) . T)) -(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(((|#1| (-470 (-1001 (-1091))) (-1001 (-1091))) . T)) +(|has| |#1| (-822)) +(|has| |#1| (-822)) +((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-1001 (-1091))) . T)) +((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-1001 (-1091))) . T)) +((((-1091)) |has| |#1| (-810 (-1091))) (((-1001 (-1091))) . T)) +((($ $) . T) (((-1091) $) |has| |#1| (-190)) (((-1091) |#1|) |has| |#1| (-190)) (((-1001 (-1091)) |#1|) . T) (((-1001 (-1091)) $) . T)) +(OR (|has| |#1| (-392)) (|has| |#1| (-822))) +((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-470 (-1001 (-1091)))) . T)) +(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((((-484)) . T) (($) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -(((|#1|) . T)) -(((|#1| (-469 (-1000 (-1090)))) . T)) -((((-1039 |#1| (-1090))) . T) (((-1000 (-1090))) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-1090)) . T)) -((((-1039 |#1| (-1090))) . T) (((-484)) . T) (((-1000 (-1090))) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) (((-1090)) . T)) -(((|#1| (-1090) (-1000 (-1090)) (-469 (-1000 (-1090)))) . T)) +((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +(((|#1|) . T)) +(((|#1| (-470 (-1001 (-1091)))) . T)) +((((-1040 |#1| (-1091))) . T) (((-1001 (-1091))) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-1091)) . T)) +((((-1040 |#1| (-1091))) . T) (((-485)) . T) (((-1001 (-1091))) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-1091)) . T)) +(((|#1| (-1091) (-1001 (-1091)) (-470 (-1001 (-1091)))) . T)) ((($) . T)) -((((-772)) . T)) +((((-773)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-583 |#1|)) |has| |#1| (-755))) -(|has| |#1| (-1013)) -(|has| |#1| (-1013)) -(|has| |#1| (-1013)) -((((-772)) |has| |#1| (-1013))) -(|has| |#1| (-1013)) +(((|#1| (-584 |#1|)) |has| |#1| (-756))) +(|has| |#1| (-1014)) +(|has| |#1| (-1014)) +(|has| |#1| (-1014)) +((((-773)) |has| |#1| (-1014))) +(|has| |#1| (-1014)) (((|#1|) . T)) (((|#1|) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -(|has| (-1001 |#1|) (-1013)) -((((-772)) |has| (-1001 |#1|) (-1013))) -(|has| (-1001 |#1|) (-1013)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +(|has| (-1002 |#1|) (-1014)) +((((-773)) |has| (-1002 |#1|) (-1014))) +(|has| (-1002 |#1|) (-1014)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-473)) |has| |#1| (-553 (-473)))) +((((-474)) |has| |#1| (-554 (-474)))) (((|#1|) . T)) (|has| |#1| (-320)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-772)) . T)) -((((-583 $)) . T) (((-1073)) . T) (((-1090)) . T) (((-484)) . T) (((-179)) . T) (((-772)) . T)) -((((-484) $) . T) (((-583 (-484)) $) . T)) -((((-772)) . T)) -((((-1073) (-1090) (-484) (-179) (-772)) . T)) -((((-583 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -((((-484) $) . T) (((-583 (-484)) $) . T)) -((((-772)) . T)) +((((-773)) . T)) +((((-584 $)) . T) (((-1074)) . T) (((-1091)) . T) (((-485)) . T) (((-179)) . T) (((-773)) . T)) +((((-485) $) . T) (((-584 (-485)) $) . T)) +((((-773)) . T)) +((((-1074) (-1091) (-485) (-179) (-773)) . T)) +((((-584 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +((((-485) $) . T) (((-584 (-485)) $) . T)) +((((-773)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -((((-772)) . T)) +((((-773)) . T)) (((|#1|) . T)) (((|#1| |#1| |#1|) . T)) (((|#1|) . T)) -(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-717)) (|has| |#3| (-961))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1013))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1013))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-717)) (|has| |#3| (-961))) -(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-717)) (|has| |#3| (-961))) -(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961)))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961)))) -((((-772)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-552 (-772))) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1013))) (((-1179 |#3|)) . T)) -(((|#3|) |has| |#3| (-961))) -((((-1090)) -12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961)))) -((((-1090)) OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))))) -((($ (-1090)) OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))))) -(((|#3|) |has| |#3| (-961))) -(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) -((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961))))) -(|has| |#3| (-961)) -(|has| |#3| (-961)) -(|has| |#3| (-961)) -(|has| |#3| (-961)) -(|has| |#3| (-961)) -((((-484)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961))) (($) |has| |#3| (-961))) -(-12 (|has| |#3| (-190)) (|has| |#3| (-961))) +(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-718)) (|has| |#3| (-962))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1014))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1014))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-718)) (|has| |#3| (-962))) +(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-718)) (|has| |#3| (-962))) +(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962)))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962)))) +((((-773)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-553 (-773))) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1014))) (((-1180 |#3|)) . T)) +(((|#3|) |has| |#3| (-962))) +((((-1091)) -12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962)))) +((((-1091)) OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))))) +((($ (-1091)) OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))))) +(((|#3|) |has| |#3| (-962))) +(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) +((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962))))) +(|has| |#3| (-962)) +(|has| |#3| (-962)) +(|has| |#3| (-962)) +(|has| |#3| (-962)) +(|has| |#3| (-962)) +((((-485)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962))) (($) |has| |#3| (-962))) +(-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (|has| |#3| (-320)) (((|#3|) . T)) -(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013)))) -(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013)))) +(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014)))) +(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014)))) (((|#3|) . T)) -(((|#3|) |has| |#3| (-961))) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))) (($) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961)))) -(((|#3|) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961)))) -(((|#3|) |has| |#3| (-1013))) -((((-484)) OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ((|#3|) |has| |#3| (-1013)) (((-350 (-484))) -12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013)))) -(((|#3|) |has| |#3| (-1013)) (((-484)) -12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (((-350 (-484))) -12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013)))) -((((-484) |#3|) . T)) -((((-484) |#3|) . T)) -((((-484) |#3|) . T)) -(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)))) +(((|#3|) |has| |#3| (-962))) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))) (($) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962)))) +(((|#3|) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962)))) +(((|#3|) |has| |#3| (-1014))) +((((-485)) OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ((|#3|) |has| |#3| (-1014)) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014)))) +(((|#3|) |has| |#3| (-1014)) (((-485)) -12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014)))) +((((-485) |#3|) . T)) +((((-485) |#3|) . T)) +((((-485) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)))) (((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)))) -(|has| |#3| (-717)) -(|has| |#3| (-717)) -(OR (|has| |#3| (-717)) (|has| |#3| (-756))) -(OR (|has| |#3| (-717)) (|has| |#3| (-756))) -(|has| |#3| (-717)) -(|has| |#3| (-717)) +(|has| |#3| (-718)) +(|has| |#3| (-718)) +(OR (|has| |#3| (-718)) (|has| |#3| (-757))) +(OR (|has| |#3| (-718)) (|has| |#3| (-757))) +(|has| |#3| (-718)) +(|has| |#3| (-718)) (((|#3|) |has| |#3| (-312))) (((|#1| |#3|) . T)) -((((-772)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T)) +((((-773)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3214,792 +3230,792 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-484)) . T) (($) . T)) -((((-484)) . T)) -((($) . T) (((-484)) . T)) -((((-484)) . T)) -((((-473)) . T) (((-484)) . T) (((-800 (-484))) . T) (((-330)) . T) (((-179)) . T)) -((((-484)) . T)) -((((-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473)))) (((-800 (-330))) -12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) (((-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484)))))) +((((-485)) . T) (($) . T)) +((((-485)) . T)) +((($) . T) (((-485)) . T)) +((((-485)) . T)) +((((-474)) . T) (((-485)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T)) +((((-485)) . T)) +((((-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))) (((-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) (((-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485)))))) ((($) . T)) -(((|#1| (-469 |#2|)) . T)) +(((|#1| (-470 |#2|)) . T)) (((|#1|) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))) -((((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))) -(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))) -(((|#1| (-469 |#2|)) . T)) -(((|#1|) . T)) -((($) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) -(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484)))) -(OR (|has| |#1| (-392)) (|has| |#1| (-821))) +(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) +((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) +(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))) +(((|#1| (-470 |#2|)) . T)) +(((|#1|) . T)) +((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) +(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485)))) +(OR (|has| |#1| (-392)) (|has| |#1| (-822))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -((((-330)) -12 (|has| |#1| (-796 (-330))) (|has| |#2| (-796 (-330)))) (((-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484))))) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T) ((|#2|) . T)) -((((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ((|#1|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#2|) . T)) -(((|#1| (-469 |#2|) |#2|) . T)) +((((-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330)))) (((-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485))))) +(|has| |#1| (-822)) +(|has| |#1| (-822)) +((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T) ((|#2|) . T)) +((((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#2|) . T)) +(((|#1| (-470 |#2|) |#2|) . T)) ((($) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#2|) . T)) -((((-772)) . T)) +((((-773)) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(((|#1| (-469 |#2|) |#2|) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T)) -((($) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T)) +(((|#1| (-470 |#2|) |#2|) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) +((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-495))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -((((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -((((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -(((|#1| (-469 |#2|)) . T)) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-496))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +((((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +(((|#1| (-470 |#2|)) . T)) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) (((|#1| |#2|) . T)) -((((-772)) . T)) -(((|#1|) . T)) -((((-1095)) . T)) -((((-1095)) . T)) -((((-1095)) . T) (((-772)) . T)) -((((-772)) . T)) -((((-1054 |#1| |#2|)) . T)) -((((-1054 |#1| |#2|)) . T)) -((((-1054 |#1| |#2|) (-1054 |#1| |#2|)) |has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|)))) -((((-1054 |#1| |#2|)) |has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|)))) -((((-772)) . T)) -((((-1054 |#1| |#2|)) . T)) -((((-473)) |has| |#2| (-553 (-473)))) -(((|#2|) |has| |#2| (-6 (-3997 "*")))) +((((-773)) . T)) +(((|#1|) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T) (((-773)) . T)) +((((-773)) . T)) +((((-1055 |#1| |#2|)) . T)) +((((-1055 |#1| |#2|)) . T)) +((((-1055 |#1| |#2|) (-1055 |#1| |#2|)) |has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|)))) +((((-1055 |#1| |#2|)) |has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|)))) +((((-773)) . T)) +((((-1055 |#1| |#2|)) . T)) +((((-474)) |has| |#2| (-554 (-474)))) +(((|#2|) |has| |#2| (-6 (-3998 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-630 |#2|)) . T) (((-772)) . T)) -((($) . T) (((-484)) . T) ((|#2|) . T)) -(((|#2|) OR (|has| |#2| (-6 (-3997 "*"))) (|has| |#2| (-146)))) -(((|#2|) OR (|has| |#2| (-6 (-3997 "*"))) (|has| |#2| (-146)))) +((((-631 |#2|)) . T) (((-773)) . T)) +((($) . T) (((-485)) . T) ((|#2|) . T)) +(((|#2|) OR (|has| |#2| (-6 (-3998 "*"))) (|has| |#2| (-146)))) +(((|#2|) OR (|has| |#2| (-6 (-3998 "*"))) (|has| |#2| (-146)))) (((|#2|) . T)) -((((-1090)) |has| |#2| (-809 (-1090)))) -((((-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090))))) -((($ (-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090))))) +((((-1091)) |has| |#2| (-810 (-1091)))) +((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) +((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091))))) (((|#2|) . T)) (OR (|has| |#2| (-190)) (|has| |#2| (-189))) ((($) OR (|has| |#2| (-190)) (|has| |#2| (-189)))) (|has| |#2| (-190)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) -(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484)))) +((($) . T) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) +(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485)))) (((|#2|) . T)) -((((-484)) . T) ((|#2|) . T) (((-350 (-484))) |has| |#2| (-950 (-350 (-484))))) -(((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-350 (-484))) |has| |#2| (-950 (-350 (-484))))) +((((-485)) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-951 (-350 (-485))))) +(((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485))))) (((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) -(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) (((|#2|) . T)) (((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-473)) |has| |#4| (-553 (-473)))) +((((-474)) |has| |#4| (-554 (-474)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) (((|#4|) . T)) -((((-772)) . T) (((-583 |#4|)) . T)) +((((-773)) . T) (((-584 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(|has| |#1| (-1014)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-772)) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-773)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-583 |#1|)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-584 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(|has| |#1| (-1013)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(|has| |#1| (-1014)) (((|#1|) . T)) -((((-473)) |has| |#1| (-553 (-473)))) -((((-484) |#1|) . T)) -((((-1146 (-484)) $) . T) (((-484) |#1|) . T)) -((((-484) |#1|) . T)) +((((-474)) |has| |#1| (-554 (-474)))) +((((-485) |#1|) . T)) +((((-1147 (-485)) $) . T) (((-485) |#1|) . T)) +((((-485) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-117)) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-772)) . T)) +((((-773)) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-484) (-117)) . T)) -((((-484) (-117)) . T)) -((((-484) (-117)) . T) (((-1146 (-484)) $) . T)) +((((-485) (-117)) . T)) +((((-485) (-117)) . T)) +((((-485) (-117)) . T) (((-1147 (-485)) $) . T)) ((((-117)) . T)) ((((-117)) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T)) -((((-772)) . T)) -((((-1073) |#1|) . T)) -((((-1073) |#1|) . T)) -((((-1073) |#1|) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) |has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) |has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-1073) |#1|) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) . T)) -((((-1073) |#1|) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1089 |#1| |#2| |#3|)) . T)) -((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1089 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|))))) -((((-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|)))) (((-1090) (-1089 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-455 (-1090) (-1089 |#1| |#2| |#3|))))) -((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-773)) . T)) +((((-1074) |#1|) . T)) +((((-1074) |#1|) . T)) +((((-1074) |#1|) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T) ((|#1|) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-1074) |#1|) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) . T)) +((((-1074) |#1|) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1090 |#1| |#2| |#3|)) . T)) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1090 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))))) +((((-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|)))) (((-1091) (-1090 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-456 (-1091) (-1090 |#1| |#2| |#3|))))) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) -((($) OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) -(OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) -((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312))) -((($ (-1176 |#2|)) . T) (($ (-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312))) -(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-120)))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-118)))) -((((-772)) . T)) -(((|#1|) . T)) -((((-1089 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-241 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)))) (($ $) . T) (((-484) |#1|) . T)) -(((|#1| (-484) (-994)) . T)) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-484)) . T) (($) . T) ((|#1|) . T)) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-1089 |#1| |#2| |#3|)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146))) -(((|#1| (-484)) . T)) -(((|#1| (-484)) . T)) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(((|#1| (-1089 |#1| |#2| |#3|)) . T)) +(OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) +((($) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) +(OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +((($ (-1177 |#2|)) . T) (($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-120)))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-118)))) +((((-773)) . T)) +(((|#1|) . T)) +((((-1090 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-241 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)))) (($ $) . T) (((-485) |#1|) . T)) +(((|#1| (-485) (-995)) . T)) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-485)) . T) (($) . T) ((|#1|) . T)) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-1090 |#1| |#2| |#3|)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-485)) . T)) +(((|#1| (-485)) . T)) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(((|#1| (-1090 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-772)) . T)) -((((-350 $) (-350 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T)) +((((-773)) . T)) +((((-350 $) (-350 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-821))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) -(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) +(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-822))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) +(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (|has| |#1| (-312)) -(((|#1| (-694) (-994)) . T)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (((-994)) . T)) -((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (($ (-994)) . T)) -((((-1090)) |has| |#1| (-809 (-1090))) (((-994)) . T)) -((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-694)) . T)) +(((|#1| (-695) (-995)) . T)) +(|has| |#1| (-822)) +(|has| |#1| (-822)) +((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-995)) . T)) +((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-995)) . T)) +((((-1091)) |has| |#1| (-810 (-1091))) (((-995)) . T)) +((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-695)) . T)) (|has| |#1| (-120)) (|has| |#1| (-118)) -((((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-994)) . T) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484)))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((((-484)) . T) (($) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -(((|#1|) . T)) -((((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484))))) -(((|#1| (-694)) . T)) -((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T)) +((((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-995)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485)))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +(((|#1|) . T)) +((((-995)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) +(((|#1| (-695)) . T)) +((((-995) |#1|) . T) (((-995) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1066)) -(((|#1|) . T)) -((((-1089 |#1| |#2| |#3|)) . T) (((-1082 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) -((($ $) . T) (((-350 (-484)) |#1|) . T)) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))) -((($ (-1176 |#2|)) . T) (($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))) -(((|#1| (-350 (-484)) (-994)) . T)) +(|has| |#1| (-1067)) +(((|#1|) . T)) +((((-1090 |#1| |#2| |#3|)) . T) (((-1083 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) +((($ $) . T) (((-350 (-485)) |#1|) . T)) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) +((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) +(((|#1| (-350 (-485)) (-995)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#1| (-350 (-484))) . T)) -(((|#1| (-350 (-484))) . T)) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) +(((|#1| (-350 (-485))) . T)) +(((|#1| (-350 (-485))) . T)) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) -((((-772)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312)))) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312)))) -(((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +((((-773)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) +(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) -((((-1176 |#2|)) . T) (((-1089 |#1| |#2| |#3|)) . T) (((-1082 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +((((-1177 |#2|)) . T) (((-1090 |#1| |#2| |#3|)) . T) (((-1083 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(((|#1| (-1082 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(((|#1| (-694)) . T)) -(((|#1| (-694)) . T)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(OR (|has| |#1| (-146)) (|has| |#1| (-495))) +(((|#1| (-1083 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(((|#1| (-695)) . T)) +(((|#1| (-695)) . T)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(OR (|has| |#1| (-146)) (|has| |#1| (-496))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -(((|#1| (-694) (-994)) . T)) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) -((($ (-1176 |#2|)) . T) (($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) -((((-694) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-694) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-694) |#1|)))) -((((-772)) . T)) -(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (($) . T)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (((-484)) . T)) -(|has| |#1| (-15 * (|#1| (-694) |#1|))) -(((|#1|) . T)) -((((-330)) . T) (((-484)) . T)) -((((-446)) . T)) -((((-446)) . T) (((-1073)) . T)) -((((-800 (-330))) . T) (((-800 (-484))) . T) (((-1090)) . T) (((-473)) . T)) -((((-772)) . T)) -(((|#1| (-884)) . T)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(OR (|has| |#1| (-146)) (|has| |#1| (-495))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +(((|#1| (-695) (-995)) . T)) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) +((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) +((((-695) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-695) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-695) |#1|)))) +((((-773)) . T)) +(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T)) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T)) +(|has| |#1| (-15 * (|#1| (-695) |#1|))) +(((|#1|) . T)) +((((-330)) . T) (((-485)) . T)) +((((-447)) . T)) +((((-447)) . T) (((-1074)) . T)) +((((-801 (-330))) . T) (((-801 (-485))) . T) (((-1091)) . T) (((-474)) . T)) +((((-773)) . T)) +(((|#1| (-885)) . T)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(OR (|has| |#1| (-146)) (|has| |#1| (-496))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((((-772)) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (($) . T)) -((($) |has| |#1| (-495)) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) (((-484)) . T)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -(((|#1|) . T)) -(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484))))) -(((|#1| (-884)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-1073)) . T) (((-446)) . T) (((-179)) . T) (((-484)) . T)) -((((-1073)) . T) (((-446)) . T) (((-179)) . T) (((-484)) . T)) -((((-473)) . T) (((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-772)) . T)) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((((-773)) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T)) +((($) |has| |#1| (-496)) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-485)) . T)) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +(((|#1|) . T)) +(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485))))) +(((|#1| (-885)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-1074)) . T) (((-447)) . T) (((-179)) . T) (((-485)) . T)) +((((-1074)) . T) (((-447)) . T) (((-179)) . T) (((-485)) . T)) +((((-474)) . T) (((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-773)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013)))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014)))) (((|#1| |#2|) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-772)) . T)) +((((-773)) . T)) (((|#1|) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-338) (-1073)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-338) (-1074)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1013)) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1013))) +(|has| |#1| (-1014)) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1014))) (((|#1|) . T)) ((($) . T)) -((($ $) . T) (((-1090) $) . T)) -((((-1090)) . T)) -((((-772)) . T)) -((($ (-1090)) . T)) -((((-1090)) . T)) -(((|#1| (-469 (-1090)) (-1090)) . T)) -((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T)) -((($) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T)) +((($ $) . T) (((-1091) $) . T)) +((((-1091)) . T)) +((((-773)) . T)) +((($ (-1091)) . T)) +((((-1091)) . T)) +(((|#1| (-470 (-1091)) (-1091)) . T)) +((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) +((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(OR (|has| |#1| (-146)) (|has| |#1| (-495))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -((((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495)))) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -((((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495))) -(((|#1| (-469 (-1090))) . T)) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(((|#1| (-1090)) . T)) -(|has| |#1| (-1013)) -(|has| |#1| (-1013)) -(|has| |#1| (-1013)) -(|has| |#1| (-1013)) -((((-869 |#1|)) . T)) -((((-772)) |has| |#1| (-552 (-772))) (((-869 |#1|)) . T)) -((((-869 |#1|)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1169 |#1| |#2| |#3|)) . T)) -((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312))) -((((-1169 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|))))) -((((-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|)))) (((-1090) (-1169 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-455 (-1090) (-1169 |#1| |#2| |#3|))))) -((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312))) +(OR (|has| |#1| (-146)) (|has| |#1| (-496))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496)))) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +((((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496))) +(((|#1| (-470 (-1091))) . T)) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(((|#1| (-1091)) . T)) +(|has| |#1| (-1014)) +(|has| |#1| (-1014)) +(|has| |#1| (-1014)) +(|has| |#1| (-1014)) +((((-870 |#1|)) . T)) +((((-773)) |has| |#1| (-553 (-773))) (((-870 |#1|)) . T)) +((((-870 |#1|)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1170 |#1| |#2| |#3|)) . T)) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +((((-1170 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))))) +((((-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|)))) (((-1091) (-1170 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-456 (-1091) (-1170 |#1| |#2| |#3|))))) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) -((($) OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) -(OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) -((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312))) -((($ (-1176 |#2|)) . T) (($ (-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312))) -(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-120)))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-118)))) -((((-772)) . T)) -(((|#1|) . T)) -((((-1169 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-241 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)))) (($ $) . T) (((-484) |#1|) . T)) -(((|#1| (-484) (-994)) . T)) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-484)) . T) (($) . T) ((|#1|) . T)) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-1169 |#1| |#2| |#3|)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146))) -(((|#1| (-484)) . T)) -(((|#1| (-484)) . T)) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(((|#1| (-1169 |#1| |#2| |#3|)) . T)) +(OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) +((($) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) +(OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +((($ (-1177 |#2|)) . T) (($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-120)))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-118)))) +((((-773)) . T)) +(((|#1|) . T)) +((((-1170 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-241 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)))) (($ $) . T) (((-485) |#1|) . T)) +(((|#1| (-485) (-995)) . T)) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T)) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-485)) . T) (($) . T) ((|#1|) . T)) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-1170 |#1| |#2| |#3|)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-485)) . T)) +(((|#1| (-485)) . T)) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(((|#1| (-1170 |#1| |#2| |#3|)) . T)) (((|#2|) |has| |#1| (-312))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-1066))) -(((|#2|) . T) (((-1090)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1090)))) (((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) (((-350 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484))))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-933))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-821))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-1067))) +(((|#2|) . T) (((-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) (((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) (((-350 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485))))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-934))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-822))) (((|#2|) |has| |#1| (-312))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-740))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-740))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-740))) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) (-12 (|has| |#1| (-312)) (|has| |#2| (-756)))) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) (-12 (|has| |#1| (-312)) (|has| |#2| (-756)))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-740))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-740))) -(-12 (|has| |#1| (-312)) (|has| |#2| (-740))) -((((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-330)))) (((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-484))))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-741))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-741))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-741))) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) (-12 (|has| |#1| (-312)) (|has| |#2| (-757)))) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) (-12 (|has| |#1| (-312)) (|has| |#2| (-757)))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-741))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-741))) +(-12 (|has| |#1| (-312)) (|has| |#2| (-741))) +((((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-330)))) (((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-485))))) (((|#2|) |has| |#1| (-312))) -((((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ((|#2|) |has| |#1| (-312))) +((((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ((|#2|) |has| |#1| (-312))) (((|#2|) |has| |#1| (-312))) (((|#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) (((-1090) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1090) |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) (((-1091) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1091) |#2|)))) (((|#2|) |has| |#1| (-312))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) -((($) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) -(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) +((($) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) +(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (((|#2|) |has| |#1| (-312))) -((($ (-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) -((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))) +((($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) +((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))) (((|#2|) |has| |#1| (-312))) -((((-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) (((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) (((-800 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-330))))) (((-800 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-484))))) (((-473)) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-473))))) -(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (-12 (|has| |#1| (-312)) (|has| |#2| (-740)))) +((((-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) (((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) (((-801 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-330))))) (((-801 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-485))))) (((-474)) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-474))))) +(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (-12 (|has| |#1| (-312)) (|has| |#2| (-741)))) (OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) -((((-772)) . T)) -(((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-484) |#1|) . T)) -(((|#1| (-484) (-994)) . T)) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#2| |#2|) |has| |#1| (-312)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (((-484)) . T) (($) . T) ((|#1|) . T)) -((((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) -(((|#2|) . T) (((-1090)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1090)))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146))) -(((|#1| (-484)) . T)) -(((|#1| (-484)) . T)) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) +((((-773)) . T)) +(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-485) |#1|) . T)) +(((|#1| (-485) (-995)) . T)) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2| |#2|) |has| |#1| (-312)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T)) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (((-485)) . T) (($) . T) ((|#1|) . T)) +((((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (($) . T) ((|#1|) . T)) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146))) +(((|#2|) . T) (((-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-146))) +(((|#1| (-485)) . T)) +(((|#1| (-485)) . T)) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) (((|#1| |#2|) . T)) -(((|#1| (-1069 |#1|)) |has| |#1| (-755))) -(|has| |#1| (-1013)) -(|has| |#1| (-1013)) -(|has| |#1| (-1013)) -((((-772)) |has| |#1| (-1013))) -(|has| |#1| (-1013)) +(((|#1| (-1070 |#1|)) |has| |#1| (-756))) +(|has| |#1| (-1014)) +(|has| |#1| (-1014)) +(|has| |#1| (-1014)) +((((-773)) |has| |#1| (-1014))) +(|has| |#1| (-1014)) (((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) ((($) . T)) -((((-772)) . T)) -((((-350 $) (-350 $)) |has| |#2| (-495)) (($ $) . T) ((|#2| |#2|) . T)) +((((-773)) . T)) +((((-350 $) (-350 $)) |has| |#2| (-496)) (($ $) . T) ((|#2| |#2|) . T)) (|has| |#2| (-312)) -(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-821))) -(OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) -(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) -(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) +(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-822))) +(OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) +(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) +(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (|has| |#2| (-312)) -(((|#2| (-694) (-994)) . T)) -(|has| |#2| (-821)) -(|has| |#2| (-821)) -((((-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090)))) (((-994)) . T)) -((($ (-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090)))) (($ (-994)) . T)) -((((-1090)) |has| |#2| (-809 (-1090))) (((-994)) . T)) -((((-484)) |has| |#2| (-580 (-484))) ((|#2|) . T)) +(((|#2| (-695) (-995)) . T)) +(|has| |#2| (-822)) +(|has| |#2| (-822)) +((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))) (((-995)) . T)) +((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))) (($ (-995)) . T)) +((((-1091)) |has| |#2| (-810 (-1091))) (((-995)) . T)) +((((-485)) |has| |#2| (-581 (-485))) ((|#2|) . T)) (((|#2|) . T)) -(((|#2| (-694)) . T)) +(((|#2| (-695)) . T)) (|has| |#2| (-120)) (|has| |#2| (-118)) -((((-1176 |#1|)) . T) (((-484)) . T) (($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-994)) . T) ((|#2|) . T) (((-350 (-484))) OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484)))))) -((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-350 (-484))) |has| |#2| (-38 (-350 (-484))))) -((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-350 (-484))) |has| |#2| (-38 (-350 (-484))))) -((($) . T) (((-484)) |has| |#2| (-580 (-484))) ((|#2|) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484))))) -((((-484)) . T) (($) . T) ((|#2|) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484))))) -((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484))))) -((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484))))) -((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2| |#2|) . T) (((-350 (-484)) (-350 (-484))) |has| |#2| (-38 (-350 (-484))))) -((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-350 (-484))) |has| |#2| (-38 (-350 (-484))))) +((((-1177 |#1|)) . T) (((-485)) . T) (($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-995)) . T) ((|#2|) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485)))))) +((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-350 (-485))) |has| |#2| (-38 (-350 (-485))))) +((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-350 (-485))) |has| |#2| (-38 (-350 (-485))))) +((($) . T) (((-485)) |has| |#2| (-581 (-485))) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485))))) +((((-485)) . T) (($) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485))))) +((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485))))) +((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485))))) +((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2| |#2|) . T) (((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485))))) +((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-350 (-485))) |has| |#2| (-38 (-350 (-485))))) (((|#2|) . T)) -((((-994)) . T) ((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-350 (-484))) |has| |#2| (-950 (-350 (-484))))) -(((|#2| (-694)) . T)) -((((-994) |#2|) . T) (((-994) $) . T) (($ $) . T)) +((((-995)) . T) ((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485))))) +(((|#2| (-695)) . T)) +((((-995) |#2|) . T) (((-995) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#2| (-1066)) +(|has| |#2| (-1067)) (((|#2|) . T)) -((((-1169 |#1| |#2| |#3|)) . T) (((-1139 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) -((($ $) . T) (((-350 (-484)) |#1|) . T)) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))) -((($ (-1176 |#2|)) . T) (($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))) -(((|#1| (-350 (-484)) (-994)) . T)) +((((-1170 |#1| |#2| |#3|)) . T) (((-1140 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) +((($ $) . T) (((-350 (-485)) |#1|) . T)) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) +((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) +(((|#1| (-350 (-485)) (-995)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#1| (-350 (-484))) . T)) -(((|#1| (-350 (-484))) . T)) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) +(((|#1| (-350 (-485))) . T)) +(((|#1| (-350 (-485))) . T)) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) -((((-772)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312)))) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312)))) -(((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +((((-773)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) +(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) -((((-1176 |#2|)) . T) (((-1169 |#1| |#2| |#3|)) . T) (((-1139 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +((((-1177 |#2|)) . T) (((-1170 |#1| |#2| |#3|)) . T) (((-1140 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(((|#1| (-1139 |#1| |#2| |#3|)) . T)) +(((|#1| (-1140 |#1| |#2| |#3|)) . T)) (((|#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) -((($ $) . T) (((-350 (-484)) |#1|) . T)) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))) -((($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))) -(((|#1| (-350 (-484)) (-994)) . T)) +(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) +((($ $) . T) (((-350 (-485)) |#1|) . T)) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) +((($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))) +(((|#1| (-350 (-485)) (-995)) . T)) (|has| |#1| (-118)) (|has| |#1| (-120)) -(((|#1| (-350 (-484))) . T)) -(((|#1| (-350 (-484))) . T)) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) +(((|#1| (-350 (-485))) . T)) +(((|#1| (-350 (-485))) . T)) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) -((((-772)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312)))) -(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312)))) -(((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) . T)) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) +((((-773)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) +(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312)))) +(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) . T)) (|has| |#1| (-312)) (|has| |#1| (-312)) -(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) -(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) -(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495)))) -(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) -(OR (|has| |#1| (-312)) (|has| |#1| (-495))) +(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496)))) +(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) +(OR (|has| |#1| (-312)) (|has| |#1| (-496))) (|has| |#1| (-312)) (|has| |#1| (-312)) (|has| |#1| (-312)) (((|#1| |#2|) . T)) -((((-1160 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) -(|has| (-1160 |#2| |#3| |#4|) (-120)) -(|has| (-1160 |#2| |#3| |#4|) (-118)) -((($) . T) (((-1160 |#2| |#3| |#4|)) |has| (-1160 |#2| |#3| |#4|) (-146)) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484))))) -((($) . T) (((-1160 |#2| |#3| |#4|)) |has| (-1160 |#2| |#3| |#4|) (-146)) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484))))) -((((-772)) . T)) -((($) . T) (((-1160 |#2| |#3| |#4|)) . T) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484))))) -((($) . T) (((-1160 |#2| |#3| |#4|)) . T) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484))))) -((($ $) . T) (((-1160 |#2| |#3| |#4|) (-1160 |#2| |#3| |#4|)) . T) (((-350 (-484)) (-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484))))) -((((-1160 |#2| |#3| |#4|)) . T) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))) (((-484)) . T) (($) . T)) -((((-1160 |#2| |#3| |#4|)) . T) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))) (($) . T)) -((($) . T) (((-1160 |#2| |#3| |#4|)) . T) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))) (((-484)) . T)) -((($) . T) (((-1160 |#2| |#3| |#4|)) |has| (-1160 |#2| |#3| |#4|) (-146)) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484))))) -((((-1160 |#2| |#3| |#4|)) . T)) -((((-1160 |#2| |#3| |#4|)) . T)) -((((-1160 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(|has| |#1| (-38 (-350 (-484)))) -(((|#1| (-694)) . T)) -(((|#1| (-694)) . T)) -(|has| |#1| (-495)) -(|has| |#1| (-495)) -(OR (|has| |#1| (-146)) (|has| |#1| (-495))) +((((-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) +(|has| (-1161 |#2| |#3| |#4|) (-120)) +(|has| (-1161 |#2| |#3| |#4|) (-118)) +((($) . T) (((-1161 |#2| |#3| |#4|)) |has| (-1161 |#2| |#3| |#4|) (-146)) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485))))) +((($) . T) (((-1161 |#2| |#3| |#4|)) |has| (-1161 |#2| |#3| |#4|) (-146)) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485))))) +((((-773)) . T)) +((($) . T) (((-1161 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485))))) +((($) . T) (((-1161 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485))))) +((($ $) . T) (((-1161 |#2| |#3| |#4|) (-1161 |#2| |#3| |#4|)) . T) (((-350 (-485)) (-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485))))) +((((-1161 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))) (((-485)) . T) (($) . T)) +((((-1161 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))) (($) . T)) +((($) . T) (((-1161 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))) (((-485)) . T)) +((($) . T) (((-1161 |#2| |#3| |#4|)) |has| (-1161 |#2| |#3| |#4|) (-146)) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485))))) +((((-1161 |#2| |#3| |#4|)) . T)) +((((-1161 |#2| |#3| |#4|)) . T)) +((((-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T)) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(|has| |#1| (-38 (-350 (-485)))) +(((|#1| (-695)) . T)) +(((|#1| (-695)) . T)) +(|has| |#1| (-496)) +(|has| |#1| (-496)) +(OR (|has| |#1| (-146)) (|has| |#1| (-496))) (|has| |#1| (-120)) (|has| |#1| (-118)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484))))) -(((|#1| (-694) (-994)) . T)) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) -((($ (-1176 |#2|)) . T) (($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) -((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|))))) -((((-694) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-694) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-694) |#1|)))) -((((-772)) . T)) -(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (((-484)) . T) (($) . T)) -(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (($) . T)) -((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (((-484)) . T)) -(|has| |#1| (-15 * (|#1| (-694) |#1|))) -(((|#1|) . T)) -((((-1090)) . T) (((-772)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013))) -((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013)))) -(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013)))) -(OR (|has| |#1| (-756)) (|has| |#1| (-1013))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-484) |#1|) . T)) -((((-484) |#1|) . T)) -((((-484) |#1|) . T) (((-1146 (-484)) $) . T)) -((((-473)) |has| |#1| (-553 (-473)))) -(((|#1|) . T)) -(|has| |#1| (-756)) -(|has| |#1| (-756)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-772)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) -((((-1095)) . T)) -((((-772)) . T) (((-1095)) . T)) -((((-1095)) . T)) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485))))) +(((|#1| (-695) (-995)) . T)) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) +((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) +((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|))))) +((((-695) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-695) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-695) |#1|)))) +((((-773)) . T)) +(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T)) +(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T)) +((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T)) +(|has| |#1| (-15 * (|#1| (-695) |#1|))) +(((|#1|) . T)) +((((-1091)) . T) (((-773)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014))) +((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014)))) +(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014)))) +(OR (|has| |#1| (-757)) (|has| |#1| (-1014))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-485) |#1|) . T)) +((((-485) |#1|) . T)) +((((-485) |#1|) . T) (((-1147 (-485)) $) . T)) +((((-474)) |has| |#1| (-554 (-474)))) +(((|#1|) . T)) +(|has| |#1| (-757)) +(|has| |#1| (-757)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) +((((-1096)) . T)) +((((-773)) . T) (((-1096)) . T)) +((((-1096)) . T)) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) @@ -4007,18 +4023,18 @@ (((|#1| |#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#4|) . T)) -(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-484)) . T)) +(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-485)) . T)) (((|#1|) |has| |#1| (-146)) (($) . T)) -(((|#4|) . T) (((-772)) . T)) -(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T)) +(((|#4|) . T) (((-773)) . T)) +(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-473)) |has| |#4| (-553 (-473)))) +((((-474)) |has| |#4| (-554 (-474)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) -(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013)))) +(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) +(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014)))) (((|#4|) . T)) -((((-772)) . T) (((-583 |#4|)) . T)) +((((-773)) . T) (((-584 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-146))) @@ -4027,15 +4043,15 @@ (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-772)) . T)) -((($) . T) (((-484)) . T) ((|#2|) . T)) +((((-773)) . T)) +((($) . T) (((-485)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2|) |has| |#2| (-146))) -((((-739 |#1|)) . T)) -(((|#2|) . T) (((-484)) . T) (((-739 |#1|)) . T)) -(((|#2| (-739 |#1|)) . T)) -(((|#2| (-803 |#1|)) . T)) +((((-740 |#1|)) . T)) +(((|#2|) . T) (((-485)) . T) (((-740 |#1|)) . T)) +(((|#2| (-740 |#1|)) . T)) +(((|#2| (-804 |#1|)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) @@ -4045,12 +4061,12 @@ (((|#2|) |has| |#2| (-146))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-772)) . T)) -(((|#2|) . T) (($) . T) (((-484)) . T)) -((((-803 |#1|)) . T) ((|#2|) . T) (((-484)) . T) (((-739 |#1|)) . T)) -((((-803 |#1|)) . T) (((-739 |#1|)) . T)) +((((-773)) . T)) +(((|#2|) . T) (($) . T) (((-485)) . T)) +((((-804 |#1|)) . T) ((|#2|) . T) (((-485)) . T) (((-740 |#1|)) . T)) +((((-804 |#1|)) . T) (((-740 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1090) |#1|) . T)) +((((-1091) |#1|) . T)) (((|#1|) |has| |#1| (-146))) (((|#1| |#1|) . T)) (((|#1|) . T)) @@ -4059,11 +4075,11 @@ (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-772)) . T)) -(((|#1|) . T) (($) . T) (((-484)) . T)) -(((|#1|) . T) (((-484)) . T) (((-739 (-1090))) . T)) -((((-739 (-1090))) . T)) -((((-1090) |#1|) . T)) +((((-773)) . T)) +(((|#1|) . T) (($) . T) (((-485)) . T)) +(((|#1|) . T) (((-485)) . T) (((-740 (-1091))) . T)) +((((-740 (-1091))) . T)) +((((-1091) |#1|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-146))) @@ -4073,10 +4089,10 @@ (((|#1|) |has| |#1| (-146))) (((|#1|) |has| |#1| (-146))) (((|#1|) . T)) -(((|#2|) . T) ((|#1|) . T) (((-484)) . T)) +(((|#2|) . T) ((|#1|) . T) (((-485)) . T)) (((|#1|) . T) (($) . T)) -((((-772)) . T)) -(((|#1|) . T) (($) . T) (((-484)) . T)) +((((-773)) . T)) +(((|#1|) . T) (($) . T) (((-485)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-146))) (((|#2| |#2|) . T)) @@ -4086,20 +4102,20 @@ (((|#2|) |has| |#2| (-146))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-772)) . T)) -(((|#2|) . T) (($) . T) (((-484)) . T)) -(((|#2|) . T) (((-484)) . T) (((-739 |#1|)) . T)) -((((-739 |#1|)) . T)) +((((-773)) . T)) +(((|#2|) . T) (($) . T) (((-485)) . T)) +(((|#2|) . T) (((-485)) . T) (((-740 |#1|)) . T)) +((((-740 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-884)) . T)) -((((-884)) . T)) -((((-884)) . T) (((-772)) . T)) -((((-484)) . T)) +((((-885)) . T)) +((((-885)) . T)) +((((-885)) . T) (((-773)) . T)) +((((-485)) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-772)) . T)) -((((-484)) . T) (($) . T)) +((((-773)) . T)) +((((-485)) . T) (($) . T)) ((($) . T)) -((((-484)) . T)) -(((-1209 . -146) T) ((-1209 . -555) 200487) ((-1209 . -970) T) ((-1209 . -1025) T) ((-1209 . -1061) T) ((-1209 . -663) T) ((-1209 . -961) T) ((-1209 . -590) 200474) ((-1209 . -588) 200446) ((-1209 . -104) T) ((-1209 . -25) T) ((-1209 . -72) T) ((-1209 . -13) T) ((-1209 . -1129) T) ((-1209 . -552) 200428) ((-1209 . -1013) T) ((-1209 . -23) T) ((-1209 . -21) T) ((-1209 . -968) 200415) ((-1209 . -963) 200402) ((-1209 . -82) 200387) ((-1209 . -320) T) ((-1209 . -553) 200369) ((-1209 . -1066) T) ((-1205 . -1013) T) ((-1205 . -552) 200336) ((-1205 . -1129) T) ((-1205 . -13) T) ((-1205 . -72) T) ((-1205 . -430) 200318) ((-1205 . -555) 200300) ((-1204 . -1202) 200279) ((-1204 . -950) 200256) ((-1204 . -555) 200205) ((-1204 . -961) T) ((-1204 . -663) T) ((-1204 . -1061) T) ((-1204 . -1025) T) ((-1204 . -970) T) ((-1204 . -21) T) ((-1204 . -588) 200164) ((-1204 . -23) T) ((-1204 . -1013) T) ((-1204 . -552) 200146) ((-1204 . -1129) T) ((-1204 . -13) T) ((-1204 . -72) T) ((-1204 . -25) T) ((-1204 . -104) T) ((-1204 . -590) 200120) ((-1204 . -1194) 200104) ((-1204 . -654) 200074) ((-1204 . -582) 200044) ((-1204 . -968) 200028) ((-1204 . -963) 200012) ((-1204 . -82) 199991) ((-1204 . -38) 199961) ((-1204 . -1199) 199940) ((-1203 . -961) T) ((-1203 . -663) T) ((-1203 . -1061) T) ((-1203 . -1025) T) ((-1203 . -970) T) ((-1203 . -21) T) ((-1203 . -588) 199899) ((-1203 . -23) T) ((-1203 . -1013) T) ((-1203 . -552) 199881) ((-1203 . -1129) T) ((-1203 . -13) T) ((-1203 . -72) T) ((-1203 . -25) T) ((-1203 . -104) T) ((-1203 . -590) 199855) ((-1203 . -555) 199811) ((-1203 . -1194) 199795) ((-1203 . -654) 199765) ((-1203 . -582) 199735) ((-1203 . -968) 199719) ((-1203 . -963) 199703) ((-1203 . -82) 199682) ((-1203 . -38) 199652) ((-1203 . -335) 199631) ((-1203 . -950) 199615) ((-1201 . -1202) 199591) ((-1201 . -950) 199565) ((-1201 . -555) 199511) ((-1201 . -961) T) ((-1201 . -663) T) ((-1201 . -1061) T) ((-1201 . -1025) T) ((-1201 . -970) T) ((-1201 . -21) T) ((-1201 . -588) 199470) ((-1201 . -23) T) ((-1201 . -1013) T) ((-1201 . -552) 199452) ((-1201 . -1129) T) ((-1201 . -13) T) ((-1201 . -72) T) ((-1201 . -25) T) ((-1201 . -104) T) ((-1201 . -590) 199426) ((-1201 . -1194) 199410) ((-1201 . -654) 199380) ((-1201 . -582) 199350) ((-1201 . -968) 199334) ((-1201 . -963) 199318) ((-1201 . -82) 199297) ((-1201 . -38) 199267) ((-1201 . -1199) 199243) ((-1200 . -1202) 199222) ((-1200 . -950) 199179) ((-1200 . -555) 199108) ((-1200 . -961) T) ((-1200 . -663) T) ((-1200 . -1061) T) ((-1200 . -1025) T) ((-1200 . -970) T) ((-1200 . -21) T) ((-1200 . -588) 199067) ((-1200 . -23) T) ((-1200 . -1013) T) ((-1200 . -552) 199049) ((-1200 . -1129) T) ((-1200 . -13) T) ((-1200 . -72) T) ((-1200 . -25) T) ((-1200 . -104) T) ((-1200 . -590) 199023) ((-1200 . -1194) 199007) ((-1200 . -654) 198977) ((-1200 . -582) 198947) ((-1200 . -968) 198931) ((-1200 . -963) 198915) ((-1200 . -82) 198894) ((-1200 . -38) 198864) ((-1200 . -1199) 198843) ((-1200 . -335) 198815) ((-1195 . -335) 198787) ((-1195 . -555) 198736) ((-1195 . -950) 198713) ((-1195 . -582) 198683) ((-1195 . -654) 198653) ((-1195 . -590) 198627) ((-1195 . -588) 198586) ((-1195 . -104) T) ((-1195 . -25) T) ((-1195 . -72) T) ((-1195 . -13) T) ((-1195 . -1129) T) ((-1195 . -552) 198568) ((-1195 . -1013) T) ((-1195 . -23) T) ((-1195 . -21) T) ((-1195 . -968) 198552) ((-1195 . -963) 198536) ((-1195 . -82) 198515) ((-1195 . -1202) 198494) ((-1195 . -961) T) ((-1195 . -663) T) ((-1195 . -1061) T) ((-1195 . -1025) T) ((-1195 . -970) T) ((-1195 . -1194) 198478) ((-1195 . -38) 198448) ((-1195 . -1199) 198427) ((-1193 . -1124) 198396) ((-1193 . -552) 198358) ((-1193 . -124) 198342) ((-1193 . -34) T) ((-1193 . -13) T) ((-1193 . -1129) T) ((-1193 . -72) T) ((-1193 . -260) 198280) ((-1193 . -455) 198213) ((-1193 . -1013) T) ((-1193 . -429) 198197) ((-1193 . -553) 198158) ((-1193 . -318) 198142) ((-1193 . -889) 198111) ((-1192 . -961) T) ((-1192 . -663) T) ((-1192 . -1061) T) ((-1192 . -1025) T) ((-1192 . -970) T) ((-1192 . -21) T) ((-1192 . -588) 198056) ((-1192 . -23) T) ((-1192 . -1013) T) ((-1192 . -552) 198025) ((-1192 . -1129) T) ((-1192 . -13) T) ((-1192 . -72) T) ((-1192 . -25) T) ((-1192 . -104) T) ((-1192 . -590) 197985) ((-1192 . -555) 197927) ((-1192 . -430) 197911) ((-1192 . -38) 197881) ((-1192 . -82) 197846) ((-1192 . -963) 197816) ((-1192 . -968) 197786) ((-1192 . -582) 197756) ((-1192 . -654) 197726) ((-1191 . -995) T) ((-1191 . -430) 197707) ((-1191 . -552) 197673) ((-1191 . -555) 197654) ((-1191 . -1013) T) ((-1191 . -1129) T) ((-1191 . -13) T) ((-1191 . -72) T) ((-1191 . -64) T) ((-1190 . -995) T) ((-1190 . -430) 197635) ((-1190 . -552) 197601) ((-1190 . -555) 197582) ((-1190 . -1013) T) ((-1190 . -1129) T) ((-1190 . -13) T) ((-1190 . -72) T) ((-1190 . -64) T) ((-1185 . -552) 197564) ((-1183 . -1013) T) ((-1183 . -552) 197546) ((-1183 . -1129) T) ((-1183 . -13) T) ((-1183 . -72) T) ((-1182 . -1013) T) ((-1182 . -552) 197528) ((-1182 . -1129) T) ((-1182 . -13) T) ((-1182 . -72) T) ((-1179 . -1178) 197512) ((-1179 . -324) 197496) ((-1179 . -759) 197475) ((-1179 . -756) 197454) ((-1179 . -124) 197438) ((-1179 . -553) 197399) ((-1179 . -241) 197351) ((-1179 . -538) 197328) ((-1179 . -243) 197305) ((-1179 . -593) 197289) ((-1179 . -429) 197273) ((-1179 . -1013) 197226) ((-1179 . -455) 197159) ((-1179 . -260) 197097) ((-1179 . -552) 197012) ((-1179 . -72) 196946) ((-1179 . -1129) T) ((-1179 . -13) T) ((-1179 . -34) T) ((-1179 . -318) 196930) ((-1179 . -1035) 196914) ((-1179 . -19) 196898) ((-1176 . -1013) T) ((-1176 . -552) 196864) ((-1176 . -1129) T) ((-1176 . -13) T) ((-1176 . -72) T) ((-1169 . -1172) 196848) ((-1169 . -190) 196807) ((-1169 . -555) 196689) ((-1169 . -590) 196614) ((-1169 . -588) 196524) ((-1169 . -104) T) ((-1169 . -25) T) ((-1169 . -72) T) ((-1169 . -552) 196506) ((-1169 . -1013) T) ((-1169 . -23) T) ((-1169 . -21) T) ((-1169 . -970) T) ((-1169 . -1025) T) ((-1169 . -1061) T) ((-1169 . -663) T) ((-1169 . -961) T) ((-1169 . -186) 196459) ((-1169 . -13) T) ((-1169 . -1129) T) ((-1169 . -189) 196418) ((-1169 . -241) 196383) ((-1169 . -809) 196296) ((-1169 . -806) 196184) ((-1169 . -811) 196097) ((-1169 . -886) 196067) ((-1169 . -38) 195964) ((-1169 . -82) 195829) ((-1169 . -963) 195715) ((-1169 . -968) 195601) ((-1169 . -582) 195498) ((-1169 . -654) 195395) ((-1169 . -118) 195374) ((-1169 . -120) 195353) ((-1169 . -146) 195307) ((-1169 . -495) 195286) ((-1169 . -246) 195265) ((-1169 . -47) 195242) ((-1169 . -1158) 195219) ((-1169 . -35) 195185) ((-1169 . -66) 195151) ((-1169 . -239) 195117) ((-1169 . -433) 195083) ((-1169 . -1118) 195049) ((-1169 . -1115) 195015) ((-1169 . -915) 194981) ((-1166 . -277) 194925) ((-1166 . -950) 194891) ((-1166 . -355) 194857) ((-1166 . -38) 194714) ((-1166 . -555) 194588) ((-1166 . -590) 194477) ((-1166 . -588) 194351) ((-1166 . -970) T) ((-1166 . -1025) T) ((-1166 . -1061) T) ((-1166 . -663) T) ((-1166 . -961) T) ((-1166 . -82) 194201) ((-1166 . -963) 194090) ((-1166 . -968) 193979) ((-1166 . -21) T) ((-1166 . -23) T) ((-1166 . -1013) T) ((-1166 . -552) 193961) ((-1166 . -1129) T) ((-1166 . -13) T) ((-1166 . -72) T) ((-1166 . -25) T) ((-1166 . -104) T) ((-1166 . -582) 193818) ((-1166 . -654) 193675) ((-1166 . -118) 193636) ((-1166 . -120) 193597) ((-1166 . -146) T) ((-1166 . -495) T) ((-1166 . -246) T) ((-1166 . -47) 193541) ((-1165 . -1164) 193520) ((-1165 . -312) 193499) ((-1165 . -1134) 193478) ((-1165 . -832) 193457) ((-1165 . -495) 193411) ((-1165 . -146) 193345) ((-1165 . -555) 193164) ((-1165 . -654) 193011) ((-1165 . -582) 192858) ((-1165 . -38) 192705) ((-1165 . -392) 192684) ((-1165 . -258) 192663) ((-1165 . -590) 192563) ((-1165 . -588) 192448) ((-1165 . -970) T) ((-1165 . -1025) T) ((-1165 . -1061) T) ((-1165 . -663) T) ((-1165 . -961) T) ((-1165 . -82) 192268) ((-1165 . -963) 192109) ((-1165 . -968) 191950) ((-1165 . -21) T) ((-1165 . -23) T) ((-1165 . -1013) T) ((-1165 . -552) 191932) ((-1165 . -1129) T) ((-1165 . -13) T) ((-1165 . -72) T) ((-1165 . -25) T) ((-1165 . -104) T) ((-1165 . -246) 191886) ((-1165 . -201) 191865) ((-1165 . -915) 191831) ((-1165 . -1115) 191797) ((-1165 . -1118) 191763) ((-1165 . -433) 191729) ((-1165 . -239) 191695) ((-1165 . -66) 191661) ((-1165 . -35) 191627) ((-1165 . -1158) 191597) ((-1165 . -47) 191567) ((-1165 . -120) 191546) ((-1165 . -118) 191525) ((-1165 . -886) 191488) ((-1165 . -811) 191394) ((-1165 . -806) 191298) ((-1165 . -809) 191204) ((-1165 . -241) 191162) ((-1165 . -189) 191114) ((-1165 . -186) 191060) ((-1165 . -190) 191012) ((-1165 . -1162) 190996) ((-1165 . -950) 190980) ((-1160 . -1164) 190941) ((-1160 . -312) 190920) ((-1160 . -1134) 190899) ((-1160 . -832) 190878) ((-1160 . -495) 190832) ((-1160 . -146) 190766) ((-1160 . -555) 190515) ((-1160 . -654) 190362) ((-1160 . -582) 190209) ((-1160 . -38) 190056) ((-1160 . -392) 190035) ((-1160 . -258) 190014) ((-1160 . -590) 189914) ((-1160 . -588) 189799) ((-1160 . -970) T) ((-1160 . -1025) T) ((-1160 . -1061) T) ((-1160 . -663) T) ((-1160 . -961) T) ((-1160 . -82) 189619) ((-1160 . -963) 189460) ((-1160 . -968) 189301) ((-1160 . -21) T) ((-1160 . -23) T) ((-1160 . -1013) T) ((-1160 . -552) 189283) ((-1160 . -1129) T) ((-1160 . -13) T) ((-1160 . -72) T) ((-1160 . -25) T) ((-1160 . -104) T) ((-1160 . -246) 189237) ((-1160 . -201) 189216) ((-1160 . -915) 189182) ((-1160 . -1115) 189148) ((-1160 . -1118) 189114) ((-1160 . -433) 189080) ((-1160 . -239) 189046) ((-1160 . -66) 189012) ((-1160 . -35) 188978) ((-1160 . -1158) 188948) ((-1160 . -47) 188918) ((-1160 . -120) 188897) ((-1160 . -118) 188876) ((-1160 . -886) 188839) ((-1160 . -811) 188745) ((-1160 . -806) 188626) ((-1160 . -809) 188532) ((-1160 . -241) 188490) ((-1160 . -189) 188442) ((-1160 . -186) 188388) ((-1160 . -190) 188340) ((-1160 . -1162) 188324) ((-1160 . -950) 188259) ((-1148 . -1155) 188243) ((-1148 . -1066) 188221) ((-1148 . -553) NIL) ((-1148 . -260) 188208) ((-1148 . -455) 188156) ((-1148 . -277) 188133) ((-1148 . -950) 188016) ((-1148 . -355) 188000) ((-1148 . -38) 187832) ((-1148 . -82) 187637) ((-1148 . -963) 187463) ((-1148 . -968) 187289) ((-1148 . -588) 187199) ((-1148 . -590) 187088) ((-1148 . -582) 186920) ((-1148 . -654) 186752) ((-1148 . -555) 186508) ((-1148 . -118) 186487) ((-1148 . -120) 186466) ((-1148 . -47) 186443) ((-1148 . -329) 186427) ((-1148 . -580) 186375) ((-1148 . -809) 186319) ((-1148 . -806) 186226) ((-1148 . -811) 186137) ((-1148 . -796) NIL) ((-1148 . -821) 186116) ((-1148 . -1134) 186095) ((-1148 . -861) 186065) ((-1148 . -832) 186044) ((-1148 . -495) 185958) ((-1148 . -246) 185872) ((-1148 . -146) 185766) ((-1148 . -392) 185700) ((-1148 . -258) 185679) ((-1148 . -241) 185606) ((-1148 . -190) T) ((-1148 . -104) T) ((-1148 . -25) T) ((-1148 . -72) T) ((-1148 . -552) 185588) ((-1148 . -1013) T) ((-1148 . -23) T) ((-1148 . -21) T) ((-1148 . -970) T) ((-1148 . -1025) T) ((-1148 . -1061) T) ((-1148 . -663) T) ((-1148 . -961) T) ((-1148 . -186) 185575) ((-1148 . -13) T) ((-1148 . -1129) T) ((-1148 . -189) T) ((-1148 . -225) 185559) ((-1148 . -184) 185543) ((-1146 . -1006) 185527) ((-1146 . -557) 185511) ((-1146 . -1013) 185489) ((-1146 . -552) 185456) ((-1146 . -1129) 185434) ((-1146 . -13) 185412) ((-1146 . -72) 185390) ((-1146 . -1007) 185347) ((-1144 . -1143) 185326) ((-1144 . -915) 185292) ((-1144 . -1115) 185258) ((-1144 . -1118) 185224) ((-1144 . -433) 185190) ((-1144 . -239) 185156) ((-1144 . -66) 185122) ((-1144 . -35) 185088) ((-1144 . -1158) 185065) ((-1144 . -47) 185042) ((-1144 . -555) 184797) ((-1144 . -654) 184617) ((-1144 . -582) 184437) ((-1144 . -590) 184248) ((-1144 . -588) 184106) ((-1144 . -968) 183920) ((-1144 . -963) 183734) ((-1144 . -82) 183522) ((-1144 . -38) 183342) ((-1144 . -886) 183312) ((-1144 . -241) 183212) ((-1144 . -1141) 183196) ((-1144 . -970) T) ((-1144 . -1025) T) ((-1144 . -1061) T) ((-1144 . -663) T) ((-1144 . -961) T) ((-1144 . -21) T) ((-1144 . -23) T) ((-1144 . -1013) T) ((-1144 . -552) 183178) ((-1144 . -1129) T) ((-1144 . -13) T) ((-1144 . -72) T) ((-1144 . -25) T) ((-1144 . -104) T) ((-1144 . -118) 183106) ((-1144 . -120) 182988) ((-1144 . -553) 182661) ((-1144 . -184) 182631) ((-1144 . -809) 182485) ((-1144 . -811) 182285) ((-1144 . -806) 182083) ((-1144 . -225) 182053) ((-1144 . -189) 181915) ((-1144 . -186) 181771) ((-1144 . -190) 181679) ((-1144 . -312) 181658) ((-1144 . -1134) 181637) ((-1144 . -832) 181616) ((-1144 . -495) 181570) ((-1144 . -146) 181504) ((-1144 . -392) 181483) ((-1144 . -258) 181462) ((-1144 . -246) 181416) ((-1144 . -201) 181395) ((-1144 . -288) 181365) ((-1144 . -455) 181225) ((-1144 . -260) 181164) ((-1144 . -329) 181134) ((-1144 . -580) 181042) ((-1144 . -343) 181012) ((-1144 . -796) 180885) ((-1144 . -740) 180838) ((-1144 . -714) 180791) ((-1144 . -716) 180744) ((-1144 . -756) 180646) ((-1144 . -759) 180548) ((-1144 . -718) 180501) ((-1144 . -721) 180454) ((-1144 . -755) 180407) ((-1144 . -794) 180377) ((-1144 . -821) 180330) ((-1144 . -933) 180283) ((-1144 . -950) 180072) ((-1144 . -1066) 180024) ((-1144 . -904) 179994) ((-1139 . -1143) 179955) ((-1139 . -915) 179921) ((-1139 . -1115) 179887) ((-1139 . -1118) 179853) ((-1139 . -433) 179819) ((-1139 . -239) 179785) ((-1139 . -66) 179751) ((-1139 . -35) 179717) ((-1139 . -1158) 179694) ((-1139 . -47) 179671) ((-1139 . -555) 179472) ((-1139 . -654) 179274) ((-1139 . -582) 179076) ((-1139 . -590) 178931) ((-1139 . -588) 178771) ((-1139 . -968) 178567) ((-1139 . -963) 178363) ((-1139 . -82) 178115) ((-1139 . -38) 177917) ((-1139 . -886) 177887) ((-1139 . -241) 177715) ((-1139 . -1141) 177699) ((-1139 . -970) T) ((-1139 . -1025) T) ((-1139 . -1061) T) ((-1139 . -663) T) ((-1139 . -961) T) ((-1139 . -21) T) ((-1139 . -23) T) ((-1139 . -1013) T) ((-1139 . -552) 177681) ((-1139 . -1129) T) ((-1139 . -13) T) ((-1139 . -72) T) ((-1139 . -25) T) ((-1139 . -104) T) ((-1139 . -118) 177591) ((-1139 . -120) 177501) ((-1139 . -553) NIL) ((-1139 . -184) 177453) ((-1139 . -809) 177289) ((-1139 . -811) 177053) ((-1139 . -806) 176792) ((-1139 . -225) 176744) ((-1139 . -189) 176570) ((-1139 . -186) 176390) ((-1139 . -190) 176280) ((-1139 . -312) 176259) ((-1139 . -1134) 176238) ((-1139 . -832) 176217) ((-1139 . -495) 176171) ((-1139 . -146) 176105) ((-1139 . -392) 176084) ((-1139 . -258) 176063) ((-1139 . -246) 176017) ((-1139 . -201) 175996) ((-1139 . -288) 175948) ((-1139 . -455) 175682) ((-1139 . -260) 175567) ((-1139 . -329) 175519) ((-1139 . -580) 175471) ((-1139 . -343) 175423) ((-1139 . -796) NIL) ((-1139 . -740) NIL) ((-1139 . -714) NIL) ((-1139 . -716) NIL) ((-1139 . -756) NIL) ((-1139 . -759) NIL) ((-1139 . -718) NIL) ((-1139 . -721) NIL) ((-1139 . -755) NIL) ((-1139 . -794) 175375) ((-1139 . -821) NIL) ((-1139 . -933) NIL) ((-1139 . -950) 175341) ((-1139 . -1066) NIL) ((-1139 . -904) 175293) ((-1138 . -752) T) ((-1138 . -759) T) ((-1138 . -756) T) ((-1138 . -1013) T) ((-1138 . -552) 175275) ((-1138 . -1129) T) ((-1138 . -13) T) ((-1138 . -72) T) ((-1138 . -320) T) ((-1138 . -604) T) ((-1137 . -752) T) ((-1137 . -759) T) ((-1137 . -756) T) ((-1137 . -1013) T) ((-1137 . -552) 175257) ((-1137 . -1129) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -320) T) ((-1137 . -604) T) ((-1136 . -752) T) ((-1136 . -759) T) ((-1136 . -756) T) ((-1136 . -1013) T) ((-1136 . -552) 175239) ((-1136 . -1129) T) ((-1136 . -13) T) ((-1136 . -72) T) ((-1136 . -320) T) ((-1136 . -604) T) ((-1135 . -752) T) ((-1135 . -759) T) ((-1135 . -756) T) ((-1135 . -1013) T) ((-1135 . -552) 175221) ((-1135 . -1129) T) ((-1135 . -13) T) ((-1135 . -72) T) ((-1135 . -320) T) ((-1135 . -604) T) ((-1130 . -995) T) ((-1130 . -430) 175202) ((-1130 . -552) 175168) ((-1130 . -555) 175149) ((-1130 . -1013) T) ((-1130 . -1129) T) ((-1130 . -13) T) ((-1130 . -72) T) ((-1130 . -64) T) ((-1127 . -430) 175126) ((-1127 . -552) 175067) ((-1127 . -555) 175044) ((-1127 . -1013) 175022) ((-1127 . -1129) 175000) ((-1127 . -13) 174978) ((-1127 . -72) 174956) ((-1122 . -679) 174932) ((-1122 . -35) 174898) ((-1122 . -66) 174864) ((-1122 . -239) 174830) ((-1122 . -433) 174796) ((-1122 . -1118) 174762) ((-1122 . -1115) 174728) ((-1122 . -915) 174694) ((-1122 . -47) 174663) ((-1122 . -38) 174560) ((-1122 . -582) 174457) ((-1122 . -654) 174354) ((-1122 . -555) 174236) ((-1122 . -246) 174215) ((-1122 . -495) 174194) ((-1122 . -82) 174059) ((-1122 . -963) 173945) ((-1122 . -968) 173831) ((-1122 . -146) 173785) ((-1122 . -120) 173764) ((-1122 . -118) 173743) ((-1122 . -590) 173668) ((-1122 . -588) 173578) ((-1122 . -886) 173539) ((-1122 . -811) 173520) ((-1122 . -1129) T) ((-1122 . -13) T) ((-1122 . -806) 173499) ((-1122 . -961) T) ((-1122 . -663) T) ((-1122 . -1061) T) ((-1122 . -1025) T) ((-1122 . -970) T) ((-1122 . -21) T) ((-1122 . -23) T) ((-1122 . -1013) T) ((-1122 . -552) 173481) ((-1122 . -72) T) ((-1122 . -25) T) ((-1122 . -104) T) ((-1122 . -809) 173462) ((-1122 . -455) 173429) ((-1122 . -260) 173416) ((-1116 . -923) 173400) ((-1116 . -34) T) ((-1116 . -13) T) ((-1116 . -1129) T) ((-1116 . -72) 173354) ((-1116 . -552) 173289) ((-1116 . -260) 173227) ((-1116 . -455) 173160) ((-1116 . -1013) 173138) ((-1116 . -429) 173122) ((-1116 . -318) 173106) ((-1116 . -1035) 173090) ((-1111 . -314) 173064) ((-1111 . -72) T) ((-1111 . -13) T) ((-1111 . -1129) T) ((-1111 . -552) 173046) ((-1111 . -1013) T) ((-1109 . -1013) T) ((-1109 . -552) 173028) ((-1109 . -1129) T) ((-1109 . -13) T) ((-1109 . -72) T) ((-1109 . -555) 173010) ((-1104 . -747) 172994) ((-1104 . -72) T) ((-1104 . -13) T) ((-1104 . -1129) T) ((-1104 . -552) 172976) ((-1104 . -1013) T) ((-1102 . -1107) 172955) ((-1102 . -183) 172903) ((-1102 . -76) 172851) ((-1102 . -1035) 172799) ((-1102 . -124) 172747) ((-1102 . -553) NIL) ((-1102 . -193) 172695) ((-1102 . -538) 172674) ((-1102 . -260) 172472) ((-1102 . -455) 172224) ((-1102 . -429) 172159) ((-1102 . -241) 172138) ((-1102 . -243) 172117) ((-1102 . -549) 172096) ((-1102 . -1013) T) ((-1102 . -552) 172078) ((-1102 . -72) T) ((-1102 . -1129) T) ((-1102 . -13) T) ((-1102 . -34) T) ((-1102 . -318) 172026) ((-1098 . -1013) T) ((-1098 . -552) 172008) ((-1098 . -1129) T) ((-1098 . -13) T) ((-1098 . -72) T) ((-1097 . -752) T) ((-1097 . -759) T) ((-1097 . -756) T) ((-1097 . -1013) T) ((-1097 . -552) 171990) ((-1097 . -1129) T) ((-1097 . -13) T) ((-1097 . -72) T) ((-1097 . -320) T) ((-1097 . -604) T) ((-1096 . -752) T) ((-1096 . -759) T) ((-1096 . -756) T) ((-1096 . -1013) T) ((-1096 . -552) 171972) ((-1096 . -1129) T) ((-1096 . -13) T) ((-1096 . -72) T) ((-1096 . -320) T) ((-1095 . -1175) T) ((-1095 . -1013) T) ((-1095 . -552) 171939) ((-1095 . -1129) T) ((-1095 . -13) T) ((-1095 . -72) T) ((-1095 . -950) 171875) ((-1095 . -555) 171811) ((-1094 . -552) 171793) ((-1093 . -552) 171775) ((-1092 . -277) 171752) ((-1092 . -950) 171650) ((-1092 . -355) 171634) ((-1092 . -38) 171531) ((-1092 . -555) 171388) ((-1092 . -590) 171313) ((-1092 . -588) 171223) ((-1092 . -970) T) ((-1092 . -1025) T) ((-1092 . -1061) T) ((-1092 . -663) T) ((-1092 . -961) T) ((-1092 . -82) 171088) ((-1092 . -963) 170974) ((-1092 . -968) 170860) ((-1092 . -21) T) ((-1092 . -23) T) ((-1092 . -1013) T) ((-1092 . -552) 170842) ((-1092 . -1129) T) ((-1092 . -13) T) ((-1092 . -72) T) ((-1092 . -25) T) ((-1092 . -104) T) ((-1092 . -582) 170739) ((-1092 . -654) 170636) ((-1092 . -118) 170615) ((-1092 . -120) 170594) ((-1092 . -146) 170548) ((-1092 . -495) 170527) ((-1092 . -246) 170506) ((-1092 . -47) 170483) ((-1090 . -756) T) ((-1090 . -552) 170465) ((-1090 . -1013) T) ((-1090 . -72) T) ((-1090 . -13) T) ((-1090 . -1129) T) ((-1090 . -759) T) ((-1090 . -553) 170387) ((-1090 . -555) 170353) ((-1090 . -950) 170335) ((-1090 . -796) 170302) ((-1089 . -1172) 170286) ((-1089 . -190) 170245) ((-1089 . -555) 170127) ((-1089 . -590) 170052) ((-1089 . -588) 169962) ((-1089 . -104) T) ((-1089 . -25) T) ((-1089 . -72) T) ((-1089 . -552) 169944) ((-1089 . -1013) T) ((-1089 . -23) T) ((-1089 . -21) T) ((-1089 . -970) T) ((-1089 . -1025) T) ((-1089 . -1061) T) ((-1089 . -663) T) ((-1089 . -961) T) ((-1089 . -186) 169897) ((-1089 . -13) T) ((-1089 . -1129) T) ((-1089 . -189) 169856) ((-1089 . -241) 169821) ((-1089 . -809) 169734) ((-1089 . -806) 169622) ((-1089 . -811) 169535) ((-1089 . -886) 169505) ((-1089 . -38) 169402) ((-1089 . -82) 169267) ((-1089 . -963) 169153) ((-1089 . -968) 169039) ((-1089 . -582) 168936) ((-1089 . -654) 168833) ((-1089 . -118) 168812) ((-1089 . -120) 168791) ((-1089 . -146) 168745) ((-1089 . -495) 168724) ((-1089 . -246) 168703) ((-1089 . -47) 168680) ((-1089 . -1158) 168657) ((-1089 . -35) 168623) ((-1089 . -66) 168589) ((-1089 . -239) 168555) ((-1089 . -433) 168521) ((-1089 . -1118) 168487) ((-1089 . -1115) 168453) ((-1089 . -915) 168419) ((-1088 . -1164) 168380) ((-1088 . -312) 168359) ((-1088 . -1134) 168338) ((-1088 . -832) 168317) ((-1088 . -495) 168271) ((-1088 . -146) 168205) ((-1088 . -555) 167954) ((-1088 . -654) 167801) ((-1088 . -582) 167648) ((-1088 . -38) 167495) ((-1088 . -392) 167474) ((-1088 . -258) 167453) ((-1088 . -590) 167353) ((-1088 . -588) 167238) ((-1088 . -970) T) ((-1088 . -1025) T) ((-1088 . -1061) T) ((-1088 . -663) T) ((-1088 . -961) T) ((-1088 . -82) 167058) ((-1088 . -963) 166899) ((-1088 . -968) 166740) ((-1088 . -21) T) ((-1088 . -23) T) ((-1088 . -1013) T) ((-1088 . -552) 166722) ((-1088 . -1129) T) ((-1088 . -13) T) ((-1088 . -72) T) ((-1088 . -25) T) ((-1088 . -104) T) ((-1088 . -246) 166676) ((-1088 . -201) 166655) ((-1088 . -915) 166621) ((-1088 . -1115) 166587) ((-1088 . -1118) 166553) ((-1088 . -433) 166519) ((-1088 . -239) 166485) ((-1088 . -66) 166451) ((-1088 . -35) 166417) ((-1088 . -1158) 166387) ((-1088 . -47) 166357) ((-1088 . -120) 166336) ((-1088 . -118) 166315) ((-1088 . -886) 166278) ((-1088 . -811) 166184) ((-1088 . -806) 166065) ((-1088 . -809) 165971) ((-1088 . -241) 165929) ((-1088 . -189) 165881) ((-1088 . -186) 165827) ((-1088 . -190) 165779) ((-1088 . -1162) 165763) ((-1088 . -950) 165698) ((-1085 . -1155) 165682) ((-1085 . -1066) 165660) ((-1085 . -553) NIL) ((-1085 . -260) 165647) ((-1085 . -455) 165595) ((-1085 . -277) 165572) ((-1085 . -950) 165455) ((-1085 . -355) 165439) ((-1085 . -38) 165271) ((-1085 . -82) 165076) ((-1085 . -963) 164902) ((-1085 . -968) 164728) ((-1085 . -588) 164638) ((-1085 . -590) 164527) ((-1085 . -582) 164359) ((-1085 . -654) 164191) ((-1085 . -555) 163968) ((-1085 . -118) 163947) ((-1085 . -120) 163926) ((-1085 . -47) 163903) ((-1085 . -329) 163887) ((-1085 . -580) 163835) ((-1085 . -809) 163779) ((-1085 . -806) 163686) ((-1085 . -811) 163597) ((-1085 . -796) NIL) ((-1085 . -821) 163576) ((-1085 . -1134) 163555) ((-1085 . -861) 163525) ((-1085 . -832) 163504) ((-1085 . -495) 163418) ((-1085 . -246) 163332) ((-1085 . -146) 163226) ((-1085 . -392) 163160) ((-1085 . -258) 163139) ((-1085 . -241) 163066) ((-1085 . -190) T) ((-1085 . -104) T) ((-1085 . -25) T) ((-1085 . -72) T) ((-1085 . -552) 163048) ((-1085 . -1013) T) ((-1085 . -23) T) ((-1085 . -21) T) ((-1085 . -970) T) ((-1085 . -1025) T) ((-1085 . -1061) T) ((-1085 . -663) T) ((-1085 . -961) T) ((-1085 . -186) 163035) ((-1085 . -13) T) ((-1085 . -1129) T) ((-1085 . -189) T) ((-1085 . -225) 163019) ((-1085 . -184) 163003) ((-1082 . -1143) 162964) ((-1082 . -915) 162930) ((-1082 . -1115) 162896) ((-1082 . -1118) 162862) ((-1082 . -433) 162828) ((-1082 . -239) 162794) ((-1082 . -66) 162760) ((-1082 . -35) 162726) ((-1082 . -1158) 162703) ((-1082 . -47) 162680) ((-1082 . -555) 162481) ((-1082 . -654) 162283) ((-1082 . -582) 162085) ((-1082 . -590) 161940) ((-1082 . -588) 161780) ((-1082 . -968) 161576) ((-1082 . -963) 161372) ((-1082 . -82) 161124) ((-1082 . -38) 160926) ((-1082 . -886) 160896) ((-1082 . -241) 160724) ((-1082 . -1141) 160708) ((-1082 . -970) T) ((-1082 . -1025) T) ((-1082 . -1061) T) ((-1082 . -663) T) ((-1082 . -961) T) ((-1082 . -21) T) ((-1082 . -23) T) ((-1082 . -1013) T) ((-1082 . -552) 160690) ((-1082 . -1129) T) ((-1082 . -13) T) ((-1082 . -72) T) ((-1082 . -25) T) ((-1082 . -104) T) ((-1082 . -118) 160600) ((-1082 . -120) 160510) ((-1082 . -553) NIL) ((-1082 . -184) 160462) ((-1082 . -809) 160298) ((-1082 . -811) 160062) ((-1082 . -806) 159801) ((-1082 . -225) 159753) ((-1082 . -189) 159579) ((-1082 . -186) 159399) ((-1082 . -190) 159289) ((-1082 . -312) 159268) ((-1082 . -1134) 159247) ((-1082 . -832) 159226) ((-1082 . -495) 159180) ((-1082 . -146) 159114) ((-1082 . -392) 159093) ((-1082 . -258) 159072) ((-1082 . -246) 159026) ((-1082 . -201) 159005) ((-1082 . -288) 158957) ((-1082 . -455) 158691) ((-1082 . -260) 158576) ((-1082 . -329) 158528) ((-1082 . -580) 158480) ((-1082 . -343) 158432) ((-1082 . -796) NIL) ((-1082 . -740) NIL) ((-1082 . -714) NIL) ((-1082 . -716) NIL) ((-1082 . -756) NIL) ((-1082 . -759) NIL) ((-1082 . -718) NIL) ((-1082 . -721) NIL) ((-1082 . -755) NIL) ((-1082 . -794) 158384) ((-1082 . -821) NIL) ((-1082 . -933) NIL) ((-1082 . -950) 158350) ((-1082 . -1066) NIL) ((-1082 . -904) 158302) ((-1081 . -995) T) ((-1081 . -430) 158283) ((-1081 . -552) 158249) ((-1081 . -555) 158230) ((-1081 . -1013) T) ((-1081 . -1129) T) ((-1081 . -13) T) ((-1081 . -72) T) ((-1081 . -64) T) ((-1080 . -1013) T) ((-1080 . -552) 158212) ((-1080 . -1129) T) ((-1080 . -13) T) ((-1080 . -72) T) ((-1079 . -1013) T) ((-1079 . -552) 158194) ((-1079 . -1129) T) ((-1079 . -13) T) ((-1079 . -72) T) ((-1074 . -1107) 158170) ((-1074 . -183) 158115) ((-1074 . -76) 158060) ((-1074 . -1035) 158005) ((-1074 . -124) 157950) ((-1074 . -553) NIL) ((-1074 . -193) 157895) ((-1074 . -538) 157871) ((-1074 . -260) 157660) ((-1074 . -455) 157400) ((-1074 . -429) 157332) ((-1074 . -241) 157308) ((-1074 . -243) 157284) ((-1074 . -549) 157260) ((-1074 . -1013) T) ((-1074 . -552) 157242) ((-1074 . -72) T) ((-1074 . -1129) T) ((-1074 . -13) T) ((-1074 . -34) T) ((-1074 . -318) 157187) ((-1073 . -1058) T) ((-1073 . -324) 157169) ((-1073 . -759) T) ((-1073 . -756) T) ((-1073 . -124) 157151) ((-1073 . -553) NIL) ((-1073 . -241) 157101) ((-1073 . -538) 157076) ((-1073 . -243) 157051) ((-1073 . -593) 157033) ((-1073 . -429) 157015) ((-1073 . -1013) T) ((-1073 . -455) NIL) ((-1073 . -260) NIL) ((-1073 . -552) 156997) ((-1073 . -72) T) ((-1073 . -1129) T) ((-1073 . -13) T) ((-1073 . -34) T) ((-1073 . -318) 156979) ((-1073 . -1035) 156961) ((-1073 . -19) 156943) ((-1069 . -616) 156927) ((-1069 . -593) 156911) ((-1069 . -243) 156888) ((-1069 . -241) 156840) ((-1069 . -538) 156817) ((-1069 . -553) 156778) ((-1069 . -429) 156762) ((-1069 . -1013) 156740) ((-1069 . -455) 156673) ((-1069 . -260) 156611) ((-1069 . -552) 156546) ((-1069 . -72) 156500) ((-1069 . -1129) T) ((-1069 . -13) T) ((-1069 . -34) T) ((-1069 . -124) 156484) ((-1069 . -1168) 156468) ((-1069 . -923) 156452) ((-1069 . -1064) 156436) ((-1069 . -555) 156413) ((-1067 . -995) T) ((-1067 . -430) 156394) ((-1067 . -552) 156360) ((-1067 . -555) 156341) ((-1067 . -1013) T) ((-1067 . -1129) T) ((-1067 . -13) T) ((-1067 . -72) T) ((-1067 . -64) T) ((-1065 . -1107) 156320) ((-1065 . -183) 156268) ((-1065 . -76) 156216) ((-1065 . -1035) 156164) ((-1065 . -124) 156112) ((-1065 . -553) NIL) ((-1065 . -193) 156060) ((-1065 . -538) 156039) ((-1065 . -260) 155837) ((-1065 . -455) 155589) ((-1065 . -429) 155524) ((-1065 . -241) 155503) ((-1065 . -243) 155482) ((-1065 . -549) 155461) ((-1065 . -1013) T) ((-1065 . -552) 155443) ((-1065 . -72) T) ((-1065 . -1129) T) ((-1065 . -13) T) ((-1065 . -34) T) ((-1065 . -318) 155391) ((-1062 . -1034) 155375) ((-1062 . -318) 155359) ((-1062 . -1035) 155343) ((-1062 . -34) T) ((-1062 . -13) T) ((-1062 . -1129) T) ((-1062 . -72) 155297) ((-1062 . -552) 155232) ((-1062 . -260) 155170) ((-1062 . -455) 155103) ((-1062 . -1013) 155081) ((-1062 . -429) 155065) ((-1062 . -76) 155049) ((-1060 . -1020) 155018) ((-1060 . -1124) 154987) ((-1060 . -552) 154949) ((-1060 . -124) 154933) ((-1060 . -34) T) ((-1060 . -13) T) ((-1060 . -1129) T) ((-1060 . -72) T) ((-1060 . -260) 154871) ((-1060 . -455) 154804) ((-1060 . -1013) T) ((-1060 . -429) 154788) ((-1060 . -553) 154749) ((-1060 . -318) 154733) ((-1060 . -889) 154702) ((-1060 . -983) 154671) ((-1056 . -1037) 154616) ((-1056 . -318) 154600) ((-1056 . -34) T) ((-1056 . -260) 154538) ((-1056 . -455) 154471) ((-1056 . -429) 154455) ((-1056 . -965) 154395) ((-1056 . -950) 154293) ((-1056 . -555) 154212) ((-1056 . -355) 154196) ((-1056 . -580) 154144) ((-1056 . -590) 154082) ((-1056 . -329) 154066) ((-1056 . -190) 154045) ((-1056 . -186) 153993) ((-1056 . -189) 153947) ((-1056 . -225) 153931) ((-1056 . -806) 153855) ((-1056 . -811) 153781) ((-1056 . -809) 153740) ((-1056 . -184) 153724) ((-1056 . -654) 153659) ((-1056 . -582) 153594) ((-1056 . -588) 153553) ((-1056 . -104) T) ((-1056 . -25) T) ((-1056 . -72) T) ((-1056 . -13) T) ((-1056 . -1129) T) ((-1056 . -552) 153515) ((-1056 . -1013) T) ((-1056 . -23) T) ((-1056 . -21) T) ((-1056 . -968) 153499) ((-1056 . -963) 153483) ((-1056 . -82) 153462) ((-1056 . -961) T) ((-1056 . -663) T) ((-1056 . -1061) T) ((-1056 . -1025) T) ((-1056 . -970) T) ((-1056 . -38) 153422) ((-1056 . -553) 153383) ((-1055 . -923) 153354) ((-1055 . -34) T) ((-1055 . -13) T) ((-1055 . -1129) T) ((-1055 . -72) T) ((-1055 . -552) 153336) ((-1055 . -260) 153262) ((-1055 . -455) 153170) ((-1055 . -1013) T) ((-1055 . -429) 153141) ((-1055 . -318) 153112) ((-1054 . -1013) T) ((-1054 . -552) 153094) ((-1054 . -1129) T) ((-1054 . -13) T) ((-1054 . -72) T) ((-1049 . -1051) T) ((-1049 . -1175) T) ((-1049 . -64) T) ((-1049 . -72) T) ((-1049 . -13) T) ((-1049 . -1129) T) ((-1049 . -552) 153060) ((-1049 . -1013) T) ((-1049 . -555) 153041) ((-1049 . -430) 153022) ((-1049 . -995) T) ((-1047 . -1048) 153006) ((-1047 . -72) T) ((-1047 . -13) T) ((-1047 . -1129) T) ((-1047 . -552) 152988) ((-1047 . -1013) T) ((-1040 . -679) 152967) ((-1040 . -35) 152933) ((-1040 . -66) 152899) ((-1040 . -239) 152865) ((-1040 . -433) 152831) ((-1040 . -1118) 152797) ((-1040 . -1115) 152763) ((-1040 . -915) 152729) ((-1040 . -47) 152701) ((-1040 . -38) 152598) ((-1040 . -582) 152495) ((-1040 . -654) 152392) ((-1040 . -555) 152274) ((-1040 . -246) 152253) ((-1040 . -495) 152232) ((-1040 . -82) 152097) ((-1040 . -963) 151983) ((-1040 . -968) 151869) ((-1040 . -146) 151823) ((-1040 . -120) 151802) ((-1040 . -118) 151781) ((-1040 . -590) 151706) ((-1040 . -588) 151616) ((-1040 . -886) 151583) ((-1040 . -811) 151567) ((-1040 . -1129) T) ((-1040 . -13) T) ((-1040 . -806) 151549) ((-1040 . -961) T) ((-1040 . -663) T) ((-1040 . -1061) T) ((-1040 . -1025) T) ((-1040 . -970) T) ((-1040 . -21) T) ((-1040 . -23) T) ((-1040 . -1013) T) ((-1040 . -552) 151531) ((-1040 . -72) T) ((-1040 . -25) T) ((-1040 . -104) T) ((-1040 . -809) 151515) ((-1040 . -455) 151485) ((-1040 . -260) 151472) ((-1039 . -861) 151439) ((-1039 . -555) 151238) ((-1039 . -950) 151123) ((-1039 . -1134) 151102) ((-1039 . -821) 151081) ((-1039 . -796) 150940) ((-1039 . -811) 150924) ((-1039 . -806) 150906) ((-1039 . -809) 150890) ((-1039 . -455) 150842) ((-1039 . -392) 150796) ((-1039 . -580) 150744) ((-1039 . -590) 150633) ((-1039 . -329) 150617) ((-1039 . -47) 150589) ((-1039 . -38) 150441) ((-1039 . -582) 150293) ((-1039 . -654) 150145) ((-1039 . -246) 150079) ((-1039 . -495) 150013) ((-1039 . -82) 149838) ((-1039 . -963) 149684) ((-1039 . -968) 149530) ((-1039 . -146) 149444) ((-1039 . -120) 149423) ((-1039 . -118) 149402) ((-1039 . -588) 149312) ((-1039 . -104) T) ((-1039 . -25) T) ((-1039 . -72) T) ((-1039 . -13) T) ((-1039 . -1129) T) ((-1039 . -552) 149294) ((-1039 . -1013) T) ((-1039 . -23) T) ((-1039 . -21) T) ((-1039 . -961) T) ((-1039 . -663) T) ((-1039 . -1061) T) ((-1039 . -1025) T) ((-1039 . -970) T) ((-1039 . -355) 149278) ((-1039 . -277) 149250) ((-1039 . -260) 149237) ((-1039 . -553) 148985) ((-1033 . -483) T) ((-1033 . -1134) T) ((-1033 . -1066) T) ((-1033 . -950) 148967) ((-1033 . -553) 148882) ((-1033 . -933) T) ((-1033 . -796) 148864) ((-1033 . -755) T) ((-1033 . -721) T) ((-1033 . -718) T) ((-1033 . -759) T) ((-1033 . -756) T) ((-1033 . -716) T) ((-1033 . -714) T) ((-1033 . -740) T) ((-1033 . -590) 148836) ((-1033 . -580) 148818) ((-1033 . -832) T) ((-1033 . -495) T) ((-1033 . -246) T) ((-1033 . -146) T) ((-1033 . -555) 148790) ((-1033 . -654) 148777) ((-1033 . -582) 148764) ((-1033 . -968) 148751) ((-1033 . -963) 148738) ((-1033 . -82) 148723) ((-1033 . -38) 148710) ((-1033 . -392) T) ((-1033 . -258) T) ((-1033 . -189) T) ((-1033 . -186) 148697) ((-1033 . -190) T) ((-1033 . -116) T) ((-1033 . -961) T) ((-1033 . -663) T) ((-1033 . -1061) T) ((-1033 . -1025) T) ((-1033 . -970) T) ((-1033 . -21) T) ((-1033 . -588) 148669) ((-1033 . -23) T) ((-1033 . -1013) T) ((-1033 . -552) 148651) ((-1033 . -1129) T) ((-1033 . -13) T) ((-1033 . -72) T) ((-1033 . -25) T) ((-1033 . -104) T) ((-1033 . -120) T) ((-1033 . -752) T) ((-1033 . -320) T) ((-1033 . -84) T) ((-1033 . -604) T) ((-1029 . -995) T) ((-1029 . -430) 148632) ((-1029 . -552) 148598) ((-1029 . -555) 148579) ((-1029 . -1013) T) ((-1029 . -1129) T) ((-1029 . -13) T) ((-1029 . -72) T) ((-1029 . -64) T) ((-1028 . -1013) T) ((-1028 . -552) 148561) ((-1028 . -1129) T) ((-1028 . -13) T) ((-1028 . -72) T) ((-1026 . -196) 148540) ((-1026 . -1187) 148510) ((-1026 . -721) 148489) ((-1026 . -718) 148468) ((-1026 . -759) 148422) ((-1026 . -756) 148376) ((-1026 . -716) 148355) ((-1026 . -717) 148334) ((-1026 . -654) 148279) ((-1026 . -582) 148204) ((-1026 . -243) 148181) ((-1026 . -241) 148158) ((-1026 . -538) 148135) ((-1026 . -950) 147964) ((-1026 . -555) 147768) ((-1026 . -355) 147737) ((-1026 . -580) 147645) ((-1026 . -590) 147484) ((-1026 . -329) 147454) ((-1026 . -429) 147438) ((-1026 . -455) 147371) ((-1026 . -260) 147309) ((-1026 . -34) T) ((-1026 . -318) 147293) ((-1026 . -320) 147272) ((-1026 . -190) 147225) ((-1026 . -588) 147013) ((-1026 . -970) 146992) ((-1026 . -1025) 146971) ((-1026 . -1061) 146950) ((-1026 . -663) 146929) ((-1026 . -961) 146908) ((-1026 . -186) 146804) ((-1026 . -189) 146706) ((-1026 . -225) 146676) ((-1026 . -806) 146548) ((-1026 . -811) 146422) ((-1026 . -809) 146355) ((-1026 . -184) 146325) ((-1026 . -552) 146022) ((-1026 . -968) 145947) ((-1026 . -963) 145852) ((-1026 . -82) 145772) ((-1026 . -104) 145647) ((-1026 . -25) 145484) ((-1026 . -72) 145221) ((-1026 . -13) T) ((-1026 . -1129) T) ((-1026 . -1013) 144977) ((-1026 . -23) 144833) ((-1026 . -21) 144748) ((-1022 . -1023) 144732) ((-1022 . |MappingCategory|) 144706) ((-1022 . -1129) T) ((-1022 . -80) 144690) ((-1022 . -1013) T) ((-1022 . -552) 144672) ((-1022 . -13) T) ((-1022 . -72) T) ((-1017 . -1016) 144636) ((-1017 . -72) T) ((-1017 . -552) 144618) ((-1017 . -1013) T) ((-1017 . -241) 144574) ((-1017 . -1129) T) ((-1017 . -13) T) ((-1017 . -557) 144489) ((-1015 . -1016) 144441) ((-1015 . -72) T) ((-1015 . -552) 144423) ((-1015 . -1013) T) ((-1015 . -241) 144379) ((-1015 . -1129) T) ((-1015 . -13) T) ((-1015 . -557) 144282) ((-1014 . -320) T) ((-1014 . -72) T) ((-1014 . -13) T) ((-1014 . -1129) T) ((-1014 . -552) 144264) ((-1014 . -1013) T) ((-1009 . -369) 144248) ((-1009 . -1011) 144232) ((-1009 . -318) 144216) ((-1009 . -320) 144195) ((-1009 . -193) 144179) ((-1009 . -553) 144140) ((-1009 . -124) 144124) ((-1009 . -1035) 144108) ((-1009 . -34) T) ((-1009 . -13) T) ((-1009 . -1129) T) ((-1009 . -72) T) ((-1009 . -552) 144090) ((-1009 . -260) 144028) ((-1009 . -455) 143961) ((-1009 . -1013) T) ((-1009 . -429) 143945) ((-1009 . -76) 143929) ((-1009 . -183) 143913) ((-1008 . -995) T) ((-1008 . -430) 143894) ((-1008 . -552) 143860) ((-1008 . -555) 143841) ((-1008 . -1013) T) ((-1008 . -1129) T) ((-1008 . -13) T) ((-1008 . -72) T) ((-1008 . -64) T) ((-1004 . -1129) T) ((-1004 . -13) T) ((-1004 . -1013) 143811) ((-1004 . -552) 143770) ((-1004 . -72) 143740) ((-1003 . -995) T) ((-1003 . -430) 143721) ((-1003 . -552) 143687) ((-1003 . -555) 143668) ((-1003 . -1013) T) ((-1003 . -1129) T) ((-1003 . -13) T) ((-1003 . -72) T) ((-1003 . -64) T) ((-1001 . -1006) 143652) ((-1001 . -557) 143636) ((-1001 . -1013) 143614) ((-1001 . -552) 143581) ((-1001 . -1129) 143559) ((-1001 . -13) 143537) ((-1001 . -72) 143515) ((-1001 . -1007) 143473) ((-1000 . -228) 143457) ((-1000 . -555) 143441) ((-1000 . -950) 143425) ((-1000 . -759) T) ((-1000 . -72) T) ((-1000 . -1013) T) ((-1000 . -552) 143407) ((-1000 . -756) T) ((-1000 . -186) 143394) ((-1000 . -13) T) ((-1000 . -1129) T) ((-1000 . -189) T) ((-999 . -213) 143331) ((-999 . -555) 143074) ((-999 . -950) 142903) ((-999 . -553) NIL) ((-999 . -277) 142864) ((-999 . -355) 142848) ((-999 . -38) 142700) ((-999 . -82) 142525) ((-999 . -963) 142371) ((-999 . -968) 142217) ((-999 . -588) 142127) ((-999 . -590) 142016) ((-999 . -582) 141868) ((-999 . -654) 141720) ((-999 . -118) 141699) ((-999 . -120) 141678) ((-999 . -146) 141592) ((-999 . -495) 141526) ((-999 . -246) 141460) ((-999 . -47) 141421) ((-999 . -329) 141405) ((-999 . -580) 141353) ((-999 . -392) 141307) ((-999 . -455) 141170) ((-999 . -809) 141105) ((-999 . -806) 141003) ((-999 . -811) 140905) ((-999 . -796) NIL) ((-999 . -821) 140884) ((-999 . -1134) 140863) ((-999 . -861) 140808) ((-999 . -260) 140795) ((-999 . -190) 140774) ((-999 . -104) T) ((-999 . -25) T) ((-999 . -72) T) ((-999 . -552) 140756) ((-999 . -1013) T) ((-999 . -23) T) ((-999 . -21) T) ((-999 . -970) T) ((-999 . -1025) T) ((-999 . -1061) T) ((-999 . -663) T) ((-999 . -961) T) ((-999 . -186) 140704) ((-999 . -13) T) ((-999 . -1129) T) ((-999 . -189) 140658) ((-999 . -225) 140642) ((-999 . -184) 140626) ((-997 . -552) 140608) ((-994 . -756) T) ((-994 . -552) 140590) ((-994 . -1013) T) ((-994 . -72) T) ((-994 . -13) T) ((-994 . -1129) T) ((-994 . -759) T) ((-994 . -553) 140571) ((-991 . -661) 140550) ((-991 . -950) 140448) ((-991 . -355) 140432) ((-991 . -580) 140380) ((-991 . -590) 140257) ((-991 . -329) 140241) ((-991 . -322) 140220) ((-991 . -120) 140199) ((-991 . -555) 140024) ((-991 . -654) 139898) ((-991 . -582) 139772) ((-991 . -588) 139670) ((-991 . -968) 139583) ((-991 . -963) 139496) ((-991 . -82) 139388) ((-991 . -38) 139262) ((-991 . -353) 139241) ((-991 . -345) 139220) ((-991 . -118) 139174) ((-991 . -1066) 139153) ((-991 . -299) 139132) ((-991 . -320) 139086) ((-991 . -201) 139040) ((-991 . -246) 138994) ((-991 . -258) 138948) ((-991 . -392) 138902) ((-991 . -495) 138856) ((-991 . -832) 138810) ((-991 . -1134) 138764) ((-991 . -312) 138718) ((-991 . -190) 138646) ((-991 . -186) 138522) ((-991 . -189) 138404) ((-991 . -225) 138374) ((-991 . -806) 138246) ((-991 . -811) 138120) ((-991 . -809) 138053) ((-991 . -184) 138023) ((-991 . -553) 138007) ((-991 . -21) T) ((-991 . -23) T) ((-991 . -1013) T) ((-991 . -552) 137989) ((-991 . -1129) T) ((-991 . -13) T) ((-991 . -72) T) ((-991 . -25) T) ((-991 . -104) T) ((-991 . -961) T) ((-991 . -663) T) ((-991 . -1061) T) ((-991 . -1025) T) ((-991 . -970) T) ((-991 . -146) T) ((-989 . -1013) T) ((-989 . -552) 137971) ((-989 . -1129) T) ((-989 . -13) T) ((-989 . -72) T) ((-989 . -241) 137950) ((-988 . -1013) T) ((-988 . -552) 137932) ((-988 . -1129) T) ((-988 . -13) T) ((-988 . -72) T) ((-987 . -1013) T) ((-987 . -552) 137914) ((-987 . -1129) T) ((-987 . -13) T) ((-987 . -72) T) ((-987 . -241) 137893) ((-987 . -950) 137870) ((-987 . -555) 137847) ((-986 . -1129) T) ((-986 . -13) T) ((-985 . -995) T) ((-985 . -430) 137828) ((-985 . -552) 137794) ((-985 . -555) 137775) ((-985 . -1013) T) ((-985 . -1129) T) ((-985 . -13) T) ((-985 . -72) T) ((-985 . -64) T) ((-978 . -995) T) ((-978 . -430) 137756) ((-978 . -552) 137722) ((-978 . -555) 137703) ((-978 . -1013) T) ((-978 . -1129) T) ((-978 . -13) T) ((-978 . -72) T) ((-978 . -64) T) ((-975 . -483) T) ((-975 . -1134) T) ((-975 . -1066) T) ((-975 . -950) 137685) ((-975 . -553) 137600) ((-975 . -933) T) ((-975 . -796) 137582) ((-975 . -755) T) ((-975 . -721) T) ((-975 . -718) T) ((-975 . -759) T) ((-975 . -756) T) ((-975 . -716) T) ((-975 . -714) T) ((-975 . -740) T) ((-975 . -590) 137554) ((-975 . -580) 137536) ((-975 . -832) T) ((-975 . -495) T) ((-975 . -246) T) ((-975 . -146) T) ((-975 . -555) 137508) ((-975 . -654) 137495) ((-975 . -582) 137482) ((-975 . -968) 137469) ((-975 . -963) 137456) ((-975 . -82) 137441) ((-975 . -38) 137428) ((-975 . -392) T) ((-975 . -258) T) ((-975 . -189) T) ((-975 . -186) 137415) ((-975 . -190) T) ((-975 . -116) T) ((-975 . -961) T) ((-975 . -663) T) ((-975 . -1061) T) ((-975 . -1025) T) ((-975 . -970) T) ((-975 . -21) T) ((-975 . -588) 137387) ((-975 . -23) T) ((-975 . -1013) T) ((-975 . -552) 137369) ((-975 . -1129) T) ((-975 . -13) T) ((-975 . -72) T) ((-975 . -25) T) ((-975 . -104) T) ((-975 . -120) T) ((-975 . -557) 137350) ((-974 . -980) 137329) ((-974 . -72) T) ((-974 . -13) T) ((-974 . -1129) T) ((-974 . -552) 137311) ((-974 . -1013) T) ((-971 . -1129) T) ((-971 . -13) T) ((-971 . -1013) 137289) ((-971 . -552) 137256) ((-971 . -72) 137234) ((-966 . -965) 137174) ((-966 . -582) 137119) ((-966 . -654) 137064) ((-966 . -429) 137048) ((-966 . -455) 136981) ((-966 . -260) 136919) ((-966 . -34) T) ((-966 . -318) 136903) ((-966 . -590) 136887) ((-966 . -588) 136856) ((-966 . -104) T) ((-966 . -25) T) ((-966 . -72) T) ((-966 . -13) T) ((-966 . -1129) T) ((-966 . -552) 136818) ((-966 . -1013) T) ((-966 . -23) T) ((-966 . -21) T) ((-966 . -968) 136802) ((-966 . -963) 136786) ((-966 . -82) 136765) ((-966 . -1187) 136735) ((-966 . -553) 136696) ((-958 . -983) 136625) ((-958 . -889) 136554) ((-958 . -318) 136519) ((-958 . -553) 136461) ((-958 . -429) 136426) ((-958 . -1013) T) ((-958 . -455) 136310) ((-958 . -260) 136218) ((-958 . -552) 136161) ((-958 . -72) T) ((-958 . -1129) T) ((-958 . -13) T) ((-958 . -34) T) ((-958 . -124) 136126) ((-958 . -1124) 136055) ((-948 . -995) T) ((-948 . -430) 136036) ((-948 . -552) 136002) ((-948 . -555) 135983) ((-948 . -1013) T) ((-948 . -1129) T) ((-948 . -13) T) ((-948 . -72) T) ((-948 . -64) T) ((-947 . -146) T) ((-947 . -555) 135952) ((-947 . -970) T) ((-947 . -1025) T) ((-947 . -1061) T) ((-947 . -663) T) ((-947 . -961) T) ((-947 . -590) 135926) ((-947 . -588) 135885) ((-947 . -104) T) ((-947 . -25) T) ((-947 . -72) T) ((-947 . -13) T) ((-947 . -1129) T) ((-947 . -552) 135867) ((-947 . -1013) T) ((-947 . -23) T) ((-947 . -21) T) ((-947 . -968) 135841) ((-947 . -963) 135815) ((-947 . -82) 135782) ((-947 . -38) 135766) ((-947 . -582) 135750) ((-947 . -654) 135734) ((-940 . -983) 135703) ((-940 . -889) 135672) ((-940 . -318) 135656) ((-940 . -553) 135617) ((-940 . -429) 135601) ((-940 . -1013) T) ((-940 . -455) 135534) ((-940 . -260) 135472) ((-940 . -552) 135434) ((-940 . -72) T) ((-940 . -1129) T) ((-940 . -13) T) ((-940 . -34) T) ((-940 . -124) 135418) ((-940 . -1124) 135387) ((-939 . -1013) T) ((-939 . -552) 135369) ((-939 . -1129) T) ((-939 . -13) T) ((-939 . -72) T) ((-937 . -925) T) ((-937 . -915) T) ((-937 . -714) T) ((-937 . -716) T) ((-937 . -756) T) ((-937 . -759) T) ((-937 . -718) T) ((-937 . -721) T) ((-937 . -755) T) ((-937 . -950) 135254) ((-937 . -355) 135216) ((-937 . -201) T) ((-937 . -246) T) ((-937 . -258) T) ((-937 . -392) T) ((-937 . -38) 135153) ((-937 . -582) 135090) ((-937 . -654) 135027) ((-937 . -555) 134964) ((-937 . -495) T) ((-937 . -832) T) ((-937 . -1134) T) ((-937 . -312) T) ((-937 . -82) 134873) ((-937 . -963) 134810) ((-937 . -968) 134747) ((-937 . -146) T) ((-937 . -120) T) ((-937 . -590) 134684) ((-937 . -588) 134621) ((-937 . -104) T) ((-937 . -25) T) ((-937 . -72) T) ((-937 . -13) T) ((-937 . -1129) T) ((-937 . -552) 134603) ((-937 . -1013) T) ((-937 . -23) T) ((-937 . -21) T) ((-937 . -961) T) ((-937 . -663) T) ((-937 . -1061) T) ((-937 . -1025) T) ((-937 . -970) T) ((-932 . -995) T) ((-932 . -430) 134584) ((-932 . -552) 134550) ((-932 . -555) 134531) ((-932 . -1013) T) ((-932 . -1129) T) ((-932 . -13) T) ((-932 . -72) T) ((-932 . -64) T) ((-917 . -904) 134513) ((-917 . -1066) T) ((-917 . -555) 134463) ((-917 . -950) 134423) ((-917 . -553) 134353) ((-917 . -933) T) ((-917 . -821) NIL) ((-917 . -794) 134335) ((-917 . -755) T) ((-917 . -721) T) ((-917 . -718) T) ((-917 . -759) T) ((-917 . -756) T) ((-917 . -716) T) ((-917 . -714) T) ((-917 . -740) T) ((-917 . -796) 134317) ((-917 . -343) 134299) ((-917 . -580) 134281) ((-917 . -329) 134263) ((-917 . -241) NIL) ((-917 . -260) NIL) ((-917 . -455) NIL) ((-917 . -288) 134245) ((-917 . -201) T) ((-917 . -82) 134172) ((-917 . -963) 134122) ((-917 . -968) 134072) ((-917 . -246) T) ((-917 . -654) 134022) ((-917 . -582) 133972) ((-917 . -590) 133922) ((-917 . -588) 133872) ((-917 . -38) 133822) ((-917 . -258) T) ((-917 . -392) T) ((-917 . -146) T) ((-917 . -495) T) ((-917 . -832) T) ((-917 . -1134) T) ((-917 . -312) T) ((-917 . -190) T) ((-917 . -186) 133809) ((-917 . -189) T) ((-917 . -225) 133791) ((-917 . -806) NIL) ((-917 . -811) NIL) ((-917 . -809) NIL) ((-917 . -184) 133773) ((-917 . -120) T) ((-917 . -118) NIL) ((-917 . -104) T) ((-917 . -25) T) ((-917 . -72) T) ((-917 . -13) T) ((-917 . -1129) T) ((-917 . -552) 133733) ((-917 . -1013) T) ((-917 . -23) T) ((-917 . -21) T) ((-917 . -961) T) ((-917 . -663) T) ((-917 . -1061) T) ((-917 . -1025) T) ((-917 . -970) T) ((-916 . -291) 133707) ((-916 . -146) T) ((-916 . -555) 133637) ((-916 . -970) T) ((-916 . -1025) T) ((-916 . -1061) T) ((-916 . -663) T) ((-916 . -961) T) ((-916 . -590) 133539) ((-916 . -588) 133469) ((-916 . -104) T) ((-916 . -25) T) ((-916 . -72) T) ((-916 . -13) T) ((-916 . -1129) T) ((-916 . -552) 133451) ((-916 . -1013) T) ((-916 . -23) T) ((-916 . -21) T) ((-916 . -968) 133396) ((-916 . -963) 133341) ((-916 . -82) 133258) ((-916 . -553) 133242) ((-916 . -184) 133219) ((-916 . -809) 133171) ((-916 . -811) 133083) ((-916 . -806) 132993) ((-916 . -225) 132970) ((-916 . -189) 132910) ((-916 . -186) 132844) ((-916 . -190) 132816) ((-916 . -312) T) ((-916 . -1134) T) ((-916 . -832) T) ((-916 . -495) T) ((-916 . -654) 132761) ((-916 . -582) 132706) ((-916 . -38) 132651) ((-916 . -392) T) ((-916 . -258) T) ((-916 . -246) T) ((-916 . -201) T) ((-916 . -320) NIL) ((-916 . -299) NIL) ((-916 . -1066) NIL) ((-916 . -118) 132623) ((-916 . -345) NIL) ((-916 . -353) 132595) ((-916 . -120) 132567) ((-916 . -322) 132539) ((-916 . -329) 132516) ((-916 . -580) 132450) ((-916 . -355) 132427) ((-916 . -950) 132304) ((-916 . -661) 132276) ((-913 . -908) 132260) ((-913 . -318) 132244) ((-913 . -1035) 132228) ((-913 . -34) T) ((-913 . -13) T) ((-913 . -1129) T) ((-913 . -72) 132182) ((-913 . -552) 132117) ((-913 . -260) 132055) ((-913 . -455) 131988) ((-913 . -1013) 131966) ((-913 . -429) 131950) ((-913 . -76) 131934) ((-909 . -911) 131918) ((-909 . -759) 131897) ((-909 . -756) 131876) ((-909 . -950) 131774) ((-909 . -355) 131758) ((-909 . -580) 131706) ((-909 . -590) 131608) ((-909 . -329) 131592) ((-909 . -241) 131550) ((-909 . -260) 131515) ((-909 . -455) 131427) ((-909 . -288) 131411) ((-909 . -38) 131359) ((-909 . -82) 131237) ((-909 . -963) 131136) ((-909 . -968) 131035) ((-909 . -588) 130958) ((-909 . -582) 130906) ((-909 . -654) 130854) ((-909 . -555) 130748) ((-909 . -246) 130702) ((-909 . -201) 130681) ((-909 . -190) 130660) ((-909 . -186) 130608) ((-909 . -189) 130562) ((-909 . -225) 130546) ((-909 . -806) 130470) ((-909 . -811) 130396) ((-909 . -809) 130355) ((-909 . -184) 130339) ((-909 . -553) 130300) ((-909 . -120) 130279) ((-909 . -118) 130258) ((-909 . -104) T) ((-909 . -25) T) ((-909 . -72) T) ((-909 . -13) T) ((-909 . -1129) T) ((-909 . -552) 130240) ((-909 . -1013) T) ((-909 . -23) T) ((-909 . -21) T) ((-909 . -961) T) ((-909 . -663) T) ((-909 . -1061) T) ((-909 . -1025) T) ((-909 . -970) T) ((-907 . -995) T) ((-907 . -430) 130221) ((-907 . -552) 130187) ((-907 . -555) 130168) ((-907 . -1013) T) ((-907 . -1129) T) ((-907 . -13) T) ((-907 . -72) T) ((-907 . -64) T) ((-906 . -21) T) ((-906 . -588) 130150) ((-906 . -23) T) ((-906 . -1013) T) ((-906 . -552) 130132) ((-906 . -1129) T) ((-906 . -13) T) ((-906 . -72) T) ((-906 . -25) T) ((-906 . -104) T) ((-906 . -241) 130099) ((-902 . -552) 130081) ((-899 . -1013) T) ((-899 . -552) 130063) ((-899 . -1129) T) ((-899 . -13) T) ((-899 . -72) T) ((-884 . -721) T) ((-884 . -718) T) ((-884 . -759) T) ((-884 . -756) T) ((-884 . -716) T) ((-884 . -23) T) ((-884 . -1013) T) ((-884 . -552) 130023) ((-884 . -1129) T) ((-884 . -13) T) ((-884 . -72) T) ((-884 . -25) T) ((-884 . -104) T) ((-883 . -995) T) ((-883 . -430) 130004) ((-883 . -552) 129970) ((-883 . -555) 129951) ((-883 . -1013) T) ((-883 . -1129) T) ((-883 . -13) T) ((-883 . -72) T) ((-883 . -64) T) ((-877 . -880) T) ((-877 . -72) T) ((-877 . -552) 129933) ((-877 . -1013) T) ((-877 . -604) T) ((-877 . -13) T) ((-877 . -1129) T) ((-877 . -84) T) ((-877 . -555) 129917) ((-876 . -552) 129899) ((-875 . -1013) T) ((-875 . -552) 129881) ((-875 . -1129) T) ((-875 . -13) T) ((-875 . -72) T) ((-875 . -320) 129834) ((-875 . -663) 129736) ((-875 . -1025) 129638) ((-875 . -23) 129452) ((-875 . -25) 129266) ((-875 . -104) 129124) ((-875 . -413) 129077) ((-875 . -21) 129032) ((-875 . -588) 128976) ((-875 . -717) 128929) ((-875 . -716) 128882) ((-875 . -756) 128784) ((-875 . -759) 128686) ((-875 . -718) 128639) ((-875 . -721) 128592) ((-869 . -19) 128576) ((-869 . -1035) 128560) ((-869 . -318) 128544) ((-869 . -34) T) ((-869 . -13) T) ((-869 . -1129) T) ((-869 . -72) 128478) ((-869 . -552) 128393) ((-869 . -260) 128331) ((-869 . -455) 128264) ((-869 . -1013) 128217) ((-869 . -429) 128201) ((-869 . -593) 128185) ((-869 . -243) 128162) ((-869 . -241) 128114) ((-869 . -538) 128091) ((-869 . -553) 128052) ((-869 . -124) 128036) ((-869 . -756) 128015) ((-869 . -759) 127994) ((-869 . -324) 127978) ((-867 . -277) 127957) ((-867 . -950) 127855) ((-867 . -355) 127839) ((-867 . -38) 127736) ((-867 . -555) 127593) ((-867 . -590) 127518) ((-867 . -588) 127428) ((-867 . -970) T) ((-867 . -1025) T) ((-867 . -1061) T) ((-867 . -663) T) ((-867 . -961) T) ((-867 . -82) 127293) ((-867 . -963) 127179) ((-867 . -968) 127065) ((-867 . -21) T) ((-867 . -23) T) ((-867 . -1013) T) ((-867 . -552) 127047) ((-867 . -1129) T) ((-867 . -13) T) ((-867 . -72) T) ((-867 . -25) T) ((-867 . -104) T) ((-867 . -582) 126944) ((-867 . -654) 126841) ((-867 . -118) 126820) ((-867 . -120) 126799) ((-867 . -146) 126753) ((-867 . -495) 126732) ((-867 . -246) 126711) ((-867 . -47) 126690) ((-865 . -1013) T) ((-865 . -552) 126656) ((-865 . -1129) T) ((-865 . -13) T) ((-865 . -72) T) ((-857 . -861) 126617) ((-857 . -555) 126413) ((-857 . -950) 126295) ((-857 . -1134) 126274) ((-857 . -821) 126253) ((-857 . -796) 126178) ((-857 . -811) 126159) ((-857 . -806) 126138) ((-857 . -809) 126119) ((-857 . -455) 126065) ((-857 . -392) 126019) ((-857 . -580) 125967) ((-857 . -590) 125856) ((-857 . -329) 125840) ((-857 . -47) 125809) ((-857 . -38) 125661) ((-857 . -582) 125513) ((-857 . -654) 125365) ((-857 . -246) 125299) ((-857 . -495) 125233) ((-857 . -82) 125058) ((-857 . -963) 124904) ((-857 . -968) 124750) ((-857 . -146) 124664) ((-857 . -120) 124643) ((-857 . -118) 124622) ((-857 . -588) 124532) ((-857 . -104) T) ((-857 . -25) T) ((-857 . -72) T) ((-857 . -13) T) ((-857 . -1129) T) ((-857 . -552) 124514) ((-857 . -1013) T) ((-857 . -23) T) ((-857 . -21) T) ((-857 . -961) T) ((-857 . -663) T) ((-857 . -1061) T) ((-857 . -1025) T) ((-857 . -970) T) ((-857 . -355) 124498) ((-857 . -277) 124467) ((-857 . -260) 124454) ((-857 . -553) 124315) ((-854 . -893) 124299) ((-854 . -19) 124283) ((-854 . -1035) 124267) ((-854 . -318) 124251) ((-854 . -34) T) ((-854 . -13) T) ((-854 . -1129) T) ((-854 . -72) 124185) ((-854 . -552) 124100) ((-854 . -260) 124038) ((-854 . -455) 123971) ((-854 . -1013) 123924) ((-854 . -429) 123908) ((-854 . -593) 123892) ((-854 . -243) 123869) ((-854 . -241) 123821) ((-854 . -538) 123798) ((-854 . -553) 123759) ((-854 . -124) 123743) ((-854 . -756) 123722) ((-854 . -759) 123701) ((-854 . -324) 123685) ((-854 . -1178) 123669) ((-854 . -557) 123646) ((-838 . -887) T) ((-838 . -552) 123628) ((-836 . -866) T) ((-836 . -552) 123610) ((-830 . -718) T) ((-830 . -759) T) ((-830 . -756) T) ((-830 . -1013) T) ((-830 . -552) 123592) ((-830 . -1129) T) ((-830 . -13) T) ((-830 . -72) T) ((-830 . -25) T) ((-830 . -663) T) ((-830 . -1025) T) ((-825 . -312) T) ((-825 . -1134) T) ((-825 . -832) T) ((-825 . -495) T) ((-825 . -146) T) ((-825 . -555) 123529) ((-825 . -654) 123481) ((-825 . -582) 123433) ((-825 . -38) 123385) ((-825 . -392) T) ((-825 . -258) T) ((-825 . -590) 123337) ((-825 . -588) 123274) ((-825 . -970) T) ((-825 . -1025) T) ((-825 . -1061) T) ((-825 . -663) T) ((-825 . -961) T) ((-825 . -82) 123205) ((-825 . -963) 123157) ((-825 . -968) 123109) ((-825 . -21) T) ((-825 . -23) T) ((-825 . -1013) T) ((-825 . -552) 123091) ((-825 . -1129) T) ((-825 . -13) T) ((-825 . -72) T) ((-825 . -25) T) ((-825 . -104) T) ((-825 . -246) T) ((-825 . -201) T) ((-817 . -299) T) ((-817 . -1066) T) ((-817 . -320) T) ((-817 . -118) T) ((-817 . -312) T) ((-817 . -1134) T) ((-817 . -832) T) ((-817 . -495) T) ((-817 . -146) T) ((-817 . -555) 123041) ((-817 . -654) 123006) ((-817 . -582) 122971) ((-817 . -38) 122936) ((-817 . -392) T) ((-817 . -258) T) ((-817 . -82) 122885) ((-817 . -963) 122850) ((-817 . -968) 122815) ((-817 . -588) 122765) ((-817 . -590) 122730) ((-817 . -246) T) ((-817 . -201) T) ((-817 . -345) T) ((-817 . -189) T) ((-817 . -1129) T) ((-817 . -13) T) ((-817 . -186) 122717) ((-817 . -961) T) ((-817 . -663) T) ((-817 . -1061) T) ((-817 . -1025) T) ((-817 . -970) T) ((-817 . -21) T) ((-817 . -23) T) ((-817 . -1013) T) ((-817 . -552) 122699) ((-817 . -72) T) ((-817 . -25) T) ((-817 . -104) T) ((-817 . -190) T) ((-817 . -280) 122686) ((-817 . -120) 122668) ((-817 . -950) 122655) ((-817 . -1187) 122642) ((-817 . -1198) 122629) ((-817 . -553) 122611) ((-816 . -1013) T) ((-816 . -552) 122593) ((-816 . -1129) T) ((-816 . -13) T) ((-816 . -72) T) ((-813 . -815) 122577) ((-813 . -759) 122531) ((-813 . -756) 122485) ((-813 . -663) T) ((-813 . -1013) T) ((-813 . -552) 122467) ((-813 . -72) T) ((-813 . -1025) T) ((-813 . -413) T) ((-813 . -1129) T) ((-813 . -13) T) ((-813 . -241) 122446) ((-812 . -92) 122430) ((-812 . -429) 122414) ((-812 . -1013) 122392) ((-812 . -455) 122325) ((-812 . -260) 122263) ((-812 . -552) 122177) ((-812 . -72) 122131) ((-812 . -1129) T) ((-812 . -13) T) ((-812 . -34) T) ((-812 . -923) 122115) ((-803 . -756) T) ((-803 . -552) 122097) ((-803 . -1013) T) ((-803 . -72) T) ((-803 . -13) T) ((-803 . -1129) T) ((-803 . -759) T) ((-803 . -950) 122074) ((-803 . -555) 122051) ((-800 . -1013) T) ((-800 . -552) 122033) ((-800 . -1129) T) ((-800 . -13) T) ((-800 . -72) T) ((-800 . -950) 122001) ((-800 . -555) 121969) ((-798 . -1013) T) ((-798 . -552) 121951) ((-798 . -1129) T) ((-798 . -13) T) ((-798 . -72) T) ((-795 . -1013) T) ((-795 . -552) 121933) ((-795 . -1129) T) ((-795 . -13) T) ((-795 . -72) T) ((-785 . -995) T) ((-785 . -430) 121914) ((-785 . -552) 121880) ((-785 . -555) 121861) ((-785 . -1013) T) ((-785 . -1129) T) ((-785 . -13) T) ((-785 . -72) T) ((-785 . -64) T) ((-785 . -1175) T) ((-783 . -1013) T) ((-783 . -552) 121843) ((-783 . -1129) T) ((-783 . -13) T) ((-783 . -72) T) ((-783 . -555) 121825) ((-782 . -1129) T) ((-782 . -13) T) ((-782 . -552) 121700) ((-782 . -1013) 121651) ((-782 . -72) 121602) ((-781 . -904) 121586) ((-781 . -1066) 121564) ((-781 . -950) 121431) ((-781 . -555) 121330) ((-781 . -553) 121133) ((-781 . -933) 121112) ((-781 . -821) 121091) ((-781 . -794) 121075) ((-781 . -755) 121054) ((-781 . -721) 121033) ((-781 . -718) 121012) ((-781 . -759) 120966) ((-781 . -756) 120920) ((-781 . -716) 120899) ((-781 . -714) 120878) ((-781 . -740) 120857) ((-781 . -796) 120782) ((-781 . -343) 120766) ((-781 . -580) 120714) ((-781 . -590) 120630) ((-781 . -329) 120614) ((-781 . -241) 120572) ((-781 . -260) 120537) ((-781 . -455) 120449) ((-781 . -288) 120433) ((-781 . -201) T) ((-781 . -82) 120364) ((-781 . -963) 120316) ((-781 . -968) 120268) ((-781 . -246) T) ((-781 . -654) 120220) ((-781 . -582) 120172) ((-781 . -588) 120109) ((-781 . -38) 120061) ((-781 . -258) T) ((-781 . -392) T) ((-781 . -146) T) ((-781 . -495) T) ((-781 . -832) T) ((-781 . -1134) T) ((-781 . -312) T) ((-781 . -190) 120040) ((-781 . -186) 119988) ((-781 . -189) 119942) ((-781 . -225) 119926) ((-781 . -806) 119850) ((-781 . -811) 119776) ((-781 . -809) 119735) ((-781 . -184) 119719) ((-781 . -120) 119673) ((-781 . -118) 119652) ((-781 . -104) T) ((-781 . -25) T) ((-781 . -72) T) ((-781 . -13) T) ((-781 . -1129) T) ((-781 . -552) 119634) ((-781 . -1013) T) ((-781 . -23) T) ((-781 . -21) T) ((-781 . -961) T) ((-781 . -663) T) ((-781 . -1061) T) ((-781 . -1025) T) ((-781 . -970) T) ((-780 . -904) 119611) ((-780 . -1066) NIL) ((-780 . -950) 119588) ((-780 . -555) 119518) ((-780 . -553) NIL) ((-780 . -933) NIL) ((-780 . -821) NIL) ((-780 . -794) 119495) ((-780 . -755) NIL) ((-780 . -721) NIL) ((-780 . -718) NIL) ((-780 . -759) NIL) ((-780 . -756) NIL) ((-780 . -716) NIL) ((-780 . -714) NIL) ((-780 . -740) NIL) ((-780 . -796) NIL) ((-780 . -343) 119472) ((-780 . -580) 119449) ((-780 . -590) 119394) ((-780 . -329) 119371) ((-780 . -241) 119301) ((-780 . -260) 119245) ((-780 . -455) 119108) ((-780 . -288) 119085) ((-780 . -201) T) ((-780 . -82) 119002) ((-780 . -963) 118947) ((-780 . -968) 118892) ((-780 . -246) T) ((-780 . -654) 118837) ((-780 . -582) 118782) ((-780 . -588) 118712) ((-780 . -38) 118657) ((-780 . -258) T) ((-780 . -392) T) ((-780 . -146) T) ((-780 . -495) T) ((-780 . -832) T) ((-780 . -1134) T) ((-780 . -312) T) ((-780 . -190) NIL) ((-780 . -186) NIL) ((-780 . -189) NIL) ((-780 . -225) 118634) ((-780 . -806) NIL) ((-780 . -811) NIL) ((-780 . -809) NIL) ((-780 . -184) 118611) ((-780 . -120) T) ((-780 . -118) NIL) ((-780 . -104) T) ((-780 . -25) T) ((-780 . -72) T) ((-780 . -13) T) ((-780 . -1129) T) ((-780 . -552) 118593) ((-780 . -1013) T) ((-780 . -23) T) ((-780 . -21) T) ((-780 . -961) T) ((-780 . -663) T) ((-780 . -1061) T) ((-780 . -1025) T) ((-780 . -970) T) ((-778 . -779) 118577) ((-778 . -832) T) ((-778 . -495) T) ((-778 . -246) T) ((-778 . -146) T) ((-778 . -555) 118549) ((-778 . -654) 118536) ((-778 . -582) 118523) ((-778 . -968) 118510) ((-778 . -963) 118497) ((-778 . -82) 118482) ((-778 . -38) 118469) ((-778 . -392) T) ((-778 . -258) T) ((-778 . -961) T) ((-778 . -663) T) ((-778 . -1061) T) ((-778 . -1025) T) ((-778 . -970) T) ((-778 . -21) T) ((-778 . -588) 118441) ((-778 . -23) T) ((-778 . -1013) T) ((-778 . -552) 118423) ((-778 . -1129) T) ((-778 . -13) T) ((-778 . -72) T) ((-778 . -25) T) ((-778 . -104) T) ((-778 . -590) 118410) ((-778 . -120) T) ((-775 . -961) T) ((-775 . -663) T) ((-775 . -1061) T) ((-775 . -1025) T) ((-775 . -970) T) ((-775 . -21) T) ((-775 . -588) 118355) ((-775 . -23) T) ((-775 . -1013) T) ((-775 . -552) 118317) ((-775 . -1129) T) ((-775 . -13) T) ((-775 . -72) T) ((-775 . -25) T) ((-775 . -104) T) ((-775 . -590) 118277) ((-775 . -555) 118212) ((-775 . -430) 118189) ((-775 . -38) 118159) ((-775 . -82) 118124) ((-775 . -963) 118094) ((-775 . -968) 118064) ((-775 . -582) 118034) ((-775 . -654) 118004) ((-774 . -1013) T) ((-774 . -552) 117986) ((-774 . -1129) T) ((-774 . -13) T) ((-774 . -72) T) ((-773 . -752) T) ((-773 . -759) T) ((-773 . -756) T) ((-773 . -1013) T) ((-773 . -552) 117968) ((-773 . -1129) T) ((-773 . -13) T) ((-773 . -72) T) ((-773 . -320) T) ((-773 . -553) 117890) ((-772 . -1013) T) ((-772 . -552) 117872) ((-772 . -1129) T) ((-772 . -13) T) ((-772 . -72) T) ((-771 . -770) T) ((-771 . -147) T) ((-771 . -552) 117854) ((-767 . -756) T) ((-767 . -552) 117836) ((-767 . -1013) T) ((-767 . -72) T) ((-767 . -13) T) ((-767 . -1129) T) ((-767 . -759) T) ((-764 . -761) 117820) ((-764 . -950) 117718) ((-764 . -555) 117616) ((-764 . -355) 117600) ((-764 . -654) 117570) ((-764 . -582) 117540) ((-764 . -590) 117514) ((-764 . -588) 117473) ((-764 . -104) T) ((-764 . -25) T) ((-764 . -72) T) ((-764 . -13) T) ((-764 . -1129) T) ((-764 . -552) 117455) ((-764 . -1013) T) ((-764 . -23) T) ((-764 . -21) T) ((-764 . -968) 117439) ((-764 . -963) 117423) ((-764 . -82) 117402) ((-764 . -961) T) ((-764 . -663) T) ((-764 . -1061) T) ((-764 . -1025) T) ((-764 . -970) T) ((-764 . -38) 117372) ((-763 . -761) 117356) ((-763 . -950) 117254) ((-763 . -555) 117173) ((-763 . -355) 117157) ((-763 . -654) 117127) ((-763 . -582) 117097) ((-763 . -590) 117071) ((-763 . -588) 117030) ((-763 . -104) T) ((-763 . -25) T) ((-763 . -72) T) ((-763 . -13) T) ((-763 . -1129) T) ((-763 . -552) 117012) ((-763 . -1013) T) ((-763 . -23) T) ((-763 . -21) T) ((-763 . -968) 116996) ((-763 . -963) 116980) ((-763 . -82) 116959) ((-763 . -961) T) ((-763 . -663) T) ((-763 . -1061) T) ((-763 . -1025) T) ((-763 . -970) T) ((-763 . -38) 116929) ((-757 . -759) T) ((-757 . -1129) T) ((-757 . -13) T) ((-757 . -72) T) ((-757 . -430) 116913) ((-757 . -552) 116861) ((-757 . -555) 116845) ((-750 . -1013) T) ((-750 . -552) 116827) ((-750 . -1129) T) ((-750 . -13) T) ((-750 . -72) T) ((-750 . -355) 116811) ((-750 . -555) 116684) ((-750 . -950) 116582) ((-750 . -21) 116537) ((-750 . -588) 116457) ((-750 . -23) 116412) ((-750 . -25) 116367) ((-750 . -104) 116322) ((-750 . -755) 116301) ((-750 . -721) 116280) ((-750 . -718) 116259) ((-750 . -759) 116238) ((-750 . -756) 116217) ((-750 . -716) 116196) ((-750 . -714) 116175) ((-750 . -961) 116154) ((-750 . -663) 116133) ((-750 . -1061) 116112) ((-750 . -1025) 116091) ((-750 . -970) 116070) ((-750 . -590) 116043) ((-750 . -120) 116022) ((-749 . -747) 116004) ((-749 . -72) T) ((-749 . -13) T) ((-749 . -1129) T) ((-749 . -552) 115986) ((-749 . -1013) T) ((-745 . -961) T) ((-745 . -663) T) ((-745 . -1061) T) ((-745 . -1025) T) ((-745 . -970) T) ((-745 . -21) T) ((-745 . -588) 115931) ((-745 . -23) T) ((-745 . -1013) T) ((-745 . -552) 115913) ((-745 . -1129) T) ((-745 . -13) T) ((-745 . -72) T) ((-745 . -25) T) ((-745 . -104) T) ((-745 . -590) 115873) ((-745 . -555) 115828) ((-745 . -950) 115798) ((-745 . -241) 115777) ((-745 . -120) 115756) ((-745 . -118) 115735) ((-745 . -38) 115705) ((-745 . -82) 115670) ((-745 . -963) 115640) ((-745 . -968) 115610) ((-745 . -582) 115580) ((-745 . -654) 115550) ((-743 . -1013) T) ((-743 . -552) 115532) ((-743 . -1129) T) ((-743 . -13) T) ((-743 . -72) T) ((-743 . -355) 115516) ((-743 . -555) 115389) ((-743 . -950) 115287) ((-743 . -21) 115242) ((-743 . -588) 115162) ((-743 . -23) 115117) ((-743 . -25) 115072) ((-743 . -104) 115027) ((-743 . -755) 115006) ((-743 . -721) 114985) ((-743 . -718) 114964) ((-743 . -759) 114943) ((-743 . -756) 114922) ((-743 . -716) 114901) ((-743 . -714) 114880) ((-743 . -961) 114859) ((-743 . -663) 114838) ((-743 . -1061) 114817) ((-743 . -1025) 114796) ((-743 . -970) 114775) ((-743 . -590) 114748) ((-743 . -120) 114727) ((-741 . -645) 114711) ((-741 . -555) 114666) ((-741 . -654) 114636) ((-741 . -582) 114606) ((-741 . -590) 114580) ((-741 . -588) 114539) ((-741 . -104) T) ((-741 . -25) T) ((-741 . -72) T) ((-741 . -13) T) ((-741 . -1129) T) ((-741 . -552) 114521) ((-741 . -1013) T) ((-741 . -23) T) ((-741 . -21) T) ((-741 . -968) 114505) ((-741 . -963) 114489) ((-741 . -82) 114468) ((-741 . -961) T) ((-741 . -663) T) ((-741 . -1061) T) ((-741 . -1025) T) ((-741 . -970) T) ((-741 . -38) 114438) ((-741 . -190) 114417) ((-741 . -186) 114390) ((-741 . -189) 114369) ((-739 . -336) 114353) ((-739 . -555) 114337) ((-739 . -950) 114321) ((-739 . -759) T) ((-739 . -756) T) ((-739 . -1025) T) ((-739 . -72) T) ((-739 . -13) T) ((-739 . -1129) T) ((-739 . -552) 114303) ((-739 . -1013) T) ((-739 . -663) T) ((-739 . -754) T) ((-739 . -766) T) ((-738 . -228) 114287) ((-738 . -555) 114271) ((-738 . -950) 114255) ((-738 . -759) T) ((-738 . -72) T) ((-738 . -1013) T) ((-738 . -552) 114237) ((-738 . -756) T) ((-738 . -186) 114224) ((-738 . -13) T) ((-738 . -1129) T) ((-738 . -189) T) ((-737 . -82) 114159) ((-737 . -963) 114110) ((-737 . -968) 114061) ((-737 . -21) T) ((-737 . -588) 113997) ((-737 . -23) T) ((-737 . -1013) T) ((-737 . -552) 113966) ((-737 . -1129) T) ((-737 . -13) T) ((-737 . -72) T) ((-737 . -25) T) ((-737 . -104) T) ((-737 . -590) 113917) ((-737 . -190) T) ((-737 . -555) 113826) ((-737 . -970) T) ((-737 . -1025) T) ((-737 . -1061) T) ((-737 . -663) T) ((-737 . -961) T) ((-737 . -186) 113813) ((-737 . -189) T) ((-737 . -430) 113797) ((-737 . -312) 113776) ((-737 . -1134) 113755) ((-737 . -832) 113734) ((-737 . -495) 113713) ((-737 . -146) 113692) ((-737 . -654) 113629) ((-737 . -582) 113566) ((-737 . -38) 113503) ((-737 . -392) 113482) ((-737 . -258) 113461) ((-737 . -246) 113440) ((-737 . -201) 113419) ((-736 . -213) 113358) ((-736 . -555) 113102) ((-736 . -950) 112932) ((-736 . -553) NIL) ((-736 . -277) 112894) ((-736 . -355) 112878) ((-736 . -38) 112730) ((-736 . -82) 112555) ((-736 . -963) 112401) ((-736 . -968) 112247) ((-736 . -588) 112157) ((-736 . -590) 112046) ((-736 . -582) 111898) ((-736 . -654) 111750) ((-736 . -118) 111729) ((-736 . -120) 111708) ((-736 . -146) 111622) ((-736 . -495) 111556) ((-736 . -246) 111490) ((-736 . -47) 111452) ((-736 . -329) 111436) ((-736 . -580) 111384) ((-736 . -392) 111338) ((-736 . -455) 111203) ((-736 . -809) 111139) ((-736 . -806) 111038) ((-736 . -811) 110941) ((-736 . -796) NIL) ((-736 . -821) 110920) ((-736 . -1134) 110899) ((-736 . -861) 110846) ((-736 . -260) 110833) ((-736 . -190) 110812) ((-736 . -104) T) ((-736 . -25) T) ((-736 . -72) T) ((-736 . -552) 110794) ((-736 . -1013) T) ((-736 . -23) T) ((-736 . -21) T) ((-736 . -970) T) ((-736 . -1025) T) ((-736 . -1061) T) ((-736 . -663) T) ((-736 . -961) T) ((-736 . -186) 110742) ((-736 . -13) T) ((-736 . -1129) T) ((-736 . -189) 110696) ((-736 . -225) 110680) ((-736 . -184) 110664) ((-735 . -196) 110643) ((-735 . -1187) 110613) ((-735 . -721) 110592) ((-735 . -718) 110571) ((-735 . -759) 110525) ((-735 . -756) 110479) ((-735 . -716) 110458) ((-735 . -717) 110437) ((-735 . -654) 110382) ((-735 . -582) 110307) ((-735 . -243) 110284) ((-735 . -241) 110261) ((-735 . -538) 110238) ((-735 . -950) 110067) ((-735 . -555) 109871) ((-735 . -355) 109840) ((-735 . -580) 109748) ((-735 . -590) 109587) ((-735 . -329) 109557) ((-735 . -429) 109541) ((-735 . -455) 109474) ((-735 . -260) 109412) ((-735 . -34) T) ((-735 . -318) 109396) ((-735 . -320) 109375) ((-735 . -190) 109328) ((-735 . -588) 109116) ((-735 . -970) 109095) ((-735 . -1025) 109074) ((-735 . -1061) 109053) ((-735 . -663) 109032) ((-735 . -961) 109011) ((-735 . -186) 108907) ((-735 . -189) 108809) ((-735 . -225) 108779) ((-735 . -806) 108651) ((-735 . -811) 108525) ((-735 . -809) 108458) ((-735 . -184) 108428) ((-735 . -552) 108125) ((-735 . -968) 108050) ((-735 . -963) 107955) ((-735 . -82) 107875) ((-735 . -104) 107750) ((-735 . -25) 107587) ((-735 . -72) 107324) ((-735 . -13) T) ((-735 . -1129) T) ((-735 . -1013) 107080) ((-735 . -23) 106936) ((-735 . -21) 106851) ((-722 . -720) 106835) ((-722 . -759) 106814) ((-722 . -756) 106793) ((-722 . -950) 106586) ((-722 . -555) 106439) ((-722 . -355) 106403) ((-722 . -241) 106361) ((-722 . -260) 106326) ((-722 . -455) 106238) ((-722 . -288) 106222) ((-722 . -320) 106201) ((-722 . -553) 106162) ((-722 . -120) 106141) ((-722 . -118) 106120) ((-722 . -654) 106104) ((-722 . -582) 106088) ((-722 . -590) 106062) ((-722 . -588) 106021) ((-722 . -104) T) ((-722 . -25) T) ((-722 . -72) T) ((-722 . -13) T) ((-722 . -1129) T) ((-722 . -552) 106003) ((-722 . -1013) T) ((-722 . -23) T) ((-722 . -21) T) ((-722 . -968) 105987) ((-722 . -963) 105971) ((-722 . -82) 105950) ((-722 . -961) T) ((-722 . -663) T) ((-722 . -1061) T) ((-722 . -1025) T) ((-722 . -970) T) ((-722 . -38) 105934) ((-704 . -1155) 105918) ((-704 . -1066) 105896) ((-704 . -553) NIL) ((-704 . -260) 105883) ((-704 . -455) 105831) ((-704 . -277) 105808) ((-704 . -950) 105670) ((-704 . -355) 105654) ((-704 . -38) 105486) ((-704 . -82) 105291) ((-704 . -963) 105117) ((-704 . -968) 104943) ((-704 . -588) 104853) ((-704 . -590) 104742) ((-704 . -582) 104574) ((-704 . -654) 104406) ((-704 . -555) 104162) ((-704 . -118) 104141) ((-704 . -120) 104120) ((-704 . -47) 104097) ((-704 . -329) 104081) ((-704 . -580) 104029) ((-704 . -809) 103973) ((-704 . -806) 103880) ((-704 . -811) 103791) ((-704 . -796) NIL) ((-704 . -821) 103770) ((-704 . -1134) 103749) ((-704 . -861) 103719) ((-704 . -832) 103698) ((-704 . -495) 103612) ((-704 . -246) 103526) ((-704 . -146) 103420) ((-704 . -392) 103354) ((-704 . -258) 103333) ((-704 . -241) 103260) ((-704 . -190) T) ((-704 . -104) T) ((-704 . -25) T) ((-704 . -72) T) ((-704 . -552) 103221) ((-704 . -1013) T) ((-704 . -23) T) ((-704 . -21) T) ((-704 . -970) T) ((-704 . -1025) T) ((-704 . -1061) T) ((-704 . -663) T) ((-704 . -961) T) ((-704 . -186) 103208) ((-704 . -13) T) ((-704 . -1129) T) ((-704 . -189) T) ((-704 . -225) 103192) ((-704 . -184) 103176) ((-703 . -977) 103143) ((-703 . -553) 102778) ((-703 . -260) 102765) ((-703 . -455) 102717) ((-703 . -277) 102689) ((-703 . -950) 102548) ((-703 . -355) 102532) ((-703 . -38) 102384) ((-703 . -555) 102157) ((-703 . -590) 102046) ((-703 . -588) 101956) ((-703 . -970) T) ((-703 . -1025) T) ((-703 . -1061) T) ((-703 . -663) T) ((-703 . -961) T) ((-703 . -82) 101781) ((-703 . -963) 101627) ((-703 . -968) 101473) ((-703 . -21) T) ((-703 . -23) T) ((-703 . -1013) T) ((-703 . -552) 101387) ((-703 . -1129) T) ((-703 . -13) T) ((-703 . -72) T) ((-703 . -25) T) ((-703 . -104) T) ((-703 . -582) 101239) ((-703 . -654) 101091) ((-703 . -118) 101070) ((-703 . -120) 101049) ((-703 . -146) 100963) ((-703 . -495) 100897) ((-703 . -246) 100831) ((-703 . -47) 100803) ((-703 . -329) 100787) ((-703 . -580) 100735) ((-703 . -392) 100689) ((-703 . -809) 100673) ((-703 . -806) 100655) ((-703 . -811) 100639) ((-703 . -796) 100498) ((-703 . -821) 100477) ((-703 . -1134) 100456) ((-703 . -861) 100423) ((-696 . -1013) T) ((-696 . -552) 100405) ((-696 . -1129) T) ((-696 . -13) T) ((-696 . -72) T) ((-694 . -717) T) ((-694 . -104) T) ((-694 . -25) T) ((-694 . -72) T) ((-694 . -13) T) ((-694 . -1129) T) ((-694 . -552) 100387) ((-694 . -1013) T) ((-694 . -23) T) ((-694 . -716) T) ((-694 . -756) T) ((-694 . -759) T) ((-694 . -718) T) ((-694 . -721) T) ((-694 . -663) T) ((-694 . -1025) T) ((-675 . -676) 100371) ((-675 . -1011) 100355) ((-675 . -193) 100339) ((-675 . -553) 100300) ((-675 . -124) 100284) ((-675 . -1035) 100268) ((-675 . -34) T) ((-675 . -13) T) ((-675 . -1129) T) ((-675 . -72) T) ((-675 . -552) 100250) ((-675 . -260) 100188) ((-675 . -455) 100121) ((-675 . -1013) T) ((-675 . -429) 100105) ((-675 . -76) 100089) ((-675 . -634) 100073) ((-675 . -318) 100057) ((-674 . -961) T) ((-674 . -663) T) ((-674 . -1061) T) ((-674 . -1025) T) ((-674 . -970) T) ((-674 . -21) T) ((-674 . -588) 100002) ((-674 . -23) T) ((-674 . -1013) T) ((-674 . -552) 99984) ((-674 . -1129) T) ((-674 . -13) T) ((-674 . -72) T) ((-674 . -25) T) ((-674 . -104) T) ((-674 . -590) 99944) ((-674 . -555) 99900) ((-674 . -950) 99871) ((-674 . -120) 99850) ((-674 . -118) 99829) ((-674 . -38) 99799) ((-674 . -82) 99764) ((-674 . -963) 99734) ((-674 . -968) 99704) ((-674 . -582) 99674) ((-674 . -654) 99644) ((-674 . -320) 99597) ((-670 . -861) 99550) ((-670 . -555) 99342) ((-670 . -950) 99220) ((-670 . -1134) 99199) ((-670 . -821) 99178) ((-670 . -796) NIL) ((-670 . -811) 99155) ((-670 . -806) 99130) ((-670 . -809) 99107) ((-670 . -455) 99045) ((-670 . -392) 98999) ((-670 . -580) 98947) ((-670 . -590) 98836) ((-670 . -329) 98820) ((-670 . -47) 98785) ((-670 . -38) 98637) ((-670 . -582) 98489) ((-670 . -654) 98341) ((-670 . -246) 98275) ((-670 . -495) 98209) ((-670 . -82) 98034) ((-670 . -963) 97880) ((-670 . -968) 97726) ((-670 . -146) 97640) ((-670 . -120) 97619) ((-670 . -118) 97598) ((-670 . -588) 97508) ((-670 . -104) T) ((-670 . -25) T) ((-670 . -72) T) ((-670 . -13) T) ((-670 . -1129) T) ((-670 . -552) 97490) ((-670 . -1013) T) ((-670 . -23) T) ((-670 . -21) T) ((-670 . -961) T) ((-670 . -663) T) ((-670 . -1061) T) ((-670 . -1025) T) ((-670 . -970) T) ((-670 . -355) 97474) ((-670 . -277) 97439) ((-670 . -260) 97426) ((-670 . -553) 97287) ((-664 . -665) 97271) ((-664 . -80) 97255) ((-664 . -1129) T) ((-664 . |MappingCategory|) 97229) ((-664 . -1023) 97213) ((-664 . -1013) T) ((-664 . -552) 97174) ((-664 . -13) T) ((-664 . -72) T) ((-655 . -413) T) ((-655 . -1025) T) ((-655 . -72) T) ((-655 . -13) T) ((-655 . -1129) T) ((-655 . -552) 97156) ((-655 . -1013) T) ((-655 . -663) T) ((-652 . -961) T) ((-652 . -663) T) ((-652 . -1061) T) ((-652 . -1025) T) ((-652 . -970) T) ((-652 . -21) T) ((-652 . -588) 97128) ((-652 . -23) T) ((-652 . -1013) T) ((-652 . -552) 97110) ((-652 . -1129) T) ((-652 . -13) T) ((-652 . -72) T) ((-652 . -25) T) ((-652 . -104) T) ((-652 . -590) 97097) ((-652 . -555) 97079) ((-651 . -961) T) ((-651 . -663) T) ((-651 . -1061) T) ((-651 . -1025) T) ((-651 . -970) T) ((-651 . -21) T) ((-651 . -588) 97024) ((-651 . -23) T) ((-651 . -1013) T) ((-651 . -552) 97006) ((-651 . -1129) T) ((-651 . -13) T) ((-651 . -72) T) ((-651 . -25) T) ((-651 . -104) T) ((-651 . -590) 96966) ((-651 . -555) 96921) ((-651 . -950) 96891) ((-651 . -241) 96870) ((-651 . -120) 96849) ((-651 . -118) 96828) ((-651 . -38) 96798) ((-651 . -82) 96763) ((-651 . -963) 96733) ((-651 . -968) 96703) ((-651 . -582) 96673) ((-651 . -654) 96643) ((-650 . -756) T) ((-650 . -552) 96578) ((-650 . -1013) T) ((-650 . -72) T) ((-650 . -13) T) ((-650 . -1129) T) ((-650 . -759) T) ((-650 . -430) 96528) ((-650 . -555) 96478) ((-649 . -1155) 96462) ((-649 . -1066) 96440) ((-649 . -553) NIL) ((-649 . -260) 96427) ((-649 . -455) 96375) ((-649 . -277) 96352) ((-649 . -950) 96235) ((-649 . -355) 96219) ((-649 . -38) 96051) ((-649 . -82) 95856) ((-649 . -963) 95682) ((-649 . -968) 95508) ((-649 . -588) 95418) ((-649 . -590) 95307) ((-649 . -582) 95139) ((-649 . -654) 94971) ((-649 . -555) 94735) ((-649 . -118) 94714) ((-649 . -120) 94693) ((-649 . -47) 94670) ((-649 . -329) 94654) ((-649 . -580) 94602) ((-649 . -809) 94546) ((-649 . -806) 94453) ((-649 . -811) 94364) ((-649 . -796) NIL) ((-649 . -821) 94343) ((-649 . -1134) 94322) ((-649 . -861) 94292) ((-649 . -832) 94271) ((-649 . -495) 94185) ((-649 . -246) 94099) ((-649 . -146) 93993) ((-649 . -392) 93927) ((-649 . -258) 93906) ((-649 . -241) 93833) ((-649 . -190) T) ((-649 . -104) T) ((-649 . -25) T) ((-649 . -72) T) ((-649 . -552) 93815) ((-649 . -1013) T) ((-649 . -23) T) ((-649 . -21) T) ((-649 . -970) T) ((-649 . -1025) T) ((-649 . -1061) T) ((-649 . -663) T) ((-649 . -961) T) ((-649 . -186) 93802) ((-649 . -13) T) ((-649 . -1129) T) ((-649 . -189) T) ((-649 . -225) 93786) ((-649 . -184) 93770) ((-649 . -320) 93749) ((-648 . -312) T) ((-648 . -1134) T) ((-648 . -832) T) ((-648 . -495) T) ((-648 . -146) T) ((-648 . -555) 93699) ((-648 . -654) 93664) ((-648 . -582) 93629) ((-648 . -38) 93594) ((-648 . -392) T) ((-648 . -258) T) ((-648 . -590) 93559) ((-648 . -588) 93509) ((-648 . -970) T) ((-648 . -1025) T) ((-648 . -1061) T) ((-648 . -663) T) ((-648 . -961) T) ((-648 . -82) 93458) ((-648 . -963) 93423) ((-648 . -968) 93388) ((-648 . -21) T) ((-648 . -23) T) ((-648 . -1013) T) ((-648 . -552) 93370) ((-648 . -1129) T) ((-648 . -13) T) ((-648 . -72) T) ((-648 . -25) T) ((-648 . -104) T) ((-648 . -246) T) ((-648 . -201) T) ((-647 . -1013) T) ((-647 . -552) 93352) ((-647 . -1129) T) ((-647 . -13) T) ((-647 . -72) T) ((-632 . -1175) T) ((-632 . -950) 93336) ((-632 . -555) 93320) ((-632 . -552) 93302) ((-630 . -627) 93260) ((-630 . -318) 93244) ((-630 . -34) T) ((-630 . -13) T) ((-630 . -1129) T) ((-630 . -72) 93198) ((-630 . -552) 93133) ((-630 . -260) 93071) ((-630 . -455) 93004) ((-630 . -1013) 92982) ((-630 . -429) 92966) ((-630 . -57) 92924) ((-630 . -553) 92885) ((-622 . -995) T) ((-622 . -430) 92866) ((-622 . -552) 92816) ((-622 . -555) 92797) ((-622 . -1013) T) ((-622 . -1129) T) ((-622 . -13) T) ((-622 . -72) T) ((-622 . -64) T) ((-618 . -756) T) ((-618 . -552) 92779) ((-618 . -1013) T) ((-618 . -72) T) ((-618 . -13) T) ((-618 . -1129) T) ((-618 . -759) T) ((-618 . -950) 92763) ((-618 . -555) 92747) ((-617 . -995) T) ((-617 . -430) 92728) ((-617 . -552) 92694) ((-617 . -555) 92675) ((-617 . -1013) T) ((-617 . -1129) T) ((-617 . -13) T) ((-617 . -72) T) ((-617 . -64) T) ((-614 . -756) T) ((-614 . -552) 92657) ((-614 . -1013) T) ((-614 . -72) T) ((-614 . -13) T) ((-614 . -1129) T) ((-614 . -759) T) ((-614 . -950) 92641) ((-614 . -555) 92625) ((-613 . -995) T) ((-613 . -430) 92606) ((-613 . -552) 92572) ((-613 . -555) 92553) ((-613 . -1013) T) ((-613 . -1129) T) ((-613 . -13) T) ((-613 . -72) T) ((-613 . -64) T) ((-612 . -1037) 92498) ((-612 . -318) 92482) ((-612 . -34) T) ((-612 . -260) 92420) ((-612 . -455) 92353) ((-612 . -429) 92337) ((-612 . -965) 92277) ((-612 . -950) 92175) ((-612 . -555) 92094) ((-612 . -355) 92078) ((-612 . -580) 92026) ((-612 . -590) 91964) ((-612 . -329) 91948) ((-612 . -190) 91927) ((-612 . -186) 91875) ((-612 . -189) 91829) ((-612 . -225) 91813) ((-612 . -806) 91737) ((-612 . -811) 91663) ((-612 . -809) 91622) ((-612 . -184) 91606) ((-612 . -654) 91590) ((-612 . -582) 91574) ((-612 . -588) 91533) ((-612 . -104) T) ((-612 . -25) T) ((-612 . -72) T) ((-612 . -13) T) ((-612 . -1129) T) ((-612 . -552) 91495) ((-612 . -1013) T) ((-612 . -23) T) ((-612 . -21) T) ((-612 . -968) 91479) ((-612 . -963) 91463) ((-612 . -82) 91442) ((-612 . -961) T) ((-612 . -663) T) ((-612 . -1061) T) ((-612 . -1025) T) ((-612 . -970) T) ((-612 . -38) 91402) ((-612 . -361) 91386) ((-612 . -683) 91370) ((-612 . -657) T) ((-612 . -685) T) ((-612 . -316) 91354) ((-612 . -241) 91331) ((-606 . -326) 91310) ((-606 . -654) 91294) ((-606 . -582) 91278) ((-606 . -590) 91262) ((-606 . -588) 91231) ((-606 . -104) T) ((-606 . -25) T) ((-606 . -72) T) ((-606 . -13) T) ((-606 . -1129) T) ((-606 . -552) 91213) ((-606 . -1013) T) ((-606 . -23) T) ((-606 . -21) T) ((-606 . -968) 91197) ((-606 . -963) 91181) ((-606 . -82) 91160) ((-606 . -574) 91144) ((-606 . -335) 91116) ((-606 . -555) 91093) ((-606 . -950) 91070) ((-598 . -600) 91054) ((-598 . -38) 91024) ((-598 . -555) 90943) ((-598 . -590) 90917) ((-598 . -588) 90876) ((-598 . -970) T) ((-598 . -1025) T) ((-598 . -1061) T) ((-598 . -663) T) ((-598 . -961) T) ((-598 . -82) 90855) ((-598 . -963) 90839) ((-598 . -968) 90823) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1013) T) ((-598 . -552) 90805) ((-598 . -72) T) ((-598 . -25) T) ((-598 . -104) T) ((-598 . -582) 90775) ((-598 . -654) 90745) ((-598 . -355) 90729) ((-598 . -950) 90627) ((-598 . -761) 90611) ((-598 . -1129) T) ((-598 . -13) T) ((-598 . -241) 90572) ((-597 . -600) 90556) ((-597 . -38) 90526) ((-597 . -555) 90445) ((-597 . -590) 90419) ((-597 . -588) 90378) ((-597 . -970) T) ((-597 . -1025) T) ((-597 . -1061) T) ((-597 . -663) T) ((-597 . -961) T) ((-597 . -82) 90357) ((-597 . -963) 90341) ((-597 . -968) 90325) ((-597 . -21) T) ((-597 . -23) T) ((-597 . -1013) T) ((-597 . -552) 90307) ((-597 . -72) T) ((-597 . -25) T) ((-597 . -104) T) ((-597 . -582) 90277) ((-597 . -654) 90247) ((-597 . -355) 90231) ((-597 . -950) 90129) ((-597 . -761) 90113) ((-597 . -1129) T) ((-597 . -13) T) ((-597 . -241) 90092) ((-596 . -600) 90076) ((-596 . -38) 90046) ((-596 . -555) 89965) ((-596 . -590) 89939) ((-596 . -588) 89898) ((-596 . -970) T) ((-596 . -1025) T) ((-596 . -1061) T) ((-596 . -663) T) ((-596 . -961) T) ((-596 . -82) 89877) ((-596 . -963) 89861) ((-596 . -968) 89845) ((-596 . -21) T) ((-596 . -23) T) ((-596 . -1013) T) ((-596 . -552) 89827) ((-596 . -72) T) ((-596 . -25) T) ((-596 . -104) T) ((-596 . -582) 89797) ((-596 . -654) 89767) ((-596 . -355) 89751) ((-596 . -950) 89649) ((-596 . -761) 89633) ((-596 . -1129) T) ((-596 . -13) T) ((-596 . -241) 89612) ((-594 . -654) 89596) ((-594 . -582) 89580) ((-594 . -590) 89564) ((-594 . -588) 89533) ((-594 . -104) T) ((-594 . -25) T) ((-594 . -72) T) ((-594 . -13) T) ((-594 . -1129) T) ((-594 . -552) 89515) ((-594 . -1013) T) ((-594 . -23) T) ((-594 . -21) T) ((-594 . -968) 89499) ((-594 . -963) 89483) ((-594 . -82) 89462) ((-594 . -714) 89441) ((-594 . -716) 89420) ((-594 . -756) 89399) ((-594 . -759) 89378) ((-594 . -718) 89357) ((-594 . -721) 89336) ((-591 . -1013) T) ((-591 . -552) 89318) ((-591 . -1129) T) ((-591 . -13) T) ((-591 . -72) T) ((-591 . -950) 89302) ((-591 . -555) 89286) ((-589 . -634) 89270) ((-589 . -76) 89254) ((-589 . -429) 89238) ((-589 . -1013) 89216) ((-589 . -455) 89149) ((-589 . -260) 89087) ((-589 . -552) 89022) ((-589 . -72) 88976) ((-589 . -1129) T) ((-589 . -13) T) ((-589 . -34) T) ((-589 . -1035) 88960) ((-589 . -124) 88944) ((-589 . -553) 88905) ((-589 . -193) 88889) ((-589 . -318) 88873) ((-587 . -995) T) ((-587 . -430) 88854) ((-587 . -552) 88807) ((-587 . -555) 88788) ((-587 . -1013) T) ((-587 . -1129) T) ((-587 . -13) T) ((-587 . -72) T) ((-587 . -64) T) ((-583 . -608) 88772) ((-583 . -1168) 88756) ((-583 . -923) 88740) ((-583 . -1064) 88724) ((-583 . -318) 88708) ((-583 . -756) 88687) ((-583 . -759) 88666) ((-583 . -324) 88650) ((-583 . -593) 88634) ((-583 . -243) 88611) ((-583 . -241) 88563) ((-583 . -538) 88540) ((-583 . -553) 88501) ((-583 . -429) 88485) ((-583 . -1013) 88438) ((-583 . -455) 88371) ((-583 . -260) 88309) ((-583 . -552) 88224) ((-583 . -72) 88158) ((-583 . -1129) T) ((-583 . -13) T) ((-583 . -34) T) ((-583 . -124) 88142) ((-583 . -1035) 88126) ((-583 . -237) 88110) ((-581 . -1187) 88094) ((-581 . -82) 88073) ((-581 . -963) 88057) ((-581 . -968) 88041) ((-581 . -21) T) ((-581 . -588) 88010) ((-581 . -23) T) ((-581 . -1013) T) ((-581 . -552) 87992) ((-581 . -1129) T) ((-581 . -13) T) ((-581 . -72) T) ((-581 . -25) T) ((-581 . -104) T) ((-581 . -590) 87976) ((-581 . -582) 87960) ((-581 . -654) 87944) ((-581 . -241) 87911) ((-579 . -1187) 87895) ((-579 . -82) 87874) ((-579 . -963) 87858) ((-579 . -968) 87842) ((-579 . -21) T) ((-579 . -588) 87811) ((-579 . -23) T) ((-579 . -1013) T) ((-579 . -552) 87793) ((-579 . -1129) T) ((-579 . -13) T) ((-579 . -72) T) ((-579 . -25) T) ((-579 . -104) T) ((-579 . -590) 87777) ((-579 . -582) 87761) ((-579 . -654) 87745) ((-579 . -555) 87722) ((-579 . -449) 87694) ((-579 . -557) 87652) ((-577 . -752) T) ((-577 . -759) T) ((-577 . -756) T) ((-577 . -1013) T) ((-577 . -552) 87634) ((-577 . -1129) T) ((-577 . -13) T) ((-577 . -72) T) ((-577 . -320) T) ((-577 . -555) 87611) ((-572 . -683) 87595) ((-572 . -657) T) ((-572 . -685) T) ((-572 . -82) 87574) ((-572 . -963) 87558) ((-572 . -968) 87542) ((-572 . -21) T) ((-572 . -588) 87511) ((-572 . -23) T) ((-572 . -1013) T) ((-572 . -552) 87480) ((-572 . -1129) T) ((-572 . -13) T) ((-572 . -72) T) ((-572 . -25) T) ((-572 . -104) T) ((-572 . -590) 87464) ((-572 . -582) 87448) ((-572 . -654) 87432) ((-572 . -361) 87397) ((-572 . -316) 87332) ((-572 . -241) 87290) ((-571 . -1107) 87265) ((-571 . -183) 87209) ((-571 . -76) 87153) ((-571 . -1035) 87097) ((-571 . -124) 87041) ((-571 . -553) NIL) ((-571 . -193) 86985) ((-571 . -538) 86960) ((-571 . -260) 86805) ((-571 . -455) 86605) ((-571 . -429) 86535) ((-571 . -241) 86488) ((-571 . -243) 86463) ((-571 . -549) 86438) ((-571 . -1013) T) ((-571 . -552) 86420) ((-571 . -72) T) ((-571 . -1129) T) ((-571 . -13) T) ((-571 . -34) T) ((-571 . -318) 86364) ((-566 . -413) T) ((-566 . -1025) T) ((-566 . -72) T) ((-566 . -13) T) ((-566 . -1129) T) ((-566 . -552) 86346) ((-566 . -1013) T) ((-566 . -663) T) ((-565 . -995) T) ((-565 . -430) 86327) ((-565 . -552) 86293) ((-565 . -555) 86274) ((-565 . -1013) T) ((-565 . -1129) T) ((-565 . -13) T) ((-565 . -72) T) ((-565 . -64) T) ((-562 . -184) 86258) ((-562 . -809) 86217) ((-562 . -811) 86143) ((-562 . -806) 86067) ((-562 . -225) 86051) ((-562 . -189) 86005) ((-562 . -1129) T) ((-562 . -13) T) ((-562 . -186) 85953) ((-562 . -961) T) ((-562 . -663) T) ((-562 . -1061) T) ((-562 . -1025) T) ((-562 . -970) T) ((-562 . -21) T) ((-562 . -588) 85925) ((-562 . -23) T) ((-562 . -1013) T) ((-562 . -552) 85907) ((-562 . -72) T) ((-562 . -25) T) ((-562 . -104) T) ((-562 . -590) 85894) ((-562 . -555) 85790) ((-562 . -190) 85769) ((-562 . -495) T) ((-562 . -246) T) ((-562 . -146) T) ((-562 . -654) 85756) ((-562 . -582) 85743) ((-562 . -968) 85730) ((-562 . -963) 85717) ((-562 . -82) 85702) ((-562 . -38) 85689) ((-562 . -553) 85666) ((-562 . -355) 85650) ((-562 . -950) 85535) ((-562 . -120) 85514) ((-562 . -118) 85493) ((-562 . -258) 85472) ((-562 . -392) 85451) ((-562 . -832) 85430) ((-558 . -38) 85414) ((-558 . -555) 85383) ((-558 . -590) 85357) ((-558 . -588) 85316) ((-558 . -970) T) ((-558 . -1025) T) ((-558 . -1061) T) ((-558 . -663) T) ((-558 . -961) T) ((-558 . -82) 85295) ((-558 . -963) 85279) ((-558 . -968) 85263) ((-558 . -21) T) ((-558 . -23) T) ((-558 . -1013) T) ((-558 . -552) 85245) ((-558 . -1129) T) ((-558 . -13) T) ((-558 . -72) T) ((-558 . -25) T) ((-558 . -104) T) ((-558 . -582) 85229) ((-558 . -654) 85213) ((-558 . -755) 85192) ((-558 . -721) 85171) ((-558 . -718) 85150) ((-558 . -759) 85129) ((-558 . -756) 85108) ((-558 . -716) 85087) ((-558 . -714) 85066) ((-558 . -120) 85045) ((-556 . -880) T) ((-556 . -72) T) ((-556 . -552) 85027) ((-556 . -1013) T) ((-556 . -604) T) ((-556 . -13) T) ((-556 . -1129) T) ((-556 . -84) T) ((-556 . -320) T) ((-550 . -105) T) ((-550 . -72) T) ((-550 . -13) T) ((-550 . -1129) T) ((-550 . -552) 85009) ((-550 . -1013) T) ((-550 . -756) T) ((-550 . -759) T) ((-550 . -794) 84993) ((-550 . -553) 84854) ((-547 . -314) 84792) ((-547 . -72) T) ((-547 . -13) T) ((-547 . -1129) T) ((-547 . -552) 84774) ((-547 . -1013) T) ((-547 . -1107) 84750) ((-547 . -183) 84695) ((-547 . -76) 84640) ((-547 . -1035) 84585) ((-547 . -124) 84530) ((-547 . -553) NIL) ((-547 . -193) 84475) ((-547 . -538) 84451) ((-547 . -260) 84240) ((-547 . -455) 83980) ((-547 . -429) 83912) ((-547 . -241) 83888) ((-547 . -243) 83864) ((-547 . -549) 83840) ((-547 . -34) T) ((-547 . -318) 83785) ((-546 . -1013) T) ((-546 . -552) 83737) ((-546 . -1129) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -430) 83704) ((-546 . -555) 83671) ((-545 . -1013) T) ((-545 . -552) 83653) ((-545 . -1129) T) ((-545 . -13) T) ((-545 . -72) T) ((-545 . -604) T) ((-544 . -1013) T) ((-544 . -552) 83635) ((-544 . -1129) T) ((-544 . -13) T) ((-544 . -72) T) ((-544 . -604) T) ((-543 . -1013) T) ((-543 . -552) 83602) ((-543 . -1129) T) ((-543 . -13) T) ((-543 . -72) T) ((-542 . -1013) T) ((-542 . -552) 83584) ((-542 . -1129) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -604) T) ((-541 . -1013) T) ((-541 . -552) 83551) ((-541 . -1129) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -430) 83533) ((-541 . -555) 83515) ((-540 . -683) 83499) ((-540 . -657) T) ((-540 . -685) T) ((-540 . -82) 83478) ((-540 . -963) 83462) ((-540 . -968) 83446) ((-540 . -21) T) ((-540 . -588) 83415) ((-540 . -23) T) ((-540 . -1013) T) ((-540 . -552) 83384) ((-540 . -1129) T) ((-540 . -13) T) ((-540 . -72) T) ((-540 . -25) T) ((-540 . -104) T) ((-540 . -590) 83368) ((-540 . -582) 83352) ((-540 . -654) 83336) ((-540 . -361) 83301) ((-540 . -316) 83236) ((-540 . -241) 83194) ((-539 . -995) T) ((-539 . -430) 83175) ((-539 . -552) 83125) ((-539 . -555) 83106) ((-539 . -1013) T) ((-539 . -1129) T) ((-539 . -13) T) ((-539 . -72) T) ((-539 . -64) T) ((-536 . -552) 83088) ((-532 . -1013) T) ((-532 . -552) 83054) ((-532 . -1129) T) ((-532 . -13) T) ((-532 . -72) T) ((-532 . -430) 83035) ((-532 . -555) 83016) ((-531 . -961) T) ((-531 . -663) T) ((-531 . -1061) T) ((-531 . -1025) T) ((-531 . -970) T) ((-531 . -21) T) ((-531 . -588) 82975) ((-531 . -23) T) ((-531 . -1013) T) ((-531 . -552) 82957) ((-531 . -1129) T) ((-531 . -13) T) ((-531 . -72) T) ((-531 . -25) T) ((-531 . -104) T) ((-531 . -590) 82931) ((-531 . -555) 82889) ((-531 . -82) 82842) ((-531 . -963) 82802) ((-531 . -968) 82762) ((-531 . -495) 82741) ((-531 . -246) 82720) ((-531 . -146) 82699) ((-531 . -654) 82672) ((-531 . -582) 82645) ((-531 . -38) 82618) ((-530 . -1158) 82595) ((-530 . -47) 82572) ((-530 . -38) 82469) ((-530 . -582) 82366) ((-530 . -654) 82263) ((-530 . -555) 82145) ((-530 . -246) 82124) ((-530 . -495) 82103) ((-530 . -82) 81968) ((-530 . -963) 81854) ((-530 . -968) 81740) ((-530 . -146) 81694) ((-530 . -120) 81673) ((-530 . -118) 81652) ((-530 . -590) 81577) ((-530 . -588) 81487) ((-530 . -886) 81457) ((-530 . -811) 81370) ((-530 . -806) 81281) ((-530 . -809) 81194) ((-530 . -241) 81159) ((-530 . -189) 81118) ((-530 . -1129) T) ((-530 . -13) T) ((-530 . -186) 81071) ((-530 . -961) T) ((-530 . -663) T) ((-530 . -1061) T) ((-530 . -1025) T) ((-530 . -970) T) ((-530 . -21) T) ((-530 . -23) T) ((-530 . -1013) T) ((-530 . -552) 81053) ((-530 . -72) T) ((-530 . -25) T) ((-530 . -104) T) ((-530 . -190) 81012) ((-528 . -995) T) ((-528 . -430) 80993) ((-528 . -552) 80959) ((-528 . -555) 80940) ((-528 . -1013) T) ((-528 . -1129) T) ((-528 . -13) T) ((-528 . -72) T) ((-528 . -64) T) ((-522 . -1013) T) ((-522 . -552) 80906) ((-522 . -1129) T) ((-522 . -13) T) ((-522 . -72) T) ((-522 . -430) 80887) ((-522 . -555) 80868) ((-519 . -654) 80843) ((-519 . -582) 80818) ((-519 . -590) 80793) ((-519 . -588) 80753) ((-519 . -104) T) ((-519 . -25) T) ((-519 . -72) T) ((-519 . -13) T) ((-519 . -1129) T) ((-519 . -552) 80735) ((-519 . -1013) T) ((-519 . -23) T) ((-519 . -21) T) ((-519 . -968) 80710) ((-519 . -963) 80685) ((-519 . -82) 80646) ((-519 . -950) 80630) ((-519 . -555) 80614) ((-517 . -299) T) ((-517 . -1066) T) ((-517 . -320) T) ((-517 . -118) T) ((-517 . -312) T) ((-517 . -1134) T) ((-517 . -832) T) ((-517 . -495) T) ((-517 . -146) T) ((-517 . -555) 80564) ((-517 . -654) 80529) ((-517 . -582) 80494) ((-517 . -38) 80459) ((-517 . -392) T) ((-517 . -258) T) ((-517 . -82) 80408) ((-517 . -963) 80373) ((-517 . -968) 80338) ((-517 . -588) 80288) ((-517 . -590) 80253) ((-517 . -246) T) ((-517 . -201) T) ((-517 . -345) T) ((-517 . -189) T) ((-517 . -1129) T) ((-517 . -13) T) ((-517 . -186) 80240) ((-517 . -961) T) ((-517 . -663) T) ((-517 . -1061) T) ((-517 . -1025) T) ((-517 . -970) T) ((-517 . -21) T) ((-517 . -23) T) ((-517 . -1013) T) ((-517 . -552) 80222) ((-517 . -72) T) ((-517 . -25) T) ((-517 . -104) T) ((-517 . -190) T) ((-517 . -280) 80209) ((-517 . -120) 80191) ((-517 . -950) 80178) ((-517 . -1187) 80165) ((-517 . -1198) 80152) ((-517 . -553) 80134) ((-516 . -779) 80118) ((-516 . -832) T) ((-516 . -495) T) ((-516 . -246) T) ((-516 . -146) T) ((-516 . -555) 80090) ((-516 . -654) 80077) ((-516 . -582) 80064) ((-516 . -968) 80051) ((-516 . -963) 80038) ((-516 . -82) 80023) ((-516 . -38) 80010) ((-516 . -392) T) ((-516 . -258) T) ((-516 . -961) T) ((-516 . -663) T) ((-516 . -1061) T) ((-516 . -1025) T) ((-516 . -970) T) ((-516 . -21) T) ((-516 . -588) 79982) ((-516 . -23) T) ((-516 . -1013) T) ((-516 . -552) 79964) ((-516 . -1129) T) ((-516 . -13) T) ((-516 . -72) T) ((-516 . -25) T) ((-516 . -104) T) ((-516 . -590) 79951) ((-516 . -120) T) ((-515 . -1013) T) ((-515 . -552) 79933) ((-515 . -1129) T) ((-515 . -13) T) ((-515 . -72) T) ((-514 . -1013) T) ((-514 . -552) 79915) ((-514 . -1129) T) ((-514 . -13) T) ((-514 . -72) T) ((-513 . -512) T) ((-513 . -770) T) ((-513 . -147) T) ((-513 . -465) T) ((-513 . -552) 79897) ((-507 . -493) 79881) ((-507 . -35) T) ((-507 . -66) T) ((-507 . -239) T) ((-507 . -433) T) ((-507 . -1118) T) ((-507 . -1115) T) ((-507 . -950) 79863) ((-507 . -915) T) ((-507 . -759) T) ((-507 . -756) T) ((-507 . -495) T) ((-507 . -246) T) ((-507 . -146) T) ((-507 . -555) 79835) ((-507 . -654) 79822) ((-507 . -582) 79809) ((-507 . -590) 79796) ((-507 . -588) 79768) ((-507 . -104) T) ((-507 . -25) T) ((-507 . -72) T) ((-507 . -13) T) ((-507 . -1129) T) ((-507 . -552) 79750) ((-507 . -1013) T) ((-507 . -23) T) ((-507 . -21) T) ((-507 . -968) 79737) ((-507 . -963) 79724) ((-507 . -82) 79709) ((-507 . -961) T) ((-507 . -663) T) ((-507 . -1061) T) ((-507 . -1025) T) ((-507 . -970) T) ((-507 . -38) 79696) ((-507 . -392) T) ((-489 . -1107) 79675) ((-489 . -183) 79623) ((-489 . -76) 79571) ((-489 . -1035) 79519) ((-489 . -124) 79467) ((-489 . -553) NIL) ((-489 . -193) 79415) ((-489 . -538) 79394) ((-489 . -260) 79192) ((-489 . -455) 78944) ((-489 . -429) 78879) ((-489 . -241) 78858) ((-489 . -243) 78837) ((-489 . -549) 78816) ((-489 . -1013) T) ((-489 . -552) 78798) ((-489 . -72) T) ((-489 . -1129) T) ((-489 . -13) T) ((-489 . -34) T) ((-489 . -318) 78746) ((-488 . -752) T) ((-488 . -759) T) ((-488 . -756) T) ((-488 . -1013) T) ((-488 . -552) 78728) ((-488 . -1129) T) ((-488 . -13) T) ((-488 . -72) T) ((-488 . -320) T) ((-487 . -752) T) ((-487 . -759) T) ((-487 . -756) T) ((-487 . -1013) T) ((-487 . -552) 78710) ((-487 . -1129) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -320) T) ((-486 . -752) T) ((-486 . -759) T) ((-486 . -756) T) ((-486 . -1013) T) ((-486 . -552) 78692) ((-486 . -1129) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -320) T) ((-485 . -752) T) ((-485 . -759) T) ((-485 . -756) T) ((-485 . -1013) T) ((-485 . -552) 78674) ((-485 . -1129) T) ((-485 . -13) T) ((-485 . -72) T) ((-485 . -320) T) ((-484 . -483) T) ((-484 . -1134) T) ((-484 . -1066) T) ((-484 . -950) 78656) ((-484 . -553) 78571) ((-484 . -933) T) ((-484 . -796) 78553) ((-484 . -755) T) ((-484 . -721) T) ((-484 . -718) T) ((-484 . -759) T) ((-484 . -756) T) ((-484 . -716) T) ((-484 . -714) T) ((-484 . -740) T) ((-484 . -590) 78525) ((-484 . -580) 78507) ((-484 . -832) T) ((-484 . -495) T) ((-484 . -246) T) ((-484 . -146) T) ((-484 . -555) 78479) ((-484 . -654) 78466) ((-484 . -582) 78453) ((-484 . -968) 78440) ((-484 . -963) 78427) ((-484 . -82) 78412) ((-484 . -38) 78399) ((-484 . -392) T) ((-484 . -258) T) ((-484 . -189) T) ((-484 . -186) 78386) ((-484 . -190) T) ((-484 . -116) T) ((-484 . -961) T) ((-484 . -663) T) ((-484 . -1061) T) ((-484 . -1025) T) ((-484 . -970) T) ((-484 . -21) T) ((-484 . -588) 78358) ((-484 . -23) T) ((-484 . -1013) T) ((-484 . -552) 78340) ((-484 . -1129) T) ((-484 . -13) T) ((-484 . -72) T) ((-484 . -25) T) ((-484 . -104) T) ((-484 . -120) T) ((-473 . -1016) 78292) ((-473 . -72) T) ((-473 . -552) 78274) ((-473 . -1013) T) ((-473 . -241) 78230) ((-473 . -1129) T) ((-473 . -13) T) ((-473 . -557) 78133) ((-473 . -553) 78114) ((-471 . -691) 78096) ((-471 . -465) T) ((-471 . -147) T) ((-471 . -770) T) ((-471 . -512) T) ((-471 . -552) 78078) ((-469 . -717) T) ((-469 . -104) T) ((-469 . -25) T) ((-469 . -72) T) ((-469 . -13) T) ((-469 . -1129) T) ((-469 . -552) 78060) ((-469 . -1013) T) ((-469 . -23) T) ((-469 . -716) T) ((-469 . -756) T) ((-469 . -759) T) ((-469 . -718) T) ((-469 . -721) T) ((-469 . -449) 78037) ((-469 . -557) 78000) ((-467 . -465) T) ((-467 . -147) T) ((-467 . -552) 77982) ((-463 . -995) T) ((-463 . -430) 77963) ((-463 . -552) 77929) ((-463 . -555) 77910) ((-463 . -1013) T) ((-463 . -1129) T) ((-463 . -13) T) ((-463 . -72) T) ((-463 . -64) T) ((-462 . -995) T) ((-462 . -430) 77891) ((-462 . -552) 77857) ((-462 . -555) 77838) ((-462 . -1013) T) ((-462 . -1129) T) ((-462 . -13) T) ((-462 . -72) T) ((-462 . -64) T) ((-459 . -280) 77815) ((-459 . -190) T) ((-459 . -186) 77802) ((-459 . -189) T) ((-459 . -320) T) ((-459 . -1066) T) ((-459 . -299) T) ((-459 . -120) 77784) ((-459 . -555) 77714) ((-459 . -590) 77659) ((-459 . -588) 77589) ((-459 . -104) T) ((-459 . -25) T) ((-459 . -72) T) ((-459 . -13) T) ((-459 . -1129) T) ((-459 . -552) 77571) ((-459 . -1013) T) ((-459 . -23) T) ((-459 . -21) T) ((-459 . -970) T) ((-459 . -1025) T) ((-459 . -1061) T) ((-459 . -663) T) ((-459 . -961) T) ((-459 . -312) T) ((-459 . -1134) T) ((-459 . -832) T) ((-459 . -495) T) ((-459 . -146) T) ((-459 . -654) 77516) ((-459 . -582) 77461) ((-459 . -38) 77426) ((-459 . -392) T) ((-459 . -258) T) ((-459 . -82) 77343) ((-459 . -963) 77288) ((-459 . -968) 77233) ((-459 . -246) T) ((-459 . -201) T) ((-459 . -345) T) ((-459 . -118) T) ((-459 . -950) 77210) ((-459 . -1187) 77187) ((-459 . -1198) 77164) ((-458 . -995) T) ((-458 . -430) 77145) ((-458 . -552) 77111) ((-458 . -555) 77092) ((-458 . -1013) T) ((-458 . -1129) T) ((-458 . -13) T) ((-458 . -72) T) ((-458 . -64) T) ((-457 . -19) 77076) ((-457 . -1035) 77060) ((-457 . -318) 77044) ((-457 . -34) T) ((-457 . -13) T) ((-457 . -1129) T) ((-457 . -72) 76978) ((-457 . -552) 76893) ((-457 . -260) 76831) ((-457 . -455) 76764) ((-457 . -1013) 76717) ((-457 . -429) 76701) ((-457 . -593) 76685) ((-457 . -243) 76662) ((-457 . -241) 76614) ((-457 . -538) 76591) ((-457 . -553) 76552) ((-457 . -124) 76536) ((-457 . -756) 76515) ((-457 . -759) 76494) ((-457 . -324) 76478) ((-457 . -237) 76462) ((-456 . -274) 76441) ((-456 . -555) 76425) ((-456 . -950) 76409) ((-456 . -23) T) ((-456 . -1013) T) ((-456 . -552) 76391) ((-456 . -1129) T) ((-456 . -13) T) ((-456 . -72) T) ((-456 . -25) T) ((-456 . -104) T) ((-453 . -72) T) ((-453 . -13) T) ((-453 . -1129) T) ((-453 . -552) 76363) ((-452 . -717) T) ((-452 . -104) T) ((-452 . -25) T) ((-452 . -72) T) ((-452 . -13) T) ((-452 . -1129) T) ((-452 . -552) 76345) ((-452 . -1013) T) ((-452 . -23) T) ((-452 . -716) T) ((-452 . -756) T) ((-452 . -759) T) ((-452 . -718) T) ((-452 . -721) T) ((-452 . -449) 76324) ((-452 . -557) 76289) ((-451 . -716) T) ((-451 . -756) T) ((-451 . -759) T) ((-451 . -718) T) ((-451 . -25) T) ((-451 . -72) T) ((-451 . -13) T) ((-451 . -1129) T) ((-451 . -552) 76271) ((-451 . -1013) T) ((-451 . -23) T) ((-451 . -449) 76250) ((-451 . -557) 76215) ((-450 . -449) 76194) ((-450 . -552) 76134) ((-450 . -1013) 76085) ((-450 . -557) 76050) ((-450 . -1129) T) ((-450 . -13) T) ((-450 . -72) T) ((-448 . -23) T) ((-448 . -1013) T) ((-448 . -552) 76032) ((-448 . -1129) T) ((-448 . -13) T) ((-448 . -72) T) ((-448 . -25) T) ((-448 . -449) 76011) ((-448 . -557) 75976) ((-447 . -21) T) ((-447 . -588) 75958) ((-447 . -23) T) ((-447 . -1013) T) ((-447 . -552) 75940) ((-447 . -1129) T) ((-447 . -13) T) ((-447 . -72) T) ((-447 . -25) T) ((-447 . -104) T) ((-447 . -449) 75919) ((-447 . -557) 75884) ((-446 . -1013) T) ((-446 . -552) 75866) ((-446 . -1129) T) ((-446 . -13) T) ((-446 . -72) T) ((-443 . -1013) T) ((-443 . -552) 75848) ((-443 . -1129) T) ((-443 . -13) T) ((-443 . -72) T) ((-441 . -756) T) ((-441 . -552) 75830) ((-441 . -1013) T) ((-441 . -72) T) ((-441 . -13) T) ((-441 . -1129) T) ((-441 . -759) T) ((-441 . -555) 75811) ((-437 . -57) 75785) ((-437 . -429) 75769) ((-437 . -1013) 75747) ((-437 . -455) 75680) ((-437 . -260) 75618) ((-437 . -552) 75553) ((-437 . -72) 75507) ((-437 . -1129) T) ((-437 . -13) T) ((-437 . -34) T) ((-437 . -318) 75491) ((-436 . -19) 75475) ((-436 . -1035) 75459) ((-436 . -318) 75443) ((-436 . -34) T) ((-436 . -13) T) ((-436 . -1129) T) ((-436 . -72) 75377) ((-436 . -552) 75292) ((-436 . -260) 75230) ((-436 . -455) 75163) ((-436 . -1013) 75116) ((-436 . -429) 75100) ((-436 . -593) 75084) ((-436 . -243) 75061) ((-436 . -241) 75013) ((-436 . -538) 74990) ((-436 . -553) 74951) ((-436 . -124) 74935) ((-436 . -756) 74914) ((-436 . -759) 74893) ((-436 . -324) 74877) ((-435 . -254) T) ((-435 . -72) T) ((-435 . -13) T) ((-435 . -1129) T) ((-435 . -552) 74859) ((-435 . -1013) T) ((-435 . -555) 74760) ((-435 . -950) 74703) ((-435 . -455) 74669) ((-435 . -260) 74656) ((-435 . -27) T) ((-435 . -915) T) ((-435 . -201) T) ((-435 . -82) 74605) ((-435 . -963) 74570) ((-435 . -968) 74535) ((-435 . -246) T) ((-435 . -654) 74500) ((-435 . -582) 74465) ((-435 . -590) 74415) ((-435 . -588) 74365) ((-435 . -104) T) ((-435 . -25) T) ((-435 . -23) T) ((-435 . -21) T) ((-435 . -961) T) ((-435 . -663) T) ((-435 . -1061) T) ((-435 . -1025) T) ((-435 . -970) T) ((-435 . -38) 74330) ((-435 . -258) T) ((-435 . -392) T) ((-435 . -146) T) ((-435 . -495) T) ((-435 . -832) T) ((-435 . -1134) T) ((-435 . -312) T) ((-435 . -580) 74290) ((-435 . -933) T) ((-435 . -553) 74235) ((-435 . -120) T) ((-435 . -190) T) ((-435 . -186) 74222) ((-435 . -189) T) ((-431 . -1013) T) ((-431 . -552) 74188) ((-431 . -1129) T) ((-431 . -13) T) ((-431 . -72) T) ((-427 . -904) 74170) ((-427 . -1066) T) ((-427 . -555) 74120) ((-427 . -950) 74080) ((-427 . -553) 74010) ((-427 . -933) T) ((-427 . -821) NIL) ((-427 . -794) 73992) ((-427 . -755) T) ((-427 . -721) T) ((-427 . -718) T) ((-427 . -759) T) ((-427 . -756) T) ((-427 . -716) T) ((-427 . -714) T) ((-427 . -740) T) ((-427 . -796) 73974) ((-427 . -343) 73956) ((-427 . -580) 73938) ((-427 . -329) 73920) ((-427 . -241) NIL) ((-427 . -260) NIL) ((-427 . -455) NIL) ((-427 . -288) 73902) ((-427 . -201) T) ((-427 . -82) 73829) ((-427 . -963) 73779) ((-427 . -968) 73729) ((-427 . -246) T) ((-427 . -654) 73679) ((-427 . -582) 73629) ((-427 . -590) 73579) ((-427 . -588) 73529) ((-427 . -38) 73479) ((-427 . -258) T) ((-427 . -392) T) ((-427 . -146) T) ((-427 . -495) T) ((-427 . -832) T) ((-427 . -1134) T) ((-427 . -312) T) ((-427 . -190) T) ((-427 . -186) 73466) ((-427 . -189) T) ((-427 . -225) 73448) ((-427 . -806) NIL) ((-427 . -811) NIL) ((-427 . -809) NIL) ((-427 . -184) 73430) ((-427 . -120) T) ((-427 . -118) NIL) ((-427 . -104) T) ((-427 . -25) T) ((-427 . -72) T) ((-427 . -13) T) ((-427 . -1129) T) ((-427 . -552) 73372) ((-427 . -1013) T) ((-427 . -23) T) ((-427 . -21) T) ((-427 . -961) T) ((-427 . -663) T) ((-427 . -1061) T) ((-427 . -1025) T) ((-427 . -970) T) ((-425 . -286) 73341) ((-425 . -104) T) ((-425 . -25) T) ((-425 . -72) T) ((-425 . -13) T) ((-425 . -1129) T) ((-425 . -552) 73323) ((-425 . -1013) T) ((-425 . -23) T) ((-425 . -588) 73305) ((-425 . -21) T) ((-424 . -881) 73289) ((-424 . -318) 73273) ((-424 . -1035) 73257) ((-424 . -34) T) ((-424 . -13) T) ((-424 . -1129) T) ((-424 . -72) 73211) ((-424 . -552) 73146) ((-424 . -260) 73084) ((-424 . -455) 73017) ((-424 . -1013) 72995) ((-424 . -429) 72979) ((-424 . -76) 72963) ((-423 . -995) T) ((-423 . -430) 72944) ((-423 . -552) 72910) ((-423 . -555) 72891) ((-423 . -1013) T) ((-423 . -1129) T) ((-423 . -13) T) ((-423 . -72) T) ((-423 . -64) T) ((-422 . -196) 72870) ((-422 . -1187) 72840) ((-422 . -721) 72819) ((-422 . -718) 72798) ((-422 . -759) 72752) ((-422 . -756) 72706) ((-422 . -716) 72685) ((-422 . -717) 72664) ((-422 . -654) 72609) ((-422 . -582) 72534) ((-422 . -243) 72511) ((-422 . -241) 72488) ((-422 . -538) 72465) ((-422 . -950) 72294) ((-422 . -555) 72098) ((-422 . -355) 72067) ((-422 . -580) 71975) ((-422 . -590) 71814) ((-422 . -329) 71784) ((-422 . -429) 71768) ((-422 . -455) 71701) ((-422 . -260) 71639) ((-422 . -34) T) ((-422 . -318) 71623) ((-422 . -320) 71602) ((-422 . -190) 71555) ((-422 . -588) 71343) ((-422 . -970) 71322) ((-422 . -1025) 71301) ((-422 . -1061) 71280) ((-422 . -663) 71259) ((-422 . -961) 71238) ((-422 . -186) 71134) ((-422 . -189) 71036) ((-422 . -225) 71006) ((-422 . -806) 70878) ((-422 . -811) 70752) ((-422 . -809) 70685) ((-422 . -184) 70655) ((-422 . -552) 70352) ((-422 . -968) 70277) ((-422 . -963) 70182) ((-422 . -82) 70102) ((-422 . -104) 69977) ((-422 . -25) 69814) ((-422 . -72) 69551) ((-422 . -13) T) ((-422 . -1129) T) ((-422 . -1013) 69307) ((-422 . -23) 69163) ((-422 . -21) 69078) ((-421 . -861) 69023) ((-421 . -555) 68815) ((-421 . -950) 68693) ((-421 . -1134) 68672) ((-421 . -821) 68651) ((-421 . -796) NIL) ((-421 . -811) 68628) ((-421 . -806) 68603) ((-421 . -809) 68580) ((-421 . -455) 68518) ((-421 . -392) 68472) ((-421 . -580) 68420) ((-421 . -590) 68309) ((-421 . -329) 68293) ((-421 . -47) 68250) ((-421 . -38) 68102) ((-421 . -582) 67954) ((-421 . -654) 67806) ((-421 . -246) 67740) ((-421 . -495) 67674) ((-421 . -82) 67499) ((-421 . -963) 67345) ((-421 . -968) 67191) ((-421 . -146) 67105) ((-421 . -120) 67084) ((-421 . -118) 67063) ((-421 . -588) 66973) ((-421 . -104) T) ((-421 . -25) T) ((-421 . -72) T) ((-421 . -13) T) ((-421 . -1129) T) ((-421 . -552) 66955) ((-421 . -1013) T) ((-421 . -23) T) ((-421 . -21) T) ((-421 . -961) T) ((-421 . -663) T) ((-421 . -1061) T) ((-421 . -1025) T) ((-421 . -970) T) ((-421 . -355) 66939) ((-421 . -277) 66896) ((-421 . -260) 66883) ((-421 . -553) 66744) ((-419 . -1107) 66723) ((-419 . -183) 66671) ((-419 . -76) 66619) ((-419 . -1035) 66567) ((-419 . -124) 66515) ((-419 . -553) NIL) ((-419 . -193) 66463) ((-419 . -538) 66442) ((-419 . -260) 66240) ((-419 . -455) 65992) ((-419 . -429) 65927) ((-419 . -241) 65906) ((-419 . -243) 65885) ((-419 . -549) 65864) ((-419 . -1013) T) ((-419 . -552) 65846) ((-419 . -72) T) ((-419 . -1129) T) ((-419 . -13) T) ((-419 . -34) T) ((-419 . -318) 65794) ((-418 . -995) T) ((-418 . -430) 65775) ((-418 . -552) 65741) ((-418 . -555) 65722) ((-418 . -1013) T) ((-418 . -1129) T) ((-418 . -13) T) ((-418 . -72) T) ((-418 . -64) T) ((-417 . -312) T) ((-417 . -1134) T) ((-417 . -832) T) ((-417 . -495) T) ((-417 . -146) T) ((-417 . -555) 65672) ((-417 . -654) 65637) ((-417 . -582) 65602) ((-417 . -38) 65567) ((-417 . -392) T) ((-417 . -258) T) ((-417 . -590) 65532) ((-417 . -588) 65482) ((-417 . -970) T) ((-417 . -1025) T) ((-417 . -1061) T) ((-417 . -663) T) ((-417 . -961) T) ((-417 . -82) 65431) ((-417 . -963) 65396) ((-417 . -968) 65361) ((-417 . -21) T) ((-417 . -23) T) ((-417 . -1013) T) ((-417 . -552) 65313) ((-417 . -1129) T) ((-417 . -13) T) ((-417 . -72) T) ((-417 . -25) T) ((-417 . -104) T) ((-417 . -246) T) ((-417 . -201) T) ((-417 . -120) T) ((-417 . -950) 65273) ((-417 . -933) T) ((-417 . -553) 65195) ((-416 . -1124) 65164) ((-416 . -552) 65126) ((-416 . -124) 65110) ((-416 . -34) T) ((-416 . -13) T) ((-416 . -1129) T) ((-416 . -72) T) ((-416 . -260) 65048) ((-416 . -455) 64981) ((-416 . -1013) T) ((-416 . -429) 64965) ((-416 . -553) 64926) ((-416 . -318) 64910) ((-416 . -889) 64879) ((-415 . -1107) 64858) ((-415 . -183) 64806) ((-415 . -76) 64754) ((-415 . -1035) 64702) ((-415 . -124) 64650) ((-415 . -553) NIL) ((-415 . -193) 64598) ((-415 . -538) 64577) ((-415 . -260) 64375) ((-415 . -455) 64127) ((-415 . -429) 64062) ((-415 . -241) 64041) ((-415 . -243) 64020) ((-415 . -549) 63999) ((-415 . -1013) T) ((-415 . -552) 63981) ((-415 . -72) T) ((-415 . -1129) T) ((-415 . -13) T) ((-415 . -34) T) ((-415 . -318) 63929) ((-414 . -1162) 63913) ((-414 . -190) 63865) ((-414 . -186) 63811) ((-414 . -189) 63763) ((-414 . -241) 63721) ((-414 . -809) 63627) ((-414 . -806) 63508) ((-414 . -811) 63414) ((-414 . -886) 63377) ((-414 . -38) 63224) ((-414 . -82) 63044) ((-414 . -963) 62885) ((-414 . -968) 62726) ((-414 . -588) 62611) ((-414 . -590) 62511) ((-414 . -582) 62358) ((-414 . -654) 62205) ((-414 . -555) 62037) ((-414 . -118) 62016) ((-414 . -120) 61995) ((-414 . -47) 61965) ((-414 . -1158) 61935) ((-414 . -35) 61901) ((-414 . -66) 61867) ((-414 . -239) 61833) ((-414 . -433) 61799) ((-414 . -1118) 61765) ((-414 . -1115) 61731) ((-414 . -915) 61697) ((-414 . -201) 61676) ((-414 . -246) 61630) ((-414 . -104) T) ((-414 . -25) T) ((-414 . -72) T) ((-414 . -13) T) ((-414 . -1129) T) ((-414 . -552) 61612) ((-414 . -1013) T) ((-414 . -23) T) ((-414 . -21) T) ((-414 . -961) T) ((-414 . -663) T) ((-414 . -1061) T) ((-414 . -1025) T) ((-414 . -970) T) ((-414 . -258) 61591) ((-414 . -392) 61570) ((-414 . -146) 61504) ((-414 . -495) 61458) ((-414 . -832) 61437) ((-414 . -1134) 61416) ((-414 . -312) 61395) ((-408 . -1013) T) ((-408 . -552) 61377) ((-408 . -1129) T) ((-408 . -13) T) ((-408 . -72) T) ((-403 . -889) 61346) ((-403 . -318) 61330) ((-403 . -553) 61291) ((-403 . -429) 61275) ((-403 . -1013) T) ((-403 . -455) 61208) ((-403 . -260) 61146) ((-403 . -552) 61108) ((-403 . -72) T) ((-403 . -1129) T) ((-403 . -13) T) ((-403 . -34) T) ((-403 . -124) 61092) ((-401 . -654) 61063) ((-401 . -582) 61034) ((-401 . -590) 61005) ((-401 . -588) 60961) ((-401 . -104) T) ((-401 . -25) T) ((-401 . -72) T) ((-401 . -13) T) ((-401 . -1129) T) ((-401 . -552) 60943) ((-401 . -1013) T) ((-401 . -23) T) ((-401 . -21) T) ((-401 . -968) 60914) ((-401 . -963) 60885) ((-401 . -82) 60846) ((-394 . -861) 60813) ((-394 . -555) 60605) ((-394 . -950) 60483) ((-394 . -1134) 60462) ((-394 . -821) 60441) ((-394 . -796) NIL) ((-394 . -811) 60418) ((-394 . -806) 60393) ((-394 . -809) 60370) ((-394 . -455) 60308) ((-394 . -392) 60262) ((-394 . -580) 60210) ((-394 . -590) 60099) ((-394 . -329) 60083) ((-394 . -47) 60062) ((-394 . -38) 59914) ((-394 . -582) 59766) ((-394 . -654) 59618) ((-394 . -246) 59552) ((-394 . -495) 59486) ((-394 . -82) 59311) ((-394 . -963) 59157) ((-394 . -968) 59003) ((-394 . -146) 58917) ((-394 . -120) 58896) ((-394 . -118) 58875) ((-394 . -588) 58785) ((-394 . -104) T) ((-394 . -25) T) ((-394 . -72) T) ((-394 . -13) T) ((-394 . -1129) T) ((-394 . -552) 58767) ((-394 . -1013) T) ((-394 . -23) T) ((-394 . -21) T) ((-394 . -961) T) ((-394 . -663) T) ((-394 . -1061) T) ((-394 . -1025) T) ((-394 . -970) T) ((-394 . -355) 58751) ((-394 . -277) 58730) ((-394 . -260) 58717) ((-394 . -553) 58578) ((-393 . -361) 58548) ((-393 . -683) 58518) ((-393 . -657) T) ((-393 . -685) T) ((-393 . -82) 58469) ((-393 . -963) 58439) ((-393 . -968) 58409) ((-393 . -21) T) ((-393 . -588) 58324) ((-393 . -23) T) ((-393 . -1013) T) ((-393 . -552) 58306) ((-393 . -72) T) ((-393 . -25) T) ((-393 . -104) T) ((-393 . -590) 58236) ((-393 . -582) 58206) ((-393 . -654) 58176) ((-393 . -316) 58146) ((-393 . -1129) T) ((-393 . -13) T) ((-393 . -241) 58109) ((-381 . -1013) T) ((-381 . -552) 58091) ((-381 . -1129) T) ((-381 . -13) T) ((-381 . -72) T) ((-380 . -1013) T) ((-380 . -552) 58073) ((-380 . -1129) T) ((-380 . -13) T) ((-380 . -72) T) ((-379 . -1013) T) ((-379 . -552) 58055) ((-379 . -1129) T) ((-379 . -13) T) ((-379 . -72) T) ((-377 . -552) 58037) ((-372 . -38) 58021) ((-372 . -555) 57990) ((-372 . -590) 57964) ((-372 . -588) 57923) ((-372 . -970) T) ((-372 . -1025) T) ((-372 . -1061) T) ((-372 . -663) T) ((-372 . -961) T) ((-372 . -82) 57902) ((-372 . -963) 57886) ((-372 . -968) 57870) ((-372 . -21) T) ((-372 . -23) T) ((-372 . -1013) T) ((-372 . -552) 57852) ((-372 . -1129) T) ((-372 . -13) T) ((-372 . -72) T) ((-372 . -25) T) ((-372 . -104) T) ((-372 . -582) 57836) ((-372 . -654) 57820) ((-358 . -663) T) ((-358 . -1013) T) ((-358 . -552) 57802) ((-358 . -1129) T) ((-358 . -13) T) ((-358 . -72) T) ((-358 . -1025) T) ((-356 . -413) T) ((-356 . -1025) T) ((-356 . -72) T) ((-356 . -13) T) ((-356 . -1129) T) ((-356 . -552) 57784) ((-356 . -1013) T) ((-356 . -663) T) ((-350 . -904) 57768) ((-350 . -1066) 57746) ((-350 . -950) 57613) ((-350 . -555) 57512) ((-350 . -553) 57315) ((-350 . -933) 57294) ((-350 . -821) 57273) ((-350 . -794) 57257) ((-350 . -755) 57236) ((-350 . -721) 57215) ((-350 . -718) 57194) ((-350 . -759) 57148) ((-350 . -756) 57102) ((-350 . -716) 57081) ((-350 . -714) 57060) ((-350 . -740) 57039) ((-350 . -796) 56964) ((-350 . -343) 56948) ((-350 . -580) 56896) ((-350 . -590) 56812) ((-350 . -329) 56796) ((-350 . -241) 56754) ((-350 . -260) 56719) ((-350 . -455) 56631) ((-350 . -288) 56615) ((-350 . -201) T) ((-350 . -82) 56546) ((-350 . -963) 56498) ((-350 . -968) 56450) ((-350 . -246) T) ((-350 . -654) 56402) ((-350 . -582) 56354) ((-350 . -588) 56291) ((-350 . -38) 56243) ((-350 . -258) T) ((-350 . -392) T) ((-350 . -146) T) ((-350 . -495) T) ((-350 . -832) T) ((-350 . -1134) T) ((-350 . -312) T) ((-350 . -190) 56222) ((-350 . -186) 56170) ((-350 . -189) 56124) ((-350 . -225) 56108) ((-350 . -806) 56032) ((-350 . -811) 55958) ((-350 . -809) 55917) ((-350 . -184) 55901) ((-350 . -120) 55855) ((-350 . -118) 55834) ((-350 . -104) T) ((-350 . -25) T) ((-350 . -72) T) ((-350 . -13) T) ((-350 . -1129) T) ((-350 . -552) 55816) ((-350 . -1013) T) ((-350 . -23) T) ((-350 . -21) T) ((-350 . -961) T) ((-350 . -663) T) ((-350 . -1061) T) ((-350 . -1025) T) ((-350 . -970) T) ((-348 . -495) T) ((-348 . -246) T) ((-348 . -146) T) ((-348 . -555) 55725) ((-348 . -654) 55699) ((-348 . -582) 55673) ((-348 . -590) 55647) ((-348 . -588) 55606) ((-348 . -104) T) ((-348 . -25) T) ((-348 . -72) T) ((-348 . -13) T) ((-348 . -1129) T) ((-348 . -552) 55588) ((-348 . -1013) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -968) 55562) ((-348 . -963) 55536) ((-348 . -82) 55503) ((-348 . -961) T) ((-348 . -663) T) ((-348 . -1061) T) ((-348 . -1025) T) ((-348 . -970) T) ((-348 . -38) 55477) ((-348 . -184) 55461) ((-348 . -809) 55420) ((-348 . -811) 55346) ((-348 . -806) 55270) ((-348 . -225) 55254) ((-348 . -189) 55208) ((-348 . -186) 55156) ((-348 . -190) 55135) ((-348 . -288) 55119) ((-348 . -455) 54961) ((-348 . -260) 54900) ((-348 . -241) 54828) ((-348 . -355) 54812) ((-348 . -950) 54710) ((-348 . -392) 54663) ((-348 . -933) 54642) ((-348 . -553) 54545) ((-348 . -1134) 54523) ((-342 . -1013) T) ((-342 . -552) 54505) ((-342 . -1129) T) ((-342 . -13) T) ((-342 . -72) T) ((-342 . -189) T) ((-342 . -186) 54492) ((-342 . -553) 54469) ((-340 . -683) 54453) ((-340 . -657) T) ((-340 . -685) T) ((-340 . -82) 54432) ((-340 . -963) 54416) ((-340 . -968) 54400) ((-340 . -21) T) ((-340 . -588) 54369) ((-340 . -23) T) ((-340 . -1013) T) ((-340 . -552) 54351) ((-340 . -1129) T) ((-340 . -13) T) ((-340 . -72) T) ((-340 . -25) T) ((-340 . -104) T) ((-340 . -590) 54335) ((-340 . -582) 54319) ((-340 . -654) 54303) ((-338 . -339) T) ((-338 . -72) T) ((-338 . -13) T) ((-338 . -1129) T) ((-338 . -552) 54269) ((-338 . -1013) T) ((-338 . -555) 54250) ((-338 . -430) 54231) ((-337 . -336) 54215) ((-337 . -555) 54199) ((-337 . -950) 54183) ((-337 . -759) 54162) ((-337 . -756) 54141) ((-337 . -1025) T) ((-337 . -72) T) ((-337 . -13) T) ((-337 . -1129) T) ((-337 . -552) 54123) ((-337 . -1013) T) ((-337 . -663) T) ((-334 . -335) 54102) ((-334 . -555) 54086) ((-334 . -950) 54070) ((-334 . -582) 54040) ((-334 . -654) 54010) ((-334 . -590) 53994) ((-334 . -588) 53963) ((-334 . -104) T) ((-334 . -25) T) ((-334 . -72) T) ((-334 . -13) T) ((-334 . -1129) T) ((-334 . -552) 53945) ((-334 . -1013) T) ((-334 . -23) T) ((-334 . -21) T) ((-334 . -968) 53929) ((-334 . -963) 53913) ((-334 . -82) 53892) ((-333 . -82) 53871) ((-333 . -963) 53855) ((-333 . -968) 53839) ((-333 . -21) T) ((-333 . -588) 53808) ((-333 . -23) T) ((-333 . -1013) T) ((-333 . -552) 53790) ((-333 . -1129) T) ((-333 . -13) T) ((-333 . -72) T) ((-333 . -25) T) ((-333 . -104) T) ((-333 . -590) 53774) ((-333 . -449) 53753) ((-333 . -557) 53718) ((-333 . -654) 53688) ((-333 . -582) 53658) ((-330 . -347) T) ((-330 . -120) T) ((-330 . -555) 53608) ((-330 . -590) 53573) ((-330 . -588) 53523) ((-330 . -104) T) ((-330 . -25) T) ((-330 . -72) T) ((-330 . -13) T) ((-330 . -1129) T) ((-330 . -552) 53490) ((-330 . -1013) T) ((-330 . -23) T) ((-330 . -21) T) ((-330 . -970) T) ((-330 . -1025) T) ((-330 . -1061) T) ((-330 . -663) T) ((-330 . -961) T) ((-330 . -553) 53404) ((-330 . -312) T) ((-330 . -1134) T) ((-330 . -832) T) ((-330 . -495) T) ((-330 . -146) T) ((-330 . -654) 53369) ((-330 . -582) 53334) ((-330 . -38) 53299) ((-330 . -392) T) ((-330 . -258) T) ((-330 . -82) 53248) ((-330 . -963) 53213) ((-330 . -968) 53178) ((-330 . -246) T) ((-330 . -201) T) ((-330 . -755) T) ((-330 . -721) T) ((-330 . -718) T) ((-330 . -759) T) ((-330 . -756) T) ((-330 . -716) T) ((-330 . -714) T) ((-330 . -796) 53160) ((-330 . -915) T) ((-330 . -933) T) ((-330 . -950) 53120) ((-330 . -973) T) ((-330 . -190) T) ((-330 . -186) 53107) ((-330 . -189) T) ((-330 . -1115) T) ((-330 . -1118) T) ((-330 . -433) T) ((-330 . -239) T) ((-330 . -66) T) ((-330 . -35) T) ((-330 . -557) 53089) ((-313 . -314) 53066) ((-313 . -72) T) ((-313 . -13) T) ((-313 . -1129) T) ((-313 . -552) 53048) ((-313 . -1013) T) ((-310 . -413) T) ((-310 . -1025) T) ((-310 . -72) T) ((-310 . -13) T) ((-310 . -1129) T) ((-310 . -552) 53030) ((-310 . -1013) T) ((-310 . -663) T) ((-310 . -950) 53014) ((-310 . -555) 52998) ((-308 . -280) 52982) ((-308 . -190) 52961) ((-308 . -186) 52934) ((-308 . -189) 52913) ((-308 . -320) 52892) ((-308 . -1066) 52871) ((-308 . -299) 52850) ((-308 . -120) 52829) ((-308 . -555) 52766) ((-308 . -590) 52718) ((-308 . -588) 52655) ((-308 . -104) T) ((-308 . -25) T) ((-308 . -72) T) ((-308 . -13) T) ((-308 . -1129) T) ((-308 . -552) 52637) ((-308 . -1013) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -970) T) ((-308 . -1025) T) ((-308 . -1061) T) ((-308 . -663) T) ((-308 . -961) T) ((-308 . -312) T) ((-308 . -1134) T) ((-308 . -832) T) ((-308 . -495) T) ((-308 . -146) T) ((-308 . -654) 52589) ((-308 . -582) 52541) ((-308 . -38) 52506) ((-308 . -392) T) ((-308 . -258) T) ((-308 . -82) 52437) ((-308 . -963) 52389) ((-308 . -968) 52341) ((-308 . -246) T) ((-308 . -201) T) ((-308 . -345) 52295) ((-308 . -118) 52249) ((-308 . -950) 52233) ((-308 . -1187) 52217) ((-308 . -1198) 52201) ((-304 . -280) 52185) ((-304 . -190) 52164) ((-304 . -186) 52137) ((-304 . -189) 52116) ((-304 . -320) 52095) ((-304 . -1066) 52074) ((-304 . -299) 52053) ((-304 . -120) 52032) ((-304 . -555) 51969) ((-304 . -590) 51921) ((-304 . -588) 51858) ((-304 . -104) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -13) T) ((-304 . -1129) T) ((-304 . -552) 51840) ((-304 . -1013) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -970) T) ((-304 . -1025) T) ((-304 . -1061) T) ((-304 . -663) T) ((-304 . -961) T) ((-304 . -312) T) ((-304 . -1134) T) ((-304 . -832) T) ((-304 . -495) T) ((-304 . -146) T) ((-304 . -654) 51792) ((-304 . -582) 51744) ((-304 . -38) 51709) ((-304 . -392) T) ((-304 . -258) T) ((-304 . -82) 51640) ((-304 . -963) 51592) ((-304 . -968) 51544) ((-304 . -246) T) ((-304 . -201) T) ((-304 . -345) 51498) ((-304 . -118) 51452) ((-304 . -950) 51436) ((-304 . -1187) 51420) ((-304 . -1198) 51404) ((-303 . -280) 51388) ((-303 . -190) 51367) ((-303 . -186) 51340) ((-303 . -189) 51319) ((-303 . -320) 51298) ((-303 . -1066) 51277) ((-303 . -299) 51256) ((-303 . -120) 51235) ((-303 . -555) 51172) ((-303 . -590) 51124) ((-303 . -588) 51061) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1129) T) ((-303 . -552) 51043) ((-303 . -1013) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -970) T) ((-303 . -1025) T) ((-303 . -1061) T) ((-303 . -663) T) ((-303 . -961) T) ((-303 . -312) T) ((-303 . -1134) T) ((-303 . -832) T) ((-303 . -495) T) ((-303 . -146) T) ((-303 . -654) 50995) ((-303 . -582) 50947) ((-303 . -38) 50912) ((-303 . -392) T) ((-303 . -258) T) ((-303 . -82) 50843) ((-303 . -963) 50795) ((-303 . -968) 50747) ((-303 . -246) T) ((-303 . -201) T) ((-303 . -345) 50701) ((-303 . -118) 50655) ((-303 . -950) 50639) ((-303 . -1187) 50623) ((-303 . -1198) 50607) ((-302 . -280) 50591) ((-302 . -190) 50570) ((-302 . -186) 50543) ((-302 . -189) 50522) ((-302 . -320) 50501) ((-302 . -1066) 50480) ((-302 . -299) 50459) ((-302 . -120) 50438) ((-302 . -555) 50375) ((-302 . -590) 50327) ((-302 . -588) 50264) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1129) T) ((-302 . -552) 50246) ((-302 . -1013) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -970) T) ((-302 . -1025) T) ((-302 . -1061) T) ((-302 . -663) T) ((-302 . -961) T) ((-302 . -312) T) ((-302 . -1134) T) ((-302 . -832) T) ((-302 . -495) T) ((-302 . -146) T) ((-302 . -654) 50198) ((-302 . -582) 50150) ((-302 . -38) 50115) ((-302 . -392) T) ((-302 . -258) T) ((-302 . -82) 50046) ((-302 . -963) 49998) ((-302 . -968) 49950) ((-302 . -246) T) ((-302 . -201) T) ((-302 . -345) 49904) ((-302 . -118) 49858) ((-302 . -950) 49842) ((-302 . -1187) 49826) ((-302 . -1198) 49810) ((-301 . -280) 49787) ((-301 . -190) T) ((-301 . -186) 49774) ((-301 . -189) T) ((-301 . -320) T) ((-301 . -1066) T) ((-301 . -299) T) ((-301 . -120) 49756) ((-301 . -555) 49686) ((-301 . -590) 49631) ((-301 . -588) 49561) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1129) T) ((-301 . -552) 49543) ((-301 . -1013) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -970) T) ((-301 . -1025) T) ((-301 . -1061) T) ((-301 . -663) T) ((-301 . -961) T) ((-301 . -312) T) ((-301 . -1134) T) ((-301 . -832) T) ((-301 . -495) T) ((-301 . -146) T) ((-301 . -654) 49488) ((-301 . -582) 49433) ((-301 . -38) 49398) ((-301 . -392) T) ((-301 . -258) T) ((-301 . -82) 49315) ((-301 . -963) 49260) ((-301 . -968) 49205) ((-301 . -246) T) ((-301 . -201) T) ((-301 . -345) T) ((-301 . -118) T) ((-301 . -950) 49182) ((-301 . -1187) 49159) ((-301 . -1198) 49136) ((-295 . -280) 49120) ((-295 . -190) 49099) ((-295 . -186) 49072) ((-295 . -189) 49051) ((-295 . -320) 49030) ((-295 . -1066) 49009) ((-295 . -299) 48988) ((-295 . -120) 48967) ((-295 . -555) 48904) ((-295 . -590) 48856) ((-295 . -588) 48793) ((-295 . -104) T) ((-295 . -25) T) ((-295 . -72) T) ((-295 . -13) T) ((-295 . -1129) T) ((-295 . -552) 48775) ((-295 . -1013) T) ((-295 . -23) T) ((-295 . -21) T) ((-295 . -970) T) ((-295 . -1025) T) ((-295 . -1061) T) ((-295 . -663) T) ((-295 . -961) T) ((-295 . -312) T) ((-295 . -1134) T) ((-295 . -832) T) ((-295 . -495) T) ((-295 . -146) T) ((-295 . -654) 48727) ((-295 . -582) 48679) ((-295 . -38) 48644) ((-295 . -392) T) ((-295 . -258) T) ((-295 . -82) 48575) ((-295 . -963) 48527) ((-295 . -968) 48479) ((-295 . -246) T) ((-295 . -201) T) ((-295 . -345) 48433) ((-295 . -118) 48387) ((-295 . -950) 48371) ((-295 . -1187) 48355) ((-295 . -1198) 48339) ((-294 . -280) 48323) ((-294 . -190) 48302) ((-294 . -186) 48275) ((-294 . -189) 48254) ((-294 . -320) 48233) ((-294 . -1066) 48212) ((-294 . -299) 48191) ((-294 . -120) 48170) ((-294 . -555) 48107) ((-294 . -590) 48059) ((-294 . -588) 47996) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1129) T) ((-294 . -552) 47978) ((-294 . -1013) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -970) T) ((-294 . -1025) T) ((-294 . -1061) T) ((-294 . -663) T) ((-294 . -961) T) ((-294 . -312) T) ((-294 . -1134) T) ((-294 . -832) T) ((-294 . -495) T) ((-294 . -146) T) ((-294 . -654) 47930) ((-294 . -582) 47882) ((-294 . -38) 47847) ((-294 . -392) T) ((-294 . -258) T) ((-294 . -82) 47778) ((-294 . -963) 47730) ((-294 . -968) 47682) ((-294 . -246) T) ((-294 . -201) T) ((-294 . -345) 47636) ((-294 . -118) 47590) ((-294 . -950) 47574) ((-294 . -1187) 47558) ((-294 . -1198) 47542) ((-293 . -280) 47519) ((-293 . -190) T) ((-293 . -186) 47506) ((-293 . -189) T) ((-293 . -320) T) ((-293 . -1066) T) ((-293 . -299) T) ((-293 . -120) 47488) ((-293 . -555) 47418) ((-293 . -590) 47363) ((-293 . -588) 47293) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1129) T) ((-293 . -552) 47275) ((-293 . -1013) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -970) T) ((-293 . -1025) T) ((-293 . -1061) T) ((-293 . -663) T) ((-293 . -961) T) ((-293 . -312) T) ((-293 . -1134) T) ((-293 . -832) T) ((-293 . -495) T) ((-293 . -146) T) ((-293 . -654) 47220) ((-293 . -582) 47165) ((-293 . -38) 47130) ((-293 . -392) T) ((-293 . -258) T) ((-293 . -82) 47047) ((-293 . -963) 46992) ((-293 . -968) 46937) ((-293 . -246) T) ((-293 . -201) T) ((-293 . -345) T) ((-293 . -118) T) ((-293 . -950) 46914) ((-293 . -1187) 46891) ((-293 . -1198) 46868) ((-289 . -280) 46845) ((-289 . -190) T) ((-289 . -186) 46832) ((-289 . -189) T) ((-289 . -320) T) ((-289 . -1066) T) ((-289 . -299) T) ((-289 . -120) 46814) ((-289 . -555) 46744) ((-289 . -590) 46689) ((-289 . -588) 46619) ((-289 . -104) T) ((-289 . -25) T) ((-289 . -72) T) ((-289 . -13) T) ((-289 . -1129) T) ((-289 . -552) 46601) ((-289 . -1013) T) ((-289 . -23) T) ((-289 . -21) T) ((-289 . -970) T) ((-289 . -1025) T) ((-289 . -1061) T) ((-289 . -663) T) ((-289 . -961) T) ((-289 . -312) T) ((-289 . -1134) T) ((-289 . -832) T) ((-289 . -495) T) ((-289 . -146) T) ((-289 . -654) 46546) ((-289 . -582) 46491) ((-289 . -38) 46456) ((-289 . -392) T) ((-289 . -258) T) ((-289 . -82) 46373) ((-289 . -963) 46318) ((-289 . -968) 46263) ((-289 . -246) T) ((-289 . -201) T) ((-289 . -345) T) ((-289 . -118) T) ((-289 . -950) 46240) ((-289 . -1187) 46217) ((-289 . -1198) 46194) ((-283 . -286) 46163) ((-283 . -104) T) ((-283 . -25) T) ((-283 . -72) T) ((-283 . -13) T) ((-283 . -1129) T) ((-283 . -552) 46145) ((-283 . -1013) T) ((-283 . -23) T) ((-283 . -588) 46127) ((-283 . -21) T) ((-282 . -1013) T) ((-282 . -552) 46109) ((-282 . -1129) T) ((-282 . -13) T) ((-282 . -72) T) ((-281 . -756) T) ((-281 . -552) 46091) ((-281 . -1013) T) ((-281 . -72) T) ((-281 . -13) T) ((-281 . -1129) T) ((-281 . -759) T) ((-278 . -19) 46075) ((-278 . -1035) 46059) ((-278 . -318) 46043) ((-278 . -34) T) ((-278 . -13) T) ((-278 . -1129) T) ((-278 . -72) 45977) ((-278 . -552) 45892) ((-278 . -260) 45830) ((-278 . -455) 45763) ((-278 . -1013) 45716) ((-278 . -429) 45700) ((-278 . -593) 45684) ((-278 . -243) 45661) ((-278 . -241) 45613) ((-278 . -538) 45590) ((-278 . -553) 45551) ((-278 . -124) 45535) ((-278 . -756) 45514) ((-278 . -759) 45493) ((-278 . -324) 45477) ((-278 . -237) 45461) ((-275 . -274) 45438) ((-275 . -555) 45422) ((-275 . -950) 45406) ((-275 . -23) T) ((-275 . -1013) T) ((-275 . -552) 45388) ((-275 . -1129) T) ((-275 . -13) T) ((-275 . -72) T) ((-275 . -25) T) ((-275 . -104) T) ((-273 . -21) T) ((-273 . -588) 45370) ((-273 . -23) T) ((-273 . -1013) T) ((-273 . -552) 45352) ((-273 . -1129) T) ((-273 . -13) T) ((-273 . -72) T) ((-273 . -25) T) ((-273 . -104) T) ((-273 . -654) 45334) ((-273 . -582) 45316) ((-273 . -590) 45298) ((-273 . -968) 45280) ((-273 . -963) 45262) ((-273 . -82) 45237) ((-273 . -274) 45214) ((-273 . -555) 45198) ((-273 . -950) 45182) ((-273 . -756) 45161) ((-273 . -759) 45140) ((-270 . -1162) 45124) ((-270 . -190) 45076) ((-270 . -186) 45022) ((-270 . -189) 44974) ((-270 . -241) 44932) ((-270 . -809) 44838) ((-270 . -806) 44742) ((-270 . -811) 44648) ((-270 . -886) 44611) ((-270 . -38) 44458) ((-270 . -82) 44278) ((-270 . -963) 44119) ((-270 . -968) 43960) ((-270 . -588) 43845) ((-270 . -590) 43745) ((-270 . -582) 43592) ((-270 . -654) 43439) ((-270 . -555) 43271) ((-270 . -118) 43250) ((-270 . -120) 43229) ((-270 . -47) 43199) ((-270 . -1158) 43169) ((-270 . -35) 43135) ((-270 . -66) 43101) ((-270 . -239) 43067) ((-270 . -433) 43033) ((-270 . -1118) 42999) ((-270 . -1115) 42965) ((-270 . -915) 42931) ((-270 . -201) 42910) ((-270 . -246) 42864) ((-270 . -104) T) ((-270 . -25) T) ((-270 . -72) T) ((-270 . -13) T) ((-270 . -1129) T) ((-270 . -552) 42846) ((-270 . -1013) T) ((-270 . -23) T) ((-270 . -21) T) ((-270 . -961) T) ((-270 . -663) T) ((-270 . -1061) T) ((-270 . -1025) T) ((-270 . -970) T) ((-270 . -258) 42825) ((-270 . -392) 42804) ((-270 . -146) 42738) ((-270 . -495) 42692) ((-270 . -832) 42671) ((-270 . -1134) 42650) ((-270 . -312) 42629) ((-270 . -716) T) ((-270 . -756) T) ((-270 . -759) T) ((-270 . -718) T) ((-265 . -364) 42613) ((-265 . -555) 42188) ((-265 . -950) 41859) ((-265 . -553) 41720) ((-265 . -794) 41704) ((-265 . -811) 41671) ((-265 . -806) 41636) ((-265 . -809) 41603) ((-265 . -413) 41582) ((-265 . -355) 41566) ((-265 . -796) 41491) ((-265 . -343) 41475) ((-265 . -580) 41383) ((-265 . -590) 41121) ((-265 . -329) 41091) ((-265 . -201) 41070) ((-265 . -82) 40959) ((-265 . -963) 40869) ((-265 . -968) 40779) ((-265 . -246) 40758) ((-265 . -654) 40668) ((-265 . -582) 40578) ((-265 . -588) 40245) ((-265 . -38) 40155) ((-265 . -258) 40134) ((-265 . -392) 40113) ((-265 . -146) 40092) ((-265 . -495) 40071) ((-265 . -832) 40050) ((-265 . -1134) 40029) ((-265 . -312) 40008) ((-265 . -260) 39995) ((-265 . -455) 39961) ((-265 . -254) T) ((-265 . -120) 39940) ((-265 . -118) 39919) ((-265 . -961) 39813) ((-265 . -663) 39666) ((-265 . -1061) 39560) ((-265 . -1025) 39413) ((-265 . -970) 39307) ((-265 . -104) 39182) ((-265 . -25) 39038) ((-265 . -72) T) ((-265 . -13) T) ((-265 . -1129) T) ((-265 . -552) 39020) ((-265 . -1013) T) ((-265 . -23) 38876) ((-265 . -21) 38751) ((-265 . -29) 38721) ((-265 . -915) 38700) ((-265 . -27) 38679) ((-265 . -1115) 38658) ((-265 . -1118) 38637) ((-265 . -433) 38616) ((-265 . -239) 38595) ((-265 . -66) 38574) ((-265 . -35) 38553) ((-265 . -133) 38532) ((-265 . -116) 38511) ((-265 . -569) 38490) ((-265 . -871) 38469) ((-265 . -1053) 38448) ((-264 . -904) 38409) ((-264 . -1066) NIL) ((-264 . -950) 38339) ((-264 . -555) 38222) ((-264 . -553) NIL) ((-264 . -933) NIL) ((-264 . -821) NIL) ((-264 . -794) 38183) ((-264 . -755) NIL) ((-264 . -721) NIL) ((-264 . -718) NIL) ((-264 . -759) NIL) ((-264 . -756) NIL) ((-264 . -716) NIL) ((-264 . -714) NIL) ((-264 . -740) NIL) ((-264 . -796) NIL) ((-264 . -343) 38144) ((-264 . -580) 38105) ((-264 . -590) 38034) ((-264 . -329) 37995) ((-264 . -241) 37861) ((-264 . -260) 37757) ((-264 . -455) 37508) ((-264 . -288) 37469) ((-264 . -201) T) ((-264 . -82) 37354) ((-264 . -963) 37283) ((-264 . -968) 37212) ((-264 . -246) T) ((-264 . -654) 37141) ((-264 . -582) 37070) ((-264 . -588) 36984) ((-264 . -38) 36913) ((-264 . -258) T) ((-264 . -392) T) ((-264 . -146) T) ((-264 . -495) T) ((-264 . -832) T) ((-264 . -1134) T) ((-264 . -312) T) ((-264 . -190) NIL) ((-264 . -186) NIL) ((-264 . -189) NIL) ((-264 . -225) 36874) ((-264 . -806) NIL) ((-264 . -811) NIL) ((-264 . -809) NIL) ((-264 . -184) 36835) ((-264 . -120) 36791) ((-264 . -118) 36747) ((-264 . -104) T) ((-264 . -25) T) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1129) T) ((-264 . -552) 36729) ((-264 . -1013) T) ((-264 . -23) T) ((-264 . -21) T) ((-264 . -961) T) ((-264 . -663) T) ((-264 . -1061) T) ((-264 . -1025) T) ((-264 . -970) T) ((-263 . -995) T) ((-263 . -430) 36710) ((-263 . -552) 36676) ((-263 . -555) 36657) ((-263 . -1013) T) ((-263 . -1129) T) ((-263 . -13) T) ((-263 . -72) T) ((-263 . -64) T) ((-262 . -1013) T) ((-262 . -552) 36639) ((-262 . -1129) T) ((-262 . -13) T) ((-262 . -72) T) ((-251 . -1107) 36618) ((-251 . -183) 36566) ((-251 . -76) 36514) ((-251 . -1035) 36462) ((-251 . -124) 36410) ((-251 . -553) NIL) ((-251 . -193) 36358) ((-251 . -538) 36337) ((-251 . -260) 36135) ((-251 . -455) 35887) ((-251 . -429) 35822) ((-251 . -241) 35801) ((-251 . -243) 35780) ((-251 . -549) 35759) ((-251 . -1013) T) ((-251 . -552) 35741) ((-251 . -72) T) ((-251 . -1129) T) ((-251 . -13) T) ((-251 . -34) T) ((-251 . -318) 35689) ((-249 . -1129) T) ((-249 . -13) T) ((-249 . -455) 35638) ((-249 . -1013) 35424) ((-249 . -552) 35170) ((-249 . -72) 34956) ((-249 . -25) 34824) ((-249 . -21) 34711) ((-249 . -588) 34458) ((-249 . -23) 34345) ((-249 . -104) 34232) ((-249 . -1025) 34117) ((-249 . -663) 34023) ((-249 . -413) 34002) ((-249 . -961) 33948) ((-249 . -1061) 33894) ((-249 . -970) 33840) ((-249 . -590) 33708) ((-249 . -555) 33643) ((-249 . -82) 33563) ((-249 . -963) 33488) ((-249 . -968) 33413) ((-249 . -654) 33358) ((-249 . -582) 33303) ((-249 . -809) 33262) ((-249 . -806) 33219) ((-249 . -811) 33178) ((-249 . -1187) 33148) ((-247 . -552) 33130) ((-244 . -258) T) ((-244 . -392) T) ((-244 . -38) 33117) ((-244 . -555) 33089) ((-244 . -970) T) ((-244 . -1025) T) ((-244 . -1061) T) ((-244 . -663) T) ((-244 . -961) T) ((-244 . -82) 33074) ((-244 . -963) 33061) ((-244 . -968) 33048) ((-244 . -21) T) ((-244 . -588) 33020) ((-244 . -23) T) ((-244 . -1013) T) ((-244 . -552) 33002) ((-244 . -1129) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -590) 32989) ((-244 . -582) 32976) ((-244 . -654) 32963) ((-244 . -146) T) ((-244 . -246) T) ((-244 . -495) T) ((-244 . -832) T) ((-244 . -241) 32942) ((-235 . -552) 32924) ((-234 . -552) 32906) ((-229 . -756) T) ((-229 . -552) 32888) ((-229 . -1013) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1129) T) ((-229 . -759) T) ((-226 . -213) 32850) ((-226 . -555) 32610) ((-226 . -950) 32456) ((-226 . -553) 32204) ((-226 . -277) 32176) ((-226 . -355) 32160) ((-226 . -38) 32012) ((-226 . -82) 31837) ((-226 . -963) 31683) ((-226 . -968) 31529) ((-226 . -588) 31439) ((-226 . -590) 31328) ((-226 . -582) 31180) ((-226 . -654) 31032) ((-226 . -118) 31011) ((-226 . -120) 30990) ((-226 . -146) 30904) ((-226 . -495) 30838) ((-226 . -246) 30772) ((-226 . -47) 30744) ((-226 . -329) 30728) ((-226 . -580) 30676) ((-226 . -392) 30630) ((-226 . -455) 30521) ((-226 . -809) 30467) ((-226 . -806) 30376) ((-226 . -811) 30289) ((-226 . -796) 30148) ((-226 . -821) 30127) ((-226 . -1134) 30106) ((-226 . -861) 30073) ((-226 . -260) 30060) ((-226 . -190) 30039) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -552) 30021) ((-226 . -1013) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -970) T) ((-226 . -1025) T) ((-226 . -1061) T) ((-226 . -663) T) ((-226 . -961) T) ((-226 . -186) 29969) ((-226 . -13) T) ((-226 . -1129) T) ((-226 . -189) 29923) ((-226 . -225) 29907) ((-226 . -184) 29891) ((-221 . -1013) T) ((-221 . -552) 29873) ((-221 . -1129) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 29852) ((-211 . -1187) 29822) ((-211 . -721) 29801) ((-211 . -718) 29780) ((-211 . -759) 29734) ((-211 . -756) 29688) ((-211 . -716) 29667) ((-211 . -717) 29646) ((-211 . -654) 29591) ((-211 . -582) 29516) ((-211 . -243) 29493) ((-211 . -241) 29470) ((-211 . -538) 29447) ((-211 . -950) 29276) ((-211 . -555) 29080) ((-211 . -355) 29049) ((-211 . -580) 28957) ((-211 . -590) 28783) ((-211 . -329) 28753) ((-211 . -429) 28737) ((-211 . -455) 28670) ((-211 . -260) 28608) ((-211 . -34) T) ((-211 . -318) 28592) ((-211 . -320) 28571) ((-211 . -190) 28524) ((-211 . -588) 28377) ((-211 . -970) 28356) ((-211 . -1025) 28335) ((-211 . -1061) 28314) ((-211 . -663) 28293) ((-211 . -961) 28272) ((-211 . -186) 28168) ((-211 . -189) 28070) ((-211 . -225) 28040) ((-211 . -806) 27912) ((-211 . -811) 27786) ((-211 . -809) 27719) ((-211 . -184) 27689) ((-211 . -552) 27650) ((-211 . -968) 27575) ((-211 . -963) 27480) ((-211 . -82) 27400) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1129) T) ((-211 . -1013) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 27379) ((-210 . -1187) 27349) ((-210 . -721) 27328) ((-210 . -718) 27307) ((-210 . -759) 27261) ((-210 . -756) 27215) ((-210 . -716) 27194) ((-210 . -717) 27173) ((-210 . -654) 27118) ((-210 . -582) 27043) ((-210 . -243) 27020) ((-210 . -241) 26997) ((-210 . -538) 26974) ((-210 . -950) 26803) ((-210 . -555) 26607) ((-210 . -355) 26576) ((-210 . -580) 26484) ((-210 . -590) 26297) ((-210 . -329) 26267) ((-210 . -429) 26251) ((-210 . -455) 26184) ((-210 . -260) 26122) ((-210 . -34) T) ((-210 . -318) 26106) ((-210 . -320) 26085) ((-210 . -190) 26038) ((-210 . -588) 25878) ((-210 . -970) 25857) ((-210 . -1025) 25836) ((-210 . -1061) 25815) ((-210 . -663) 25794) ((-210 . -961) 25773) ((-210 . -186) 25669) ((-210 . -189) 25571) ((-210 . -225) 25541) ((-210 . -806) 25413) ((-210 . -811) 25287) ((-210 . -809) 25220) ((-210 . -184) 25190) ((-210 . -552) 25151) ((-210 . -968) 25076) ((-210 . -963) 24981) ((-210 . -82) 24901) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1129) T) ((-210 . -1013) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1013) T) ((-209 . -552) 24883) ((-209 . -1129) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 24857) ((-208 . -160) T) ((-208 . -1013) T) ((-208 . -552) 24824) ((-208 . -1129) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -747) 24806) ((-207 . -1013) T) ((-207 . -552) 24788) ((-207 . -1129) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -861) 24733) ((-206 . -555) 24525) ((-206 . -950) 24403) ((-206 . -1134) 24382) ((-206 . -821) 24361) ((-206 . -796) NIL) ((-206 . -811) 24338) ((-206 . -806) 24313) ((-206 . -809) 24290) ((-206 . -455) 24228) ((-206 . -392) 24182) ((-206 . -580) 24130) ((-206 . -590) 24019) ((-206 . -329) 24003) ((-206 . -47) 23960) ((-206 . -38) 23812) ((-206 . -582) 23664) ((-206 . -654) 23516) ((-206 . -246) 23450) ((-206 . -495) 23384) ((-206 . -82) 23209) ((-206 . -963) 23055) ((-206 . -968) 22901) ((-206 . -146) 22815) ((-206 . -120) 22794) ((-206 . -118) 22773) ((-206 . -588) 22683) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1129) T) ((-206 . -552) 22665) ((-206 . -1013) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -961) T) ((-206 . -663) T) ((-206 . -1061) T) ((-206 . -1025) T) ((-206 . -970) T) ((-206 . -355) 22649) ((-206 . -277) 22606) ((-206 . -260) 22593) ((-206 . -553) 22454) ((-203 . -608) 22438) ((-203 . -1168) 22422) ((-203 . -923) 22406) ((-203 . -1064) 22390) ((-203 . -318) 22374) ((-203 . -756) 22353) ((-203 . -759) 22332) ((-203 . -324) 22316) ((-203 . -593) 22300) ((-203 . -243) 22277) ((-203 . -241) 22229) ((-203 . -538) 22206) ((-203 . -553) 22167) ((-203 . -429) 22151) ((-203 . -1013) 22104) ((-203 . -455) 22037) ((-203 . -260) 21975) ((-203 . -552) 21870) ((-203 . -72) 21804) ((-203 . -1129) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 21788) ((-203 . -1035) 21772) ((-203 . -237) 21756) ((-203 . -430) 21733) ((-203 . -555) 21710) ((-197 . -196) 21689) ((-197 . -1187) 21659) ((-197 . -721) 21638) ((-197 . -718) 21617) ((-197 . -759) 21571) ((-197 . -756) 21525) ((-197 . -716) 21504) ((-197 . -717) 21483) ((-197 . -654) 21428) ((-197 . -582) 21353) ((-197 . -243) 21330) ((-197 . -241) 21307) ((-197 . -538) 21284) ((-197 . -950) 21113) ((-197 . -555) 20917) ((-197 . -355) 20886) ((-197 . -580) 20794) ((-197 . -590) 20633) ((-197 . -329) 20603) ((-197 . -429) 20587) ((-197 . -455) 20520) ((-197 . -260) 20458) ((-197 . -34) T) ((-197 . -318) 20442) ((-197 . -320) 20421) ((-197 . -190) 20374) ((-197 . -588) 20162) ((-197 . -970) 20141) ((-197 . -1025) 20120) ((-197 . -1061) 20099) ((-197 . -663) 20078) ((-197 . -961) 20057) ((-197 . -186) 19953) ((-197 . -189) 19855) ((-197 . -225) 19825) ((-197 . -806) 19697) ((-197 . -811) 19571) ((-197 . -809) 19504) ((-197 . -184) 19474) ((-197 . -552) 19171) ((-197 . -968) 19096) ((-197 . -963) 19001) ((-197 . -82) 18921) ((-197 . -104) 18796) ((-197 . -25) 18633) ((-197 . -72) 18370) ((-197 . -13) T) ((-197 . -1129) T) ((-197 . -1013) 18126) ((-197 . -23) 17982) ((-197 . -21) 17897) ((-181 . -627) 17855) ((-181 . -318) 17839) ((-181 . -34) T) ((-181 . -13) T) ((-181 . -1129) T) ((-181 . -72) 17793) ((-181 . -552) 17728) ((-181 . -260) 17666) ((-181 . -455) 17599) ((-181 . -1013) 17577) ((-181 . -429) 17561) ((-181 . -57) 17519) ((-179 . -347) T) ((-179 . -120) T) ((-179 . -555) 17469) ((-179 . -590) 17434) ((-179 . -588) 17384) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1129) T) ((-179 . -552) 17366) ((-179 . -1013) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -970) T) ((-179 . -1025) T) ((-179 . -1061) T) ((-179 . -663) T) ((-179 . -961) T) ((-179 . -553) 17296) ((-179 . -312) T) ((-179 . -1134) T) ((-179 . -832) T) ((-179 . -495) T) ((-179 . -146) T) ((-179 . -654) 17261) ((-179 . -582) 17226) ((-179 . -38) 17191) ((-179 . -392) T) ((-179 . -258) T) ((-179 . -82) 17140) ((-179 . -963) 17105) ((-179 . -968) 17070) ((-179 . -246) T) ((-179 . -201) T) ((-179 . -755) T) ((-179 . -721) T) ((-179 . -718) T) ((-179 . -759) T) ((-179 . -756) T) ((-179 . -716) T) ((-179 . -714) T) ((-179 . -796) 17052) ((-179 . -915) T) ((-179 . -933) T) ((-179 . -950) 17012) ((-179 . -973) T) ((-179 . -190) T) ((-179 . -186) 16999) ((-179 . -189) T) ((-179 . -1115) T) ((-179 . -1118) T) ((-179 . -433) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -560) 16976) ((-177 . -555) 16938) ((-177 . -590) 16905) ((-177 . -588) 16857) ((-177 . -970) T) ((-177 . -1025) T) ((-177 . -1061) T) ((-177 . -663) T) ((-177 . -961) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1013) T) ((-177 . -552) 16839) ((-177 . -1129) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -950) 16816) ((-176 . -214) 16800) ((-176 . -1034) 16784) ((-176 . -76) 16768) ((-176 . -429) 16752) ((-176 . -1013) 16730) ((-176 . -455) 16663) ((-176 . -260) 16601) ((-176 . -552) 16536) ((-176 . -72) 16490) ((-176 . -1129) T) ((-176 . -13) T) ((-176 . -34) T) ((-176 . -1035) 16474) ((-176 . -318) 16458) ((-176 . -908) 16442) ((-172 . -995) T) ((-172 . -430) 16423) ((-172 . -552) 16389) ((-172 . -555) 16370) ((-172 . -1013) T) ((-172 . -1129) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -904) 16352) ((-171 . -1066) T) ((-171 . -555) 16302) ((-171 . -950) 16262) ((-171 . -553) 16192) ((-171 . -933) T) ((-171 . -821) NIL) ((-171 . -794) 16174) ((-171 . -755) T) ((-171 . -721) T) ((-171 . -718) T) ((-171 . -759) T) ((-171 . -756) T) ((-171 . -716) T) ((-171 . -714) T) ((-171 . -740) T) ((-171 . -796) 16156) ((-171 . -343) 16138) ((-171 . -580) 16120) ((-171 . -329) 16102) ((-171 . -241) NIL) ((-171 . -260) NIL) ((-171 . -455) NIL) ((-171 . -288) 16084) ((-171 . -201) T) ((-171 . -82) 16011) ((-171 . -963) 15961) ((-171 . -968) 15911) ((-171 . -246) T) ((-171 . -654) 15861) ((-171 . -582) 15811) ((-171 . -590) 15761) ((-171 . -588) 15711) ((-171 . -38) 15661) ((-171 . -258) T) ((-171 . -392) T) ((-171 . -146) T) ((-171 . -495) T) ((-171 . -832) T) ((-171 . -1134) T) ((-171 . -312) T) ((-171 . -190) T) ((-171 . -186) 15648) ((-171 . -189) T) ((-171 . -225) 15630) ((-171 . -806) NIL) ((-171 . -811) NIL) ((-171 . -809) NIL) ((-171 . -184) 15612) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1129) T) ((-171 . -552) 15554) ((-171 . -1013) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -961) T) ((-171 . -663) T) ((-171 . -1061) T) ((-171 . -1025) T) ((-171 . -970) T) ((-168 . -752) T) ((-168 . -759) T) ((-168 . -756) T) ((-168 . -1013) T) ((-168 . -552) 15536) ((-168 . -1129) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -320) T) ((-167 . -1013) T) ((-167 . -552) 15518) ((-167 . -1129) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -555) 15495) ((-166 . -1013) T) ((-166 . -552) 15477) ((-166 . -1129) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1013) T) ((-161 . -552) 15459) ((-161 . -1129) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1013) T) ((-158 . -552) 15441) ((-158 . -1129) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1013) T) ((-157 . -552) 15423) ((-157 . -1129) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -747) 15405) ((-154 . -995) T) ((-154 . -430) 15386) ((-154 . -552) 15352) ((-154 . -555) 15333) ((-154 . -1013) T) ((-154 . -1129) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -552) 15315) ((-148 . -38) 15247) ((-148 . -555) 15164) ((-148 . -590) 15096) ((-148 . -588) 15013) ((-148 . -970) T) ((-148 . -1025) T) ((-148 . -1061) T) ((-148 . -663) T) ((-148 . -961) T) ((-148 . -82) 14912) ((-148 . -963) 14844) ((-148 . -968) 14776) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1013) T) ((-148 . -552) 14758) ((-148 . -1129) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -582) 14690) ((-148 . -654) 14622) ((-148 . -312) T) ((-148 . -1134) T) ((-148 . -832) T) ((-148 . -495) T) ((-148 . -146) T) ((-148 . -392) T) ((-148 . -258) T) ((-148 . -246) T) ((-148 . -201) T) ((-145 . -1013) T) ((-145 . -552) 14604) ((-145 . -1129) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14588) ((-142 . -35) 14566) ((-142 . -66) 14544) ((-142 . -239) 14522) ((-142 . -433) 14500) ((-142 . -1118) 14478) ((-142 . -1115) 14456) ((-142 . -915) 14408) ((-142 . -821) 14361) ((-142 . -553) 14129) ((-142 . -794) 14113) ((-142 . -320) 14067) ((-142 . -299) 14046) ((-142 . -1066) 14025) ((-142 . -345) 14004) ((-142 . -353) 13975) ((-142 . -38) 13809) ((-142 . -82) 13701) ((-142 . -963) 13614) ((-142 . -968) 13527) ((-142 . -582) 13361) ((-142 . -654) 13195) ((-142 . -322) 13166) ((-142 . -661) 13137) ((-142 . -950) 13035) ((-142 . -555) 12820) ((-142 . -355) 12804) ((-142 . -796) 12729) ((-142 . -343) 12713) ((-142 . -580) 12661) ((-142 . -590) 12538) ((-142 . -588) 12436) ((-142 . -329) 12420) ((-142 . -241) 12378) ((-142 . -260) 12343) ((-142 . -455) 12255) ((-142 . -288) 12239) ((-142 . -201) 12193) ((-142 . -1134) 12101) ((-142 . -312) 12055) ((-142 . -832) 11989) ((-142 . -495) 11903) ((-142 . -246) 11817) ((-142 . -392) 11751) ((-142 . -258) 11685) ((-142 . -190) 11639) ((-142 . -186) 11567) ((-142 . -189) 11501) ((-142 . -225) 11485) ((-142 . -806) 11409) ((-142 . -811) 11335) ((-142 . -809) 11294) ((-142 . -184) 11278) ((-142 . -146) T) ((-142 . -120) 11257) ((-142 . -961) T) ((-142 . -663) T) ((-142 . -1061) T) ((-142 . -1025) T) ((-142 . -970) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1013) T) ((-142 . -552) 11239) ((-142 . -1129) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 11193) ((-135 . -995) T) ((-135 . -430) 11174) ((-135 . -552) 11140) ((-135 . -555) 11121) ((-135 . -1013) T) ((-135 . -1129) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1013) T) ((-134 . -552) 11103) ((-134 . -1129) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1129) T) ((-130 . -552) 11085) ((-130 . -1013) T) ((-129 . -995) T) ((-129 . -430) 11066) ((-129 . -552) 11032) ((-129 . -555) 11013) ((-129 . -1013) T) ((-129 . -1129) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -995) T) ((-127 . -430) 10994) ((-127 . -552) 10960) ((-127 . -555) 10941) ((-127 . -1013) T) ((-127 . -1129) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -961) T) ((-125 . -663) T) ((-125 . -1061) T) ((-125 . -1025) T) ((-125 . -970) T) ((-125 . -21) T) ((-125 . -588) 10900) ((-125 . -23) T) ((-125 . -1013) T) ((-125 . -552) 10882) ((-125 . -1129) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -590) 10856) ((-125 . -555) 10825) ((-125 . -38) 10809) ((-125 . -82) 10788) ((-125 . -963) 10772) ((-125 . -968) 10756) ((-125 . -582) 10740) ((-125 . -654) 10724) ((-125 . -1187) 10708) ((-117 . -752) T) ((-117 . -759) T) ((-117 . -756) T) ((-117 . -1013) T) ((-117 . -552) 10690) ((-117 . -1129) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -320) T) ((-114 . -1013) T) ((-114 . -552) 10672) ((-114 . -1129) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -553) 10631) ((-114 . -369) 10613) ((-114 . -1011) 10595) ((-114 . -318) 10577) ((-114 . -320) T) ((-114 . -193) 10559) ((-114 . -124) 10541) ((-114 . -1035) 10523) ((-114 . -34) T) ((-114 . -260) NIL) ((-114 . -455) NIL) ((-114 . -429) 10505) ((-114 . -76) 10487) ((-114 . -183) 10469) ((-113 . -552) 10451) ((-112 . -160) T) ((-112 . -1013) T) ((-112 . -552) 10418) ((-112 . -1129) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -747) 10400) ((-111 . -995) T) ((-111 . -430) 10381) ((-111 . -552) 10347) ((-111 . -555) 10328) ((-111 . -1013) T) ((-111 . -1129) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -995) T) ((-110 . -430) 10309) ((-110 . -552) 10275) ((-110 . -555) 10256) ((-110 . -1013) T) ((-110 . -1129) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -405) 10233) ((-108 . -555) 10129) ((-108 . -950) 10113) ((-108 . -1013) T) ((-108 . -552) 10095) ((-108 . -1129) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -410) 10050) ((-108 . -241) 10027) ((-107 . -756) T) ((-107 . -552) 10009) ((-107 . -1013) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1129) T) ((-107 . -759) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -663) T) ((-107 . -1025) T) ((-107 . -950) 9991) ((-107 . -555) 9973) ((-106 . -995) T) ((-106 . -430) 9954) ((-106 . -552) 9920) ((-106 . -555) 9901) ((-106 . -1013) T) ((-106 . -1129) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1013) T) ((-103 . -552) 9883) ((-103 . -1129) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 9865) ((-102 . -1035) 9847) ((-102 . -318) 9829) ((-102 . -34) T) ((-102 . -13) T) ((-102 . -1129) T) ((-102 . -72) T) ((-102 . -552) 9773) ((-102 . -260) NIL) ((-102 . -455) NIL) ((-102 . -1013) T) ((-102 . -429) 9755) ((-102 . -593) 9737) ((-102 . -243) 9712) ((-102 . -241) 9662) ((-102 . -538) 9637) ((-102 . -553) NIL) ((-102 . -124) 9619) ((-102 . -756) T) ((-102 . -759) T) ((-102 . -324) 9601) ((-101 . -752) T) ((-101 . -759) T) ((-101 . -756) T) ((-101 . -1013) T) ((-101 . -552) 9583) ((-101 . -1129) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -320) T) ((-101 . -604) T) ((-100 . -98) 9567) ((-100 . -1035) 9551) ((-100 . -318) 9535) ((-100 . -923) 9519) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1129) T) ((-100 . -72) 9473) ((-100 . -552) 9408) ((-100 . -260) 9346) ((-100 . -455) 9279) ((-100 . -1013) 9257) ((-100 . -429) 9241) ((-100 . -92) 9225) ((-99 . -98) 9209) ((-99 . -1035) 9193) ((-99 . -318) 9177) ((-99 . -923) 9161) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1129) T) ((-99 . -72) 9115) ((-99 . -552) 9050) ((-99 . -260) 8988) ((-99 . -455) 8921) ((-99 . -1013) 8899) ((-99 . -429) 8883) ((-99 . -92) 8867) ((-94 . -98) 8851) ((-94 . -1035) 8835) ((-94 . -318) 8819) ((-94 . -923) 8803) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1129) T) ((-94 . -72) 8757) ((-94 . -552) 8692) ((-94 . -260) 8630) ((-94 . -455) 8563) ((-94 . -1013) 8541) ((-94 . -429) 8525) ((-94 . -92) 8509) ((-90 . -904) 8487) ((-90 . -1066) NIL) ((-90 . -950) 8465) ((-90 . -555) 8396) ((-90 . -553) NIL) ((-90 . -933) NIL) ((-90 . -821) NIL) ((-90 . -794) 8374) ((-90 . -755) NIL) ((-90 . -721) NIL) ((-90 . -718) NIL) ((-90 . -759) NIL) ((-90 . -756) NIL) ((-90 . -716) NIL) ((-90 . -714) NIL) ((-90 . -740) NIL) ((-90 . -796) NIL) ((-90 . -343) 8352) ((-90 . -580) 8330) ((-90 . -590) 8276) ((-90 . -329) 8254) ((-90 . -241) 8188) ((-90 . -260) 8135) ((-90 . -455) 8005) ((-90 . -288) 7983) ((-90 . -201) T) ((-90 . -82) 7902) ((-90 . -963) 7848) ((-90 . -968) 7794) ((-90 . -246) T) ((-90 . -654) 7740) ((-90 . -582) 7686) ((-90 . -588) 7617) ((-90 . -38) 7563) ((-90 . -258) T) ((-90 . -392) T) ((-90 . -146) T) ((-90 . -495) T) ((-90 . -832) T) ((-90 . -1134) T) ((-90 . -312) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7541) ((-90 . -806) NIL) ((-90 . -811) NIL) ((-90 . -809) NIL) ((-90 . -184) 7519) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1129) T) ((-90 . -552) 7501) ((-90 . -1013) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -961) T) ((-90 . -663) T) ((-90 . -1061) T) ((-90 . -1025) T) ((-90 . -970) T) ((-89 . -779) 7485) ((-89 . -832) T) ((-89 . -495) T) ((-89 . -246) T) ((-89 . -146) T) ((-89 . -555) 7457) ((-89 . -654) 7444) ((-89 . -582) 7431) ((-89 . -968) 7418) ((-89 . -963) 7405) ((-89 . -82) 7390) ((-89 . -38) 7377) ((-89 . -392) T) ((-89 . -258) T) ((-89 . -961) T) ((-89 . -663) T) ((-89 . -1061) T) ((-89 . -1025) T) ((-89 . -970) T) ((-89 . -21) T) ((-89 . -588) 7349) ((-89 . -23) T) ((-89 . -1013) T) ((-89 . -552) 7331) ((-89 . -1129) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -590) 7318) ((-89 . -120) T) ((-86 . -756) T) ((-86 . -552) 7300) ((-86 . -1013) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1129) T) ((-86 . -759) T) ((-86 . -747) 7281) ((-85 . -752) T) ((-85 . -759) T) ((-85 . -756) T) ((-85 . -1013) T) ((-85 . -552) 7263) ((-85 . -1129) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -320) T) ((-85 . -880) T) ((-85 . -604) T) ((-85 . -84) T) ((-85 . -553) 7245) ((-81 . -96) T) ((-81 . -324) 7228) ((-81 . -759) T) ((-81 . -756) T) ((-81 . -124) 7211) ((-81 . -553) 7193) ((-81 . -241) 7144) ((-81 . -538) 7120) ((-81 . -243) 7096) ((-81 . -593) 7079) ((-81 . -429) 7062) ((-81 . -1013) T) ((-81 . -455) NIL) ((-81 . -260) NIL) ((-81 . -552) 7044) ((-81 . -72) T) ((-81 . -34) T) ((-81 . -318) 7027) ((-81 . -1035) 7010) ((-81 . -19) 6993) ((-81 . -604) T) ((-81 . -13) T) ((-81 . -1129) T) ((-81 . -84) T) ((-79 . -80) 6977) ((-79 . -1129) T) ((-79 . |MappingCategory|) 6951) ((-79 . -1013) T) ((-79 . -552) 6933) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -552) 6915) ((-77 . -904) 6897) ((-77 . -1066) T) ((-77 . -555) 6847) ((-77 . -950) 6807) ((-77 . -553) 6737) ((-77 . -933) T) ((-77 . -821) NIL) ((-77 . -794) 6719) ((-77 . -755) T) ((-77 . -721) T) ((-77 . -718) T) ((-77 . -759) T) ((-77 . -756) T) ((-77 . -716) T) ((-77 . -714) T) ((-77 . -740) T) ((-77 . -796) 6701) ((-77 . -343) 6683) ((-77 . -580) 6665) ((-77 . -329) 6647) ((-77 . -241) NIL) ((-77 . -260) NIL) ((-77 . -455) NIL) ((-77 . -288) 6629) ((-77 . -201) T) ((-77 . -82) 6556) ((-77 . -963) 6506) ((-77 . -968) 6456) ((-77 . -246) T) ((-77 . -654) 6406) ((-77 . -582) 6356) ((-77 . -590) 6306) ((-77 . -588) 6256) ((-77 . -38) 6206) ((-77 . -258) T) ((-77 . -392) T) ((-77 . -146) T) ((-77 . -495) T) ((-77 . -832) T) ((-77 . -1134) T) ((-77 . -312) T) ((-77 . -190) T) ((-77 . -186) 6193) ((-77 . -189) T) ((-77 . -225) 6175) ((-77 . -806) NIL) ((-77 . -811) NIL) ((-77 . -809) NIL) ((-77 . -184) 6157) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1129) T) ((-77 . -552) 6100) ((-77 . -1013) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -961) T) ((-77 . -663) T) ((-77 . -1061) T) ((-77 . -1025) T) ((-77 . -970) T) ((-73 . -98) 6084) ((-73 . -1035) 6068) ((-73 . -318) 6052) ((-73 . -923) 6036) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1129) T) ((-73 . -72) 5990) ((-73 . -552) 5925) ((-73 . -260) 5863) ((-73 . -455) 5796) ((-73 . -1013) 5774) ((-73 . -429) 5758) ((-73 . -92) 5742) ((-69 . -413) T) ((-69 . -1025) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1129) T) ((-69 . -552) 5724) ((-69 . -1013) T) ((-69 . -663) T) ((-69 . -241) 5703) ((-67 . -995) T) ((-67 . -430) 5684) ((-67 . -552) 5650) ((-67 . -555) 5631) ((-67 . -1013) T) ((-67 . -1129) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1034) 5615) ((-62 . -318) 5599) ((-62 . -1035) 5583) ((-62 . -34) T) ((-62 . -13) T) ((-62 . -1129) T) ((-62 . -72) 5537) ((-62 . -552) 5472) ((-62 . -260) 5410) ((-62 . -455) 5343) ((-62 . -1013) 5321) ((-62 . -429) 5305) ((-62 . -76) 5289) ((-60 . -57) 5251) ((-60 . -429) 5235) ((-60 . -1013) 5213) ((-60 . -455) 5146) ((-60 . -260) 5084) ((-60 . -552) 5019) ((-60 . -72) 4973) ((-60 . -1129) T) ((-60 . -13) T) ((-60 . -34) T) ((-60 . -318) 4957) ((-58 . -19) 4941) ((-58 . -1035) 4925) ((-58 . -318) 4909) ((-58 . -34) T) ((-58 . -13) T) ((-58 . -1129) T) ((-58 . -72) 4843) ((-58 . -552) 4758) ((-58 . -260) 4696) ((-58 . -455) 4629) ((-58 . -1013) 4582) ((-58 . -429) 4566) ((-58 . -593) 4550) ((-58 . -243) 4527) ((-58 . -241) 4479) ((-58 . -538) 4456) ((-58 . -553) 4417) ((-58 . -124) 4401) ((-58 . -756) 4380) ((-58 . -759) 4359) ((-58 . -324) 4343) ((-55 . -1013) T) ((-55 . -552) 4325) ((-55 . -1129) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -950) 4307) ((-55 . -555) 4289) ((-51 . -1013) T) ((-51 . -552) 4271) ((-51 . -1129) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -560) 4255) ((-50 . -555) 4224) ((-50 . -590) 4198) ((-50 . -588) 4157) ((-50 . -970) T) ((-50 . -1025) T) ((-50 . -1061) T) ((-50 . -663) T) ((-50 . -961) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1013) T) ((-50 . -552) 4139) ((-50 . -1129) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -950) 4123) ((-49 . -1013) T) ((-49 . -552) 4105) ((-49 . -1129) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -254) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1129) T) ((-48 . -552) 4087) ((-48 . -1013) T) ((-48 . -555) 3988) ((-48 . -950) 3931) ((-48 . -455) 3897) ((-48 . -260) 3884) ((-48 . -27) T) ((-48 . -915) T) ((-48 . -201) T) ((-48 . -82) 3833) ((-48 . -963) 3798) ((-48 . -968) 3763) ((-48 . -246) T) ((-48 . -654) 3728) ((-48 . -582) 3693) ((-48 . -590) 3643) ((-48 . -588) 3593) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -961) T) ((-48 . -663) T) ((-48 . -1061) T) ((-48 . -1025) T) ((-48 . -970) T) ((-48 . -38) 3558) ((-48 . -258) T) ((-48 . -392) T) ((-48 . -146) T) ((-48 . -495) T) ((-48 . -832) T) ((-48 . -1134) T) ((-48 . -312) T) ((-48 . -580) 3518) ((-48 . -933) T) ((-48 . -553) 3463) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3450) ((-48 . -189) T) ((-45 . -36) 3429) ((-45 . -549) 3408) ((-45 . -243) 3331) ((-45 . -241) 3229) ((-45 . -429) 3164) ((-45 . -455) 2916) ((-45 . -260) 2714) ((-45 . -538) 2637) ((-45 . -193) 2585) ((-45 . -76) 2533) ((-45 . -183) 2481) ((-45 . -1107) 2460) ((-45 . -237) 2408) ((-45 . -1035) 2356) ((-45 . -124) 2304) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1129) T) ((-45 . -72) T) ((-45 . -552) 2286) ((-45 . -1013) T) ((-45 . -553) NIL) ((-45 . -593) 2234) ((-45 . -324) 2182) ((-45 . -759) NIL) ((-45 . -756) NIL) ((-45 . -318) 2130) ((-45 . -1064) 2078) ((-45 . -923) 2026) ((-45 . -1168) 1974) ((-45 . -608) 1922) ((-44 . -361) 1906) ((-44 . -683) 1890) ((-44 . -657) T) ((-44 . -685) T) ((-44 . -82) 1869) ((-44 . -963) 1853) ((-44 . -968) 1837) ((-44 . -21) T) ((-44 . -588) 1780) ((-44 . -23) T) ((-44 . -1013) T) ((-44 . -552) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -590) 1720) ((-44 . -582) 1704) ((-44 . -654) 1688) ((-44 . -316) 1672) ((-44 . -1129) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -291) 1623) ((-40 . -146) T) ((-40 . -555) 1553) ((-40 . -970) T) ((-40 . -1025) T) ((-40 . -1061) T) ((-40 . -663) T) ((-40 . -961) T) ((-40 . -590) 1455) ((-40 . -588) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1129) T) ((-40 . -552) 1367) ((-40 . -1013) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -968) 1312) ((-40 . -963) 1257) ((-40 . -82) 1174) ((-40 . -553) 1158) ((-40 . -184) 1135) ((-40 . -809) 1087) ((-40 . -811) 999) ((-40 . -806) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -312) T) ((-40 . -1134) T) ((-40 . -832) T) ((-40 . -495) T) ((-40 . -654) 677) ((-40 . -582) 622) ((-40 . -38) 567) ((-40 . -392) T) ((-40 . -258) T) ((-40 . -246) T) ((-40 . -201) T) ((-40 . -320) NIL) ((-40 . -299) NIL) ((-40 . -1066) NIL) ((-40 . -118) 539) ((-40 . -345) NIL) ((-40 . -353) 511) ((-40 . -120) 483) ((-40 . -322) 455) ((-40 . -329) 432) ((-40 . -580) 366) ((-40 . -355) 343) ((-40 . -950) 220) ((-40 . -661) 192) ((-31 . -995) T) ((-31 . -430) 173) ((-31 . -552) 139) ((-31 . -555) 120) ((-31 . -1013) T) ((-31 . -1129) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -866) T) ((-30 . -552) 102) ((0 . |EnumerationCategory|) T) ((0 . -552) 84) ((0 . -1013) T) ((0 . -72) T) ((0 . -1129) T) ((-2 . |RecordCategory|) T) ((-2 . -552) 66) ((-2 . -1013) T) ((-2 . -72) T) ((-2 . -1129) T) ((-3 . |UnionCategory|) T) ((-3 . -552) 48) ((-3 . -1013) T) ((-3 . -72) T) ((-3 . -1129) T) ((-1 . -1013) T) ((-1 . -552) 30) ((-1 . -1129) T) ((-1 . -13) T) ((-1 . -72) T))
\ No newline at end of file +((((-485)) . T)) +(((-1210 . -146) T) ((-1210 . -556) 200803) ((-1210 . -971) T) ((-1210 . -1026) T) ((-1210 . -1062) T) ((-1210 . -664) T) ((-1210 . -962) T) ((-1210 . -591) 200790) ((-1210 . -589) 200762) ((-1210 . -104) T) ((-1210 . -25) T) ((-1210 . -72) T) ((-1210 . -13) T) ((-1210 . -1130) T) ((-1210 . -553) 200744) ((-1210 . -1014) T) ((-1210 . -23) T) ((-1210 . -21) T) ((-1210 . -969) 200731) ((-1210 . -964) 200718) ((-1210 . -82) 200703) ((-1210 . -320) T) ((-1210 . -554) 200685) ((-1210 . -1067) T) ((-1206 . -1014) T) ((-1206 . -553) 200652) ((-1206 . -1130) T) ((-1206 . -13) T) ((-1206 . -72) T) ((-1206 . -430) 200634) ((-1206 . -556) 200616) ((-1205 . -1203) 200595) ((-1205 . -951) 200572) ((-1205 . -556) 200521) ((-1205 . -962) T) ((-1205 . -664) T) ((-1205 . -1062) T) ((-1205 . -1026) T) ((-1205 . -971) T) ((-1205 . -21) T) ((-1205 . -589) 200480) ((-1205 . -23) T) ((-1205 . -1014) T) ((-1205 . -553) 200462) ((-1205 . -1130) T) ((-1205 . -13) T) ((-1205 . -72) T) ((-1205 . -25) T) ((-1205 . -104) T) ((-1205 . -591) 200436) ((-1205 . -1195) 200420) ((-1205 . -655) 200390) ((-1205 . -583) 200360) ((-1205 . -969) 200344) ((-1205 . -964) 200328) ((-1205 . -82) 200307) ((-1205 . -38) 200277) ((-1205 . -1200) 200256) ((-1204 . -962) T) ((-1204 . -664) T) ((-1204 . -1062) T) ((-1204 . -1026) T) ((-1204 . -971) T) ((-1204 . -21) T) ((-1204 . -589) 200215) ((-1204 . -23) T) ((-1204 . -1014) T) ((-1204 . -553) 200197) ((-1204 . -1130) T) ((-1204 . -13) T) ((-1204 . -72) T) ((-1204 . -25) T) ((-1204 . -104) T) ((-1204 . -591) 200171) ((-1204 . -556) 200127) ((-1204 . -1195) 200111) ((-1204 . -655) 200081) ((-1204 . -583) 200051) ((-1204 . -969) 200035) ((-1204 . -964) 200019) ((-1204 . -82) 199998) ((-1204 . -38) 199968) ((-1204 . -335) 199947) ((-1204 . -951) 199931) ((-1202 . -1203) 199907) ((-1202 . -951) 199881) ((-1202 . -556) 199827) ((-1202 . -962) T) ((-1202 . -664) T) ((-1202 . -1062) T) ((-1202 . -1026) T) ((-1202 . -971) T) ((-1202 . -21) T) ((-1202 . -589) 199786) ((-1202 . -23) T) ((-1202 . -1014) T) ((-1202 . -553) 199768) ((-1202 . -1130) T) ((-1202 . -13) T) ((-1202 . -72) T) ((-1202 . -25) T) ((-1202 . -104) T) ((-1202 . -591) 199742) ((-1202 . -1195) 199726) ((-1202 . -655) 199696) ((-1202 . -583) 199666) ((-1202 . -969) 199650) ((-1202 . -964) 199634) ((-1202 . -82) 199613) ((-1202 . -38) 199583) ((-1202 . -1200) 199559) ((-1201 . -1203) 199538) ((-1201 . -951) 199495) ((-1201 . -556) 199424) ((-1201 . -962) T) ((-1201 . -664) T) ((-1201 . -1062) T) ((-1201 . -1026) T) ((-1201 . -971) T) ((-1201 . -21) T) ((-1201 . -589) 199383) ((-1201 . -23) T) ((-1201 . -1014) T) ((-1201 . -553) 199365) ((-1201 . -1130) T) ((-1201 . -13) T) ((-1201 . -72) T) ((-1201 . -25) T) ((-1201 . -104) T) ((-1201 . -591) 199339) ((-1201 . -1195) 199323) ((-1201 . -655) 199293) ((-1201 . -583) 199263) ((-1201 . -969) 199247) ((-1201 . -964) 199231) ((-1201 . -82) 199210) ((-1201 . -38) 199180) ((-1201 . -1200) 199159) ((-1201 . -335) 199131) ((-1196 . -335) 199103) ((-1196 . -556) 199052) ((-1196 . -951) 199029) ((-1196 . -583) 198999) ((-1196 . -655) 198969) ((-1196 . -591) 198943) ((-1196 . -589) 198902) ((-1196 . -104) T) ((-1196 . -25) T) ((-1196 . -72) T) ((-1196 . -13) T) ((-1196 . -1130) T) ((-1196 . -553) 198884) ((-1196 . -1014) T) ((-1196 . -23) T) ((-1196 . -21) T) ((-1196 . -969) 198868) ((-1196 . -964) 198852) ((-1196 . -82) 198831) ((-1196 . -1203) 198810) ((-1196 . -962) T) ((-1196 . -664) T) ((-1196 . -1062) T) ((-1196 . -1026) T) ((-1196 . -971) T) ((-1196 . -1195) 198794) ((-1196 . -38) 198764) ((-1196 . -1200) 198743) ((-1194 . -1125) 198712) ((-1194 . -553) 198674) ((-1194 . -124) 198658) ((-1194 . -34) T) ((-1194 . -13) T) ((-1194 . -1130) T) ((-1194 . -72) T) ((-1194 . -260) 198596) ((-1194 . -456) 198529) ((-1194 . -1014) T) ((-1194 . -429) 198513) ((-1194 . -554) 198474) ((-1194 . -318) 198458) ((-1194 . -890) 198427) ((-1193 . -962) T) ((-1193 . -664) T) ((-1193 . -1062) T) ((-1193 . -1026) T) ((-1193 . -971) T) ((-1193 . -21) T) ((-1193 . -589) 198372) ((-1193 . -23) T) ((-1193 . -1014) T) ((-1193 . -553) 198341) ((-1193 . -1130) T) ((-1193 . -13) T) ((-1193 . -72) T) ((-1193 . -25) T) ((-1193 . -104) T) ((-1193 . -591) 198301) ((-1193 . -556) 198243) ((-1193 . -430) 198227) ((-1193 . -38) 198197) ((-1193 . -82) 198162) ((-1193 . -964) 198132) ((-1193 . -969) 198102) ((-1193 . -583) 198072) ((-1193 . -655) 198042) ((-1192 . -996) T) ((-1192 . -430) 198023) ((-1192 . -553) 197989) ((-1192 . -556) 197970) ((-1192 . -1014) T) ((-1192 . -1130) T) ((-1192 . -13) T) ((-1192 . -72) T) ((-1192 . -64) T) ((-1191 . -996) T) ((-1191 . -430) 197951) ((-1191 . -553) 197917) ((-1191 . -556) 197898) ((-1191 . -1014) T) ((-1191 . -1130) T) ((-1191 . -13) T) ((-1191 . -72) T) ((-1191 . -64) T) ((-1186 . -553) 197880) ((-1184 . -1014) T) ((-1184 . -553) 197862) ((-1184 . -1130) T) ((-1184 . -13) T) ((-1184 . -72) T) ((-1183 . -1014) T) ((-1183 . -553) 197844) ((-1183 . -1130) T) ((-1183 . -13) T) ((-1183 . -72) T) ((-1180 . -1179) 197828) ((-1180 . -324) 197812) ((-1180 . -760) 197791) ((-1180 . -757) 197770) ((-1180 . -124) 197754) ((-1180 . -554) 197715) ((-1180 . -241) 197667) ((-1180 . -539) 197644) ((-1180 . -243) 197621) ((-1180 . -594) 197605) ((-1180 . -429) 197589) ((-1180 . -1014) 197542) ((-1180 . -456) 197475) ((-1180 . -260) 197413) ((-1180 . -553) 197328) ((-1180 . -72) 197262) ((-1180 . -1130) T) ((-1180 . -13) T) ((-1180 . -34) T) ((-1180 . -318) 197246) ((-1180 . -1036) 197230) ((-1180 . -19) 197214) ((-1177 . -1014) T) ((-1177 . -553) 197180) ((-1177 . -1130) T) ((-1177 . -13) T) ((-1177 . -72) T) ((-1170 . -1173) 197164) ((-1170 . -190) 197123) ((-1170 . -556) 197005) ((-1170 . -591) 196930) ((-1170 . -589) 196840) ((-1170 . -104) T) ((-1170 . -25) T) ((-1170 . -72) T) ((-1170 . -553) 196822) ((-1170 . -1014) T) ((-1170 . -23) T) ((-1170 . -21) T) ((-1170 . -971) T) ((-1170 . -1026) T) ((-1170 . -1062) T) ((-1170 . -664) T) ((-1170 . -962) T) ((-1170 . -186) 196775) ((-1170 . -13) T) ((-1170 . -1130) T) ((-1170 . -189) 196734) ((-1170 . -241) 196699) ((-1170 . -810) 196612) ((-1170 . -807) 196500) ((-1170 . -812) 196413) ((-1170 . -887) 196383) ((-1170 . -38) 196280) ((-1170 . -82) 196145) ((-1170 . -964) 196031) ((-1170 . -969) 195917) ((-1170 . -583) 195814) ((-1170 . -655) 195711) ((-1170 . -118) 195690) ((-1170 . -120) 195669) ((-1170 . -146) 195623) ((-1170 . -496) 195602) ((-1170 . -246) 195581) ((-1170 . -47) 195558) ((-1170 . -1159) 195535) ((-1170 . -35) 195501) ((-1170 . -66) 195467) ((-1170 . -239) 195433) ((-1170 . -433) 195399) ((-1170 . -1119) 195365) ((-1170 . -1116) 195331) ((-1170 . -916) 195297) ((-1167 . -277) 195241) ((-1167 . -951) 195207) ((-1167 . -355) 195173) ((-1167 . -38) 195030) ((-1167 . -556) 194904) ((-1167 . -591) 194793) ((-1167 . -589) 194667) ((-1167 . -971) T) ((-1167 . -1026) T) ((-1167 . -1062) T) ((-1167 . -664) T) ((-1167 . -962) T) ((-1167 . -82) 194517) ((-1167 . -964) 194406) ((-1167 . -969) 194295) ((-1167 . -21) T) ((-1167 . -23) T) ((-1167 . -1014) T) ((-1167 . -553) 194277) ((-1167 . -1130) T) ((-1167 . -13) T) ((-1167 . -72) T) ((-1167 . -25) T) ((-1167 . -104) T) ((-1167 . -583) 194134) ((-1167 . -655) 193991) ((-1167 . -118) 193952) ((-1167 . -120) 193913) ((-1167 . -146) T) ((-1167 . -496) T) ((-1167 . -246) T) ((-1167 . -47) 193857) ((-1166 . -1165) 193836) ((-1166 . -312) 193815) ((-1166 . -1135) 193794) ((-1166 . -833) 193773) ((-1166 . -496) 193727) ((-1166 . -146) 193661) ((-1166 . -556) 193480) ((-1166 . -655) 193327) ((-1166 . -583) 193174) ((-1166 . -38) 193021) ((-1166 . -392) 193000) ((-1166 . -258) 192979) ((-1166 . -591) 192879) ((-1166 . -589) 192764) ((-1166 . -971) T) ((-1166 . -1026) T) ((-1166 . -1062) T) ((-1166 . -664) T) ((-1166 . -962) T) ((-1166 . -82) 192584) ((-1166 . -964) 192425) ((-1166 . -969) 192266) ((-1166 . -21) T) ((-1166 . -23) T) ((-1166 . -1014) T) ((-1166 . -553) 192248) ((-1166 . -1130) T) ((-1166 . -13) T) ((-1166 . -72) T) ((-1166 . -25) T) ((-1166 . -104) T) ((-1166 . -246) 192202) ((-1166 . -201) 192181) ((-1166 . -916) 192147) ((-1166 . -1116) 192113) ((-1166 . -1119) 192079) ((-1166 . -433) 192045) ((-1166 . -239) 192011) ((-1166 . -66) 191977) ((-1166 . -35) 191943) ((-1166 . -1159) 191913) ((-1166 . -47) 191883) ((-1166 . -120) 191862) ((-1166 . -118) 191841) ((-1166 . -887) 191804) ((-1166 . -812) 191710) ((-1166 . -807) 191614) ((-1166 . -810) 191520) ((-1166 . -241) 191478) ((-1166 . -189) 191430) ((-1166 . -186) 191376) ((-1166 . -190) 191328) ((-1166 . -1163) 191312) ((-1166 . -951) 191296) ((-1161 . -1165) 191257) ((-1161 . -312) 191236) ((-1161 . -1135) 191215) ((-1161 . -833) 191194) ((-1161 . -496) 191148) ((-1161 . -146) 191082) ((-1161 . -556) 190831) ((-1161 . -655) 190678) ((-1161 . -583) 190525) ((-1161 . -38) 190372) ((-1161 . -392) 190351) ((-1161 . -258) 190330) ((-1161 . -591) 190230) ((-1161 . -589) 190115) ((-1161 . -971) T) ((-1161 . -1026) T) ((-1161 . -1062) T) ((-1161 . -664) T) ((-1161 . -962) T) ((-1161 . -82) 189935) ((-1161 . -964) 189776) ((-1161 . -969) 189617) ((-1161 . -21) T) ((-1161 . -23) T) ((-1161 . -1014) T) ((-1161 . -553) 189599) ((-1161 . -1130) T) ((-1161 . -13) T) ((-1161 . -72) T) ((-1161 . -25) T) ((-1161 . -104) T) ((-1161 . -246) 189553) ((-1161 . -201) 189532) ((-1161 . -916) 189498) ((-1161 . -1116) 189464) ((-1161 . -1119) 189430) ((-1161 . -433) 189396) ((-1161 . -239) 189362) ((-1161 . -66) 189328) ((-1161 . -35) 189294) ((-1161 . -1159) 189264) ((-1161 . -47) 189234) ((-1161 . -120) 189213) ((-1161 . -118) 189192) ((-1161 . -887) 189155) ((-1161 . -812) 189061) ((-1161 . -807) 188942) ((-1161 . -810) 188848) ((-1161 . -241) 188806) ((-1161 . -189) 188758) ((-1161 . -186) 188704) ((-1161 . -190) 188656) ((-1161 . -1163) 188640) ((-1161 . -951) 188575) ((-1149 . -1156) 188559) ((-1149 . -1067) 188537) ((-1149 . -554) NIL) ((-1149 . -260) 188524) ((-1149 . -456) 188472) ((-1149 . -277) 188449) ((-1149 . -951) 188332) ((-1149 . -355) 188316) ((-1149 . -38) 188148) ((-1149 . -82) 187953) ((-1149 . -964) 187779) ((-1149 . -969) 187605) ((-1149 . -589) 187515) ((-1149 . -591) 187404) ((-1149 . -583) 187236) ((-1149 . -655) 187068) ((-1149 . -556) 186824) ((-1149 . -118) 186803) ((-1149 . -120) 186782) ((-1149 . -47) 186759) ((-1149 . -329) 186743) ((-1149 . -581) 186691) ((-1149 . -810) 186635) ((-1149 . -807) 186542) ((-1149 . -812) 186453) ((-1149 . -797) NIL) ((-1149 . -822) 186432) ((-1149 . -1135) 186411) ((-1149 . -862) 186381) ((-1149 . -833) 186360) ((-1149 . -496) 186274) ((-1149 . -246) 186188) ((-1149 . -146) 186082) ((-1149 . -392) 186016) ((-1149 . -258) 185995) ((-1149 . -241) 185922) ((-1149 . -190) T) ((-1149 . -104) T) ((-1149 . -25) T) ((-1149 . -72) T) ((-1149 . -553) 185904) ((-1149 . -1014) T) ((-1149 . -23) T) ((-1149 . -21) T) ((-1149 . -971) T) ((-1149 . -1026) T) ((-1149 . -1062) T) ((-1149 . -664) T) ((-1149 . -962) T) ((-1149 . -186) 185891) ((-1149 . -13) T) ((-1149 . -1130) T) ((-1149 . -189) T) ((-1149 . -225) 185875) ((-1149 . -184) 185859) ((-1147 . -1007) 185843) ((-1147 . -558) 185827) ((-1147 . -1014) 185805) ((-1147 . -553) 185772) ((-1147 . -1130) 185750) ((-1147 . -13) 185728) ((-1147 . -72) 185706) ((-1147 . -1008) 185663) ((-1145 . -1144) 185642) ((-1145 . -916) 185608) ((-1145 . -1116) 185574) ((-1145 . -1119) 185540) ((-1145 . -433) 185506) ((-1145 . -239) 185472) ((-1145 . -66) 185438) ((-1145 . -35) 185404) ((-1145 . -1159) 185381) ((-1145 . -47) 185358) ((-1145 . -556) 185113) ((-1145 . -655) 184933) ((-1145 . -583) 184753) ((-1145 . -591) 184564) ((-1145 . -589) 184422) ((-1145 . -969) 184236) ((-1145 . -964) 184050) ((-1145 . -82) 183838) ((-1145 . -38) 183658) ((-1145 . -887) 183628) ((-1145 . -241) 183528) ((-1145 . -1142) 183512) ((-1145 . -971) T) ((-1145 . -1026) T) ((-1145 . -1062) T) ((-1145 . -664) T) ((-1145 . -962) T) ((-1145 . -21) T) ((-1145 . -23) T) ((-1145 . -1014) T) ((-1145 . -553) 183494) ((-1145 . -1130) T) ((-1145 . -13) T) ((-1145 . -72) T) ((-1145 . -25) T) ((-1145 . -104) T) ((-1145 . -118) 183422) ((-1145 . -120) 183304) ((-1145 . -554) 182977) ((-1145 . -184) 182947) ((-1145 . -810) 182801) ((-1145 . -812) 182601) ((-1145 . -807) 182399) ((-1145 . -225) 182369) ((-1145 . -189) 182231) ((-1145 . -186) 182087) ((-1145 . -190) 181995) ((-1145 . -312) 181974) ((-1145 . -1135) 181953) ((-1145 . -833) 181932) ((-1145 . -496) 181886) ((-1145 . -146) 181820) ((-1145 . -392) 181799) ((-1145 . -258) 181778) ((-1145 . -246) 181732) ((-1145 . -201) 181711) ((-1145 . -288) 181681) ((-1145 . -456) 181541) ((-1145 . -260) 181480) ((-1145 . -329) 181450) ((-1145 . -581) 181358) ((-1145 . -343) 181328) ((-1145 . -797) 181201) ((-1145 . -741) 181154) ((-1145 . -715) 181107) ((-1145 . -717) 181060) ((-1145 . -757) 180962) ((-1145 . -760) 180864) ((-1145 . -719) 180817) ((-1145 . -722) 180770) ((-1145 . -756) 180723) ((-1145 . -795) 180693) ((-1145 . -822) 180646) ((-1145 . -934) 180599) ((-1145 . -951) 180388) ((-1145 . -1067) 180340) ((-1145 . -905) 180310) ((-1140 . -1144) 180271) ((-1140 . -916) 180237) ((-1140 . -1116) 180203) ((-1140 . -1119) 180169) ((-1140 . -433) 180135) ((-1140 . -239) 180101) ((-1140 . -66) 180067) ((-1140 . -35) 180033) ((-1140 . -1159) 180010) ((-1140 . -47) 179987) ((-1140 . -556) 179788) ((-1140 . -655) 179590) ((-1140 . -583) 179392) ((-1140 . -591) 179247) ((-1140 . -589) 179087) ((-1140 . -969) 178883) ((-1140 . -964) 178679) ((-1140 . -82) 178431) ((-1140 . -38) 178233) ((-1140 . -887) 178203) ((-1140 . -241) 178031) ((-1140 . -1142) 178015) ((-1140 . -971) T) ((-1140 . -1026) T) ((-1140 . -1062) T) ((-1140 . -664) T) ((-1140 . -962) T) ((-1140 . -21) T) ((-1140 . -23) T) ((-1140 . -1014) T) ((-1140 . -553) 177997) ((-1140 . -1130) T) ((-1140 . -13) T) ((-1140 . -72) T) ((-1140 . -25) T) ((-1140 . -104) T) ((-1140 . -118) 177907) ((-1140 . -120) 177817) ((-1140 . -554) NIL) ((-1140 . -184) 177769) ((-1140 . -810) 177605) ((-1140 . -812) 177369) ((-1140 . -807) 177108) ((-1140 . -225) 177060) ((-1140 . -189) 176886) ((-1140 . -186) 176706) ((-1140 . -190) 176596) ((-1140 . -312) 176575) ((-1140 . -1135) 176554) ((-1140 . -833) 176533) ((-1140 . -496) 176487) ((-1140 . -146) 176421) ((-1140 . -392) 176400) ((-1140 . -258) 176379) ((-1140 . -246) 176333) ((-1140 . -201) 176312) ((-1140 . -288) 176264) ((-1140 . -456) 175998) ((-1140 . -260) 175883) ((-1140 . -329) 175835) ((-1140 . -581) 175787) ((-1140 . -343) 175739) ((-1140 . -797) NIL) ((-1140 . -741) NIL) ((-1140 . -715) NIL) ((-1140 . -717) NIL) ((-1140 . -757) NIL) ((-1140 . -760) NIL) ((-1140 . -719) NIL) ((-1140 . -722) NIL) ((-1140 . -756) NIL) ((-1140 . -795) 175691) ((-1140 . -822) NIL) ((-1140 . -934) NIL) ((-1140 . -951) 175657) ((-1140 . -1067) NIL) ((-1140 . -905) 175609) ((-1139 . -753) T) ((-1139 . -760) T) ((-1139 . -757) T) ((-1139 . -1014) T) ((-1139 . -553) 175591) ((-1139 . -1130) T) ((-1139 . -13) T) ((-1139 . -72) T) ((-1139 . -320) T) ((-1139 . -605) T) ((-1138 . -753) T) ((-1138 . -760) T) ((-1138 . -757) T) ((-1138 . -1014) T) ((-1138 . -553) 175573) ((-1138 . -1130) T) ((-1138 . -13) T) ((-1138 . -72) T) ((-1138 . -320) T) ((-1138 . -605) T) ((-1137 . -753) T) ((-1137 . -760) T) ((-1137 . -757) T) ((-1137 . -1014) T) ((-1137 . -553) 175555) ((-1137 . -1130) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -320) T) ((-1137 . -605) T) ((-1136 . -753) T) ((-1136 . -760) T) ((-1136 . -757) T) ((-1136 . -1014) T) ((-1136 . -553) 175537) ((-1136 . -1130) T) ((-1136 . -13) T) ((-1136 . -72) T) ((-1136 . -320) T) ((-1136 . -605) T) ((-1131 . -996) T) ((-1131 . -430) 175518) ((-1131 . -553) 175484) ((-1131 . -556) 175465) ((-1131 . -1014) T) ((-1131 . -1130) T) ((-1131 . -13) T) ((-1131 . -72) T) ((-1131 . -64) T) ((-1128 . -430) 175442) ((-1128 . -553) 175383) ((-1128 . -556) 175360) ((-1128 . -1014) 175338) ((-1128 . -1130) 175316) ((-1128 . -13) 175294) ((-1128 . -72) 175272) ((-1123 . -680) 175248) ((-1123 . -35) 175214) ((-1123 . -66) 175180) ((-1123 . -239) 175146) ((-1123 . -433) 175112) ((-1123 . -1119) 175078) ((-1123 . -1116) 175044) ((-1123 . -916) 175010) ((-1123 . -47) 174979) ((-1123 . -38) 174876) ((-1123 . -583) 174773) ((-1123 . -655) 174670) ((-1123 . -556) 174552) ((-1123 . -246) 174531) ((-1123 . -496) 174510) ((-1123 . -82) 174375) ((-1123 . -964) 174261) ((-1123 . -969) 174147) ((-1123 . -146) 174101) ((-1123 . -120) 174080) ((-1123 . -118) 174059) ((-1123 . -591) 173984) ((-1123 . -589) 173894) ((-1123 . -887) 173855) ((-1123 . -812) 173836) ((-1123 . -1130) T) ((-1123 . -13) T) ((-1123 . -807) 173815) ((-1123 . -962) T) ((-1123 . -664) T) ((-1123 . -1062) T) ((-1123 . -1026) T) ((-1123 . -971) T) ((-1123 . -21) T) ((-1123 . -23) T) ((-1123 . -1014) T) ((-1123 . -553) 173797) ((-1123 . -72) T) ((-1123 . -25) T) ((-1123 . -104) T) ((-1123 . -810) 173778) ((-1123 . -456) 173745) ((-1123 . -260) 173732) ((-1117 . -924) 173716) ((-1117 . -34) T) ((-1117 . -13) T) ((-1117 . -1130) T) ((-1117 . -72) 173670) ((-1117 . -553) 173605) ((-1117 . -260) 173543) ((-1117 . -456) 173476) ((-1117 . -1014) 173454) ((-1117 . -429) 173438) ((-1117 . -318) 173422) ((-1117 . -1036) 173406) ((-1112 . -314) 173380) ((-1112 . -72) T) ((-1112 . -13) T) ((-1112 . -1130) T) ((-1112 . -553) 173362) ((-1112 . -1014) T) ((-1110 . -1014) T) ((-1110 . -553) 173344) ((-1110 . -1130) T) ((-1110 . -13) T) ((-1110 . -72) T) ((-1110 . -556) 173326) ((-1105 . -748) 173310) ((-1105 . -72) T) ((-1105 . -13) T) ((-1105 . -1130) T) ((-1105 . -553) 173292) ((-1105 . -1014) T) ((-1103 . -1108) 173271) ((-1103 . -183) 173219) ((-1103 . -76) 173167) ((-1103 . -1036) 173115) ((-1103 . -124) 173063) ((-1103 . -554) NIL) ((-1103 . -193) 173011) ((-1103 . -539) 172990) ((-1103 . -260) 172788) ((-1103 . -456) 172540) ((-1103 . -429) 172475) ((-1103 . -241) 172454) ((-1103 . -243) 172433) ((-1103 . -550) 172412) ((-1103 . -1014) T) ((-1103 . -553) 172394) ((-1103 . -72) T) ((-1103 . -1130) T) ((-1103 . -13) T) ((-1103 . -34) T) ((-1103 . -318) 172342) ((-1099 . -1014) T) ((-1099 . -553) 172324) ((-1099 . -1130) T) ((-1099 . -13) T) ((-1099 . -72) T) ((-1098 . -753) T) ((-1098 . -760) T) ((-1098 . -757) T) ((-1098 . -1014) T) ((-1098 . -553) 172306) ((-1098 . -1130) T) ((-1098 . -13) T) ((-1098 . -72) T) ((-1098 . -320) T) ((-1098 . -605) T) ((-1097 . -753) T) ((-1097 . -760) T) ((-1097 . -757) T) ((-1097 . -1014) T) ((-1097 . -553) 172288) ((-1097 . -1130) T) ((-1097 . -13) T) ((-1097 . -72) T) ((-1097 . -320) T) ((-1096 . -1176) T) ((-1096 . -1014) T) ((-1096 . -553) 172255) ((-1096 . -1130) T) ((-1096 . -13) T) ((-1096 . -72) T) ((-1096 . -951) 172191) ((-1096 . -556) 172127) ((-1095 . -553) 172109) ((-1094 . -553) 172091) ((-1093 . -277) 172068) ((-1093 . -951) 171966) ((-1093 . -355) 171950) ((-1093 . -38) 171847) ((-1093 . -556) 171704) ((-1093 . -591) 171629) ((-1093 . -589) 171539) ((-1093 . -971) T) ((-1093 . -1026) T) ((-1093 . -1062) T) ((-1093 . -664) T) ((-1093 . -962) T) ((-1093 . -82) 171404) ((-1093 . -964) 171290) ((-1093 . -969) 171176) ((-1093 . -21) T) ((-1093 . -23) T) ((-1093 . -1014) T) ((-1093 . -553) 171158) ((-1093 . -1130) T) ((-1093 . -13) T) ((-1093 . -72) T) ((-1093 . -25) T) ((-1093 . -104) T) ((-1093 . -583) 171055) ((-1093 . -655) 170952) ((-1093 . -118) 170931) ((-1093 . -120) 170910) ((-1093 . -146) 170864) ((-1093 . -496) 170843) ((-1093 . -246) 170822) ((-1093 . -47) 170799) ((-1091 . -757) T) ((-1091 . -553) 170781) ((-1091 . -1014) T) ((-1091 . -72) T) ((-1091 . -13) T) ((-1091 . -1130) T) ((-1091 . -760) T) ((-1091 . -554) 170703) ((-1091 . -556) 170669) ((-1091 . -951) 170651) ((-1091 . -797) 170618) ((-1090 . -1173) 170602) ((-1090 . -190) 170561) ((-1090 . -556) 170443) ((-1090 . -591) 170368) ((-1090 . -589) 170278) ((-1090 . -104) T) ((-1090 . -25) T) ((-1090 . -72) T) ((-1090 . -553) 170260) ((-1090 . -1014) T) ((-1090 . -23) T) ((-1090 . -21) T) ((-1090 . -971) T) ((-1090 . -1026) T) ((-1090 . -1062) T) ((-1090 . -664) T) ((-1090 . -962) T) ((-1090 . -186) 170213) ((-1090 . -13) T) ((-1090 . -1130) T) ((-1090 . -189) 170172) ((-1090 . -241) 170137) ((-1090 . -810) 170050) ((-1090 . -807) 169938) ((-1090 . -812) 169851) ((-1090 . -887) 169821) ((-1090 . -38) 169718) ((-1090 . -82) 169583) ((-1090 . -964) 169469) ((-1090 . -969) 169355) ((-1090 . -583) 169252) ((-1090 . -655) 169149) ((-1090 . -118) 169128) ((-1090 . -120) 169107) ((-1090 . -146) 169061) ((-1090 . -496) 169040) ((-1090 . -246) 169019) ((-1090 . -47) 168996) ((-1090 . -1159) 168973) ((-1090 . -35) 168939) ((-1090 . -66) 168905) ((-1090 . -239) 168871) ((-1090 . -433) 168837) ((-1090 . -1119) 168803) ((-1090 . -1116) 168769) ((-1090 . -916) 168735) ((-1089 . -1165) 168696) ((-1089 . -312) 168675) ((-1089 . -1135) 168654) ((-1089 . -833) 168633) ((-1089 . -496) 168587) ((-1089 . -146) 168521) ((-1089 . -556) 168270) ((-1089 . -655) 168117) ((-1089 . -583) 167964) ((-1089 . -38) 167811) ((-1089 . -392) 167790) ((-1089 . -258) 167769) ((-1089 . -591) 167669) ((-1089 . -589) 167554) ((-1089 . -971) T) ((-1089 . -1026) T) ((-1089 . -1062) T) ((-1089 . -664) T) ((-1089 . -962) T) ((-1089 . -82) 167374) ((-1089 . -964) 167215) ((-1089 . -969) 167056) ((-1089 . -21) T) ((-1089 . -23) T) ((-1089 . -1014) T) ((-1089 . -553) 167038) ((-1089 . -1130) T) ((-1089 . -13) T) ((-1089 . -72) T) ((-1089 . -25) T) ((-1089 . -104) T) ((-1089 . -246) 166992) ((-1089 . -201) 166971) ((-1089 . -916) 166937) ((-1089 . -1116) 166903) ((-1089 . -1119) 166869) ((-1089 . -433) 166835) ((-1089 . -239) 166801) ((-1089 . -66) 166767) ((-1089 . -35) 166733) ((-1089 . -1159) 166703) ((-1089 . -47) 166673) ((-1089 . -120) 166652) ((-1089 . -118) 166631) ((-1089 . -887) 166594) ((-1089 . -812) 166500) ((-1089 . -807) 166381) ((-1089 . -810) 166287) ((-1089 . -241) 166245) ((-1089 . -189) 166197) ((-1089 . -186) 166143) ((-1089 . -190) 166095) ((-1089 . -1163) 166079) ((-1089 . -951) 166014) ((-1086 . -1156) 165998) ((-1086 . -1067) 165976) ((-1086 . -554) NIL) ((-1086 . -260) 165963) ((-1086 . -456) 165911) ((-1086 . -277) 165888) ((-1086 . -951) 165771) ((-1086 . -355) 165755) ((-1086 . -38) 165587) ((-1086 . -82) 165392) ((-1086 . -964) 165218) ((-1086 . -969) 165044) ((-1086 . -589) 164954) ((-1086 . -591) 164843) ((-1086 . -583) 164675) ((-1086 . -655) 164507) ((-1086 . -556) 164284) ((-1086 . -118) 164263) ((-1086 . -120) 164242) ((-1086 . -47) 164219) ((-1086 . -329) 164203) ((-1086 . -581) 164151) ((-1086 . -810) 164095) ((-1086 . -807) 164002) ((-1086 . -812) 163913) ((-1086 . -797) NIL) ((-1086 . -822) 163892) ((-1086 . -1135) 163871) ((-1086 . -862) 163841) ((-1086 . -833) 163820) ((-1086 . -496) 163734) ((-1086 . -246) 163648) ((-1086 . -146) 163542) ((-1086 . -392) 163476) ((-1086 . -258) 163455) ((-1086 . -241) 163382) ((-1086 . -190) T) ((-1086 . -104) T) ((-1086 . -25) T) ((-1086 . -72) T) ((-1086 . -553) 163364) ((-1086 . -1014) T) ((-1086 . -23) T) ((-1086 . -21) T) ((-1086 . -971) T) ((-1086 . -1026) T) ((-1086 . -1062) T) ((-1086 . -664) T) ((-1086 . -962) T) ((-1086 . -186) 163351) ((-1086 . -13) T) ((-1086 . -1130) T) ((-1086 . -189) T) ((-1086 . -225) 163335) ((-1086 . -184) 163319) ((-1083 . -1144) 163280) ((-1083 . -916) 163246) ((-1083 . -1116) 163212) ((-1083 . -1119) 163178) ((-1083 . -433) 163144) ((-1083 . -239) 163110) ((-1083 . -66) 163076) ((-1083 . -35) 163042) ((-1083 . -1159) 163019) ((-1083 . -47) 162996) ((-1083 . -556) 162797) ((-1083 . -655) 162599) ((-1083 . -583) 162401) ((-1083 . -591) 162256) ((-1083 . -589) 162096) ((-1083 . -969) 161892) ((-1083 . -964) 161688) ((-1083 . -82) 161440) ((-1083 . -38) 161242) ((-1083 . -887) 161212) ((-1083 . -241) 161040) ((-1083 . -1142) 161024) ((-1083 . -971) T) ((-1083 . -1026) T) ((-1083 . -1062) T) ((-1083 . -664) T) ((-1083 . -962) T) ((-1083 . -21) T) ((-1083 . -23) T) ((-1083 . -1014) T) ((-1083 . -553) 161006) ((-1083 . -1130) T) ((-1083 . -13) T) ((-1083 . -72) T) ((-1083 . -25) T) ((-1083 . -104) T) ((-1083 . -118) 160916) ((-1083 . -120) 160826) ((-1083 . -554) NIL) ((-1083 . -184) 160778) ((-1083 . -810) 160614) ((-1083 . -812) 160378) ((-1083 . -807) 160117) ((-1083 . -225) 160069) ((-1083 . -189) 159895) ((-1083 . -186) 159715) ((-1083 . -190) 159605) ((-1083 . -312) 159584) ((-1083 . -1135) 159563) ((-1083 . -833) 159542) ((-1083 . -496) 159496) ((-1083 . -146) 159430) ((-1083 . -392) 159409) ((-1083 . -258) 159388) ((-1083 . -246) 159342) ((-1083 . -201) 159321) ((-1083 . -288) 159273) ((-1083 . -456) 159007) ((-1083 . -260) 158892) ((-1083 . -329) 158844) ((-1083 . -581) 158796) ((-1083 . -343) 158748) ((-1083 . -797) NIL) ((-1083 . -741) NIL) ((-1083 . -715) NIL) ((-1083 . -717) NIL) ((-1083 . -757) NIL) ((-1083 . -760) NIL) ((-1083 . -719) NIL) ((-1083 . -722) NIL) ((-1083 . -756) NIL) ((-1083 . -795) 158700) ((-1083 . -822) NIL) ((-1083 . -934) NIL) ((-1083 . -951) 158666) ((-1083 . -1067) NIL) ((-1083 . -905) 158618) ((-1082 . -996) T) ((-1082 . -430) 158599) ((-1082 . -553) 158565) ((-1082 . -556) 158546) ((-1082 . -1014) T) ((-1082 . -1130) T) ((-1082 . -13) T) ((-1082 . -72) T) ((-1082 . -64) T) ((-1081 . -1014) T) ((-1081 . -553) 158528) ((-1081 . -1130) T) ((-1081 . -13) T) ((-1081 . -72) T) ((-1080 . -1014) T) ((-1080 . -553) 158510) ((-1080 . -1130) T) ((-1080 . -13) T) ((-1080 . -72) T) ((-1075 . -1108) 158486) ((-1075 . -183) 158431) ((-1075 . -76) 158376) ((-1075 . -1036) 158321) ((-1075 . -124) 158266) ((-1075 . -554) NIL) ((-1075 . -193) 158211) ((-1075 . -539) 158187) ((-1075 . -260) 157976) ((-1075 . -456) 157716) ((-1075 . -429) 157648) ((-1075 . -241) 157624) ((-1075 . -243) 157600) ((-1075 . -550) 157576) ((-1075 . -1014) T) ((-1075 . -553) 157558) ((-1075 . -72) T) ((-1075 . -1130) T) ((-1075 . -13) T) ((-1075 . -34) T) ((-1075 . -318) 157503) ((-1074 . -1059) T) ((-1074 . -324) 157485) ((-1074 . -760) T) ((-1074 . -757) T) ((-1074 . -124) 157467) ((-1074 . -554) NIL) ((-1074 . -241) 157417) ((-1074 . -539) 157392) ((-1074 . -243) 157367) ((-1074 . -594) 157349) ((-1074 . -429) 157331) ((-1074 . -1014) T) ((-1074 . -456) NIL) ((-1074 . -260) NIL) ((-1074 . -553) 157313) ((-1074 . -72) T) ((-1074 . -1130) T) ((-1074 . -13) T) ((-1074 . -34) T) ((-1074 . -318) 157295) ((-1074 . -1036) 157277) ((-1074 . -19) 157259) ((-1070 . -617) 157243) ((-1070 . -594) 157227) ((-1070 . -243) 157204) ((-1070 . -241) 157156) ((-1070 . -539) 157133) ((-1070 . -554) 157094) ((-1070 . -429) 157078) ((-1070 . -1014) 157056) ((-1070 . -456) 156989) ((-1070 . -260) 156927) ((-1070 . -553) 156862) ((-1070 . -72) 156816) ((-1070 . -1130) T) ((-1070 . -13) T) ((-1070 . -34) T) ((-1070 . -124) 156800) ((-1070 . -1169) 156784) ((-1070 . -924) 156768) ((-1070 . -1065) 156752) ((-1070 . -556) 156729) ((-1068 . -996) T) ((-1068 . -430) 156710) ((-1068 . -553) 156676) ((-1068 . -556) 156657) ((-1068 . -1014) T) ((-1068 . -1130) T) ((-1068 . -13) T) ((-1068 . -72) T) ((-1068 . -64) T) ((-1066 . -1108) 156636) ((-1066 . -183) 156584) ((-1066 . -76) 156532) ((-1066 . -1036) 156480) ((-1066 . -124) 156428) ((-1066 . -554) NIL) ((-1066 . -193) 156376) ((-1066 . -539) 156355) ((-1066 . -260) 156153) ((-1066 . -456) 155905) ((-1066 . -429) 155840) ((-1066 . -241) 155819) ((-1066 . -243) 155798) ((-1066 . -550) 155777) ((-1066 . -1014) T) ((-1066 . -553) 155759) ((-1066 . -72) T) ((-1066 . -1130) T) ((-1066 . -13) T) ((-1066 . -34) T) ((-1066 . -318) 155707) ((-1063 . -1035) 155691) ((-1063 . -318) 155675) ((-1063 . -1036) 155659) ((-1063 . -34) T) ((-1063 . -13) T) ((-1063 . -1130) T) ((-1063 . -72) 155613) ((-1063 . -553) 155548) ((-1063 . -260) 155486) ((-1063 . -456) 155419) ((-1063 . -1014) 155397) ((-1063 . -429) 155381) ((-1063 . -76) 155365) ((-1061 . -1021) 155334) ((-1061 . -1125) 155303) ((-1061 . -553) 155265) ((-1061 . -124) 155249) ((-1061 . -34) T) ((-1061 . -13) T) ((-1061 . -1130) T) ((-1061 . -72) T) ((-1061 . -260) 155187) ((-1061 . -456) 155120) ((-1061 . -1014) T) ((-1061 . -429) 155104) ((-1061 . -554) 155065) ((-1061 . -318) 155049) ((-1061 . -890) 155018) ((-1061 . -984) 154987) ((-1057 . -1038) 154932) ((-1057 . -318) 154916) ((-1057 . -34) T) ((-1057 . -260) 154854) ((-1057 . -456) 154787) ((-1057 . -429) 154771) ((-1057 . -966) 154711) ((-1057 . -951) 154609) ((-1057 . -556) 154528) ((-1057 . -355) 154512) ((-1057 . -581) 154460) ((-1057 . -591) 154398) ((-1057 . -329) 154382) ((-1057 . -190) 154361) ((-1057 . -186) 154309) ((-1057 . -189) 154263) ((-1057 . -225) 154247) ((-1057 . -807) 154171) ((-1057 . -812) 154097) ((-1057 . -810) 154056) ((-1057 . -184) 154040) ((-1057 . -655) 153975) ((-1057 . -583) 153910) ((-1057 . -589) 153869) ((-1057 . -104) T) ((-1057 . -25) T) ((-1057 . -72) T) ((-1057 . -13) T) ((-1057 . -1130) T) ((-1057 . -553) 153831) ((-1057 . -1014) T) ((-1057 . -23) T) ((-1057 . -21) T) ((-1057 . -969) 153815) ((-1057 . -964) 153799) ((-1057 . -82) 153778) ((-1057 . -962) T) ((-1057 . -664) T) ((-1057 . -1062) T) ((-1057 . -1026) T) ((-1057 . -971) T) ((-1057 . -38) 153738) ((-1057 . -554) 153699) ((-1056 . -924) 153670) ((-1056 . -34) T) ((-1056 . -13) T) ((-1056 . -1130) T) ((-1056 . -72) T) ((-1056 . -553) 153652) ((-1056 . -260) 153578) ((-1056 . -456) 153486) ((-1056 . -1014) T) ((-1056 . -429) 153457) ((-1056 . -318) 153428) ((-1055 . -1014) T) ((-1055 . -553) 153410) ((-1055 . -1130) T) ((-1055 . -13) T) ((-1055 . -72) T) ((-1050 . -1052) T) ((-1050 . -1176) T) ((-1050 . -64) T) ((-1050 . -72) T) ((-1050 . -13) T) ((-1050 . -1130) T) ((-1050 . -553) 153376) ((-1050 . -1014) T) ((-1050 . -556) 153357) ((-1050 . -430) 153338) ((-1050 . -996) T) ((-1048 . -1049) 153322) ((-1048 . -72) T) ((-1048 . -13) T) ((-1048 . -1130) T) ((-1048 . -553) 153304) ((-1048 . -1014) T) ((-1041 . -680) 153283) ((-1041 . -35) 153249) ((-1041 . -66) 153215) ((-1041 . -239) 153181) ((-1041 . -433) 153147) ((-1041 . -1119) 153113) ((-1041 . -1116) 153079) ((-1041 . -916) 153045) ((-1041 . -47) 153017) ((-1041 . -38) 152914) ((-1041 . -583) 152811) ((-1041 . -655) 152708) ((-1041 . -556) 152590) ((-1041 . -246) 152569) ((-1041 . -496) 152548) ((-1041 . -82) 152413) ((-1041 . -964) 152299) ((-1041 . -969) 152185) ((-1041 . -146) 152139) ((-1041 . -120) 152118) ((-1041 . -118) 152097) ((-1041 . -591) 152022) ((-1041 . -589) 151932) ((-1041 . -887) 151899) ((-1041 . -812) 151883) ((-1041 . -1130) T) ((-1041 . -13) T) ((-1041 . -807) 151865) ((-1041 . -962) T) ((-1041 . -664) T) ((-1041 . -1062) T) ((-1041 . -1026) T) ((-1041 . -971) T) ((-1041 . -21) T) ((-1041 . -23) T) ((-1041 . -1014) T) ((-1041 . -553) 151847) ((-1041 . -72) T) ((-1041 . -25) T) ((-1041 . -104) T) ((-1041 . -810) 151831) ((-1041 . -456) 151801) ((-1041 . -260) 151788) ((-1040 . -862) 151755) ((-1040 . -556) 151554) ((-1040 . -951) 151439) ((-1040 . -1135) 151418) ((-1040 . -822) 151397) ((-1040 . -797) 151256) ((-1040 . -812) 151240) ((-1040 . -807) 151222) ((-1040 . -810) 151206) ((-1040 . -456) 151158) ((-1040 . -392) 151112) ((-1040 . -581) 151060) ((-1040 . -591) 150949) ((-1040 . -329) 150933) ((-1040 . -47) 150905) ((-1040 . -38) 150757) ((-1040 . -583) 150609) ((-1040 . -655) 150461) ((-1040 . -246) 150395) ((-1040 . -496) 150329) ((-1040 . -82) 150154) ((-1040 . -964) 150000) ((-1040 . -969) 149846) ((-1040 . -146) 149760) ((-1040 . -120) 149739) ((-1040 . -118) 149718) ((-1040 . -589) 149628) ((-1040 . -104) T) ((-1040 . -25) T) ((-1040 . -72) T) ((-1040 . -13) T) ((-1040 . -1130) T) ((-1040 . -553) 149610) ((-1040 . -1014) T) ((-1040 . -23) T) ((-1040 . -21) T) ((-1040 . -962) T) ((-1040 . -664) T) ((-1040 . -1062) T) ((-1040 . -1026) T) ((-1040 . -971) T) ((-1040 . -355) 149594) ((-1040 . -277) 149566) ((-1040 . -260) 149553) ((-1040 . -554) 149301) ((-1034 . -484) T) ((-1034 . -1135) T) ((-1034 . -1067) T) ((-1034 . -951) 149283) ((-1034 . -554) 149198) ((-1034 . -934) T) ((-1034 . -797) 149180) ((-1034 . -756) T) ((-1034 . -722) T) ((-1034 . -719) T) ((-1034 . -760) T) ((-1034 . -757) T) ((-1034 . -717) T) ((-1034 . -715) T) ((-1034 . -741) T) ((-1034 . -591) 149152) ((-1034 . -581) 149134) ((-1034 . -833) T) ((-1034 . -496) T) ((-1034 . -246) T) ((-1034 . -146) T) ((-1034 . -556) 149106) ((-1034 . -655) 149093) ((-1034 . -583) 149080) ((-1034 . -969) 149067) ((-1034 . -964) 149054) ((-1034 . -82) 149039) ((-1034 . -38) 149026) ((-1034 . -392) T) ((-1034 . -258) T) ((-1034 . -189) T) ((-1034 . -186) 149013) ((-1034 . -190) T) ((-1034 . -116) T) ((-1034 . -962) T) ((-1034 . -664) T) ((-1034 . -1062) T) ((-1034 . -1026) T) ((-1034 . -971) T) ((-1034 . -21) T) ((-1034 . -589) 148985) ((-1034 . -23) T) ((-1034 . -1014) T) ((-1034 . -553) 148967) ((-1034 . -1130) T) ((-1034 . -13) T) ((-1034 . -72) T) ((-1034 . -25) T) ((-1034 . -104) T) ((-1034 . -120) T) ((-1034 . -753) T) ((-1034 . -320) T) ((-1034 . -84) T) ((-1034 . -605) T) ((-1030 . -996) T) ((-1030 . -430) 148948) ((-1030 . -553) 148914) ((-1030 . -556) 148895) ((-1030 . -1014) T) ((-1030 . -1130) T) ((-1030 . -13) T) ((-1030 . -72) T) ((-1030 . -64) T) ((-1029 . -1014) T) ((-1029 . -553) 148877) ((-1029 . -1130) T) ((-1029 . -13) T) ((-1029 . -72) T) ((-1027 . -196) 148856) ((-1027 . -1188) 148826) ((-1027 . -722) 148805) ((-1027 . -719) 148784) ((-1027 . -760) 148738) ((-1027 . -757) 148692) ((-1027 . -717) 148671) ((-1027 . -718) 148650) ((-1027 . -655) 148595) ((-1027 . -583) 148520) ((-1027 . -243) 148497) ((-1027 . -241) 148474) ((-1027 . -539) 148451) ((-1027 . -951) 148280) ((-1027 . -556) 148084) ((-1027 . -355) 148053) ((-1027 . -581) 147961) ((-1027 . -591) 147800) ((-1027 . -329) 147770) ((-1027 . -429) 147754) ((-1027 . -456) 147687) ((-1027 . -260) 147625) ((-1027 . -34) T) ((-1027 . -318) 147609) ((-1027 . -320) 147588) ((-1027 . -190) 147541) ((-1027 . -589) 147329) ((-1027 . -971) 147308) ((-1027 . -1026) 147287) ((-1027 . -1062) 147266) ((-1027 . -664) 147245) ((-1027 . -962) 147224) ((-1027 . -186) 147120) ((-1027 . -189) 147022) ((-1027 . -225) 146992) ((-1027 . -807) 146864) ((-1027 . -812) 146738) ((-1027 . -810) 146671) ((-1027 . -184) 146641) ((-1027 . -553) 146338) ((-1027 . -969) 146263) ((-1027 . -964) 146168) ((-1027 . -82) 146088) ((-1027 . -104) 145963) ((-1027 . -25) 145800) ((-1027 . -72) 145537) ((-1027 . -13) T) ((-1027 . -1130) T) ((-1027 . -1014) 145293) ((-1027 . -23) 145149) ((-1027 . -21) 145064) ((-1023 . -1024) 145048) ((-1023 . |MappingCategory|) 145022) ((-1023 . -1130) T) ((-1023 . -80) 145006) ((-1023 . -1014) T) ((-1023 . -553) 144988) ((-1023 . -13) T) ((-1023 . -72) T) ((-1018 . -1017) 144952) ((-1018 . -72) T) ((-1018 . -553) 144934) ((-1018 . -1014) T) ((-1018 . -241) 144890) ((-1018 . -1130) T) ((-1018 . -13) T) ((-1018 . -558) 144805) ((-1016 . -1017) 144757) ((-1016 . -72) T) ((-1016 . -553) 144739) ((-1016 . -1014) T) ((-1016 . -241) 144695) ((-1016 . -1130) T) ((-1016 . -13) T) ((-1016 . -558) 144598) ((-1015 . -320) T) ((-1015 . -72) T) ((-1015 . -13) T) ((-1015 . -1130) T) ((-1015 . -553) 144580) ((-1015 . -1014) T) ((-1010 . -369) 144564) ((-1010 . -1012) 144548) ((-1010 . -318) 144532) ((-1010 . -320) 144511) ((-1010 . -193) 144495) ((-1010 . -554) 144456) ((-1010 . -124) 144440) ((-1010 . -1036) 144424) ((-1010 . -34) T) ((-1010 . -13) T) ((-1010 . -1130) T) ((-1010 . -72) T) ((-1010 . -553) 144406) ((-1010 . -260) 144344) ((-1010 . -456) 144277) ((-1010 . -1014) T) ((-1010 . -429) 144261) ((-1010 . -76) 144245) ((-1010 . -183) 144229) ((-1009 . -996) T) ((-1009 . -430) 144210) ((-1009 . -553) 144176) ((-1009 . -556) 144157) ((-1009 . -1014) T) ((-1009 . -1130) T) ((-1009 . -13) T) ((-1009 . -72) T) ((-1009 . -64) T) ((-1005 . -1130) T) ((-1005 . -13) T) ((-1005 . -1014) 144127) ((-1005 . -553) 144086) ((-1005 . -72) 144056) ((-1004 . -996) T) ((-1004 . -430) 144037) ((-1004 . -553) 144003) ((-1004 . -556) 143984) ((-1004 . -1014) T) ((-1004 . -1130) T) ((-1004 . -13) T) ((-1004 . -72) T) ((-1004 . -64) T) ((-1002 . -1007) 143968) ((-1002 . -558) 143952) ((-1002 . -1014) 143930) ((-1002 . -553) 143897) ((-1002 . -1130) 143875) ((-1002 . -13) 143853) ((-1002 . -72) 143831) ((-1002 . -1008) 143789) ((-1001 . -228) 143773) ((-1001 . -556) 143757) ((-1001 . -951) 143741) ((-1001 . -760) T) ((-1001 . -72) T) ((-1001 . -1014) T) ((-1001 . -553) 143723) ((-1001 . -757) T) ((-1001 . -186) 143710) ((-1001 . -13) T) ((-1001 . -1130) T) ((-1001 . -189) T) ((-1000 . -213) 143647) ((-1000 . -556) 143390) ((-1000 . -951) 143219) ((-1000 . -554) NIL) ((-1000 . -277) 143180) ((-1000 . -355) 143164) ((-1000 . -38) 143016) ((-1000 . -82) 142841) ((-1000 . -964) 142687) ((-1000 . -969) 142533) ((-1000 . -589) 142443) ((-1000 . -591) 142332) ((-1000 . -583) 142184) ((-1000 . -655) 142036) ((-1000 . -118) 142015) ((-1000 . -120) 141994) ((-1000 . -146) 141908) ((-1000 . -496) 141842) ((-1000 . -246) 141776) ((-1000 . -47) 141737) ((-1000 . -329) 141721) ((-1000 . -581) 141669) ((-1000 . -392) 141623) ((-1000 . -456) 141486) ((-1000 . -810) 141421) ((-1000 . -807) 141319) ((-1000 . -812) 141221) ((-1000 . -797) NIL) ((-1000 . -822) 141200) ((-1000 . -1135) 141179) ((-1000 . -862) 141124) ((-1000 . -260) 141111) ((-1000 . -190) 141090) ((-1000 . -104) T) ((-1000 . -25) T) ((-1000 . -72) T) ((-1000 . -553) 141072) ((-1000 . -1014) T) ((-1000 . -23) T) ((-1000 . -21) T) ((-1000 . -971) T) ((-1000 . -1026) T) ((-1000 . -1062) T) ((-1000 . -664) T) ((-1000 . -962) T) ((-1000 . -186) 141020) ((-1000 . -13) T) ((-1000 . -1130) T) ((-1000 . -189) 140974) ((-1000 . -225) 140958) ((-1000 . -184) 140942) ((-998 . -553) 140924) ((-995 . -757) T) ((-995 . -553) 140906) ((-995 . -1014) T) ((-995 . -72) T) ((-995 . -13) T) ((-995 . -1130) T) ((-995 . -760) T) ((-995 . -554) 140887) ((-992 . -662) 140866) ((-992 . -951) 140764) ((-992 . -355) 140748) ((-992 . -581) 140696) ((-992 . -591) 140573) ((-992 . -329) 140557) ((-992 . -322) 140536) ((-992 . -120) 140515) ((-992 . -556) 140340) ((-992 . -655) 140214) ((-992 . -583) 140088) ((-992 . -589) 139986) ((-992 . -969) 139899) ((-992 . -964) 139812) ((-992 . -82) 139704) ((-992 . -38) 139578) ((-992 . -353) 139557) ((-992 . -345) 139536) ((-992 . -118) 139490) ((-992 . -1067) 139469) ((-992 . -299) 139448) ((-992 . -320) 139402) ((-992 . -201) 139356) ((-992 . -246) 139310) ((-992 . -258) 139264) ((-992 . -392) 139218) ((-992 . -496) 139172) ((-992 . -833) 139126) ((-992 . -1135) 139080) ((-992 . -312) 139034) ((-992 . -190) 138962) ((-992 . -186) 138838) ((-992 . -189) 138720) ((-992 . -225) 138690) ((-992 . -807) 138562) ((-992 . -812) 138436) ((-992 . -810) 138369) ((-992 . -184) 138339) ((-992 . -554) 138323) ((-992 . -21) T) ((-992 . -23) T) ((-992 . -1014) T) ((-992 . -553) 138305) ((-992 . -1130) T) ((-992 . -13) T) ((-992 . -72) T) ((-992 . -25) T) ((-992 . -104) T) ((-992 . -962) T) ((-992 . -664) T) ((-992 . -1062) T) ((-992 . -1026) T) ((-992 . -971) T) ((-992 . -146) T) ((-990 . -1014) T) ((-990 . -553) 138287) ((-990 . -1130) T) ((-990 . -13) T) ((-990 . -72) T) ((-990 . -241) 138266) ((-989 . -1014) T) ((-989 . -553) 138248) ((-989 . -1130) T) ((-989 . -13) T) ((-989 . -72) T) ((-988 . -1014) T) ((-988 . -553) 138230) ((-988 . -1130) T) ((-988 . -13) T) ((-988 . -72) T) ((-988 . -241) 138209) ((-988 . -951) 138186) ((-988 . -556) 138163) ((-987 . -1130) T) ((-987 . -13) T) ((-986 . -996) T) ((-986 . -430) 138144) ((-986 . -553) 138110) ((-986 . -556) 138091) ((-986 . -1014) T) ((-986 . -1130) T) ((-986 . -13) T) ((-986 . -72) T) ((-986 . -64) T) ((-979 . -996) T) ((-979 . -430) 138072) ((-979 . -553) 138038) ((-979 . -556) 138019) ((-979 . -1014) T) ((-979 . -1130) T) ((-979 . -13) T) ((-979 . -72) T) ((-979 . -64) T) ((-976 . -484) T) ((-976 . -1135) T) ((-976 . -1067) T) ((-976 . -951) 138001) ((-976 . -554) 137916) ((-976 . -934) T) ((-976 . -797) 137898) ((-976 . -756) T) ((-976 . -722) T) ((-976 . -719) T) ((-976 . -760) T) ((-976 . -757) T) ((-976 . -717) T) ((-976 . -715) T) ((-976 . -741) T) ((-976 . -591) 137870) ((-976 . -581) 137852) ((-976 . -833) T) ((-976 . -496) T) ((-976 . -246) T) ((-976 . -146) T) ((-976 . -556) 137824) ((-976 . -655) 137811) ((-976 . -583) 137798) ((-976 . -969) 137785) ((-976 . -964) 137772) ((-976 . -82) 137757) ((-976 . -38) 137744) ((-976 . -392) T) ((-976 . -258) T) ((-976 . -189) T) ((-976 . -186) 137731) ((-976 . -190) T) ((-976 . -116) T) ((-976 . -962) T) ((-976 . -664) T) ((-976 . -1062) T) ((-976 . -1026) T) ((-976 . -971) T) ((-976 . -21) T) ((-976 . -589) 137703) ((-976 . -23) T) ((-976 . -1014) T) ((-976 . -553) 137685) ((-976 . -1130) T) ((-976 . -13) T) ((-976 . -72) T) ((-976 . -25) T) ((-976 . -104) T) ((-976 . -120) T) ((-976 . -558) 137666) ((-975 . -981) 137645) ((-975 . -72) T) ((-975 . -13) T) ((-975 . -1130) T) ((-975 . -553) 137627) ((-975 . -1014) T) ((-972 . -1130) T) ((-972 . -13) T) ((-972 . -1014) 137605) ((-972 . -553) 137572) ((-972 . -72) 137550) ((-967 . -966) 137490) ((-967 . -583) 137435) ((-967 . -655) 137380) ((-967 . -429) 137364) ((-967 . -456) 137297) ((-967 . -260) 137235) ((-967 . -34) T) ((-967 . -318) 137219) ((-967 . -591) 137203) ((-967 . -589) 137172) ((-967 . -104) T) ((-967 . -25) T) ((-967 . -72) T) ((-967 . -13) T) ((-967 . -1130) T) ((-967 . -553) 137134) ((-967 . -1014) T) ((-967 . -23) T) ((-967 . -21) T) ((-967 . -969) 137118) ((-967 . -964) 137102) ((-967 . -82) 137081) ((-967 . -1188) 137051) ((-967 . -554) 137012) ((-959 . -984) 136941) ((-959 . -890) 136870) ((-959 . -318) 136835) ((-959 . -554) 136777) ((-959 . -429) 136742) ((-959 . -1014) T) ((-959 . -456) 136626) ((-959 . -260) 136534) ((-959 . -553) 136477) ((-959 . -72) T) ((-959 . -1130) T) ((-959 . -13) T) ((-959 . -34) T) ((-959 . -124) 136442) ((-959 . -1125) 136371) ((-949 . -996) T) ((-949 . -430) 136352) ((-949 . -553) 136318) ((-949 . -556) 136299) ((-949 . -1014) T) ((-949 . -1130) T) ((-949 . -13) T) ((-949 . -72) T) ((-949 . -64) T) ((-948 . -146) T) ((-948 . -556) 136268) ((-948 . -971) T) ((-948 . -1026) T) ((-948 . -1062) T) ((-948 . -664) T) ((-948 . -962) T) ((-948 . -591) 136242) ((-948 . -589) 136201) ((-948 . -104) T) ((-948 . -25) T) ((-948 . -72) T) ((-948 . -13) T) ((-948 . -1130) T) ((-948 . -553) 136183) ((-948 . -1014) T) ((-948 . -23) T) ((-948 . -21) T) ((-948 . -969) 136157) ((-948 . -964) 136131) ((-948 . -82) 136098) ((-948 . -38) 136082) ((-948 . -583) 136066) ((-948 . -655) 136050) ((-941 . -984) 136019) ((-941 . -890) 135988) ((-941 . -318) 135972) ((-941 . -554) 135933) ((-941 . -429) 135917) ((-941 . -1014) T) ((-941 . -456) 135850) ((-941 . -260) 135788) ((-941 . -553) 135750) ((-941 . -72) T) ((-941 . -1130) T) ((-941 . -13) T) ((-941 . -34) T) ((-941 . -124) 135734) ((-941 . -1125) 135703) ((-940 . -1014) T) ((-940 . -553) 135685) ((-940 . -1130) T) ((-940 . -13) T) ((-940 . -72) T) ((-938 . -926) T) ((-938 . -916) T) ((-938 . -715) T) ((-938 . -717) T) ((-938 . -757) T) ((-938 . -760) T) ((-938 . -719) T) ((-938 . -722) T) ((-938 . -756) T) ((-938 . -951) 135570) ((-938 . -355) 135532) ((-938 . -201) T) ((-938 . -246) T) ((-938 . -258) T) ((-938 . -392) T) ((-938 . -38) 135469) ((-938 . -583) 135406) ((-938 . -655) 135343) ((-938 . -556) 135280) ((-938 . -496) T) ((-938 . -833) T) ((-938 . -1135) T) ((-938 . -312) T) ((-938 . -82) 135189) ((-938 . -964) 135126) ((-938 . -969) 135063) ((-938 . -146) T) ((-938 . -120) T) ((-938 . -591) 135000) ((-938 . -589) 134937) ((-938 . -104) T) ((-938 . -25) T) ((-938 . -72) T) ((-938 . -13) T) ((-938 . -1130) T) ((-938 . -553) 134919) ((-938 . -1014) T) ((-938 . -23) T) ((-938 . -21) T) ((-938 . -962) T) ((-938 . -664) T) ((-938 . -1062) T) ((-938 . -1026) T) ((-938 . -971) T) ((-933 . -996) T) ((-933 . -430) 134900) ((-933 . -553) 134866) ((-933 . -556) 134847) ((-933 . -1014) T) ((-933 . -1130) T) ((-933 . -13) T) ((-933 . -72) T) ((-933 . -64) T) ((-918 . -905) 134829) ((-918 . -1067) T) ((-918 . -556) 134779) ((-918 . -951) 134739) ((-918 . -554) 134669) ((-918 . -934) T) ((-918 . -822) NIL) ((-918 . -795) 134651) ((-918 . -756) T) ((-918 . -722) T) ((-918 . -719) T) ((-918 . -760) T) ((-918 . -757) T) ((-918 . -717) T) ((-918 . -715) T) ((-918 . -741) T) ((-918 . -797) 134633) ((-918 . -343) 134615) ((-918 . -581) 134597) ((-918 . -329) 134579) ((-918 . -241) NIL) ((-918 . -260) NIL) ((-918 . -456) NIL) ((-918 . -288) 134561) ((-918 . -201) T) ((-918 . -82) 134488) ((-918 . -964) 134438) ((-918 . -969) 134388) ((-918 . -246) T) ((-918 . -655) 134338) ((-918 . -583) 134288) ((-918 . -591) 134238) ((-918 . -589) 134188) ((-918 . -38) 134138) ((-918 . -258) T) ((-918 . -392) T) ((-918 . -146) T) ((-918 . -496) T) ((-918 . -833) T) ((-918 . -1135) T) ((-918 . -312) T) ((-918 . -190) T) ((-918 . -186) 134125) ((-918 . -189) T) ((-918 . -225) 134107) ((-918 . -807) NIL) ((-918 . -812) NIL) ((-918 . -810) NIL) ((-918 . -184) 134089) ((-918 . -120) T) ((-918 . -118) NIL) ((-918 . -104) T) ((-918 . -25) T) ((-918 . -72) T) ((-918 . -13) T) ((-918 . -1130) T) ((-918 . -553) 134049) ((-918 . -1014) T) ((-918 . -23) T) ((-918 . -21) T) ((-918 . -962) T) ((-918 . -664) T) ((-918 . -1062) T) ((-918 . -1026) T) ((-918 . -971) T) ((-917 . -291) 134023) ((-917 . -146) T) ((-917 . -556) 133953) ((-917 . -971) T) ((-917 . -1026) T) ((-917 . -1062) T) ((-917 . -664) T) ((-917 . -962) T) ((-917 . -591) 133855) ((-917 . -589) 133785) ((-917 . -104) T) ((-917 . -25) T) ((-917 . -72) T) ((-917 . -13) T) ((-917 . -1130) T) ((-917 . -553) 133767) ((-917 . -1014) T) ((-917 . -23) T) ((-917 . -21) T) ((-917 . -969) 133712) ((-917 . -964) 133657) ((-917 . -82) 133574) ((-917 . -554) 133558) ((-917 . -184) 133535) ((-917 . -810) 133487) ((-917 . -812) 133399) ((-917 . -807) 133309) ((-917 . -225) 133286) ((-917 . -189) 133226) ((-917 . -186) 133160) ((-917 . -190) 133132) ((-917 . -312) T) ((-917 . -1135) T) ((-917 . -833) T) ((-917 . -496) T) ((-917 . -655) 133077) ((-917 . -583) 133022) ((-917 . -38) 132967) ((-917 . -392) T) ((-917 . -258) T) ((-917 . -246) T) ((-917 . -201) T) ((-917 . -320) NIL) ((-917 . -299) NIL) ((-917 . -1067) NIL) ((-917 . -118) 132939) ((-917 . -345) NIL) ((-917 . -353) 132911) ((-917 . -120) 132883) ((-917 . -322) 132855) ((-917 . -329) 132832) ((-917 . -581) 132766) ((-917 . -355) 132743) ((-917 . -951) 132620) ((-917 . -662) 132592) ((-914 . -909) 132576) ((-914 . -318) 132560) ((-914 . -1036) 132544) ((-914 . -34) T) ((-914 . -13) T) ((-914 . -1130) T) ((-914 . -72) 132498) ((-914 . -553) 132433) ((-914 . -260) 132371) ((-914 . -456) 132304) ((-914 . -1014) 132282) ((-914 . -429) 132266) ((-914 . -76) 132250) ((-910 . -912) 132234) ((-910 . -760) 132213) ((-910 . -757) 132192) ((-910 . -951) 132090) ((-910 . -355) 132074) ((-910 . -581) 132022) ((-910 . -591) 131924) ((-910 . -329) 131908) ((-910 . -241) 131866) ((-910 . -260) 131831) ((-910 . -456) 131743) ((-910 . -288) 131727) ((-910 . -38) 131675) ((-910 . -82) 131553) ((-910 . -964) 131452) ((-910 . -969) 131351) ((-910 . -589) 131274) ((-910 . -583) 131222) ((-910 . -655) 131170) ((-910 . -556) 131064) ((-910 . -246) 131018) ((-910 . -201) 130997) ((-910 . -190) 130976) ((-910 . -186) 130924) ((-910 . -189) 130878) ((-910 . -225) 130862) ((-910 . -807) 130786) ((-910 . -812) 130712) ((-910 . -810) 130671) ((-910 . -184) 130655) ((-910 . -554) 130616) ((-910 . -120) 130595) ((-910 . -118) 130574) ((-910 . -104) T) ((-910 . -25) T) ((-910 . -72) T) ((-910 . -13) T) ((-910 . -1130) T) ((-910 . -553) 130556) ((-910 . -1014) T) ((-910 . -23) T) ((-910 . -21) T) ((-910 . -962) T) ((-910 . -664) T) ((-910 . -1062) T) ((-910 . -1026) T) ((-910 . -971) T) ((-908 . -996) T) ((-908 . -430) 130537) ((-908 . -553) 130503) ((-908 . -556) 130484) ((-908 . -1014) T) ((-908 . -1130) T) ((-908 . -13) T) ((-908 . -72) T) ((-908 . -64) T) ((-907 . -21) T) ((-907 . -589) 130466) ((-907 . -23) T) ((-907 . -1014) T) ((-907 . -553) 130448) ((-907 . -1130) T) ((-907 . -13) T) ((-907 . -72) T) ((-907 . -25) T) ((-907 . -104) T) ((-907 . -241) 130415) ((-903 . -553) 130397) ((-900 . -1014) T) ((-900 . -553) 130379) ((-900 . -1130) T) ((-900 . -13) T) ((-900 . -72) T) ((-885 . -722) T) ((-885 . -719) T) ((-885 . -760) T) ((-885 . -757) T) ((-885 . -717) T) ((-885 . -23) T) ((-885 . -1014) T) ((-885 . -553) 130339) ((-885 . -1130) T) ((-885 . -13) T) ((-885 . -72) T) ((-885 . -25) T) ((-885 . -104) T) ((-884 . -996) T) ((-884 . -430) 130320) ((-884 . -553) 130286) ((-884 . -556) 130267) ((-884 . -1014) T) ((-884 . -1130) T) ((-884 . -13) T) ((-884 . -72) T) ((-884 . -64) T) ((-878 . -881) T) ((-878 . -72) T) ((-878 . -553) 130249) ((-878 . -1014) T) ((-878 . -605) T) ((-878 . -13) T) ((-878 . -1130) T) ((-878 . -84) T) ((-878 . -556) 130233) ((-877 . -553) 130215) ((-876 . -1014) T) ((-876 . -553) 130197) ((-876 . -1130) T) ((-876 . -13) T) ((-876 . -72) T) ((-876 . -320) 130150) ((-876 . -664) 130052) ((-876 . -1026) 129954) ((-876 . -23) 129768) ((-876 . -25) 129582) ((-876 . -104) 129440) ((-876 . -413) 129393) ((-876 . -21) 129348) ((-876 . -589) 129292) ((-876 . -718) 129245) ((-876 . -717) 129198) ((-876 . -757) 129100) ((-876 . -760) 129002) ((-876 . -719) 128955) ((-876 . -722) 128908) ((-870 . -19) 128892) ((-870 . -1036) 128876) ((-870 . -318) 128860) ((-870 . -34) T) ((-870 . -13) T) ((-870 . -1130) T) ((-870 . -72) 128794) ((-870 . -553) 128709) ((-870 . -260) 128647) ((-870 . -456) 128580) ((-870 . -1014) 128533) ((-870 . -429) 128517) ((-870 . -594) 128501) ((-870 . -243) 128478) ((-870 . -241) 128430) ((-870 . -539) 128407) ((-870 . -554) 128368) ((-870 . -124) 128352) ((-870 . -757) 128331) ((-870 . -760) 128310) ((-870 . -324) 128294) ((-868 . -277) 128273) ((-868 . -951) 128171) ((-868 . -355) 128155) ((-868 . -38) 128052) ((-868 . -556) 127909) ((-868 . -591) 127834) ((-868 . -589) 127744) ((-868 . -971) T) ((-868 . -1026) T) ((-868 . -1062) T) ((-868 . -664) T) ((-868 . -962) T) ((-868 . -82) 127609) ((-868 . -964) 127495) ((-868 . -969) 127381) ((-868 . -21) T) ((-868 . -23) T) ((-868 . -1014) T) ((-868 . -553) 127363) ((-868 . -1130) T) ((-868 . -13) T) ((-868 . -72) T) ((-868 . -25) T) ((-868 . -104) T) ((-868 . -583) 127260) ((-868 . -655) 127157) ((-868 . -118) 127136) ((-868 . -120) 127115) ((-868 . -146) 127069) ((-868 . -496) 127048) ((-868 . -246) 127027) ((-868 . -47) 127006) ((-866 . -1014) T) ((-866 . -553) 126972) ((-866 . -1130) T) ((-866 . -13) T) ((-866 . -72) T) ((-858 . -862) 126933) ((-858 . -556) 126729) ((-858 . -951) 126611) ((-858 . -1135) 126590) ((-858 . -822) 126569) ((-858 . -797) 126494) ((-858 . -812) 126475) ((-858 . -807) 126454) ((-858 . -810) 126435) ((-858 . -456) 126381) ((-858 . -392) 126335) ((-858 . -581) 126283) ((-858 . -591) 126172) ((-858 . -329) 126156) ((-858 . -47) 126125) ((-858 . -38) 125977) ((-858 . -583) 125829) ((-858 . -655) 125681) ((-858 . -246) 125615) ((-858 . -496) 125549) ((-858 . -82) 125374) ((-858 . -964) 125220) ((-858 . -969) 125066) ((-858 . -146) 124980) ((-858 . -120) 124959) ((-858 . -118) 124938) ((-858 . -589) 124848) ((-858 . -104) T) ((-858 . -25) T) ((-858 . -72) T) ((-858 . -13) T) ((-858 . -1130) T) ((-858 . -553) 124830) ((-858 . -1014) T) ((-858 . -23) T) ((-858 . -21) T) ((-858 . -962) T) ((-858 . -664) T) ((-858 . -1062) T) ((-858 . -1026) T) ((-858 . -971) T) ((-858 . -355) 124814) ((-858 . -277) 124783) ((-858 . -260) 124770) ((-858 . -554) 124631) ((-855 . -894) 124615) ((-855 . -19) 124599) ((-855 . -1036) 124583) ((-855 . -318) 124567) ((-855 . -34) T) ((-855 . -13) T) ((-855 . -1130) T) ((-855 . -72) 124501) ((-855 . -553) 124416) ((-855 . -260) 124354) ((-855 . -456) 124287) ((-855 . -1014) 124240) ((-855 . -429) 124224) ((-855 . -594) 124208) ((-855 . -243) 124185) ((-855 . -241) 124137) ((-855 . -539) 124114) ((-855 . -554) 124075) ((-855 . -124) 124059) ((-855 . -757) 124038) ((-855 . -760) 124017) ((-855 . -324) 124001) ((-855 . -1179) 123985) ((-855 . -558) 123962) ((-839 . -888) T) ((-839 . -553) 123944) ((-837 . -867) T) ((-837 . -553) 123926) ((-831 . -719) T) ((-831 . -760) T) ((-831 . -757) T) ((-831 . -1014) T) ((-831 . -553) 123908) ((-831 . -1130) T) ((-831 . -13) T) ((-831 . -72) T) ((-831 . -25) T) ((-831 . -664) T) ((-831 . -1026) T) ((-826 . -312) T) ((-826 . -1135) T) ((-826 . -833) T) ((-826 . -496) T) ((-826 . -146) T) ((-826 . -556) 123845) ((-826 . -655) 123797) ((-826 . -583) 123749) ((-826 . -38) 123701) ((-826 . -392) T) ((-826 . -258) T) ((-826 . -591) 123653) ((-826 . -589) 123590) ((-826 . -971) T) ((-826 . -1026) T) ((-826 . -1062) T) ((-826 . -664) T) ((-826 . -962) T) ((-826 . -82) 123521) ((-826 . -964) 123473) ((-826 . -969) 123425) ((-826 . -21) T) ((-826 . -23) T) ((-826 . -1014) T) ((-826 . -553) 123407) ((-826 . -1130) T) ((-826 . -13) T) ((-826 . -72) T) ((-826 . -25) T) ((-826 . -104) T) ((-826 . -246) T) ((-826 . -201) T) ((-818 . -299) T) ((-818 . -1067) T) ((-818 . -320) T) ((-818 . -118) T) ((-818 . -312) T) ((-818 . -1135) T) ((-818 . -833) T) ((-818 . -496) T) ((-818 . -146) T) ((-818 . -556) 123357) ((-818 . -655) 123322) ((-818 . -583) 123287) ((-818 . -38) 123252) ((-818 . -392) T) ((-818 . -258) T) ((-818 . -82) 123201) ((-818 . -964) 123166) ((-818 . -969) 123131) ((-818 . -589) 123081) ((-818 . -591) 123046) ((-818 . -246) T) ((-818 . -201) T) ((-818 . -345) T) ((-818 . -189) T) ((-818 . -1130) T) ((-818 . -13) T) ((-818 . -186) 123033) ((-818 . -962) T) ((-818 . -664) T) ((-818 . -1062) T) ((-818 . -1026) T) ((-818 . -971) T) ((-818 . -21) T) ((-818 . -23) T) ((-818 . -1014) T) ((-818 . -553) 123015) ((-818 . -72) T) ((-818 . -25) T) ((-818 . -104) T) ((-818 . -190) T) ((-818 . -280) 123002) ((-818 . -120) 122984) ((-818 . -951) 122971) ((-818 . -1188) 122958) ((-818 . -1199) 122945) ((-818 . -554) 122927) ((-817 . -1014) T) ((-817 . -553) 122909) ((-817 . -1130) T) ((-817 . -13) T) ((-817 . -72) T) ((-814 . -816) 122893) ((-814 . -760) 122847) ((-814 . -757) 122801) ((-814 . -664) T) ((-814 . -1014) T) ((-814 . -553) 122783) ((-814 . -72) T) ((-814 . -1026) T) ((-814 . -413) T) ((-814 . -1130) T) ((-814 . -13) T) ((-814 . -241) 122762) ((-813 . -92) 122746) ((-813 . -429) 122730) ((-813 . -1014) 122708) ((-813 . -456) 122641) ((-813 . -260) 122579) ((-813 . -553) 122493) ((-813 . -72) 122447) ((-813 . -1130) T) ((-813 . -13) T) ((-813 . -34) T) ((-813 . -924) 122431) ((-804 . -757) T) ((-804 . -553) 122413) ((-804 . -1014) T) ((-804 . -72) T) ((-804 . -13) T) ((-804 . -1130) T) ((-804 . -760) T) ((-804 . -951) 122390) ((-804 . -556) 122367) ((-801 . -1014) T) ((-801 . -553) 122349) ((-801 . -1130) T) ((-801 . -13) T) ((-801 . -72) T) ((-801 . -951) 122317) ((-801 . -556) 122285) ((-799 . -1014) T) ((-799 . -553) 122267) ((-799 . -1130) T) ((-799 . -13) T) ((-799 . -72) T) ((-796 . -1014) T) ((-796 . -553) 122249) ((-796 . -1130) T) ((-796 . -13) T) ((-796 . -72) T) ((-786 . -996) T) ((-786 . -430) 122230) ((-786 . -553) 122196) ((-786 . -556) 122177) ((-786 . -1014) T) ((-786 . -1130) T) ((-786 . -13) T) ((-786 . -72) T) ((-786 . -64) T) ((-786 . -1176) T) ((-784 . -1014) T) ((-784 . -553) 122159) ((-784 . -1130) T) ((-784 . -13) T) ((-784 . -72) T) ((-784 . -556) 122141) ((-783 . -1130) T) ((-783 . -13) T) ((-783 . -553) 122016) ((-783 . -1014) 121967) ((-783 . -72) 121918) ((-782 . -905) 121902) ((-782 . -1067) 121880) ((-782 . -951) 121747) ((-782 . -556) 121646) ((-782 . -554) 121449) ((-782 . -934) 121428) ((-782 . -822) 121407) ((-782 . -795) 121391) ((-782 . -756) 121370) ((-782 . -722) 121349) ((-782 . -719) 121328) ((-782 . -760) 121282) ((-782 . -757) 121236) ((-782 . -717) 121215) ((-782 . -715) 121194) ((-782 . -741) 121173) ((-782 . -797) 121098) ((-782 . -343) 121082) ((-782 . -581) 121030) ((-782 . -591) 120946) ((-782 . -329) 120930) ((-782 . -241) 120888) ((-782 . -260) 120853) ((-782 . -456) 120765) ((-782 . -288) 120749) ((-782 . -201) T) ((-782 . -82) 120680) ((-782 . -964) 120632) ((-782 . -969) 120584) ((-782 . -246) T) ((-782 . -655) 120536) ((-782 . -583) 120488) ((-782 . -589) 120425) ((-782 . -38) 120377) ((-782 . -258) T) ((-782 . -392) T) ((-782 . -146) T) ((-782 . -496) T) ((-782 . -833) T) ((-782 . -1135) T) ((-782 . -312) T) ((-782 . -190) 120356) ((-782 . -186) 120304) ((-782 . -189) 120258) ((-782 . -225) 120242) ((-782 . -807) 120166) ((-782 . -812) 120092) ((-782 . -810) 120051) ((-782 . -184) 120035) ((-782 . -120) 119989) ((-782 . -118) 119968) ((-782 . -104) T) ((-782 . -25) T) ((-782 . -72) T) ((-782 . -13) T) ((-782 . -1130) T) ((-782 . -553) 119950) ((-782 . -1014) T) ((-782 . -23) T) ((-782 . -21) T) ((-782 . -962) T) ((-782 . -664) T) ((-782 . -1062) T) ((-782 . -1026) T) ((-782 . -971) T) ((-781 . -905) 119927) ((-781 . -1067) NIL) ((-781 . -951) 119904) ((-781 . -556) 119834) ((-781 . -554) NIL) ((-781 . -934) NIL) ((-781 . -822) NIL) ((-781 . -795) 119811) ((-781 . -756) NIL) ((-781 . -722) NIL) ((-781 . -719) NIL) ((-781 . -760) NIL) ((-781 . -757) NIL) ((-781 . -717) NIL) ((-781 . -715) NIL) ((-781 . -741) NIL) ((-781 . -797) NIL) ((-781 . -343) 119788) ((-781 . -581) 119765) ((-781 . -591) 119710) ((-781 . -329) 119687) ((-781 . -241) 119617) ((-781 . -260) 119561) ((-781 . -456) 119424) ((-781 . -288) 119401) ((-781 . -201) T) ((-781 . -82) 119318) ((-781 . -964) 119263) ((-781 . -969) 119208) ((-781 . -246) T) ((-781 . -655) 119153) ((-781 . -583) 119098) ((-781 . -589) 119028) ((-781 . -38) 118973) ((-781 . -258) T) ((-781 . -392) T) ((-781 . -146) T) ((-781 . -496) T) ((-781 . -833) T) ((-781 . -1135) T) ((-781 . -312) T) ((-781 . -190) NIL) ((-781 . -186) NIL) ((-781 . -189) NIL) ((-781 . -225) 118950) ((-781 . -807) NIL) ((-781 . -812) NIL) ((-781 . -810) NIL) ((-781 . -184) 118927) ((-781 . -120) T) ((-781 . -118) NIL) ((-781 . -104) T) ((-781 . -25) T) ((-781 . -72) T) ((-781 . -13) T) ((-781 . -1130) T) ((-781 . -553) 118909) ((-781 . -1014) T) ((-781 . -23) T) ((-781 . -21) T) ((-781 . -962) T) ((-781 . -664) T) ((-781 . -1062) T) ((-781 . -1026) T) ((-781 . -971) T) ((-779 . -780) 118893) ((-779 . -833) T) ((-779 . -496) T) ((-779 . -246) T) ((-779 . -146) T) ((-779 . -556) 118865) ((-779 . -655) 118852) ((-779 . -583) 118839) ((-779 . -969) 118826) ((-779 . -964) 118813) ((-779 . -82) 118798) ((-779 . -38) 118785) ((-779 . -392) T) ((-779 . -258) T) ((-779 . -962) T) ((-779 . -664) T) ((-779 . -1062) T) ((-779 . -1026) T) ((-779 . -971) T) ((-779 . -21) T) ((-779 . -589) 118757) ((-779 . -23) T) ((-779 . -1014) T) ((-779 . -553) 118739) ((-779 . -1130) T) ((-779 . -13) T) ((-779 . -72) T) ((-779 . -25) T) ((-779 . -104) T) ((-779 . -591) 118726) ((-779 . -120) T) ((-776 . -962) T) ((-776 . -664) T) ((-776 . -1062) T) ((-776 . -1026) T) ((-776 . -971) T) ((-776 . -21) T) ((-776 . -589) 118671) ((-776 . -23) T) ((-776 . -1014) T) ((-776 . -553) 118633) ((-776 . -1130) T) ((-776 . -13) T) ((-776 . -72) T) ((-776 . -25) T) ((-776 . -104) T) ((-776 . -591) 118593) ((-776 . -556) 118528) ((-776 . -430) 118505) ((-776 . -38) 118475) ((-776 . -82) 118440) ((-776 . -964) 118410) ((-776 . -969) 118380) ((-776 . -583) 118350) ((-776 . -655) 118320) ((-775 . -1014) T) ((-775 . -553) 118302) ((-775 . -1130) T) ((-775 . -13) T) ((-775 . -72) T) ((-774 . -753) T) ((-774 . -760) T) ((-774 . -757) T) ((-774 . -1014) T) ((-774 . -553) 118284) ((-774 . -1130) T) ((-774 . -13) T) ((-774 . -72) T) ((-774 . -320) T) ((-774 . -554) 118206) ((-773 . -1014) T) ((-773 . -553) 118188) ((-773 . -1130) T) ((-773 . -13) T) ((-773 . -72) T) ((-772 . -771) T) ((-772 . -147) T) ((-772 . -553) 118170) ((-768 . -757) T) ((-768 . -553) 118152) ((-768 . -1014) T) ((-768 . -72) T) ((-768 . -13) T) ((-768 . -1130) T) ((-768 . -760) T) ((-765 . -762) 118136) ((-765 . -951) 118034) ((-765 . -556) 117932) ((-765 . -355) 117916) ((-765 . -655) 117886) ((-765 . -583) 117856) ((-765 . -591) 117830) ((-765 . -589) 117789) ((-765 . -104) T) ((-765 . -25) T) ((-765 . -72) T) ((-765 . -13) T) ((-765 . -1130) T) ((-765 . -553) 117771) ((-765 . -1014) T) ((-765 . -23) T) ((-765 . -21) T) ((-765 . -969) 117755) ((-765 . -964) 117739) ((-765 . -82) 117718) ((-765 . -962) T) ((-765 . -664) T) ((-765 . -1062) T) ((-765 . -1026) T) ((-765 . -971) T) ((-765 . -38) 117688) ((-764 . -762) 117672) ((-764 . -951) 117570) ((-764 . -556) 117489) ((-764 . -355) 117473) ((-764 . -655) 117443) ((-764 . -583) 117413) ((-764 . -591) 117387) ((-764 . -589) 117346) ((-764 . -104) T) ((-764 . -25) T) ((-764 . -72) T) ((-764 . -13) T) ((-764 . -1130) T) ((-764 . -553) 117328) ((-764 . -1014) T) ((-764 . -23) T) ((-764 . -21) T) ((-764 . -969) 117312) ((-764 . -964) 117296) ((-764 . -82) 117275) ((-764 . -962) T) ((-764 . -664) T) ((-764 . -1062) T) ((-764 . -1026) T) ((-764 . -971) T) ((-764 . -38) 117245) ((-758 . -760) T) ((-758 . -1130) T) ((-758 . -13) T) ((-758 . -72) T) ((-758 . -430) 117229) ((-758 . -553) 117177) ((-758 . -556) 117161) ((-751 . -1014) T) ((-751 . -553) 117143) ((-751 . -1130) T) ((-751 . -13) T) ((-751 . -72) T) ((-751 . -355) 117127) ((-751 . -556) 117000) ((-751 . -951) 116898) ((-751 . -21) 116853) ((-751 . -589) 116773) ((-751 . -23) 116728) ((-751 . -25) 116683) ((-751 . -104) 116638) ((-751 . -756) 116617) ((-751 . -722) 116596) ((-751 . -719) 116575) ((-751 . -760) 116554) ((-751 . -757) 116533) ((-751 . -717) 116512) ((-751 . -715) 116491) ((-751 . -962) 116470) ((-751 . -664) 116449) ((-751 . -1062) 116428) ((-751 . -1026) 116407) ((-751 . -971) 116386) ((-751 . -591) 116359) ((-751 . -120) 116338) ((-750 . -748) 116320) ((-750 . -72) T) ((-750 . -13) T) ((-750 . -1130) T) ((-750 . -553) 116302) ((-750 . -1014) T) ((-746 . -962) T) ((-746 . -664) T) ((-746 . -1062) T) ((-746 . -1026) T) ((-746 . -971) T) ((-746 . -21) T) ((-746 . -589) 116247) ((-746 . -23) T) ((-746 . -1014) T) ((-746 . -553) 116229) ((-746 . -1130) T) ((-746 . -13) T) ((-746 . -72) T) ((-746 . -25) T) ((-746 . -104) T) ((-746 . -591) 116189) ((-746 . -556) 116144) ((-746 . -951) 116114) ((-746 . -241) 116093) ((-746 . -120) 116072) ((-746 . -118) 116051) ((-746 . -38) 116021) ((-746 . -82) 115986) ((-746 . -964) 115956) ((-746 . -969) 115926) ((-746 . -583) 115896) ((-746 . -655) 115866) ((-744 . -1014) T) ((-744 . -553) 115848) ((-744 . -1130) T) ((-744 . -13) T) ((-744 . -72) T) ((-744 . -355) 115832) ((-744 . -556) 115705) ((-744 . -951) 115603) ((-744 . -21) 115558) ((-744 . -589) 115478) ((-744 . -23) 115433) ((-744 . -25) 115388) ((-744 . -104) 115343) ((-744 . -756) 115322) ((-744 . -722) 115301) ((-744 . -719) 115280) ((-744 . -760) 115259) ((-744 . -757) 115238) ((-744 . -717) 115217) ((-744 . -715) 115196) ((-744 . -962) 115175) ((-744 . -664) 115154) ((-744 . -1062) 115133) ((-744 . -1026) 115112) ((-744 . -971) 115091) ((-744 . -591) 115064) ((-744 . -120) 115043) ((-742 . -646) 115027) ((-742 . -556) 114982) ((-742 . -655) 114952) ((-742 . -583) 114922) ((-742 . -591) 114896) ((-742 . -589) 114855) ((-742 . -104) T) ((-742 . -25) T) ((-742 . -72) T) ((-742 . -13) T) ((-742 . -1130) T) ((-742 . -553) 114837) ((-742 . -1014) T) ((-742 . -23) T) ((-742 . -21) T) ((-742 . -969) 114821) ((-742 . -964) 114805) ((-742 . -82) 114784) ((-742 . -962) T) ((-742 . -664) T) ((-742 . -1062) T) ((-742 . -1026) T) ((-742 . -971) T) ((-742 . -38) 114754) ((-742 . -190) 114733) ((-742 . -186) 114706) ((-742 . -189) 114685) ((-740 . -336) 114669) ((-740 . -556) 114653) ((-740 . -951) 114637) ((-740 . -760) T) ((-740 . -757) T) ((-740 . -1026) T) ((-740 . -72) T) ((-740 . -13) T) ((-740 . -1130) T) ((-740 . -553) 114619) ((-740 . -1014) T) ((-740 . -664) T) ((-740 . -755) T) ((-740 . -767) T) ((-739 . -228) 114603) ((-739 . -556) 114587) ((-739 . -951) 114571) ((-739 . -760) T) ((-739 . -72) T) ((-739 . -1014) T) ((-739 . -553) 114553) ((-739 . -757) T) ((-739 . -186) 114540) ((-739 . -13) T) ((-739 . -1130) T) ((-739 . -189) T) ((-738 . -82) 114475) ((-738 . -964) 114426) ((-738 . -969) 114377) ((-738 . -21) T) ((-738 . -589) 114313) ((-738 . -23) T) ((-738 . -1014) T) ((-738 . -553) 114282) ((-738 . -1130) T) ((-738 . -13) T) ((-738 . -72) T) ((-738 . -25) T) ((-738 . -104) T) ((-738 . -591) 114233) ((-738 . -190) T) ((-738 . -556) 114142) ((-738 . -971) T) ((-738 . -1026) T) ((-738 . -1062) T) ((-738 . -664) T) ((-738 . -962) T) ((-738 . -186) 114129) ((-738 . -189) T) ((-738 . -430) 114113) ((-738 . -312) 114092) ((-738 . -1135) 114071) ((-738 . -833) 114050) ((-738 . -496) 114029) ((-738 . -146) 114008) ((-738 . -655) 113945) ((-738 . -583) 113882) ((-738 . -38) 113819) ((-738 . -392) 113798) ((-738 . -258) 113777) ((-738 . -246) 113756) ((-738 . -201) 113735) ((-737 . -213) 113674) ((-737 . -556) 113418) ((-737 . -951) 113248) ((-737 . -554) NIL) ((-737 . -277) 113210) ((-737 . -355) 113194) ((-737 . -38) 113046) ((-737 . -82) 112871) ((-737 . -964) 112717) ((-737 . -969) 112563) ((-737 . -589) 112473) ((-737 . -591) 112362) ((-737 . -583) 112214) ((-737 . -655) 112066) ((-737 . -118) 112045) ((-737 . -120) 112024) ((-737 . -146) 111938) ((-737 . -496) 111872) ((-737 . -246) 111806) ((-737 . -47) 111768) ((-737 . -329) 111752) ((-737 . -581) 111700) ((-737 . -392) 111654) ((-737 . -456) 111519) ((-737 . -810) 111455) ((-737 . -807) 111354) ((-737 . -812) 111257) ((-737 . -797) NIL) ((-737 . -822) 111236) ((-737 . -1135) 111215) ((-737 . -862) 111162) ((-737 . -260) 111149) ((-737 . -190) 111128) ((-737 . -104) T) ((-737 . -25) T) ((-737 . -72) T) ((-737 . -553) 111110) ((-737 . -1014) T) ((-737 . -23) T) ((-737 . -21) T) ((-737 . -971) T) ((-737 . -1026) T) ((-737 . -1062) T) ((-737 . -664) T) ((-737 . -962) T) ((-737 . -186) 111058) ((-737 . -13) T) ((-737 . -1130) T) ((-737 . -189) 111012) ((-737 . -225) 110996) ((-737 . -184) 110980) ((-736 . -196) 110959) ((-736 . -1188) 110929) ((-736 . -722) 110908) ((-736 . -719) 110887) ((-736 . -760) 110841) ((-736 . -757) 110795) ((-736 . -717) 110774) ((-736 . -718) 110753) ((-736 . -655) 110698) ((-736 . -583) 110623) ((-736 . -243) 110600) ((-736 . -241) 110577) ((-736 . -539) 110554) ((-736 . -951) 110383) ((-736 . -556) 110187) ((-736 . -355) 110156) ((-736 . -581) 110064) ((-736 . -591) 109903) ((-736 . -329) 109873) ((-736 . -429) 109857) ((-736 . -456) 109790) ((-736 . -260) 109728) ((-736 . -34) T) ((-736 . -318) 109712) ((-736 . -320) 109691) ((-736 . -190) 109644) ((-736 . -589) 109432) ((-736 . -971) 109411) ((-736 . -1026) 109390) ((-736 . -1062) 109369) ((-736 . -664) 109348) ((-736 . -962) 109327) ((-736 . -186) 109223) ((-736 . -189) 109125) ((-736 . -225) 109095) ((-736 . -807) 108967) ((-736 . -812) 108841) ((-736 . -810) 108774) ((-736 . -184) 108744) ((-736 . -553) 108441) ((-736 . -969) 108366) ((-736 . -964) 108271) ((-736 . -82) 108191) ((-736 . -104) 108066) ((-736 . -25) 107903) ((-736 . -72) 107640) ((-736 . -13) T) ((-736 . -1130) T) ((-736 . -1014) 107396) ((-736 . -23) 107252) ((-736 . -21) 107167) ((-723 . -721) 107151) ((-723 . -760) 107130) ((-723 . -757) 107109) ((-723 . -951) 106902) ((-723 . -556) 106755) ((-723 . -355) 106719) ((-723 . -241) 106677) ((-723 . -260) 106642) ((-723 . -456) 106554) ((-723 . -288) 106538) ((-723 . -320) 106517) ((-723 . -554) 106478) ((-723 . -120) 106457) ((-723 . -118) 106436) ((-723 . -655) 106420) ((-723 . -583) 106404) ((-723 . -591) 106378) ((-723 . -589) 106337) ((-723 . -104) T) ((-723 . -25) T) ((-723 . -72) T) ((-723 . -13) T) ((-723 . -1130) T) ((-723 . -553) 106319) ((-723 . -1014) T) ((-723 . -23) T) ((-723 . -21) T) ((-723 . -969) 106303) ((-723 . -964) 106287) ((-723 . -82) 106266) ((-723 . -962) T) ((-723 . -664) T) ((-723 . -1062) T) ((-723 . -1026) T) ((-723 . -971) T) ((-723 . -38) 106250) ((-705 . -1156) 106234) ((-705 . -1067) 106212) ((-705 . -554) NIL) ((-705 . -260) 106199) ((-705 . -456) 106147) ((-705 . -277) 106124) ((-705 . -951) 105986) ((-705 . -355) 105970) ((-705 . -38) 105802) ((-705 . -82) 105607) ((-705 . -964) 105433) ((-705 . -969) 105259) ((-705 . -589) 105169) ((-705 . -591) 105058) ((-705 . -583) 104890) ((-705 . -655) 104722) ((-705 . -556) 104478) ((-705 . -118) 104457) ((-705 . -120) 104436) ((-705 . -47) 104413) ((-705 . -329) 104397) ((-705 . -581) 104345) ((-705 . -810) 104289) ((-705 . -807) 104196) ((-705 . -812) 104107) ((-705 . -797) NIL) ((-705 . -822) 104086) ((-705 . -1135) 104065) ((-705 . -862) 104035) ((-705 . -833) 104014) ((-705 . -496) 103928) ((-705 . -246) 103842) ((-705 . -146) 103736) ((-705 . -392) 103670) ((-705 . -258) 103649) ((-705 . -241) 103576) ((-705 . -190) T) ((-705 . -104) T) ((-705 . -25) T) ((-705 . -72) T) ((-705 . -553) 103537) ((-705 . -1014) T) ((-705 . -23) T) ((-705 . -21) T) ((-705 . -971) T) ((-705 . -1026) T) ((-705 . -1062) T) ((-705 . -664) T) ((-705 . -962) T) ((-705 . -186) 103524) ((-705 . -13) T) ((-705 . -1130) T) ((-705 . -189) T) ((-705 . -225) 103508) ((-705 . -184) 103492) ((-704 . -978) 103459) ((-704 . -554) 103094) ((-704 . -260) 103081) ((-704 . -456) 103033) ((-704 . -277) 103005) ((-704 . -951) 102864) ((-704 . -355) 102848) ((-704 . -38) 102700) ((-704 . -556) 102473) ((-704 . -591) 102362) ((-704 . -589) 102272) ((-704 . -971) T) ((-704 . -1026) T) ((-704 . -1062) T) ((-704 . -664) T) ((-704 . -962) T) ((-704 . -82) 102097) ((-704 . -964) 101943) ((-704 . -969) 101789) ((-704 . -21) T) ((-704 . -23) T) ((-704 . -1014) T) ((-704 . -553) 101703) ((-704 . -1130) T) ((-704 . -13) T) ((-704 . -72) T) ((-704 . -25) T) ((-704 . -104) T) ((-704 . -583) 101555) ((-704 . -655) 101407) ((-704 . -118) 101386) ((-704 . -120) 101365) ((-704 . -146) 101279) ((-704 . -496) 101213) ((-704 . -246) 101147) ((-704 . -47) 101119) ((-704 . -329) 101103) ((-704 . -581) 101051) ((-704 . -392) 101005) ((-704 . -810) 100989) ((-704 . -807) 100971) ((-704 . -812) 100955) ((-704 . -797) 100814) ((-704 . -822) 100793) ((-704 . -1135) 100772) ((-704 . -862) 100739) ((-697 . -1014) T) ((-697 . -553) 100721) ((-697 . -1130) T) ((-697 . -13) T) ((-697 . -72) T) ((-695 . -718) T) ((-695 . -104) T) ((-695 . -25) T) ((-695 . -72) T) ((-695 . -13) T) ((-695 . -1130) T) ((-695 . -553) 100703) ((-695 . -1014) T) ((-695 . -23) T) ((-695 . -717) T) ((-695 . -757) T) ((-695 . -760) T) ((-695 . -719) T) ((-695 . -722) T) ((-695 . -664) T) ((-695 . -1026) T) ((-676 . -677) 100687) ((-676 . -1012) 100671) ((-676 . -193) 100655) ((-676 . -554) 100616) ((-676 . -124) 100600) ((-676 . -1036) 100584) ((-676 . -34) T) ((-676 . -13) T) ((-676 . -1130) T) ((-676 . -72) T) ((-676 . -553) 100566) ((-676 . -260) 100504) ((-676 . -456) 100437) ((-676 . -1014) T) ((-676 . -429) 100421) ((-676 . -76) 100405) ((-676 . -635) 100389) ((-676 . -318) 100373) ((-675 . -962) T) ((-675 . -664) T) ((-675 . -1062) T) ((-675 . -1026) T) ((-675 . -971) T) ((-675 . -21) T) ((-675 . -589) 100318) ((-675 . -23) T) ((-675 . -1014) T) ((-675 . -553) 100300) ((-675 . -1130) T) ((-675 . -13) T) ((-675 . -72) T) ((-675 . -25) T) ((-675 . -104) T) ((-675 . -591) 100260) ((-675 . -556) 100216) ((-675 . -951) 100187) ((-675 . -120) 100166) ((-675 . -118) 100145) ((-675 . -38) 100115) ((-675 . -82) 100080) ((-675 . -964) 100050) ((-675 . -969) 100020) ((-675 . -583) 99990) ((-675 . -655) 99960) ((-675 . -320) 99913) ((-671 . -862) 99866) ((-671 . -556) 99658) ((-671 . -951) 99536) ((-671 . -1135) 99515) ((-671 . -822) 99494) ((-671 . -797) NIL) ((-671 . -812) 99471) ((-671 . -807) 99446) ((-671 . -810) 99423) ((-671 . -456) 99361) ((-671 . -392) 99315) ((-671 . -581) 99263) ((-671 . -591) 99152) ((-671 . -329) 99136) ((-671 . -47) 99101) ((-671 . -38) 98953) ((-671 . -583) 98805) ((-671 . -655) 98657) ((-671 . -246) 98591) ((-671 . -496) 98525) ((-671 . -82) 98350) ((-671 . -964) 98196) ((-671 . -969) 98042) ((-671 . -146) 97956) ((-671 . -120) 97935) ((-671 . -118) 97914) ((-671 . -589) 97824) ((-671 . -104) T) ((-671 . -25) T) ((-671 . -72) T) ((-671 . -13) T) ((-671 . -1130) T) ((-671 . -553) 97806) ((-671 . -1014) T) ((-671 . -23) T) ((-671 . -21) T) ((-671 . -962) T) ((-671 . -664) T) ((-671 . -1062) T) ((-671 . -1026) T) ((-671 . -971) T) ((-671 . -355) 97790) ((-671 . -277) 97755) ((-671 . -260) 97742) ((-671 . -554) 97603) ((-665 . -666) 97587) ((-665 . -80) 97571) ((-665 . -1130) T) ((-665 . |MappingCategory|) 97545) ((-665 . -1024) 97529) ((-665 . -1014) T) ((-665 . -553) 97490) ((-665 . -13) T) ((-665 . -72) T) ((-656 . -413) T) ((-656 . -1026) T) ((-656 . -72) T) ((-656 . -13) T) ((-656 . -1130) T) ((-656 . -553) 97472) ((-656 . -1014) T) ((-656 . -664) T) ((-653 . -962) T) ((-653 . -664) T) ((-653 . -1062) T) ((-653 . -1026) T) ((-653 . -971) T) ((-653 . -21) T) ((-653 . -589) 97444) ((-653 . -23) T) ((-653 . -1014) T) ((-653 . -553) 97426) ((-653 . -1130) T) ((-653 . -13) T) ((-653 . -72) T) ((-653 . -25) T) ((-653 . -104) T) ((-653 . -591) 97413) ((-653 . -556) 97395) ((-652 . -962) T) ((-652 . -664) T) ((-652 . -1062) T) ((-652 . -1026) T) ((-652 . -971) T) ((-652 . -21) T) ((-652 . -589) 97340) ((-652 . -23) T) ((-652 . -1014) T) ((-652 . -553) 97322) ((-652 . -1130) T) ((-652 . -13) T) ((-652 . -72) T) ((-652 . -25) T) ((-652 . -104) T) ((-652 . -591) 97282) ((-652 . -556) 97237) ((-652 . -951) 97207) ((-652 . -241) 97186) ((-652 . -120) 97165) ((-652 . -118) 97144) ((-652 . -38) 97114) ((-652 . -82) 97079) ((-652 . -964) 97049) ((-652 . -969) 97019) ((-652 . -583) 96989) ((-652 . -655) 96959) ((-651 . -757) T) ((-651 . -553) 96894) ((-651 . -1014) T) ((-651 . -72) T) ((-651 . -13) T) ((-651 . -1130) T) ((-651 . -760) T) ((-651 . -430) 96844) ((-651 . -556) 96794) ((-650 . -1156) 96778) ((-650 . -1067) 96756) ((-650 . -554) NIL) ((-650 . -260) 96743) ((-650 . -456) 96691) ((-650 . -277) 96668) ((-650 . -951) 96551) ((-650 . -355) 96535) ((-650 . -38) 96367) ((-650 . -82) 96172) ((-650 . -964) 95998) ((-650 . -969) 95824) ((-650 . -589) 95734) ((-650 . -591) 95623) ((-650 . -583) 95455) ((-650 . -655) 95287) ((-650 . -556) 95051) ((-650 . -118) 95030) ((-650 . -120) 95009) ((-650 . -47) 94986) ((-650 . -329) 94970) ((-650 . -581) 94918) ((-650 . -810) 94862) ((-650 . -807) 94769) ((-650 . -812) 94680) ((-650 . -797) NIL) ((-650 . -822) 94659) ((-650 . -1135) 94638) ((-650 . -862) 94608) ((-650 . -833) 94587) ((-650 . -496) 94501) ((-650 . -246) 94415) ((-650 . -146) 94309) ((-650 . -392) 94243) ((-650 . -258) 94222) ((-650 . -241) 94149) ((-650 . -190) T) ((-650 . -104) T) ((-650 . -25) T) ((-650 . -72) T) ((-650 . -553) 94131) ((-650 . -1014) T) ((-650 . -23) T) ((-650 . -21) T) ((-650 . -971) T) ((-650 . -1026) T) ((-650 . -1062) T) ((-650 . -664) T) ((-650 . -962) T) ((-650 . -186) 94118) ((-650 . -13) T) ((-650 . -1130) T) ((-650 . -189) T) ((-650 . -225) 94102) ((-650 . -184) 94086) ((-650 . -320) 94065) ((-649 . -312) T) ((-649 . -1135) T) ((-649 . -833) T) ((-649 . -496) T) ((-649 . -146) T) ((-649 . -556) 94015) ((-649 . -655) 93980) ((-649 . -583) 93945) ((-649 . -38) 93910) ((-649 . -392) T) ((-649 . -258) T) ((-649 . -591) 93875) ((-649 . -589) 93825) ((-649 . -971) T) ((-649 . -1026) T) ((-649 . -1062) T) ((-649 . -664) T) ((-649 . -962) T) ((-649 . -82) 93774) ((-649 . -964) 93739) ((-649 . -969) 93704) ((-649 . -21) T) ((-649 . -23) T) ((-649 . -1014) T) ((-649 . -553) 93686) ((-649 . -1130) T) ((-649 . -13) T) ((-649 . -72) T) ((-649 . -25) T) ((-649 . -104) T) ((-649 . -246) T) ((-649 . -201) T) ((-648 . -1014) T) ((-648 . -553) 93668) ((-648 . -1130) T) ((-648 . -13) T) ((-648 . -72) T) ((-633 . -1176) T) ((-633 . -951) 93652) ((-633 . -556) 93636) ((-633 . -553) 93618) ((-631 . -628) 93576) ((-631 . -318) 93560) ((-631 . -34) T) ((-631 . -13) T) ((-631 . -1130) T) ((-631 . -72) 93514) ((-631 . -553) 93449) ((-631 . -260) 93387) ((-631 . -456) 93320) ((-631 . -1014) 93298) ((-631 . -429) 93282) ((-631 . -1036) 93266) ((-631 . -57) 93224) ((-631 . -554) 93185) ((-623 . -996) T) ((-623 . -430) 93166) ((-623 . -553) 93116) ((-623 . -556) 93097) ((-623 . -1014) T) ((-623 . -1130) T) ((-623 . -13) T) ((-623 . -72) T) ((-623 . -64) T) ((-619 . -757) T) ((-619 . -553) 93079) ((-619 . -1014) T) ((-619 . -72) T) ((-619 . -13) T) ((-619 . -1130) T) ((-619 . -760) T) ((-619 . -951) 93063) ((-619 . -556) 93047) ((-618 . -996) T) ((-618 . -430) 93028) ((-618 . -553) 92994) ((-618 . -556) 92975) ((-618 . -1014) T) ((-618 . -1130) T) ((-618 . -13) T) ((-618 . -72) T) ((-618 . -64) T) ((-615 . -757) T) ((-615 . -553) 92957) ((-615 . -1014) T) ((-615 . -72) T) ((-615 . -13) T) ((-615 . -1130) T) ((-615 . -760) T) ((-615 . -951) 92941) ((-615 . -556) 92925) ((-614 . -996) T) ((-614 . -430) 92906) ((-614 . -553) 92872) ((-614 . -556) 92853) ((-614 . -1014) T) ((-614 . -1130) T) ((-614 . -13) T) ((-614 . -72) T) ((-614 . -64) T) ((-613 . -1038) 92798) ((-613 . -318) 92782) ((-613 . -34) T) ((-613 . -260) 92720) ((-613 . -456) 92653) ((-613 . -429) 92637) ((-613 . -966) 92577) ((-613 . -951) 92475) ((-613 . -556) 92394) ((-613 . -355) 92378) ((-613 . -581) 92326) ((-613 . -591) 92264) ((-613 . -329) 92248) ((-613 . -190) 92227) ((-613 . -186) 92175) ((-613 . -189) 92129) ((-613 . -225) 92113) ((-613 . -807) 92037) ((-613 . -812) 91963) ((-613 . -810) 91922) ((-613 . -184) 91906) ((-613 . -655) 91890) ((-613 . -583) 91874) ((-613 . -589) 91833) ((-613 . -104) T) ((-613 . -25) T) ((-613 . -72) T) ((-613 . -13) T) ((-613 . -1130) T) ((-613 . -553) 91795) ((-613 . -1014) T) ((-613 . -23) T) ((-613 . -21) T) ((-613 . -969) 91779) ((-613 . -964) 91763) ((-613 . -82) 91742) ((-613 . -962) T) ((-613 . -664) T) ((-613 . -1062) T) ((-613 . -1026) T) ((-613 . -971) T) ((-613 . -38) 91702) ((-613 . -361) 91686) ((-613 . -684) 91670) ((-613 . -658) T) ((-613 . -686) T) ((-613 . -316) 91654) ((-613 . -241) 91631) ((-607 . -326) 91610) ((-607 . -655) 91594) ((-607 . -583) 91578) ((-607 . -591) 91562) ((-607 . -589) 91531) ((-607 . -104) T) ((-607 . -25) T) ((-607 . -72) T) ((-607 . -13) T) ((-607 . -1130) T) ((-607 . -553) 91513) ((-607 . -1014) T) ((-607 . -23) T) ((-607 . -21) T) ((-607 . -969) 91497) ((-607 . -964) 91481) ((-607 . -82) 91460) ((-607 . -575) 91444) ((-607 . -335) 91416) ((-607 . -556) 91393) ((-607 . -951) 91370) ((-599 . -601) 91354) ((-599 . -38) 91324) ((-599 . -556) 91243) ((-599 . -591) 91217) ((-599 . -589) 91176) ((-599 . -971) T) ((-599 . -1026) T) ((-599 . -1062) T) ((-599 . -664) T) ((-599 . -962) T) ((-599 . -82) 91155) ((-599 . -964) 91139) ((-599 . -969) 91123) ((-599 . -21) T) ((-599 . -23) T) ((-599 . -1014) T) ((-599 . -553) 91105) ((-599 . -72) T) ((-599 . -25) T) ((-599 . -104) T) ((-599 . -583) 91075) ((-599 . -655) 91045) ((-599 . -355) 91029) ((-599 . -951) 90927) ((-599 . -762) 90911) ((-599 . -1130) T) ((-599 . -13) T) ((-599 . -241) 90872) ((-598 . -601) 90856) ((-598 . -38) 90826) ((-598 . -556) 90745) ((-598 . -591) 90719) ((-598 . -589) 90678) ((-598 . -971) T) ((-598 . -1026) T) ((-598 . -1062) T) ((-598 . -664) T) ((-598 . -962) T) ((-598 . -82) 90657) ((-598 . -964) 90641) ((-598 . -969) 90625) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1014) T) ((-598 . -553) 90607) ((-598 . -72) T) ((-598 . -25) T) ((-598 . -104) T) ((-598 . -583) 90577) ((-598 . -655) 90547) ((-598 . -355) 90531) ((-598 . -951) 90429) ((-598 . -762) 90413) ((-598 . -1130) T) ((-598 . -13) T) ((-598 . -241) 90392) ((-597 . -601) 90376) ((-597 . -38) 90346) ((-597 . -556) 90265) ((-597 . -591) 90239) ((-597 . -589) 90198) ((-597 . -971) T) ((-597 . -1026) T) ((-597 . -1062) T) ((-597 . -664) T) ((-597 . -962) T) ((-597 . -82) 90177) ((-597 . -964) 90161) ((-597 . -969) 90145) ((-597 . -21) T) ((-597 . -23) T) ((-597 . -1014) T) ((-597 . -553) 90127) ((-597 . -72) T) ((-597 . -25) T) ((-597 . -104) T) ((-597 . -583) 90097) ((-597 . -655) 90067) ((-597 . -355) 90051) ((-597 . -951) 89949) ((-597 . -762) 89933) ((-597 . -1130) T) ((-597 . -13) T) ((-597 . -241) 89912) ((-595 . -655) 89896) ((-595 . -583) 89880) ((-595 . -591) 89864) ((-595 . -589) 89833) ((-595 . -104) T) ((-595 . -25) T) ((-595 . -72) T) ((-595 . -13) T) ((-595 . -1130) T) ((-595 . -553) 89815) ((-595 . -1014) T) ((-595 . -23) T) ((-595 . -21) T) ((-595 . -969) 89799) ((-595 . -964) 89783) ((-595 . -82) 89762) ((-595 . -715) 89741) ((-595 . -717) 89720) ((-595 . -757) 89699) ((-595 . -760) 89678) ((-595 . -719) 89657) ((-595 . -722) 89636) ((-592 . -1014) T) ((-592 . -553) 89618) ((-592 . -1130) T) ((-592 . -13) T) ((-592 . -72) T) ((-592 . -951) 89602) ((-592 . -556) 89586) ((-590 . -635) 89570) ((-590 . -76) 89554) ((-590 . -429) 89538) ((-590 . -1014) 89516) ((-590 . -456) 89449) ((-590 . -260) 89387) ((-590 . -553) 89322) ((-590 . -72) 89276) ((-590 . -1130) T) ((-590 . -13) T) ((-590 . -34) T) ((-590 . -1036) 89260) ((-590 . -124) 89244) ((-590 . -554) 89205) ((-590 . -193) 89189) ((-590 . -318) 89173) ((-588 . -996) T) ((-588 . -430) 89154) ((-588 . -553) 89107) ((-588 . -556) 89088) ((-588 . -1014) T) ((-588 . -1130) T) ((-588 . -13) T) ((-588 . -72) T) ((-588 . -64) T) ((-584 . -609) 89072) ((-584 . -1169) 89056) ((-584 . -924) 89040) ((-584 . -1065) 89024) ((-584 . -318) 89008) ((-584 . -757) 88987) ((-584 . -760) 88966) ((-584 . -324) 88950) ((-584 . -594) 88934) ((-584 . -243) 88911) ((-584 . -241) 88863) ((-584 . -539) 88840) ((-584 . -554) 88801) ((-584 . -429) 88785) ((-584 . -1014) 88738) ((-584 . -456) 88671) ((-584 . -260) 88609) ((-584 . -553) 88524) ((-584 . -72) 88458) ((-584 . -1130) T) ((-584 . -13) T) ((-584 . -34) T) ((-584 . -124) 88442) ((-584 . -1036) 88426) ((-584 . -237) 88410) ((-582 . -1188) 88394) ((-582 . -82) 88373) ((-582 . -964) 88357) ((-582 . -969) 88341) ((-582 . -21) T) ((-582 . -589) 88310) ((-582 . -23) T) ((-582 . -1014) T) ((-582 . -553) 88292) ((-582 . -1130) T) ((-582 . -13) T) ((-582 . -72) T) ((-582 . -25) T) ((-582 . -104) T) ((-582 . -591) 88276) ((-582 . -583) 88260) ((-582 . -655) 88244) ((-582 . -241) 88211) ((-580 . -1188) 88195) ((-580 . -82) 88174) ((-580 . -964) 88158) ((-580 . -969) 88142) ((-580 . -21) T) ((-580 . -589) 88111) ((-580 . -23) T) ((-580 . -1014) T) ((-580 . -553) 88093) ((-580 . -1130) T) ((-580 . -13) T) ((-580 . -72) T) ((-580 . -25) T) ((-580 . -104) T) ((-580 . -591) 88077) ((-580 . -583) 88061) ((-580 . -655) 88045) ((-580 . -556) 88022) ((-580 . -450) 87994) ((-580 . -558) 87952) ((-578 . -753) T) ((-578 . -760) T) ((-578 . -757) T) ((-578 . -1014) T) ((-578 . -553) 87934) ((-578 . -1130) T) ((-578 . -13) T) ((-578 . -72) T) ((-578 . -320) T) ((-578 . -556) 87911) ((-573 . -684) 87895) ((-573 . -658) T) ((-573 . -686) T) ((-573 . -82) 87874) ((-573 . -964) 87858) ((-573 . -969) 87842) ((-573 . -21) T) ((-573 . -589) 87811) ((-573 . -23) T) ((-573 . -1014) T) ((-573 . -553) 87780) ((-573 . -1130) T) ((-573 . -13) T) ((-573 . -72) T) ((-573 . -25) T) ((-573 . -104) T) ((-573 . -591) 87764) ((-573 . -583) 87748) ((-573 . -655) 87732) ((-573 . -361) 87697) ((-573 . -316) 87632) ((-573 . -241) 87590) ((-572 . -1108) 87565) ((-572 . -183) 87509) ((-572 . -76) 87453) ((-572 . -1036) 87397) ((-572 . -124) 87341) ((-572 . -554) NIL) ((-572 . -193) 87285) ((-572 . -539) 87260) ((-572 . -260) 87105) ((-572 . -456) 86905) ((-572 . -429) 86835) ((-572 . -241) 86788) ((-572 . -243) 86763) ((-572 . -550) 86738) ((-572 . -1014) T) ((-572 . -553) 86720) ((-572 . -72) T) ((-572 . -1130) T) ((-572 . -13) T) ((-572 . -34) T) ((-572 . -318) 86664) ((-567 . -413) T) ((-567 . -1026) T) ((-567 . -72) T) ((-567 . -13) T) ((-567 . -1130) T) ((-567 . -553) 86646) ((-567 . -1014) T) ((-567 . -664) T) ((-566 . -996) T) ((-566 . -430) 86627) ((-566 . -553) 86593) ((-566 . -556) 86574) ((-566 . -1014) T) ((-566 . -1130) T) ((-566 . -13) T) ((-566 . -72) T) ((-566 . -64) T) ((-563 . -184) 86558) ((-563 . -810) 86517) ((-563 . -812) 86443) ((-563 . -807) 86367) ((-563 . -225) 86351) ((-563 . -189) 86305) ((-563 . -1130) T) ((-563 . -13) T) ((-563 . -186) 86253) ((-563 . -962) T) ((-563 . -664) T) ((-563 . -1062) T) ((-563 . -1026) T) ((-563 . -971) T) ((-563 . -21) T) ((-563 . -589) 86225) ((-563 . -23) T) ((-563 . -1014) T) ((-563 . -553) 86207) ((-563 . -72) T) ((-563 . -25) T) ((-563 . -104) T) ((-563 . -591) 86194) ((-563 . -556) 86090) ((-563 . -190) 86069) ((-563 . -496) T) ((-563 . -246) T) ((-563 . -146) T) ((-563 . -655) 86056) ((-563 . -583) 86043) ((-563 . -969) 86030) ((-563 . -964) 86017) ((-563 . -82) 86002) ((-563 . -38) 85989) ((-563 . -554) 85966) ((-563 . -355) 85950) ((-563 . -951) 85835) ((-563 . -120) 85814) ((-563 . -118) 85793) ((-563 . -258) 85772) ((-563 . -392) 85751) ((-563 . -833) 85730) ((-559 . -38) 85714) ((-559 . -556) 85683) ((-559 . -591) 85657) ((-559 . -589) 85616) ((-559 . -971) T) ((-559 . -1026) T) ((-559 . -1062) T) ((-559 . -664) T) ((-559 . -962) T) ((-559 . -82) 85595) ((-559 . -964) 85579) ((-559 . -969) 85563) ((-559 . -21) T) ((-559 . -23) T) ((-559 . -1014) T) ((-559 . -553) 85545) ((-559 . -1130) T) ((-559 . -13) T) ((-559 . -72) T) ((-559 . -25) T) ((-559 . -104) T) ((-559 . -583) 85529) ((-559 . -655) 85513) ((-559 . -756) 85492) ((-559 . -722) 85471) ((-559 . -719) 85450) ((-559 . -760) 85429) ((-559 . -757) 85408) ((-559 . -717) 85387) ((-559 . -715) 85366) ((-559 . -120) 85345) ((-557 . -881) T) ((-557 . -72) T) ((-557 . -553) 85327) ((-557 . -1014) T) ((-557 . -605) T) ((-557 . -13) T) ((-557 . -1130) T) ((-557 . -84) T) ((-557 . -320) T) ((-551 . -105) T) ((-551 . -72) T) ((-551 . -13) T) ((-551 . -1130) T) ((-551 . -553) 85309) ((-551 . -1014) T) ((-551 . -757) T) ((-551 . -760) T) ((-551 . -795) 85293) ((-551 . -554) 85154) ((-548 . -314) 85092) ((-548 . -72) T) ((-548 . -13) T) ((-548 . -1130) T) ((-548 . -553) 85074) ((-548 . -1014) T) ((-548 . -1108) 85050) ((-548 . -183) 84995) ((-548 . -76) 84940) ((-548 . -1036) 84885) ((-548 . -124) 84830) ((-548 . -554) NIL) ((-548 . -193) 84775) ((-548 . -539) 84751) ((-548 . -260) 84540) ((-548 . -456) 84280) ((-548 . -429) 84212) ((-548 . -241) 84188) ((-548 . -243) 84164) ((-548 . -550) 84140) ((-548 . -34) T) ((-548 . -318) 84085) ((-547 . -1014) T) ((-547 . -553) 84037) ((-547 . -1130) T) ((-547 . -13) T) ((-547 . -72) T) ((-547 . -430) 84004) ((-547 . -556) 83971) ((-546 . -1014) T) ((-546 . -553) 83953) ((-546 . -1130) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -605) T) ((-545 . -1014) T) ((-545 . -553) 83935) ((-545 . -1130) T) ((-545 . -13) T) ((-545 . -72) T) ((-545 . -605) T) ((-544 . -1014) T) ((-544 . -553) 83902) ((-544 . -1130) T) ((-544 . -13) T) ((-544 . -72) T) ((-543 . -1014) T) ((-543 . -553) 83884) ((-543 . -1130) T) ((-543 . -13) T) ((-543 . -72) T) ((-543 . -605) T) ((-542 . -1014) T) ((-542 . -553) 83851) ((-542 . -1130) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -430) 83833) ((-542 . -556) 83815) ((-541 . -684) 83799) ((-541 . -658) T) ((-541 . -686) T) ((-541 . -82) 83778) ((-541 . -964) 83762) ((-541 . -969) 83746) ((-541 . -21) T) ((-541 . -589) 83715) ((-541 . -23) T) ((-541 . -1014) T) ((-541 . -553) 83684) ((-541 . -1130) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -25) T) ((-541 . -104) T) ((-541 . -591) 83668) ((-541 . -583) 83652) ((-541 . -655) 83636) ((-541 . -361) 83601) ((-541 . -316) 83536) ((-541 . -241) 83494) ((-540 . -996) T) ((-540 . -430) 83475) ((-540 . -553) 83425) ((-540 . -556) 83406) ((-540 . -1014) T) ((-540 . -1130) T) ((-540 . -13) T) ((-540 . -72) T) ((-540 . -64) T) ((-537 . -553) 83388) ((-533 . -1014) T) ((-533 . -553) 83354) ((-533 . -1130) T) ((-533 . -13) T) ((-533 . -72) T) ((-533 . -430) 83335) ((-533 . -556) 83316) ((-532 . -962) T) ((-532 . -664) T) ((-532 . -1062) T) ((-532 . -1026) T) ((-532 . -971) T) ((-532 . -21) T) ((-532 . -589) 83275) ((-532 . -23) T) ((-532 . -1014) T) ((-532 . -553) 83257) ((-532 . -1130) T) ((-532 . -13) T) ((-532 . -72) T) ((-532 . -25) T) ((-532 . -104) T) ((-532 . -591) 83231) ((-532 . -556) 83189) ((-532 . -82) 83142) ((-532 . -964) 83102) ((-532 . -969) 83062) ((-532 . -496) 83041) ((-532 . -246) 83020) ((-532 . -146) 82999) ((-532 . -655) 82972) ((-532 . -583) 82945) ((-532 . -38) 82918) ((-531 . -1159) 82895) ((-531 . -47) 82872) ((-531 . -38) 82769) ((-531 . -583) 82666) ((-531 . -655) 82563) ((-531 . -556) 82445) ((-531 . -246) 82424) ((-531 . -496) 82403) ((-531 . -82) 82268) ((-531 . -964) 82154) ((-531 . -969) 82040) ((-531 . -146) 81994) ((-531 . -120) 81973) ((-531 . -118) 81952) ((-531 . -591) 81877) ((-531 . -589) 81787) ((-531 . -887) 81757) ((-531 . -812) 81670) ((-531 . -807) 81581) ((-531 . -810) 81494) ((-531 . -241) 81459) ((-531 . -189) 81418) ((-531 . -1130) T) ((-531 . -13) T) ((-531 . -186) 81371) ((-531 . -962) T) ((-531 . -664) T) ((-531 . -1062) T) ((-531 . -1026) T) ((-531 . -971) T) ((-531 . -21) T) ((-531 . -23) T) ((-531 . -1014) T) ((-531 . -553) 81353) ((-531 . -72) T) ((-531 . -25) T) ((-531 . -104) T) ((-531 . -190) 81312) ((-529 . -996) T) ((-529 . -430) 81293) ((-529 . -553) 81259) ((-529 . -556) 81240) ((-529 . -1014) T) ((-529 . -1130) T) ((-529 . -13) T) ((-529 . -72) T) ((-529 . -64) T) ((-523 . -1014) T) ((-523 . -553) 81206) ((-523 . -1130) T) ((-523 . -13) T) ((-523 . -72) T) ((-523 . -430) 81187) ((-523 . -556) 81168) ((-520 . -655) 81143) ((-520 . -583) 81118) ((-520 . -591) 81093) ((-520 . -589) 81053) ((-520 . -104) T) ((-520 . -25) T) ((-520 . -72) T) ((-520 . -13) T) ((-520 . -1130) T) ((-520 . -553) 81035) ((-520 . -1014) T) ((-520 . -23) T) ((-520 . -21) T) ((-520 . -969) 81010) ((-520 . -964) 80985) ((-520 . -82) 80946) ((-520 . -951) 80930) ((-520 . -556) 80914) ((-518 . -299) T) ((-518 . -1067) T) ((-518 . -320) T) ((-518 . -118) T) ((-518 . -312) T) ((-518 . -1135) T) ((-518 . -833) T) ((-518 . -496) T) ((-518 . -146) T) ((-518 . -556) 80864) ((-518 . -655) 80829) ((-518 . -583) 80794) ((-518 . -38) 80759) ((-518 . -392) T) ((-518 . -258) T) ((-518 . -82) 80708) ((-518 . -964) 80673) ((-518 . -969) 80638) ((-518 . -589) 80588) ((-518 . -591) 80553) ((-518 . -246) T) ((-518 . -201) T) ((-518 . -345) T) ((-518 . -189) T) ((-518 . -1130) T) ((-518 . -13) T) ((-518 . -186) 80540) ((-518 . -962) T) ((-518 . -664) T) ((-518 . -1062) T) ((-518 . -1026) T) ((-518 . -971) T) ((-518 . -21) T) ((-518 . -23) T) ((-518 . -1014) T) ((-518 . -553) 80522) ((-518 . -72) T) ((-518 . -25) T) ((-518 . -104) T) ((-518 . -190) T) ((-518 . -280) 80509) ((-518 . -120) 80491) ((-518 . -951) 80478) ((-518 . -1188) 80465) ((-518 . -1199) 80452) ((-518 . -554) 80434) ((-517 . -780) 80418) ((-517 . -833) T) ((-517 . -496) T) ((-517 . -246) T) ((-517 . -146) T) ((-517 . -556) 80390) ((-517 . -655) 80377) ((-517 . -583) 80364) ((-517 . -969) 80351) ((-517 . -964) 80338) ((-517 . -82) 80323) ((-517 . -38) 80310) ((-517 . -392) T) ((-517 . -258) T) ((-517 . -962) T) ((-517 . -664) T) ((-517 . -1062) T) ((-517 . -1026) T) ((-517 . -971) T) ((-517 . -21) T) ((-517 . -589) 80282) ((-517 . -23) T) ((-517 . -1014) T) ((-517 . -553) 80264) ((-517 . -1130) T) ((-517 . -13) T) ((-517 . -72) T) ((-517 . -25) T) ((-517 . -104) T) ((-517 . -591) 80251) ((-517 . -120) T) ((-516 . -1014) T) ((-516 . -553) 80233) ((-516 . -1130) T) ((-516 . -13) T) ((-516 . -72) T) ((-515 . -1014) T) ((-515 . -553) 80215) ((-515 . -1130) T) ((-515 . -13) T) ((-515 . -72) T) ((-514 . -513) T) ((-514 . -771) T) ((-514 . -147) T) ((-514 . -466) T) ((-514 . -553) 80197) ((-508 . -494) 80181) ((-508 . -35) T) ((-508 . -66) T) ((-508 . -239) T) ((-508 . -433) T) ((-508 . -1119) T) ((-508 . -1116) T) ((-508 . -951) 80163) ((-508 . -916) T) ((-508 . -760) T) ((-508 . -757) T) ((-508 . -496) T) ((-508 . -246) T) ((-508 . -146) T) ((-508 . -556) 80135) ((-508 . -655) 80122) ((-508 . -583) 80109) ((-508 . -591) 80096) ((-508 . -589) 80068) ((-508 . -104) T) ((-508 . -25) T) ((-508 . -72) T) ((-508 . -13) T) ((-508 . -1130) T) ((-508 . -553) 80050) ((-508 . -1014) T) ((-508 . -23) T) ((-508 . -21) T) ((-508 . -969) 80037) ((-508 . -964) 80024) ((-508 . -82) 80009) ((-508 . -962) T) ((-508 . -664) T) ((-508 . -1062) T) ((-508 . -1026) T) ((-508 . -971) T) ((-508 . -38) 79996) ((-508 . -392) T) ((-490 . -1108) 79975) ((-490 . -183) 79923) ((-490 . -76) 79871) ((-490 . -1036) 79819) ((-490 . -124) 79767) ((-490 . -554) NIL) ((-490 . -193) 79715) ((-490 . -539) 79694) ((-490 . -260) 79492) ((-490 . -456) 79244) ((-490 . -429) 79179) ((-490 . -241) 79158) ((-490 . -243) 79137) ((-490 . -550) 79116) ((-490 . -1014) T) ((-490 . -553) 79098) ((-490 . -72) T) ((-490 . -1130) T) ((-490 . -13) T) ((-490 . -34) T) ((-490 . -318) 79046) ((-489 . -753) T) ((-489 . -760) T) ((-489 . -757) T) ((-489 . -1014) T) ((-489 . -553) 79028) ((-489 . -1130) T) ((-489 . -13) T) ((-489 . -72) T) ((-489 . -320) T) ((-488 . -753) T) ((-488 . -760) T) ((-488 . -757) T) ((-488 . -1014) T) ((-488 . -553) 79010) ((-488 . -1130) T) ((-488 . -13) T) ((-488 . -72) T) ((-488 . -320) T) ((-487 . -753) T) ((-487 . -760) T) ((-487 . -757) T) ((-487 . -1014) T) ((-487 . -553) 78992) ((-487 . -1130) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -320) T) ((-486 . -753) T) ((-486 . -760) T) ((-486 . -757) T) ((-486 . -1014) T) ((-486 . -553) 78974) ((-486 . -1130) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -320) T) ((-485 . -484) T) ((-485 . -1135) T) ((-485 . -1067) T) ((-485 . -951) 78956) ((-485 . -554) 78871) ((-485 . -934) T) ((-485 . -797) 78853) ((-485 . -756) T) ((-485 . -722) T) ((-485 . -719) T) ((-485 . -760) T) ((-485 . -757) T) ((-485 . -717) T) ((-485 . -715) T) ((-485 . -741) T) ((-485 . -591) 78825) ((-485 . -581) 78807) ((-485 . -833) T) ((-485 . -496) T) ((-485 . -246) T) ((-485 . -146) T) ((-485 . -556) 78779) ((-485 . -655) 78766) ((-485 . -583) 78753) ((-485 . -969) 78740) ((-485 . -964) 78727) ((-485 . -82) 78712) ((-485 . -38) 78699) ((-485 . -392) T) ((-485 . -258) T) ((-485 . -189) T) ((-485 . -186) 78686) ((-485 . -190) T) ((-485 . -116) T) ((-485 . -962) T) ((-485 . -664) T) ((-485 . -1062) T) ((-485 . -1026) T) ((-485 . -971) T) ((-485 . -21) T) ((-485 . -589) 78658) ((-485 . -23) T) ((-485 . -1014) T) ((-485 . -553) 78640) ((-485 . -1130) T) ((-485 . -13) T) ((-485 . -72) T) ((-485 . -25) T) ((-485 . -104) T) ((-485 . -120) T) ((-474 . -1017) 78592) ((-474 . -72) T) ((-474 . -553) 78574) ((-474 . -1014) T) ((-474 . -241) 78530) ((-474 . -1130) T) ((-474 . -13) T) ((-474 . -558) 78433) ((-474 . -554) 78414) ((-472 . -692) 78396) ((-472 . -466) T) ((-472 . -147) T) ((-472 . -771) T) ((-472 . -513) T) ((-472 . -553) 78378) ((-470 . -718) T) ((-470 . -104) T) ((-470 . -25) T) ((-470 . -72) T) ((-470 . -13) T) ((-470 . -1130) T) ((-470 . -553) 78360) ((-470 . -1014) T) ((-470 . -23) T) ((-470 . -717) T) ((-470 . -757) T) ((-470 . -760) T) ((-470 . -719) T) ((-470 . -722) T) ((-470 . -450) 78337) ((-470 . -558) 78300) ((-468 . -466) T) ((-468 . -147) T) ((-468 . -553) 78282) ((-464 . -996) T) ((-464 . -430) 78263) ((-464 . -553) 78229) ((-464 . -556) 78210) ((-464 . -1014) T) ((-464 . -1130) T) ((-464 . -13) T) ((-464 . -72) T) ((-464 . -64) T) ((-463 . -996) T) ((-463 . -430) 78191) ((-463 . -553) 78157) ((-463 . -556) 78138) ((-463 . -1014) T) ((-463 . -1130) T) ((-463 . -13) T) ((-463 . -72) T) ((-463 . -64) T) ((-460 . -280) 78115) ((-460 . -190) T) ((-460 . -186) 78102) ((-460 . -189) T) ((-460 . -320) T) ((-460 . -1067) T) ((-460 . -299) T) ((-460 . -120) 78084) ((-460 . -556) 78014) ((-460 . -591) 77959) ((-460 . -589) 77889) ((-460 . -104) T) ((-460 . -25) T) ((-460 . -72) T) ((-460 . -13) T) ((-460 . -1130) T) ((-460 . -553) 77871) ((-460 . -1014) T) ((-460 . -23) T) ((-460 . -21) T) ((-460 . -971) T) ((-460 . -1026) T) ((-460 . -1062) T) ((-460 . -664) T) ((-460 . -962) T) ((-460 . -312) T) ((-460 . -1135) T) ((-460 . -833) T) ((-460 . -496) T) ((-460 . -146) T) ((-460 . -655) 77816) ((-460 . -583) 77761) ((-460 . -38) 77726) ((-460 . -392) T) ((-460 . -258) T) ((-460 . -82) 77643) ((-460 . -964) 77588) ((-460 . -969) 77533) ((-460 . -246) T) ((-460 . -201) T) ((-460 . -345) T) ((-460 . -118) T) ((-460 . -951) 77510) ((-460 . -1188) 77487) ((-460 . -1199) 77464) ((-459 . -996) T) ((-459 . -430) 77445) ((-459 . -553) 77411) ((-459 . -556) 77392) ((-459 . -1014) T) ((-459 . -1130) T) ((-459 . -13) T) ((-459 . -72) T) ((-459 . -64) T) ((-458 . -19) 77376) ((-458 . -1036) 77360) ((-458 . -318) 77344) ((-458 . -34) T) ((-458 . -13) T) ((-458 . -1130) T) ((-458 . -72) 77278) ((-458 . -553) 77193) ((-458 . -260) 77131) ((-458 . -456) 77064) ((-458 . -1014) 77017) ((-458 . -429) 77001) ((-458 . -594) 76985) ((-458 . -243) 76962) ((-458 . -241) 76914) ((-458 . -539) 76891) ((-458 . -554) 76852) ((-458 . -124) 76836) ((-458 . -757) 76815) ((-458 . -760) 76794) ((-458 . -324) 76778) ((-458 . -237) 76762) ((-457 . -274) 76741) ((-457 . -556) 76725) ((-457 . -951) 76709) ((-457 . -23) T) ((-457 . -1014) T) ((-457 . -553) 76691) ((-457 . -1130) T) ((-457 . -13) T) ((-457 . -72) T) ((-457 . -25) T) ((-457 . -104) T) ((-454 . -72) T) ((-454 . -13) T) ((-454 . -1130) T) ((-454 . -553) 76663) ((-453 . -718) T) ((-453 . -104) T) ((-453 . -25) T) ((-453 . -72) T) ((-453 . -13) T) ((-453 . -1130) T) ((-453 . -553) 76645) ((-453 . -1014) T) ((-453 . -23) T) ((-453 . -717) T) ((-453 . -757) T) ((-453 . -760) T) ((-453 . -719) T) ((-453 . -722) T) ((-453 . -450) 76624) ((-453 . -558) 76589) ((-452 . -717) T) ((-452 . -757) T) ((-452 . -760) T) ((-452 . -719) T) ((-452 . -25) T) ((-452 . -72) T) ((-452 . -13) T) ((-452 . -1130) T) ((-452 . -553) 76571) ((-452 . -1014) T) ((-452 . -23) T) ((-452 . -450) 76550) ((-452 . -558) 76515) ((-451 . -450) 76494) ((-451 . -553) 76434) ((-451 . -1014) 76385) ((-451 . -558) 76350) ((-451 . -1130) T) ((-451 . -13) T) ((-451 . -72) T) ((-449 . -23) T) ((-449 . -1014) T) ((-449 . -553) 76332) ((-449 . -1130) T) ((-449 . -13) T) ((-449 . -72) T) ((-449 . -25) T) ((-449 . -450) 76311) ((-449 . -558) 76276) ((-448 . -21) T) ((-448 . -589) 76258) ((-448 . -23) T) ((-448 . -1014) T) ((-448 . -553) 76240) ((-448 . -1130) T) ((-448 . -13) T) ((-448 . -72) T) ((-448 . -25) T) ((-448 . -104) T) ((-448 . -450) 76219) ((-448 . -558) 76184) ((-447 . -1014) T) ((-447 . -553) 76166) ((-447 . -1130) T) ((-447 . -13) T) ((-447 . -72) T) ((-444 . -1014) T) ((-444 . -553) 76148) ((-444 . -1130) T) ((-444 . -13) T) ((-444 . -72) T) ((-442 . -757) T) ((-442 . -553) 76130) ((-442 . -1014) T) ((-442 . -72) T) ((-442 . -13) T) ((-442 . -1130) T) ((-442 . -760) T) ((-442 . -556) 76111) ((-440 . -96) T) ((-440 . -324) 76094) ((-440 . -760) T) ((-440 . -757) T) ((-440 . -124) 76077) ((-440 . -554) 76059) ((-440 . -241) 76010) ((-440 . -539) 75986) ((-440 . -243) 75962) ((-440 . -594) 75945) ((-440 . -429) 75928) ((-440 . -1014) T) ((-440 . -456) NIL) ((-440 . -260) NIL) ((-440 . -553) 75910) ((-440 . -72) T) ((-440 . -34) T) ((-440 . -318) 75893) ((-440 . -1036) 75876) ((-440 . -19) 75859) ((-440 . -605) T) ((-440 . -13) T) ((-440 . -1130) T) ((-440 . -84) T) ((-437 . -57) 75833) ((-437 . -1036) 75817) ((-437 . -429) 75801) ((-437 . -1014) 75779) ((-437 . -456) 75712) ((-437 . -260) 75650) ((-437 . -553) 75585) ((-437 . -72) 75539) ((-437 . -1130) T) ((-437 . -13) T) ((-437 . -34) T) ((-437 . -318) 75523) ((-436 . -19) 75507) ((-436 . -1036) 75491) ((-436 . -318) 75475) ((-436 . -34) T) ((-436 . -13) T) ((-436 . -1130) T) ((-436 . -72) 75409) ((-436 . -553) 75324) ((-436 . -260) 75262) ((-436 . -456) 75195) ((-436 . -1014) 75148) ((-436 . -429) 75132) ((-436 . -594) 75116) ((-436 . -243) 75093) ((-436 . -241) 75045) ((-436 . -539) 75022) ((-436 . -554) 74983) ((-436 . -124) 74967) ((-436 . -757) 74946) ((-436 . -760) 74925) ((-436 . -324) 74909) ((-435 . -254) T) ((-435 . -72) T) ((-435 . -13) T) ((-435 . -1130) T) ((-435 . -553) 74891) ((-435 . -1014) T) ((-435 . -556) 74792) ((-435 . -951) 74735) ((-435 . -456) 74701) ((-435 . -260) 74688) ((-435 . -27) T) ((-435 . -916) T) ((-435 . -201) T) ((-435 . -82) 74637) ((-435 . -964) 74602) ((-435 . -969) 74567) ((-435 . -246) T) ((-435 . -655) 74532) ((-435 . -583) 74497) ((-435 . -591) 74447) ((-435 . -589) 74397) ((-435 . -104) T) ((-435 . -25) T) ((-435 . -23) T) ((-435 . -21) T) ((-435 . -962) T) ((-435 . -664) T) ((-435 . -1062) T) ((-435 . -1026) T) ((-435 . -971) T) ((-435 . -38) 74362) ((-435 . -258) T) ((-435 . -392) T) ((-435 . -146) T) ((-435 . -496) T) ((-435 . -833) T) ((-435 . -1135) T) ((-435 . -312) T) ((-435 . -581) 74322) ((-435 . -934) T) ((-435 . -554) 74267) ((-435 . -120) T) ((-435 . -190) T) ((-435 . -186) 74254) ((-435 . -189) T) ((-431 . -1014) T) ((-431 . -553) 74220) ((-431 . -1130) T) ((-431 . -13) T) ((-431 . -72) T) ((-427 . -905) 74202) ((-427 . -1067) T) ((-427 . -556) 74152) ((-427 . -951) 74112) ((-427 . -554) 74042) ((-427 . -934) T) ((-427 . -822) NIL) ((-427 . -795) 74024) ((-427 . -756) T) ((-427 . -722) T) ((-427 . -719) T) ((-427 . -760) T) ((-427 . -757) T) ((-427 . -717) T) ((-427 . -715) T) ((-427 . -741) T) ((-427 . -797) 74006) ((-427 . -343) 73988) ((-427 . -581) 73970) ((-427 . -329) 73952) ((-427 . -241) NIL) ((-427 . -260) NIL) ((-427 . -456) NIL) ((-427 . -288) 73934) ((-427 . -201) T) ((-427 . -82) 73861) ((-427 . -964) 73811) ((-427 . -969) 73761) ((-427 . -246) T) ((-427 . -655) 73711) ((-427 . -583) 73661) ((-427 . -591) 73611) ((-427 . -589) 73561) ((-427 . -38) 73511) ((-427 . -258) T) ((-427 . -392) T) ((-427 . -146) T) ((-427 . -496) T) ((-427 . -833) T) ((-427 . -1135) T) ((-427 . -312) T) ((-427 . -190) T) ((-427 . -186) 73498) ((-427 . -189) T) ((-427 . -225) 73480) ((-427 . -807) NIL) ((-427 . -812) NIL) ((-427 . -810) NIL) ((-427 . -184) 73462) ((-427 . -120) T) ((-427 . -118) NIL) ((-427 . -104) T) ((-427 . -25) T) ((-427 . -72) T) ((-427 . -13) T) ((-427 . -1130) T) ((-427 . -553) 73404) ((-427 . -1014) T) ((-427 . -23) T) ((-427 . -21) T) ((-427 . -962) T) ((-427 . -664) T) ((-427 . -1062) T) ((-427 . -1026) T) ((-427 . -971) T) ((-425 . -286) 73373) ((-425 . -104) T) ((-425 . -25) T) ((-425 . -72) T) ((-425 . -13) T) ((-425 . -1130) T) ((-425 . -553) 73355) ((-425 . -1014) T) ((-425 . -23) T) ((-425 . -589) 73337) ((-425 . -21) T) ((-424 . -882) 73321) ((-424 . -318) 73305) ((-424 . -1036) 73289) ((-424 . -34) T) ((-424 . -13) T) ((-424 . -1130) T) ((-424 . -72) 73243) ((-424 . -553) 73178) ((-424 . -260) 73116) ((-424 . -456) 73049) ((-424 . -1014) 73027) ((-424 . -429) 73011) ((-424 . -76) 72995) ((-423 . -996) T) ((-423 . -430) 72976) ((-423 . -553) 72942) ((-423 . -556) 72923) ((-423 . -1014) T) ((-423 . -1130) T) ((-423 . -13) T) ((-423 . -72) T) ((-423 . -64) T) ((-422 . -196) 72902) ((-422 . -1188) 72872) ((-422 . -722) 72851) ((-422 . -719) 72830) ((-422 . -760) 72784) ((-422 . -757) 72738) ((-422 . -717) 72717) ((-422 . -718) 72696) ((-422 . -655) 72641) ((-422 . -583) 72566) ((-422 . -243) 72543) ((-422 . -241) 72520) ((-422 . -539) 72497) ((-422 . -951) 72326) ((-422 . -556) 72130) ((-422 . -355) 72099) ((-422 . -581) 72007) ((-422 . -591) 71846) ((-422 . -329) 71816) ((-422 . -429) 71800) ((-422 . -456) 71733) ((-422 . -260) 71671) ((-422 . -34) T) ((-422 . -318) 71655) ((-422 . -320) 71634) ((-422 . -190) 71587) ((-422 . -589) 71375) ((-422 . -971) 71354) ((-422 . -1026) 71333) ((-422 . -1062) 71312) ((-422 . -664) 71291) ((-422 . -962) 71270) ((-422 . -186) 71166) ((-422 . -189) 71068) ((-422 . -225) 71038) ((-422 . -807) 70910) ((-422 . -812) 70784) ((-422 . -810) 70717) ((-422 . -184) 70687) ((-422 . -553) 70384) ((-422 . -969) 70309) ((-422 . -964) 70214) ((-422 . -82) 70134) ((-422 . -104) 70009) ((-422 . -25) 69846) ((-422 . -72) 69583) ((-422 . -13) T) ((-422 . -1130) T) ((-422 . -1014) 69339) ((-422 . -23) 69195) ((-422 . -21) 69110) ((-421 . -862) 69055) ((-421 . -556) 68847) ((-421 . -951) 68725) ((-421 . -1135) 68704) ((-421 . -822) 68683) ((-421 . -797) NIL) ((-421 . -812) 68660) ((-421 . -807) 68635) ((-421 . -810) 68612) ((-421 . -456) 68550) ((-421 . -392) 68504) ((-421 . -581) 68452) ((-421 . -591) 68341) ((-421 . -329) 68325) ((-421 . -47) 68282) ((-421 . -38) 68134) ((-421 . -583) 67986) ((-421 . -655) 67838) ((-421 . -246) 67772) ((-421 . -496) 67706) ((-421 . -82) 67531) ((-421 . -964) 67377) ((-421 . -969) 67223) ((-421 . -146) 67137) ((-421 . -120) 67116) ((-421 . -118) 67095) ((-421 . -589) 67005) ((-421 . -104) T) ((-421 . -25) T) ((-421 . -72) T) ((-421 . -13) T) ((-421 . -1130) T) ((-421 . -553) 66987) ((-421 . -1014) T) ((-421 . -23) T) ((-421 . -21) T) ((-421 . -962) T) ((-421 . -664) T) ((-421 . -1062) T) ((-421 . -1026) T) ((-421 . -971) T) ((-421 . -355) 66971) ((-421 . -277) 66928) ((-421 . -260) 66915) ((-421 . -554) 66776) ((-419 . -1108) 66755) ((-419 . -183) 66703) ((-419 . -76) 66651) ((-419 . -1036) 66599) ((-419 . -124) 66547) ((-419 . -554) NIL) ((-419 . -193) 66495) ((-419 . -539) 66474) ((-419 . -260) 66272) ((-419 . -456) 66024) ((-419 . -429) 65959) ((-419 . -241) 65938) ((-419 . -243) 65917) ((-419 . -550) 65896) ((-419 . -1014) T) ((-419 . -553) 65878) ((-419 . -72) T) ((-419 . -1130) T) ((-419 . -13) T) ((-419 . -34) T) ((-419 . -318) 65826) ((-418 . -996) T) ((-418 . -430) 65807) ((-418 . -553) 65773) ((-418 . -556) 65754) ((-418 . -1014) T) ((-418 . -1130) T) ((-418 . -13) T) ((-418 . -72) T) ((-418 . -64) T) ((-417 . -312) T) ((-417 . -1135) T) ((-417 . -833) T) ((-417 . -496) T) ((-417 . -146) T) ((-417 . -556) 65704) ((-417 . -655) 65669) ((-417 . -583) 65634) ((-417 . -38) 65599) ((-417 . -392) T) ((-417 . -258) T) ((-417 . -591) 65564) ((-417 . -589) 65514) ((-417 . -971) T) ((-417 . -1026) T) ((-417 . -1062) T) ((-417 . -664) T) ((-417 . -962) T) ((-417 . -82) 65463) ((-417 . -964) 65428) ((-417 . -969) 65393) ((-417 . -21) T) ((-417 . -23) T) ((-417 . -1014) T) ((-417 . -553) 65345) ((-417 . -1130) T) ((-417 . -13) T) ((-417 . -72) T) ((-417 . -25) T) ((-417 . -104) T) ((-417 . -246) T) ((-417 . -201) T) ((-417 . -120) T) ((-417 . -951) 65305) ((-417 . -934) T) ((-417 . -554) 65227) ((-416 . -1125) 65196) ((-416 . -553) 65158) ((-416 . -124) 65142) ((-416 . -34) T) ((-416 . -13) T) ((-416 . -1130) T) ((-416 . -72) T) ((-416 . -260) 65080) ((-416 . -456) 65013) ((-416 . -1014) T) ((-416 . -429) 64997) ((-416 . -554) 64958) ((-416 . -318) 64942) ((-416 . -890) 64911) ((-415 . -1108) 64890) ((-415 . -183) 64838) ((-415 . -76) 64786) ((-415 . -1036) 64734) ((-415 . -124) 64682) ((-415 . -554) NIL) ((-415 . -193) 64630) ((-415 . -539) 64609) ((-415 . -260) 64407) ((-415 . -456) 64159) ((-415 . -429) 64094) ((-415 . -241) 64073) ((-415 . -243) 64052) ((-415 . -550) 64031) ((-415 . -1014) T) ((-415 . -553) 64013) ((-415 . -72) T) ((-415 . -1130) T) ((-415 . -13) T) ((-415 . -34) T) ((-415 . -318) 63961) ((-414 . -1163) 63945) ((-414 . -190) 63897) ((-414 . -186) 63843) ((-414 . -189) 63795) ((-414 . -241) 63753) ((-414 . -810) 63659) ((-414 . -807) 63540) ((-414 . -812) 63446) ((-414 . -887) 63409) ((-414 . -38) 63256) ((-414 . -82) 63076) ((-414 . -964) 62917) ((-414 . -969) 62758) ((-414 . -589) 62643) ((-414 . -591) 62543) ((-414 . -583) 62390) ((-414 . -655) 62237) ((-414 . -556) 62069) ((-414 . -118) 62048) ((-414 . -120) 62027) ((-414 . -47) 61997) ((-414 . -1159) 61967) ((-414 . -35) 61933) ((-414 . -66) 61899) ((-414 . -239) 61865) ((-414 . -433) 61831) ((-414 . -1119) 61797) ((-414 . -1116) 61763) ((-414 . -916) 61729) ((-414 . -201) 61708) ((-414 . -246) 61662) ((-414 . -104) T) ((-414 . -25) T) ((-414 . -72) T) ((-414 . -13) T) ((-414 . -1130) T) ((-414 . -553) 61644) ((-414 . -1014) T) ((-414 . -23) T) ((-414 . -21) T) ((-414 . -962) T) ((-414 . -664) T) ((-414 . -1062) T) ((-414 . -1026) T) ((-414 . -971) T) ((-414 . -258) 61623) ((-414 . -392) 61602) ((-414 . -146) 61536) ((-414 . -496) 61490) ((-414 . -833) 61469) ((-414 . -1135) 61448) ((-414 . -312) 61427) ((-408 . -1014) T) ((-408 . -553) 61409) ((-408 . -1130) T) ((-408 . -13) T) ((-408 . -72) T) ((-403 . -890) 61378) ((-403 . -318) 61362) ((-403 . -554) 61323) ((-403 . -429) 61307) ((-403 . -1014) T) ((-403 . -456) 61240) ((-403 . -260) 61178) ((-403 . -553) 61140) ((-403 . -72) T) ((-403 . -1130) T) ((-403 . -13) T) ((-403 . -34) T) ((-403 . -124) 61124) ((-401 . -655) 61095) ((-401 . -583) 61066) ((-401 . -591) 61037) ((-401 . -589) 60993) ((-401 . -104) T) ((-401 . -25) T) ((-401 . -72) T) ((-401 . -13) T) ((-401 . -1130) T) ((-401 . -553) 60975) ((-401 . -1014) T) ((-401 . -23) T) ((-401 . -21) T) ((-401 . -969) 60946) ((-401 . -964) 60917) ((-401 . -82) 60878) ((-394 . -862) 60845) ((-394 . -556) 60637) ((-394 . -951) 60515) ((-394 . -1135) 60494) ((-394 . -822) 60473) ((-394 . -797) NIL) ((-394 . -812) 60450) ((-394 . -807) 60425) ((-394 . -810) 60402) ((-394 . -456) 60340) ((-394 . -392) 60294) ((-394 . -581) 60242) ((-394 . -591) 60131) ((-394 . -329) 60115) ((-394 . -47) 60094) ((-394 . -38) 59946) ((-394 . -583) 59798) ((-394 . -655) 59650) ((-394 . -246) 59584) ((-394 . -496) 59518) ((-394 . -82) 59343) ((-394 . -964) 59189) ((-394 . -969) 59035) ((-394 . -146) 58949) ((-394 . -120) 58928) ((-394 . -118) 58907) ((-394 . -589) 58817) ((-394 . -104) T) ((-394 . -25) T) ((-394 . -72) T) ((-394 . -13) T) ((-394 . -1130) T) ((-394 . -553) 58799) ((-394 . -1014) T) ((-394 . -23) T) ((-394 . -21) T) ((-394 . -962) T) ((-394 . -664) T) ((-394 . -1062) T) ((-394 . -1026) T) ((-394 . -971) T) ((-394 . -355) 58783) ((-394 . -277) 58762) ((-394 . -260) 58749) ((-394 . -554) 58610) ((-393 . -361) 58580) ((-393 . -684) 58550) ((-393 . -658) T) ((-393 . -686) T) ((-393 . -82) 58501) ((-393 . -964) 58471) ((-393 . -969) 58441) ((-393 . -21) T) ((-393 . -589) 58356) ((-393 . -23) T) ((-393 . -1014) T) ((-393 . -553) 58338) ((-393 . -72) T) ((-393 . -25) T) ((-393 . -104) T) ((-393 . -591) 58268) ((-393 . -583) 58238) ((-393 . -655) 58208) ((-393 . -316) 58178) ((-393 . -1130) T) ((-393 . -13) T) ((-393 . -241) 58141) ((-381 . -1014) T) ((-381 . -553) 58123) ((-381 . -1130) T) ((-381 . -13) T) ((-381 . -72) T) ((-380 . -1014) T) ((-380 . -553) 58105) ((-380 . -1130) T) ((-380 . -13) T) ((-380 . -72) T) ((-379 . -1014) T) ((-379 . -553) 58087) ((-379 . -1130) T) ((-379 . -13) T) ((-379 . -72) T) ((-377 . -553) 58069) ((-372 . -38) 58053) ((-372 . -556) 58022) ((-372 . -591) 57996) ((-372 . -589) 57955) ((-372 . -971) T) ((-372 . -1026) T) ((-372 . -1062) T) ((-372 . -664) T) ((-372 . -962) T) ((-372 . -82) 57934) ((-372 . -964) 57918) ((-372 . -969) 57902) ((-372 . -21) T) ((-372 . -23) T) ((-372 . -1014) T) ((-372 . -553) 57884) ((-372 . -1130) T) ((-372 . -13) T) ((-372 . -72) T) ((-372 . -25) T) ((-372 . -104) T) ((-372 . -583) 57868) ((-372 . -655) 57852) ((-358 . -664) T) ((-358 . -1014) T) ((-358 . -553) 57834) ((-358 . -1130) T) ((-358 . -13) T) ((-358 . -72) T) ((-358 . -1026) T) ((-356 . -413) T) ((-356 . -1026) T) ((-356 . -72) T) ((-356 . -13) T) ((-356 . -1130) T) ((-356 . -553) 57816) ((-356 . -1014) T) ((-356 . -664) T) ((-350 . -905) 57800) ((-350 . -1067) 57778) ((-350 . -951) 57645) ((-350 . -556) 57544) ((-350 . -554) 57347) ((-350 . -934) 57326) ((-350 . -822) 57305) ((-350 . -795) 57289) ((-350 . -756) 57268) ((-350 . -722) 57247) ((-350 . -719) 57226) ((-350 . -760) 57180) ((-350 . -757) 57134) ((-350 . -717) 57113) ((-350 . -715) 57092) ((-350 . -741) 57071) ((-350 . -797) 56996) ((-350 . -343) 56980) ((-350 . -581) 56928) ((-350 . -591) 56844) ((-350 . -329) 56828) ((-350 . -241) 56786) ((-350 . -260) 56751) ((-350 . -456) 56663) ((-350 . -288) 56647) ((-350 . -201) T) ((-350 . -82) 56578) ((-350 . -964) 56530) ((-350 . -969) 56482) ((-350 . -246) T) ((-350 . -655) 56434) ((-350 . -583) 56386) ((-350 . -589) 56323) ((-350 . -38) 56275) ((-350 . -258) T) ((-350 . -392) T) ((-350 . -146) T) ((-350 . -496) T) ((-350 . -833) T) ((-350 . -1135) T) ((-350 . -312) T) ((-350 . -190) 56254) ((-350 . -186) 56202) ((-350 . -189) 56156) ((-350 . -225) 56140) ((-350 . -807) 56064) ((-350 . -812) 55990) ((-350 . -810) 55949) ((-350 . -184) 55933) ((-350 . -120) 55887) ((-350 . -118) 55866) ((-350 . -104) T) ((-350 . -25) T) ((-350 . -72) T) ((-350 . -13) T) ((-350 . -1130) T) ((-350 . -553) 55848) ((-350 . -1014) T) ((-350 . -23) T) ((-350 . -21) T) ((-350 . -962) T) ((-350 . -664) T) ((-350 . -1062) T) ((-350 . -1026) T) ((-350 . -971) T) ((-348 . -496) T) ((-348 . -246) T) ((-348 . -146) T) ((-348 . -556) 55757) ((-348 . -655) 55731) ((-348 . -583) 55705) ((-348 . -591) 55679) ((-348 . -589) 55638) ((-348 . -104) T) ((-348 . -25) T) ((-348 . -72) T) ((-348 . -13) T) ((-348 . -1130) T) ((-348 . -553) 55620) ((-348 . -1014) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -969) 55594) ((-348 . -964) 55568) ((-348 . -82) 55535) ((-348 . -962) T) ((-348 . -664) T) ((-348 . -1062) T) ((-348 . -1026) T) ((-348 . -971) T) ((-348 . -38) 55509) ((-348 . -184) 55493) ((-348 . -810) 55452) ((-348 . -812) 55378) ((-348 . -807) 55302) ((-348 . -225) 55286) ((-348 . -189) 55240) ((-348 . -186) 55188) ((-348 . -190) 55167) ((-348 . -288) 55151) ((-348 . -456) 54993) ((-348 . -260) 54932) ((-348 . -241) 54860) ((-348 . -355) 54844) ((-348 . -951) 54742) ((-348 . -392) 54695) ((-348 . -934) 54674) ((-348 . -554) 54577) ((-348 . -1135) 54555) ((-342 . -1014) T) ((-342 . -553) 54537) ((-342 . -1130) T) ((-342 . -13) T) ((-342 . -72) T) ((-342 . -189) T) ((-342 . -186) 54524) ((-342 . -554) 54501) ((-340 . -684) 54485) ((-340 . -658) T) ((-340 . -686) T) ((-340 . -82) 54464) ((-340 . -964) 54448) ((-340 . -969) 54432) ((-340 . -21) T) ((-340 . -589) 54401) ((-340 . -23) T) ((-340 . -1014) T) ((-340 . -553) 54383) ((-340 . -1130) T) ((-340 . -13) T) ((-340 . -72) T) ((-340 . -25) T) ((-340 . -104) T) ((-340 . -591) 54367) ((-340 . -583) 54351) ((-340 . -655) 54335) ((-338 . -339) T) ((-338 . -72) T) ((-338 . -13) T) ((-338 . -1130) T) ((-338 . -553) 54301) ((-338 . -1014) T) ((-338 . -556) 54282) ((-338 . -430) 54263) ((-337 . -336) 54247) ((-337 . -556) 54231) ((-337 . -951) 54215) ((-337 . -760) 54194) ((-337 . -757) 54173) ((-337 . -1026) T) ((-337 . -72) T) ((-337 . -13) T) ((-337 . -1130) T) ((-337 . -553) 54155) ((-337 . -1014) T) ((-337 . -664) T) ((-334 . -335) 54134) ((-334 . -556) 54118) ((-334 . -951) 54102) ((-334 . -583) 54072) ((-334 . -655) 54042) ((-334 . -591) 54026) ((-334 . -589) 53995) ((-334 . -104) T) ((-334 . -25) T) ((-334 . -72) T) ((-334 . -13) T) ((-334 . -1130) T) ((-334 . -553) 53977) ((-334 . -1014) T) ((-334 . -23) T) ((-334 . -21) T) ((-334 . -969) 53961) ((-334 . -964) 53945) ((-334 . -82) 53924) ((-333 . -82) 53903) ((-333 . -964) 53887) ((-333 . -969) 53871) ((-333 . -21) T) ((-333 . -589) 53840) ((-333 . -23) T) ((-333 . -1014) T) ((-333 . -553) 53822) ((-333 . -1130) T) ((-333 . -13) T) ((-333 . -72) T) ((-333 . -25) T) ((-333 . -104) T) ((-333 . -591) 53806) ((-333 . -450) 53785) ((-333 . -558) 53750) ((-333 . -655) 53720) ((-333 . -583) 53690) ((-330 . -347) T) ((-330 . -120) T) ((-330 . -556) 53640) ((-330 . -591) 53605) ((-330 . -589) 53555) ((-330 . -104) T) ((-330 . -25) T) ((-330 . -72) T) ((-330 . -13) T) ((-330 . -1130) T) ((-330 . -553) 53522) ((-330 . -1014) T) ((-330 . -23) T) ((-330 . -21) T) ((-330 . -971) T) ((-330 . -1026) T) ((-330 . -1062) T) ((-330 . -664) T) ((-330 . -962) T) ((-330 . -554) 53436) ((-330 . -312) T) ((-330 . -1135) T) ((-330 . -833) T) ((-330 . -496) T) ((-330 . -146) T) ((-330 . -655) 53401) ((-330 . -583) 53366) ((-330 . -38) 53331) ((-330 . -392) T) ((-330 . -258) T) ((-330 . -82) 53280) ((-330 . -964) 53245) ((-330 . -969) 53210) ((-330 . -246) T) ((-330 . -201) T) ((-330 . -756) T) ((-330 . -722) T) ((-330 . -719) T) ((-330 . -760) T) ((-330 . -757) T) ((-330 . -717) T) ((-330 . -715) T) ((-330 . -797) 53192) ((-330 . -916) T) ((-330 . -934) T) ((-330 . -951) 53152) ((-330 . -974) T) ((-330 . -190) T) ((-330 . -186) 53139) ((-330 . -189) T) ((-330 . -1116) T) ((-330 . -1119) T) ((-330 . -433) T) ((-330 . -239) T) ((-330 . -66) T) ((-330 . -35) T) ((-330 . -558) 53121) ((-313 . -314) 53098) ((-313 . -72) T) ((-313 . -13) T) ((-313 . -1130) T) ((-313 . -553) 53080) ((-313 . -1014) T) ((-310 . -413) T) ((-310 . -1026) T) ((-310 . -72) T) ((-310 . -13) T) ((-310 . -1130) T) ((-310 . -553) 53062) ((-310 . -1014) T) ((-310 . -664) T) ((-310 . -951) 53046) ((-310 . -556) 53030) ((-308 . -280) 53014) ((-308 . -190) 52993) ((-308 . -186) 52966) ((-308 . -189) 52945) ((-308 . -320) 52924) ((-308 . -1067) 52903) ((-308 . -299) 52882) ((-308 . -120) 52861) ((-308 . -556) 52798) ((-308 . -591) 52750) ((-308 . -589) 52687) ((-308 . -104) T) ((-308 . -25) T) ((-308 . -72) T) ((-308 . -13) T) ((-308 . -1130) T) ((-308 . -553) 52669) ((-308 . -1014) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -971) T) ((-308 . -1026) T) ((-308 . -1062) T) ((-308 . -664) T) ((-308 . -962) T) ((-308 . -312) T) ((-308 . -1135) T) ((-308 . -833) T) ((-308 . -496) T) ((-308 . -146) T) ((-308 . -655) 52621) ((-308 . -583) 52573) ((-308 . -38) 52538) ((-308 . -392) T) ((-308 . -258) T) ((-308 . -82) 52469) ((-308 . -964) 52421) ((-308 . -969) 52373) ((-308 . -246) T) ((-308 . -201) T) ((-308 . -345) 52327) ((-308 . -118) 52281) ((-308 . -951) 52265) ((-308 . -1188) 52249) ((-308 . -1199) 52233) ((-304 . -280) 52217) ((-304 . -190) 52196) ((-304 . -186) 52169) ((-304 . -189) 52148) ((-304 . -320) 52127) ((-304 . -1067) 52106) ((-304 . -299) 52085) ((-304 . -120) 52064) ((-304 . -556) 52001) ((-304 . -591) 51953) ((-304 . -589) 51890) ((-304 . -104) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -13) T) ((-304 . -1130) T) ((-304 . -553) 51872) ((-304 . -1014) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -971) T) ((-304 . -1026) T) ((-304 . -1062) T) ((-304 . -664) T) ((-304 . -962) T) ((-304 . -312) T) ((-304 . -1135) T) ((-304 . -833) T) ((-304 . -496) T) ((-304 . -146) T) ((-304 . -655) 51824) ((-304 . -583) 51776) ((-304 . -38) 51741) ((-304 . -392) T) ((-304 . -258) T) ((-304 . -82) 51672) ((-304 . -964) 51624) ((-304 . -969) 51576) ((-304 . -246) T) ((-304 . -201) T) ((-304 . -345) 51530) ((-304 . -118) 51484) ((-304 . -951) 51468) ((-304 . -1188) 51452) ((-304 . -1199) 51436) ((-303 . -280) 51420) ((-303 . -190) 51399) ((-303 . -186) 51372) ((-303 . -189) 51351) ((-303 . -320) 51330) ((-303 . -1067) 51309) ((-303 . -299) 51288) ((-303 . -120) 51267) ((-303 . -556) 51204) ((-303 . -591) 51156) ((-303 . -589) 51093) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1130) T) ((-303 . -553) 51075) ((-303 . -1014) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -971) T) ((-303 . -1026) T) ((-303 . -1062) T) ((-303 . -664) T) ((-303 . -962) T) ((-303 . -312) T) ((-303 . -1135) T) ((-303 . -833) T) ((-303 . -496) T) ((-303 . -146) T) ((-303 . -655) 51027) ((-303 . -583) 50979) ((-303 . -38) 50944) ((-303 . -392) T) ((-303 . -258) T) ((-303 . -82) 50875) ((-303 . -964) 50827) ((-303 . -969) 50779) ((-303 . -246) T) ((-303 . -201) T) ((-303 . -345) 50733) ((-303 . -118) 50687) ((-303 . -951) 50671) ((-303 . -1188) 50655) ((-303 . -1199) 50639) ((-302 . -280) 50623) ((-302 . -190) 50602) ((-302 . -186) 50575) ((-302 . -189) 50554) ((-302 . -320) 50533) ((-302 . -1067) 50512) ((-302 . -299) 50491) ((-302 . -120) 50470) ((-302 . -556) 50407) ((-302 . -591) 50359) ((-302 . -589) 50296) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1130) T) ((-302 . -553) 50278) ((-302 . -1014) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -971) T) ((-302 . -1026) T) ((-302 . -1062) T) ((-302 . -664) T) ((-302 . -962) T) ((-302 . -312) T) ((-302 . -1135) T) ((-302 . -833) T) ((-302 . -496) T) ((-302 . -146) T) ((-302 . -655) 50230) ((-302 . -583) 50182) ((-302 . -38) 50147) ((-302 . -392) T) ((-302 . -258) T) ((-302 . -82) 50078) ((-302 . -964) 50030) ((-302 . -969) 49982) ((-302 . -246) T) ((-302 . -201) T) ((-302 . -345) 49936) ((-302 . -118) 49890) ((-302 . -951) 49874) ((-302 . -1188) 49858) ((-302 . -1199) 49842) ((-301 . -280) 49819) ((-301 . -190) T) ((-301 . -186) 49806) ((-301 . -189) T) ((-301 . -320) T) ((-301 . -1067) T) ((-301 . -299) T) ((-301 . -120) 49788) ((-301 . -556) 49718) ((-301 . -591) 49663) ((-301 . -589) 49593) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1130) T) ((-301 . -553) 49575) ((-301 . -1014) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -971) T) ((-301 . -1026) T) ((-301 . -1062) T) ((-301 . -664) T) ((-301 . -962) T) ((-301 . -312) T) ((-301 . -1135) T) ((-301 . -833) T) ((-301 . -496) T) ((-301 . -146) T) ((-301 . -655) 49520) ((-301 . -583) 49465) ((-301 . -38) 49430) ((-301 . -392) T) ((-301 . -258) T) ((-301 . -82) 49347) ((-301 . -964) 49292) ((-301 . -969) 49237) ((-301 . -246) T) ((-301 . -201) T) ((-301 . -345) T) ((-301 . -118) T) ((-301 . -951) 49214) ((-301 . -1188) 49191) ((-301 . -1199) 49168) ((-295 . -280) 49152) ((-295 . -190) 49131) ((-295 . -186) 49104) ((-295 . -189) 49083) ((-295 . -320) 49062) ((-295 . -1067) 49041) ((-295 . -299) 49020) ((-295 . -120) 48999) ((-295 . -556) 48936) ((-295 . -591) 48888) ((-295 . -589) 48825) ((-295 . -104) T) ((-295 . -25) T) ((-295 . -72) T) ((-295 . -13) T) ((-295 . -1130) T) ((-295 . -553) 48807) ((-295 . -1014) T) ((-295 . -23) T) ((-295 . -21) T) ((-295 . -971) T) ((-295 . -1026) T) ((-295 . -1062) T) ((-295 . -664) T) ((-295 . -962) T) ((-295 . -312) T) ((-295 . -1135) T) ((-295 . -833) T) ((-295 . -496) T) ((-295 . -146) T) ((-295 . -655) 48759) ((-295 . -583) 48711) ((-295 . -38) 48676) ((-295 . -392) T) ((-295 . -258) T) ((-295 . -82) 48607) ((-295 . -964) 48559) ((-295 . -969) 48511) ((-295 . -246) T) ((-295 . -201) T) ((-295 . -345) 48465) ((-295 . -118) 48419) ((-295 . -951) 48403) ((-295 . -1188) 48387) ((-295 . -1199) 48371) ((-294 . -280) 48355) ((-294 . -190) 48334) ((-294 . -186) 48307) ((-294 . -189) 48286) ((-294 . -320) 48265) ((-294 . -1067) 48244) ((-294 . -299) 48223) ((-294 . -120) 48202) ((-294 . -556) 48139) ((-294 . -591) 48091) ((-294 . -589) 48028) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1130) T) ((-294 . -553) 48010) ((-294 . -1014) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -971) T) ((-294 . -1026) T) ((-294 . -1062) T) ((-294 . -664) T) ((-294 . -962) T) ((-294 . -312) T) ((-294 . -1135) T) ((-294 . -833) T) ((-294 . -496) T) ((-294 . -146) T) ((-294 . -655) 47962) ((-294 . -583) 47914) ((-294 . -38) 47879) ((-294 . -392) T) ((-294 . -258) T) ((-294 . -82) 47810) ((-294 . -964) 47762) ((-294 . -969) 47714) ((-294 . -246) T) ((-294 . -201) T) ((-294 . -345) 47668) ((-294 . -118) 47622) ((-294 . -951) 47606) ((-294 . -1188) 47590) ((-294 . -1199) 47574) ((-293 . -280) 47551) ((-293 . -190) T) ((-293 . -186) 47538) ((-293 . -189) T) ((-293 . -320) T) ((-293 . -1067) T) ((-293 . -299) T) ((-293 . -120) 47520) ((-293 . -556) 47450) ((-293 . -591) 47395) ((-293 . -589) 47325) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1130) T) ((-293 . -553) 47307) ((-293 . -1014) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -971) T) ((-293 . -1026) T) ((-293 . -1062) T) ((-293 . -664) T) ((-293 . -962) T) ((-293 . -312) T) ((-293 . -1135) T) ((-293 . -833) T) ((-293 . -496) T) ((-293 . -146) T) ((-293 . -655) 47252) ((-293 . -583) 47197) ((-293 . -38) 47162) ((-293 . -392) T) ((-293 . -258) T) ((-293 . -82) 47079) ((-293 . -964) 47024) ((-293 . -969) 46969) ((-293 . -246) T) ((-293 . -201) T) ((-293 . -345) T) ((-293 . -118) T) ((-293 . -951) 46946) ((-293 . -1188) 46923) ((-293 . -1199) 46900) ((-289 . -280) 46877) ((-289 . -190) T) ((-289 . -186) 46864) ((-289 . -189) T) ((-289 . -320) T) ((-289 . -1067) T) ((-289 . -299) T) ((-289 . -120) 46846) ((-289 . -556) 46776) ((-289 . -591) 46721) ((-289 . -589) 46651) ((-289 . -104) T) ((-289 . -25) T) ((-289 . -72) T) ((-289 . -13) T) ((-289 . -1130) T) ((-289 . -553) 46633) ((-289 . -1014) T) ((-289 . -23) T) ((-289 . -21) T) ((-289 . -971) T) ((-289 . -1026) T) ((-289 . -1062) T) ((-289 . -664) T) ((-289 . -962) T) ((-289 . -312) T) ((-289 . -1135) T) ((-289 . -833) T) ((-289 . -496) T) ((-289 . -146) T) ((-289 . -655) 46578) ((-289 . -583) 46523) ((-289 . -38) 46488) ((-289 . -392) T) ((-289 . -258) T) ((-289 . -82) 46405) ((-289 . -964) 46350) ((-289 . -969) 46295) ((-289 . -246) T) ((-289 . -201) T) ((-289 . -345) T) ((-289 . -118) T) ((-289 . -951) 46272) ((-289 . -1188) 46249) ((-289 . -1199) 46226) ((-283 . -286) 46195) ((-283 . -104) T) ((-283 . -25) T) ((-283 . -72) T) ((-283 . -13) T) ((-283 . -1130) T) ((-283 . -553) 46177) ((-283 . -1014) T) ((-283 . -23) T) ((-283 . -589) 46159) ((-283 . -21) T) ((-282 . -1014) T) ((-282 . -553) 46141) ((-282 . -1130) T) ((-282 . -13) T) ((-282 . -72) T) ((-281 . -757) T) ((-281 . -553) 46123) ((-281 . -1014) T) ((-281 . -72) T) ((-281 . -13) T) ((-281 . -1130) T) ((-281 . -760) T) ((-278 . -19) 46107) ((-278 . -1036) 46091) ((-278 . -318) 46075) ((-278 . -34) T) ((-278 . -13) T) ((-278 . -1130) T) ((-278 . -72) 46009) ((-278 . -553) 45924) ((-278 . -260) 45862) ((-278 . -456) 45795) ((-278 . -1014) 45748) ((-278 . -429) 45732) ((-278 . -594) 45716) ((-278 . -243) 45693) ((-278 . -241) 45645) ((-278 . -539) 45622) ((-278 . -554) 45583) ((-278 . -124) 45567) ((-278 . -757) 45546) ((-278 . -760) 45525) ((-278 . -324) 45509) ((-278 . -237) 45493) ((-275 . -274) 45470) ((-275 . -556) 45454) ((-275 . -951) 45438) ((-275 . -23) T) ((-275 . -1014) T) ((-275 . -553) 45420) ((-275 . -1130) T) ((-275 . -13) T) ((-275 . -72) T) ((-275 . -25) T) ((-275 . -104) T) ((-273 . -21) T) ((-273 . -589) 45402) ((-273 . -23) T) ((-273 . -1014) T) ((-273 . -553) 45384) ((-273 . -1130) T) ((-273 . -13) T) ((-273 . -72) T) ((-273 . -25) T) ((-273 . -104) T) ((-273 . -655) 45366) ((-273 . -583) 45348) ((-273 . -591) 45330) ((-273 . -969) 45312) ((-273 . -964) 45294) ((-273 . -82) 45269) ((-273 . -274) 45246) ((-273 . -556) 45230) ((-273 . -951) 45214) ((-273 . -757) 45193) ((-273 . -760) 45172) ((-270 . -1163) 45156) ((-270 . -190) 45108) ((-270 . -186) 45054) ((-270 . -189) 45006) ((-270 . -241) 44964) ((-270 . -810) 44870) ((-270 . -807) 44774) ((-270 . -812) 44680) ((-270 . -887) 44643) ((-270 . -38) 44490) ((-270 . -82) 44310) ((-270 . -964) 44151) ((-270 . -969) 43992) ((-270 . -589) 43877) ((-270 . -591) 43777) ((-270 . -583) 43624) ((-270 . -655) 43471) ((-270 . -556) 43303) ((-270 . -118) 43282) ((-270 . -120) 43261) ((-270 . -47) 43231) ((-270 . -1159) 43201) ((-270 . -35) 43167) ((-270 . -66) 43133) ((-270 . -239) 43099) ((-270 . -433) 43065) ((-270 . -1119) 43031) ((-270 . -1116) 42997) ((-270 . -916) 42963) ((-270 . -201) 42942) ((-270 . -246) 42896) ((-270 . -104) T) ((-270 . -25) T) ((-270 . -72) T) ((-270 . -13) T) ((-270 . -1130) T) ((-270 . -553) 42878) ((-270 . -1014) T) ((-270 . -23) T) ((-270 . -21) T) ((-270 . -962) T) ((-270 . -664) T) ((-270 . -1062) T) ((-270 . -1026) T) ((-270 . -971) T) ((-270 . -258) 42857) ((-270 . -392) 42836) ((-270 . -146) 42770) ((-270 . -496) 42724) ((-270 . -833) 42703) ((-270 . -1135) 42682) ((-270 . -312) 42661) ((-270 . -717) T) ((-270 . -757) T) ((-270 . -760) T) ((-270 . -719) T) ((-265 . -364) 42645) ((-265 . -556) 42220) ((-265 . -951) 41891) ((-265 . -554) 41752) ((-265 . -795) 41736) ((-265 . -812) 41703) ((-265 . -807) 41668) ((-265 . -810) 41635) ((-265 . -413) 41614) ((-265 . -355) 41598) ((-265 . -797) 41523) ((-265 . -343) 41507) ((-265 . -581) 41415) ((-265 . -591) 41153) ((-265 . -329) 41123) ((-265 . -201) 41102) ((-265 . -82) 40991) ((-265 . -964) 40901) ((-265 . -969) 40811) ((-265 . -246) 40790) ((-265 . -655) 40700) ((-265 . -583) 40610) ((-265 . -589) 40277) ((-265 . -38) 40187) ((-265 . -258) 40166) ((-265 . -392) 40145) ((-265 . -146) 40124) ((-265 . -496) 40103) ((-265 . -833) 40082) ((-265 . -1135) 40061) ((-265 . -312) 40040) ((-265 . -260) 40027) ((-265 . -456) 39993) ((-265 . -254) T) ((-265 . -120) 39972) ((-265 . -118) 39951) ((-265 . -962) 39845) ((-265 . -664) 39698) ((-265 . -1062) 39592) ((-265 . -1026) 39445) ((-265 . -971) 39339) ((-265 . -104) 39214) ((-265 . -25) 39070) ((-265 . -72) T) ((-265 . -13) T) ((-265 . -1130) T) ((-265 . -553) 39052) ((-265 . -1014) T) ((-265 . -23) 38908) ((-265 . -21) 38783) ((-265 . -29) 38753) ((-265 . -916) 38732) ((-265 . -27) 38711) ((-265 . -1116) 38690) ((-265 . -1119) 38669) ((-265 . -433) 38648) ((-265 . -239) 38627) ((-265 . -66) 38606) ((-265 . -35) 38585) ((-265 . -133) 38564) ((-265 . -116) 38543) ((-265 . -570) 38522) ((-265 . -872) 38501) ((-265 . -1054) 38480) ((-264 . -905) 38441) ((-264 . -1067) NIL) ((-264 . -951) 38371) ((-264 . -556) 38254) ((-264 . -554) NIL) ((-264 . -934) NIL) ((-264 . -822) NIL) ((-264 . -795) 38215) ((-264 . -756) NIL) ((-264 . -722) NIL) ((-264 . -719) NIL) ((-264 . -760) NIL) ((-264 . -757) NIL) ((-264 . -717) NIL) ((-264 . -715) NIL) ((-264 . -741) NIL) ((-264 . -797) NIL) ((-264 . -343) 38176) ((-264 . -581) 38137) ((-264 . -591) 38066) ((-264 . -329) 38027) ((-264 . -241) 37893) ((-264 . -260) 37789) ((-264 . -456) 37540) ((-264 . -288) 37501) ((-264 . -201) T) ((-264 . -82) 37386) ((-264 . -964) 37315) ((-264 . -969) 37244) ((-264 . -246) T) ((-264 . -655) 37173) ((-264 . -583) 37102) ((-264 . -589) 37016) ((-264 . -38) 36945) ((-264 . -258) T) ((-264 . -392) T) ((-264 . -146) T) ((-264 . -496) T) ((-264 . -833) T) ((-264 . -1135) T) ((-264 . -312) T) ((-264 . -190) NIL) ((-264 . -186) NIL) ((-264 . -189) NIL) ((-264 . -225) 36906) ((-264 . -807) NIL) ((-264 . -812) NIL) ((-264 . -810) NIL) ((-264 . -184) 36867) ((-264 . -120) 36823) ((-264 . -118) 36779) ((-264 . -104) T) ((-264 . -25) T) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1130) T) ((-264 . -553) 36761) ((-264 . -1014) T) ((-264 . -23) T) ((-264 . -21) T) ((-264 . -962) T) ((-264 . -664) T) ((-264 . -1062) T) ((-264 . -1026) T) ((-264 . -971) T) ((-263 . -996) T) ((-263 . -430) 36742) ((-263 . -553) 36708) ((-263 . -556) 36689) ((-263 . -1014) T) ((-263 . -1130) T) ((-263 . -13) T) ((-263 . -72) T) ((-263 . -64) T) ((-262 . -1014) T) ((-262 . -553) 36671) ((-262 . -1130) T) ((-262 . -13) T) ((-262 . -72) T) ((-251 . -1108) 36650) ((-251 . -183) 36598) ((-251 . -76) 36546) ((-251 . -1036) 36494) ((-251 . -124) 36442) ((-251 . -554) NIL) ((-251 . -193) 36390) ((-251 . -539) 36369) ((-251 . -260) 36167) ((-251 . -456) 35919) ((-251 . -429) 35854) ((-251 . -241) 35833) ((-251 . -243) 35812) ((-251 . -550) 35791) ((-251 . -1014) T) ((-251 . -553) 35773) ((-251 . -72) T) ((-251 . -1130) T) ((-251 . -13) T) ((-251 . -34) T) ((-251 . -318) 35721) ((-249 . -1130) T) ((-249 . -13) T) ((-249 . -456) 35670) ((-249 . -1014) 35456) ((-249 . -553) 35202) ((-249 . -72) 34988) ((-249 . -25) 34856) ((-249 . -21) 34743) ((-249 . -589) 34490) ((-249 . -23) 34377) ((-249 . -104) 34264) ((-249 . -1026) 34149) ((-249 . -664) 34055) ((-249 . -413) 34034) ((-249 . -962) 33980) ((-249 . -1062) 33926) ((-249 . -971) 33872) ((-249 . -591) 33740) ((-249 . -556) 33675) ((-249 . -82) 33595) ((-249 . -964) 33520) ((-249 . -969) 33445) ((-249 . -655) 33390) ((-249 . -583) 33335) ((-249 . -810) 33294) ((-249 . -807) 33251) ((-249 . -812) 33210) ((-249 . -1188) 33180) ((-247 . -553) 33162) ((-244 . -258) T) ((-244 . -392) T) ((-244 . -38) 33149) ((-244 . -556) 33121) ((-244 . -971) T) ((-244 . -1026) T) ((-244 . -1062) T) ((-244 . -664) T) ((-244 . -962) T) ((-244 . -82) 33106) ((-244 . -964) 33093) ((-244 . -969) 33080) ((-244 . -21) T) ((-244 . -589) 33052) ((-244 . -23) T) ((-244 . -1014) T) ((-244 . -553) 33034) ((-244 . -1130) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -591) 33021) ((-244 . -583) 33008) ((-244 . -655) 32995) ((-244 . -146) T) ((-244 . -246) T) ((-244 . -496) T) ((-244 . -833) T) ((-244 . -241) 32974) ((-235 . -553) 32956) ((-234 . -553) 32938) ((-229 . -757) T) ((-229 . -553) 32920) ((-229 . -1014) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1130) T) ((-229 . -760) T) ((-226 . -213) 32882) ((-226 . -556) 32642) ((-226 . -951) 32488) ((-226 . -554) 32236) ((-226 . -277) 32208) ((-226 . -355) 32192) ((-226 . -38) 32044) ((-226 . -82) 31869) ((-226 . -964) 31715) ((-226 . -969) 31561) ((-226 . -589) 31471) ((-226 . -591) 31360) ((-226 . -583) 31212) ((-226 . -655) 31064) ((-226 . -118) 31043) ((-226 . -120) 31022) ((-226 . -146) 30936) ((-226 . -496) 30870) ((-226 . -246) 30804) ((-226 . -47) 30776) ((-226 . -329) 30760) ((-226 . -581) 30708) ((-226 . -392) 30662) ((-226 . -456) 30553) ((-226 . -810) 30499) ((-226 . -807) 30408) ((-226 . -812) 30321) ((-226 . -797) 30180) ((-226 . -822) 30159) ((-226 . -1135) 30138) ((-226 . -862) 30105) ((-226 . -260) 30092) ((-226 . -190) 30071) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -553) 30053) ((-226 . -1014) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -971) T) ((-226 . -1026) T) ((-226 . -1062) T) ((-226 . -664) T) ((-226 . -962) T) ((-226 . -186) 30001) ((-226 . -13) T) ((-226 . -1130) T) ((-226 . -189) 29955) ((-226 . -225) 29939) ((-226 . -184) 29923) ((-221 . -1014) T) ((-221 . -553) 29905) ((-221 . -1130) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 29884) ((-211 . -1188) 29854) ((-211 . -722) 29833) ((-211 . -719) 29812) ((-211 . -760) 29766) ((-211 . -757) 29720) ((-211 . -717) 29699) ((-211 . -718) 29678) ((-211 . -655) 29623) ((-211 . -583) 29548) ((-211 . -243) 29525) ((-211 . -241) 29502) ((-211 . -539) 29479) ((-211 . -951) 29308) ((-211 . -556) 29112) ((-211 . -355) 29081) ((-211 . -581) 28989) ((-211 . -591) 28815) ((-211 . -329) 28785) ((-211 . -429) 28769) ((-211 . -456) 28702) ((-211 . -260) 28640) ((-211 . -34) T) ((-211 . -318) 28624) ((-211 . -320) 28603) ((-211 . -190) 28556) ((-211 . -589) 28409) ((-211 . -971) 28388) ((-211 . -1026) 28367) ((-211 . -1062) 28346) ((-211 . -664) 28325) ((-211 . -962) 28304) ((-211 . -186) 28200) ((-211 . -189) 28102) ((-211 . -225) 28072) ((-211 . -807) 27944) ((-211 . -812) 27818) ((-211 . -810) 27751) ((-211 . -184) 27721) ((-211 . -553) 27682) ((-211 . -969) 27607) ((-211 . -964) 27512) ((-211 . -82) 27432) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1130) T) ((-211 . -1014) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 27411) ((-210 . -1188) 27381) ((-210 . -722) 27360) ((-210 . -719) 27339) ((-210 . -760) 27293) ((-210 . -757) 27247) ((-210 . -717) 27226) ((-210 . -718) 27205) ((-210 . -655) 27150) ((-210 . -583) 27075) ((-210 . -243) 27052) ((-210 . -241) 27029) ((-210 . -539) 27006) ((-210 . -951) 26835) ((-210 . -556) 26639) ((-210 . -355) 26608) ((-210 . -581) 26516) ((-210 . -591) 26329) ((-210 . -329) 26299) ((-210 . -429) 26283) ((-210 . -456) 26216) ((-210 . -260) 26154) ((-210 . -34) T) ((-210 . -318) 26138) ((-210 . -320) 26117) ((-210 . -190) 26070) ((-210 . -589) 25910) ((-210 . -971) 25889) ((-210 . -1026) 25868) ((-210 . -1062) 25847) ((-210 . -664) 25826) ((-210 . -962) 25805) ((-210 . -186) 25701) ((-210 . -189) 25603) ((-210 . -225) 25573) ((-210 . -807) 25445) ((-210 . -812) 25319) ((-210 . -810) 25252) ((-210 . -184) 25222) ((-210 . -553) 25183) ((-210 . -969) 25108) ((-210 . -964) 25013) ((-210 . -82) 24933) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1130) T) ((-210 . -1014) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1014) T) ((-209 . -553) 24915) ((-209 . -1130) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 24889) ((-208 . -160) T) ((-208 . -1014) T) ((-208 . -553) 24856) ((-208 . -1130) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -748) 24838) ((-207 . -1014) T) ((-207 . -553) 24820) ((-207 . -1130) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -862) 24765) ((-206 . -556) 24557) ((-206 . -951) 24435) ((-206 . -1135) 24414) ((-206 . -822) 24393) ((-206 . -797) NIL) ((-206 . -812) 24370) ((-206 . -807) 24345) ((-206 . -810) 24322) ((-206 . -456) 24260) ((-206 . -392) 24214) ((-206 . -581) 24162) ((-206 . -591) 24051) ((-206 . -329) 24035) ((-206 . -47) 23992) ((-206 . -38) 23844) ((-206 . -583) 23696) ((-206 . -655) 23548) ((-206 . -246) 23482) ((-206 . -496) 23416) ((-206 . -82) 23241) ((-206 . -964) 23087) ((-206 . -969) 22933) ((-206 . -146) 22847) ((-206 . -120) 22826) ((-206 . -118) 22805) ((-206 . -589) 22715) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1130) T) ((-206 . -553) 22697) ((-206 . -1014) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -962) T) ((-206 . -664) T) ((-206 . -1062) T) ((-206 . -1026) T) ((-206 . -971) T) ((-206 . -355) 22681) ((-206 . -277) 22638) ((-206 . -260) 22625) ((-206 . -554) 22486) ((-203 . -609) 22470) ((-203 . -1169) 22454) ((-203 . -924) 22438) ((-203 . -1065) 22422) ((-203 . -318) 22406) ((-203 . -757) 22385) ((-203 . -760) 22364) ((-203 . -324) 22348) ((-203 . -594) 22332) ((-203 . -243) 22309) ((-203 . -241) 22261) ((-203 . -539) 22238) ((-203 . -554) 22199) ((-203 . -429) 22183) ((-203 . -1014) 22136) ((-203 . -456) 22069) ((-203 . -260) 22007) ((-203 . -553) 21902) ((-203 . -72) 21836) ((-203 . -1130) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 21820) ((-203 . -1036) 21804) ((-203 . -237) 21788) ((-203 . -430) 21765) ((-203 . -556) 21742) ((-197 . -196) 21721) ((-197 . -1188) 21691) ((-197 . -722) 21670) ((-197 . -719) 21649) ((-197 . -760) 21603) ((-197 . -757) 21557) ((-197 . -717) 21536) ((-197 . -718) 21515) ((-197 . -655) 21460) ((-197 . -583) 21385) ((-197 . -243) 21362) ((-197 . -241) 21339) ((-197 . -539) 21316) ((-197 . -951) 21145) ((-197 . -556) 20949) ((-197 . -355) 20918) ((-197 . -581) 20826) ((-197 . -591) 20665) ((-197 . -329) 20635) ((-197 . -429) 20619) ((-197 . -456) 20552) ((-197 . -260) 20490) ((-197 . -34) T) ((-197 . -318) 20474) ((-197 . -320) 20453) ((-197 . -190) 20406) ((-197 . -589) 20194) ((-197 . -971) 20173) ((-197 . -1026) 20152) ((-197 . -1062) 20131) ((-197 . -664) 20110) ((-197 . -962) 20089) ((-197 . -186) 19985) ((-197 . -189) 19887) ((-197 . -225) 19857) ((-197 . -807) 19729) ((-197 . -812) 19603) ((-197 . -810) 19536) ((-197 . -184) 19506) ((-197 . -553) 19203) ((-197 . -969) 19128) ((-197 . -964) 19033) ((-197 . -82) 18953) ((-197 . -104) 18828) ((-197 . -25) 18665) ((-197 . -72) 18402) ((-197 . -13) T) ((-197 . -1130) T) ((-197 . -1014) 18158) ((-197 . -23) 18014) ((-197 . -21) 17929) ((-181 . -628) 17887) ((-181 . -318) 17871) ((-181 . -34) T) ((-181 . -13) T) ((-181 . -1130) T) ((-181 . -72) 17825) ((-181 . -553) 17760) ((-181 . -260) 17698) ((-181 . -456) 17631) ((-181 . -1014) 17609) ((-181 . -429) 17593) ((-181 . -1036) 17577) ((-181 . -57) 17535) ((-179 . -347) T) ((-179 . -120) T) ((-179 . -556) 17485) ((-179 . -591) 17450) ((-179 . -589) 17400) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1130) T) ((-179 . -553) 17382) ((-179 . -1014) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -971) T) ((-179 . -1026) T) ((-179 . -1062) T) ((-179 . -664) T) ((-179 . -962) T) ((-179 . -554) 17312) ((-179 . -312) T) ((-179 . -1135) T) ((-179 . -833) T) ((-179 . -496) T) ((-179 . -146) T) ((-179 . -655) 17277) ((-179 . -583) 17242) ((-179 . -38) 17207) ((-179 . -392) T) ((-179 . -258) T) ((-179 . -82) 17156) ((-179 . -964) 17121) ((-179 . -969) 17086) ((-179 . -246) T) ((-179 . -201) T) ((-179 . -756) T) ((-179 . -722) T) ((-179 . -719) T) ((-179 . -760) T) ((-179 . -757) T) ((-179 . -717) T) ((-179 . -715) T) ((-179 . -797) 17068) ((-179 . -916) T) ((-179 . -934) T) ((-179 . -951) 17028) ((-179 . -974) T) ((-179 . -190) T) ((-179 . -186) 17015) ((-179 . -189) T) ((-179 . -1116) T) ((-179 . -1119) T) ((-179 . -433) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -561) 16992) ((-177 . -556) 16954) ((-177 . -591) 16921) ((-177 . -589) 16873) ((-177 . -971) T) ((-177 . -1026) T) ((-177 . -1062) T) ((-177 . -664) T) ((-177 . -962) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1014) T) ((-177 . -553) 16855) ((-177 . -1130) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -951) 16832) ((-176 . -214) 16816) ((-176 . -1035) 16800) ((-176 . -76) 16784) ((-176 . -429) 16768) ((-176 . -1014) 16746) ((-176 . -456) 16679) ((-176 . -260) 16617) ((-176 . -553) 16552) ((-176 . -72) 16506) ((-176 . -1130) T) ((-176 . -13) T) ((-176 . -34) T) ((-176 . -1036) 16490) ((-176 . -318) 16474) ((-176 . -909) 16458) ((-172 . -996) T) ((-172 . -430) 16439) ((-172 . -553) 16405) ((-172 . -556) 16386) ((-172 . -1014) T) ((-172 . -1130) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -905) 16368) ((-171 . -1067) T) ((-171 . -556) 16318) ((-171 . -951) 16278) ((-171 . -554) 16208) ((-171 . -934) T) ((-171 . -822) NIL) ((-171 . -795) 16190) ((-171 . -756) T) ((-171 . -722) T) ((-171 . -719) T) ((-171 . -760) T) ((-171 . -757) T) ((-171 . -717) T) ((-171 . -715) T) ((-171 . -741) T) ((-171 . -797) 16172) ((-171 . -343) 16154) ((-171 . -581) 16136) ((-171 . -329) 16118) ((-171 . -241) NIL) ((-171 . -260) NIL) ((-171 . -456) NIL) ((-171 . -288) 16100) ((-171 . -201) T) ((-171 . -82) 16027) ((-171 . -964) 15977) ((-171 . -969) 15927) ((-171 . -246) T) ((-171 . -655) 15877) ((-171 . -583) 15827) ((-171 . -591) 15777) ((-171 . -589) 15727) ((-171 . -38) 15677) ((-171 . -258) T) ((-171 . -392) T) ((-171 . -146) T) ((-171 . -496) T) ((-171 . -833) T) ((-171 . -1135) T) ((-171 . -312) T) ((-171 . -190) T) ((-171 . -186) 15664) ((-171 . -189) T) ((-171 . -225) 15646) ((-171 . -807) NIL) ((-171 . -812) NIL) ((-171 . -810) NIL) ((-171 . -184) 15628) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1130) T) ((-171 . -553) 15570) ((-171 . -1014) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -962) T) ((-171 . -664) T) ((-171 . -1062) T) ((-171 . -1026) T) ((-171 . -971) T) ((-168 . -753) T) ((-168 . -760) T) ((-168 . -757) T) ((-168 . -1014) T) ((-168 . -553) 15552) ((-168 . -1130) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -320) T) ((-167 . -1014) T) ((-167 . -553) 15534) ((-167 . -1130) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -556) 15511) ((-166 . -1014) T) ((-166 . -553) 15493) ((-166 . -1130) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1014) T) ((-161 . -553) 15475) ((-161 . -1130) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1014) T) ((-158 . -553) 15457) ((-158 . -1130) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1014) T) ((-157 . -553) 15439) ((-157 . -1130) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -748) 15421) ((-154 . -996) T) ((-154 . -430) 15402) ((-154 . -553) 15368) ((-154 . -556) 15349) ((-154 . -1014) T) ((-154 . -1130) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -553) 15331) ((-148 . -38) 15263) ((-148 . -556) 15180) ((-148 . -591) 15112) ((-148 . -589) 15029) ((-148 . -971) T) ((-148 . -1026) T) ((-148 . -1062) T) ((-148 . -664) T) ((-148 . -962) T) ((-148 . -82) 14928) ((-148 . -964) 14860) ((-148 . -969) 14792) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1014) T) ((-148 . -553) 14774) ((-148 . -1130) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -583) 14706) ((-148 . -655) 14638) ((-148 . -312) T) ((-148 . -1135) T) ((-148 . -833) T) ((-148 . -496) T) ((-148 . -146) T) ((-148 . -392) T) ((-148 . -258) T) ((-148 . -246) T) ((-148 . -201) T) ((-145 . -1014) T) ((-145 . -553) 14620) ((-145 . -1130) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14604) ((-142 . -35) 14582) ((-142 . -66) 14560) ((-142 . -239) 14538) ((-142 . -433) 14516) ((-142 . -1119) 14494) ((-142 . -1116) 14472) ((-142 . -916) 14424) ((-142 . -822) 14377) ((-142 . -554) 14145) ((-142 . -795) 14129) ((-142 . -320) 14083) ((-142 . -299) 14062) ((-142 . -1067) 14041) ((-142 . -345) 14020) ((-142 . -353) 13991) ((-142 . -38) 13825) ((-142 . -82) 13717) ((-142 . -964) 13630) ((-142 . -969) 13543) ((-142 . -583) 13377) ((-142 . -655) 13211) ((-142 . -322) 13182) ((-142 . -662) 13153) ((-142 . -951) 13051) ((-142 . -556) 12836) ((-142 . -355) 12820) ((-142 . -797) 12745) ((-142 . -343) 12729) ((-142 . -581) 12677) ((-142 . -591) 12554) ((-142 . -589) 12452) ((-142 . -329) 12436) ((-142 . -241) 12394) ((-142 . -260) 12359) ((-142 . -456) 12271) ((-142 . -288) 12255) ((-142 . -201) 12209) ((-142 . -1135) 12117) ((-142 . -312) 12071) ((-142 . -833) 12005) ((-142 . -496) 11919) ((-142 . -246) 11833) ((-142 . -392) 11767) ((-142 . -258) 11701) ((-142 . -190) 11655) ((-142 . -186) 11583) ((-142 . -189) 11517) ((-142 . -225) 11501) ((-142 . -807) 11425) ((-142 . -812) 11351) ((-142 . -810) 11310) ((-142 . -184) 11294) ((-142 . -146) T) ((-142 . -120) 11273) ((-142 . -962) T) ((-142 . -664) T) ((-142 . -1062) T) ((-142 . -1026) T) ((-142 . -971) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1014) T) ((-142 . -553) 11255) ((-142 . -1130) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 11209) ((-135 . -996) T) ((-135 . -430) 11190) ((-135 . -553) 11156) ((-135 . -556) 11137) ((-135 . -1014) T) ((-135 . -1130) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1014) T) ((-134 . -553) 11119) ((-134 . -1130) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1130) T) ((-130 . -553) 11101) ((-130 . -1014) T) ((-129 . -996) T) ((-129 . -430) 11082) ((-129 . -553) 11048) ((-129 . -556) 11029) ((-129 . -1014) T) ((-129 . -1130) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -996) T) ((-127 . -430) 11010) ((-127 . -553) 10976) ((-127 . -556) 10957) ((-127 . -1014) T) ((-127 . -1130) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -962) T) ((-125 . -664) T) ((-125 . -1062) T) ((-125 . -1026) T) ((-125 . -971) T) ((-125 . -21) T) ((-125 . -589) 10916) ((-125 . -23) T) ((-125 . -1014) T) ((-125 . -553) 10898) ((-125 . -1130) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -591) 10872) ((-125 . -556) 10841) ((-125 . -38) 10825) ((-125 . -82) 10804) ((-125 . -964) 10788) ((-125 . -969) 10772) ((-125 . -583) 10756) ((-125 . -655) 10740) ((-125 . -1188) 10724) ((-117 . -753) T) ((-117 . -760) T) ((-117 . -757) T) ((-117 . -1014) T) ((-117 . -553) 10706) ((-117 . -1130) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -320) T) ((-114 . -1014) T) ((-114 . -553) 10688) ((-114 . -1130) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -554) 10647) ((-114 . -369) 10629) ((-114 . -1012) 10611) ((-114 . -318) 10593) ((-114 . -320) T) ((-114 . -193) 10575) ((-114 . -124) 10557) ((-114 . -1036) 10539) ((-114 . -34) T) ((-114 . -260) NIL) ((-114 . -456) NIL) ((-114 . -429) 10521) ((-114 . -76) 10503) ((-114 . -183) 10485) ((-113 . -553) 10467) ((-112 . -160) T) ((-112 . -1014) T) ((-112 . -553) 10434) ((-112 . -1130) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -748) 10416) ((-111 . -996) T) ((-111 . -430) 10397) ((-111 . -553) 10363) ((-111 . -556) 10344) ((-111 . -1014) T) ((-111 . -1130) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -996) T) ((-110 . -430) 10325) ((-110 . -553) 10291) ((-110 . -556) 10272) ((-110 . -1014) T) ((-110 . -1130) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -405) 10249) ((-108 . -556) 10145) ((-108 . -951) 10129) ((-108 . -1014) T) ((-108 . -553) 10111) ((-108 . -1130) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -410) 10066) ((-108 . -241) 10043) ((-107 . -757) T) ((-107 . -553) 10025) ((-107 . -1014) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1130) T) ((-107 . -760) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -664) T) ((-107 . -1026) T) ((-107 . -951) 10007) ((-107 . -556) 9989) ((-106 . -996) T) ((-106 . -430) 9970) ((-106 . -553) 9936) ((-106 . -556) 9917) ((-106 . -1014) T) ((-106 . -1130) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1014) T) ((-103 . -553) 9899) ((-103 . -1130) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 9881) ((-102 . -1036) 9863) ((-102 . -318) 9845) ((-102 . -34) T) ((-102 . -13) T) ((-102 . -1130) T) ((-102 . -72) T) ((-102 . -553) 9789) ((-102 . -260) NIL) ((-102 . -456) NIL) ((-102 . -1014) T) ((-102 . -429) 9771) ((-102 . -594) 9753) ((-102 . -243) 9728) ((-102 . -241) 9678) ((-102 . -539) 9653) ((-102 . -554) NIL) ((-102 . -124) 9635) ((-102 . -757) T) ((-102 . -760) T) ((-102 . -324) 9617) ((-101 . -753) T) ((-101 . -760) T) ((-101 . -757) T) ((-101 . -1014) T) ((-101 . -553) 9599) ((-101 . -1130) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -320) T) ((-101 . -605) T) ((-100 . -98) 9583) ((-100 . -1036) 9567) ((-100 . -318) 9551) ((-100 . -924) 9535) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1130) T) ((-100 . -72) 9489) ((-100 . -553) 9424) ((-100 . -260) 9362) ((-100 . -456) 9295) ((-100 . -1014) 9273) ((-100 . -429) 9257) ((-100 . -92) 9241) ((-99 . -98) 9225) ((-99 . -1036) 9209) ((-99 . -318) 9193) ((-99 . -924) 9177) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1130) T) ((-99 . -72) 9131) ((-99 . -553) 9066) ((-99 . -260) 9004) ((-99 . -456) 8937) ((-99 . -1014) 8915) ((-99 . -429) 8899) ((-99 . -92) 8883) ((-94 . -98) 8867) ((-94 . -1036) 8851) ((-94 . -318) 8835) ((-94 . -924) 8819) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1130) T) ((-94 . -72) 8773) ((-94 . -553) 8708) ((-94 . -260) 8646) ((-94 . -456) 8579) ((-94 . -1014) 8557) ((-94 . -429) 8541) ((-94 . -92) 8525) ((-90 . -905) 8503) ((-90 . -1067) NIL) ((-90 . -951) 8481) ((-90 . -556) 8412) ((-90 . -554) NIL) ((-90 . -934) NIL) ((-90 . -822) NIL) ((-90 . -795) 8390) ((-90 . -756) NIL) ((-90 . -722) NIL) ((-90 . -719) NIL) ((-90 . -760) NIL) ((-90 . -757) NIL) ((-90 . -717) NIL) ((-90 . -715) NIL) ((-90 . -741) NIL) ((-90 . -797) NIL) ((-90 . -343) 8368) ((-90 . -581) 8346) ((-90 . -591) 8292) ((-90 . -329) 8270) ((-90 . -241) 8204) ((-90 . -260) 8151) ((-90 . -456) 8021) ((-90 . -288) 7999) ((-90 . -201) T) ((-90 . -82) 7918) ((-90 . -964) 7864) ((-90 . -969) 7810) ((-90 . -246) T) ((-90 . -655) 7756) ((-90 . -583) 7702) ((-90 . -589) 7633) ((-90 . -38) 7579) ((-90 . -258) T) ((-90 . -392) T) ((-90 . -146) T) ((-90 . -496) T) ((-90 . -833) T) ((-90 . -1135) T) ((-90 . -312) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7557) ((-90 . -807) NIL) ((-90 . -812) NIL) ((-90 . -810) NIL) ((-90 . -184) 7535) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1130) T) ((-90 . -553) 7517) ((-90 . -1014) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -962) T) ((-90 . -664) T) ((-90 . -1062) T) ((-90 . -1026) T) ((-90 . -971) T) ((-89 . -780) 7501) ((-89 . -833) T) ((-89 . -496) T) ((-89 . -246) T) ((-89 . -146) T) ((-89 . -556) 7473) ((-89 . -655) 7460) ((-89 . -583) 7447) ((-89 . -969) 7434) ((-89 . -964) 7421) ((-89 . -82) 7406) ((-89 . -38) 7393) ((-89 . -392) T) ((-89 . -258) T) ((-89 . -962) T) ((-89 . -664) T) ((-89 . -1062) T) ((-89 . -1026) T) ((-89 . -971) T) ((-89 . -21) T) ((-89 . -589) 7365) ((-89 . -23) T) ((-89 . -1014) T) ((-89 . -553) 7347) ((-89 . -1130) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -591) 7334) ((-89 . -120) T) ((-86 . -757) T) ((-86 . -553) 7316) ((-86 . -1014) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1130) T) ((-86 . -760) T) ((-86 . -748) 7297) ((-85 . -753) T) ((-85 . -760) T) ((-85 . -757) T) ((-85 . -1014) T) ((-85 . -553) 7279) ((-85 . -1130) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -320) T) ((-85 . -881) T) ((-85 . -605) T) ((-85 . -84) T) ((-85 . -554) 7261) ((-81 . -96) T) ((-81 . -324) 7244) ((-81 . -760) T) ((-81 . -757) T) ((-81 . -124) 7227) ((-81 . -554) 7209) ((-81 . -241) 7160) ((-81 . -539) 7136) ((-81 . -243) 7112) ((-81 . -594) 7095) ((-81 . -429) 7078) ((-81 . -1014) T) ((-81 . -456) NIL) ((-81 . -260) NIL) ((-81 . -553) 7060) ((-81 . -72) T) ((-81 . -34) T) ((-81 . -318) 7043) ((-81 . -1036) 7026) ((-81 . -19) 7009) ((-81 . -605) T) ((-81 . -13) T) ((-81 . -1130) T) ((-81 . -84) T) ((-79 . -80) 6993) ((-79 . -1130) T) ((-79 . |MappingCategory|) 6967) ((-79 . -1014) T) ((-79 . -553) 6949) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -553) 6931) ((-77 . -905) 6913) ((-77 . -1067) T) ((-77 . -556) 6863) ((-77 . -951) 6823) ((-77 . -554) 6753) ((-77 . -934) T) ((-77 . -822) NIL) ((-77 . -795) 6735) ((-77 . -756) T) ((-77 . -722) T) ((-77 . -719) T) ((-77 . -760) T) ((-77 . -757) T) ((-77 . -717) T) ((-77 . -715) T) ((-77 . -741) T) ((-77 . -797) 6717) ((-77 . -343) 6699) ((-77 . -581) 6681) ((-77 . -329) 6663) ((-77 . -241) NIL) ((-77 . -260) NIL) ((-77 . -456) NIL) ((-77 . -288) 6645) ((-77 . -201) T) ((-77 . -82) 6572) ((-77 . -964) 6522) ((-77 . -969) 6472) ((-77 . -246) T) ((-77 . -655) 6422) ((-77 . -583) 6372) ((-77 . -591) 6322) ((-77 . -589) 6272) ((-77 . -38) 6222) ((-77 . -258) T) ((-77 . -392) T) ((-77 . -146) T) ((-77 . -496) T) ((-77 . -833) T) ((-77 . -1135) T) ((-77 . -312) T) ((-77 . -190) T) ((-77 . -186) 6209) ((-77 . -189) T) ((-77 . -225) 6191) ((-77 . -807) NIL) ((-77 . -812) NIL) ((-77 . -810) NIL) ((-77 . -184) 6173) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1130) T) ((-77 . -553) 6116) ((-77 . -1014) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -962) T) ((-77 . -664) T) ((-77 . -1062) T) ((-77 . -1026) T) ((-77 . -971) T) ((-73 . -98) 6100) ((-73 . -1036) 6084) ((-73 . -318) 6068) ((-73 . -924) 6052) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1130) T) ((-73 . -72) 6006) ((-73 . -553) 5941) ((-73 . -260) 5879) ((-73 . -456) 5812) ((-73 . -1014) 5790) ((-73 . -429) 5774) ((-73 . -92) 5758) ((-69 . -413) T) ((-69 . -1026) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1130) T) ((-69 . -553) 5740) ((-69 . -1014) T) ((-69 . -664) T) ((-69 . -241) 5719) ((-67 . -996) T) ((-67 . -430) 5700) ((-67 . -553) 5666) ((-67 . -556) 5647) ((-67 . -1014) T) ((-67 . -1130) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1035) 5631) ((-62 . -318) 5615) ((-62 . -1036) 5599) ((-62 . -34) T) ((-62 . -13) T) ((-62 . -1130) T) ((-62 . -72) 5553) ((-62 . -553) 5488) ((-62 . -260) 5426) ((-62 . -456) 5359) ((-62 . -1014) 5337) ((-62 . -429) 5321) ((-62 . -76) 5305) ((-60 . -57) 5267) ((-60 . -1036) 5251) ((-60 . -429) 5235) ((-60 . -1014) 5213) ((-60 . -456) 5146) ((-60 . -260) 5084) ((-60 . -553) 5019) ((-60 . -72) 4973) ((-60 . -1130) T) ((-60 . -13) T) ((-60 . -34) T) ((-60 . -318) 4957) ((-58 . -19) 4941) ((-58 . -1036) 4925) ((-58 . -318) 4909) ((-58 . -34) T) ((-58 . -13) T) ((-58 . -1130) T) ((-58 . -72) 4843) ((-58 . -553) 4758) ((-58 . -260) 4696) ((-58 . -456) 4629) ((-58 . -1014) 4582) ((-58 . -429) 4566) ((-58 . -594) 4550) ((-58 . -243) 4527) ((-58 . -241) 4479) ((-58 . -539) 4456) ((-58 . -554) 4417) ((-58 . -124) 4401) ((-58 . -757) 4380) ((-58 . -760) 4359) ((-58 . -324) 4343) ((-55 . -1014) T) ((-55 . -553) 4325) ((-55 . -1130) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -951) 4307) ((-55 . -556) 4289) ((-51 . -1014) T) ((-51 . -553) 4271) ((-51 . -1130) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -561) 4255) ((-50 . -556) 4224) ((-50 . -591) 4198) ((-50 . -589) 4157) ((-50 . -971) T) ((-50 . -1026) T) ((-50 . -1062) T) ((-50 . -664) T) ((-50 . -962) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1014) T) ((-50 . -553) 4139) ((-50 . -1130) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -951) 4123) ((-49 . -1014) T) ((-49 . -553) 4105) ((-49 . -1130) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -254) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1130) T) ((-48 . -553) 4087) ((-48 . -1014) T) ((-48 . -556) 3988) ((-48 . -951) 3931) ((-48 . -456) 3897) ((-48 . -260) 3884) ((-48 . -27) T) ((-48 . -916) T) ((-48 . -201) T) ((-48 . -82) 3833) ((-48 . -964) 3798) ((-48 . -969) 3763) ((-48 . -246) T) ((-48 . -655) 3728) ((-48 . -583) 3693) ((-48 . -591) 3643) ((-48 . -589) 3593) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -962) T) ((-48 . -664) T) ((-48 . -1062) T) ((-48 . -1026) T) ((-48 . -971) T) ((-48 . -38) 3558) ((-48 . -258) T) ((-48 . -392) T) ((-48 . -146) T) ((-48 . -496) T) ((-48 . -833) T) ((-48 . -1135) T) ((-48 . -312) T) ((-48 . -581) 3518) ((-48 . -934) T) ((-48 . -554) 3463) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3450) ((-48 . -189) T) ((-45 . -36) 3429) ((-45 . -550) 3408) ((-45 . -243) 3331) ((-45 . -241) 3229) ((-45 . -429) 3164) ((-45 . -456) 2916) ((-45 . -260) 2714) ((-45 . -539) 2637) ((-45 . -193) 2585) ((-45 . -76) 2533) ((-45 . -183) 2481) ((-45 . -1108) 2460) ((-45 . -237) 2408) ((-45 . -1036) 2356) ((-45 . -124) 2304) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1130) T) ((-45 . -72) T) ((-45 . -553) 2286) ((-45 . -1014) T) ((-45 . -554) NIL) ((-45 . -594) 2234) ((-45 . -324) 2182) ((-45 . -760) NIL) ((-45 . -757) NIL) ((-45 . -318) 2130) ((-45 . -1065) 2078) ((-45 . -924) 2026) ((-45 . -1169) 1974) ((-45 . -609) 1922) ((-44 . -361) 1906) ((-44 . -684) 1890) ((-44 . -658) T) ((-44 . -686) T) ((-44 . -82) 1869) ((-44 . -964) 1853) ((-44 . -969) 1837) ((-44 . -21) T) ((-44 . -589) 1780) ((-44 . -23) T) ((-44 . -1014) T) ((-44 . -553) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -591) 1720) ((-44 . -583) 1704) ((-44 . -655) 1688) ((-44 . -316) 1672) ((-44 . -1130) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -291) 1623) ((-40 . -146) T) ((-40 . -556) 1553) ((-40 . -971) T) ((-40 . -1026) T) ((-40 . -1062) T) ((-40 . -664) T) ((-40 . -962) T) ((-40 . -591) 1455) ((-40 . -589) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1130) T) ((-40 . -553) 1367) ((-40 . -1014) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -969) 1312) ((-40 . -964) 1257) ((-40 . -82) 1174) ((-40 . -554) 1158) ((-40 . -184) 1135) ((-40 . -810) 1087) ((-40 . -812) 999) ((-40 . -807) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -312) T) ((-40 . -1135) T) ((-40 . -833) T) ((-40 . -496) T) ((-40 . -655) 677) ((-40 . -583) 622) ((-40 . -38) 567) ((-40 . -392) T) ((-40 . -258) T) ((-40 . -246) T) ((-40 . -201) T) ((-40 . -320) NIL) ((-40 . -299) NIL) ((-40 . -1067) NIL) ((-40 . -118) 539) ((-40 . -345) NIL) ((-40 . -353) 511) ((-40 . -120) 483) ((-40 . -322) 455) ((-40 . -329) 432) ((-40 . -581) 366) ((-40 . -355) 343) ((-40 . -951) 220) ((-40 . -662) 192) ((-31 . -996) T) ((-31 . -430) 173) ((-31 . -553) 139) ((-31 . -556) 120) ((-31 . -1014) T) ((-31 . -1130) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -867) T) ((-30 . -553) 102) ((0 . |EnumerationCategory|) T) ((0 . -553) 84) ((0 . -1014) T) ((0 . -72) T) ((0 . -1130) T) ((-2 . |RecordCategory|) T) ((-2 . -553) 66) ((-2 . -1014) T) ((-2 . -72) T) ((-2 . -1130) T) ((-3 . |UnionCategory|) T) ((-3 . -553) 48) ((-3 . -1014) T) ((-3 . -72) T) ((-3 . -1130) T) ((-1 . -1014) T) ((-1 . -553) 30) ((-1 . -1130) T) ((-1 . -13) T) ((-1 . -72) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index a1519e71..c85732ec 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3577831631) -(3998 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3577834556) +(3999 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| @@ -139,7 +139,7 @@ |HomogeneousAggregate&| |HomogeneousAggregate| |HomotopicTo| |Hostname| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |InnerTwoDimensionalArray| - |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools| + |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage| |IdempotentOperatorCategory| |Identifier| |IndexedDirectProductAbelianGroup| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 1faa545b..77f72e64 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,4049 +1,4052 @@ -(2822121 . 3577831640) -((-1732 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1730 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3788 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-1146 (-484)) |#2|) 44 T ELT)) (-2297 (($ $) 80 T ELT)) (-3842 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3419 (((-484) (-1 (-85) |#2|) $) 27 T ELT) (((-484) |#2| $) NIL T ELT) (((-484) |#2| $ (-484)) 96 T ELT)) (-2889 (((-583 |#2|) $) 13 T ELT)) (-3518 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-3326 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2304 (($ |#2| $ (-484)) NIL T ELT) (($ $ $ (-484)) 67 T ELT)) (-1354 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3800 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) 66 T ELT)) (-2305 (($ $ (-484)) 76 T ELT) (($ $ (-1146 (-484))) 75 T ELT)) (-1946 (((-694) (-1 (-85) |#2|) $) 34 T ELT) (((-694) |#2| $) NIL T ELT)) (-1731 (($ $ $ (-484)) 69 T ELT)) (-3400 (($ $) 68 T ELT)) (-3530 (($ (-583 |#2|)) 73 T ELT)) (-3802 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-583 $)) 85 T ELT)) (-3946 (((-772) $) 92 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3056 (((-85) $ $) 95 T ELT)) (-2685 (((-85) $ $) 99 T ELT))) -(((-18 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3946 ((-772) |#1|)) (-15 -1946 ((-694) |#2| |#1|)) (-15 -3326 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2685 ((-85) |#1| |#1|)) (-15 -1730 (|#1| |#1|)) (-15 -1730 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -1731 (|#1| |#1| |#1| (-484))) (-15 -1732 ((-85) |#1|)) (-15 -3518 (|#1| |#1| |#1|)) (-15 -3419 ((-484) |#2| |#1| (-484))) (-15 -3419 ((-484) |#2| |#1|)) (-15 -3419 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3518 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -3788 (|#2| |#1| (-1146 (-484)) |#2|)) (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -2305 (|#1| |#1| (-1146 (-484)))) (-15 -2305 (|#1| |#1| (-484))) (-15 -3958 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3802 (|#1| (-583 |#1|))) (-15 -3802 (|#1| |#1| |#1|)) (-15 -3802 (|#1| |#2| |#1|)) (-15 -3802 (|#1| |#1| |#2|)) (-15 -3800 (|#1| |#1| (-1146 (-484)))) (-15 -3530 (|#1| (-583 |#2|))) (-15 -1354 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3800 (|#2| |#1| (-484))) (-15 -3800 (|#2| |#1| (-484) |#2|)) (-15 -3788 (|#2| |#1| (-484) |#2|)) (-15 -2889 ((-583 |#2|) |#1|)) (-15 -3958 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3400 (|#1| |#1|))) (-19 |#2|) (-1129)) (T -18)) +(2826158 . 3577834564) +((-1733 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1731 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3789 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-1147 (-485)) |#2|) 44 T ELT)) (-2298 (($ $) 80 T ELT)) (-3843 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3420 (((-485) (-1 (-85) |#2|) $) 27 T ELT) (((-485) |#2| $) NIL T ELT) (((-485) |#2| $ (-485)) 96 T ELT)) (-3519 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2609 (((-584 |#2|) $) 13 T ELT)) (-3327 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2305 (($ |#2| $ (-485)) NIL T ELT) (($ $ $ (-485)) 67 T ELT)) (-1355 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3801 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-2306 (($ $ (-485)) 76 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-1947 (((-695) (-1 (-85) |#2|) $) 34 T ELT) (((-695) |#2| $) NIL T ELT)) (-1732 (($ $ $ (-485)) 69 T ELT)) (-3401 (($ $) 68 T ELT)) (-3531 (($ (-584 |#2|)) 73 T ELT)) (-3803 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-584 $)) 85 T ELT)) (-3947 (((-773) $) 92 T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3057 (((-85) $ $) 95 T ELT)) (-2686 (((-85) $ $) 99 T ELT))) +(((-18 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3947 ((-773) |#1|)) (-15 -1947 ((-695) |#2| |#1|)) (-15 -3327 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2686 ((-85) |#1| |#1|)) (-15 -1731 (|#1| |#1|)) (-15 -1731 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -1732 (|#1| |#1| |#1| (-485))) (-15 -1733 ((-85) |#1|)) (-15 -3519 (|#1| |#1| |#1|)) (-15 -3420 ((-485) |#2| |#1| (-485))) (-15 -3420 ((-485) |#2| |#1|)) (-15 -3420 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3519 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1949 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -2609 ((-584 |#2|) |#1|)) (-15 -3789 (|#2| |#1| (-1147 (-485)) |#2|)) (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -2306 (|#1| |#1| (-1147 (-485)))) (-15 -2306 (|#1| |#1| (-485))) (-15 -3959 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3803 (|#1| (-584 |#1|))) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3803 (|#1| |#1| |#2|)) (-15 -3801 (|#1| |#1| (-1147 (-485)))) (-15 -3531 (|#1| (-584 |#2|))) (-15 -1355 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3801 (|#2| |#1| (-485))) (-15 -3801 (|#2| |#1| (-485) |#2|)) (-15 -3789 (|#2| |#1| (-485) |#2|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3401 (|#1| |#1|))) (-19 |#2|) (-1130)) (T -18)) NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) 44 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-756)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3996)) ELT) (($ $) 98 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3996))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-756)) ELT)) (-3788 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2297 (($ $) 100 (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) 110 T ELT)) (-1353 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-3419 (((-484) (-1 (-85) |#1|) $) 107 T ELT) (((-484) |#1| $) 106 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 105 (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 93 (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1146 (-484))) 75 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1146 (-484))) 67 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 T ELT) (((-694) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-484)) 101 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 76 T ELT)) (-3802 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2566 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 97 (|has| |#1| (-756)) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-19 |#1|) (-113) (-1129)) (T -19)) +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-757)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3997)) ELT) (($ $) 98 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3997))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-757)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2298 (($ $) 100 (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) 110 T ELT)) (-1354 (($ $) 84 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#1| $) 83 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) 55 T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) 107 T ELT) (((-485) |#1| $) 106 (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) 105 (|has| |#1| (-1014)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-695) |#1|) 74 T ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 93 (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) 46 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2200 (($ $ |#1|) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-2306 (($ $ (-485)) 68 T ELT) (($ $ (-1147 (-485))) 67 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 T ELT) (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-1732 (($ $ $ (-485)) 101 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 85 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 76 T ELT)) (-3803 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2567 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 97 (|has| |#1| (-757)) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-19 |#1|) (-113) (-1130)) (T -19)) NIL -(-13 (-324 |t#1|) (-1035 |t#1|)) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1035 |#1|) . T) ((-1129) . T)) -((-1312 (((-3 $ "failed") $ $) 12 T ELT)) (-1214 (((-85) $ $) 27 T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 16 T ELT) (($ (-484) $) 25 T ELT))) -(((-20 |#1|) (-10 -7 (-15 -3837 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -1312 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1214 ((-85) |#1| |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-21)) (T -20)) +(-13 (-324 |t#1|) (-1036 |t#1|)) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1130) . T)) +((-1313 (((-3 $ "failed") $ $) 12 T ELT)) (-1215 (((-85) $ $) 27 T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 16 T ELT) (($ (-485) $) 25 T ELT))) +(((-20 |#1|) (-10 -7 (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 -1313 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1215 ((-85) |#1| |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-21)) (T -20)) NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT))) (((-21) (-113)) (T -21)) -((-3837 (*1 *1 *1) (-4 *1 (-21))) (-3837 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-104) (-588 (-484)) (-10 -8 (-15 -3837 ($ $)) (-15 -3837 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-1013) . T) ((-1129) . T)) -((-3188 (((-85) $) 10 T ELT)) (-3724 (($) 15 T CONST)) (-1214 (((-85) $ $) 22 T ELT)) (* (($ (-830) $) 14 T ELT) (($ (-694) $) 19 T ELT))) -(((-22 |#1|) (-10 -7 (-15 -1214 ((-85) |#1| |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3188 ((-85) |#1|)) (-15 -3724 (|#1|) -3952) (-15 * (|#1| (-830) |#1|))) (-23)) (T -22)) +((-3838 (*1 *1 *1) (-4 *1 (-21))) (-3838 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-104) (-589 (-485)) (-10 -8 (-15 -3838 ($ $)) (-15 -3838 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-1014) . T) ((-1130) . T)) +((-3189 (((-85) $) 10 T ELT)) (-3725 (($) 15 T CONST)) (-1215 (((-85) $ $) 22 T ELT)) (* (($ (-831) $) 14 T ELT) (($ (-695) $) 19 T ELT))) +(((-22 |#1|) (-10 -7 (-15 -1215 ((-85) |#1| |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3189 ((-85) |#1|)) (-15 -3725 (|#1|) -3953) (-15 * (|#1| (-831) |#1|))) (-23)) (T -22)) NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT))) (((-23) (-113)) (T -23)) -((-2660 (*1 *1) (-4 *1 (-23))) (-3724 (*1 *1) (-4 *1 (-23))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-694)))) (-1214 (*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))) -(-13 (-25) (-10 -8 (-15 -2660 ($) -3952) (-15 -3724 ($) -3952) (-15 -3188 ((-85) $)) (-15 * ($ (-694) $)) (-15 -1214 ((-85) $ $)))) -(((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((* (($ (-830) $) 10 T ELT))) -(((-24 |#1|) (-10 -7 (-15 * (|#1| (-830) |#1|))) (-25)) (T -24)) +((-2661 (*1 *1) (-4 *1 (-23))) (-3725 (*1 *1) (-4 *1 (-23))) (-3189 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-695)))) (-1215 (*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))) +(-13 (-25) (-10 -8 (-15 -2661 ($) -3953) (-15 -3725 ($) -3953) (-15 -3189 ((-85) $)) (-15 * ($ (-695) $)) (-15 -1215 ((-85) $ $)))) +(((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((* (($ (-831) $) 10 T ELT))) +(((-24 |#1|) (-10 -7 (-15 * (|#1| (-831) |#1|))) (-25)) (T -24)) NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT))) +((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT))) (((-25) (-113)) (T -25)) -((-3839 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-830))))) -(-13 (-1013) (-10 -8 (-15 -3839 ($ $ $)) (-15 * ($ (-830) $)))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-1215 (((-583 $) (-857 $)) 32 T ELT) (((-583 $) (-1085 $)) 16 T ELT) (((-583 $) (-1085 $) (-1090)) 20 T ELT)) (-1216 (($ (-857 $)) 30 T ELT) (($ (-1085 $)) 11 T ELT) (($ (-1085 $) (-1090)) 60 T ELT)) (-1217 (((-583 $) (-857 $)) 33 T ELT) (((-583 $) (-1085 $)) 18 T ELT) (((-583 $) (-1085 $) (-1090)) 19 T ELT)) (-3183 (($ (-857 $)) 31 T ELT) (($ (-1085 $)) 13 T ELT) (($ (-1085 $) (-1090)) NIL T ELT))) -(((-26 |#1|) (-10 -7 (-15 -1215 ((-583 |#1|) (-1085 |#1|) (-1090))) (-15 -1215 ((-583 |#1|) (-1085 |#1|))) (-15 -1215 ((-583 |#1|) (-857 |#1|))) (-15 -1216 (|#1| (-1085 |#1|) (-1090))) (-15 -1216 (|#1| (-1085 |#1|))) (-15 -1216 (|#1| (-857 |#1|))) (-15 -1217 ((-583 |#1|) (-1085 |#1|) (-1090))) (-15 -1217 ((-583 |#1|) (-1085 |#1|))) (-15 -1217 ((-583 |#1|) (-857 |#1|))) (-15 -3183 (|#1| (-1085 |#1|) (-1090))) (-15 -3183 (|#1| (-1085 |#1|))) (-15 -3183 (|#1| (-857 |#1|)))) (-27)) (T -26)) +((-3840 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-831))))) +(-13 (-1014) (-10 -8 (-15 -3840 ($ $ $)) (-15 * ($ (-831) $)))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-1216 (((-584 $) (-858 $)) 32 T ELT) (((-584 $) (-1086 $)) 16 T ELT) (((-584 $) (-1086 $) (-1091)) 20 T ELT)) (-1217 (($ (-858 $)) 30 T ELT) (($ (-1086 $)) 11 T ELT) (($ (-1086 $) (-1091)) 60 T ELT)) (-1218 (((-584 $) (-858 $)) 33 T ELT) (((-584 $) (-1086 $)) 18 T ELT) (((-584 $) (-1086 $) (-1091)) 19 T ELT)) (-3184 (($ (-858 $)) 31 T ELT) (($ (-1086 $)) 13 T ELT) (($ (-1086 $) (-1091)) NIL T ELT))) +(((-26 |#1|) (-10 -7 (-15 -1216 ((-584 |#1|) (-1086 |#1|) (-1091))) (-15 -1216 ((-584 |#1|) (-1086 |#1|))) (-15 -1216 ((-584 |#1|) (-858 |#1|))) (-15 -1217 (|#1| (-1086 |#1|) (-1091))) (-15 -1217 (|#1| (-1086 |#1|))) (-15 -1217 (|#1| (-858 |#1|))) (-15 -1218 ((-584 |#1|) (-1086 |#1|) (-1091))) (-15 -1218 ((-584 |#1|) (-1086 |#1|))) (-15 -1218 ((-584 |#1|) (-858 |#1|))) (-15 -3184 (|#1| (-1086 |#1|) (-1091))) (-15 -3184 (|#1| (-1086 |#1|))) (-15 -3184 (|#1| (-858 |#1|)))) (-27)) (T -26)) NIL -((-2568 (((-85) $ $) 7 T ELT)) (-1215 (((-583 $) (-857 $)) 98 T ELT) (((-583 $) (-1085 $)) 97 T ELT) (((-583 $) (-1085 $) (-1090)) 96 T ELT)) (-1216 (($ (-857 $)) 101 T ELT) (($ (-1085 $)) 100 T ELT) (($ (-1085 $) (-1090)) 99 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-3037 (($ $) 110 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3724 (($) 23 T CONST)) (-1217 (((-583 $) (-857 $)) 104 T ELT) (((-583 $) (-1085 $)) 103 T ELT) (((-583 $) (-1085 $) (-1090)) 102 T ELT)) (-3183 (($ (-857 $)) 107 T ELT) (($ (-1085 $)) 106 T ELT) (($ (-1085 $) (-1090)) 105 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 109 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 83 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-350 (-484))) 108 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT))) +((-2569 (((-85) $ $) 7 T ELT)) (-1216 (((-584 $) (-858 $)) 98 T ELT) (((-584 $) (-1086 $)) 97 T ELT) (((-584 $) (-1086 $) (-1091)) 96 T ELT)) (-1217 (($ (-858 $)) 101 T ELT) (($ (-1086 $)) 100 T ELT) (($ (-1086 $) (-1091)) 99 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-3038 (($ $) 110 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-1218 (((-584 $) (-858 $)) 104 T ELT) (((-584 $) (-1086 $)) 103 T ELT) (((-584 $) (-1086 $) (-1091)) 102 T ELT)) (-3184 (($ (-858 $)) 107 T ELT) (($ (-1086 $)) 106 T ELT) (($ (-1086 $) (-1091)) 105 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 109 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 108 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT))) (((-27) (-113)) (T -27)) -((-3183 (*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) (-3183 (*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27)))) (-3183 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1090)) (-4 *1 (-27)))) (-1217 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1217 (*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1217 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1216 (*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) (-1216 (*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27)))) (-1216 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1090)) (-4 *1 (-27)))) (-1215 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1215 (*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1215 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-583 *1))))) -(-13 (-312) (-915) (-10 -8 (-15 -3183 ($ (-857 $))) (-15 -3183 ($ (-1085 $))) (-15 -3183 ($ (-1085 $) (-1090))) (-15 -1217 ((-583 $) (-857 $))) (-15 -1217 ((-583 $) (-1085 $))) (-15 -1217 ((-583 $) (-1085 $) (-1090))) (-15 -1216 ($ (-857 $))) (-15 -1216 ($ (-1085 $))) (-15 -1216 ($ (-1085 $) (-1090))) (-15 -1215 ((-583 $) (-857 $))) (-15 -1215 ((-583 $) (-1085 $))) (-15 -1215 ((-583 $) (-1085 $) (-1090))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-915) . T) ((-963 (-350 (-484))) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T)) -((-1215 (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-1085 $)) NIL T ELT) (((-583 $) (-1085 $) (-1090)) 54 T ELT) (((-583 $) $) 22 T ELT) (((-583 $) $ (-1090)) 45 T ELT)) (-1216 (($ (-857 $)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-1085 $) (-1090)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1090)) 39 T ELT)) (-1217 (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-1085 $)) NIL T ELT) (((-583 $) (-1085 $) (-1090)) 52 T ELT) (((-583 $) $) 18 T ELT) (((-583 $) $ (-1090)) 47 T ELT)) (-3183 (($ (-857 $)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-1085 $) (-1090)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1090)) 41 T ELT))) -(((-28 |#1| |#2|) (-10 -7 (-15 -1215 ((-583 |#1|) |#1| (-1090))) (-15 -1216 (|#1| |#1| (-1090))) (-15 -1215 ((-583 |#1|) |#1|)) (-15 -1216 (|#1| |#1|)) (-15 -1217 ((-583 |#1|) |#1| (-1090))) (-15 -3183 (|#1| |#1| (-1090))) (-15 -1217 ((-583 |#1|) |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -1215 ((-583 |#1|) (-1085 |#1|) (-1090))) (-15 -1215 ((-583 |#1|) (-1085 |#1|))) (-15 -1215 ((-583 |#1|) (-857 |#1|))) (-15 -1216 (|#1| (-1085 |#1|) (-1090))) (-15 -1216 (|#1| (-1085 |#1|))) (-15 -1216 (|#1| (-857 |#1|))) (-15 -1217 ((-583 |#1|) (-1085 |#1|) (-1090))) (-15 -1217 ((-583 |#1|) (-1085 |#1|))) (-15 -1217 ((-583 |#1|) (-857 |#1|))) (-15 -3183 (|#1| (-1085 |#1|) (-1090))) (-15 -3183 (|#1| (-1085 |#1|))) (-15 -3183 (|#1| (-857 |#1|)))) (-29 |#2|) (-495)) (T -28)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-1215 (((-583 $) (-857 $)) 98 T ELT) (((-583 $) (-1085 $)) 97 T ELT) (((-583 $) (-1085 $) (-1090)) 96 T ELT) (((-583 $) $) 148 T ELT) (((-583 $) $ (-1090)) 146 T ELT)) (-1216 (($ (-857 $)) 101 T ELT) (($ (-1085 $)) 100 T ELT) (($ (-1085 $) (-1090)) 99 T ELT) (($ $) 149 T ELT) (($ $ (-1090)) 147 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-1090)) $) 217 T ELT)) (-3083 (((-350 (-1085 $)) $ (-550 $)) 249 (|has| |#1| (-495)) ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1600 (((-583 (-550 $)) $) 180 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-1604 (($ $ (-583 (-550 $)) (-583 $)) 170 T ELT) (($ $ (-583 (-249 $))) 169 T ELT) (($ $ (-249 $)) 168 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-3037 (($ $) 110 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3724 (($) 23 T CONST)) (-1217 (((-583 $) (-857 $)) 104 T ELT) (((-583 $) (-1085 $)) 103 T ELT) (((-583 $) (-1085 $) (-1090)) 102 T ELT) (((-583 $) $) 152 T ELT) (((-583 $) $ (-1090)) 150 T ELT)) (-3183 (($ (-857 $)) 107 T ELT) (($ (-1085 $)) 106 T ELT) (($ (-1085 $) (-1090)) 105 T ELT) (($ $) 153 T ELT) (($ $ (-1090)) 151 T ELT)) (-3157 (((-3 (-857 |#1|) #1="failed") $) 268 (|has| |#1| (-961)) ELT) (((-3 (-350 (-857 |#1|)) #1#) $) 251 (|has| |#1| (-495)) ELT) (((-3 |#1| #1#) $) 213 T ELT) (((-3 (-484) #1#) $) 210 (|has| |#1| (-950 (-484))) ELT) (((-3 (-1090) #1#) $) 204 T ELT) (((-3 (-550 $) #1#) $) 155 T ELT) (((-3 (-350 (-484)) #1#) $) 143 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3156 (((-857 |#1|) $) 267 (|has| |#1| (-961)) ELT) (((-350 (-857 |#1|)) $) 250 (|has| |#1| (-495)) ELT) ((|#1| $) 212 T ELT) (((-484) $) 211 (|has| |#1| (-950 (-484))) ELT) (((-1090) $) 203 T ELT) (((-550 $) $) 154 T ELT) (((-350 (-484)) $) 144 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2564 (($ $ $) 71 T ELT)) (-2279 (((-630 |#1|) (-630 $)) 256 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 255 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 142 (OR (-2562 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (((-630 (-484)) (-630 $)) 141 (OR (-2562 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 209 (|has| |#1| (-796 (-330))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 208 (|has| |#1| (-796 (-484))) ELT)) (-2573 (($ (-583 $)) 174 T ELT) (($ $) 173 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-1599 (((-583 (-86)) $) 181 T ELT)) (-3595 (((-86) (-86)) 182 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2673 (((-85) $) 202 (|has| $ (-950 (-484))) ELT)) (-2996 (($ $) 234 (|has| |#1| (-961)) ELT)) (-2998 (((-1039 |#1| (-550 $)) $) 233 (|has| |#1| (-961)) ELT)) (-3011 (($ $ (-484)) 109 T ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 68 T ELT)) (-1597 (((-1085 $) (-550 $)) 199 (|has| $ (-961)) ELT)) (-3958 (($ (-1 $ $) (-550 $)) 188 T ELT)) (-1602 (((-3 (-550 $) "failed") $) 178 T ELT)) (-2280 (((-630 |#1|) (-1179 $)) 258 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 257 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 140 (OR (-2562 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (((-630 (-484)) (-1179 $)) 139 (OR (-2562 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-1601 (((-583 (-550 $)) $) 179 T ELT)) (-2235 (($ (-86) (-583 $)) 187 T ELT) (($ (-86) $) 186 T ELT)) (-2823 (((-3 (-583 $) #3="failed") $) 228 (|has| |#1| (-1025)) ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) #3#) $) 237 (|has| |#1| (-961)) ELT)) (-2822 (((-3 (-583 $) #3#) $) 230 (|has| |#1| (-25)) ELT)) (-1794 (((-3 (-2 (|:| -3954 (-484)) (|:| |var| (-550 $))) #3#) $) 231 (|has| |#1| (-25)) ELT)) (-2824 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #3#) $ (-1090)) 236 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #3#) $ (-86)) 235 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #3#) $) 229 (|has| |#1| (-1025)) ELT)) (-2633 (((-85) $ (-1090)) 185 T ELT) (((-85) $ (-86)) 184 T ELT)) (-2484 (($ $) 88 T ELT)) (-2603 (((-694) $) 177 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1797 (((-85) $) 215 T ELT)) (-1796 ((|#1| $) 216 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1598 (((-85) $ (-1090)) 190 T ELT) (((-85) $ $) 189 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-2674 (((-85) $) 201 (|has| $ (-950 (-484))) ELT)) (-3768 (($ $ (-1090) (-694) (-1 $ $)) 241 (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694) (-1 $ (-583 $))) 240 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 239 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ $))) 238 (|has| |#1| (-961)) ELT) (($ $ (-583 (-86)) (-583 $) (-1090)) 227 (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) $ (-1090)) 226 (|has| |#1| (-553 (-473))) ELT) (($ $) 225 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1090))) 224 (|has| |#1| (-553 (-473))) ELT) (($ $ (-1090)) 223 (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) (-1 $ $)) 198 T ELT) (($ $ (-86) (-1 $ (-583 $))) 197 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 196 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 195 T ELT) (($ $ (-1090) (-1 $ $)) 194 T ELT) (($ $ (-1090) (-1 $ (-583 $))) 193 T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) 192 T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) 191 T ELT) (($ $ (-583 $) (-583 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-249 $)) 160 T ELT) (($ $ (-583 (-249 $))) 159 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 158 T ELT) (($ $ (-550 $) $) 157 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-3800 (($ (-86) (-583 $)) 167 T ELT) (($ (-86) $ $ $ $) 166 T ELT) (($ (-86) $ $ $) 165 T ELT) (($ (-86) $ $) 164 T ELT) (($ (-86) $) 163 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-1603 (($ $ $) 176 T ELT) (($ $) 175 T ELT)) (-3758 (($ $ (-583 (-1090)) (-583 (-694))) 263 (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694)) 262 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090))) 261 (|has| |#1| (-961)) ELT) (($ $ (-1090)) 259 (|has| |#1| (-961)) ELT)) (-2995 (($ $) 244 (|has| |#1| (-495)) ELT)) (-2997 (((-1039 |#1| (-550 $)) $) 243 (|has| |#1| (-495)) ELT)) (-3185 (($ $) 200 (|has| $ (-961)) ELT)) (-3972 (((-473) $) 272 (|has| |#1| (-553 (-473))) ELT) (($ (-348 $)) 242 (|has| |#1| (-495)) ELT) (((-800 (-330)) $) 207 (|has| |#1| (-553 (-800 (-330)))) ELT) (((-800 (-484)) $) 206 (|has| |#1| (-553 (-800 (-484)))) ELT)) (-3009 (($ $ $) 271 (|has| |#1| (-413)) ELT)) (-2435 (($ $ $) 270 (|has| |#1| (-413)) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT) (($ (-857 |#1|)) 269 (|has| |#1| (-961)) ELT) (($ (-350 (-857 |#1|))) 252 (|has| |#1| (-495)) ELT) (($ (-350 (-857 (-350 |#1|)))) 248 (|has| |#1| (-495)) ELT) (($ (-857 (-350 |#1|))) 247 (|has| |#1| (-495)) ELT) (($ (-350 |#1|)) 246 (|has| |#1| (-495)) ELT) (($ (-1039 |#1| (-550 $))) 232 (|has| |#1| (-961)) ELT) (($ |#1|) 214 T ELT) (($ (-1090)) 205 T ELT) (($ (-550 $)) 156 T ELT)) (-2702 (((-632 $) $) 254 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-2590 (($ (-583 $)) 172 T ELT) (($ $) 171 T ELT)) (-2254 (((-85) (-86)) 183 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-1795 (($ (-1090) (-583 $)) 222 T ELT) (($ (-1090) $ $ $ $) 221 T ELT) (($ (-1090) $ $ $) 220 T ELT) (($ (-1090) $ $) 219 T ELT) (($ (-1090) $) 218 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 (-1090)) (-583 (-694))) 266 (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694)) 265 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090))) 264 (|has| |#1| (-961)) ELT) (($ $ (-1090)) 260 (|has| |#1| (-961)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 83 T ELT) (($ (-1039 |#1| (-550 $)) (-1039 |#1| (-550 $))) 245 (|has| |#1| (-495)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-350 (-484))) 108 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT) (($ $ |#1|) 253 (|has| |#1| (-146)) ELT) (($ |#1| $) 145 (|has| |#1| (-961)) ELT))) -(((-29 |#1|) (-113) (-495)) (T -29)) -((-3183 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))) (-1217 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3183 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) (-1217 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) (-1216 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))) (-1215 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-1216 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) (-1215 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-364 |t#1|) (-10 -8 (-15 -3183 ($ $)) (-15 -1217 ((-583 $) $)) (-15 -3183 ($ $ (-1090))) (-15 -1217 ((-583 $) $ (-1090))) (-15 -1216 ($ $)) (-15 -1215 ((-583 $) $)) (-15 -1216 ($ $ (-1090))) (-15 -1215 ((-583 $) $ (-1090))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) . T) ((-555 (-350 (-857 |#1|))) |has| |#1| (-495)) ((-555 (-484)) . T) ((-555 (-550 $)) . T) ((-555 (-857 |#1|)) |has| |#1| (-961)) ((-555 (-1090)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-330))) |has| |#1| (-553 (-800 (-330)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-201) . T) ((-246) . T) ((-258) . T) ((-260 $) . T) ((-254) . T) ((-312) . T) ((-329 |#1|) |has| |#1| (-961)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-364 |#1|) . T) ((-392) . T) ((-413) |has| |#1| (-413)) ((-455 (-550 $) $) . T) ((-455 $ $) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-590 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) . T) ((-580 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-580 |#1|) |has| |#1| (-961)) ((-654 (-350 (-484))) . T) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) . T) ((-663) . T) ((-806 $ (-1090)) |has| |#1| (-961)) ((-809 (-1090)) |has| |#1| (-961)) ((-811 (-1090)) |has| |#1| (-961)) ((-796 (-330)) |has| |#1| (-796 (-330))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-832) . T) ((-915) . T) ((-950 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484))))) ((-950 (-350 (-857 |#1|))) |has| |#1| (-495)) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-550 $)) . T) ((-950 (-857 |#1|)) |has| |#1| (-961)) ((-950 (-1090)) . T) ((-950 |#1|) . T) ((-963 (-350 (-484))) . T) ((-963 |#1|) |has| |#1| (-146)) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 |#1|) |has| |#1| (-146)) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T)) -((-2896 (((-1001 (-179)) $) NIL T ELT)) (-2897 (((-1001 (-179)) $) NIL T ELT)) (-3134 (($ $ (-179)) 164 T ELT)) (-1218 (($ (-857 (-484)) (-1090) (-1090) (-1001 (-350 (-484))) (-1001 (-350 (-484)))) 103 T ELT)) (-2898 (((-583 (-583 (-854 (-179)))) $) 181 T ELT)) (-3946 (((-772) $) 195 T ELT))) -(((-30) (-13 (-866) (-10 -8 (-15 -1218 ($ (-857 (-484)) (-1090) (-1090) (-1001 (-350 (-484))) (-1001 (-350 (-484))))) (-15 -3134 ($ $ (-179)))))) (T -30)) -((-1218 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-857 (-484))) (-5 *3 (-1090)) (-5 *4 (-1001 (-350 (-484)))) (-5 *1 (-30)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3233 (((-1049) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2694 (((-1049) $) 10 T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-31) (-13 (-995) (-10 -8 (-15 -2694 ((-1049) $)) (-15 -3233 ((-1049) $))))) (T -31)) -((-2694 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-31)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-31))))) -((-3183 ((|#2| (-1085 |#2|) (-1090)) 39 T ELT)) (-3595 (((-86) (-86)) 53 T ELT)) (-1597 (((-1085 |#2|) (-550 |#2|)) 148 (|has| |#1| (-950 (-484))) ELT)) (-1221 ((|#2| |#1| (-484)) 120 (|has| |#1| (-950 (-484))) ELT)) (-1219 ((|#2| (-1085 |#2|) |#2|) 29 T ELT)) (-1220 (((-772) (-583 |#2|)) 87 T ELT)) (-3185 ((|#2| |#2|) 143 (|has| |#1| (-950 (-484))) ELT)) (-2254 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-350 (-484))) 96 (|has| |#1| (-950 (-484))) ELT))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3183 (|#2| (-1085 |#2|) (-1090))) (-15 -3595 ((-86) (-86))) (-15 -2254 ((-85) (-86))) (-15 -1219 (|#2| (-1085 |#2|) |#2|)) (-15 -1220 ((-772) (-583 |#2|))) (IF (|has| |#1| (-950 (-484))) (PROGN (-15 ** (|#2| |#2| (-350 (-484)))) (-15 -1597 ((-1085 |#2|) (-550 |#2|))) (-15 -3185 (|#2| |#2|)) (-15 -1221 (|#2| |#1| (-484)))) |%noBranch|)) (-495) (-364 |#1|)) (T -32)) -((-1221 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-950 *4)) (-4 *3 (-495)))) (-3185 (*1 *2 *2) (-12 (-4 *3 (-950 (-484))) (-4 *3 (-495)) (-5 *1 (-32 *3 *2)) (-4 *2 (-364 *3)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-550 *5)) (-4 *5 (-364 *4)) (-4 *4 (-950 (-484))) (-4 *4 (-495)) (-5 *2 (-1085 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-484))) (-4 *4 (-950 (-484))) (-4 *4 (-495)) (-5 *1 (-32 *4 *2)) (-4 *2 (-364 *4)))) (-1220 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-364 *4)) (-4 *4 (-495)) (-5 *2 (-772)) (-5 *1 (-32 *4 *5)))) (-1219 (*1 *2 *3 *2) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-364 *4)) (-4 *4 (-495)) (-5 *1 (-32 *4 *2)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-364 *4)))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3)))) (-3183 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *2)) (-5 *4 (-1090)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-495))))) -((-3724 (($) 10 T CONST)) (-1222 (((-85) $ $) 8 T ELT))) -(((-33 |#1|) (-10 -7 (-15 -3724 (|#1|) -3952) (-15 -1222 ((-85) |#1| |#1|))) (-34)) (T -33)) -NIL -((-3724 (($) 7 T CONST)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3400 (($ $) 10 T ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) +((-3184 (*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) (-3184 (*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) (-3184 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) (-1218 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1218 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1218 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) (-1217 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1216 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-584 *1))))) +(-13 (-312) (-916) (-10 -8 (-15 -3184 ($ (-858 $))) (-15 -3184 ($ (-1086 $))) (-15 -3184 ($ (-1086 $) (-1091))) (-15 -1218 ((-584 $) (-858 $))) (-15 -1218 ((-584 $) (-1086 $))) (-15 -1218 ((-584 $) (-1086 $) (-1091))) (-15 -1217 ($ (-858 $))) (-15 -1217 ($ (-1086 $))) (-15 -1217 ($ (-1086 $) (-1091))) (-15 -1216 ((-584 $) (-858 $))) (-15 -1216 ((-584 $) (-1086 $))) (-15 -1216 ((-584 $) (-1086 $) (-1091))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-916) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) +((-1216 (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-1086 $) (-1091)) 54 T ELT) (((-584 $) $) 22 T ELT) (((-584 $) $ (-1091)) 45 T ELT)) (-1217 (($ (-858 $)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-1086 $) (-1091)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1091)) 39 T ELT)) (-1218 (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-1086 $) (-1091)) 52 T ELT) (((-584 $) $) 18 T ELT) (((-584 $) $ (-1091)) 47 T ELT)) (-3184 (($ (-858 $)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-1086 $) (-1091)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1091)) 41 T ELT))) +(((-28 |#1| |#2|) (-10 -7 (-15 -1216 ((-584 |#1|) |#1| (-1091))) (-15 -1217 (|#1| |#1| (-1091))) (-15 -1216 ((-584 |#1|) |#1|)) (-15 -1217 (|#1| |#1|)) (-15 -1218 ((-584 |#1|) |#1| (-1091))) (-15 -3184 (|#1| |#1| (-1091))) (-15 -1218 ((-584 |#1|) |#1|)) (-15 -3184 (|#1| |#1|)) (-15 -1216 ((-584 |#1|) (-1086 |#1|) (-1091))) (-15 -1216 ((-584 |#1|) (-1086 |#1|))) (-15 -1216 ((-584 |#1|) (-858 |#1|))) (-15 -1217 (|#1| (-1086 |#1|) (-1091))) (-15 -1217 (|#1| (-1086 |#1|))) (-15 -1217 (|#1| (-858 |#1|))) (-15 -1218 ((-584 |#1|) (-1086 |#1|) (-1091))) (-15 -1218 ((-584 |#1|) (-1086 |#1|))) (-15 -1218 ((-584 |#1|) (-858 |#1|))) (-15 -3184 (|#1| (-1086 |#1|) (-1091))) (-15 -3184 (|#1| (-1086 |#1|))) (-15 -3184 (|#1| (-858 |#1|)))) (-29 |#2|) (-496)) (T -28)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-1216 (((-584 $) (-858 $)) 98 T ELT) (((-584 $) (-1086 $)) 97 T ELT) (((-584 $) (-1086 $) (-1091)) 96 T ELT) (((-584 $) $) 148 T ELT) (((-584 $) $ (-1091)) 146 T ELT)) (-1217 (($ (-858 $)) 101 T ELT) (($ (-1086 $)) 100 T ELT) (($ (-1086 $) (-1091)) 99 T ELT) (($ $) 149 T ELT) (($ $ (-1091)) 147 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 (-1091)) $) 217 T ELT)) (-3084 (((-350 (-1086 $)) $ (-551 $)) 249 (|has| |#1| (-496)) ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1601 (((-584 (-551 $)) $) 180 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-1605 (($ $ (-584 (-551 $)) (-584 $)) 170 T ELT) (($ $ (-584 (-249 $))) 169 T ELT) (($ $ (-249 $)) 168 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-3038 (($ $) 110 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-1218 (((-584 $) (-858 $)) 104 T ELT) (((-584 $) (-1086 $)) 103 T ELT) (((-584 $) (-1086 $) (-1091)) 102 T ELT) (((-584 $) $) 152 T ELT) (((-584 $) $ (-1091)) 150 T ELT)) (-3184 (($ (-858 $)) 107 T ELT) (($ (-1086 $)) 106 T ELT) (($ (-1086 $) (-1091)) 105 T ELT) (($ $) 153 T ELT) (($ $ (-1091)) 151 T ELT)) (-3158 (((-3 (-858 |#1|) #1="failed") $) 268 (|has| |#1| (-962)) ELT) (((-3 (-350 (-858 |#1|)) #1#) $) 251 (|has| |#1| (-496)) ELT) (((-3 |#1| #1#) $) 213 T ELT) (((-3 (-485) #1#) $) 210 (|has| |#1| (-951 (-485))) ELT) (((-3 (-1091) #1#) $) 204 T ELT) (((-3 (-551 $) #1#) $) 155 T ELT) (((-3 (-350 (-485)) #1#) $) 143 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3157 (((-858 |#1|) $) 267 (|has| |#1| (-962)) ELT) (((-350 (-858 |#1|)) $) 250 (|has| |#1| (-496)) ELT) ((|#1| $) 212 T ELT) (((-485) $) 211 (|has| |#1| (-951 (-485))) ELT) (((-1091) $) 203 T ELT) (((-551 $) $) 154 T ELT) (((-350 (-485)) $) 144 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2565 (($ $ $) 71 T ELT)) (-2280 (((-631 |#1|) (-631 $)) 256 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 255 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 142 (OR (-2563 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (((-631 (-485)) (-631 $)) 141 (OR (-2563 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 209 (|has| |#1| (-797 (-330))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 208 (|has| |#1| (-797 (-485))) ELT)) (-2574 (($ (-584 $)) 174 T ELT) (($ $) 173 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-1600 (((-584 (-86)) $) 181 T ELT)) (-3596 (((-86) (-86)) 182 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2674 (((-85) $) 202 (|has| $ (-951 (-485))) ELT)) (-2997 (($ $) 234 (|has| |#1| (-962)) ELT)) (-2999 (((-1040 |#1| (-551 $)) $) 233 (|has| |#1| (-962)) ELT)) (-3012 (($ $ (-485)) 109 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 68 T ELT)) (-1598 (((-1086 $) (-551 $)) 199 (|has| $ (-962)) ELT)) (-3959 (($ (-1 $ $) (-551 $)) 188 T ELT)) (-1603 (((-3 (-551 $) "failed") $) 178 T ELT)) (-2281 (((-631 |#1|) (-1180 $)) 258 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 257 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 140 (OR (-2563 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (((-631 (-485)) (-1180 $)) 139 (OR (-2563 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-1602 (((-584 (-551 $)) $) 179 T ELT)) (-2236 (($ (-86) (-584 $)) 187 T ELT) (($ (-86) $) 186 T ELT)) (-2824 (((-3 (-584 $) #3="failed") $) 228 (|has| |#1| (-1026)) ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) #3#) $) 237 (|has| |#1| (-962)) ELT)) (-2823 (((-3 (-584 $) #3#) $) 230 (|has| |#1| (-25)) ELT)) (-1795 (((-3 (-2 (|:| -3955 (-485)) (|:| |var| (-551 $))) #3#) $) 231 (|has| |#1| (-25)) ELT)) (-2825 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #3#) $ (-1091)) 236 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #3#) $ (-86)) 235 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #3#) $) 229 (|has| |#1| (-1026)) ELT)) (-2634 (((-85) $ (-1091)) 185 T ELT) (((-85) $ (-86)) 184 T ELT)) (-2485 (($ $) 88 T ELT)) (-2604 (((-695) $) 177 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1798 (((-85) $) 215 T ELT)) (-1797 ((|#1| $) 216 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1599 (((-85) $ (-1091)) 190 T ELT) (((-85) $ $) 189 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-2675 (((-85) $) 201 (|has| $ (-951 (-485))) ELT)) (-3769 (($ $ (-1091) (-695) (-1 $ $)) 241 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) 240 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 239 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) 238 (|has| |#1| (-962)) ELT) (($ $ (-584 (-86)) (-584 $) (-1091)) 227 (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) $ (-1091)) 226 (|has| |#1| (-554 (-474))) ELT) (($ $) 225 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091))) 224 (|has| |#1| (-554 (-474))) ELT) (($ $ (-1091)) 223 (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) (-1 $ $)) 198 T ELT) (($ $ (-86) (-1 $ (-584 $))) 197 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 196 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 195 T ELT) (($ $ (-1091) (-1 $ $)) 194 T ELT) (($ $ (-1091) (-1 $ (-584 $))) 193 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 192 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 191 T ELT) (($ $ (-584 $) (-584 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-249 $)) 160 T ELT) (($ $ (-584 (-249 $))) 159 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 158 T ELT) (($ $ (-551 $) $) 157 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-3801 (($ (-86) (-584 $)) 167 T ELT) (($ (-86) $ $ $ $) 166 T ELT) (($ (-86) $ $ $) 165 T ELT) (($ (-86) $ $) 164 T ELT) (($ (-86) $) 163 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-1604 (($ $ $) 176 T ELT) (($ $) 175 T ELT)) (-3759 (($ $ (-584 (-1091)) (-584 (-695))) 263 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 262 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 261 (|has| |#1| (-962)) ELT) (($ $ (-1091)) 259 (|has| |#1| (-962)) ELT)) (-2996 (($ $) 244 (|has| |#1| (-496)) ELT)) (-2998 (((-1040 |#1| (-551 $)) $) 243 (|has| |#1| (-496)) ELT)) (-3186 (($ $) 200 (|has| $ (-962)) ELT)) (-3973 (((-474) $) 272 (|has| |#1| (-554 (-474))) ELT) (($ (-348 $)) 242 (|has| |#1| (-496)) ELT) (((-801 (-330)) $) 207 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-801 (-485)) $) 206 (|has| |#1| (-554 (-801 (-485)))) ELT)) (-3010 (($ $ $) 271 (|has| |#1| (-413)) ELT)) (-2436 (($ $ $) 270 (|has| |#1| (-413)) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ (-858 |#1|)) 269 (|has| |#1| (-962)) ELT) (($ (-350 (-858 |#1|))) 252 (|has| |#1| (-496)) ELT) (($ (-350 (-858 (-350 |#1|)))) 248 (|has| |#1| (-496)) ELT) (($ (-858 (-350 |#1|))) 247 (|has| |#1| (-496)) ELT) (($ (-350 |#1|)) 246 (|has| |#1| (-496)) ELT) (($ (-1040 |#1| (-551 $))) 232 (|has| |#1| (-962)) ELT) (($ |#1|) 214 T ELT) (($ (-1091)) 205 T ELT) (($ (-551 $)) 156 T ELT)) (-2703 (((-633 $) $) 254 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-2591 (($ (-584 $)) 172 T ELT) (($ $) 171 T ELT)) (-2255 (((-85) (-86)) 183 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-1796 (($ (-1091) (-584 $)) 222 T ELT) (($ (-1091) $ $ $ $) 221 T ELT) (($ (-1091) $ $ $) 220 T ELT) (($ (-1091) $ $) 219 T ELT) (($ (-1091) $) 218 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-584 (-1091)) (-584 (-695))) 266 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 265 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 264 (|has| |#1| (-962)) ELT) (($ $ (-1091)) 260 (|has| |#1| (-962)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT) (($ (-1040 |#1| (-551 $)) (-1040 |#1| (-551 $))) 245 (|has| |#1| (-496)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 108 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ $ |#1|) 253 (|has| |#1| (-146)) ELT) (($ |#1| $) 145 (|has| |#1| (-962)) ELT))) +(((-29 |#1|) (-113) (-496)) (T -29)) +((-3184 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496)))) (-1218 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))) (-3184 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) (-1218 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4)))) (-1217 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496)))) (-1216 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))) (-1217 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) (-1216 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-364 |t#1|) (-10 -8 (-15 -3184 ($ $)) (-15 -1218 ((-584 $) $)) (-15 -3184 ($ $ (-1091))) (-15 -1218 ((-584 $) $ (-1091))) (-15 -1217 ($ $)) (-15 -1216 ((-584 $) $)) (-15 -1217 ($ $ (-1091))) (-15 -1216 ((-584 $) $ (-1091))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) . T) ((-556 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-556 (-485)) . T) ((-556 (-551 $)) . T) ((-556 (-858 |#1|)) |has| |#1| (-962)) ((-556 (-1091)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-201) . T) ((-246) . T) ((-258) . T) ((-260 $) . T) ((-254) . T) ((-312) . T) ((-329 |#1|) |has| |#1| (-962)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-364 |#1|) . T) ((-392) . T) ((-413) |has| |#1| (-413)) ((-456 (-551 $) $) . T) ((-456 $ $) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-591 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) . T) ((-581 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-581 |#1|) |has| |#1| (-962)) ((-655 (-350 (-485))) . T) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) . T) ((-664) . T) ((-807 $ (-1091)) |has| |#1| (-962)) ((-810 (-1091)) |has| |#1| (-962)) ((-812 (-1091)) |has| |#1| (-962)) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-833) . T) ((-916) . T) ((-951 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485))))) ((-951 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-551 $)) . T) ((-951 (-858 |#1|)) |has| |#1| (-962)) ((-951 (-1091)) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) |has| |#1| (-146)) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) |has| |#1| (-146)) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) +((-2897 (((-1002 (-179)) $) NIL T ELT)) (-2898 (((-1002 (-179)) $) NIL T ELT)) (-3135 (($ $ (-179)) 164 T ELT)) (-1219 (($ (-858 (-485)) (-1091) (-1091) (-1002 (-350 (-485))) (-1002 (-350 (-485)))) 103 T ELT)) (-2899 (((-584 (-584 (-855 (-179)))) $) 181 T ELT)) (-3947 (((-773) $) 195 T ELT))) +(((-30) (-13 (-867) (-10 -8 (-15 -1219 ($ (-858 (-485)) (-1091) (-1091) (-1002 (-350 (-485))) (-1002 (-350 (-485))))) (-15 -3135 ($ $ (-179)))))) (T -30)) +((-1219 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-858 (-485))) (-5 *3 (-1091)) (-5 *4 (-1002 (-350 (-485)))) (-5 *1 (-30)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3234 (((-1050) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2695 (((-1050) $) 10 T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-31) (-13 (-996) (-10 -8 (-15 -2695 ((-1050) $)) (-15 -3234 ((-1050) $))))) (T -31)) +((-2695 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31))))) +((-3184 ((|#2| (-1086 |#2|) (-1091)) 39 T ELT)) (-3596 (((-86) (-86)) 53 T ELT)) (-1598 (((-1086 |#2|) (-551 |#2|)) 148 (|has| |#1| (-951 (-485))) ELT)) (-1222 ((|#2| |#1| (-485)) 120 (|has| |#1| (-951 (-485))) ELT)) (-1220 ((|#2| (-1086 |#2|) |#2|) 29 T ELT)) (-1221 (((-773) (-584 |#2|)) 87 T ELT)) (-3186 ((|#2| |#2|) 143 (|has| |#1| (-951 (-485))) ELT)) (-2255 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-350 (-485))) 96 (|has| |#1| (-951 (-485))) ELT))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3184 (|#2| (-1086 |#2|) (-1091))) (-15 -3596 ((-86) (-86))) (-15 -2255 ((-85) (-86))) (-15 -1220 (|#2| (-1086 |#2|) |#2|)) (-15 -1221 ((-773) (-584 |#2|))) (IF (|has| |#1| (-951 (-485))) (PROGN (-15 ** (|#2| |#2| (-350 (-485)))) (-15 -1598 ((-1086 |#2|) (-551 |#2|))) (-15 -3186 (|#2| |#2|)) (-15 -1222 (|#2| |#1| (-485)))) |%noBranch|)) (-496) (-364 |#1|)) (T -32)) +((-1222 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-951 *4)) (-4 *3 (-496)))) (-3186 (*1 *2 *2) (-12 (-4 *3 (-951 (-485))) (-4 *3 (-496)) (-5 *1 (-32 *3 *2)) (-4 *2 (-364 *3)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-551 *5)) (-4 *5 (-364 *4)) (-4 *4 (-951 (-485))) (-4 *4 (-496)) (-5 *2 (-1086 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-951 (-485))) (-4 *4 (-496)) (-5 *1 (-32 *4 *2)) (-4 *2 (-364 *4)))) (-1221 (*1 *2 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-496)) (-5 *2 (-773)) (-5 *1 (-32 *4 *5)))) (-1220 (*1 *2 *3 *2) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) (-5 *1 (-32 *4 *2)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-364 *4)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3)))) (-3184 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *2)) (-5 *4 (-1091)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-496))))) +((-3725 (($) 10 T CONST)) (-1223 (((-85) $ $) 8 T ELT))) +(((-33 |#1|) (-10 -7 (-15 -3725 (|#1|) -3953) (-15 -1223 ((-85) |#1| |#1|))) (-34)) (T -33)) +NIL +((-3725 (($) 7 T CONST)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3401 (($ $) 10 T ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) (((-34) (-113)) (T -34)) -((-1222 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3400 (*1 *1 *1) (-4 *1 (-34))) (-3565 (*1 *1) (-4 *1 (-34))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3724 (*1 *1) (-4 *1 (-34))) (-3957 (*1 *2 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-34)) (-5 *2 (-694))))) -(-13 (-1129) (-10 -8 (-15 -1222 ((-85) $ $)) (-15 -3400 ($ $)) (-15 -3565 ($)) (-15 -3403 ((-85) $)) (-15 -3724 ($) -3952) (IF (|has| $ (-6 -3995)) (-15 -3957 ((-694) $)) |%noBranch|))) -(((-13) . T) ((-1129) . T)) -((-3498 (($ $) 11 T ELT)) (-3496 (($ $) 10 T ELT)) (-3500 (($ $) 9 T ELT)) (-3501 (($ $) 8 T ELT)) (-3499 (($ $) 7 T ELT)) (-3497 (($ $) 6 T ELT))) +((-1223 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3401 (*1 *1 *1) (-4 *1 (-34))) (-3566 (*1 *1) (-4 *1 (-34))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3725 (*1 *1) (-4 *1 (-34))) (-3958 (*1 *2 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-34)) (-5 *2 (-695))))) +(-13 (-1130) (-10 -8 (-15 -1223 ((-85) $ $)) (-15 -3401 ($ $)) (-15 -3566 ($)) (-15 -3404 ((-85) $)) (-15 -3725 ($) -3953) (IF (|has| $ (-6 -3996)) (-15 -3958 ((-695) $)) |%noBranch|))) +(((-13) . T) ((-1130) . T)) +((-3499 (($ $) 11 T ELT)) (-3497 (($ $) 10 T ELT)) (-3501 (($ $) 9 T ELT)) (-3502 (($ $) 8 T ELT)) (-3500 (($ $) 7 T ELT)) (-3498 (($ $) 6 T ELT))) (((-35) (-113)) (T -35)) -((-3498 (*1 *1 *1) (-4 *1 (-35))) (-3496 (*1 *1 *1) (-4 *1 (-35))) (-3500 (*1 *1 *1) (-4 *1 (-35))) (-3501 (*1 *1 *1) (-4 *1 (-35))) (-3499 (*1 *1 *1) (-4 *1 (-35))) (-3497 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3497 ($ $)) (-15 -3499 ($ $)) (-15 -3501 ($ $)) (-15 -3500 ($ $)) (-15 -3496 ($ $)) (-15 -3498 ($ $)))) -((-2568 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3402 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 147 T ELT)) (-3795 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 170 T ELT)) (-3797 (($ $) 168 T ELT)) (-3599 (($) 110 T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 109 T ELT)) (-2198 (((-1185) $ |#1| |#1|) 98 (|has| $ (-6 -3996)) ELT) (((-1185) $ (-484) (-484)) 200 (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-484)) 181 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 234 T ELT) (((-85) $) 228 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1730 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 225 (|has| $ (-6 -3996)) ELT) (($ $) 224 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) (|has| $ (-6 -3996))) ELT)) (-2909 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 235 T ELT) (($ $) 229 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3442 (((-85) $ (-694)) 217 T ELT)) (-3025 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 156 (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 177 (|has| $ (-6 -3996)) ELT)) (-3786 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 179 (|has| $ (-6 -3996)) ELT)) (-3789 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 175 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) 86 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 211 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-1146 (-484)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 182 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 180 (|has| $ (-6 -3996)) ELT) (($ $ #2="rest" $) 178 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 176 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 155 (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) 154 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 245 T ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 197 (|has| $ (-6 -3995)) ELT)) (-3796 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 169 T ELT)) (-2231 (((-3 |#2| #5="failed") |#1| $) 68 T ELT)) (-3724 (($) 7 T CONST)) (-2297 (($ $) 226 (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) 236 T ELT)) (-3799 (($ $ (-694)) 164 T ELT) (($ $) 162 T ELT)) (-2368 (($ $) 243 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1353 (($ $) 62 (OR (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3995))) (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3995)))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3995)) ELT) (((-3 |#2| #5#) |#1| $) 69 T ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 249 T ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 244 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3995)) ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 199 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 196 (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3995))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 198 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3995))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 195 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 194 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) 85 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 212 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ |#1|) 87 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484)) 210 T ELT)) (-3443 (((-85) $) 214 T ELT)) (-3419 (((-484) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 233 T ELT) (((-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 232 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484)) 231 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2889 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) 77 (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 113 (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 139 (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) 145 T ELT)) (-3027 (((-85) $ $) 153 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3614 (($ (-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 190 T ELT)) (-3719 (((-85) $ (-694)) 216 T ELT)) (-2200 ((|#1| $) 95 (|has| |#1| (-756)) ELT) (((-484) $) 202 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 218 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2856 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ $) 246 T ELT) (($ $ $) 242 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3518 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ $) 237 T ELT) (($ $ $) 230 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) 78 (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 121 T ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 241 T ELT)) (-3245 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3995))) ELT) (((-85) |#2| $) 80 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 123 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 255 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) 94 (|has| |#1| (-756)) ELT) (((-484) $) 203 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 219 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3326 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 34 T ELT) (($ (-1 |#2| |#2|) $) 73 (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 112 (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 254 T ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 72 T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 111 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 108 T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ $) 187 T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 138 T ELT)) (-3534 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 257 T ELT)) (-3716 (((-85) $ (-694)) 215 T ELT)) (-3030 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 150 T ELT)) (-3527 (((-85) $) 146 T ELT)) (-3242 (((-1073) $) 22 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3798 (($ $ (-694)) 167 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 165 T ELT)) (-2232 (((-583 |#1|) $) 70 T ELT)) (-2233 (((-85) |#1| $) 71 T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484)) 248 T ELT) (($ $ $ (-484)) 247 T ELT)) (-2304 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484)) 184 T ELT) (($ $ $ (-484)) 183 T ELT)) (-2203 (((-583 |#1|) $) 92 T ELT) (((-583 (-484)) $) 205 T ELT)) (-2204 (((-85) |#1| $) 91 T ELT) (((-85) (-484) $) 206 T ELT)) (-3243 (((-1033) $) 21 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3801 ((|#2| $) 96 (|has| |#1| (-756)) ELT) (($ $ (-694)) 161 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 159 T ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-2199 (($ $ |#2|) 97 (|has| $ (-6 -3996)) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 201 (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3444 (((-85) $) 213 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) 75 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 119 T ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 239 T ELT)) (-3768 (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 84 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 83 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 82 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) 81 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 117 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 116 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 115 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) 114 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 143 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 142 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 141 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) 140 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#2| $) 93 (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 204 (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2205 (((-583 |#2|) $) 90 T ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 207 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#2| $ |#1|) 89 T ELT) ((|#2| $ |#1| |#2|) 88 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 209 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484)) 208 T ELT) (($ $ (-1146 (-484))) 191 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #1#) 166 T ELT) (($ $ #2#) 163 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #3#) 160 T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #4#) 148 T ELT)) (-3029 (((-484) $ $) 151 T ELT)) (-1466 (($) 53 T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1571 (($ $ (-484)) 251 T ELT) (($ $ (-1146 (-484))) 250 T ELT)) (-2305 (($ $ (-484)) 186 T ELT) (($ $ (-1146 (-484))) 185 T ELT)) (-3633 (((-85) $) 149 T ELT)) (-3792 (($ $) 173 T ELT)) (-3790 (($ $) 174 (|has| $ (-6 -3996)) ELT)) (-3793 (((-694) $) 172 T ELT)) (-3794 (($ $) 171 T ELT)) (-1946 (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3995))) ELT) (((-694) |#2| $) 79 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT) (((-694) (-1 (-85) |#2|) $) 76 (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 122 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 120 T ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 256 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 240 T ELT)) (-1731 (($ $ $ (-484)) 227 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 63 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-473))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-473)))) ELT)) (-3530 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 192 T ELT)) (-3791 (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 253 T ELT) (($ $ $) 252 T ELT)) (-3802 (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 189 T ELT) (($ (-583 $)) 188 T ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 158 T ELT) (($ $ $) 157 T ELT)) (-3946 (((-772) $) 17 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ELT)) (-3522 (((-583 $) $) 144 T ELT)) (-3028 (((-85) $ $) 152 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1265 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1223 (((-632 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |#1| $) 137 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) 74 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 118 T ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 238 T ELT)) (-2566 (((-85) $ $) 220 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2567 (((-85) $ $) 222 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3056 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2684 (((-85) $ $) 221 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2685 (((-85) $ $) 223 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-36 |#1| |#2|) (-113) (-1013) (-1013)) (T -36)) -((-1223 (*1 *2 *3 *1) (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-632 (-2 (|:| -3860 *3) (|:| |entry| *4))))))) -(-13 (-1107 |t#1| |t#2|) (-608 (-2 (|:| -3860 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1223 ((-632 (-2 (|:| -3860 |t#1|) (|:| |entry| |t#2|))) |t#1| $)))) -(((-34) . T) ((-76 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-1013)) (|has| |#2| (-552 (-772)))) ((-124 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-473)) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ((-183 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1146 (-484)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-237 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-318 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-324 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-429 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-538 (-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-538 |#1| |#2|) . T) ((-455 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-549 |#1| |#2|) . T) ((-593 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-608 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-756) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ((-759) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ((-923 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-1013) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) (|has| |#2| (-1013))) ((-1035 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-1064 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-1107 |#1| |#2|) . T) ((-1129) . T) ((-1168 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T)) -((-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-37 |#1| |#2|) (-10 -7 (-15 -3946 (|#1| |#2|)) (-15 -3946 (|#1| (-484))) (-15 -3946 ((-772) |#1|))) (-38 |#2|) (-146)) (T -37)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +((-3499 (*1 *1 *1) (-4 *1 (-35))) (-3497 (*1 *1 *1) (-4 *1 (-35))) (-3501 (*1 *1 *1) (-4 *1 (-35))) (-3502 (*1 *1 *1) (-4 *1 (-35))) (-3500 (*1 *1 *1) (-4 *1 (-35))) (-3498 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3498 ($ $)) (-15 -3500 ($ $)) (-15 -3502 ($ $)) (-15 -3501 ($ $)) (-15 -3497 ($ $)) (-15 -3499 ($ $)))) +((-2569 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3403 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 147 T ELT)) (-3796 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 170 T ELT)) (-3798 (($ $) 168 T ELT)) (-3600 (($) 110 T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 109 T ELT)) (-2199 (((-1186) $ |#1| |#1|) 98 (|has| $ (-6 -3997)) ELT) (((-1186) $ (-485) (-485)) 200 (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) 181 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 234 T ELT) (((-85) $) 228 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1731 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 225 (|has| $ (-6 -3997)) ELT) (($ $) 224 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) (|has| $ (-6 -3997))) ELT)) (-2910 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 235 T ELT) (($ $) 229 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3443 (((-85) $ (-695)) 217 T ELT)) (-3026 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 156 (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 177 (|has| $ (-6 -3997)) ELT)) (-3787 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 179 (|has| $ (-6 -3997)) ELT)) (-3790 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 175 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 86 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 211 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-1147 (-485)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 182 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 180 (|has| $ (-6 -3997)) ELT) (($ $ #2="rest" $) 178 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 176 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 155 (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) 154 (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 245 T ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 197 (|has| $ (-6 -3996)) ELT)) (-3797 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 169 T ELT)) (-2232 (((-3 |#2| #5="failed") |#1| $) 68 T ELT)) (-3725 (($) 7 T CONST)) (-2298 (($ $) 226 (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) 236 T ELT)) (-3800 (($ $ (-695)) 164 T ELT) (($ $) 162 T ELT)) (-2369 (($ $) 243 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-1354 (($ $) 62 (OR (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3996))) (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3996)))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3996)) ELT) (((-3 |#2| #5#) |#1| $) 69 T ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 249 T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 244 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3996)) ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 199 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 196 (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3996))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 198 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3996))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 195 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 194 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) 85 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 212 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) 87 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) 210 T ELT)) (-3444 (((-85) $) 214 T ELT)) (-3420 (((-485) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 233 T ELT) (((-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 232 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) ELT) (((-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) 231 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-2890 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) 77 (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 113 (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 139 (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) 145 T ELT)) (-3028 (((-85) $ $) 153 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-3615 (($ (-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 190 T ELT)) (-3720 (((-85) $ (-695)) 216 T ELT)) (-2201 ((|#1| $) 95 (|has| |#1| (-757)) ELT) (((-485) $) 202 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 218 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2857 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) 246 T ELT) (($ $ $) 242 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3519 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) 237 T ELT) (($ $ $) 230 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) 78 (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 121 T ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 241 T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3996))) ELT) (((-85) |#2| $) 80 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3996))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 123 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 255 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) 94 (|has| |#1| (-757)) ELT) (((-485) $) 203 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 219 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 34 T ELT) (($ (-1 |#2| |#2|) $) 73 (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 112 (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 254 T ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 72 T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 111 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 108 T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) 187 T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 138 T ELT)) (-3535 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 257 T ELT)) (-3717 (((-85) $ (-695)) 215 T ELT)) (-3031 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 150 T ELT)) (-3528 (((-85) $) 146 T ELT)) (-3243 (((-1074) $) 22 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3799 (($ $ (-695)) 167 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 165 T ELT)) (-2233 (((-584 |#1|) $) 70 T ELT)) (-2234 (((-85) |#1| $) 71 T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) 248 T ELT) (($ $ $ (-485)) 247 T ELT)) (-2305 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) 184 T ELT) (($ $ $ (-485)) 183 T ELT)) (-2204 (((-584 |#1|) $) 92 T ELT) (((-584 (-485)) $) 205 T ELT)) (-2205 (((-85) |#1| $) 91 T ELT) (((-85) (-485) $) 206 T ELT)) (-3244 (((-1034) $) 21 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3802 ((|#2| $) 96 (|has| |#1| (-757)) ELT) (($ $ (-695)) 161 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 159 T ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-2200 (($ $ |#2|) 97 (|has| $ (-6 -3997)) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 201 (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3445 (((-85) $) 213 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) 75 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 119 T ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 239 T ELT)) (-3769 (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 84 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 83 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 82 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) 81 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 117 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 116 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 115 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 114 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 143 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 142 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 141 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 140 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#2| $) 93 (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1014))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 204 (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-2206 (((-584 |#2|) $) 90 T ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 207 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#2| $ |#1|) 89 T ELT) ((|#2| $ |#1| |#2|) 88 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 209 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) 208 T ELT) (($ $ (-1147 (-485))) 191 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #1#) 166 T ELT) (($ $ #2#) 163 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #3#) 160 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #4#) 148 T ELT)) (-3030 (((-485) $ $) 151 T ELT)) (-1467 (($) 53 T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1572 (($ $ (-485)) 251 T ELT) (($ $ (-1147 (-485))) 250 T ELT)) (-2306 (($ $ (-485)) 186 T ELT) (($ $ (-1147 (-485))) 185 T ELT)) (-3634 (((-85) $) 149 T ELT)) (-3793 (($ $) 173 T ELT)) (-3791 (($ $) 174 (|has| $ (-6 -3997)) ELT)) (-3794 (((-695) $) 172 T ELT)) (-3795 (($ $) 171 T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3996))) ELT) (((-695) |#2| $) 79 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3996))) ELT) (((-695) (-1 (-85) |#2|) $) 76 (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 122 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 120 T ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 256 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 240 T ELT)) (-1732 (($ $ $ (-485)) 227 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-474))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-474)))) ELT)) (-3531 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 192 T ELT)) (-3792 (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 253 T ELT) (($ $ $) 252 T ELT)) (-3803 (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 189 T ELT) (($ (-584 $)) 188 T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 158 T ELT) (($ $ $) 157 T ELT)) (-3947 (((-773) $) 17 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-3523 (((-584 $) $) 144 T ELT)) (-3029 (((-85) $ $) 152 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-1266 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1224 (((-633 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |#1| $) 137 T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) 74 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 118 T ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 238 T ELT)) (-2567 (((-85) $ $) 220 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2568 (((-85) $ $) 222 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3057 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2685 (((-85) $ $) 221 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2686 (((-85) $ $) 223 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-36 |#1| |#2|) (-113) (-1014) (-1014)) (T -36)) +((-1224 (*1 *2 *3 *1) (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-633 (-2 (|:| -3861 *3) (|:| |entry| *4))))))) +(-13 (-1108 |t#1| |t#2|) (-609 (-2 (|:| -3861 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1224 ((-633 (-2 (|:| -3861 |t#1|) (|:| |entry| |t#2|))) |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-474)) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ((-183 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1147 (-485)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-237 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-324 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-429 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-539 (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-539 |#1| |#2|) . T) ((-456 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-550 |#1| |#2|) . T) ((-594 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-609 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-757) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ((-760) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ((-924 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-1014) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) (|has| |#2| (-1014))) ((-1036 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-1065 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-1108 |#1| |#2|) . T) ((-1130) . T) ((-1169 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T)) +((-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-37 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| |#2|)) (-15 -3947 (|#1| (-485))) (-15 -3947 ((-773) |#1|))) (-38 |#2|) (-146)) (T -37)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) (((-38 |#1|) (-113) (-146)) (T -38)) NIL -(-13 (-961) (-654 |t#1|) (-555 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-3418 (((-348 |#1|) |#1|) 41 T ELT)) (-3732 (((-348 |#1|) |#1|) 30 T ELT) (((-348 |#1|) |#1| (-583 (-48))) 33 T ELT)) (-1224 (((-85) |#1|) 59 T ELT))) -(((-39 |#1|) (-10 -7 (-15 -3732 ((-348 |#1|) |#1| (-583 (-48)))) (-15 -3732 ((-348 |#1|) |#1|)) (-15 -3418 ((-348 |#1|) |#1|)) (-15 -1224 ((-85) |#1|))) (-1155 (-48))) (T -39)) -((-1224 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48))))) (-3418 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48))))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48))))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1647 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2063 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2061 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1782 (((-630 (-350 |#2|)) (-1179 $)) NIL T ELT) (((-630 (-350 |#2|))) NIL T ELT)) (-3330 (((-350 |#2|) $) NIL T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3136 (((-694)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1661 (((-85)) NIL T ELT)) (-1660 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| (-350 |#2|) (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-350 |#2|) (-950 (-350 (-484)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| (-350 |#2|) (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| (-350 |#2|) (-950 (-350 (-484)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1792 (($ (-1179 (-350 |#2|)) (-1179 $)) NIL T ELT) (($ (-1179 (-350 |#2|))) 60 T ELT) (($ (-1179 |#2|) |#2|) 130 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2564 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1781 (((-630 (-350 |#2|)) $ (-1179 $)) NIL T ELT) (((-630 (-350 |#2|)) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-350 |#2|)) (-630 $)) NIL T ELT)) (-1652 (((-1179 $) (-1179 $)) NIL T ELT)) (-3842 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1639 (((-583 (-583 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1664 (((-85) |#1| |#1|) NIL T ELT)) (-3108 (((-830)) NIL T ELT)) (-2994 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1659 (((-85)) NIL T ELT)) (-1658 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2563 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3503 (($ $) NIL T ELT)) (-2833 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1680 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1764 (($ $ (-694)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3723 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3772 (((-830) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-743 (-830)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3377 (((-694)) NIL T ELT)) (-1653 (((-1179 $) (-1179 $)) 105 T ELT)) (-3132 (((-350 |#2|) $) NIL T ELT)) (-1640 (((-583 (-857 |#1|)) (-1090)) NIL (|has| |#1| (-312)) ELT)) (-3445 (((-632 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2014 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2010 (((-830) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3079 ((|#3| $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-1179 $) $) NIL T ELT) (((-630 (-350 |#2|)) (-1179 $)) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1225 (((-1185) (-694)) 83 T ELT)) (-1648 (((-630 (-350 |#2|))) 55 T ELT)) (-1650 (((-630 (-350 |#2|))) 48 T ELT)) (-2484 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1645 (($ (-1179 |#2|) |#2|) 131 T ELT)) (-1649 (((-630 (-350 |#2|))) 49 T ELT)) (-1651 (((-630 (-350 |#2|))) 47 T ELT)) (-1644 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1646 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1657 (((-1179 $)) 46 T ELT)) (-3918 (((-1179 $)) 45 T ELT)) (-1656 (((-85) $) NIL T ELT)) (-1655 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3446 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2400 (($ (-830)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1642 (((-3 |#2| #1#)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1666 (((-694)) NIL T ELT)) (-2409 (($) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3732 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-694) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3800 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1643 (((-3 |#2| #1#)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3757 (((-350 |#2|) (-1179 $)) NIL T ELT) (((-350 |#2|)) 43 T ELT)) (-1765 (((-694) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3758 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-694)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2408 (((-630 (-350 |#2|)) (-1179 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3185 ((|#3|) 54 T ELT)) (-1674 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3224 (((-1179 (-350 |#2|)) $ (-1179 $)) NIL T ELT) (((-630 (-350 |#2|)) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 (-350 |#2|)) $) 61 T ELT) (((-630 (-350 |#2|)) (-1179 $)) 106 T ELT)) (-3972 (((-1179 (-350 |#2|)) $) NIL T ELT) (($ (-1179 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1654 (((-1179 $) (-1179 $)) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2702 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-632 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2449 ((|#3| $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1663 (((-85)) 41 T ELT)) (-1662 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-1641 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1665 (((-85)) NIL T ELT)) (-2660 (($) 17 T CONST)) (-2666 (($) 27 T CONST)) (-2669 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-694)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-484))) NIL (|has| (-350 |#2|) (-312)) ELT))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-291 |#1| |#2| |#3|) (-10 -7 (-15 -1225 ((-1185) (-694))))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) |#3|) (T -40)) -((-1225 (*1 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-4 *5 (-1155 *4)) (-5 *2 (-1185)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1155 (-350 *5))) (-14 *7 *6)))) -((-1226 ((|#2| |#2|) 47 T ELT)) (-1231 ((|#2| |#2|) 136 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-950 (-484))))) ELT)) (-1230 ((|#2| |#2|) 100 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-950 (-484))))) ELT)) (-1229 ((|#2| |#2|) 101 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-950 (-484))))) ELT)) (-1232 ((|#2| (-86) |#2| (-694)) 80 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-950 (-484))))) ELT)) (-1228 (((-1085 |#2|) |#2|) 44 T ELT)) (-1227 ((|#2| |#2| (-583 (-550 |#2|))) 18 T ELT) ((|#2| |#2| (-583 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1226 (|#2| |#2|)) (-15 -1227 (|#2| |#2|)) (-15 -1227 (|#2| |#2| |#2|)) (-15 -1227 (|#2| |#2| (-583 |#2|))) (-15 -1227 (|#2| |#2| (-583 (-550 |#2|)))) (-15 -1228 ((-1085 |#2|) |#2|)) (IF (|has| |#1| (-13 (-392) (-950 (-484)))) (IF (|has| |#2| (-364 |#1|)) (PROGN (-15 -1229 (|#2| |#2|)) (-15 -1230 (|#2| |#2|)) (-15 -1231 (|#2| |#2|)) (-15 -1232 (|#2| (-86) |#2| (-694)))) |%noBranch|) |%noBranch|)) (-495) (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1039 |#1| (-550 $)) $)) (-15 -2997 ((-1039 |#1| (-550 $)) $)) (-15 -3946 ($ (-1039 |#1| (-550 $))))))) (T -41)) -((-1232 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-694)) (-4 *5 (-13 (-392) (-950 (-484)))) (-4 *5 (-495)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1039 *5 (-550 $)) $)) (-15 -2997 ((-1039 *5 (-550 $)) $)) (-15 -3946 ($ (-1039 *5 (-550 $))))))))) (-1231 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1039 *3 (-550 $)) $)) (-15 -2997 ((-1039 *3 (-550 $)) $)) (-15 -3946 ($ (-1039 *3 (-550 $))))))))) (-1230 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1039 *3 (-550 $)) $)) (-15 -2997 ((-1039 *3 (-550 $)) $)) (-15 -3946 ($ (-1039 *3 (-550 $))))))))) (-1229 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1039 *3 (-550 $)) $)) (-15 -2997 ((-1039 *3 (-550 $)) $)) (-15 -3946 ($ (-1039 *3 (-550 $))))))))) (-1228 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-1085 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1039 *4 (-550 $)) $)) (-15 -2997 ((-1039 *4 (-550 $)) $)) (-15 -3946 ($ (-1039 *4 (-550 $))))))))) (-1227 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-550 *2))) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1039 *4 (-550 $)) $)) (-15 -2997 ((-1039 *4 (-550 $)) $)) (-15 -3946 ($ (-1039 *4 (-550 $))))))) (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))) (-1227 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1039 *4 (-550 $)) $)) (-15 -2997 ((-1039 *4 (-550 $)) $)) (-15 -3946 ($ (-1039 *4 (-550 $))))))) (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))) (-1227 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1039 *3 (-550 $)) $)) (-15 -2997 ((-1039 *3 (-550 $)) $)) (-15 -3946 ($ (-1039 *3 (-550 $))))))))) (-1227 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1039 *3 (-550 $)) $)) (-15 -2997 ((-1039 *3 (-550 $)) $)) (-15 -3946 ($ (-1039 *3 (-550 $))))))))) (-1226 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2998 ((-1039 *3 (-550 $)) $)) (-15 -2997 ((-1039 *3 (-550 $)) $)) (-15 -3946 ($ (-1039 *3 (-550 $)))))))))) -((-3732 (((-348 (-1085 |#3|)) (-1085 |#3|) (-583 (-48))) 23 T ELT) (((-348 |#3|) |#3| (-583 (-48))) 19 T ELT))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3732 ((-348 |#3|) |#3| (-583 (-48)))) (-15 -3732 ((-348 (-1085 |#3|)) (-1085 |#3|) (-583 (-48))))) (-756) (-717) (-861 (-48) |#2| |#1|)) (T -42)) -((-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *7 (-861 (-48) *6 *5)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-348 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-861 (-48) *6 *5))))) -((-1236 (((-694) |#2|) 70 T ELT)) (-1234 (((-694) |#2|) 74 T ELT)) (-1249 (((-583 |#2|)) 37 T ELT)) (-1233 (((-694) |#2|) 73 T ELT)) (-1235 (((-694) |#2|) 69 T ELT)) (-1237 (((-694) |#2|) 72 T ELT)) (-1247 (((-583 (-630 |#1|))) 65 T ELT)) (-1242 (((-583 |#2|)) 60 T ELT)) (-1240 (((-583 |#2|) |#2|) 48 T ELT)) (-1244 (((-583 |#2|)) 62 T ELT)) (-1243 (((-583 |#2|)) 61 T ELT)) (-1246 (((-583 (-630 |#1|))) 53 T ELT)) (-1241 (((-583 |#2|)) 59 T ELT)) (-1239 (((-583 |#2|) |#2|) 47 T ELT)) (-1238 (((-583 |#2|)) 55 T ELT)) (-1248 (((-583 (-630 |#1|))) 66 T ELT)) (-1245 (((-583 |#2|)) 64 T ELT)) (-2012 (((-1179 |#2|) (-1179 |#2|)) 99 (|has| |#1| (-258)) ELT))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1233 ((-694) |#2|)) (-15 -1234 ((-694) |#2|)) (-15 -1235 ((-694) |#2|)) (-15 -1236 ((-694) |#2|)) (-15 -1237 ((-694) |#2|)) (-15 -1238 ((-583 |#2|))) (-15 -1239 ((-583 |#2|) |#2|)) (-15 -1240 ((-583 |#2|) |#2|)) (-15 -1241 ((-583 |#2|))) (-15 -1242 ((-583 |#2|))) (-15 -1243 ((-583 |#2|))) (-15 -1244 ((-583 |#2|))) (-15 -1245 ((-583 |#2|))) (-15 -1246 ((-583 (-630 |#1|)))) (-15 -1247 ((-583 (-630 |#1|)))) (-15 -1248 ((-583 (-630 |#1|)))) (-15 -1249 ((-583 |#2|))) (IF (|has| |#1| (-258)) (-15 -2012 ((-1179 |#2|) (-1179 |#2|))) |%noBranch|)) (-495) (-361 |#1|)) (T -43)) -((-2012 (*1 *2 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-495)) (-5 *1 (-43 *3 *4)))) (-1249 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1248 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1247 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1246 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1242 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1241 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1240 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1239 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1238 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1237 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1236 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1235 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1234 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1233 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1772 (((-3 $ #1="failed")) NIL (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-3223 (((-1179 (-630 |#1|)) (-1179 $)) NIL T ELT) (((-1179 (-630 |#1|))) 24 T ELT)) (-1729 (((-1179 $)) 52 T ELT)) (-3724 (($) NIL T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#1| (-495)) ELT)) (-1703 (((-3 $ #1#)) NIL (|has| |#1| (-495)) ELT)) (-1788 (((-630 |#1|) (-1179 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-1727 ((|#1| $) NIL T ELT)) (-1786 (((-630 |#1|) $ (-1179 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| |#1| (-495)) ELT)) (-1900 (((-1085 (-857 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1725 ((|#1| $) NIL T ELT)) (-1705 (((-1085 |#1|) $) NIL (|has| |#1| (-495)) ELT)) (-1790 ((|#1| (-1179 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1723 (((-1085 |#1|) $) NIL T ELT)) (-1717 (((-85)) 99 T ELT)) (-1792 (($ (-1179 |#1|) (-1179 $)) NIL T ELT) (($ (-1179 |#1|)) NIL T ELT)) (-3467 (((-3 $ #1#) $) 14 (|has| |#1| (-495)) ELT)) (-3108 (((-830)) 53 T ELT)) (-1714 (((-85)) NIL T ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1712 (((-85)) 101 T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#1| (-495)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#1| (-495)) ELT)) (-1789 (((-630 |#1|) (-1179 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-1728 ((|#1| $) NIL T ELT)) (-1787 (((-630 |#1|) $ (-1179 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#1| (-495)) ELT)) (-1904 (((-1085 (-857 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1726 ((|#1| $) NIL T ELT)) (-1706 (((-1085 |#1|) $) NIL (|has| |#1| (-495)) ELT)) (-1791 ((|#1| (-1179 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1724 (((-1085 |#1|) $) NIL T ELT)) (-1718 (((-85)) 98 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1709 (((-85)) 106 T ELT)) (-1711 (((-85)) 105 T ELT)) (-1713 (((-85)) 107 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1716 (((-85)) 100 T ELT)) (-3800 ((|#1| $ (-484)) 55 T ELT)) (-3224 (((-1179 |#1|) $ (-1179 $)) 48 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#1|) $) 28 T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-3972 (((-1179 |#1|) $) NIL T ELT) (($ (-1179 |#1|)) NIL T ELT)) (-1892 (((-583 (-857 |#1|)) (-1179 $)) NIL T ELT) (((-583 (-857 |#1|))) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-1722 (((-85)) 95 T ELT)) (-3946 (((-772) $) 71 T ELT) (($ (-1179 |#1|)) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) 51 T ELT)) (-1707 (((-583 (-1179 |#1|))) NIL (|has| |#1| (-495)) ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-1720 (((-85)) 91 T ELT)) (-2545 (($ (-630 |#1|) $) 18 T ELT)) (-2434 (($ $ $) NIL T ELT)) (-1721 (((-85)) 97 T ELT)) (-1719 (((-85)) 92 T ELT)) (-1715 (((-85)) 90 T ELT)) (-2660 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1056 |#2| |#1|) $) 19 T ELT))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-361 |#1|) (-590 (-1056 |#2| |#1|)) (-10 -8 (-15 -3946 ($ (-1179 |#1|))))) (-312) (-830) (-583 (-1090)) (-1179 (-630 |#1|))) (T -44)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-312)) (-14 *6 (-1179 (-630 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))))) -((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3402 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3795 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3797 (($ $) NIL T ELT)) (-3599 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3996)) ELT) (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1730 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756))) ELT)) (-2909 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3442 (((-85) $ (-694)) NIL T ELT)) (-3025 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 34 (|has| $ (-6 -3996)) ELT)) (-3786 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT)) (-3789 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) 59 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-1146 (-484)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3796 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2231 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3724 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) NIL T ELT)) (-3799 (($ $ (-694)) NIL T ELT) (($ $) 30 T ELT)) (-2368 (($ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#2| #5#) |#1| $) 62 T ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT)) (-3443 (((-85) $) NIL T ELT)) (-3419 (((-484) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2889 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3614 (($ (-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3719 (((-85) $ (-694)) NIL T ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT) (((-484) $) 39 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2856 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3518 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT) (((-484) $) 41 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3326 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3534 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3716 (((-85) $ (-694)) NIL T ELT)) (-3030 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3527 (((-85) $) NIL T ELT)) (-3242 (((-1073) $) 50 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3798 (($ $ (-694)) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2232 (((-583 |#1|) $) 23 T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2304 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT) (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT) (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3801 ((|#2| $) NIL (|has| |#1| (-756)) ELT) (($ $ (-694)) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3444 (((-85) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3403 (((-85) $) 19 T ELT)) (-3565 (($) 15 T ELT)) (-3800 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-1466 (($) 14 T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1571 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-3633 (((-85) $) NIL T ELT)) (-3792 (($ $) NIL T ELT)) (-3790 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-3793 (((-694) $) NIL T ELT)) (-3794 (($ $) NIL T ELT)) (-1946 (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1731 (($ $ $ (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3530 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3791 (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3802 (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3946 (((-772) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-3522 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1223 (((-632 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) |#1| $) 54 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2684 (((-85) $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3957 (((-694) $) 26 T ELT))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1013) (-1013)) (T -45)) -NIL -((-3937 (((-85) $) 12 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-350 (-484)) $) 25 T ELT) (($ $ (-350 (-484))) NIL T ELT))) -(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-350 (-484)))) (-15 * (|#1| (-350 (-484)) |#1|)) (-15 -3937 ((-85) |#1|)) (-15 -3958 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-47 |#2| |#3|) (-961) (-716)) (T -46)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3937 (((-85) $) 82 T ELT)) (-2893 (($ |#1| |#2|) 81 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3948 ((|#2| $) 84 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3677 ((|#1| $ |#2|) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-47 |#1| |#2|) (-113) (-961) (-716)) (T -47)) -((-3174 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-2894 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) (-2893 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3959 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3677 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3949 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-312))))) -(-13 (-961) (-82 |t#1| |t#1|) (-10 -8 (-15 -3174 (|t#1| $)) (-15 -2894 ($ $)) (-15 -3948 (|t#2| $)) (-15 -3958 ($ (-1 |t#1| |t#1|) $)) (-15 -3937 ((-85) $)) (-15 -2893 ($ |t#1| |t#2|)) (-15 -3959 ($ $)) (-15 -3677 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-312)) (-15 -3949 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-495)) (-6 (-495)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-484)))) (-6 (-38 (-350 (-484)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-246) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-1215 (((-583 $) (-1085 $) (-1090)) NIL T ELT) (((-583 $) (-1085 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-1216 (($ (-1085 $) (-1090)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3188 (((-85) $) 9 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1600 (((-583 (-550 $)) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1604 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-3037 (($ $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1217 (((-583 $) (-1085 $) (-1090)) NIL T ELT) (((-583 $) (-1085 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-3183 (($ (-1085 $) (-1090)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3157 (((-3 (-550 $) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT)) (-3156 (((-550 $) $) NIL T ELT) (((-484) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-350 (-484)))) (|:| |vec| (-1179 (-350 (-484))))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-350 (-484))) (-630 $)) NIL T ELT)) (-3842 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-2573 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1599 (((-583 (-86)) $) NIL T ELT)) (-3595 (((-86) (-86)) NIL T ELT)) (-2410 (((-85) $) 11 T ELT)) (-2673 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-2998 (((-1039 (-484) (-550 $)) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-3132 (((-1085 $) (-1085 $) (-550 $)) NIL T ELT) (((-1085 $) (-1085 $) (-583 (-550 $))) NIL T ELT) (($ $ (-550 $)) NIL T ELT) (($ $ (-583 (-550 $))) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1597 (((-1085 $) (-550 $)) NIL (|has| $ (-961)) ELT)) (-3958 (($ (-1 $ $) (-550 $)) NIL T ELT)) (-1602 (((-3 (-550 $) #1#) $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-350 (-484)))) (|:| |vec| (-1179 (-350 (-484))))) (-1179 $) $) NIL T ELT) (((-630 (-350 (-484))) (-1179 $)) NIL T ELT)) (-1891 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1601 (((-583 (-550 $)) $) NIL T ELT)) (-2235 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2633 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1090)) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-2603 (((-694) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1598 (((-85) $ $) NIL T ELT) (((-85) $ (-1090)) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2674 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-3768 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1090) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1090) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-3800 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1603 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2997 (((-1039 (-484) (-550 $)) $) NIL T ELT)) (-3185 (($ $) NIL (|has| $ (-961)) ELT)) (-3972 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-330)) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-550 $)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1039 (-484) (-550 $))) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-2590 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2254 (((-85) (-86)) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 6 T CONST)) (-2666 (($) 10 T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3056 (((-85) $ $) 13 T ELT)) (-3949 (($ $ $) NIL T ELT)) (-3837 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-350 (-484)) $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT))) -(((-48) (-13 (-254) (-27) (-950 (-484)) (-950 (-350 (-484))) (-580 (-484)) (-933) (-580 (-350 (-484))) (-120) (-553 (-142 (-330))) (-190) (-555 (-1039 (-484) (-550 $))) (-10 -8 (-15 -2998 ((-1039 (-484) (-550 $)) $)) (-15 -2997 ((-1039 (-484) (-550 $)) $)) (-15 -3842 ($ $)) (-15 -3132 ((-1085 $) (-1085 $) (-550 $))) (-15 -3132 ((-1085 $) (-1085 $) (-583 (-550 $)))) (-15 -3132 ($ $ (-550 $))) (-15 -3132 ($ $ (-583 (-550 $))))))) (T -48)) -((-2998 (*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-48)))) (-5 *1 (-48)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-48)))) (-5 *1 (-48)))) (-3842 (*1 *1 *1) (-5 *1 (-48))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-48))) (-5 *3 (-550 (-48))) (-5 *1 (-48)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-48))) (-5 *3 (-583 (-550 (-48)))) (-5 *1 (-48)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-550 (-48))) (-5 *1 (-48)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-48)))) (-5 *1 (-48))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1938 (((-583 (-446)) $) 17 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 7 T ELT)) (-3233 (((-1095) $) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-49) (-13 (-1013) (-10 -8 (-15 -1938 ((-583 (-446)) $)) (-15 -3233 ((-1095) $))))) (T -49)) -((-1938 (*1 *2 *1) (-12 (-5 *2 (-583 (-446))) (-5 *1 (-49)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-49))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 86 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2664 (((-85) $) 31 T ELT)) (-3157 (((-3 |#1| #1#) $) 34 T ELT)) (-3156 ((|#1| $) 35 T ELT)) (-3959 (($ $) 41 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3174 ((|#1| $) 32 T ELT)) (-1455 (($ $) 75 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1454 (((-85) $) 44 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($ (-694)) 73 T ELT)) (-3943 (($ (-583 (-484))) 74 T ELT)) (-3948 (((-694) $) 45 T ELT)) (-3946 (((-772) $) 92 T ELT) (($ (-484)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3677 ((|#1| $ $) 29 T ELT)) (-3126 (((-694)) 72 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 46 T CONST)) (-2666 (($) 17 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 65 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT))) -(((-50 |#1| |#2|) (-13 (-560 |#1|) (-950 |#1|) (-10 -8 (-15 -3174 (|#1| $)) (-15 -1455 ($ $)) (-15 -3959 ($ $)) (-15 -3677 (|#1| $ $)) (-15 -2409 ($ (-694))) (-15 -3943 ($ (-583 (-484)))) (-15 -1454 ((-85) $)) (-15 -2664 ((-85) $)) (-15 -3948 ((-694) $)) (-15 -3958 ($ (-1 |#1| |#1|) $)))) (-961) (-583 (-1090))) (T -50)) -((-3174 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1090))))) (-1455 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1090))))) (-3959 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1090))))) (-3677 (*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1090))))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1090))))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1090))))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1090))))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1090))))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1090))))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-50 *3 *4)) (-14 *4 (-583 (-1090)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1250 (((-696) $) 8 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1251 (((-1015) $) 10 T ELT)) (-3946 (((-772) $) 15 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1252 (($ (-1015) (-696)) 16 T ELT)) (-3056 (((-85) $ $) 12 T ELT))) -(((-51) (-13 (-1013) (-10 -8 (-15 -1252 ($ (-1015) (-696))) (-15 -1251 ((-1015) $)) (-15 -1250 ((-696) $))))) (T -51)) -((-1252 (*1 *1 *2 *3) (-12 (-5 *2 (-1015)) (-5 *3 (-696)) (-5 *1 (-51)))) (-1251 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-51)))) (-1250 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-51))))) -((-2664 (((-85) (-51)) 18 T ELT)) (-3157 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3156 ((|#1| (-51)) 21 T ELT)) (-3946 (((-51) |#1|) 14 T ELT))) -(((-52 |#1|) (-10 -7 (-15 -3946 ((-51) |#1|)) (-15 -3157 ((-3 |#1| "failed") (-51))) (-15 -2664 ((-85) (-51))) (-15 -3156 (|#1| (-51)))) (-1129)) (T -52)) -((-3156 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1129)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1129)))) (-3157 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1129)))) (-3946 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1129))))) -((-2545 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2545 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-961) (-590 |#1|) (-761 |#1|)) (T -53)) -((-2545 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-961)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-761 *5))))) -((-1254 ((|#3| |#3| (-583 (-1090))) 44 T ELT)) (-1253 ((|#3| (-583 (-987 |#1| |#2| |#3|)) |#3| (-830)) 32 T ELT) ((|#3| (-583 (-987 |#1| |#2| |#3|)) |#3|) 31 T ELT))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1253 (|#3| (-583 (-987 |#1| |#2| |#3|)) |#3|)) (-15 -1253 (|#3| (-583 (-987 |#1| |#2| |#3|)) |#3| (-830))) (-15 -1254 (|#3| |#3| (-583 (-1090))))) (-1013) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-364 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -54)) -((-1254 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1090))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))))) (-1253 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-987 *5 *6 *2))) (-5 *4 (-830)) (-4 *5 (-1013)) (-4 *6 (-13 (-961) (-796 *5) (-553 (-800 *5)))) (-4 *2 (-13 (-364 *6) (-796 *5) (-553 (-800 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1253 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-987 *4 *5 *2))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 13 T ELT)) (-3157 (((-3 (-694) "failed") $) 31 T ELT)) (-3156 (((-694) $) NIL T ELT)) (-2410 (((-85) $) 15 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) 17 T ELT)) (-3946 (((-772) $) 22 T ELT) (($ (-694)) 28 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1255 (($) 10 T CONST)) (-3056 (((-85) $ $) 19 T ELT))) -(((-55) (-13 (-1013) (-950 (-694)) (-10 -8 (-15 -1255 ($) -3952) (-15 -3188 ((-85) $)) (-15 -2410 ((-85) $))))) (T -55)) -((-1255 (*1 *1) (-5 *1 (-55))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))) -((-1257 (($ $ (-484) |#3|) 46 T ELT)) (-1256 (($ $ (-484) |#4|) 50 T ELT)) (-2889 (((-583 |#2|) $) 41 T ELT)) (-3245 (((-85) |#2| $) 55 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3800 ((|#2| $ (-484) (-484)) NIL T ELT) ((|#2| $ (-484) (-484) |#2|) 29 T ELT)) (-1946 (((-694) (-1 (-85) |#2|) $) 35 T ELT) (((-694) |#2| $) 57 T ELT)) (-3946 (((-772) $) 63 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3056 (((-85) $ $) 54 T ELT)) (-3957 (((-694) $) 26 T ELT))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3946 ((-772) |#1|)) (-15 -1256 (|#1| |#1| (-484) |#4|)) (-15 -1257 (|#1| |#1| (-484) |#3|)) (-15 -3800 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3800 (|#2| |#1| (-484) (-484))) (-15 -3245 ((-85) |#2| |#1|)) (-15 -1946 ((-694) |#2| |#1|)) (-15 -1946 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3957 ((-694) |#1|)) (-15 -2889 ((-583 |#2|) |#1|))) (-57 |#2| |#3| |#4|) (-1129) (-324 |#2|) (-324 |#2|)) (T -56)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3788 ((|#1| $ (-484) (-484) |#1|) 48 T ELT)) (-1257 (($ $ (-484) |#2|) 46 T ELT)) (-1256 (($ $ (-484) |#3|) 45 T ELT)) (-3724 (($) 7 T CONST)) (-3111 ((|#2| $ (-484)) 50 T ELT)) (-1576 ((|#1| $ (-484) (-484) |#1|) 47 T ELT)) (-3112 ((|#1| $ (-484) (-484)) 52 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3114 (((-694) $) 55 T ELT)) (-3614 (($ (-694) (-694) |#1|) 61 T ELT)) (-3113 (((-694) $) 54 T ELT)) (-3118 (((-484) $) 59 T ELT)) (-3116 (((-484) $) 57 T ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3117 (((-484) $) 58 T ELT)) (-3115 (((-484) $) 56 T ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) 60 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-484) (-484)) 53 T ELT) ((|#1| $ (-484) (-484) |#1|) 51 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 T ELT) (((-694) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-3400 (($ $) 10 T ELT)) (-3110 ((|#3| $ (-484)) 49 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-57 |#1| |#2| |#3|) (-113) (-1129) (-324 |t#1|) (-324 |t#1|)) (T -57)) -((-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3614 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-694)) (-4 *3 (-1129)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2199 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1129)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-484)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-484)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-484)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-484)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-694)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-694)))) (-3800 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1129)))) (-3112 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1129)))) (-3800 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1129)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1129)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3788 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1576 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1257 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1129)) (-4 *3 (-324 *4)) (-4 *5 (-324 *4)))) (-1256 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1129)) (-4 *5 (-324 *4)) (-4 *3 (-324 *4)))) (-3326 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3958 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3958 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))) -(-13 (-318 |t#1|) (-10 -8 (-6 -3996) (-15 -3614 ($ (-694) (-694) |t#1|)) (-15 -2199 ($ $ |t#1|)) (-15 -3118 ((-484) $)) (-15 -3117 ((-484) $)) (-15 -3116 ((-484) $)) (-15 -3115 ((-484) $)) (-15 -3114 ((-694) $)) (-15 -3113 ((-694) $)) (-15 -3800 (|t#1| $ (-484) (-484))) (-15 -3112 (|t#1| $ (-484) (-484))) (-15 -3800 (|t#1| $ (-484) (-484) |t#1|)) (-15 -3111 (|t#2| $ (-484))) (-15 -3110 (|t#3| $ (-484))) (-15 -3788 (|t#1| $ (-484) (-484) |t#1|)) (-15 -1576 (|t#1| $ (-484) (-484) |t#1|)) (-15 -1257 ($ $ (-484) |t#2|)) (-15 -1256 ($ $ (-484) |t#3|)) (-15 -3958 ($ (-1 |t#1| |t#1|) $)) (-15 -3326 ($ (-1 |t#1| |t#1|) $)) (-15 -3958 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3958 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T)) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3788 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3419 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1258 (($ (-583 |#1|)) 11 T ELT) (($ (-694) |#1|) 14 T ELT)) (-3614 (($ (-694) |#1|) 13 T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 10 T ELT)) (-3802 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1258 ($ (-583 |#1|))) (-15 -1258 ($ (-694) |#1|)))) (-1129)) (T -58)) -((-1258 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-58 *3)))) (-1258 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-58 *3)) (-4 *3 (-1129))))) -((-3841 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3842 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3958 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) -(((-59 |#1| |#2|) (-10 -7 (-15 -3841 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3842 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3958 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1129) (-1129)) (T -59)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-59 *5 *2)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3788 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1257 (($ $ (-484) (-58 |#1|)) NIL T ELT)) (-1256 (($ $ (-484) (-58 |#1|)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3111 (((-58 |#1|) $ (-484)) NIL T ELT)) (-1576 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3112 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3114 (((-694) $) NIL T ELT)) (-3614 (($ (-694) (-694) |#1|) NIL T ELT)) (-3113 (((-694) $) NIL T ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3400 (($ $) NIL T ELT)) (-3110 (((-58 |#1|) $ (-484)) NIL T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-60 |#1|) (-57 |#1| (-58 |#1|) (-58 |#1|)) (-1129)) (T -60)) -NIL -((-1260 (((-1179 (-630 |#1|)) (-630 |#1|)) 61 T ELT)) (-1259 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 (-583 (-830))))) |#2| (-830)) 49 T ELT)) (-1261 (((-2 (|:| |minor| (-583 (-830))) (|:| -3266 |#2|) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 |#2|))) |#2| (-830)) 72 (|has| |#1| (-312)) ELT))) -(((-61 |#1| |#2|) (-10 -7 (-15 -1259 ((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 (-583 (-830))))) |#2| (-830))) (-15 -1260 ((-1179 (-630 |#1|)) (-630 |#1|))) (IF (|has| |#1| (-312)) (-15 -1261 ((-2 (|:| |minor| (-583 (-830))) (|:| -3266 |#2|) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 |#2|))) |#2| (-830))) |%noBranch|)) (-495) (-600 |#1|)) (T -61)) -((-1261 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |minor| (-583 (-830))) (|:| -3266 *3) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5)))) (-1260 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-1179 (-630 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-630 *4)) (-4 *5 (-600 *4)))) (-1259 (*1 *2 *3 *4) (-12 (-4 *5 (-495)) (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1179 (-583 (-830)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3323 ((|#1| $) 42 T ELT)) (-3724 (($) NIL T CONST)) (-3325 ((|#1| |#1| $) 37 T ELT)) (-3324 ((|#1| $) 35 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) NIL T ELT)) (-3609 (($ |#1| $) 38 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1275 ((|#1| $) 36 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 20 T ELT)) (-3565 (($) 46 T ELT)) (-3322 (((-694) $) 33 T ELT)) (-1946 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) 19 T ELT)) (-3946 (((-772) $) 32 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) NIL T ELT)) (-1262 (($ (-583 |#1|)) 44 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 14 T ELT))) -(((-62 |#1|) (-13 (-1034 |#1|) (-10 -8 (-15 -1262 ($ (-583 |#1|))))) (-1013)) (T -62)) -((-1262 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-62 *3))))) -((-3946 (((-772) $) 13 T ELT) (($ (-1095)) 9 T ELT) (((-1095) $) 8 T ELT))) -(((-63 |#1|) (-10 -7 (-15 -3946 ((-1095) |#1|)) (-15 -3946 (|#1| (-1095))) (-15 -3946 ((-772) |#1|))) (-64)) (T -63)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-1095)) 20 T ELT) (((-1095) $) 19 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(-13 (-962) (-655 |t#1|) (-556 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-3419 (((-348 |#1|) |#1|) 41 T ELT)) (-3733 (((-348 |#1|) |#1|) 30 T ELT) (((-348 |#1|) |#1| (-584 (-48))) 33 T ELT)) (-1225 (((-85) |#1|) 59 T ELT))) +(((-39 |#1|) (-10 -7 (-15 -3733 ((-348 |#1|) |#1| (-584 (-48)))) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3419 ((-348 |#1|) |#1|)) (-15 -1225 ((-85) |#1|))) (-1156 (-48))) (T -39)) +((-1225 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) (-3419 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1648 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2064 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2062 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1783 (((-631 (-350 |#2|)) (-1180 $)) NIL T ELT) (((-631 (-350 |#2|))) NIL T ELT)) (-3331 (((-350 |#2|) $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3137 (((-695)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1662 (((-85)) NIL T ELT)) (-1661 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1793 (($ (-1180 (-350 |#2|)) (-1180 $)) NIL T ELT) (($ (-1180 (-350 |#2|))) 60 T ELT) (($ (-1180 |#2|) |#2|) 130 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2565 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1782 (((-631 (-350 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) (-631 $)) NIL T ELT)) (-1653 (((-1180 $) (-1180 $)) NIL T ELT)) (-3843 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1640 (((-584 (-584 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1665 (((-85) |#1| |#1|) NIL T ELT)) (-3109 (((-831)) NIL T ELT)) (-2995 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1660 (((-85)) NIL T ELT)) (-1659 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2564 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3504 (($ $) NIL T ELT)) (-2834 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1681 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1765 (($ $ (-695)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3724 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3773 (((-831) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-744 (-831)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3378 (((-695)) NIL T ELT)) (-1654 (((-1180 $) (-1180 $)) 105 T ELT)) (-3133 (((-350 |#2|) $) NIL T ELT)) (-1641 (((-584 (-858 |#1|)) (-1091)) NIL (|has| |#1| (-312)) ELT)) (-3446 (((-633 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2015 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2011 (((-831) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3080 ((|#3| $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-1180 $) $) NIL T ELT) (((-631 (-350 |#2|)) (-1180 $)) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1226 (((-1186) (-695)) 83 T ELT)) (-1649 (((-631 (-350 |#2|))) 55 T ELT)) (-1651 (((-631 (-350 |#2|))) 48 T ELT)) (-2485 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1646 (($ (-1180 |#2|) |#2|) 131 T ELT)) (-1650 (((-631 (-350 |#2|))) 49 T ELT)) (-1652 (((-631 (-350 |#2|))) 47 T ELT)) (-1645 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1647 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1658 (((-1180 $)) 46 T ELT)) (-3919 (((-1180 $)) 45 T ELT)) (-1657 (((-85) $) NIL T ELT)) (-1656 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3447 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2401 (($ (-831)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1643 (((-3 |#2| #1#)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1667 (((-695)) NIL T ELT)) (-2410 (($) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3733 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-695) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3801 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1644 (((-3 |#2| #1#)) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3758 (((-350 |#2|) (-1180 $)) NIL T ELT) (((-350 |#2|)) 43 T ELT)) (-1766 (((-695) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3759 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2409 (((-631 (-350 |#2|)) (-1180 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3186 ((|#3|) 54 T ELT)) (-1675 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3225 (((-1180 (-350 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 (-350 |#2|)) $) 61 T ELT) (((-631 (-350 |#2|)) (-1180 $)) 106 T ELT)) (-3973 (((-1180 (-350 |#2|)) $) NIL T ELT) (($ (-1180 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1655 (((-1180 $) (-1180 $)) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2703 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-633 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2450 ((|#3| $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1664 (((-85)) 41 T ELT)) (-1663 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1666 (((-85)) NIL T ELT)) (-2661 (($) 17 T CONST)) (-2667 (($) 27 T CONST)) (-2670 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| (-350 |#2|) (-312)) ELT))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-291 |#1| |#2| |#3|) (-10 -7 (-15 -1226 ((-1186) (-695))))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) |#3|) (T -40)) +((-1226 (*1 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *2 (-1186)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1156 (-350 *5))) (-14 *7 *6)))) +((-1227 ((|#2| |#2|) 47 T ELT)) (-1232 ((|#2| |#2|) 136 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1231 ((|#2| |#2|) 100 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1230 ((|#2| |#2|) 101 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1233 ((|#2| (-86) |#2| (-695)) 80 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1229 (((-1086 |#2|) |#2|) 44 T ELT)) (-1228 ((|#2| |#2| (-584 (-551 |#2|))) 18 T ELT) ((|#2| |#2| (-584 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1227 (|#2| |#2|)) (-15 -1228 (|#2| |#2|)) (-15 -1228 (|#2| |#2| |#2|)) (-15 -1228 (|#2| |#2| (-584 |#2|))) (-15 -1228 (|#2| |#2| (-584 (-551 |#2|)))) (-15 -1229 ((-1086 |#2|) |#2|)) (IF (|has| |#1| (-13 (-392) (-951 (-485)))) (IF (|has| |#2| (-364 |#1|)) (PROGN (-15 -1230 (|#2| |#2|)) (-15 -1231 (|#2| |#2|)) (-15 -1232 (|#2| |#2|)) (-15 -1233 (|#2| (-86) |#2| (-695)))) |%noBranch|) |%noBranch|)) (-496) (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1040 |#1| (-551 $)) $)) (-15 -2998 ((-1040 |#1| (-551 $)) $)) (-15 -3947 ($ (-1040 |#1| (-551 $))))))) (T -41)) +((-1233 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485)))) (-4 *5 (-496)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1040 *5 (-551 $)) $)) (-15 -2998 ((-1040 *5 (-551 $)) $)) (-15 -3947 ($ (-1040 *5 (-551 $))))))))) (-1232 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -2998 ((-1040 *3 (-551 $)) $)) (-15 -3947 ($ (-1040 *3 (-551 $))))))))) (-1231 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -2998 ((-1040 *3 (-551 $)) $)) (-15 -3947 ($ (-1040 *3 (-551 $))))))))) (-1230 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -2998 ((-1040 *3 (-551 $)) $)) (-15 -3947 ($ (-1040 *3 (-551 $))))))))) (-1229 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-1086 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1040 *4 (-551 $)) $)) (-15 -2998 ((-1040 *4 (-551 $)) $)) (-15 -3947 ($ (-1040 *4 (-551 $))))))))) (-1228 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-551 *2))) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1040 *4 (-551 $)) $)) (-15 -2998 ((-1040 *4 (-551 $)) $)) (-15 -3947 ($ (-1040 *4 (-551 $))))))) (-4 *4 (-496)) (-5 *1 (-41 *4 *2)))) (-1228 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1040 *4 (-551 $)) $)) (-15 -2998 ((-1040 *4 (-551 $)) $)) (-15 -3947 ($ (-1040 *4 (-551 $))))))) (-4 *4 (-496)) (-5 *1 (-41 *4 *2)))) (-1228 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -2998 ((-1040 *3 (-551 $)) $)) (-15 -3947 ($ (-1040 *3 (-551 $))))))))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -2998 ((-1040 *3 (-551 $)) $)) (-15 -3947 ($ (-1040 *3 (-551 $))))))))) (-1227 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -2998 ((-1040 *3 (-551 $)) $)) (-15 -3947 ($ (-1040 *3 (-551 $)))))))))) +((-3733 (((-348 (-1086 |#3|)) (-1086 |#3|) (-584 (-48))) 23 T ELT) (((-348 |#3|) |#3| (-584 (-48))) 19 T ELT))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3733 ((-348 |#3|) |#3| (-584 (-48)))) (-15 -3733 ((-348 (-1086 |#3|)) (-1086 |#3|) (-584 (-48))))) (-757) (-718) (-862 (-48) |#2| |#1|)) (T -42)) +((-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *7 (-862 (-48) *6 *5)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-862 (-48) *6 *5))))) +((-1237 (((-695) |#2|) 70 T ELT)) (-1235 (((-695) |#2|) 74 T ELT)) (-1250 (((-584 |#2|)) 37 T ELT)) (-1234 (((-695) |#2|) 73 T ELT)) (-1236 (((-695) |#2|) 69 T ELT)) (-1238 (((-695) |#2|) 72 T ELT)) (-1248 (((-584 (-631 |#1|))) 65 T ELT)) (-1243 (((-584 |#2|)) 60 T ELT)) (-1241 (((-584 |#2|) |#2|) 48 T ELT)) (-1245 (((-584 |#2|)) 62 T ELT)) (-1244 (((-584 |#2|)) 61 T ELT)) (-1247 (((-584 (-631 |#1|))) 53 T ELT)) (-1242 (((-584 |#2|)) 59 T ELT)) (-1240 (((-584 |#2|) |#2|) 47 T ELT)) (-1239 (((-584 |#2|)) 55 T ELT)) (-1249 (((-584 (-631 |#1|))) 66 T ELT)) (-1246 (((-584 |#2|)) 64 T ELT)) (-2013 (((-1180 |#2|) (-1180 |#2|)) 99 (|has| |#1| (-258)) ELT))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1234 ((-695) |#2|)) (-15 -1235 ((-695) |#2|)) (-15 -1236 ((-695) |#2|)) (-15 -1237 ((-695) |#2|)) (-15 -1238 ((-695) |#2|)) (-15 -1239 ((-584 |#2|))) (-15 -1240 ((-584 |#2|) |#2|)) (-15 -1241 ((-584 |#2|) |#2|)) (-15 -1242 ((-584 |#2|))) (-15 -1243 ((-584 |#2|))) (-15 -1244 ((-584 |#2|))) (-15 -1245 ((-584 |#2|))) (-15 -1246 ((-584 |#2|))) (-15 -1247 ((-584 (-631 |#1|)))) (-15 -1248 ((-584 (-631 |#1|)))) (-15 -1249 ((-584 (-631 |#1|)))) (-15 -1250 ((-584 |#2|))) (IF (|has| |#1| (-258)) (-15 -2013 ((-1180 |#2|) (-1180 |#2|))) |%noBranch|)) (-496) (-361 |#1|)) (T -43)) +((-2013 (*1 *2 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-43 *3 *4)))) (-1250 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1249 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1248 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1247 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1246 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1242 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1241 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1240 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1239 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1238 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1237 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1236 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1235 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1234 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1773 (((-3 $ #1="failed")) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3224 (((-1180 (-631 |#1|)) (-1180 $)) NIL T ELT) (((-1180 (-631 |#1|))) 24 T ELT)) (-1730 (((-1180 $)) 52 T ELT)) (-3725 (($) NIL T CONST)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#1| (-496)) ELT)) (-1789 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-1728 ((|#1| $) NIL T ELT)) (-1787 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#1| (-496)) ELT)) (-1901 (((-1086 (-858 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1726 ((|#1| $) NIL T ELT)) (-1706 (((-1086 |#1|) $) NIL (|has| |#1| (-496)) ELT)) (-1791 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1724 (((-1086 |#1|) $) NIL T ELT)) (-1718 (((-85)) 99 T ELT)) (-1793 (($ (-1180 |#1|) (-1180 $)) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT)) (-3468 (((-3 $ #1#) $) 14 (|has| |#1| (-496)) ELT)) (-3109 (((-831)) 53 T ELT)) (-1715 (((-85)) NIL T ELT)) (-2434 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1713 (((-85)) 101 T ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#1| (-496)) ELT)) (-1705 (((-3 $ #1#)) NIL (|has| |#1| (-496)) ELT)) (-1790 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-1729 ((|#1| $) NIL T ELT)) (-1788 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#1| (-496)) ELT)) (-1905 (((-1086 (-858 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1727 ((|#1| $) NIL T ELT)) (-1707 (((-1086 |#1|) $) NIL (|has| |#1| (-496)) ELT)) (-1792 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1725 (((-1086 |#1|) $) NIL T ELT)) (-1719 (((-85)) 98 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1710 (((-85)) 106 T ELT)) (-1712 (((-85)) 105 T ELT)) (-1714 (((-85)) 107 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1717 (((-85)) 100 T ELT)) (-3801 ((|#1| $ (-485)) 55 T ELT)) (-3225 (((-1180 |#1|) $ (-1180 $)) 48 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#1|) $) 28 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3973 (((-1180 |#1|) $) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT)) (-1893 (((-584 (-858 |#1|)) (-1180 $)) NIL T ELT) (((-584 (-858 |#1|))) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-1723 (((-85)) 95 T ELT)) (-3947 (((-773) $) 71 T ELT) (($ (-1180 |#1|)) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 51 T ELT)) (-1708 (((-584 (-1180 |#1|))) NIL (|has| |#1| (-496)) ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) 91 T ELT)) (-2546 (($ (-631 |#1|) $) 18 T ELT)) (-2435 (($ $ $) NIL T ELT)) (-1722 (((-85)) 97 T ELT)) (-1720 (((-85)) 92 T ELT)) (-1716 (((-85)) 90 T ELT)) (-2661 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1057 |#2| |#1|) $) 19 T ELT))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-361 |#1|) (-591 (-1057 |#2| |#1|)) (-10 -8 (-15 -3947 ($ (-1180 |#1|))))) (-312) (-831) (-584 (-1091)) (-1180 (-631 |#1|))) (T -44)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-14 *6 (-1180 (-631 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))))) +((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3403 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3796 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3798 (($ $) NIL T ELT)) (-3600 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT) (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1731 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757))) ELT)) (-2910 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3443 (((-85) $ (-695)) NIL T ELT)) (-3026 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 34 (|has| $ (-6 -3997)) ELT)) (-3787 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT)) (-3790 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 59 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-1147 (-485)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3797 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2232 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3725 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) NIL T ELT)) (-3800 (($ $ (-695)) NIL T ELT) (($ $) 30 T ELT)) (-2369 (($ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#2| #5#) |#1| $) 62 T ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT)) (-3444 (((-85) $) NIL T ELT)) (-3420 (((-485) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) ELT) (((-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-2890 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-3615 (($ (-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3720 (((-85) $ (-695)) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT) (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2857 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3519 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT) (((-485) $) 41 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3535 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3717 (((-85) $ (-695)) NIL T ELT)) (-3031 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-3243 (((-1074) $) 50 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3799 (($ $ (-695)) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2233 (((-584 |#1|) $) 23 T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2305 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT) (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT) (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-757)) ELT) (($ $ (-695)) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3445 (((-85) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1014))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3404 (((-85) $) 19 T ELT)) (-3566 (($) 15 T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-1467 (($) 14 T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1572 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-3791 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-3794 (((-695) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-72))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3531 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3792 (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3803 (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3947 (((-773) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-3523 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1224 (((-633 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |#1| $) 54 T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2685 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3958 (((-695) $) 26 T ELT))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1014) (-1014)) (T -45)) +NIL +((-3938 (((-85) $) 12 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-350 (-485)) $) 25 T ELT) (($ $ (-350 (-485))) NIL T ELT))) +(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3938 ((-85) |#1|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-47 |#2| |#3|) (-962) (-717)) (T -46)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| |#2|) 81 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3949 ((|#2| $) 84 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3678 ((|#1| $ |#2|) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-47 |#1| |#2|) (-113) (-962) (-717)) (T -47)) +((-3175 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-2895 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) (-2894 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3678 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3950 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-312))))) +(-13 (-962) (-82 |t#1| |t#1|) (-10 -8 (-15 -3175 (|t#1| $)) (-15 -2895 ($ $)) (-15 -3949 (|t#2| $)) (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (-15 -3938 ((-85) $)) (-15 -2894 ($ |t#1| |t#2|)) (-15 -3960 ($ $)) (-15 -3678 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-312)) (-15 -3950 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-496)) (-6 (-496)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (-6 (-38 (-350 (-485)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-246) |has| |#1| (-496)) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-1216 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-1217 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3189 (((-85) $) 9 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1601 (((-584 (-551 $)) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-3038 (($ $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1218 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-3184 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3158 (((-3 (-551 $) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3157 (((-551 $) $) NIL T ELT) (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1180 (-350 (-485))))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-350 (-485))) (-631 $)) NIL T ELT)) (-3843 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2574 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1600 (((-584 (-86)) $) NIL T ELT)) (-3596 (((-86) (-86)) NIL T ELT)) (-2411 (((-85) $) 11 T ELT)) (-2674 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-2999 (((-1040 (-485) (-551 $)) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL T ELT)) (-3133 (((-1086 $) (-1086 $) (-551 $)) NIL T ELT) (((-1086 $) (-1086 $) (-584 (-551 $))) NIL T ELT) (($ $ (-551 $)) NIL T ELT) (($ $ (-584 (-551 $))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1598 (((-1086 $) (-551 $)) NIL (|has| $ (-962)) ELT)) (-3959 (($ (-1 $ $) (-551 $)) NIL T ELT)) (-1603 (((-3 (-551 $) #1#) $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1180 (-350 (-485))))) (-1180 $) $) NIL T ELT) (((-631 (-350 (-485))) (-1180 $)) NIL T ELT)) (-1892 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1602 (((-584 (-551 $)) $) NIL T ELT)) (-2236 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2634 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-2604 (((-695) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1599 (((-85) $ $) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2675 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3769 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-3801 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2998 (((-1040 (-485) (-551 $)) $) NIL T ELT)) (-3186 (($ $) NIL (|has| $ (-962)) ELT)) (-3973 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-330)) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-551 $)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1040 (-485) (-551 $))) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-2591 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2255 (((-85) (-86)) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 6 T CONST)) (-2667 (($) 10 T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3057 (((-85) $ $) 13 T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT))) +(((-48) (-13 (-254) (-27) (-951 (-485)) (-951 (-350 (-485))) (-581 (-485)) (-934) (-581 (-350 (-485))) (-120) (-554 (-142 (-330))) (-190) (-556 (-1040 (-485) (-551 $))) (-10 -8 (-15 -2999 ((-1040 (-485) (-551 $)) $)) (-15 -2998 ((-1040 (-485) (-551 $)) $)) (-15 -3843 ($ $)) (-15 -3133 ((-1086 $) (-1086 $) (-551 $))) (-15 -3133 ((-1086 $) (-1086 $) (-584 (-551 $)))) (-15 -3133 ($ $ (-551 $))) (-15 -3133 ($ $ (-584 (-551 $))))))) (T -48)) +((-2999 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-48)))) (-5 *1 (-48)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-48)))) (-5 *1 (-48)))) (-3843 (*1 *1 *1) (-5 *1 (-48))) (-3133 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-551 (-48))) (-5 *1 (-48)))) (-3133 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-584 (-551 (-48)))) (-5 *1 (-48)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-551 (-48))) (-5 *1 (-48)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-48)))) (-5 *1 (-48))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1939 (((-584 (-447)) $) 17 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 7 T ELT)) (-3234 (((-1096) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-49) (-13 (-1014) (-10 -8 (-15 -1939 ((-584 (-447)) $)) (-15 -3234 ((-1096) $))))) (T -49)) +((-1939 (*1 *2 *1) (-12 (-5 *2 (-584 (-447))) (-5 *1 (-49)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-49))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 86 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2665 (((-85) $) 31 T ELT)) (-3158 (((-3 |#1| #1#) $) 34 T ELT)) (-3157 ((|#1| $) 35 T ELT)) (-3960 (($ $) 41 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3175 ((|#1| $) 32 T ELT)) (-1456 (($ $) 75 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1455 (((-85) $) 44 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($ (-695)) 73 T ELT)) (-3944 (($ (-584 (-485))) 74 T ELT)) (-3949 (((-695) $) 45 T ELT)) (-3947 (((-773) $) 92 T ELT) (($ (-485)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3678 ((|#1| $ $) 29 T ELT)) (-3127 (((-695)) 72 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 46 T CONST)) (-2667 (($) 17 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 65 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT))) +(((-50 |#1| |#2|) (-13 (-561 |#1|) (-951 |#1|) (-10 -8 (-15 -3175 (|#1| $)) (-15 -1456 ($ $)) (-15 -3960 ($ $)) (-15 -3678 (|#1| $ $)) (-15 -2410 ($ (-695))) (-15 -3944 ($ (-584 (-485)))) (-15 -1455 ((-85) $)) (-15 -2665 ((-85) $)) (-15 -3949 ((-695) $)) (-15 -3959 ($ (-1 |#1| |#1|) $)))) (-962) (-584 (-1091))) (T -50)) +((-3175 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1091))))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1091))))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1091))))) (-3678 (*1 *2 *1 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1091))))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1091))))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1091))))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1091))))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1091))))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1091))))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-50 *3 *4)) (-14 *4 (-584 (-1091)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1251 (((-697) $) 8 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1252 (((-1016) $) 10 T ELT)) (-3947 (((-773) $) 15 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1253 (($ (-1016) (-697)) 16 T ELT)) (-3057 (((-85) $ $) 12 T ELT))) +(((-51) (-13 (-1014) (-10 -8 (-15 -1253 ($ (-1016) (-697))) (-15 -1252 ((-1016) $)) (-15 -1251 ((-697) $))))) (T -51)) +((-1253 (*1 *1 *2 *3) (-12 (-5 *2 (-1016)) (-5 *3 (-697)) (-5 *1 (-51)))) (-1252 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-51)))) (-1251 (*1 *2 *1) (-12 (-5 *2 (-697)) (-5 *1 (-51))))) +((-2665 (((-85) (-51)) 18 T ELT)) (-3158 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3157 ((|#1| (-51)) 21 T ELT)) (-3947 (((-51) |#1|) 14 T ELT))) +(((-52 |#1|) (-10 -7 (-15 -3947 ((-51) |#1|)) (-15 -3158 ((-3 |#1| "failed") (-51))) (-15 -2665 ((-85) (-51))) (-15 -3157 (|#1| (-51)))) (-1130)) (T -52)) +((-3157 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1130)))) (-3158 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130)))) (-3947 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1130))))) +((-2546 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2546 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-962) (-591 |#1|) (-762 |#1|)) (T -53)) +((-2546 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-962)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-762 *5))))) +((-1255 ((|#3| |#3| (-584 (-1091))) 44 T ELT)) (-1254 ((|#3| (-584 (-988 |#1| |#2| |#3|)) |#3| (-831)) 32 T ELT) ((|#3| (-584 (-988 |#1| |#2| |#3|)) |#3|) 31 T ELT))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1254 (|#3| (-584 (-988 |#1| |#2| |#3|)) |#3|)) (-15 -1254 (|#3| (-584 (-988 |#1| |#2| |#3|)) |#3| (-831))) (-15 -1255 (|#3| |#3| (-584 (-1091))))) (-1014) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-364 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -54)) +((-1255 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) (-1254 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-584 (-988 *5 *6 *2))) (-5 *4 (-831)) (-4 *5 (-1014)) (-4 *6 (-13 (-962) (-797 *5) (-554 (-801 *5)))) (-4 *2 (-13 (-364 *6) (-797 *5) (-554 (-801 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1254 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-988 *4 *5 *2))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 13 T ELT)) (-3158 (((-3 (-695) "failed") $) 31 T ELT)) (-3157 (((-695) $) NIL T ELT)) (-2411 (((-85) $) 15 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) 17 T ELT)) (-3947 (((-773) $) 22 T ELT) (($ (-695)) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1256 (($) 10 T CONST)) (-3057 (((-85) $ $) 19 T ELT))) +(((-55) (-13 (-1014) (-951 (-695)) (-10 -8 (-15 -1256 ($) -3953) (-15 -3189 ((-85) $)) (-15 -2411 ((-85) $))))) (T -55)) +((-1256 (*1 *1) (-5 *1 (-55))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))) +((-1258 (($ $ (-485) |#3|) 46 T ELT)) (-1257 (($ $ (-485) |#4|) 50 T ELT)) (-2890 (((-584 |#2|) $) 41 T ELT)) (-3246 (((-85) |#2| $) 55 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3801 ((|#2| $ (-485) (-485)) NIL T ELT) ((|#2| $ (-485) (-485) |#2|) 29 T ELT)) (-1947 (((-695) (-1 (-85) |#2|) $) 35 T ELT) (((-695) |#2| $) 57 T ELT)) (-3947 (((-773) $) 63 T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3057 (((-85) $ $) 54 T ELT)) (-3958 (((-695) $) 26 T ELT))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3947 ((-773) |#1|)) (-15 -1257 (|#1| |#1| (-485) |#4|)) (-15 -1258 (|#1| |#1| (-485) |#3|)) (-15 -3801 (|#2| |#1| (-485) (-485) |#2|)) (-15 -3801 (|#2| |#1| (-485) (-485))) (-15 -1947 ((-695) |#2| |#1|)) (-15 -3246 ((-85) |#2| |#1|)) (-15 -1947 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1949 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3958 ((-695) |#1|)) (-15 -2890 ((-584 |#2|) |#1|))) (-57 |#2| |#3| |#4|) (-1130) (-324 |#2|) (-324 |#2|)) (T -56)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3789 ((|#1| $ (-485) (-485) |#1|) 49 T ELT)) (-1258 (($ $ (-485) |#2|) 47 T ELT)) (-1257 (($ $ (-485) |#3|) 46 T ELT)) (-3725 (($) 7 T CONST)) (-3112 ((|#2| $ (-485)) 51 T ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 48 T ELT)) (-3113 ((|#1| $ (-485) (-485)) 53 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3115 (((-695) $) 56 T ELT)) (-3615 (($ (-695) (-695) |#1|) 62 T ELT)) (-3114 (((-695) $) 55 T ELT)) (-3119 (((-485) $) 60 T ELT)) (-3117 (((-485) $) 58 T ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3118 (((-485) $) 59 T ELT)) (-3116 (((-485) $) 57 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 45 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 44 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) 61 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) (-485)) 54 T ELT) ((|#1| $ (-485) (-485) |#1|) 52 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 T ELT) (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-3401 (($ $) 10 T ELT)) (-3111 ((|#3| $ (-485)) 50 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-57 |#1| |#2| |#3|) (-113) (-1130) (-324 |t#1|) (-324 |t#1|)) (T -57)) +((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3327 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3615 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-695)) (-4 *3 (-1130)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2200 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-695)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-695)))) (-3801 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1130)))) (-3113 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1130)))) (-3801 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1130)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1130)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3789 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1577 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1258 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-324 *4)) (-4 *5 (-324 *4)))) (-1257 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1130)) (-4 *5 (-324 *4)) (-4 *3 (-324 *4)))) (-3959 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3959 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))) +(-13 (-318 |t#1|) (-1036 |t#1|) (-10 -8 (-15 -3615 ($ (-695) (-695) |t#1|)) (-15 -2200 ($ $ |t#1|)) (-15 -3119 ((-485) $)) (-15 -3118 ((-485) $)) (-15 -3117 ((-485) $)) (-15 -3116 ((-485) $)) (-15 -3115 ((-695) $)) (-15 -3114 ((-695) $)) (-15 -3801 (|t#1| $ (-485) (-485))) (-15 -3113 (|t#1| $ (-485) (-485))) (-15 -3801 (|t#1| $ (-485) (-485) |t#1|)) (-15 -3112 (|t#2| $ (-485))) (-15 -3111 (|t#3| $ (-485))) (-15 -3789 (|t#1| $ (-485) (-485) |t#1|)) (-15 -1577 (|t#1| $ (-485) (-485) |t#1|)) (-15 -1258 ($ $ (-485) |t#2|)) (-15 -1257 ($ $ (-485) |t#3|)) (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (-15 -3327 ($ (-1 |t#1| |t#1|) $)) (-15 -3959 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3959 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-757))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3789 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1259 (($ (-584 |#1|)) 11 T ELT) (($ (-695) |#1|) 14 T ELT)) (-3615 (($ (-695) |#1|) 13 T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 10 T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1259 ($ (-584 |#1|))) (-15 -1259 ($ (-695) |#1|)))) (-1130)) (T -58)) +((-1259 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-58 *3)))) (-1259 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-58 *3)) (-4 *3 (-1130))))) +((-3842 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3843 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3959 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) +(((-59 |#1| |#2|) (-10 -7 (-15 -3842 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3843 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3959 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1130) (-1130)) (T -59)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-59 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3789 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-1258 (($ $ (-485) (-58 |#1|)) NIL T ELT)) (-1257 (($ $ (-485) (-58 |#1|)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3112 (((-58 |#1|) $ (-485)) NIL T ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-3113 ((|#1| $ (-485) (-485)) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3115 (((-695) $) NIL T ELT)) (-3615 (($ (-695) (-695) |#1|) NIL T ELT)) (-3114 (((-695) $) NIL T ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3118 (((-485) $) NIL T ELT)) (-3116 (((-485) $) NIL T ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3111 (((-58 |#1|) $ (-485)) NIL T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-60 |#1|) (-57 |#1| (-58 |#1|) (-58 |#1|)) (-1130)) (T -60)) +NIL +((-1261 (((-1180 (-631 |#1|)) (-631 |#1|)) 61 T ELT)) (-1260 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 (-584 (-831))))) |#2| (-831)) 49 T ELT)) (-1262 (((-2 (|:| |minor| (-584 (-831))) (|:| -3267 |#2|) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 |#2|))) |#2| (-831)) 72 (|has| |#1| (-312)) ELT))) +(((-61 |#1| |#2|) (-10 -7 (-15 -1260 ((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 (-584 (-831))))) |#2| (-831))) (-15 -1261 ((-1180 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-312)) (-15 -1262 ((-2 (|:| |minor| (-584 (-831))) (|:| -3267 |#2|) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 |#2|))) |#2| (-831))) |%noBranch|)) (-496) (-601 |#1|)) (T -61)) +((-1262 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |minor| (-584 (-831))) (|:| -3267 *3) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))) (-1261 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-631 *4)) (-4 *5 (-601 *4)))) (-1260 (*1 *2 *3 *4) (-12 (-4 *5 (-496)) (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 (-584 (-831)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3324 ((|#1| $) 42 T ELT)) (-3725 (($) NIL T CONST)) (-3326 ((|#1| |#1| $) 37 T ELT)) (-3325 ((|#1| $) 35 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) NIL T ELT)) (-3610 (($ |#1| $) 38 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 20 T ELT)) (-3566 (($) 46 T ELT)) (-3323 (((-695) $) 33 T ELT)) (-1947 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) 19 T ELT)) (-3947 (((-773) $) 32 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-1263 (($ (-584 |#1|)) 44 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 14 T ELT))) +(((-62 |#1|) (-13 (-1035 |#1|) (-10 -8 (-15 -1263 ($ (-584 |#1|))))) (-1014)) (T -62)) +((-1263 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-62 *3))))) +((-3947 (((-773) $) 13 T ELT) (($ (-1096)) 9 T ELT) (((-1096) $) 8 T ELT))) +(((-63 |#1|) (-10 -7 (-15 -3947 ((-1096) |#1|)) (-15 -3947 (|#1| (-1096))) (-15 -3947 ((-773) |#1|))) (-64)) (T -63)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-1096)) 20 T ELT) (((-1096) $) 19 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) (((-64) (-113)) (T -64)) NIL -(-13 (-1013) (-430 (-1095))) -(((-72) . T) ((-555 (-1095)) . T) ((-552 (-772)) . T) ((-552 (-1095)) . T) ((-430 (-1095)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-3488 (($ $) 10 T ELT)) (-3489 (($ $) 12 T ELT))) -(((-65 |#1|) (-10 -7 (-15 -3489 (|#1| |#1|)) (-15 -3488 (|#1| |#1|))) (-66)) (T -65)) +(-13 (-1014) (-430 (-1096))) +(((-72) . T) ((-556 (-1096)) . T) ((-553 (-773)) . T) ((-553 (-1096)) . T) ((-430 (-1096)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-3489 (($ $) 10 T ELT)) (-3490 (($ $) 12 T ELT))) +(((-65 |#1|) (-10 -7 (-15 -3490 (|#1| |#1|)) (-15 -3489 (|#1| |#1|))) (-66)) (T -65)) NIL -((-3486 (($ $) 11 T ELT)) (-3484 (($ $) 10 T ELT)) (-3488 (($ $) 9 T ELT)) (-3489 (($ $) 8 T ELT)) (-3487 (($ $) 7 T ELT)) (-3485 (($ $) 6 T ELT))) +((-3487 (($ $) 11 T ELT)) (-3485 (($ $) 10 T ELT)) (-3489 (($ $) 9 T ELT)) (-3490 (($ $) 8 T ELT)) (-3488 (($ $) 7 T ELT)) (-3486 (($ $) 6 T ELT))) (((-66) (-113)) (T -66)) -((-3486 (*1 *1 *1) (-4 *1 (-66))) (-3484 (*1 *1 *1) (-4 *1 (-66))) (-3488 (*1 *1 *1) (-4 *1 (-66))) (-3489 (*1 *1 *1) (-4 *1 (-66))) (-3487 (*1 *1 *1) (-4 *1 (-66))) (-3485 (*1 *1 *1) (-4 *1 (-66)))) -(-13 (-10 -8 (-15 -3485 ($ $)) (-15 -3487 ($ $)) (-15 -3489 ($ $)) (-15 -3488 ($ $)) (-15 -3484 ($ $)) (-15 -3486 ($ $)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3542 (((-1049) $) 11 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 17 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-67) (-13 (-995) (-10 -8 (-15 -3542 ((-1049) $))))) (T -67)) -((-3542 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-67))))) +((-3487 (*1 *1 *1) (-4 *1 (-66))) (-3485 (*1 *1 *1) (-4 *1 (-66))) (-3489 (*1 *1 *1) (-4 *1 (-66))) (-3490 (*1 *1 *1) (-4 *1 (-66))) (-3488 (*1 *1 *1) (-4 *1 (-66))) (-3486 (*1 *1 *1) (-4 *1 (-66)))) +(-13 (-10 -8 (-15 -3486 ($ $)) (-15 -3488 ($ $)) (-15 -3490 ($ $)) (-15 -3489 ($ $)) (-15 -3485 ($ $)) (-15 -3487 ($ $)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3543 (((-1050) $) 11 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 17 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-67) (-13 (-996) (-10 -8 (-15 -3543 ((-1050) $))))) (T -67)) +((-3543 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-67))))) NIL (((-68) (-113)) (T -68)) NIL -(-13 (-10 -7 (-6 -3995) (-6 (-3997 "*")) (-6 -3992) (-6 -3990) (-6 -3989) (-6 -3988) (-6 -3993) (-6 -3987) (-6 -3986) (-6 -3985) (-6 -3984) (-6 -3983) (-6 -3991) (-6 -3994) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3982))) -((-2568 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1263 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-484))) 24 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 16 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#1| $ |#1|) 13 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3946 (((-772) $) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2666 (($) 8 T CONST)) (-3056 (((-85) $ $) 10 T ELT)) (-3949 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 30 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 18 T ELT)) (* (($ $ $) 31 T ELT))) -(((-69 |#1|) (-13 (-413) (-241 |#1| |#1|) (-10 -8 (-15 -1263 ($ (-1 |#1| |#1|))) (-15 -1263 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1263 ($ (-1 |#1| |#1| (-484)))))) (-961)) (T -69)) -((-1263 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))) (-1263 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))) (-1263 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-69 *3))))) -((-1264 (((-348 |#2|) |#2| (-583 |#2|)) 10 T ELT) (((-348 |#2|) |#2| |#2|) 11 T ELT))) -(((-70 |#1| |#2|) (-10 -7 (-15 -1264 ((-348 |#2|) |#2| |#2|)) (-15 -1264 ((-348 |#2|) |#2| (-583 |#2|)))) (-13 (-392) (-120)) (-1155 |#1|)) (T -70)) -((-1264 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *5 *3)))) (-1264 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1155 *4))))) -((-2568 (((-85) $ $) 13 T ELT)) (-1265 (((-85) $ $) 14 T ELT)) (-3056 (((-85) $ $) 11 T ELT))) -(((-71 |#1|) (-10 -7 (-15 -1265 ((-85) |#1| |#1|)) (-15 -2568 ((-85) |#1| |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-72)) (T -71)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(-13 (-10 -7 (-6 -3996) (-6 (-3998 "*")) (-6 -3993) (-6 -3991) (-6 -3990) (-6 -3989) (-6 -3994) (-6 -3988) (-6 -3987) (-6 -3986) (-6 -3985) (-6 -3984) (-6 -3992) (-6 -3995) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3983))) +((-2569 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1264 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-485))) 24 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 16 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 ((|#1| $ |#1|) 13 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3947 (((-773) $) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2667 (($) 8 T CONST)) (-3057 (((-85) $ $) 10 T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 30 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 18 T ELT)) (* (($ $ $) 31 T ELT))) +(((-69 |#1|) (-13 (-413) (-241 |#1| |#1|) (-10 -8 (-15 -1264 ($ (-1 |#1| |#1|))) (-15 -1264 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1264 ($ (-1 |#1| |#1| (-485)))))) (-962)) (T -69)) +((-1264 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))) (-1264 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))) (-1264 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-69 *3))))) +((-1265 (((-348 |#2|) |#2| (-584 |#2|)) 10 T ELT) (((-348 |#2|) |#2| |#2|) 11 T ELT))) +(((-70 |#1| |#2|) (-10 -7 (-15 -1265 ((-348 |#2|) |#2| |#2|)) (-15 -1265 ((-348 |#2|) |#2| (-584 |#2|)))) (-13 (-392) (-120)) (-1156 |#1|)) (T -70)) +((-1265 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *5 *3)))) (-1265 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1156 *4))))) +((-2569 (((-85) $ $) 13 T ELT)) (-1266 (((-85) $ $) 14 T ELT)) (-3057 (((-85) $ $) 11 T ELT))) +(((-71 |#1|) (-10 -7 (-15 -1266 ((-85) |#1| |#1|)) (-15 -2569 ((-85) |#1| |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-72)) (T -71)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) (((-72) (-113)) (T -72)) -((-3056 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2568 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1265 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) -(-13 (-1129) (-10 -8 (-15 -3056 ((-85) $ $)) (-15 -2568 ((-85) $ $)) (-15 -1265 ((-85) $ $)))) -(((-13) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) NIL T ELT)) (-3025 ((|#1| $ |#1|) 24 (|has| $ (-6 -3996)) ELT)) (-1293 (($ $ $) NIL (|has| $ (-6 -3996)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-6 -3996)) ELT)) (-1268 (($ $ (-583 |#1|)) 30 T ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3996)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3137 (($ $) 12 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1302 (($ $ |#1| $) 32 T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1267 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1266 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3138 (($ $) 11 T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3527 (((-85) $) 13 T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 9 T ELT)) (-3565 (($) 31 T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3633 (((-85) $) NIL T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1269 (($ (-694) |#1|) 33 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1269 ($ (-694) |#1|)) (-15 -1268 ($ $ (-583 |#1|))) (-15 -1267 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1267 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1266 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1266 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) (-1013)) (T -73)) -((-1269 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-73 *3)) (-4 *3 (-1013)))) (-1268 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))) (-1267 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1013)))) (-1267 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))) (-1266 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2)))) (-1266 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2))))) -((-1270 ((|#3| |#2| |#2|) 34 T ELT)) (-1272 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3997 #1="*"))) ELT)) (-1271 ((|#3| |#2| |#2|) 36 T ELT)) (-1273 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3997 #1#))) ELT))) -(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1270 (|#3| |#2| |#2|)) (-15 -1271 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3997 "*"))) (PROGN (-15 -1272 (|#1| |#2| |#2|)) (-15 -1273 (|#1| |#2|))) |%noBranch|)) (-961) (-1155 |#1|) (-627 |#1| |#4| |#5|) (-324 |#1|) (-324 |#1|)) (T -74)) -((-1273 (*1 *2 *3) (-12 (|has| *2 (-6 (-3997 #1="*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2)) (-4 *4 (-627 *2 *5 *6)))) (-1272 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3997 #1#))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2)) (-4 *4 (-627 *2 *5 *6)))) (-1271 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1155 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-1270 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1155 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))) -((-1276 (($ (-583 |#2|)) 11 T ELT))) -(((-75 |#1| |#2|) (-10 -7 (-15 -1276 (|#1| (-583 |#2|)))) (-76 |#2|) (-1129)) (T -75)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3724 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-76 |#1|) (-113) (-1129)) (T -76)) -((-1276 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-4 *1 (-76 *3)))) (-1275 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129)))) (-3609 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129)))) (-1274 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129))))) -(-13 (-1035 |t#1|) (-10 -8 (-15 -1276 ($ (-583 |t#1|))) (-15 -1275 (|t#1| $)) (-15 -3609 ($ |t#1| $)) (-15 -1274 (|t#1| $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-484) $) NIL (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-3156 (((-484) $) NIL T ELT) (((-1090) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-484) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| (-484) (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) NIL T ELT)) (-3445 (((-632 $) $) NIL (|has| (-484) (-1066)) ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3958 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-484) (-1066)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-484) (-258)) ELT) (((-350 (-484)) $) NIL T ELT)) (-3130 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3768 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1090)) (-583 (-484))) NIL (|has| (-484) (-455 (-1090) (-484))) ELT) (($ $ (-1090) (-484)) NIL (|has| (-484) (-455 (-1090) (-484))) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3800 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) NIL T ELT)) (-3972 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| (-484) (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-330) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1090)) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL T ELT) (((-917 2) $) 10 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2029 (($ (-350 (-484))) 9 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3949 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT))) -(((-77) (-13 (-904 (-484)) (-552 (-350 (-484))) (-552 (-917 2)) (-10 -8 (-15 -3128 ((-350 (-484)) $)) (-15 -2029 ($ (-350 (-484))))))) (T -77)) -((-3128 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-77)))) (-2029 (*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-77))))) -((-1288 (((-583 (-876)) $) 14 T ELT)) (-3542 (((-446) $) 12 T ELT)) (-3946 (((-772) $) 21 T ELT)) (-1277 (($ (-446) (-583 (-876))) 16 T ELT))) -(((-78) (-13 (-552 (-772)) (-10 -8 (-15 -3542 ((-446) $)) (-15 -1288 ((-583 (-876)) $)) (-15 -1277 ($ (-446) (-583 (-876))))))) (T -78)) -((-3542 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-78)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-583 (-876))) (-5 *1 (-78)))) (-1277 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-78))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1278 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-79 |#1|) (-13 (-80 |#1|) (-1013) (-10 -8 (-15 -1278 ($ (-1 |#1| |#1| |#1|))))) (-1129)) (T -79)) -((-1278 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-79 *3))))) -((-3800 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-80 |#1|) (-113) (-1129)) (T -80)) +((-3057 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2569 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1266 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) +(-13 (-1130) (-10 -8 (-15 -3057 ((-85) $ $)) (-15 -2569 ((-85) $ $)) (-15 -1266 ((-85) $ $)))) +(((-13) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) NIL T ELT)) (-3026 ((|#1| $ |#1|) 24 (|has| $ (-6 -3997)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-6 -3997)) ELT)) (-1295 (($ $ $) NIL (|has| $ (-6 -3997)) ELT)) (-1269 (($ $ (-584 |#1|)) 30 T ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3997)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3138 (($ $) 12 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1303 (($ $ |#1| $) 32 T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1268 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1267 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-584 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3139 (($ $) 11 T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3528 (((-85) $) 13 T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 9 T ELT)) (-3566 (($) 31 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1270 (($ (-695) |#1|) 33 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1270 ($ (-695) |#1|)) (-15 -1269 ($ $ (-584 |#1|))) (-15 -1268 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1268 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1267 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1267 ($ $ |#1| (-1 (-584 |#1|) |#1| |#1| |#1|))))) (-1014)) (T -73)) +((-1270 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-73 *3)) (-4 *3 (-1014)))) (-1269 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3)))) (-1268 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1014)))) (-1268 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-584 *2) *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2))))) +((-1271 ((|#3| |#2| |#2|) 34 T ELT)) (-1273 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3998 #1="*"))) ELT)) (-1272 ((|#3| |#2| |#2|) 36 T ELT)) (-1274 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3998 #1#))) ELT))) +(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1271 (|#3| |#2| |#2|)) (-15 -1272 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3998 "*"))) (PROGN (-15 -1273 (|#1| |#2| |#2|)) (-15 -1274 (|#1| |#2|))) |%noBranch|)) (-962) (-1156 |#1|) (-628 |#1| |#4| |#5|) (-324 |#1|) (-324 |#1|)) (T -74)) +((-1274 (*1 *2 *3) (-12 (|has| *2 (-6 (-3998 #1="*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) (-4 *4 (-628 *2 *5 *6)))) (-1273 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3998 #1#))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) (-4 *4 (-628 *2 *5 *6)))) (-1272 (*1 *2 *3 *3) (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1156 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-1271 (*1 *2 *3 *3) (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1156 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))) +((-1277 (($ (-584 |#2|)) 11 T ELT))) +(((-75 |#1| |#2|) (-10 -7 (-15 -1277 (|#1| (-584 |#2|)))) (-76 |#2|) (-1130)) (T -75)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3725 (($) 7 T CONST)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-76 |#1|) (-113) (-1130)) (T -76)) +((-1277 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-76 *3)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130)))) (-3610 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130)))) (-1275 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130))))) +(-13 (-1036 |t#1|) (-10 -8 (-15 -1277 ($ (-584 |t#1|))) (-15 -1276 (|t#1| $)) (-15 -3610 ($ |t#1| $)) (-15 -1275 (|t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-485) $) NIL (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-3157 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-485) (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) NIL T ELT)) (-3446 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3959 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-485) (-1067)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) NIL T ELT)) (-3131 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3769 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3801 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-485) $) NIL T ELT)) (-3973 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL T ELT) (((-918 2) $) 10 T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2030 (($ (-350 (-485))) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3950 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT))) +(((-77) (-13 (-905 (-485)) (-553 (-350 (-485))) (-553 (-918 2)) (-10 -8 (-15 -3129 ((-350 (-485)) $)) (-15 -2030 ($ (-350 (-485))))))) (T -77)) +((-3129 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77)))) (-2030 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77))))) +((-1289 (((-584 (-877)) $) 14 T ELT)) (-3543 (((-447) $) 12 T ELT)) (-3947 (((-773) $) 21 T ELT)) (-1278 (($ (-447) (-584 (-877))) 16 T ELT))) +(((-78) (-13 (-553 (-773)) (-10 -8 (-15 -3543 ((-447) $)) (-15 -1289 ((-584 (-877)) $)) (-15 -1278 ($ (-447) (-584 (-877))))))) (T -78)) +((-3543 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-78)))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-584 (-877))) (-5 *1 (-78)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-78))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1279 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-79 |#1|) (-13 (-80 |#1|) (-1014) (-10 -8 (-15 -1279 ($ (-1 |#1| |#1| |#1|))))) (-1130)) (T -79)) +((-1279 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-79 *3))))) +((-3801 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-80 |#1|) (-113) (-1130)) (T -80)) NIL (-13 (|MappingCategory| |t#1| |t#1| |t#1|)) -(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3321 (($ $ $) NIL T ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) $) NIL (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1730 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-756))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-2909 (($ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3788 (((-85) $ (-1146 (-484)) (-85)) NIL (|has| $ (-6 -3996)) ELT) (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-1013))) ELT)) (-3406 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-1013))) ELT)) (-3842 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-1013))) ELT)) (-1576 (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3996)) ELT)) (-3112 (((-85) $ (-484)) NIL T ELT)) (-3419 (((-484) (-85) $ (-484)) NIL (|has| (-85) (-1013)) ELT) (((-484) (-85) $) NIL (|has| (-85) (-1013)) ELT) (((-484) (-1 (-85) (-85)) $) NIL T ELT)) (-2889 (((-583 (-85)) $) NIL (|has| $ (-6 -3995)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2560 (($ $) NIL T ELT)) (-1300 (($ $ $) NIL T ELT)) (-3614 (($ (-694) (-85)) 10 T ELT)) (-1301 (($ $ $) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL T ELT)) (-3518 (($ $ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2608 (((-583 (-85)) $) NIL T ELT)) (-3245 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL T ELT)) (-3326 (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3958 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ (-85) $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3801 (((-85) $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2199 (($ $ (-85)) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3768 (($ $ (-583 (-85)) (-583 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-583 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-85) (-1013))) ELT)) (-2205 (((-583 (-85)) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 (($ $ (-1146 (-484))) NIL T ELT) (((-85) $ (-484)) NIL T ELT) (((-85) $ (-484) (-85)) NIL T ELT)) (-2305 (($ $ (-1146 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1946 (((-694) (-85) $) NIL (|has| (-85) (-72)) ELT) (((-694) (-1 (-85) (-85)) $) NIL T ELT)) (-1731 (($ $ $ (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| (-85) (-553 (-473))) ELT)) (-3530 (($ (-583 (-85))) NIL T ELT)) (-3802 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1769 (($ (-694) (-85)) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-81) (-13 (-96) (-10 -8 (-15 -1769 ($ (-694) (-85)))))) (T -81)) -((-1769 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-85)) (-5 *1 (-81))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) -(((-82 |#1| |#2|) (-113) (-961) (-961)) (T -82)) -NIL -(-13 (-590 |t#1|) (-968 |t#2|) (-10 -7 (-6 -3990) (-6 -3989))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-1013) . T) ((-1129) . T)) -((-2561 (($ $ $) 12 T ELT)) (-2560 (($ $) 8 T ELT)) (-2562 (($ $ $) 10 T ELT))) -(((-83 |#1|) (-10 -7 (-15 -2561 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1| |#1|)) (-15 -2560 (|#1| |#1|))) (-84)) (T -83)) -NIL -((-2313 (($ $) 8 T ELT)) (-2561 (($ $ $) 9 T ELT)) (-2560 (($ $) 11 T ELT)) (-2562 (($ $ $) 10 T ELT)) (-2311 (($ $ $) 6 T ELT)) (-2312 (($ $ $) 7 T ELT))) +(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3322 (($ $ $) NIL T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) $) NIL (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1731 (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| (-85) (-757))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3997)) ELT)) (-2910 (($ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3789 (((-85) $ (-1147 (-485)) (-85)) NIL (|has| $ (-6 -3997)) ELT) (((-85) $ (-485) (-85)) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1014))) ELT)) (-3407 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1014))) ELT)) (-3843 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1014))) ELT)) (-1577 (((-85) $ (-485) (-85)) NIL (|has| $ (-6 -3997)) ELT)) (-3113 (((-85) $ (-485)) NIL T ELT)) (-3420 (((-485) (-85) $ (-485)) NIL (|has| (-85) (-1014)) ELT) (((-485) (-85) $) NIL (|has| (-85) (-1014)) ELT) (((-485) (-1 (-85) (-85)) $) NIL T ELT)) (-2890 (((-584 (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2561 (($ $) NIL T ELT)) (-1301 (($ $ $) NIL T ELT)) (-3615 (($ (-695) (-85)) 10 T ELT)) (-1302 (($ $ $) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL T ELT)) (-3519 (($ $ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2609 (((-584 (-85)) $) NIL T ELT)) (-3246 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL T ELT)) (-3327 (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3959 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ (-85) $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3802 (((-85) $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2200 (($ $ (-85)) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3769 (($ $ (-584 (-85)) (-584 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-584 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1014))) ELT)) (-2206 (((-584 (-85)) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 (($ $ (-1147 (-485))) NIL T ELT) (((-85) $ (-485)) NIL T ELT) (((-85) $ (-485) (-85)) NIL T ELT)) (-2306 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1947 (((-695) (-85) $) NIL (|has| (-85) (-72)) ELT) (((-695) (-1 (-85) (-85)) $) NIL T ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-85) (-554 (-474))) ELT)) (-3531 (($ (-584 (-85))) NIL T ELT)) (-3803 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1770 (($ (-695) (-85)) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-81) (-13 (-96) (-10 -8 (-15 -1770 ($ (-695) (-85)))))) (T -81)) +((-1770 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-85)) (-5 *1 (-81))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) +(((-82 |#1| |#2|) (-113) (-962) (-962)) (T -82)) +NIL +(-13 (-591 |t#1|) (-969 |t#2|) (-10 -7 (-6 -3991) (-6 -3990))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-1014) . T) ((-1130) . T)) +((-2562 (($ $ $) 12 T ELT)) (-2561 (($ $) 8 T ELT)) (-2563 (($ $ $) 10 T ELT))) +(((-83 |#1|) (-10 -7 (-15 -2562 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2561 (|#1| |#1|))) (-84)) (T -83)) +NIL +((-2314 (($ $) 8 T ELT)) (-2562 (($ $ $) 9 T ELT)) (-2561 (($ $) 11 T ELT)) (-2563 (($ $ $) 10 T ELT)) (-2312 (($ $ $) 6 T ELT)) (-2313 (($ $ $) 7 T ELT))) (((-84) (-113)) (T -84)) -((-2560 (*1 *1 *1) (-4 *1 (-84))) (-2562 (*1 *1 *1 *1) (-4 *1 (-84))) (-2561 (*1 *1 *1 *1) (-4 *1 (-84)))) -(-13 (-604) (-10 -8 (-15 -2560 ($ $)) (-15 -2562 ($ $ $)) (-15 -2561 ($ $ $)))) -(((-13) . T) ((-604) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 9 T ELT)) (-3321 (($ $ $) 14 T ELT)) (-2855 (($) 6 T CONST)) (-3136 (((-694)) 23 T ELT)) (-2994 (($) 31 T ELT)) (-2561 (($ $ $) 12 T ELT)) (-2560 (($ $) 8 T ELT)) (-1300 (($ $ $) 15 T ELT)) (-1301 (($ $ $) 16 T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) 29 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 27 T ELT)) (-2853 (($ $ $) 19 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2854 (($) 7 T CONST)) (-2852 (($ $ $) 20 T ELT)) (-3972 (((-473) $) 33 T ELT)) (-3946 (((-772) $) 35 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2562 (($ $ $) 10 T ELT)) (-2311 (($ $ $) 13 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 18 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-2312 (($ $ $) 11 T ELT))) -(((-85) (-13 (-752) (-880) (-553 (-473)) (-10 -8 (-15 -3321 ($ $ $)) (-15 -1301 ($ $ $)) (-15 -1300 ($ $ $))))) (T -85)) -((-3321 (*1 *1 *1 *1) (-5 *1 (-85))) (-1301 (*1 *1 *1 *1) (-5 *1 (-85))) (-1300 (*1 *1 *1 *1) (-5 *1 (-85)))) -((-2568 (((-85) $ $) NIL T ELT)) (-1522 (((-694) $) 92 T ELT) (($ $ (-694)) 38 T ELT)) (-1286 (((-85) $) 42 T ELT)) (-1280 (($ $ (-1073) (-696)) 59 T ELT) (($ $ (-446) (-696)) 34 T ELT)) (-1279 (($ $ (-45 (-1073) (-696))) 16 T ELT)) (-2841 (((-3 (-696) "failed") $ (-1073)) 27 T ELT) (((-632 (-696)) $ (-446)) 33 T ELT)) (-1288 (((-45 (-1073) (-696)) $) 15 T ELT)) (-3595 (($ (-1090)) 20 T ELT) (($ (-1090) (-694)) 23 T ELT) (($ (-1090) (-55)) 24 T ELT)) (-1287 (((-85) $) 40 T ELT)) (-1285 (((-85) $) 44 T ELT)) (-3542 (((-1090) $) 8 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2633 (((-85) $ (-1090)) 11 T ELT)) (-2128 (($ $ (-1 (-473) (-583 (-473)))) 65 T ELT) (((-632 (-1 (-473) (-583 (-473)))) $) 69 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1282 (((-85) $ (-446)) 37 T ELT)) (-1284 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3617 (((-632 (-1 (-772) (-583 (-772)))) $) 67 T ELT) (($ $ (-1 (-772) (-583 (-772)))) 52 T ELT) (($ $ (-1 (-772) (-772))) 54 T ELT)) (-1281 (($ $ (-1073)) 56 T ELT) (($ $ (-446)) 57 T ELT)) (-3400 (($ $) 75 T ELT)) (-1283 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3946 (((-772) $) 61 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2792 (($ $ (-446)) 35 T ELT)) (-2521 (((-55) $) 70 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 88 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 104 T ELT))) -(((-86) (-13 (-756) (-747 (-1090)) (-10 -8 (-15 -1288 ((-45 (-1073) (-696)) $)) (-15 -3400 ($ $)) (-15 -3595 ($ (-1090))) (-15 -3595 ($ (-1090) (-694))) (-15 -3595 ($ (-1090) (-55))) (-15 -1287 ((-85) $)) (-15 -1286 ((-85) $)) (-15 -1285 ((-85) $)) (-15 -1522 ((-694) $)) (-15 -1522 ($ $ (-694))) (-15 -1284 ($ $ (-1 (-85) $ $))) (-15 -1283 ($ $ (-1 (-85) $ $))) (-15 -3617 ((-632 (-1 (-772) (-583 (-772)))) $)) (-15 -3617 ($ $ (-1 (-772) (-583 (-772))))) (-15 -3617 ($ $ (-1 (-772) (-772)))) (-15 -2128 ($ $ (-1 (-473) (-583 (-473))))) (-15 -2128 ((-632 (-1 (-473) (-583 (-473)))) $)) (-15 -1282 ((-85) $ (-446))) (-15 -2792 ($ $ (-446))) (-15 -1281 ($ $ (-1073))) (-15 -1281 ($ $ (-446))) (-15 -2841 ((-3 (-696) "failed") $ (-1073))) (-15 -2841 ((-632 (-696)) $ (-446))) (-15 -1280 ($ $ (-1073) (-696))) (-15 -1280 ($ $ (-446) (-696))) (-15 -1279 ($ $ (-45 (-1073) (-696))))))) (T -86)) -((-1288 (*1 *2 *1) (-12 (-5 *2 (-45 (-1073) (-696))) (-5 *1 (-86)))) (-3400 (*1 *1 *1) (-5 *1 (-86))) (-3595 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-86)))) (-3595 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-694)) (-5 *1 (-86)))) (-3595 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1287 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1286 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) (-1522 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) (-1284 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1283 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-772) (-583 (-772))))) (-5 *1 (-86)))) (-3617 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-583 (-772)))) (-5 *1 (-86)))) (-3617 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-772))) (-5 *1 (-86)))) (-2128 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-473) (-583 (-473)))) (-5 *1 (-86)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-473) (-583 (-473))))) (-5 *1 (-86)))) (-1282 (*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2792 (*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86)))) (-2841 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-696)) (-5 *1 (-86)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-696))) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-696)) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-696)) (-5 *1 (-86)))) (-1279 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1073) (-696))) (-5 *1 (-86))))) -((-2518 (((-3 (-1 |#1| (-583 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-583 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-583 |#1|)) 25 T ELT)) (-1289 (((-3 (-583 (-1 |#1| (-583 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-583 (-1 |#1| (-583 |#1|)))) 30 T ELT)) (-1290 (((-86) |#1|) 63 T ELT)) (-1291 (((-3 |#1| #1#) (-86)) 58 T ELT))) -(((-87 |#1|) (-10 -7 (-15 -2518 ((-3 |#1| #1="failed") (-86) (-583 |#1|))) (-15 -2518 ((-86) (-86) (-1 |#1| (-583 |#1|)))) (-15 -2518 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2518 ((-3 (-1 |#1| (-583 |#1|)) #1#) (-86))) (-15 -1289 ((-86) (-86) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1289 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1289 ((-3 (-583 (-1 |#1| (-583 |#1|))) #1#) (-86))) (-15 -1290 ((-86) |#1|)) (-15 -1291 ((-3 |#1| #1#) (-86)))) (-1013)) (T -87)) -((-1291 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1013)))) (-1290 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1013)))) (-1289 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1013)))) (-1289 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-1289 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2518 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1013)))) (-2518 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2518 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2518 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-583 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1013))))) -((-1292 (((-484) |#2|) 41 T ELT))) -(((-88 |#1| |#2|) (-10 -7 (-15 -1292 ((-484) |#2|))) (-13 (-312) (-950 (-350 (-484)))) (-1155 |#1|)) (T -88)) -((-1292 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-950 (-350 *2)))) (-5 *2 (-484)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1155 *4))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $ (-484)) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2611 (($ (-1085 (-484)) (-484)) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3772 (((-694) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2614 (((-484)) NIL T ELT)) (-2613 (((-484) $) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3769 (($ $ (-484)) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2615 (((-1069 (-484)) $) NIL T ELT)) (-2891 (($ $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3770 (((-484) $ (-484)) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-89 |#1|) (-779 |#1|) (-484)) (T -89)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-484) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-89 |#1|) (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT)) (-3156 (((-89 |#1|) $) NIL T ELT) (((-1090) $) NIL (|has| (-89 |#1|) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT)) (-3730 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-89 |#1|))) (|:| |vec| (-1179 (-89 |#1|)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-89 |#1|)) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-89 |#1|) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-89 |#1|) (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| (-89 |#1|) (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-89 |#1|) $) NIL T ELT)) (-3445 (((-632 $) $) NIL (|has| (-89 |#1|) (-1066)) ELT)) (-3187 (((-85) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3958 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-89 |#1|))) (|:| |vec| (-1179 (-89 |#1|)))) (-1179 $) $) NIL T ELT) (((-630 (-89 |#1|)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-89 |#1|) (-1066)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-3130 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-483)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3768 (($ $ (-583 (-89 |#1|)) (-583 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-249 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-583 (-249 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-583 (-1090)) (-583 (-89 |#1|))) NIL (|has| (-89 |#1|) (-455 (-1090) (-89 |#1|))) ELT) (($ $ (-1090) (-89 |#1|)) NIL (|has| (-89 |#1|) (-455 (-1090) (-89 |#1|))) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3800 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-89 |#1|) $) NIL T ELT)) (-3972 (((-800 (-484)) $) NIL (|has| (-89 |#1|) (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| (-89 |#1|) (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| (-89 |#1|) (-553 (-473))) ELT) (((-330) $) NIL (|has| (-89 |#1|) (-933)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-933)) ELT)) (-2616 (((-148 (-350 (-484))) $) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-821))) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1090)) NIL (|has| (-89 |#1|) (-950 (-1090))) ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-821))) (|has| (-89 |#1|) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3770 (((-350 (-484)) $ (-484)) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3949 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT))) -(((-90 |#1|) (-13 (-904 (-89 |#1|)) (-10 -8 (-15 -3770 ((-350 (-484)) $ (-484))) (-15 -2616 ((-148 (-350 (-484))) $)) (-15 -3730 ($ $)) (-15 -3730 ($ (-484) $)))) (-484)) (T -90)) -((-3770 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-484)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-484)))) (-5 *1 (-90 *3)) (-14 *3 (-484)))) (-3730 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-484)))) (-3730 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-90 *3)) (-14 *3 *2)))) -((-3788 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3031 (((-583 $) $) 31 T ELT)) (-3027 (((-85) $ $) 36 T ELT)) (-3245 (((-85) |#2| $) 40 T ELT)) (-3030 (((-583 |#2|) $) 25 T ELT)) (-3527 (((-85) $) 18 T ELT)) (-3800 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3633 (((-85) $) 57 T ELT)) (-3946 (((-772) $) 47 T ELT)) (-3522 (((-583 $) $) 32 T ELT)) (-3056 (((-85) $ $) 38 T ELT)) (-3957 (((-694) $) 50 T ELT))) -(((-91 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3946 ((-772) |#1|)) (-15 -3788 (|#1| |#1| #1="right" |#1|)) (-15 -3788 (|#1| |#1| #2="left" |#1|)) (-15 -3800 (|#1| |#1| #1#)) (-15 -3800 (|#1| |#1| #2#)) (-15 -3788 (|#2| |#1| #3="value" |#2|)) (-15 -3027 ((-85) |#1| |#1|)) (-15 -3030 ((-583 |#2|) |#1|)) (-15 -3633 ((-85) |#1|)) (-15 -3800 (|#2| |#1| #3#)) (-15 -3527 ((-85) |#1|)) (-15 -3031 ((-583 |#1|) |#1|)) (-15 -3522 ((-583 |#1|) |#1|)) (-15 -3245 ((-85) |#2| |#1|)) (-15 -3957 ((-694) |#1|))) (-92 |#2|) (-1129)) (T -91)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-1293 (($ $ $) 58 (|has| $ (-6 -3996)) ELT)) (-1294 (($ $ $) 60 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3996)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -3996)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3996)) ELT)) (-3724 (($) 7 T CONST)) (-3137 (($ $) 63 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3138 (($ $) 65 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-92 |#1|) (-113) (-1129)) (T -92)) -((-3138 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1129)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1129)))) (-3137 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1129)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1129)))) (-3788 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -3996)) (-4 *1 (-92 *3)) (-4 *3 (-1129)))) (-1294 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-92 *2)) (-4 *2 (-1129)))) (-3788 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -3996)) (-4 *1 (-92 *3)) (-4 *3 (-1129)))) (-1293 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-92 *2)) (-4 *2 (-1129))))) -(-13 (-923 |t#1|) (-10 -8 (-15 -3138 ($ $)) (-15 -3800 ($ $ "left")) (-15 -3137 ($ $)) (-15 -3800 ($ $ "right")) (IF (|has| $ (-6 -3996)) (PROGN (-15 -3788 ($ $ "left" $)) (-15 -1294 ($ $ $)) (-15 -3788 ($ $ "right" $)) (-15 -1293 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T)) -((-1297 (((-85) |#1|) 29 T ELT)) (-1296 (((-694) (-694)) 28 T ELT) (((-694)) 27 T ELT)) (-1295 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT))) -(((-93 |#1|) (-10 -7 (-15 -1295 ((-85) |#1|)) (-15 -1295 ((-85) |#1| (-85))) (-15 -1296 ((-694))) (-15 -1296 ((-694) (-694))) (-15 -1297 ((-85) |#1|))) (-1155 (-484))) (T -93)) -((-1297 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484))))) (-1296 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484))))) (-1296 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484))))) (-1295 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484))))) (-1295 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484)))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 18 T ELT)) (-3418 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3025 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1293 (($ $ $) 21 (|has| $ (-6 -3996)) ELT)) (-1294 (($ $ $) 23 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3996)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3137 (($ $) 20 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1302 (($ $ |#1| $) 27 T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3138 (($ $) 22 T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3527 (((-85) $) NIL T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-1298 (($ |#1| $) 28 T ELT)) (-3609 (($ |#1| $) 15 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 17 T ELT)) (-3565 (($) 11 T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3633 (((-85) $) NIL T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1299 (($ (-583 |#1|)) 16 T ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1299 ($ (-583 |#1|))) (-15 -3609 ($ |#1| $)) (-15 -1298 ($ |#1| $)) (-15 -3418 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-756)) (T -94)) -((-1299 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-94 *3)))) (-3609 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))) (-1298 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))) (-3418 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-756))))) -((-2313 (($ $) 13 T ELT)) (-2560 (($ $) 11 T ELT)) (-1300 (($ $ $) 23 T ELT)) (-1301 (($ $ $) 21 T ELT)) (-2311 (($ $ $) 19 T ELT)) (-2312 (($ $ $) 17 T ELT))) -(((-95 |#1|) (-10 -7 (-15 -1300 (|#1| |#1| |#1|)) (-15 -1301 (|#1| |#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -2312 (|#1| |#1| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -2560 (|#1| |#1|))) (-96)) (T -95)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-2313 (($ $) 105 T ELT)) (-3321 (($ $ $) 33 T ELT)) (-2198 (((-1185) $ (-484) (-484)) 60 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) $) 97 (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 91 T ELT)) (-1730 (($ $) 101 (-12 (|has| (-85) (-756)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) (-85) (-85)) $) 100 (|has| $ (-6 -3996)) ELT)) (-2909 (($ $) 96 (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) 90 T ELT)) (-3788 (((-85) $ (-1146 (-484)) (-85)) 82 (|has| $ (-6 -3996)) ELT) (((-85) $ (-484) (-85)) 48 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) (-85)) $) 65 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 40 T CONST)) (-2297 (($ $) 99 (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) 89 T ELT)) (-1353 (($ $) 62 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ (-1 (-85) (-85)) $) 66 (|has| $ (-6 -3995)) ELT) (($ (-85) $) 63 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3995))) ELT)) (-3842 (((-85) (-1 (-85) (-85) (-85)) $) 68 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 67 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 64 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3995))) ELT)) (-1576 (((-85) $ (-484) (-85)) 47 (|has| $ (-6 -3996)) ELT)) (-3112 (((-85) $ (-484)) 49 T ELT)) (-3419 (((-484) (-85) $ (-484)) 94 (|has| (-85) (-1013)) ELT) (((-484) (-85) $) 93 (|has| (-85) (-1013)) ELT) (((-484) (-1 (-85) (-85)) $) 92 T ELT)) (-2889 (((-583 (-85)) $) 42 (|has| $ (-6 -3995)) ELT)) (-2561 (($ $ $) 110 T ELT)) (-2560 (($ $) 108 T ELT)) (-1300 (($ $ $) 34 T ELT)) (-3614 (($ (-694) (-85)) 72 T ELT)) (-1301 (($ $ $) 35 T ELT)) (-2200 (((-484) $) 57 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 23 T ELT)) (-3518 (($ $ $) 95 (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 88 T ELT)) (-2608 (((-583 (-85)) $) 83 T ELT)) (-3245 (((-85) (-85) $) 103 (|has| (-85) (-72)) ELT)) (-2201 (((-484) $) 56 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 22 T ELT)) (-3326 (($ (-1 (-85) (-85)) $) 102 T ELT)) (-3958 (($ (-1 (-85) (-85) (-85)) $ $) 77 T ELT) (($ (-1 (-85) (-85)) $) 41 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2304 (($ $ $ (-484)) 81 T ELT) (($ (-85) $ (-484)) 80 T ELT)) (-2203 (((-583 (-484)) $) 54 T ELT)) (-2204 (((-85) (-484) $) 53 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3801 (((-85) $) 58 (|has| (-484) (-756)) ELT)) (-1354 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 69 T ELT)) (-2199 (($ $ (-85)) 59 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) (-85)) $) 85 T ELT)) (-3768 (($ $ (-583 (-85)) (-583 (-85))) 46 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) 45 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-249 (-85))) 44 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-583 (-249 (-85)))) 43 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT)) (-1222 (((-85) $ $) 36 T ELT)) (-2202 (((-85) (-85) $) 55 (-12 (|has| $ (-6 -3995)) (|has| (-85) (-1013))) ELT)) (-2205 (((-583 (-85)) $) 52 T ELT)) (-3403 (((-85) $) 39 T ELT)) (-3565 (($) 38 T ELT)) (-3800 (($ $ (-1146 (-484))) 71 T ELT) (((-85) $ (-484)) 51 T ELT) (((-85) $ (-484) (-85)) 50 T ELT)) (-2305 (($ $ (-1146 (-484))) 79 T ELT) (($ $ (-484)) 78 T ELT)) (-1946 (((-694) (-85) $) 104 (|has| (-85) (-72)) ELT) (((-694) (-1 (-85) (-85)) $) 84 T ELT)) (-1731 (($ $ $ (-484)) 98 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 37 T ELT)) (-3972 (((-473) $) 61 (|has| (-85) (-553 (-473))) ELT)) (-3530 (($ (-583 (-85))) 70 T ELT)) (-3802 (($ (-583 $)) 76 T ELT) (($ $ $) 75 T ELT) (($ (-85) $) 74 T ELT) (($ $ (-85)) 73 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-1948 (((-85) (-1 (-85) (-85)) $) 86 T ELT)) (-2562 (($ $ $) 109 T ELT)) (-2311 (($ $ $) 107 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-2312 (($ $ $) 106 T ELT)) (-3957 (((-694) $) 87 T ELT))) +((-2561 (*1 *1 *1) (-4 *1 (-84))) (-2563 (*1 *1 *1 *1) (-4 *1 (-84))) (-2562 (*1 *1 *1 *1) (-4 *1 (-84)))) +(-13 (-605) (-10 -8 (-15 -2561 ($ $)) (-15 -2563 ($ $ $)) (-15 -2562 ($ $ $)))) +(((-13) . T) ((-605) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 9 T ELT)) (-3322 (($ $ $) 14 T ELT)) (-2856 (($) 6 T CONST)) (-3137 (((-695)) 23 T ELT)) (-2995 (($) 31 T ELT)) (-2562 (($ $ $) 12 T ELT)) (-2561 (($ $) 8 T ELT)) (-1301 (($ $ $) 15 T ELT)) (-1302 (($ $ $) 16 T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) 29 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 27 T ELT)) (-2854 (($ $ $) 19 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2855 (($) 7 T CONST)) (-2853 (($ $ $) 20 T ELT)) (-3973 (((-474) $) 33 T ELT)) (-3947 (((-773) $) 35 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2563 (($ $ $) 10 T ELT)) (-2312 (($ $ $) 13 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 18 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 21 T ELT)) (-2313 (($ $ $) 11 T ELT))) +(((-85) (-13 (-753) (-881) (-554 (-474)) (-10 -8 (-15 -3322 ($ $ $)) (-15 -1302 ($ $ $)) (-15 -1301 ($ $ $))))) (T -85)) +((-3322 (*1 *1 *1 *1) (-5 *1 (-85))) (-1302 (*1 *1 *1 *1) (-5 *1 (-85))) (-1301 (*1 *1 *1 *1) (-5 *1 (-85)))) +((-2569 (((-85) $ $) NIL T ELT)) (-1523 (((-695) $) 92 T ELT) (($ $ (-695)) 38 T ELT)) (-1287 (((-85) $) 42 T ELT)) (-1281 (($ $ (-1074) (-697)) 59 T ELT) (($ $ (-447) (-697)) 34 T ELT)) (-1280 (($ $ (-45 (-1074) (-697))) 16 T ELT)) (-2842 (((-3 (-697) "failed") $ (-1074)) 27 T ELT) (((-633 (-697)) $ (-447)) 33 T ELT)) (-1289 (((-45 (-1074) (-697)) $) 15 T ELT)) (-3596 (($ (-1091)) 20 T ELT) (($ (-1091) (-695)) 23 T ELT) (($ (-1091) (-55)) 24 T ELT)) (-1288 (((-85) $) 40 T ELT)) (-1286 (((-85) $) 44 T ELT)) (-3543 (((-1091) $) 8 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2634 (((-85) $ (-1091)) 11 T ELT)) (-2129 (($ $ (-1 (-474) (-584 (-474)))) 65 T ELT) (((-633 (-1 (-474) (-584 (-474)))) $) 69 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1283 (((-85) $ (-447)) 37 T ELT)) (-1285 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3618 (((-633 (-1 (-773) (-584 (-773)))) $) 67 T ELT) (($ $ (-1 (-773) (-584 (-773)))) 52 T ELT) (($ $ (-1 (-773) (-773))) 54 T ELT)) (-1282 (($ $ (-1074)) 56 T ELT) (($ $ (-447)) 57 T ELT)) (-3401 (($ $) 75 T ELT)) (-1284 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3947 (((-773) $) 61 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2793 (($ $ (-447)) 35 T ELT)) (-2522 (((-55) $) 70 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 88 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 104 T ELT))) +(((-86) (-13 (-757) (-748 (-1091)) (-10 -8 (-15 -1289 ((-45 (-1074) (-697)) $)) (-15 -3401 ($ $)) (-15 -3596 ($ (-1091))) (-15 -3596 ($ (-1091) (-695))) (-15 -3596 ($ (-1091) (-55))) (-15 -1288 ((-85) $)) (-15 -1287 ((-85) $)) (-15 -1286 ((-85) $)) (-15 -1523 ((-695) $)) (-15 -1523 ($ $ (-695))) (-15 -1285 ($ $ (-1 (-85) $ $))) (-15 -1284 ($ $ (-1 (-85) $ $))) (-15 -3618 ((-633 (-1 (-773) (-584 (-773)))) $)) (-15 -3618 ($ $ (-1 (-773) (-584 (-773))))) (-15 -3618 ($ $ (-1 (-773) (-773)))) (-15 -2129 ($ $ (-1 (-474) (-584 (-474))))) (-15 -2129 ((-633 (-1 (-474) (-584 (-474)))) $)) (-15 -1283 ((-85) $ (-447))) (-15 -2793 ($ $ (-447))) (-15 -1282 ($ $ (-1074))) (-15 -1282 ($ $ (-447))) (-15 -2842 ((-3 (-697) "failed") $ (-1074))) (-15 -2842 ((-633 (-697)) $ (-447))) (-15 -1281 ($ $ (-1074) (-697))) (-15 -1281 ($ $ (-447) (-697))) (-15 -1280 ($ $ (-45 (-1074) (-697))))))) (T -86)) +((-1289 (*1 *2 *1) (-12 (-5 *2 (-45 (-1074) (-697))) (-5 *1 (-86)))) (-3401 (*1 *1 *1) (-5 *1 (-86))) (-3596 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-86)))) (-3596 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *1 (-86)))) (-3596 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1287 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1286 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1523 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) (-1523 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) (-1285 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1284 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-773) (-584 (-773))))) (-5 *1 (-86)))) (-3618 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-584 (-773)))) (-5 *1 (-86)))) (-3618 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-773))) (-5 *1 (-86)))) (-2129 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-474) (-584 (-474)))) (-5 *1 (-86)))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-474) (-584 (-474))))) (-5 *1 (-86)))) (-1283 (*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2793 (*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86)))) (-2842 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-697)) (-5 *1 (-86)))) (-2842 (*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-697))) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-697)) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-697)) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1074) (-697))) (-5 *1 (-86))))) +((-2519 (((-3 (-1 |#1| (-584 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-584 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-584 |#1|)) 25 T ELT)) (-1290 (((-3 (-584 (-1 |#1| (-584 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-584 (-1 |#1| (-584 |#1|)))) 30 T ELT)) (-1291 (((-86) |#1|) 63 T ELT)) (-1292 (((-3 |#1| #1#) (-86)) 58 T ELT))) +(((-87 |#1|) (-10 -7 (-15 -2519 ((-3 |#1| #1="failed") (-86) (-584 |#1|))) (-15 -2519 ((-86) (-86) (-1 |#1| (-584 |#1|)))) (-15 -2519 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2519 ((-3 (-1 |#1| (-584 |#1|)) #1#) (-86))) (-15 -1290 ((-86) (-86) (-584 (-1 |#1| (-584 |#1|))))) (-15 -1290 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1290 ((-3 (-584 (-1 |#1| (-584 |#1|))) #1#) (-86))) (-15 -1291 ((-86) |#1|)) (-15 -1292 ((-3 |#1| #1#) (-86)))) (-1014)) (T -87)) +((-1292 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1014)))) (-1291 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1014)))) (-1290 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-1 *4 (-584 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1014)))) (-1290 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-1290 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 (-1 *4 (-584 *4)))) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-2519 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-584 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1014)))) (-2519 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-2519 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-584 *4))) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-2519 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-584 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1014))))) +((-1293 (((-485) |#2|) 41 T ELT))) +(((-88 |#1| |#2|) (-10 -7 (-15 -1293 ((-485) |#2|))) (-13 (-312) (-951 (-350 (-485)))) (-1156 |#1|)) (T -88)) +((-1293 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-951 (-350 *2)))) (-5 *2 (-485)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1156 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $ (-485)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2612 (($ (-1086 (-485)) (-485)) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2613 (($ $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3773 (((-695) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2615 (((-485)) NIL T ELT)) (-2614 (((-485) $) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3770 (($ $ (-485)) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2616 (((-1070 (-485)) $) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3771 (((-485) $ (-485)) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-89 |#1|) (-780 |#1|) (-485)) (T -89)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-89 |#1|) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT)) (-3157 (((-89 |#1|) $) NIL T ELT) (((-1091) $) NIL (|has| (-89 |#1|) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT)) (-3731 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-89 |#1|))) (|:| |vec| (-1180 (-89 |#1|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-89 |#1|)) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-89 |#1|) (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-89 |#1|) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-89 |#1|) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-89 |#1|) $) NIL T ELT)) (-3446 (((-633 $) $) NIL (|has| (-89 |#1|) (-1067)) ELT)) (-3188 (((-85) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3959 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-89 |#1|))) (|:| |vec| (-1180 (-89 |#1|)))) (-1180 $) $) NIL T ELT) (((-631 (-89 |#1|)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-89 |#1|) (-1067)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-3131 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-484)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3769 (($ $ (-584 (-89 |#1|)) (-584 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-249 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-584 (-249 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-584 (-1091)) (-584 (-89 |#1|))) NIL (|has| (-89 |#1|) (-456 (-1091) (-89 |#1|))) ELT) (($ $ (-1091) (-89 |#1|)) NIL (|has| (-89 |#1|) (-456 (-1091) (-89 |#1|))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3801 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-89 |#1|) $) NIL T ELT)) (-3973 (((-801 (-485)) $) NIL (|has| (-89 |#1|) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-89 |#1|) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-89 |#1|) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-89 |#1|) (-934)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-934)) ELT)) (-2617 (((-148 (-350 (-485))) $) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-822))) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1091)) NIL (|has| (-89 |#1|) (-951 (-1091))) ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-822))) (|has| (-89 |#1|) (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3771 (((-350 (-485)) $ (-485)) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3950 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT))) +(((-90 |#1|) (-13 (-905 (-89 |#1|)) (-10 -8 (-15 -3771 ((-350 (-485)) $ (-485))) (-15 -2617 ((-148 (-350 (-485))) $)) (-15 -3731 ($ $)) (-15 -3731 ($ (-485) $)))) (-485)) (T -90)) +((-3771 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-485)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-90 *3)) (-14 *3 (-485)))) (-3731 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-485)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-90 *3)) (-14 *3 *2)))) +((-3789 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3032 (((-584 $) $) 31 T ELT)) (-3028 (((-85) $ $) 36 T ELT)) (-3246 (((-85) |#2| $) 40 T ELT)) (-3031 (((-584 |#2|) $) 25 T ELT)) (-3528 (((-85) $) 18 T ELT)) (-3801 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3634 (((-85) $) 57 T ELT)) (-3947 (((-773) $) 47 T ELT)) (-3523 (((-584 $) $) 32 T ELT)) (-3057 (((-85) $ $) 38 T ELT)) (-3958 (((-695) $) 50 T ELT))) +(((-91 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3947 ((-773) |#1|)) (-15 -3789 (|#1| |#1| #1="right" |#1|)) (-15 -3789 (|#1| |#1| #2="left" |#1|)) (-15 -3801 (|#1| |#1| #1#)) (-15 -3801 (|#1| |#1| #2#)) (-15 -3789 (|#2| |#1| #3="value" |#2|)) (-15 -3028 ((-85) |#1| |#1|)) (-15 -3031 ((-584 |#2|) |#1|)) (-15 -3634 ((-85) |#1|)) (-15 -3801 (|#2| |#1| #3#)) (-15 -3528 ((-85) |#1|)) (-15 -3032 ((-584 |#1|) |#1|)) (-15 -3523 ((-584 |#1|) |#1|)) (-15 -3246 ((-85) |#2| |#1|)) (-15 -3958 ((-695) |#1|))) (-92 |#2|) (-1130)) (T -91)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-1294 (($ $ $) 58 (|has| $ (-6 -3997)) ELT)) (-1295 (($ $ $) 60 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3997)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -3997)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3997)) ELT)) (-3725 (($) 7 T CONST)) (-3138 (($ $) 63 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3139 (($ $) 65 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-92 |#1|) (-113) (-1130)) (T -92)) +((-3139 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-3138 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-3789 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -3997)) (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-1295 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-92 *2)) (-4 *2 (-1130)))) (-3789 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -3997)) (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-1294 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-92 *2)) (-4 *2 (-1130))))) +(-13 (-924 |t#1|) (-10 -8 (-15 -3139 ($ $)) (-15 -3801 ($ $ "left")) (-15 -3138 ($ $)) (-15 -3801 ($ $ "right")) (IF (|has| $ (-6 -3997)) (PROGN (-15 -3789 ($ $ "left" $)) (-15 -1295 ($ $ $)) (-15 -3789 ($ $ "right" $)) (-15 -1294 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) +((-1298 (((-85) |#1|) 29 T ELT)) (-1297 (((-695) (-695)) 28 T ELT) (((-695)) 27 T ELT)) (-1296 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT))) +(((-93 |#1|) (-10 -7 (-15 -1296 ((-85) |#1|)) (-15 -1296 ((-85) |#1| (-85))) (-15 -1297 ((-695))) (-15 -1297 ((-695) (-695))) (-15 -1298 ((-85) |#1|))) (-1156 (-485))) (T -93)) +((-1298 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1297 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1297 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1296 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1296 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485)))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 18 T ELT)) (-3419 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3026 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1294 (($ $ $) 21 (|has| $ (-6 -3997)) ELT)) (-1295 (($ $ $) 23 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3997)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3138 (($ $) 20 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1303 (($ $ |#1| $) 27 T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3139 (($ $) 22 T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1299 (($ |#1| $) 28 T ELT)) (-3610 (($ |#1| $) 15 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 17 T ELT)) (-3566 (($) 11 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1300 (($ (-584 |#1|)) 16 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1300 ($ (-584 |#1|))) (-15 -3610 ($ |#1| $)) (-15 -1299 ($ |#1| $)) (-15 -3419 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-757)) (T -94)) +((-1300 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-94 *3)))) (-3610 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))) (-1299 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))) (-3419 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-757))))) +((-2314 (($ $) 13 T ELT)) (-2561 (($ $) 11 T ELT)) (-1301 (($ $ $) 23 T ELT)) (-1302 (($ $ $) 21 T ELT)) (-2312 (($ $ $) 19 T ELT)) (-2313 (($ $ $) 17 T ELT))) +(((-95 |#1|) (-10 -7 (-15 -1301 (|#1| |#1| |#1|)) (-15 -1302 (|#1| |#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2313 (|#1| |#1| |#1|)) (-15 -2312 (|#1| |#1| |#1|)) (-15 -2561 (|#1| |#1|))) (-96)) (T -95)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-2314 (($ $) 105 T ELT)) (-3322 (($ $ $) 33 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 60 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) $) 97 (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 91 T ELT)) (-1731 (($ $) 101 (-12 (|has| (-85) (-757)) (|has| $ (-6 -3997))) ELT) (($ (-1 (-85) (-85) (-85)) $) 100 (|has| $ (-6 -3997)) ELT)) (-2910 (($ $) 96 (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) 90 T ELT)) (-3789 (((-85) $ (-1147 (-485)) (-85)) 82 (|has| $ (-6 -3997)) ELT) (((-85) $ (-485) (-85)) 48 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) (-85)) $) 65 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 40 T CONST)) (-2298 (($ $) 99 (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) 89 T ELT)) (-1354 (($ $) 62 (-12 (|has| (-85) (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ (-1 (-85) (-85)) $) 66 (|has| $ (-6 -3996)) ELT) (($ (-85) $) 63 (-12 (|has| (-85) (-1014)) (|has| $ (-6 -3996))) ELT)) (-3843 (((-85) (-1 (-85) (-85) (-85)) $) 68 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 67 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 64 (-12 (|has| (-85) (-1014)) (|has| $ (-6 -3996))) ELT)) (-1577 (((-85) $ (-485) (-85)) 47 (|has| $ (-6 -3997)) ELT)) (-3113 (((-85) $ (-485)) 49 T ELT)) (-3420 (((-485) (-85) $ (-485)) 94 (|has| (-85) (-1014)) ELT) (((-485) (-85) $) 93 (|has| (-85) (-1014)) ELT) (((-485) (-1 (-85) (-85)) $) 92 T ELT)) (-2890 (((-584 (-85)) $) 42 (|has| $ (-6 -3996)) ELT)) (-2562 (($ $ $) 110 T ELT)) (-2561 (($ $) 108 T ELT)) (-1301 (($ $ $) 34 T ELT)) (-3615 (($ (-695) (-85)) 72 T ELT)) (-1302 (($ $ $) 35 T ELT)) (-2201 (((-485) $) 57 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 23 T ELT)) (-3519 (($ $ $) 95 (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 88 T ELT)) (-2609 (((-584 (-85)) $) 83 T ELT)) (-3246 (((-85) (-85) $) 103 (|has| (-85) (-72)) ELT)) (-2202 (((-485) $) 56 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 22 T ELT)) (-3327 (($ (-1 (-85) (-85)) $) 102 T ELT)) (-3959 (($ (-1 (-85) (-85) (-85)) $ $) 77 T ELT) (($ (-1 (-85) (-85)) $) 41 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2305 (($ $ $ (-485)) 81 T ELT) (($ (-85) $ (-485)) 80 T ELT)) (-2204 (((-584 (-485)) $) 54 T ELT)) (-2205 (((-85) (-485) $) 53 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3802 (((-85) $) 58 (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 69 T ELT)) (-2200 (($ $ (-85)) 59 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) (-85)) $) 85 T ELT)) (-3769 (($ $ (-584 (-85)) (-584 (-85))) 46 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-85) (-85)) 45 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-249 (-85))) 44 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-584 (-249 (-85)))) 43 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT)) (-1223 (((-85) $ $) 36 T ELT)) (-2203 (((-85) (-85) $) 55 (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1014))) ELT)) (-2206 (((-584 (-85)) $) 52 T ELT)) (-3404 (((-85) $) 39 T ELT)) (-3566 (($) 38 T ELT)) (-3801 (($ $ (-1147 (-485))) 71 T ELT) (((-85) $ (-485)) 51 T ELT) (((-85) $ (-485) (-85)) 50 T ELT)) (-2306 (($ $ (-1147 (-485))) 79 T ELT) (($ $ (-485)) 78 T ELT)) (-1947 (((-695) (-85) $) 104 (|has| (-85) (-72)) ELT) (((-695) (-1 (-85) (-85)) $) 84 T ELT)) (-1732 (($ $ $ (-485)) 98 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 37 T ELT)) (-3973 (((-474) $) 61 (|has| (-85) (-554 (-474))) ELT)) (-3531 (($ (-584 (-85))) 70 T ELT)) (-3803 (($ (-584 $)) 76 T ELT) (($ $ $) 75 T ELT) (($ (-85) $) 74 T ELT) (($ $ (-85)) 73 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1949 (((-85) (-1 (-85) (-85)) $) 86 T ELT)) (-2563 (($ $ $) 109 T ELT)) (-2312 (($ $ $) 107 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-2313 (($ $ $) 106 T ELT)) (-3958 (((-695) $) 87 T ELT))) (((-96) (-113)) (T -96)) -((-1301 (*1 *1 *1 *1) (-4 *1 (-96))) (-1300 (*1 *1 *1 *1) (-4 *1 (-96))) (-3321 (*1 *1 *1 *1) (-4 *1 (-96)))) -(-13 (-756) (-84) (-604) (-19 (-85)) (-10 -8 (-15 -1301 ($ $ $)) (-15 -1300 ($ $ $)) (-15 -3321 ($ $ $)))) -(((-34) . T) ((-72) . T) ((-84) . T) ((-552 (-772)) . T) ((-124 (-85)) . T) ((-553 (-473)) |has| (-85) (-553 (-473))) ((-241 (-484) (-85)) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) (-85)) . T) ((-260 (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ((-318 (-85)) . T) ((-324 (-85)) . T) ((-429 (-85)) . T) ((-538 (-484) (-85)) . T) ((-455 (-85) (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ((-13) . T) ((-593 (-85)) . T) ((-604) . T) ((-19 (-85)) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1035 (-85)) . T) ((-1129) . T)) -((-3326 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3400 (($ $) 16 T ELT)) (-3957 (((-694) $) 25 T ELT))) -(((-97 |#1| |#2|) (-10 -7 (-15 -3326 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3957 ((-694) |#1|)) (-15 -3400 (|#1| |#1|))) (-98 |#2|) (-1013)) (T -97)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-1293 (($ $ $) 58 (|has| $ (-6 -3996)) ELT)) (-1294 (($ $ $) 60 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3996)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -3996)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3996)) ELT)) (-3724 (($) 7 T CONST)) (-3137 (($ $) 63 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-1302 (($ $ |#1| $) 68 T ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3138 (($ $) 65 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 T ELT) (((-694) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-98 |#1|) (-113) (-1013)) (T -98)) -((-1302 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1013))))) -(-13 (-92 |t#1|) (-318 |t#1|) (-1035 |t#1|) (-10 -8 (-15 -1302 ($ $ |t#1| $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 18 T ELT)) (-3025 ((|#1| $ |#1|) 22 (|has| $ (-6 -3996)) ELT)) (-1293 (($ $ $) 23 (|has| $ (-6 -3996)) ELT)) (-1294 (($ $ $) 21 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3996)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3137 (($ $) 24 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1302 (($ $ |#1| $) NIL T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3138 (($ $) NIL T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3527 (((-85) $) NIL T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3609 (($ |#1| $) 15 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 17 T ELT)) (-3565 (($) 11 T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3633 (((-85) $) NIL T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3400 (($ $) 20 T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1303 (($ (-583 |#1|)) 16 T ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1303 ($ (-583 |#1|))) (-15 -3609 ($ |#1| $)))) (-756)) (T -99)) -((-1303 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-99 *3)))) (-3609 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-756))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 31 T ELT)) (-3025 ((|#1| $ |#1|) 33 (|has| $ (-6 -3996)) ELT)) (-1293 (($ $ $) 37 (|has| $ (-6 -3996)) ELT)) (-1294 (($ $ $) 35 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3996)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3137 (($ $) 24 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1302 (($ $ |#1| $) 17 T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3138 (($ $) 23 T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3527 (((-85) $) 26 T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 21 T ELT)) (-3565 (($) 13 T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3633 (((-85) $) NIL T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1304 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1304 ($ |#1|)) (-15 -1304 ($ $ |#1| $)))) (-1013)) (T -100)) -((-1304 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013)))) (-1304 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013))))) -((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 32 T ELT)) (-3136 (((-694)) 17 T ELT)) (-3724 (($) 9 T CONST)) (-2994 (($) 27 T ELT)) (-2531 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2857 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2010 (((-830) $) 25 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 23 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1305 (($ (-694)) 8 T ELT)) (-3725 (($ $ $) 29 T ELT)) (-3726 (($ $ $) 28 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) 31 T ELT)) (-2566 (((-85) $ $) 14 T ELT)) (-2567 (((-85) $ $) 12 T ELT)) (-3056 (((-85) $ $) 10 T ELT)) (-2684 (((-85) $ $) 13 T ELT)) (-2685 (((-85) $ $) 11 T ELT)) (-2312 (($ $ $) 30 T ELT))) -(((-101) (-13 (-752) (-604) (-10 -8 (-15 -1305 ($ (-694))) (-15 -3726 ($ $ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($) -3952)))) (T -101)) -((-1305 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-101)))) (-3726 (*1 *1 *1 *1) (-5 *1 (-101))) (-3725 (*1 *1 *1 *1) (-5 *1 (-101))) (-3724 (*1 *1) (-5 *1 (-101)))) -((-694) (|%ilt| |#1| 256)) -((-2568 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-756)) ELT)) (-1730 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-101) (-756))) ELT)) (-2909 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-756)) ELT)) (-3788 (((-101) $ (-484) (-101)) 26 (|has| $ (-6 -3996)) ELT) (((-101) $ (-1146 (-484)) (-101)) NIL (|has| $ (-6 -3996)) ELT)) (-1306 (((-694) $ (-694)) 35 T ELT)) (-3710 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-101) (-1013))) ELT)) (-3406 (($ (-101) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-101) (-1013))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (-12 (|has| $ (-6 -3995)) (|has| (-101) (-1013))) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL (|has| $ (-6 -3995)) ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 (((-101) $ (-484) (-101)) 25 (|has| $ (-6 -3996)) ELT)) (-3112 (((-101) $ (-484)) 20 T ELT)) (-3419 (((-484) (-1 (-85) (-101)) $) NIL T ELT) (((-484) (-101) $) NIL (|has| (-101) (-1013)) ELT) (((-484) (-101) $ (-484)) NIL (|has| (-101) (-1013)) ELT)) (-2889 (((-583 (-101)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-694) (-101)) 14 T ELT)) (-2200 (((-484) $) 27 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-3518 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-2608 (((-583 (-101)) $) NIL T ELT)) (-3245 (((-85) (-101) $) NIL (|has| (-101) (-72)) ELT)) (-2201 (((-484) $) 30 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-3326 (($ (-1 (-101) (-101)) $) NIL T ELT)) (-3958 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL (|has| (-101) (-1013)) ELT)) (-2304 (($ (-101) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| (-101) (-1013)) ELT)) (-3801 (((-101) $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2199 (($ $ (-101)) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 (-101)))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-249 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-583 (-101)) (-583 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-101) (-1013))) ELT)) (-2205 (((-583 (-101)) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) 12 T ELT)) (-3800 (((-101) $ (-484) (-101)) NIL T ELT) (((-101) $ (-484)) 23 T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1946 (((-694) (-1 (-85) (-101)) $) NIL T ELT) (((-694) (-101) $) NIL (|has| (-101) (-72)) ELT)) (-1731 (($ $ $ (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| (-101) (-553 (-473))) ELT)) (-3530 (($ (-583 (-101))) 41 T ELT)) (-3802 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-583 $)) NIL T ELT)) (-3946 (((-869 (-101)) $) 36 T ELT) (((-1073) $) 38 T ELT) (((-772) $) NIL (|has| (-101) (-552 (-772))) ELT)) (-1307 (((-694) $) 18 T ELT)) (-1308 (($ (-694)) 8 T ELT)) (-1265 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1948 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-3056 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-3957 (((-694) $) 15 T ELT))) -(((-102) (-13 (-19 (-101)) (-552 (-869 (-101))) (-552 (-1073)) (-10 -8 (-15 -1308 ($ (-694))) (-15 -1307 ((-694) $)) (-15 -1306 ((-694) $ (-694)))))) (T -102)) -((-1308 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102)))) (-1307 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-102)))) (-1306 (*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1309 (($) 6 T CONST)) (-1311 (($) 7 T CONST)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 14 T ELT)) (-1310 (($) 8 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 10 T ELT))) -(((-103) (-13 (-1013) (-10 -8 (-15 -1311 ($) -3952) (-15 -1310 ($) -3952) (-15 -1309 ($) -3952)))) (T -103)) -((-1311 (*1 *1) (-5 *1 (-103))) (-1310 (*1 *1) (-5 *1 (-103))) (-1309 (*1 *1) (-5 *1 (-103)))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT))) +((-1302 (*1 *1 *1 *1) (-4 *1 (-96))) (-1301 (*1 *1 *1 *1) (-4 *1 (-96))) (-3322 (*1 *1 *1 *1) (-4 *1 (-96)))) +(-13 (-757) (-84) (-605) (-19 (-85)) (-10 -8 (-15 -1302 ($ $ $)) (-15 -1301 ($ $ $)) (-15 -3322 ($ $ $)))) +(((-34) . T) ((-72) . T) ((-84) . T) ((-553 (-773)) . T) ((-124 (-85)) . T) ((-554 (-474)) |has| (-85) (-554 (-474))) ((-241 (-485) (-85)) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) (-85)) . T) ((-260 (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ((-318 (-85)) . T) ((-324 (-85)) . T) ((-429 (-85)) . T) ((-539 (-485) (-85)) . T) ((-456 (-85) (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ((-13) . T) ((-594 (-85)) . T) ((-605) . T) ((-19 (-85)) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1036 (-85)) . T) ((-1130) . T)) +((-3327 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3401 (($ $) 16 T ELT)) (-3958 (((-695) $) 25 T ELT))) +(((-97 |#1| |#2|) (-10 -7 (-15 -3327 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3958 ((-695) |#1|)) (-15 -3401 (|#1| |#1|))) (-98 |#2|) (-1014)) (T -97)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-1294 (($ $ $) 58 (|has| $ (-6 -3997)) ELT)) (-1295 (($ $ $) 60 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3997)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -3997)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3997)) ELT)) (-3725 (($) 7 T CONST)) (-3138 (($ $) 63 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-1303 (($ $ |#1| $) 68 T ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3139 (($ $) 65 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 T ELT) (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-98 |#1|) (-113) (-1014)) (T -98)) +((-1303 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1014))))) +(-13 (-92 |t#1|) (-318 |t#1|) (-1036 |t#1|) (-10 -8 (-15 -1303 ($ $ |t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 18 T ELT)) (-3026 ((|#1| $ |#1|) 22 (|has| $ (-6 -3997)) ELT)) (-1294 (($ $ $) 23 (|has| $ (-6 -3997)) ELT)) (-1295 (($ $ $) 21 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3997)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3138 (($ $) 24 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1303 (($ $ |#1| $) NIL T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3139 (($ $) NIL T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3610 (($ |#1| $) 15 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 17 T ELT)) (-3566 (($) 11 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3401 (($ $) 20 T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1304 (($ (-584 |#1|)) 16 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1304 ($ (-584 |#1|))) (-15 -3610 ($ |#1| $)))) (-757)) (T -99)) +((-1304 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-99 *3)))) (-3610 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-757))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 31 T ELT)) (-3026 ((|#1| $ |#1|) 33 (|has| $ (-6 -3997)) ELT)) (-1294 (($ $ $) 37 (|has| $ (-6 -3997)) ELT)) (-1295 (($ $ $) 35 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3997)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3138 (($ $) 24 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1303 (($ $ |#1| $) 17 T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3139 (($ $) 23 T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3528 (((-85) $) 26 T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 21 T ELT)) (-3566 (($) 13 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1305 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1305 ($ |#1|)) (-15 -1305 ($ $ |#1| $)))) (-1014)) (T -100)) +((-1305 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014)))) (-1305 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014))))) +((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 32 T ELT)) (-3137 (((-695)) 17 T ELT)) (-3725 (($) 9 T CONST)) (-2995 (($) 27 T ELT)) (-2532 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2858 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2011 (((-831) $) 25 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 23 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1306 (($ (-695)) 8 T ELT)) (-3726 (($ $ $) 29 T ELT)) (-3727 (($ $ $) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 31 T ELT)) (-2567 (((-85) $ $) 14 T ELT)) (-2568 (((-85) $ $) 12 T ELT)) (-3057 (((-85) $ $) 10 T ELT)) (-2685 (((-85) $ $) 13 T ELT)) (-2686 (((-85) $ $) 11 T ELT)) (-2313 (($ $ $) 30 T ELT))) +(((-101) (-13 (-753) (-605) (-10 -8 (-15 -1306 ($ (-695))) (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953)))) (T -101)) +((-1306 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-101)))) (-3727 (*1 *1 *1 *1) (-5 *1 (-101))) (-3726 (*1 *1 *1 *1) (-5 *1 (-101))) (-3725 (*1 *1) (-5 *1 (-101)))) +((-695) (|%ilt| |#1| 256)) +((-2569 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-757)) ELT)) (-1731 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| (-101) (-757))) ELT)) (-2910 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-757)) ELT)) (-3789 (((-101) $ (-485) (-101)) 26 (|has| $ (-6 -3997)) ELT) (((-101) $ (-1147 (-485)) (-101)) NIL (|has| $ (-6 -3997)) ELT)) (-1307 (((-695) $ (-695)) 35 T ELT)) (-3711 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-101) (-1014))) ELT)) (-3407 (($ (-101) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-101) (-1014))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (-12 (|has| $ (-6 -3996)) (|has| (-101) (-1014))) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL (|has| $ (-6 -3996)) ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 (((-101) $ (-485) (-101)) 25 (|has| $ (-6 -3997)) ELT)) (-3113 (((-101) $ (-485)) 20 T ELT)) (-3420 (((-485) (-1 (-85) (-101)) $) NIL T ELT) (((-485) (-101) $) NIL (|has| (-101) (-1014)) ELT) (((-485) (-101) $ (-485)) NIL (|has| (-101) (-1014)) ELT)) (-2890 (((-584 (-101)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-695) (-101)) 14 T ELT)) (-2201 (((-485) $) 27 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-3519 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-2609 (((-584 (-101)) $) NIL T ELT)) (-3246 (((-85) (-101) $) NIL (|has| (-101) (-72)) ELT)) (-2202 (((-485) $) 30 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-3327 (($ (-1 (-101) (-101)) $) NIL T ELT)) (-3959 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL (|has| (-101) (-1014)) ELT)) (-2305 (($ (-101) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| (-101) (-1014)) ELT)) (-3802 (((-101) $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2200 (($ $ (-101)) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 (-101)))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT) (($ $ (-249 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT) (($ $ (-584 (-101)) (-584 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-101) (-1014))) ELT)) (-2206 (((-584 (-101)) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 12 T ELT)) (-3801 (((-101) $ (-485) (-101)) NIL T ELT) (((-101) $ (-485)) 23 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1947 (((-695) (-1 (-85) (-101)) $) NIL T ELT) (((-695) (-101) $) NIL (|has| (-101) (-72)) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-101) (-554 (-474))) ELT)) (-3531 (($ (-584 (-101))) 41 T ELT)) (-3803 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-584 $)) NIL T ELT)) (-3947 (((-870 (-101)) $) 36 T ELT) (((-1074) $) 38 T ELT) (((-773) $) NIL (|has| (-101) (-553 (-773))) ELT)) (-1308 (((-695) $) 18 T ELT)) (-1309 (($ (-695)) 8 T ELT)) (-1266 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1949 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-3057 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-3958 (((-695) $) 15 T ELT))) +(((-102) (-13 (-19 (-101)) (-553 (-870 (-101))) (-553 (-1074)) (-10 -8 (-15 -1309 ($ (-695))) (-15 -1308 ((-695) $)) (-15 -1307 ((-695) $ (-695)))))) (T -102)) +((-1309 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102)))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-102)))) (-1307 (*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1310 (($) 6 T CONST)) (-1312 (($) 7 T CONST)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 14 T ELT)) (-1311 (($) 8 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 10 T ELT))) +(((-103) (-13 (-1014) (-10 -8 (-15 -1312 ($) -3953) (-15 -1311 ($) -3953) (-15 -1310 ($) -3953)))) (T -103)) +((-1312 (*1 *1) (-5 *1 (-103))) (-1311 (*1 *1) (-5 *1 (-103))) (-1310 (*1 *1) (-5 *1 (-103)))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT))) (((-104) (-113)) (T -104)) -((-1312 (*1 *1 *1 *1) (|partial| -4 *1 (-104)))) -(-13 (-23) (-10 -8 (-15 -1312 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 7 T ELT)) (-1313 (((-1185) $ (-694)) 17 T ELT)) (-3419 (((-694) $) 18 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +((-1313 (*1 *1 *1 *1) (|partial| -4 *1 (-104)))) +(-13 (-23) (-10 -8 (-15 -1313 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 7 T ELT)) (-1314 (((-1186) $ (-695)) 17 T ELT)) (-3420 (((-695) $) 18 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) (((-105) (-113)) (T -105)) -((-3419 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-694)))) (-1313 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-694)) (-5 *2 (-1185))))) -(-13 (-1013) (-10 -8 (-15 -3419 ((-694) $)) (-15 -1313 ((-1185) $ (-694))))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3233 (((-583 (-1049)) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-106) (-13 (-995) (-10 -8 (-15 -3233 ((-583 (-1049)) $))))) (T -106)) -((-3233 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-106))))) -((-2568 (((-85) $ $) 49 T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-694) #1="failed") $) 60 T ELT)) (-3156 (((-694) $) 58 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) 37 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1315 (((-85)) 61 T ELT)) (-1314 (((-85) (-85)) 63 T ELT)) (-2525 (((-85) $) 30 T ELT)) (-1316 (((-85) $) 57 T ELT)) (-3946 (((-772) $) 28 T ELT) (($ (-694)) 20 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 18 T CONST)) (-2666 (($) 19 T CONST)) (-1317 (($ (-694)) 21 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) 40 T ELT)) (-3056 (((-85) $ $) 32 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 35 T ELT)) (-3837 (((-3 $ #1#) $ $) 42 T ELT)) (-3839 (($ $ $) 38 T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-694) $) 48 T ELT) (($ (-830) $) NIL T ELT) (($ $ $) 45 T ELT))) -(((-107) (-13 (-756) (-23) (-663) (-950 (-694)) (-10 -8 (-6 (-3997 "*")) (-15 -3837 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1317 ($ (-694))) (-15 -2525 ((-85) $)) (-15 -1316 ((-85) $)) (-15 -1315 ((-85))) (-15 -1314 ((-85) (-85)))))) (T -107)) -((-3837 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1317 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-107)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1315 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1314 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1318 (($ (-583 |#3|)) 63 T ELT)) (-3414 (($ $) 125 T ELT) (($ $ (-484) (-484)) 124 T ELT)) (-3724 (($) 17 T ELT)) (-3157 (((-3 |#3| "failed") $) 86 T ELT)) (-3156 ((|#3| $) NIL T ELT)) (-1322 (($ $ (-583 (-484))) 126 T ELT)) (-1319 (((-583 |#3|) $) 58 T ELT)) (-3108 (((-694) $) 68 T ELT)) (-3944 (($ $ $) 120 T ELT)) (-1320 (($) 67 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1321 (($) 16 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#3| $ (-484)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-484) (-484)) 73 T ELT) ((|#3| $ (-484) (-484) (-484)) 74 T ELT) ((|#3| $ (-484) (-484) (-484) (-484)) 75 T ELT) ((|#3| $ (-583 (-484))) 76 T ELT)) (-3948 (((-694) $) 69 T ELT)) (-1981 (($ $ (-484) $ (-484)) 121 T ELT) (($ $ (-484) (-484)) 123 T ELT)) (-3946 (((-772) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1056 |#2| |#3|)) 105 T ELT) (($ (-583 |#3|)) 77 T ELT) (($ (-583 $)) 83 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 96 T CONST)) (-2666 (($) 97 T CONST)) (-3056 (((-85) $ $) 107 T ELT)) (-3837 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3839 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-484)) 116 T ELT) (($ (-484) $) 115 T ELT) (($ $ $) 122 T ELT))) -(((-108 |#1| |#2| |#3|) (-13 (-405 |#3| (-694)) (-410 (-484) (-694)) (-241 (-484) |#3|) (-555 (-197 |#2| |#3|)) (-555 (-1056 |#2| |#3|)) (-555 (-583 |#3|)) (-555 (-583 $)) (-10 -8 (-15 -3108 ((-694) $)) (-15 -3800 (|#3| $)) (-15 -3800 (|#3| $ (-484) (-484))) (-15 -3800 (|#3| $ (-484) (-484) (-484))) (-15 -3800 (|#3| $ (-484) (-484) (-484) (-484))) (-15 -3800 (|#3| $ (-583 (-484)))) (-15 -3944 ($ $ $)) (-15 * ($ $ $)) (-15 -1981 ($ $ (-484) $ (-484))) (-15 -1981 ($ $ (-484) (-484))) (-15 -3414 ($ $)) (-15 -3414 ($ $ (-484) (-484))) (-15 -1322 ($ $ (-583 (-484)))) (-15 -1321 ($)) (-15 -1320 ($)) (-15 -1319 ((-583 |#3|) $)) (-15 -1318 ($ (-583 |#3|))) (-15 -3724 ($)))) (-484) (-694) (-146)) (T -108)) -((-3944 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 *2) (-4 *5 (-146)))) (-3800 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-484)) (-14 *4 (-694)))) (-3800 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3800 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3800 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-484))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-484)) (-14 *5 (-694)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1981 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-1981 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-3414 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-3414 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-1322 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1321 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1320 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-694)))) (-3724 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146))))) -((-2415 (((-108 |#1| |#2| |#4|) (-583 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3958 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT))) -(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2415 ((-108 |#1| |#2| |#4|) (-583 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3958 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-484) (-694) (-146) (-146)) (T -109)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3528 (((-1049) $) 12 T ELT)) (-3529 (((-1049) $) 10 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-110) (-13 (-995) (-10 -8 (-15 -3529 ((-1049) $)) (-15 -3528 ((-1049) $))))) (T -110)) -((-3529 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-110)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-110))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1426 (((-161) $) 11 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3233 (((-583 (-1049)) $) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-111) (-13 (-995) (-10 -8 (-15 -1426 ((-161) $)) (-15 -3233 ((-583 (-1049)) $))))) (T -111)) -((-1426 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-111))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1424 (((-583 (-774)) $) NIL T ELT)) (-3542 (((-446) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1426 (((-161) $) NIL T ELT)) (-2633 (((-85) $ (-446)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1425 (((-583 (-85)) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2521 (((-55) $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-112) (-13 (-160) (-552 (-157)))) (T -112)) -NIL -((-1324 (((-583 (-158 (-112))) $) 13 T ELT)) (-1323 (((-583 (-158 (-112))) $) 14 T ELT)) (-1325 (((-583 (-749)) $) 10 T ELT)) (-1482 (((-112) $) 7 T ELT)) (-3946 (((-772) $) 16 T ELT))) -(((-113) (-13 (-552 (-772)) (-10 -8 (-15 -1482 ((-112) $)) (-15 -1325 ((-583 (-749)) $)) (-15 -1324 ((-583 (-158 (-112))) $)) (-15 -1323 ((-583 (-158 (-112))) $))))) (T -113)) -((-1482 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-583 (-749))) (-5 *1 (-113)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3427 (($) 17 T CONST)) (-1802 (($) NIL (|has| (-117) (-320)) ELT)) (-3234 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3236 (($ $ $) NIL T ELT)) (-3235 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| (-117) (-320)) ELT)) (-3239 (($) NIL T ELT) (($ (-583 (-117))) NIL T ELT)) (-1570 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1013))) ELT)) (-3405 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-117) $) 56 (|has| $ (-6 -3995)) ELT)) (-3406 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-117) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1013))) ELT)) (-3842 (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3995)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3995)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1013))) ELT)) (-2994 (($) NIL (|has| (-117) (-320)) ELT)) (-2889 (((-583 (-117)) $) 65 (|has| $ (-6 -3995)) ELT)) (-3241 (((-85) $ $) NIL T ELT)) (-2531 (((-117) $) NIL (|has| (-117) (-756)) ELT)) (-2608 (((-583 (-117)) $) NIL T ELT)) (-3245 (((-85) (-117) $) 29 (|has| (-117) (-72)) ELT)) (-2857 (((-117) $) NIL (|has| (-117) (-756)) ELT)) (-3326 (($ (-1 (-117) (-117)) $) 64 T ELT)) (-3958 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3429 (($) 18 T CONST)) (-2010 (((-830) $) NIL (|has| (-117) (-320)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3238 (($ $ $) 32 T ELT)) (-1274 (((-117) $) 57 T ELT)) (-3609 (($ (-117) $) 55 T ELT)) (-2400 (($ (-830)) NIL (|has| (-117) (-320)) ELT)) (-1328 (($) 16 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-1354 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1275 (((-117) $) 58 T ELT)) (-1947 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3768 (($ $ (-583 (-117)) (-583 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-583 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) 53 T ELT)) (-1329 (($) 15 T CONST)) (-3237 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1466 (($ (-583 (-117))) NIL T ELT) (($) NIL T ELT)) (-1946 (((-694) (-1 (-85) (-117)) $) NIL T ELT) (((-694) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-1073) $) 39 T ELT) (((-473) $) NIL (|has| (-117) (-553 (-473))) ELT) (((-583 (-117)) $) 37 T ELT)) (-3530 (($ (-583 (-117))) NIL T ELT)) (-1803 (($ $) 35 (|has| (-117) (-320)) ELT)) (-3946 (((-772) $) 51 T ELT)) (-1330 (($ (-1073)) 14 T ELT) (($ (-583 (-117))) 48 T ELT)) (-1804 (((-694) $) NIL T ELT)) (-3240 (($) 54 T ELT) (($ (-583 (-117))) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1276 (($ (-583 (-117))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-1326 (($) 21 T CONST)) (-1327 (($) 20 T CONST)) (-3056 (((-85) $ $) 26 T ELT)) (-3957 (((-694) $) 52 T ELT))) -(((-114) (-13 (-1013) (-553 (-1073)) (-369 (-117)) (-553 (-583 (-117))) (-10 -8 (-15 -1330 ($ (-1073))) (-15 -1330 ($ (-583 (-117)))) (-15 -1329 ($) -3952) (-15 -1328 ($) -3952) (-15 -3427 ($) -3952) (-15 -3429 ($) -3952) (-15 -1327 ($) -3952) (-15 -1326 ($) -3952)))) (T -114)) -((-1330 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-114)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-583 (-117))) (-5 *1 (-114)))) (-1329 (*1 *1) (-5 *1 (-114))) (-1328 (*1 *1) (-5 *1 (-114))) (-3427 (*1 *1) (-5 *1 (-114))) (-3429 (*1 *1) (-5 *1 (-114))) (-1327 (*1 *1) (-5 *1 (-114))) (-1326 (*1 *1) (-5 *1 (-114)))) -((-3741 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3739 ((|#1| |#3|) 9 T ELT)) (-3740 ((|#3| |#3|) 15 T ELT))) -(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3739 (|#1| |#3|)) (-15 -3740 (|#3| |#3|)) (-15 -3741 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-495) (-904 |#1|) (-324 |#2|)) (T -115)) -((-3741 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-324 *5)))) (-3740 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-324 *4)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-324 *4))))) -((-1369 (($ $ $) 8 T ELT)) (-1367 (($ $) 7 T ELT)) (-3101 (($ $ $) 6 T ELT))) +((-3420 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-695)))) (-1314 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-695)) (-5 *2 (-1186))))) +(-13 (-1014) (-10 -8 (-15 -3420 ((-695) $)) (-15 -1314 ((-1186) $ (-695))))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3234 (((-584 (-1050)) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-106) (-13 (-996) (-10 -8 (-15 -3234 ((-584 (-1050)) $))))) (T -106)) +((-3234 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-106))))) +((-2569 (((-85) $ $) 49 T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-695) #1="failed") $) 60 T ELT)) (-3157 (((-695) $) 58 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) 37 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1316 (((-85)) 61 T ELT)) (-1315 (((-85) (-85)) 63 T ELT)) (-2526 (((-85) $) 30 T ELT)) (-1317 (((-85) $) 57 T ELT)) (-3947 (((-773) $) 28 T ELT) (($ (-695)) 20 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 18 T CONST)) (-2667 (($) 19 T CONST)) (-1318 (($ (-695)) 21 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) 40 T ELT)) (-3057 (((-85) $ $) 32 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 35 T ELT)) (-3838 (((-3 $ #1#) $ $) 42 T ELT)) (-3840 (($ $ $) 38 T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-695) $) 48 T ELT) (($ (-831) $) NIL T ELT) (($ $ $) 45 T ELT))) +(((-107) (-13 (-757) (-23) (-664) (-951 (-695)) (-10 -8 (-6 (-3998 "*")) (-15 -3838 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1318 ($ (-695))) (-15 -2526 ((-85) $)) (-15 -1317 ((-85) $)) (-15 -1316 ((-85))) (-15 -1315 ((-85) (-85)))))) (T -107)) +((-3838 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-107)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1316 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1315 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1319 (($ (-584 |#3|)) 63 T ELT)) (-3415 (($ $) 125 T ELT) (($ $ (-485) (-485)) 124 T ELT)) (-3725 (($) 17 T ELT)) (-3158 (((-3 |#3| "failed") $) 86 T ELT)) (-3157 ((|#3| $) NIL T ELT)) (-1323 (($ $ (-584 (-485))) 126 T ELT)) (-1320 (((-584 |#3|) $) 58 T ELT)) (-3109 (((-695) $) 68 T ELT)) (-3945 (($ $ $) 120 T ELT)) (-1321 (($) 67 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1322 (($) 16 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 ((|#3| $ (-485)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-485) (-485)) 73 T ELT) ((|#3| $ (-485) (-485) (-485)) 74 T ELT) ((|#3| $ (-485) (-485) (-485) (-485)) 75 T ELT) ((|#3| $ (-584 (-485))) 76 T ELT)) (-3949 (((-695) $) 69 T ELT)) (-1982 (($ $ (-485) $ (-485)) 121 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3947 (((-773) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1057 |#2| |#3|)) 105 T ELT) (($ (-584 |#3|)) 77 T ELT) (($ (-584 $)) 83 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 96 T CONST)) (-2667 (($) 97 T CONST)) (-3057 (((-85) $ $) 107 T ELT)) (-3838 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3840 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-485)) 116 T ELT) (($ (-485) $) 115 T ELT) (($ $ $) 122 T ELT))) +(((-108 |#1| |#2| |#3|) (-13 (-405 |#3| (-695)) (-410 (-485) (-695)) (-241 (-485) |#3|) (-556 (-197 |#2| |#3|)) (-556 (-1057 |#2| |#3|)) (-556 (-584 |#3|)) (-556 (-584 $)) (-10 -8 (-15 -3109 ((-695) $)) (-15 -3801 (|#3| $)) (-15 -3801 (|#3| $ (-485) (-485))) (-15 -3801 (|#3| $ (-485) (-485) (-485))) (-15 -3801 (|#3| $ (-485) (-485) (-485) (-485))) (-15 -3801 (|#3| $ (-584 (-485)))) (-15 -3945 ($ $ $)) (-15 * ($ $ $)) (-15 -1982 ($ $ (-485) $ (-485))) (-15 -1982 ($ $ (-485) (-485))) (-15 -3415 ($ $)) (-15 -3415 ($ $ (-485) (-485))) (-15 -1323 ($ $ (-584 (-485)))) (-15 -1322 ($)) (-15 -1321 ($)) (-15 -1320 ((-584 |#3|) $)) (-15 -1319 ($ (-584 |#3|))) (-15 -3725 ($)))) (-485) (-695) (-146)) (T -108)) +((-3945 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 *2) (-4 *5 (-146)))) (-3801 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-485)) (-14 *4 (-695)))) (-3801 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3801 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3801 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-485))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-485)) (-14 *5 (-695)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1982 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-1982 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-3415 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-3415 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-1323 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1322 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1321 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-584 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1319 (*1 *1 *2) (-12 (-5 *2 (-584 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 (-695)))) (-3725 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146))))) +((-2416 (((-108 |#1| |#2| |#4|) (-584 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3959 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT))) +(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2416 ((-108 |#1| |#2| |#4|) (-584 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3959 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-485) (-695) (-146) (-146)) (T -109)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3529 (((-1050) $) 12 T ELT)) (-3530 (((-1050) $) 10 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-110) (-13 (-996) (-10 -8 (-15 -3530 ((-1050) $)) (-15 -3529 ((-1050) $))))) (T -110)) +((-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) 11 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3234 (((-584 (-1050)) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-111) (-13 (-996) (-10 -8 (-15 -1427 ((-161) $)) (-15 -3234 ((-584 (-1050)) $))))) (T -111)) +((-1427 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-111))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1425 (((-584 (-775)) $) NIL T ELT)) (-3543 (((-447) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) NIL T ELT)) (-2634 (((-85) $ (-447)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1426 (((-584 (-85)) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2522 (((-55) $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-112) (-13 (-160) (-553 (-157)))) (T -112)) +NIL +((-1325 (((-584 (-158 (-112))) $) 13 T ELT)) (-1324 (((-584 (-158 (-112))) $) 14 T ELT)) (-1326 (((-584 (-750)) $) 10 T ELT)) (-1483 (((-112) $) 7 T ELT)) (-3947 (((-773) $) 16 T ELT))) +(((-113) (-13 (-553 (-773)) (-10 -8 (-15 -1483 ((-112) $)) (-15 -1326 ((-584 (-750)) $)) (-15 -1325 ((-584 (-158 (-112))) $)) (-15 -1324 ((-584 (-158 (-112))) $))))) (T -113)) +((-1483 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-584 (-750))) (-5 *1 (-113)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3428 (($) 17 T CONST)) (-1803 (($) NIL (|has| (-117) (-320)) ELT)) (-3235 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-3236 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| (-117) (-320)) ELT)) (-3240 (($) NIL T ELT) (($ (-584 (-117))) NIL T ELT)) (-1571 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1014))) ELT)) (-3406 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-117) $) 56 (|has| $ (-6 -3996)) ELT)) (-3407 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-117) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1014))) ELT)) (-3843 (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3996)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3996)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1014))) ELT)) (-2995 (($) NIL (|has| (-117) (-320)) ELT)) (-2890 (((-584 (-117)) $) 65 (|has| $ (-6 -3996)) ELT)) (-3242 (((-85) $ $) NIL T ELT)) (-2532 (((-117) $) NIL (|has| (-117) (-757)) ELT)) (-2609 (((-584 (-117)) $) NIL T ELT)) (-3246 (((-85) (-117) $) 29 (|has| (-117) (-72)) ELT)) (-2858 (((-117) $) NIL (|has| (-117) (-757)) ELT)) (-3327 (($ (-1 (-117) (-117)) $) 64 T ELT)) (-3959 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3430 (($) 18 T CONST)) (-2011 (((-831) $) NIL (|has| (-117) (-320)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3239 (($ $ $) 32 T ELT)) (-1275 (((-117) $) 57 T ELT)) (-3610 (($ (-117) $) 55 T ELT)) (-2401 (($ (-831)) NIL (|has| (-117) (-320)) ELT)) (-1329 (($) 16 T CONST)) (-3244 (((-1034) $) NIL T ELT)) (-1355 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1276 (((-117) $) 58 T ELT)) (-1948 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3769 (($ $ (-584 (-117)) (-584 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-584 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 53 T ELT)) (-1330 (($) 15 T CONST)) (-3238 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1467 (($ (-584 (-117))) NIL T ELT) (($) NIL T ELT)) (-1947 (((-695) (-1 (-85) (-117)) $) NIL T ELT) (((-695) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-1074) $) 39 T ELT) (((-474) $) NIL (|has| (-117) (-554 (-474))) ELT) (((-584 (-117)) $) 37 T ELT)) (-3531 (($ (-584 (-117))) NIL T ELT)) (-1804 (($ $) 35 (|has| (-117) (-320)) ELT)) (-3947 (((-773) $) 51 T ELT)) (-1331 (($ (-1074)) 14 T ELT) (($ (-584 (-117))) 48 T ELT)) (-1805 (((-695) $) NIL T ELT)) (-3241 (($) 54 T ELT) (($ (-584 (-117))) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-584 (-117))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-1327 (($) 21 T CONST)) (-1328 (($) 20 T CONST)) (-3057 (((-85) $ $) 26 T ELT)) (-3958 (((-695) $) 52 T ELT))) +(((-114) (-13 (-1014) (-554 (-1074)) (-369 (-117)) (-554 (-584 (-117))) (-10 -8 (-15 -1331 ($ (-1074))) (-15 -1331 ($ (-584 (-117)))) (-15 -1330 ($) -3953) (-15 -1329 ($) -3953) (-15 -3428 ($) -3953) (-15 -3430 ($) -3953) (-15 -1328 ($) -3953) (-15 -1327 ($) -3953)))) (T -114)) +((-1331 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-114)))) (-1331 (*1 *1 *2) (-12 (-5 *2 (-584 (-117))) (-5 *1 (-114)))) (-1330 (*1 *1) (-5 *1 (-114))) (-1329 (*1 *1) (-5 *1 (-114))) (-3428 (*1 *1) (-5 *1 (-114))) (-3430 (*1 *1) (-5 *1 (-114))) (-1328 (*1 *1) (-5 *1 (-114))) (-1327 (*1 *1) (-5 *1 (-114)))) +((-3742 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3740 ((|#1| |#3|) 9 T ELT)) (-3741 ((|#3| |#3|) 15 T ELT))) +(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3740 (|#1| |#3|)) (-15 -3741 (|#3| |#3|)) (-15 -3742 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-496) (-905 |#1|) (-324 |#2|)) (T -115)) +((-3742 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-324 *5)))) (-3741 (*1 *2 *2) (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-324 *4)))) (-3740 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-324 *4))))) +((-1370 (($ $ $) 8 T ELT)) (-1368 (($ $) 7 T ELT)) (-3102 (($ $ $) 6 T ELT))) (((-116) (-113)) (T -116)) -((-1369 (*1 *1 *1 *1) (-4 *1 (-116))) (-1367 (*1 *1 *1) (-4 *1 (-116))) (-3101 (*1 *1 *1 *1) (-4 *1 (-116)))) -(-13 (-10 -8 (-15 -3101 ($ $ $)) (-15 -1367 ($ $)) (-15 -1369 ($ $ $)))) -((-2568 (((-85) $ $) NIL T ELT)) (-1338 (($) 30 T CONST)) (-1333 (((-85) $) 42 T ELT)) (-3427 (($ $) 52 T ELT)) (-1345 (($) 23 T CONST)) (-1518 (($) 21 T CONST)) (-3136 (((-694)) 13 T ELT)) (-2994 (($) 20 T ELT)) (-2579 (($) 22 T CONST)) (-1347 (((-694) $) 17 T ELT)) (-1344 (($) 24 T CONST)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1332 (((-85) $) 44 T ELT)) (-3429 (($ $) 53 T ELT)) (-2010 (((-830) $) 18 T ELT)) (-1342 (($) 26 T CONST)) (-3242 (((-1073) $) 50 T ELT)) (-2400 (($ (-830)) 16 T ELT)) (-1339 (($) 29 T CONST)) (-1335 (((-85) $) 40 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1341 (($) 27 T CONST)) (-1337 (($) 31 T CONST)) (-1336 (((-85) $) 38 T ELT)) (-3946 (((-772) $) 33 T ELT)) (-1346 (($ (-694)) 14 T ELT) (($ (-1073)) 51 T ELT)) (-1343 (($) 25 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-1340 (($) 28 T CONST)) (-1331 (((-85) $) 48 T ELT)) (-1334 (((-85) $) 46 T ELT)) (-2566 (((-85) $ $) 11 T ELT)) (-2567 (((-85) $ $) 9 T ELT)) (-3056 (((-85) $ $) 7 T ELT)) (-2684 (((-85) $ $) 10 T ELT)) (-2685 (((-85) $ $) 8 T ELT))) -(((-117) (-13 (-752) (-10 -8 (-15 -1347 ((-694) $)) (-15 -1346 ($ (-694))) (-15 -1346 ($ (-1073))) (-15 -1518 ($) -3952) (-15 -2579 ($) -3952) (-15 -1345 ($) -3952) (-15 -1344 ($) -3952) (-15 -1343 ($) -3952) (-15 -1342 ($) -3952) (-15 -1341 ($) -3952) (-15 -1340 ($) -3952) (-15 -1339 ($) -3952) (-15 -1338 ($) -3952) (-15 -1337 ($) -3952) (-15 -3427 ($ $)) (-15 -3429 ($ $)) (-15 -1336 ((-85) $)) (-15 -1335 ((-85) $)) (-15 -1334 ((-85) $)) (-15 -1333 ((-85) $)) (-15 -1332 ((-85) $)) (-15 -1331 ((-85) $))))) (T -117)) -((-1347 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-117)))) (-1346 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-117)))) (-1346 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-117)))) (-1518 (*1 *1) (-5 *1 (-117))) (-2579 (*1 *1) (-5 *1 (-117))) (-1345 (*1 *1) (-5 *1 (-117))) (-1344 (*1 *1) (-5 *1 (-117))) (-1343 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-1338 (*1 *1) (-5 *1 (-117))) (-1337 (*1 *1) (-5 *1 (-117))) (-3427 (*1 *1 *1) (-5 *1 (-117))) (-3429 (*1 *1 *1) (-5 *1 (-117))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-2702 (((-632 $) $) 47 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-1370 (*1 *1 *1 *1) (-4 *1 (-116))) (-1368 (*1 *1 *1) (-4 *1 (-116))) (-3102 (*1 *1 *1 *1) (-4 *1 (-116)))) +(-13 (-10 -8 (-15 -3102 ($ $ $)) (-15 -1368 ($ $)) (-15 -1370 ($ $ $)))) +((-2569 (((-85) $ $) NIL T ELT)) (-1339 (($) 30 T CONST)) (-1334 (((-85) $) 42 T ELT)) (-3428 (($ $) 52 T ELT)) (-1346 (($) 23 T CONST)) (-1519 (($) 21 T CONST)) (-3137 (((-695)) 13 T ELT)) (-2995 (($) 20 T ELT)) (-2580 (($) 22 T CONST)) (-1348 (((-695) $) 17 T ELT)) (-1345 (($) 24 T CONST)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1333 (((-85) $) 44 T ELT)) (-3430 (($ $) 53 T ELT)) (-2011 (((-831) $) 18 T ELT)) (-1343 (($) 26 T CONST)) (-3243 (((-1074) $) 50 T ELT)) (-2401 (($ (-831)) 16 T ELT)) (-1340 (($) 29 T CONST)) (-1336 (((-85) $) 40 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1342 (($) 27 T CONST)) (-1338 (($) 31 T CONST)) (-1337 (((-85) $) 38 T ELT)) (-3947 (((-773) $) 33 T ELT)) (-1347 (($ (-695)) 14 T ELT) (($ (-1074)) 51 T ELT)) (-1344 (($) 25 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1341 (($) 28 T CONST)) (-1332 (((-85) $) 48 T ELT)) (-1335 (((-85) $) 46 T ELT)) (-2567 (((-85) $ $) 11 T ELT)) (-2568 (((-85) $ $) 9 T ELT)) (-3057 (((-85) $ $) 7 T ELT)) (-2685 (((-85) $ $) 10 T ELT)) (-2686 (((-85) $ $) 8 T ELT))) +(((-117) (-13 (-753) (-10 -8 (-15 -1348 ((-695) $)) (-15 -1347 ($ (-695))) (-15 -1347 ($ (-1074))) (-15 -1519 ($) -3953) (-15 -2580 ($) -3953) (-15 -1346 ($) -3953) (-15 -1345 ($) -3953) (-15 -1344 ($) -3953) (-15 -1343 ($) -3953) (-15 -1342 ($) -3953) (-15 -1341 ($) -3953) (-15 -1340 ($) -3953) (-15 -1339 ($) -3953) (-15 -1338 ($) -3953) (-15 -3428 ($ $)) (-15 -3430 ($ $)) (-15 -1337 ((-85) $)) (-15 -1336 ((-85) $)) (-15 -1335 ((-85) $)) (-15 -1334 ((-85) $)) (-15 -1333 ((-85) $)) (-15 -1332 ((-85) $))))) (T -117)) +((-1348 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-117)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-117)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-117)))) (-1519 (*1 *1) (-5 *1 (-117))) (-2580 (*1 *1) (-5 *1 (-117))) (-1346 (*1 *1) (-5 *1 (-117))) (-1345 (*1 *1) (-5 *1 (-117))) (-1344 (*1 *1) (-5 *1 (-117))) (-1343 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-1338 (*1 *1) (-5 *1 (-117))) (-3428 (*1 *1 *1) (-5 *1 (-117))) (-3430 (*1 *1 *1) (-5 *1 (-117))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-2703 (((-633 $) $) 47 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-118) (-113)) (T -118)) -((-2702 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118))))) -(-13 (-961) (-10 -8 (-15 -2702 ((-632 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2449 ((|#1| (-630 |#1|) |#1|) 19 T ELT))) -(((-119 |#1|) (-10 -7 (-15 -2449 (|#1| (-630 |#1|) |#1|))) (-146)) (T -119)) -((-2449 (*1 *2 *3 *2) (-12 (-5 *3 (-630 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-2703 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118))))) +(-13 (-962) (-10 -8 (-15 -2703 ((-633 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2450 ((|#1| (-631 |#1|) |#1|) 19 T ELT))) +(((-119 |#1|) (-10 -7 (-15 -2450 (|#1| (-631 |#1|) |#1|))) (-146)) (T -119)) +((-2450 (*1 *2 *3 *2) (-12 (-5 *3 (-631 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-120) (-113)) (T -120)) NIL -(-13 (-961)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-1350 (((-2 (|:| -2401 (-694)) (|:| -3954 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-694)) 76 T ELT)) (-1349 (((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-694))) "failed") |#3|) 56 T ELT)) (-1348 (((-2 (|:| -3954 (-350 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1351 ((|#1| |#3| |#3|) 44 T ELT)) (-3768 ((|#3| |#3| (-350 |#2|) (-350 |#2|)) 20 T ELT)) (-1352 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-694))) |#3| |#3|) 53 T ELT))) -(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1348 ((-2 (|:| -3954 (-350 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1349 ((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-694))) "failed") |#3|)) (-15 -1350 ((-2 (|:| -2401 (-694)) (|:| -3954 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-694))) (-15 -1351 (|#1| |#3| |#3|)) (-15 -3768 (|#3| |#3| (-350 |#2|) (-350 |#2|))) (-15 -1352 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-694))) |#3| |#3|))) (-1134) (-1155 |#1|) (-1155 (-350 |#2|))) (T -121)) -((-1352 (*1 *2 *3 *3) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-350 *5)) (|:| |c2| (-350 *5)) (|:| |deg| (-694)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1155 (-350 *5))))) (-3768 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1155 *3)))) (-1351 (*1 *2 *3 *3) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-1134)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1155 (-350 *4))))) (-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *6)) (-4 *5 (-1134)) (-4 *6 (-1155 *5)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3954 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-694)) (-4 *7 (-1155 *3)))) (-1349 (*1 *2 *3) (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-694)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1155 (-350 *5))))) (-1348 (*1 *2 *3) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -3954 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1155 (-350 *5)))))) -((-2704 (((-3 (-583 (-1085 |#2|)) "failed") (-583 (-1085 |#2|)) (-1085 |#2|)) 35 T ELT))) -(((-122 |#1| |#2|) (-10 -7 (-15 -2704 ((-3 (-583 (-1085 |#2|)) "failed") (-583 (-1085 |#2|)) (-1085 |#2|)))) (-483) (-139 |#1|)) (T -122)) -((-2704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1085 *5))) (-5 *3 (-1085 *5)) (-4 *5 (-139 *4)) (-4 *4 (-483)) (-5 *1 (-122 *4 *5))))) -((-3710 (($ (-1 (-85) |#2|) $) 37 T ELT)) (-1353 (($ $) 44 T ELT)) (-3406 (($ (-1 (-85) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3842 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1354 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 27 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-1946 (((-694) (-1 (-85) |#2|) $) 18 T ELT) (((-694) |#2| $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3957 (((-694) $) 12 T ELT))) -(((-123 |#1| |#2|) (-10 -7 (-15 -1353 (|#1| |#1|)) (-15 -3406 (|#1| |#2| |#1|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3710 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3406 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1354 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-694) |#2| |#1|)) (-15 -1946 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3957 ((-694) |#1|))) (-124 |#2|) (-1129)) (T -123)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-1353 (($ $) 45 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3995)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 44 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 53 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-124 |#1|) (-113) (-1129)) (T -124)) -((-3530 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-4 *1 (-124 *3)))) (-1354 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1129)))) (-3842 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) (-4 *2 (-1129)))) (-3842 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) (-4 *2 (-1129)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *3)) (-4 *3 (-1129)))) (-3710 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *3)) (-4 *3 (-1129)))) (-3842 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) (-4 *2 (-1129)))) (-3406 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) (-4 *2 (-1129)) (-4 *2 (-1013)))) (-1353 (*1 *1 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) (-4 *2 (-1129)) (-4 *2 (-1013))))) -(-13 (-429 |t#1|) (-10 -8 (-15 -3530 ($ (-583 |t#1|))) (-15 -1354 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-6 -3995)) (PROGN (-15 -3842 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3842 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3406 ($ (-1 (-85) |t#1|) $)) (-15 -3710 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3842 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3406 ($ |t#1| $)) (-15 -1353 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ #1#) $) 113 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-583 (-830))) 72 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1355 (($ (-830)) 58 T ELT)) (-3911 (((-107)) 23 T ELT)) (-3946 (((-772) $) 88 T ELT) (($ (-484)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3677 ((|#2| $ (-583 (-830))) 75 T ELT)) (-3126 (((-694)) 20 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 48 T CONST)) (-2666 (($) 52 T CONST)) (-3056 (((-85) $ $) 34 T ELT)) (-3949 (($ $ |#2|) NIL T ELT)) (-3837 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3839 (($ $ $) 39 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT))) -(((-125 |#1| |#2| |#3|) (-13 (-961) (-38 |#2|) (-1187 |#2|) (-10 -8 (-15 -1355 ($ (-830))) (-15 -2893 ($ |#2| (-583 (-830)))) (-15 -3677 (|#2| $ (-583 (-830)))) (-15 -3467 ((-3 $ "failed") $)))) (-830) (-312) (-906 |#1| |#2|)) (T -125)) -((-3467 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-830)) (-4 *3 (-312)) (-14 *4 (-906 *2 *3)))) (-1355 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) (-14 *5 (-906 *3 *4)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830)) (-4 *2 (-312)) (-14 *5 (-906 *4 *2)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-830))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830)) (-14 *5 (-906 *4 *2))))) -((-1357 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1356 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-350 (-484)) (-350 (-484))) 95 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836)) 96 T ELT)) (-1510 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-854 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-350 (-484)) (-350 (-484))) 89 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836)) 90 T ELT))) -(((-126) (-10 -7 (-15 -1510 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836))) (-15 -1510 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-350 (-484)) (-350 (-484)))) (-15 -1356 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836))) (-15 -1356 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-350 (-484)) (-350 (-484)))) (-15 -1357 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1510 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-854 (-179))))) (-15 -1510 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179)))))))) (T -126)) -((-1510 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 (-179))))))) (-1510 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)) (-5 *3 (-583 (-854 (-179)))))) (-1357 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 *4)))) (|:| |xValues| (-1001 *4)) (|:| |yValues| (-1001 *4)))) (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 *4)))))) (-1356 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-836)) (-5 *4 (-350 (-484))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1510 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-836)) (-5 *4 (-350 (-484))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1510 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3181 (((-583 (-1049)) $) 20 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 27 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3233 (((-1049) $) 10 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-127) (-13 (-995) (-10 -8 (-15 -3181 ((-583 (-1049)) $)) (-15 -3233 ((-1049) $))))) (T -127)) -((-3181 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-127)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-127))))) -((-1410 (((-583 (-142 |#2|)) |#1| |#2|) 50 T ELT))) -(((-128 |#1| |#2|) (-10 -7 (-15 -1410 ((-583 (-142 |#2|)) |#1| |#2|))) (-1155 (-142 (-484))) (-13 (-312) (-755))) (T -128)) -((-1410 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1155 (-142 (-484)))) (-4 *4 (-13 (-312) (-755)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3528 (((-1130) $) 13 T ELT)) (-3529 (((-1049) $) 10 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-129) (-13 (-995) (-10 -8 (-15 -3529 ((-1049) $)) (-15 -3528 ((-1130) $))))) (T -129)) -((-3529 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-129)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-129))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1359 (($) 38 T ELT)) (-3098 (($) 37 T ELT)) (-1358 (((-830)) 43 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2956 (((-484) $) 41 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3097 (($) 39 T ELT)) (-2955 (($ (-484)) 44 T ELT)) (-3946 (((-772) $) 50 T ELT)) (-3096 (($) 40 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 35 T ELT)) (-3839 (($ $ $) 32 T ELT)) (* (($ (-830) $) 42 T ELT) (($ (-179) $) 11 T ELT))) -(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-830) $)) (-15 * ($ (-179) $)) (-15 -3839 ($ $ $)) (-15 -3098 ($)) (-15 -1359 ($)) (-15 -3097 ($)) (-15 -3096 ($)) (-15 -2956 ((-484) $)) (-15 -1358 ((-830))) (-15 -2955 ($ (-484)))))) (T -130)) -((-3839 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3098 (*1 *1) (-5 *1 (-130))) (-1359 (*1 *1) (-5 *1 (-130))) (-3097 (*1 *1) (-5 *1 (-130))) (-3096 (*1 *1) (-5 *1 (-130))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-130)))) (-1358 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-130)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-130))))) -((-1372 ((|#2| |#2| (-1004 |#2|)) 98 T ELT) ((|#2| |#2| (-1090)) 75 T ELT)) (-3944 ((|#2| |#2| (-1004 |#2|)) 97 T ELT) ((|#2| |#2| (-1090)) 74 T ELT)) (-1369 ((|#2| |#2| |#2|) 25 T ELT)) (-3595 (((-86) (-86)) 111 T ELT)) (-1366 ((|#2| (-583 |#2|)) 130 T ELT)) (-1363 ((|#2| (-583 |#2|)) 150 T ELT)) (-1362 ((|#2| (-583 |#2|)) 138 T ELT)) (-1360 ((|#2| |#2|) 136 T ELT)) (-1364 ((|#2| (-583 |#2|)) 124 T ELT)) (-1365 ((|#2| (-583 |#2|)) 125 T ELT)) (-1361 ((|#2| (-583 |#2|)) 148 T ELT)) (-1373 ((|#2| |#2| (-1090)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1367 ((|#2| |#2|) 21 T ELT)) (-3101 ((|#2| |#2| |#2|) 24 T ELT)) (-2254 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) -(((-131 |#1| |#2|) (-10 -7 (-15 -2254 ((-85) (-86))) (-15 -3595 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3101 (|#2| |#2| |#2|)) (-15 -1369 (|#2| |#2| |#2|)) (-15 -1367 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -1373 (|#2| |#2| (-1090))) (-15 -1372 (|#2| |#2| (-1090))) (-15 -1372 (|#2| |#2| (-1004 |#2|))) (-15 -3944 (|#2| |#2| (-1090))) (-15 -3944 (|#2| |#2| (-1004 |#2|))) (-15 -1360 (|#2| |#2|)) (-15 -1361 (|#2| (-583 |#2|))) (-15 -1362 (|#2| (-583 |#2|))) (-15 -1363 (|#2| (-583 |#2|))) (-15 -1364 (|#2| (-583 |#2|))) (-15 -1365 (|#2| (-583 |#2|))) (-15 -1366 (|#2| (-583 |#2|)))) (-495) (-364 |#1|)) (T -131)) -((-1366 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1360 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3944 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-364 *4)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)))) (-3944 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1372 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-364 *4)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)))) (-1372 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1373 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1367 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1369 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3101 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-364 *4))))) -((-1371 ((|#1| |#1| |#1|) 66 T ELT)) (-1370 ((|#1| |#1| |#1|) 63 T ELT)) (-1369 ((|#1| |#1| |#1|) 57 T ELT)) (-2890 ((|#1| |#1|) 43 T ELT)) (-1368 ((|#1| |#1| (-583 |#1|)) 55 T ELT)) (-1367 ((|#1| |#1|) 47 T ELT)) (-3101 ((|#1| |#1| |#1|) 51 T ELT))) -(((-132 |#1|) (-10 -7 (-15 -3101 (|#1| |#1| |#1|)) (-15 -1367 (|#1| |#1|)) (-15 -1368 (|#1| |#1| (-583 |#1|))) (-15 -2890 (|#1| |#1|)) (-15 -1369 (|#1| |#1| |#1|)) (-15 -1370 (|#1| |#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|))) (-483)) (T -132)) -((-1371 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1370 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1369 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-2890 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1368 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-483)) (-5 *1 (-132 *2)))) (-1367 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-3101 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))) -((-1372 (($ $ (-1090)) 12 T ELT) (($ $ (-1004 $)) 11 T ELT)) (-3944 (($ $ (-1090)) 10 T ELT) (($ $ (-1004 $)) 9 T ELT)) (-1369 (($ $ $) 8 T ELT)) (-1373 (($ $) 14 T ELT) (($ $ (-1090)) 13 T ELT)) (-1367 (($ $) 7 T ELT)) (-3101 (($ $ $) 6 T ELT))) +(-13 (-962)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-1351 (((-2 (|:| -2402 (-695)) (|:| -3955 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-695)) 76 T ELT)) (-1350 (((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-695))) "failed") |#3|) 56 T ELT)) (-1349 (((-2 (|:| -3955 (-350 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1352 ((|#1| |#3| |#3|) 44 T ELT)) (-3769 ((|#3| |#3| (-350 |#2|) (-350 |#2|)) 20 T ELT)) (-1353 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-695))) |#3| |#3|) 53 T ELT))) +(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1349 ((-2 (|:| -3955 (-350 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1350 ((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-695))) "failed") |#3|)) (-15 -1351 ((-2 (|:| -2402 (-695)) (|:| -3955 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-695))) (-15 -1352 (|#1| |#3| |#3|)) (-15 -3769 (|#3| |#3| (-350 |#2|) (-350 |#2|))) (-15 -1353 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-695))) |#3| |#3|))) (-1135) (-1156 |#1|) (-1156 (-350 |#2|))) (T -121)) +((-1353 (*1 *2 *3 *3) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-350 *5)) (|:| |c2| (-350 *5)) (|:| |deg| (-695)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-350 *5))))) (-3769 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1156 *3)))) (-1352 (*1 *2 *3 *3) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-1135)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1156 (-350 *4))))) (-1351 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *6)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3955 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-695)) (-4 *7 (-1156 *3)))) (-1350 (*1 *2 *3) (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-695)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-350 *5))))) (-1349 (*1 *2 *3) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -3955 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-350 *5)))))) +((-2705 (((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|)) 35 T ELT))) +(((-122 |#1| |#2|) (-10 -7 (-15 -2705 ((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|)))) (-484) (-139 |#1|)) (T -122)) +((-2705 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-139 *4)) (-4 *4 (-484)) (-5 *1 (-122 *4 *5))))) +((-3711 (($ (-1 (-85) |#2|) $) 37 T ELT)) (-1354 (($ $) 44 T ELT)) (-3407 (($ (-1 (-85) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3843 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1355 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 27 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-1947 (((-695) (-1 (-85) |#2|) $) 18 T ELT) (((-695) |#2| $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3958 (((-695) $) 12 T ELT))) +(((-123 |#1| |#2|) (-10 -7 (-15 -1354 (|#1| |#1|)) (-15 -3407 (|#1| |#2| |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3711 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3407 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1355 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-695) |#2| |#1|)) (-15 -1947 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1949 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3958 ((-695) |#1|))) (-124 |#2|) (-1130)) (T -123)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-1354 (($ $) 45 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3996)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 44 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 53 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-124 |#1|) (-113) (-1130)) (T -124)) +((-3531 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-124 *3)))) (-1355 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130)))) (-3843 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) (-4 *2 (-1130)))) (-3843 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) (-4 *2 (-1130)))) (-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *3)) (-4 *3 (-1130)))) (-3711 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *3)) (-4 *3 (-1130)))) (-3843 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) (-4 *2 (-1130)))) (-3407 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) (-4 *2 (-1014)))) (-1354 (*1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) (-4 *2 (-1014))))) +(-13 (-429 |t#1|) (-10 -8 (-15 -3531 ($ (-584 |t#1|))) (-15 -1355 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-6 -3996)) (PROGN (-15 -3843 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3843 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3407 ($ (-1 (-85) |t#1|) $)) (-15 -3711 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -3843 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3407 ($ |t#1| $)) (-15 -1354 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) 113 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-584 (-831))) 72 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1356 (($ (-831)) 58 T ELT)) (-3912 (((-107)) 23 T ELT)) (-3947 (((-773) $) 88 T ELT) (($ (-485)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3678 ((|#2| $ (-584 (-831))) 75 T ELT)) (-3127 (((-695)) 20 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 48 T CONST)) (-2667 (($) 52 T CONST)) (-3057 (((-85) $ $) 34 T ELT)) (-3950 (($ $ |#2|) NIL T ELT)) (-3838 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3840 (($ $ $) 39 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT))) +(((-125 |#1| |#2| |#3|) (-13 (-962) (-38 |#2|) (-1188 |#2|) (-10 -8 (-15 -1356 ($ (-831))) (-15 -2894 ($ |#2| (-584 (-831)))) (-15 -3678 (|#2| $ (-584 (-831)))) (-15 -3468 ((-3 $ "failed") $)))) (-831) (-312) (-907 |#1| |#2|)) (T -125)) +((-3468 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-831)) (-4 *3 (-312)) (-14 *4 (-907 *2 *3)))) (-1356 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) (-14 *5 (-907 *3 *4)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831)) (-4 *2 (-312)) (-14 *5 (-907 *4 *2)))) (-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-831))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831)) (-14 *5 (-907 *4 *2))))) +((-1358 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1357 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485))) 95 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837)) 96 T ELT)) (-1511 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-855 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485))) 89 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837)) 90 T ELT))) +(((-126) (-10 -7 (-15 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837))) (-15 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485)))) (-15 -1357 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837))) (-15 -1357 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485)))) (-15 -1358 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-855 (-179))))) (-15 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179)))))))) (T -126)) +((-1511 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 (-179))))))) (-1511 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)) (-5 *3 (-584 (-855 (-179)))))) (-1358 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 *4)))) (|:| |xValues| (-1002 *4)) (|:| |yValues| (-1002 *4)))) (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 *4)))))) (-1357 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485))) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))) (-1511 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485))) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3182 (((-584 (-1050)) $) 20 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 27 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3234 (((-1050) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-127) (-13 (-996) (-10 -8 (-15 -3182 ((-584 (-1050)) $)) (-15 -3234 ((-1050) $))))) (T -127)) +((-3182 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-127)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-127))))) +((-1411 (((-584 (-142 |#2|)) |#1| |#2|) 50 T ELT))) +(((-128 |#1| |#2|) (-10 -7 (-15 -1411 ((-584 (-142 |#2|)) |#1| |#2|))) (-1156 (-142 (-485))) (-13 (-312) (-756))) (T -128)) +((-1411 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1156 (-142 (-485)))) (-4 *4 (-13 (-312) (-756)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3529 (((-1131) $) 13 T ELT)) (-3530 (((-1050) $) 10 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-129) (-13 (-996) (-10 -8 (-15 -3530 ((-1050) $)) (-15 -3529 ((-1131) $))))) (T -129)) +((-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-129)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-129))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1360 (($) 38 T ELT)) (-3099 (($) 37 T ELT)) (-1359 (((-831)) 43 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2957 (((-485) $) 41 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3098 (($) 39 T ELT)) (-2956 (($ (-485)) 44 T ELT)) (-3947 (((-773) $) 50 T ELT)) (-3097 (($) 40 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 35 T ELT)) (-3840 (($ $ $) 32 T ELT)) (* (($ (-831) $) 42 T ELT) (($ (-179) $) 11 T ELT))) +(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-831) $)) (-15 * ($ (-179) $)) (-15 -3840 ($ $ $)) (-15 -3099 ($)) (-15 -1360 ($)) (-15 -3098 ($)) (-15 -3097 ($)) (-15 -2957 ((-485) $)) (-15 -1359 ((-831))) (-15 -2956 ($ (-485)))))) (T -130)) +((-3840 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3099 (*1 *1) (-5 *1 (-130))) (-1360 (*1 *1) (-5 *1 (-130))) (-3098 (*1 *1) (-5 *1 (-130))) (-3097 (*1 *1) (-5 *1 (-130))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-130)))) (-1359 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-130)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-130))))) +((-1373 ((|#2| |#2| (-1005 |#2|)) 98 T ELT) ((|#2| |#2| (-1091)) 75 T ELT)) (-3945 ((|#2| |#2| (-1005 |#2|)) 97 T ELT) ((|#2| |#2| (-1091)) 74 T ELT)) (-1370 ((|#2| |#2| |#2|) 25 T ELT)) (-3596 (((-86) (-86)) 111 T ELT)) (-1367 ((|#2| (-584 |#2|)) 130 T ELT)) (-1364 ((|#2| (-584 |#2|)) 150 T ELT)) (-1363 ((|#2| (-584 |#2|)) 138 T ELT)) (-1361 ((|#2| |#2|) 136 T ELT)) (-1365 ((|#2| (-584 |#2|)) 124 T ELT)) (-1366 ((|#2| (-584 |#2|)) 125 T ELT)) (-1362 ((|#2| (-584 |#2|)) 148 T ELT)) (-1374 ((|#2| |#2| (-1091)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1368 ((|#2| |#2|) 21 T ELT)) (-3102 ((|#2| |#2| |#2|) 24 T ELT)) (-2255 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) +(((-131 |#1| |#2|) (-10 -7 (-15 -2255 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3102 (|#2| |#2| |#2|)) (-15 -1370 (|#2| |#2| |#2|)) (-15 -1368 (|#2| |#2|)) (-15 -1374 (|#2| |#2|)) (-15 -1374 (|#2| |#2| (-1091))) (-15 -1373 (|#2| |#2| (-1091))) (-15 -1373 (|#2| |#2| (-1005 |#2|))) (-15 -3945 (|#2| |#2| (-1091))) (-15 -3945 (|#2| |#2| (-1005 |#2|))) (-15 -1361 (|#2| |#2|)) (-15 -1362 (|#2| (-584 |#2|))) (-15 -1363 (|#2| (-584 |#2|))) (-15 -1364 (|#2| (-584 |#2|))) (-15 -1365 (|#2| (-584 |#2|))) (-15 -1366 (|#2| (-584 |#2|))) (-15 -1367 (|#2| (-584 |#2|)))) (-496) (-364 |#1|)) (T -131)) +((-1367 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1361 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)))) (-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1374 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1368 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1370 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3102 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-364 *4))))) +((-1372 ((|#1| |#1| |#1|) 66 T ELT)) (-1371 ((|#1| |#1| |#1|) 63 T ELT)) (-1370 ((|#1| |#1| |#1|) 57 T ELT)) (-2891 ((|#1| |#1|) 43 T ELT)) (-1369 ((|#1| |#1| (-584 |#1|)) 55 T ELT)) (-1368 ((|#1| |#1|) 47 T ELT)) (-3102 ((|#1| |#1| |#1|) 51 T ELT))) +(((-132 |#1|) (-10 -7 (-15 -3102 (|#1| |#1| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -1369 (|#1| |#1| (-584 |#1|))) (-15 -2891 (|#1| |#1|)) (-15 -1370 (|#1| |#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -1372 (|#1| |#1| |#1|))) (-484)) (T -132)) +((-1372 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-1371 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-1370 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-2891 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-484)) (-5 *1 (-132 *2)))) (-1368 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-3102 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))) +((-1373 (($ $ (-1091)) 12 T ELT) (($ $ (-1005 $)) 11 T ELT)) (-3945 (($ $ (-1091)) 10 T ELT) (($ $ (-1005 $)) 9 T ELT)) (-1370 (($ $ $) 8 T ELT)) (-1374 (($ $) 14 T ELT) (($ $ (-1091)) 13 T ELT)) (-1368 (($ $) 7 T ELT)) (-3102 (($ $ $) 6 T ELT))) (((-133) (-113)) (T -133)) -((-1373 (*1 *1 *1) (-4 *1 (-133))) (-1373 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090)))) (-1372 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090)))) (-1372 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133)))) (-3944 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090)))) (-3944 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133))))) -(-13 (-116) (-10 -8 (-15 -1373 ($ $)) (-15 -1373 ($ $ (-1090))) (-15 -1372 ($ $ (-1090))) (-15 -1372 ($ $ (-1004 $))) (-15 -3944 ($ $ (-1090))) (-15 -3944 ($ $ (-1004 $))))) +((-1374 (*1 *1 *1) (-4 *1 (-133))) (-1374 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) (-1373 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) (-1373 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133)))) (-3945 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133))))) +(-13 (-116) (-10 -8 (-15 -1374 ($ $)) (-15 -1374 ($ $ (-1091))) (-15 -1373 ($ $ (-1091))) (-15 -1373 ($ $ (-1005 $))) (-15 -3945 ($ $ (-1091))) (-15 -3945 ($ $ (-1005 $))))) (((-116) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-1374 (($ (-484)) 15 T ELT) (($ $ $) 16 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 19 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 11 T ELT))) -(((-134) (-13 (-1013) (-10 -8 (-15 -1374 ($ (-484))) (-15 -1374 ($ $ $))))) (T -134)) -((-1374 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-134)))) (-1374 (*1 *1 *1 *1) (-5 *1 (-134)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 16 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3233 (((-583 (-1049)) $) 10 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-135) (-13 (-995) (-10 -8 (-15 -3233 ((-583 (-1049)) $))))) (T -135)) -((-3233 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-135))))) -((-3595 (((-86) (-1090)) 103 T ELT))) -(((-136) (-10 -7 (-15 -3595 ((-86) (-1090))))) (T -136)) -((-3595 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-86)) (-5 *1 (-136))))) -((-1595 ((|#3| |#3|) 19 T ELT))) -(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1595 (|#3| |#3|))) (-961) (-1155 |#1|) (-1155 |#2|)) (T -137)) -((-1595 (*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1155 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1155 *4))))) -((-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 222 T ELT)) (-3330 ((|#2| $) 102 T ELT)) (-3492 (($ $) 255 T ELT)) (-3639 (($ $) 249 T ELT)) (-2704 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 47 T ELT)) (-3490 (($ $) 253 T ELT)) (-3638 (($ $) 247 T ELT)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3156 (((-484) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2564 (($ $ $) 228 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) 160 T ELT) (((-630 |#2|) (-630 $)) 154 T ELT)) (-3842 (($ (-1085 |#2|)) 125 T ELT) (((-3 $ #1#) (-350 (-1085 |#2|))) NIL T ELT)) (-3467 (((-3 $ #1#) $) 213 T ELT)) (-3024 (((-3 (-350 (-484)) #1#) $) 203 T ELT)) (-3023 (((-85) $) 198 T ELT)) (-3022 (((-350 (-484)) $) 201 T ELT)) (-3108 (((-830)) 96 T ELT)) (-2563 (($ $ $) 230 T ELT)) (-1375 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3627 (($) 244 T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 192 T ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 197 T ELT)) (-3132 ((|#2| $) 100 T ELT)) (-2014 (((-1085 |#2|) $) 127 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3942 (($ $) 246 T ELT)) (-3079 (((-1085 |#2|) $) 126 T ELT)) (-2484 (($ $) 206 T ELT)) (-1377 (($) 103 T ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) 95 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 64 T ELT)) (-3466 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3943 (($ $) 245 T ELT)) (-1607 (((-694) $) 225 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 234 T ELT)) (-3757 ((|#2| (-1179 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3758 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3185 (((-1085 |#2|)) 120 T ELT)) (-3491 (($ $) 254 T ELT)) (-3634 (($ $) 248 T ELT)) (-3224 (((-1179 |#2|) $ (-1179 $)) 136 T ELT) (((-630 |#2|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#2|) $) 116 T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-3972 (((-1179 |#2|) $) NIL T ELT) (($ (-1179 |#2|)) NIL T ELT) (((-1085 |#2|) $) NIL T ELT) (($ (-1085 |#2|)) NIL T ELT) (((-800 (-484)) $) 183 T ELT) (((-800 (-330)) $) 187 T ELT) (((-142 (-330)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-473) $) 179 T ELT)) (-3009 (($ $) 104 T ELT)) (-3946 (((-772) $) 143 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-2449 (((-1085 |#2|) $) 32 T ELT)) (-3126 (((-694)) 106 T CONST)) (-1265 (((-85) $ $) 13 T ELT)) (-3498 (($ $) 258 T ELT)) (-3486 (($ $) 252 T ELT)) (-3496 (($ $) 256 T ELT)) (-3484 (($ $) 250 T ELT)) (-2236 ((|#2| $) 241 T ELT)) (-3497 (($ $) 257 T ELT)) (-3485 (($ $) 251 T ELT)) (-3383 (($ $) 162 T ELT)) (-3056 (((-85) $ $) 110 T ELT)) (-3837 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 111 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-350 (-484))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT))) -(((-138 |#1| |#2|) (-10 -7 (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-694))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3758 (|#1| |#1| (-583 (-1090)))) (-15 -3758 (|#1| |#1| (-1090) (-694))) (-15 -3758 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3946 (|#1| |#1|)) (-15 -3466 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2064 ((-2 (|:| -1772 |#1|) (|:| -3982 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1607 ((-694) |#1|)) (-15 -2879 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 * (|#1| |#1| (-350 (-484)))) (-15 * (|#1| (-350 (-484)) |#1|)) (-15 -3946 (|#1| (-350 (-484)))) (-15 -3972 ((-473) |#1|)) (-15 -3972 ((-142 (-179)) |#1|)) (-15 -3972 ((-142 (-330)) |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3943 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3627 (|#1|)) (-15 ** (|#1| |#1| (-350 (-484)))) (-15 -2706 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2705 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2704 ((-3 (-583 (-1085 |#1|)) #1#) (-583 (-1085 |#1|)) (-1085 |#1|))) (-15 -3024 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3022 ((-350 (-484)) |#1|)) (-15 -3023 ((-85) |#1|)) (-15 -1375 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2236 (|#2| |#1|)) (-15 -3383 (|#1| |#1|)) (-15 -3466 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3009 (|#1| |#1|)) (-15 -1377 (|#1|)) (-15 -3972 ((-800 (-330)) |#1|)) (-15 -3972 ((-800 (-484)) |#1|)) (-15 -2796 ((-798 (-330) |#1|) |#1| (-800 (-330)) (-798 (-330) |#1|))) (-15 -2796 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -3958 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3842 ((-3 |#1| #1#) (-350 (-1085 |#2|)))) (-15 -3079 ((-1085 |#2|) |#1|)) (-15 -3972 (|#1| (-1085 |#2|))) (-15 -3842 (|#1| (-1085 |#2|))) (-15 -3185 ((-1085 |#2|))) (-15 -2279 ((-630 |#2|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3156 ((-350 (-484)) |#1|)) (-15 -3157 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3972 ((-1085 |#2|) |#1|)) (-15 -3757 (|#2|)) (-15 -3972 (|#1| (-1179 |#2|))) (-15 -3972 ((-1179 |#2|) |#1|)) (-15 -3224 ((-630 |#2|) (-1179 |#1|))) (-15 -3224 ((-1179 |#2|) |#1|)) (-15 -2014 ((-1085 |#2|) |#1|)) (-15 -2449 ((-1085 |#2|) |#1|)) (-15 -3757 (|#2| (-1179 |#1|))) (-15 -3224 ((-630 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3224 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -3132 (|#2| |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -3108 ((-830))) (-15 -3946 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3126 ((-694)) -3952) (-15 -3946 (|#1| (-484))) (-15 -3467 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3946 ((-772) |#1|)) (-15 -1265 ((-85) |#1| |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138)) -((-3126 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3108 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-830)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3757 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3185 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1085 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 114 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2063 (($ $) 115 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2061 (((-85) $) 117 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-1782 (((-630 |#1|) (-1179 $)) 61 T ELT) (((-630 |#1|)) 77 T ELT)) (-3330 ((|#1| $) 67 T ELT)) (-3492 (($ $) 250 (|has| |#1| (-1115)) ELT)) (-3639 (($ $) 233 (|has| |#1| (-1115)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 167 (|has| |#1| (-299)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 264 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3775 (($ $) 134 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3971 (((-348 $) $) 135 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3037 (($ $) 263 (-12 (|has| |#1| (-915)) (|has| |#1| (-1115))) ELT)) (-2704 (((-3 (-583 (-1085 $)) "failed") (-583 (-1085 $)) (-1085 $)) 267 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-1608 (((-85) $ $) 125 (|has| |#1| (-258)) ELT)) (-3136 (((-694)) 108 (|has| |#1| (-320)) ELT)) (-3490 (($ $) 249 (|has| |#1| (-1115)) ELT)) (-3638 (($ $) 234 (|has| |#1| (-1115)) ELT)) (-3494 (($ $) 248 (|has| |#1| (-1115)) ELT)) (-3637 (($ $) 235 (|has| |#1| (-1115)) ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 194 (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 192 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3156 (((-484) $) 193 (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) 191 (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 190 T ELT)) (-1792 (($ (-1179 |#1|) (-1179 $)) 63 T ELT) (($ (-1179 |#1|)) 80 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2564 (($ $ $) 129 (|has| |#1| (-258)) ELT)) (-1781 (((-630 |#1|) $ (-1179 $)) 68 T ELT) (((-630 |#1|) $) 75 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 186 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 185 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 184 T ELT) (((-630 |#1|) (-630 $)) 183 T ELT)) (-3842 (($ (-1085 |#1|)) 178 T ELT) (((-3 $ "failed") (-350 (-1085 |#1|))) 175 (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3643 ((|#1| $) 275 T ELT)) (-3024 (((-3 (-350 (-484)) "failed") $) 268 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 270 (|has| |#1| (-483)) ELT)) (-3022 (((-350 (-484)) $) 269 (|has| |#1| (-483)) ELT)) (-3108 (((-830)) 69 T ELT)) (-2994 (($) 111 (|has| |#1| (-320)) ELT)) (-2563 (($ $ $) 128 (|has| |#1| (-258)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 123 (|has| |#1| (-258)) ELT)) (-2833 (($) 169 (|has| |#1| (-299)) ELT)) (-1680 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1764 (($ $ (-694)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3723 (((-85) $) 136 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1375 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 271 (-12 (|has| |#1| (-973)) (|has| |#1| (-1115))) ELT)) (-3627 (($) 260 (|has| |#1| (-1115)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 283 (|has| |#1| (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 282 (|has| |#1| (-796 (-330))) ELT)) (-3772 (((-830) $) 172 (|has| |#1| (-299)) ELT) (((-743 (-830)) $) 158 (|has| |#1| (-299)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 262 (-12 (|has| |#1| (-915)) (|has| |#1| (-1115))) ELT)) (-3132 ((|#1| $) 66 T ELT)) (-3445 (((-632 $) $) 162 (|has| |#1| (-299)) ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 132 (|has| |#1| (-258)) ELT)) (-2014 (((-1085 |#1|) $) 59 (|has| |#1| (-312)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 284 T ELT)) (-2010 (((-830) $) 110 (|has| |#1| (-320)) ELT)) (-3942 (($ $) 257 (|has| |#1| (-1115)) ELT)) (-3079 (((-1085 |#1|) $) 176 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 188 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 187 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 182 T ELT) (((-630 |#1|) (-1179 $)) 181 T ELT)) (-1891 (($ (-583 $)) 121 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT) (($ $ $) 120 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3446 (($) 163 (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) 109 (|has| |#1| (-320)) ELT)) (-1377 (($) 279 T ELT)) (-3644 ((|#1| $) 276 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2409 (($) 180 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 122 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-3144 (($ (-583 $)) 119 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) 166 (|has| |#1| (-299)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) 266 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 265 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3732 (((-348 $) $) 133 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 130 (|has| |#1| (-258)) ELT)) (-3466 (((-3 $ "failed") $ |#1|) 274 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 113 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 124 (|has| |#1| (-258)) ELT)) (-3943 (($ $) 258 (|has| |#1| (-1115)) ELT)) (-3768 (($ $ (-583 |#1|) (-583 |#1|)) 290 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 289 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 288 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 287 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) 286 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) 285 (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-1607 (((-694) $) 126 (|has| |#1| (-258)) ELT)) (-3800 (($ $ |#1|) 291 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 127 (|has| |#1| (-258)) ELT)) (-3757 ((|#1| (-1179 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1765 (((-694) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-694) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3758 (($ $ (-1 |#1| |#1|)) 145 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 144 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) 150 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090) (-694)) 149 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-583 (-1090))) 148 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090)) 146 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-694)) 156 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2562 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 154 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2562 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-2408 (((-630 |#1|) (-1179 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3185 (((-1085 |#1|)) 179 T ELT)) (-3495 (($ $) 247 (|has| |#1| (-1115)) ELT)) (-3636 (($ $) 236 (|has| |#1| (-1115)) ELT)) (-1674 (($) 168 (|has| |#1| (-299)) ELT)) (-3493 (($ $) 246 (|has| |#1| (-1115)) ELT)) (-3635 (($ $) 237 (|has| |#1| (-1115)) ELT)) (-3491 (($ $) 245 (|has| |#1| (-1115)) ELT)) (-3634 (($ $) 238 (|has| |#1| (-1115)) ELT)) (-3224 (((-1179 |#1|) $ (-1179 $)) 65 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) 64 T ELT) (((-1179 |#1|) $) 82 T ELT) (((-630 |#1|) (-1179 $)) 81 T ELT)) (-3972 (((-1179 |#1|) $) 79 T ELT) (($ (-1179 |#1|)) 78 T ELT) (((-1085 |#1|) $) 195 T ELT) (($ (-1085 |#1|)) 177 T ELT) (((-800 (-484)) $) 281 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) 280 (|has| |#1| (-553 (-800 (-330)))) ELT) (((-142 (-330)) $) 232 (|has| |#1| (-933)) ELT) (((-142 (-179)) $) 231 (|has| |#1| (-933)) ELT) (((-473) $) 230 (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) 278 T ELT)) (-2703 (((-3 (-1179 $) "failed") (-630 $)) 165 (OR (-2562 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (|has| |#1| (-299))) ELT)) (-1376 (($ |#1| |#1|) 277 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-484))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) 112 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2702 (($ $) 164 (|has| |#1| (-299)) ELT) (((-632 $) $) 58 (OR (-2562 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (|has| |#1| (-118))) ELT)) (-2449 (((-1085 |#1|) $) 60 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2012 (((-1179 $)) 83 T ELT)) (-3498 (($ $) 256 (|has| |#1| (-1115)) ELT)) (-3486 (($ $) 244 (|has| |#1| (-1115)) ELT)) (-2062 (((-85) $ $) 116 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-3496 (($ $) 255 (|has| |#1| (-1115)) ELT)) (-3484 (($ $) 243 (|has| |#1| (-1115)) ELT)) (-3500 (($ $) 254 (|has| |#1| (-1115)) ELT)) (-3488 (($ $) 242 (|has| |#1| (-1115)) ELT)) (-2236 ((|#1| $) 272 (|has| |#1| (-1115)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 253 (|has| |#1| (-1115)) ELT)) (-3489 (($ $) 241 (|has| |#1| (-1115)) ELT)) (-3499 (($ $) 252 (|has| |#1| (-1115)) ELT)) (-3487 (($ $) 240 (|has| |#1| (-1115)) ELT)) (-3497 (($ $) 251 (|has| |#1| (-1115)) ELT)) (-3485 (($ $) 239 (|has| |#1| (-1115)) ELT)) (-3383 (($ $) 273 (|has| |#1| (-973)) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 142 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) 153 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090) (-694)) 152 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-583 (-1090))) 151 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090)) 147 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-694)) 157 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2562 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 155 (OR (-2562 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2562 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2562 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-350 (-484))) 261 (-12 (|has| |#1| (-915)) (|has| |#1| (-1115))) ELT) (($ $ $) 259 (|has| |#1| (-1115)) ELT) (($ $ (-484)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-484)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-484))) 139 (|has| |#1| (-312)) ELT))) +((-2569 (((-85) $ $) NIL T ELT)) (-1375 (($ (-485)) 15 T ELT) (($ $ $) 16 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 19 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 11 T ELT))) +(((-134) (-13 (-1014) (-10 -8 (-15 -1375 ($ (-485))) (-15 -1375 ($ $ $))))) (T -134)) +((-1375 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-134)))) (-1375 (*1 *1 *1 *1) (-5 *1 (-134)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3234 (((-584 (-1050)) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-135) (-13 (-996) (-10 -8 (-15 -3234 ((-584 (-1050)) $))))) (T -135)) +((-3234 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-135))))) +((-3596 (((-86) (-1091)) 103 T ELT))) +(((-136) (-10 -7 (-15 -3596 ((-86) (-1091))))) (T -136)) +((-3596 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-86)) (-5 *1 (-136))))) +((-1596 ((|#3| |#3|) 19 T ELT))) +(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1596 (|#3| |#3|))) (-962) (-1156 |#1|) (-1156 |#2|)) (T -137)) +((-1596 (*1 *2 *2) (-12 (-4 *3 (-962)) (-4 *4 (-1156 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1156 *4))))) +((-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 222 T ELT)) (-3331 ((|#2| $) 102 T ELT)) (-3493 (($ $) 255 T ELT)) (-3640 (($ $) 249 T ELT)) (-2705 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 47 T ELT)) (-3491 (($ $) 253 T ELT)) (-3639 (($ $) 247 T ELT)) (-3158 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3157 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2565 (($ $ $) 228 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 160 T ELT) (((-631 |#2|) (-631 $)) 154 T ELT)) (-3843 (($ (-1086 |#2|)) 125 T ELT) (((-3 $ #1#) (-350 (-1086 |#2|))) NIL T ELT)) (-3468 (((-3 $ #1#) $) 213 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) 203 T ELT)) (-3024 (((-85) $) 198 T ELT)) (-3023 (((-350 (-485)) $) 201 T ELT)) (-3109 (((-831)) 96 T ELT)) (-2564 (($ $ $) 230 T ELT)) (-1376 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3628 (($) 244 T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 192 T ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 197 T ELT)) (-3133 ((|#2| $) 100 T ELT)) (-2015 (((-1086 |#2|) $) 127 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3943 (($ $) 246 T ELT)) (-3080 (((-1086 |#2|) $) 126 T ELT)) (-2485 (($ $) 206 T ELT)) (-1378 (($) 103 T ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) 95 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 64 T ELT)) (-3467 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3944 (($ $) 245 T ELT)) (-1608 (((-695) $) 225 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 234 T ELT)) (-3758 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3759 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3186 (((-1086 |#2|)) 120 T ELT)) (-3492 (($ $) 254 T ELT)) (-3635 (($ $) 248 T ELT)) (-3225 (((-1180 |#2|) $ (-1180 $)) 136 T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) 116 T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-3973 (((-1180 |#2|) $) NIL T ELT) (($ (-1180 |#2|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT) (($ (-1086 |#2|)) NIL T ELT) (((-801 (-485)) $) 183 T ELT) (((-801 (-330)) $) 187 T ELT) (((-142 (-330)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-474) $) 179 T ELT)) (-3010 (($ $) 104 T ELT)) (-3947 (((-773) $) 143 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-2450 (((-1086 |#2|) $) 32 T ELT)) (-3127 (((-695)) 106 T CONST)) (-1266 (((-85) $ $) 13 T ELT)) (-3499 (($ $) 258 T ELT)) (-3487 (($ $) 252 T ELT)) (-3497 (($ $) 256 T ELT)) (-3485 (($ $) 250 T ELT)) (-2237 ((|#2| $) 241 T ELT)) (-3498 (($ $) 257 T ELT)) (-3486 (($ $) 251 T ELT)) (-3384 (($ $) 162 T ELT)) (-3057 (((-85) $ $) 110 T ELT)) (-3838 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 111 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-350 (-485))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT))) +(((-138 |#1| |#2|) (-10 -7 (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-695))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3759 (|#1| |#1| (-584 (-1091)))) (-15 -3759 (|#1| |#1| (-1091) (-695))) (-15 -3759 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3947 (|#1| |#1|)) (-15 -3467 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2065 ((-2 (|:| -1773 |#1|) (|:| -3983 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1608 ((-695) |#1|)) (-15 -2880 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3947 (|#1| (-350 (-485)))) (-15 -3973 ((-474) |#1|)) (-15 -3973 ((-142 (-179)) |#1|)) (-15 -3973 ((-142 (-330)) |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3943 (|#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3628 (|#1|)) (-15 ** (|#1| |#1| (-350 (-485)))) (-15 -2707 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2706 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2705 ((-3 (-584 (-1086 |#1|)) #1#) (-584 (-1086 |#1|)) (-1086 |#1|))) (-15 -3025 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3023 ((-350 (-485)) |#1|)) (-15 -3024 ((-85) |#1|)) (-15 -1376 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -3384 (|#1| |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3010 (|#1| |#1|)) (-15 -1378 (|#1|)) (-15 -3973 ((-801 (-330)) |#1|)) (-15 -3973 ((-801 (-485)) |#1|)) (-15 -2797 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -2797 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3843 ((-3 |#1| #1#) (-350 (-1086 |#2|)))) (-15 -3080 ((-1086 |#2|) |#1|)) (-15 -3973 (|#1| (-1086 |#2|))) (-15 -3843 (|#1| (-1086 |#2|))) (-15 -3186 ((-1086 |#2|))) (-15 -2280 ((-631 |#2|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3973 ((-1086 |#2|) |#1|)) (-15 -3758 (|#2|)) (-15 -3973 (|#1| (-1180 |#2|))) (-15 -3973 ((-1180 |#2|) |#1|)) (-15 -3225 ((-631 |#2|) (-1180 |#1|))) (-15 -3225 ((-1180 |#2|) |#1|)) (-15 -2015 ((-1086 |#2|) |#1|)) (-15 -2450 ((-1086 |#2|) |#1|)) (-15 -3758 (|#2| (-1180 |#1|))) (-15 -3225 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3225 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -3133 (|#2| |#1|)) (-15 -3331 (|#2| |#1|)) (-15 -3109 ((-831))) (-15 -3947 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3127 ((-695)) -3953) (-15 -3947 (|#1| (-485))) (-15 -3468 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3947 ((-773) |#1|)) (-15 -1266 ((-85) |#1| |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138)) +((-3127 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3109 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-831)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3758 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3186 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1086 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 114 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2064 (($ $) 115 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2062 (((-85) $) 117 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-1783 (((-631 |#1|) (-1180 $)) 61 T ELT) (((-631 |#1|)) 77 T ELT)) (-3331 ((|#1| $) 67 T ELT)) (-3493 (($ $) 250 (|has| |#1| (-1116)) ELT)) (-3640 (($ $) 233 (|has| |#1| (-1116)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 167 (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 264 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3776 (($ $) 134 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3972 (((-348 $) $) 135 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3038 (($ $) 263 (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-2705 (((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $)) 267 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-1609 (((-85) $ $) 125 (|has| |#1| (-258)) ELT)) (-3137 (((-695)) 108 (|has| |#1| (-320)) ELT)) (-3491 (($ $) 249 (|has| |#1| (-1116)) ELT)) (-3639 (($ $) 234 (|has| |#1| (-1116)) ELT)) (-3495 (($ $) 248 (|has| |#1| (-1116)) ELT)) (-3638 (($ $) 235 (|has| |#1| (-1116)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-485) #1="failed") $) 194 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 192 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3157 (((-485) $) 193 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 191 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 190 T ELT)) (-1793 (($ (-1180 |#1|) (-1180 $)) 63 T ELT) (($ (-1180 |#1|)) 80 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2565 (($ $ $) 129 (|has| |#1| (-258)) ELT)) (-1782 (((-631 |#1|) $ (-1180 $)) 68 T ELT) (((-631 |#1|) $) 75 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 186 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 185 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 184 T ELT) (((-631 |#1|) (-631 $)) 183 T ELT)) (-3843 (($ (-1086 |#1|)) 178 T ELT) (((-3 $ "failed") (-350 (-1086 |#1|))) 175 (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3644 ((|#1| $) 275 T ELT)) (-3025 (((-3 (-350 (-485)) "failed") $) 268 (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) 270 (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) 269 (|has| |#1| (-484)) ELT)) (-3109 (((-831)) 69 T ELT)) (-2995 (($) 111 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) 128 (|has| |#1| (-258)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 123 (|has| |#1| (-258)) ELT)) (-2834 (($) 169 (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1765 (($ $ (-695)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3724 (((-85) $) 136 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1376 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 271 (-12 (|has| |#1| (-974)) (|has| |#1| (-1116))) ELT)) (-3628 (($) 260 (|has| |#1| (-1116)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 283 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 282 (|has| |#1| (-797 (-330))) ELT)) (-3773 (((-831) $) 172 (|has| |#1| (-299)) ELT) (((-744 (-831)) $) 158 (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 262 (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-3133 ((|#1| $) 66 T ELT)) (-3446 (((-633 $) $) 162 (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 132 (|has| |#1| (-258)) ELT)) (-2015 (((-1086 |#1|) $) 59 (|has| |#1| (-312)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 284 T ELT)) (-2011 (((-831) $) 110 (|has| |#1| (-320)) ELT)) (-3943 (($ $) 257 (|has| |#1| (-1116)) ELT)) (-3080 (((-1086 |#1|) $) 176 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 188 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 187 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 182 T ELT) (((-631 |#1|) (-1180 $)) 181 T ELT)) (-1892 (($ (-584 $)) 121 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT) (($ $ $) 120 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3447 (($) 163 (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) 109 (|has| |#1| (-320)) ELT)) (-1378 (($) 279 T ELT)) (-3645 ((|#1| $) 276 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2410 (($) 180 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 122 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-3145 (($ (-584 $)) 119 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) 166 (|has| |#1| (-299)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) 266 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 265 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3733 (((-348 $) $) 133 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 130 (|has| |#1| (-258)) ELT)) (-3467 (((-3 $ "failed") $ |#1|) 274 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 113 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 124 (|has| |#1| (-258)) ELT)) (-3944 (($ $) 258 (|has| |#1| (-1116)) ELT)) (-3769 (($ $ (-584 |#1|) (-584 |#1|)) 290 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 289 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 288 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 287 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 286 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 285 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) 126 (|has| |#1| (-258)) ELT)) (-3801 (($ $ |#1|) 291 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 127 (|has| |#1| (-258)) ELT)) (-3758 ((|#1| (-1180 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1766 (((-695) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-695) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3759 (($ $ (-1 |#1| |#1|)) 145 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 144 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 150 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) 149 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) 148 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) 146 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) 156 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2563 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 154 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2563 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-2409 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3186 (((-1086 |#1|)) 179 T ELT)) (-3496 (($ $) 247 (|has| |#1| (-1116)) ELT)) (-3637 (($ $) 236 (|has| |#1| (-1116)) ELT)) (-1675 (($) 168 (|has| |#1| (-299)) ELT)) (-3494 (($ $) 246 (|has| |#1| (-1116)) ELT)) (-3636 (($ $) 237 (|has| |#1| (-1116)) ELT)) (-3492 (($ $) 245 (|has| |#1| (-1116)) ELT)) (-3635 (($ $) 238 (|has| |#1| (-1116)) ELT)) (-3225 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 |#1|) $) 82 T ELT) (((-631 |#1|) (-1180 $)) 81 T ELT)) (-3973 (((-1180 |#1|) $) 79 T ELT) (($ (-1180 |#1|)) 78 T ELT) (((-1086 |#1|) $) 195 T ELT) (($ (-1086 |#1|)) 177 T ELT) (((-801 (-485)) $) 281 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 280 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-142 (-330)) $) 232 (|has| |#1| (-934)) ELT) (((-142 (-179)) $) 231 (|has| |#1| (-934)) ELT) (((-474) $) 230 (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $) 278 T ELT)) (-2704 (((-3 (-1180 $) "failed") (-631 $)) 165 (OR (-2563 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (|has| |#1| (-299))) ELT)) (-1377 (($ |#1| |#1|) 277 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-485))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) 112 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2703 (($ $) 164 (|has| |#1| (-299)) ELT) (((-633 $) $) 58 (OR (-2563 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (|has| |#1| (-118))) ELT)) (-2450 (((-1086 |#1|) $) 60 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 83 T ELT)) (-3499 (($ $) 256 (|has| |#1| (-1116)) ELT)) (-3487 (($ $) 244 (|has| |#1| (-1116)) ELT)) (-2063 (((-85) $ $) 116 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-3497 (($ $) 255 (|has| |#1| (-1116)) ELT)) (-3485 (($ $) 243 (|has| |#1| (-1116)) ELT)) (-3501 (($ $) 254 (|has| |#1| (-1116)) ELT)) (-3489 (($ $) 242 (|has| |#1| (-1116)) ELT)) (-2237 ((|#1| $) 272 (|has| |#1| (-1116)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 253 (|has| |#1| (-1116)) ELT)) (-3490 (($ $) 241 (|has| |#1| (-1116)) ELT)) (-3500 (($ $) 252 (|has| |#1| (-1116)) ELT)) (-3488 (($ $) 240 (|has| |#1| (-1116)) ELT)) (-3498 (($ $) 251 (|has| |#1| (-1116)) ELT)) (-3486 (($ $) 239 (|has| |#1| (-1116)) ELT)) (-3384 (($ $) 273 (|has| |#1| (-974)) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 142 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 153 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) 152 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) 151 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) 147 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) 157 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2563 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 155 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2563 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-350 (-485))) 261 (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT) (($ $ $) 259 (|has| |#1| (-1116)) ELT) (($ $ (-485)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-485)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) 139 (|has| |#1| (-312)) ELT))) (((-139 |#1|) (-113) (-146)) (T -139)) -((-3132 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1377 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3009 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1376 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3466 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-3383 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-2236 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1115)))) (-1375 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-973)) (-4 *3 (-1115)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484))))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484)))))) -(-13 (-661 |t#1| (-1085 |t#1|)) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-343 |t#1|) (-794 |t#1|) (-329 |t#1|) (-146) (-10 -8 (-6 -1376) (-15 -1377 ($)) (-15 -3009 ($ $)) (-15 -1376 ($ |t#1| |t#1|)) (-15 -3644 (|t#1| $)) (-15 -3643 (|t#1| $)) (-15 -3132 (|t#1| $)) (IF (|has| |t#1| (-495)) (PROGN (-6 (-495)) (-15 -3466 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-258)) (-6 (-258)) |%noBranch|) (IF (|has| |t#1| (-6 -3994)) (-6 -3994) |%noBranch|) (IF (|has| |t#1| (-6 -3991)) (-6 -3991) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-933)) (PROGN (-6 (-553 (-142 (-179)))) (-6 (-553 (-142 (-330))))) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3383 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1115)) (PROGN (-6 (-1115)) (-15 -2236 (|t#1| $)) (IF (|has| |t#1| (-915)) (-6 (-915)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -1375 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-350 (-484)) $)) (-15 -3024 ((-3 (-350 (-484)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-821)) (IF (|has| |t#1| (-258)) (-6 (-821)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-35) |has| |#1| (-1115)) ((-66) |has| |#1| (-1115)) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-552 (-772)) . T) ((-146) . T) ((-553 (-142 (-179))) |has| |#1| (-933)) ((-553 (-142 (-330))) |has| |#1| (-933)) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-330))) |has| |#1| (-553 (-800 (-330)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-553 (-1085 |#1|)) . T) ((-186 $) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-299)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-239) |has| |#1| (-1115)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| (-1085 |#1|)) . T) ((-353 |#1| (-1085 |#1|)) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-433) |has| |#1| (-1115)) ((-455 (-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-13) . T) ((-588 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-582 |#1|) . T) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-654 |#1|) . T) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-661 |#1| (-1085 |#1|)) . T) ((-663) . T) ((-806 $ (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-809 (-1090)) |has| |#1| (-809 (-1090))) ((-811 (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-796 (-330)) |has| |#1| (-796 (-330))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-821) -12 (|has| |#1| (-258)) (|has| |#1| (-821))) ((-832) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-915) -12 (|has| |#1| (-915)) (|has| |#1| (-1115))) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) |has| |#1| (-299)) ((-1115) |has| |#1| (-1115)) ((-1118) |has| |#1| (-1115)) ((-1129) . T) ((-1134) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821))))) -((-3732 (((-348 |#2|) |#2|) 67 T ELT))) -(((-140 |#1| |#2|) (-10 -7 (-15 -3732 ((-348 |#2|) |#2|))) (-258) (-1155 (-142 |#1|))) (T -140)) -((-3732 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1155 (-142 *4)))))) -((-1380 (((-1049) (-1049) (-247)) 8 T ELT)) (-1378 (((-583 (-632 (-235))) (-1073)) 81 T ELT)) (-1379 (((-632 (-235)) (-1049)) 76 T ELT))) -(((-141) (-13 (-1129) (-10 -7 (-15 -1380 ((-1049) (-1049) (-247))) (-15 -1379 ((-632 (-235)) (-1049))) (-15 -1378 ((-583 (-632 (-235))) (-1073)))))) (T -141)) -((-1380 (*1 *2 *2 *3) (-12 (-5 *2 (-1049)) (-5 *3 (-247)) (-5 *1 (-141)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-1049)) (-5 *2 (-632 (-235))) (-5 *1 (-141)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-583 (-632 (-235)))) (-5 *1 (-141))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 15 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2063 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2061 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-1782 (((-630 |#1|) (-1179 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3639 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| |#1| (-299)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3775 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3971 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3037 (($ $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1115))) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-258)) ELT)) (-3136 (((-694)) NIL (|has| |#1| (-320)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3638 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3637 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-1792 (($ (-1179 |#1|) (-1179 $)) NIL T ELT) (($ (-1179 |#1|)) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1781 (((-630 |#1|) $ (-1179 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3842 (($ (-1085 |#1|)) NIL T ELT) (((-3 $ #1#) (-350 (-1085 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3643 ((|#1| $) 20 T ELT)) (-3024 (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3022 (((-350 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-3108 (((-830)) NIL T ELT)) (-2994 (($) NIL (|has| |#1| (-320)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-258)) ELT)) (-2833 (($) NIL (|has| |#1| (-299)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1764 (($ $ (-694)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3723 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1375 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1115))) ELT)) (-3627 (($) NIL (|has| |#1| (-1115)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| |#1| (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| |#1| (-796 (-330))) ELT)) (-3772 (((-830) $) NIL (|has| |#1| (-299)) ELT) (((-743 (-830)) $) NIL (|has| |#1| (-299)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 17 T ELT)) (-3011 (($ $ (-484)) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1115))) ELT)) (-3132 ((|#1| $) 30 T ELT)) (-3445 (((-632 $) $) NIL (|has| |#1| (-299)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-258)) ELT)) (-2014 (((-1085 |#1|) $) NIL (|has| |#1| (-312)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-320)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3079 (((-1085 |#1|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3446 (($) NIL (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-320)) ELT)) (-1377 (($) NIL T ELT)) (-3644 ((|#1| $) 21 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-258)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-299)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3732 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-258)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3768 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-258)) ELT)) (-3800 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3757 ((|#1| (-1179 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1765 (((-694) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3758 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-2408 (((-630 |#1|) (-1179 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3185 (((-1085 |#1|)) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-1674 (($) NIL (|has| |#1| (-299)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3635 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3634 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3224 (((-1179 |#1|) $ (-1179 $)) NIL T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#1|) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-3972 (((-1179 |#1|) $) NIL T ELT) (($ (-1179 |#1|)) NIL T ELT) (((-1085 |#1|) $) NIL T ELT) (($ (-1085 |#1|)) NIL T ELT) (((-800 (-484)) $) NIL (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| |#1| (-553 (-800 (-330)))) ELT) (((-142 (-330)) $) NIL (|has| |#1| (-933)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-933)) ELT) (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) 29 T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-299))) ELT)) (-1376 (($ |#1| |#1|) 19 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2702 (($ $) NIL (|has| |#1| (-299)) ELT) (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-2449 (((-1085 |#1|) $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-2062 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3500 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-2236 ((|#1| $) NIL (|has| |#1| (-1115)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3383 (($ $) NIL (|has| |#1| (-973)) ELT)) (-2660 (($) 8 T CONST)) (-2666 (($) 10 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 23 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-350 (-484))) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1115))) ELT) (($ $ $) NIL (|has| |#1| (-1115)) ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-312)) ELT))) +((-3133 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1378 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3010 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1377 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3467 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-3384 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) (-2237 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1116)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-974)) (-4 *3 (-1116)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-3025 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485)))))) +(-13 (-662 |t#1| (-1086 |t#1|)) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-343 |t#1|) (-795 |t#1|) (-329 |t#1|) (-146) (-10 -8 (-6 -1377) (-15 -1378 ($)) (-15 -3010 ($ $)) (-15 -1377 ($ |t#1| |t#1|)) (-15 -3645 (|t#1| $)) (-15 -3644 (|t#1| $)) (-15 -3133 (|t#1| $)) (IF (|has| |t#1| (-496)) (PROGN (-6 (-496)) (-15 -3467 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-258)) (-6 (-258)) |%noBranch|) (IF (|has| |t#1| (-6 -3995)) (-6 -3995) |%noBranch|) (IF (|has| |t#1| (-6 -3992)) (-6 -3992) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-934)) (PROGN (-6 (-554 (-142 (-179)))) (-6 (-554 (-142 (-330))))) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -3384 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1116)) (PROGN (-6 (-1116)) (-15 -2237 (|t#1| $)) (IF (|has| |t#1| (-916)) (-6 (-916)) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -1376 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-485)) $)) (-15 -3025 ((-3 (-350 (-485)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-822)) (IF (|has| |t#1| (-258)) (-6 (-822)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-35) |has| |#1| (-1116)) ((-66) |has| |#1| (-1116)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-553 (-773)) . T) ((-146) . T) ((-554 (-142 (-179))) |has| |#1| (-934)) ((-554 (-142 (-330))) |has| |#1| (-934)) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-554 (-1086 |#1|)) . T) ((-186 $) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-299)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-239) |has| |#1| (-1116)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| (-1086 |#1|)) . T) ((-353 |#1| (-1086 |#1|)) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-433) |has| |#1| (-1116)) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-583 |#1|) . T) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-655 |#1|) . T) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-662 |#1| (-1086 |#1|)) . T) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-822) -12 (|has| |#1| (-258)) (|has| |#1| (-822))) ((-833) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-916) -12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-299)) ((-1116) |has| |#1| (-1116)) ((-1119) |has| |#1| (-1116)) ((-1130) . T) ((-1135) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822))))) +((-3733 (((-348 |#2|) |#2|) 67 T ELT))) +(((-140 |#1| |#2|) (-10 -7 (-15 -3733 ((-348 |#2|) |#2|))) (-258) (-1156 (-142 |#1|))) (T -140)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1156 (-142 *4)))))) +((-1381 (((-1050) (-1050) (-247)) 8 T ELT)) (-1379 (((-584 (-633 (-235))) (-1074)) 81 T ELT)) (-1380 (((-633 (-235)) (-1050)) 76 T ELT))) +(((-141) (-13 (-1130) (-10 -7 (-15 -1381 ((-1050) (-1050) (-247))) (-15 -1380 ((-633 (-235)) (-1050))) (-15 -1379 ((-584 (-633 (-235))) (-1074)))))) (T -141)) +((-1381 (*1 *2 *2 *3) (-12 (-5 *2 (-1050)) (-5 *3 (-247)) (-5 *1 (-141)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-1050)) (-5 *2 (-633 (-235))) (-5 *1 (-141)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-633 (-235)))) (-5 *1 (-141))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 15 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2064 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2062 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-1783 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3640 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3776 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3972 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3038 (($ $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-258)) ELT)) (-3137 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3639 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3638 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-1793 (($ (-1180 |#1|) (-1180 $)) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1782 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3843 (($ (-1086 |#1|)) NIL T ELT) (((-3 $ #1#) (-350 (-1086 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3644 ((|#1| $) 20 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) NIL (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-3109 (((-831)) NIL T ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-258)) ELT)) (-2834 (($) NIL (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1765 (($ $ (-695)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3724 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1376 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-974)) (|has| |#1| (-1116))) ELT)) (-3628 (($) NIL (|has| |#1| (-1116)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| |#1| (-797 (-330))) ELT)) (-3773 (((-831) $) NIL (|has| |#1| (-299)) ELT) (((-744 (-831)) $) NIL (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 17 T ELT)) (-3012 (($ $ (-485)) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-3133 ((|#1| $) 30 T ELT)) (-3446 (((-633 $) $) NIL (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-258)) ELT)) (-2015 (((-1086 |#1|) $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3080 (((-1086 |#1|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3447 (($) NIL (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1378 (($) NIL T ELT)) (-3645 ((|#1| $) 21 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-258)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-299)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3733 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-258)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3769 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-258)) ELT)) (-3801 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3758 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1766 (((-695) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3759 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-2409 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3186 (((-1086 |#1|)) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3637 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-1675 (($) NIL (|has| |#1| (-299)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3635 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3225 (((-1180 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3973 (((-1180 |#1|) $) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT) (((-1086 |#1|) $) NIL T ELT) (($ (-1086 |#1|)) NIL T ELT) (((-801 (-485)) $) NIL (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#1| (-554 (-801 (-330)))) ELT) (((-142 (-330)) $) NIL (|has| |#1| (-934)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-934)) ELT) (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $) 29 T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-299))) ELT)) (-1377 (($ |#1| |#1|) 19 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2703 (($ $) NIL (|has| |#1| (-299)) ELT) (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-2450 (((-1086 |#1|) $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-2063 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3501 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-2237 ((|#1| $) NIL (|has| |#1| (-1116)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3500 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3384 (($ $) NIL (|has| |#1| (-974)) ELT)) (-2661 (($) 8 T CONST)) (-2667 (($) 10 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 23 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-350 (-485))) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT) (($ $ $) NIL (|has| |#1| (-1116)) ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-312)) ELT))) (((-142 |#1|) (-139 |#1|) (-146)) (T -142)) NIL -((-3958 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT))) -(((-143 |#1| |#2|) (-10 -7 (-15 -3958 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6))))) -((-3972 (((-800 |#1|) |#3|) 22 T ELT))) -(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3972 ((-800 |#1|) |#3|))) (-1013) (-13 (-553 (-800 |#1|)) (-146)) (-139 |#2|)) (T -144)) -((-3972 (*1 *2 *3) (-12 (-4 *5 (-13 (-553 *2) (-146))) (-5 *2 (-800 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1013)) (-4 *3 (-139 *5))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1382 (((-85) $) 9 T ELT)) (-1381 (((-85) $ (-85)) 11 T ELT)) (-3614 (($) 13 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3400 (($ $) 14 T ELT)) (-3946 (((-772) $) 18 T ELT)) (-3702 (((-85) $) 8 T ELT)) (-3861 (((-85) $ (-85)) 10 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-145) (-13 (-1013) (-10 -8 (-15 -3614 ($)) (-15 -3702 ((-85) $)) (-15 -1382 ((-85) $)) (-15 -3861 ((-85) $ (-85))) (-15 -1381 ((-85) $ (-85))) (-15 -3400 ($ $))))) (T -145)) -((-3614 (*1 *1) (-5 *1 (-145))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3861 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1381 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3400 (*1 *1 *1) (-5 *1 (-145)))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-3959 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT))) +(((-143 |#1| |#2|) (-10 -7 (-15 -3959 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6))))) +((-3973 (((-801 |#1|) |#3|) 22 T ELT))) +(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3973 ((-801 |#1|) |#3|))) (-1014) (-13 (-554 (-801 |#1|)) (-146)) (-139 |#2|)) (T -144)) +((-3973 (*1 *2 *3) (-12 (-4 *5 (-13 (-554 *2) (-146))) (-5 *2 (-801 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1014)) (-4 *3 (-139 *5))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1383 (((-85) $) 9 T ELT)) (-1382 (((-85) $ (-85)) 11 T ELT)) (-3615 (($) 13 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3401 (($ $) 14 T ELT)) (-3947 (((-773) $) 18 T ELT)) (-3703 (((-85) $) 8 T ELT)) (-3862 (((-85) $ (-85)) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-145) (-13 (-1014) (-10 -8 (-15 -3615 ($)) (-15 -3703 ((-85) $)) (-15 -1383 ((-85) $)) (-15 -3862 ((-85) $ (-85))) (-15 -1382 ((-85) $ (-85))) (-15 -3401 ($ $))))) (T -145)) +((-3615 (*1 *1) (-5 *1 (-145))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3862 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1382 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3401 (*1 *1 *1) (-5 *1 (-145)))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-146) (-113)) (T -146)) NIL -(-13 (-961) (-82 $ $) (-10 -7 (-6 (-3997 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-1700 (($ $) 6 T ELT))) +(-13 (-962) (-82 $ $) (-10 -7 (-6 (-3998 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-1701 (($ $) 6 T ELT))) (((-147) (-113)) (T -147)) -((-1700 (*1 *1 *1) (-4 *1 (-147)))) -(-13 (-10 -8 (-15 -1700 ($ $)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 ((|#1| $) 79 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2564 (($ $ $) NIL T ELT)) (-1387 (($ $) 21 T ELT)) (-1391 (($ |#1| (-1069 |#1|)) 48 T ELT)) (-3467 (((-3 $ #1#) $) 123 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-1388 (((-1069 |#1|) $) 86 T ELT)) (-1390 (((-1069 |#1|) $) 83 T ELT)) (-1389 (((-1069 |#1|) $) 84 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1384 (((-1069 |#1|) $) 93 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1891 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3769 (($ $ (-484)) 96 T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1383 (((-1069 |#1|) $) 94 T ELT)) (-1385 (((-1069 (-350 |#1|)) $) 14 T ELT)) (-2616 (($ (-350 |#1|)) 17 T ELT) (($ |#1| (-1069 |#1|) (-1069 |#1|)) 38 T ELT)) (-2891 (($ $) 98 T ELT)) (-3946 (((-772) $) 139 T ELT) (($ (-484)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-350 |#1|)) 36 T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-3126 (((-694)) 67 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-1386 (((-1069 (-350 |#1|)) $) 20 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 103 T CONST)) (-2666 (($) 28 T CONST)) (-3056 (((-85) $ $) 35 T ELT)) (-3949 (($ $ $) 121 T ELT)) (-3837 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3839 (($ $ $) 107 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-350 |#1|) $) 117 T ELT) (($ $ (-350 |#1|)) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT))) -(((-148 |#1|) (-13 (-38 |#1|) (-38 (-350 |#1|)) (-312) (-10 -8 (-15 -2616 ($ (-350 |#1|))) (-15 -2616 ($ |#1| (-1069 |#1|) (-1069 |#1|))) (-15 -1391 ($ |#1| (-1069 |#1|))) (-15 -1390 ((-1069 |#1|) $)) (-15 -1389 ((-1069 |#1|) $)) (-15 -1388 ((-1069 |#1|) $)) (-15 -3129 (|#1| $)) (-15 -1387 ($ $)) (-15 -1386 ((-1069 (-350 |#1|)) $)) (-15 -1385 ((-1069 (-350 |#1|)) $)) (-15 -1384 ((-1069 |#1|) $)) (-15 -1383 ((-1069 |#1|) $)) (-15 -3769 ($ $ (-484))) (-15 -2891 ($ $)))) (-258)) (T -148)) -((-2616 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) (-2616 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1391 (*1 *1 *2 *3) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3129 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1387 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1069 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1069 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-2891 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))) -((-1392 (($ (-78) $) 15 T ELT)) (-3221 (((-632 (-78)) (-446) $) 14 T ELT)) (-3946 (((-772) $) 18 T ELT)) (-1393 (((-583 (-78)) $) 8 T ELT))) -(((-149) (-13 (-552 (-772)) (-10 -8 (-15 -1393 ((-583 (-78)) $)) (-15 -1392 ($ (-78) $)) (-15 -3221 ((-632 (-78)) (-446) $))))) (T -149)) -((-1393 (*1 *2 *1) (-12 (-5 *2 (-583 (-78))) (-5 *1 (-149)))) (-1392 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3221 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-149))))) -((-1406 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 38 T ELT)) (-1397 (((-854 |#1|) (-854 |#1|)) 22 T ELT)) (-1402 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 34 T ELT)) (-1395 (((-854 |#1|) (-854 |#1|)) 20 T ELT)) (-1400 (((-854 |#1|) (-854 |#1|)) 28 T ELT)) (-1399 (((-854 |#1|) (-854 |#1|)) 27 T ELT)) (-1398 (((-854 |#1|) (-854 |#1|)) 26 T ELT)) (-1403 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 35 T ELT)) (-1401 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 33 T ELT)) (-1643 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 32 T ELT)) (-1396 (((-854 |#1|) (-854 |#1|)) 21 T ELT)) (-1407 (((-1 (-854 |#1|) (-854 |#1|)) |#1| |#1|) 41 T ELT)) (-1394 (((-854 |#1|) (-854 |#1|)) 8 T ELT)) (-1405 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 37 T ELT)) (-1404 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 36 T ELT))) -(((-150 |#1|) (-10 -7 (-15 -1394 ((-854 |#1|) (-854 |#1|))) (-15 -1395 ((-854 |#1|) (-854 |#1|))) (-15 -1396 ((-854 |#1|) (-854 |#1|))) (-15 -1397 ((-854 |#1|) (-854 |#1|))) (-15 -1398 ((-854 |#1|) (-854 |#1|))) (-15 -1399 ((-854 |#1|) (-854 |#1|))) (-15 -1400 ((-854 |#1|) (-854 |#1|))) (-15 -1643 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1401 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1402 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1403 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1404 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1405 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1406 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1407 ((-1 (-854 |#1|) (-854 |#1|)) |#1| |#1|))) (-13 (-312) (-1115) (-915))) (T -150)) -((-1407 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1406 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1401 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1643 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) (-5 *1 (-150 *3)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) (-5 *1 (-150 *3)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) (-5 *1 (-150 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) (-5 *1 (-150 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) (-5 *1 (-150 *3)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) (-5 *1 (-150 *3))))) -((-2449 ((|#2| |#3|) 28 T ELT))) -(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2449 (|#2| |#3|))) (-146) (-1155 |#1|) (-661 |#1| |#2|)) (T -151)) -((-2449 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1155 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-661 *4 *2))))) -((-2796 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 44 (|has| (-857 |#2|) (-796 |#1|)) ELT))) -(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-857 |#2|) (-796 |#1|)) (-15 -2796 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) |%noBranch|)) (-1013) (-13 (-796 |#1|) (-146)) (-139 |#2|)) (T -152)) -((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *3 (-139 *6)) (-4 (-857 *6) (-796 *5)) (-4 *6 (-13 (-796 *5) (-146))) (-5 *1 (-152 *5 *6 *3))))) -((-1409 (((-583 |#1|) (-583 |#1|) |#1|) 41 T ELT)) (-1408 (((-583 |#1|) |#1| (-583 |#1|)) 20 T ELT)) (-2077 (((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|)) 36 T ELT) ((|#1| (-583 |#1|) (-583 |#1|)) 32 T ELT))) -(((-153 |#1|) (-10 -7 (-15 -1408 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -2077 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -2077 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1409 ((-583 |#1|) (-583 |#1|) |#1|))) (-258)) (T -153)) -((-1409 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))) (-2077 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) (-2077 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) (-1408 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3318 (((-1130) $) 14 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1049) $) 11 T ELT)) (-3946 (((-772) $) 21 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-154) (-13 (-995) (-10 -8 (-15 -3206 ((-1049) $)) (-15 -3318 ((-1130) $))))) (T -154)) -((-3206 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-154)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-154))))) -((-1418 (((-2 (|:| |start| |#2|) (|:| -1779 (-348 |#2|))) |#2|) 66 T ELT)) (-1417 ((|#1| |#1|) 58 T ELT)) (-1416 (((-142 |#1|) |#2|) 94 T ELT)) (-1415 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1414 ((|#2| |#2|) 91 T ELT)) (-1413 (((-348 |#2|) |#2| |#1|) 119 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3132 ((|#1| |#2|) 118 T ELT)) (-1412 ((|#2| |#2|) 131 T ELT)) (-3732 (((-348 |#2|) |#2|) 154 T ELT) (((-348 |#2|) |#2| |#1|) 33 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1411 (((-583 (-2 (|:| -1779 (-583 |#2|)) (|:| -1596 |#1|))) |#2| |#2|) 152 T ELT) (((-583 (-2 (|:| -1779 (-583 |#2|)) (|:| -1596 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1410 (((-583 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-583 (-142 |#1|)) |#2|) 43 T ELT))) -(((-155 |#1| |#2|) (-10 -7 (-15 -1410 ((-583 (-142 |#1|)) |#2|)) (-15 -1410 ((-583 (-142 |#1|)) |#2| |#1|)) (-15 -1411 ((-583 (-2 (|:| -1779 (-583 |#2|)) (|:| -1596 |#1|))) |#2| |#2| (-85))) (-15 -1411 ((-583 (-2 (|:| -1779 (-583 |#2|)) (|:| -1596 |#1|))) |#2| |#2|)) (-15 -3732 ((-348 |#2|) |#2| |#1| (-85))) (-15 -3732 ((-348 |#2|) |#2| |#1|)) (-15 -3732 ((-348 |#2|) |#2|)) (-15 -1412 (|#2| |#2|)) (-15 -3132 (|#1| |#2|)) (-15 -1413 ((-348 |#2|) |#2| |#1| (-85))) (-15 -1413 ((-348 |#2|) |#2| |#1|)) (-15 -1414 (|#2| |#2|)) (-15 -1415 (|#1| |#2| |#1|)) (-15 -1415 (|#1| |#2|)) (-15 -1416 ((-142 |#1|) |#2|)) (-15 -1417 (|#1| |#1|)) (-15 -1418 ((-2 (|:| |start| |#2|) (|:| -1779 (-348 |#2|))) |#2|))) (-13 (-312) (-755)) (-1155 (-142 |#1|))) (T -155)) -((-1418 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-2 (|:| |start| *3) (|:| -1779 (-348 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-1417 (*1 *2 *2) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1155 (-142 *2))))) (-1416 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-755))) (-4 *3 (-1155 *2)))) (-1415 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1155 (-142 *2))))) (-1415 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1155 (-142 *2))))) (-1414 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1155 (-142 *3))))) (-1413 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-1413 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-3132 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1155 (-142 *2))))) (-1412 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1155 (-142 *3))))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-3732 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-1411 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-2 (|:| -1779 (-583 *3)) (|:| -1596 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-1411 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-755))) (-5 *2 (-583 (-2 (|:| -1779 (-583 *3)) (|:| -1596 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1155 (-142 *5))))) (-1410 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-1410 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4)))))) -((-1419 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1420 (((-694) |#2|) 18 T ELT)) (-1421 ((|#2| |#2| |#2|) 20 T ELT))) -(((-156 |#1| |#2|) (-10 -7 (-15 -1419 ((-3 |#2| "failed") |#2|)) (-15 -1420 ((-694) |#2|)) (-15 -1421 (|#2| |#2| |#2|))) (-1129) (-616 |#1|)) (T -156)) -((-1421 (*1 *2 *2 *2) (-12 (-4 *3 (-1129)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3)))) (-1420 (*1 *2 *3) (-12 (-4 *4 (-1129)) (-5 *2 (-694)) (-5 *1 (-156 *4 *3)) (-4 *3 (-616 *4)))) (-1419 (*1 *2 *2) (|partial| -12 (-4 *3 (-1129)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1424 (((-583 (-774)) $) NIL T ELT)) (-3542 (((-446) $) 8 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1426 (((-161) $) 10 T ELT)) (-2633 (((-85) $ (-446)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1422 (((-632 $) (-446)) 17 T ELT)) (-1425 (((-583 (-85)) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2521 (((-55) $) 12 T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-157) (-13 (-160) (-10 -8 (-15 -1422 ((-632 $) (-446)))))) (T -157)) -((-1422 (*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-157))) (-5 *1 (-157))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1482 ((|#1| $) 7 T ELT)) (-3946 (((-772) $) 14 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1423 (((-583 (-1095)) $) 10 T ELT)) (-3056 (((-85) $ $) 12 T ELT))) -(((-158 |#1|) (-13 (-1013) (-10 -8 (-15 -1482 (|#1| $)) (-15 -1423 ((-583 (-1095)) $)))) (-160)) (T -158)) -((-1482 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) -((-1424 (((-583 (-774)) $) 16 T ELT)) (-1426 (((-161) $) 8 T ELT)) (-1425 (((-583 (-85)) $) 13 T ELT)) (-2521 (((-55) $) 10 T ELT))) -(((-159 |#1|) (-10 -7 (-15 -1424 ((-583 (-774)) |#1|)) (-15 -1425 ((-583 (-85)) |#1|)) (-15 -1426 ((-161) |#1|)) (-15 -2521 ((-55) |#1|))) (-160)) (T -159)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-1424 (((-583 (-774)) $) 22 T ELT)) (-3542 (((-446) $) 19 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-1426 (((-161) $) 24 T ELT)) (-2633 (((-85) $ (-446)) 17 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1425 (((-583 (-85)) $) 23 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2521 (((-55) $) 18 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +((-1701 (*1 *1 *1) (-4 *1 (-147)))) +(-13 (-10 -8 (-15 -1701 ($ $)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 ((|#1| $) 79 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) NIL T ELT)) (-1388 (($ $) 21 T ELT)) (-1392 (($ |#1| (-1070 |#1|)) 48 T ELT)) (-3468 (((-3 $ #1#) $) 123 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-1389 (((-1070 |#1|) $) 86 T ELT)) (-1391 (((-1070 |#1|) $) 83 T ELT)) (-1390 (((-1070 |#1|) $) 84 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1385 (((-1070 |#1|) $) 93 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1892 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3770 (($ $ (-485)) 96 T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1384 (((-1070 |#1|) $) 94 T ELT)) (-1386 (((-1070 (-350 |#1|)) $) 14 T ELT)) (-2617 (($ (-350 |#1|)) 17 T ELT) (($ |#1| (-1070 |#1|) (-1070 |#1|)) 38 T ELT)) (-2892 (($ $) 98 T ELT)) (-3947 (((-773) $) 139 T ELT) (($ (-485)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-350 |#1|)) 36 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-3127 (((-695)) 67 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-1387 (((-1070 (-350 |#1|)) $) 20 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 103 T CONST)) (-2667 (($) 28 T CONST)) (-3057 (((-85) $ $) 35 T ELT)) (-3950 (($ $ $) 121 T ELT)) (-3838 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3840 (($ $ $) 107 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-350 |#1|) $) 117 T ELT) (($ $ (-350 |#1|)) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT))) +(((-148 |#1|) (-13 (-38 |#1|) (-38 (-350 |#1|)) (-312) (-10 -8 (-15 -2617 ($ (-350 |#1|))) (-15 -2617 ($ |#1| (-1070 |#1|) (-1070 |#1|))) (-15 -1392 ($ |#1| (-1070 |#1|))) (-15 -1391 ((-1070 |#1|) $)) (-15 -1390 ((-1070 |#1|) $)) (-15 -1389 ((-1070 |#1|) $)) (-15 -3130 (|#1| $)) (-15 -1388 ($ $)) (-15 -1387 ((-1070 (-350 |#1|)) $)) (-15 -1386 ((-1070 (-350 |#1|)) $)) (-15 -1385 ((-1070 |#1|) $)) (-15 -1384 ((-1070 |#1|) $)) (-15 -3770 ($ $ (-485))) (-15 -2892 ($ $)))) (-258)) (T -148)) +((-2617 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) (-2617 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1392 (*1 *1 *2 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3130 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1388 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1070 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1070 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-2892 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))) +((-1393 (($ (-78) $) 15 T ELT)) (-3222 (((-633 (-78)) (-447) $) 14 T ELT)) (-3947 (((-773) $) 18 T ELT)) (-1394 (((-584 (-78)) $) 8 T ELT))) +(((-149) (-13 (-553 (-773)) (-10 -8 (-15 -1394 ((-584 (-78)) $)) (-15 -1393 ($ (-78) $)) (-15 -3222 ((-633 (-78)) (-447) $))))) (T -149)) +((-1394 (*1 *2 *1) (-12 (-5 *2 (-584 (-78))) (-5 *1 (-149)))) (-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3222 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-149))))) +((-1407 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 38 T ELT)) (-1398 (((-855 |#1|) (-855 |#1|)) 22 T ELT)) (-1403 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 34 T ELT)) (-1396 (((-855 |#1|) (-855 |#1|)) 20 T ELT)) (-1401 (((-855 |#1|) (-855 |#1|)) 28 T ELT)) (-1400 (((-855 |#1|) (-855 |#1|)) 27 T ELT)) (-1399 (((-855 |#1|) (-855 |#1|)) 26 T ELT)) (-1404 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 35 T ELT)) (-1402 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 33 T ELT)) (-1644 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 32 T ELT)) (-1397 (((-855 |#1|) (-855 |#1|)) 21 T ELT)) (-1408 (((-1 (-855 |#1|) (-855 |#1|)) |#1| |#1|) 41 T ELT)) (-1395 (((-855 |#1|) (-855 |#1|)) 8 T ELT)) (-1406 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 37 T ELT)) (-1405 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 36 T ELT))) +(((-150 |#1|) (-10 -7 (-15 -1395 ((-855 |#1|) (-855 |#1|))) (-15 -1396 ((-855 |#1|) (-855 |#1|))) (-15 -1397 ((-855 |#1|) (-855 |#1|))) (-15 -1398 ((-855 |#1|) (-855 |#1|))) (-15 -1399 ((-855 |#1|) (-855 |#1|))) (-15 -1400 ((-855 |#1|) (-855 |#1|))) (-15 -1401 ((-855 |#1|) (-855 |#1|))) (-15 -1644 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1402 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1403 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1404 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1405 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1406 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1407 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1408 ((-1 (-855 |#1|) (-855 |#1|)) |#1| |#1|))) (-13 (-312) (-1116) (-916))) (T -150)) +((-1408 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1407 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1406 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1644 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3))))) +((-2450 ((|#2| |#3|) 28 T ELT))) +(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2450 (|#2| |#3|))) (-146) (-1156 |#1|) (-662 |#1| |#2|)) (T -151)) +((-2450 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1156 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-662 *4 *2))))) +((-2797 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 44 (|has| (-858 |#2|) (-797 |#1|)) ELT))) +(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-858 |#2|) (-797 |#1|)) (-15 -2797 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) |%noBranch|)) (-1014) (-13 (-797 |#1|) (-146)) (-139 |#2|)) (T -152)) +((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *3 (-139 *6)) (-4 (-858 *6) (-797 *5)) (-4 *6 (-13 (-797 *5) (-146))) (-5 *1 (-152 *5 *6 *3))))) +((-1410 (((-584 |#1|) (-584 |#1|) |#1|) 41 T ELT)) (-1409 (((-584 |#1|) |#1| (-584 |#1|)) 20 T ELT)) (-2078 (((-584 |#1|) (-584 (-584 |#1|)) (-584 |#1|)) 36 T ELT) ((|#1| (-584 |#1|) (-584 |#1|)) 32 T ELT))) +(((-153 |#1|) (-10 -7 (-15 -1409 ((-584 |#1|) |#1| (-584 |#1|))) (-15 -2078 (|#1| (-584 |#1|) (-584 |#1|))) (-15 -2078 ((-584 |#1|) (-584 (-584 |#1|)) (-584 |#1|))) (-15 -1410 ((-584 |#1|) (-584 |#1|) |#1|))) (-258)) (T -153)) +((-1410 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))) (-2078 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-584 *4))) (-5 *2 (-584 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) (-2078 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) (-1409 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3319 (((-1131) $) 14 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3207 (((-1050) $) 11 T ELT)) (-3947 (((-773) $) 21 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-154) (-13 (-996) (-10 -8 (-15 -3207 ((-1050) $)) (-15 -3319 ((-1131) $))))) (T -154)) +((-3207 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-154)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-154))))) +((-1419 (((-2 (|:| |start| |#2|) (|:| -1780 (-348 |#2|))) |#2|) 66 T ELT)) (-1418 ((|#1| |#1|) 58 T ELT)) (-1417 (((-142 |#1|) |#2|) 94 T ELT)) (-1416 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1415 ((|#2| |#2|) 91 T ELT)) (-1414 (((-348 |#2|) |#2| |#1|) 119 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3133 ((|#1| |#2|) 118 T ELT)) (-1413 ((|#2| |#2|) 131 T ELT)) (-3733 (((-348 |#2|) |#2|) 154 T ELT) (((-348 |#2|) |#2| |#1|) 33 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1412 (((-584 (-2 (|:| -1780 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2|) 152 T ELT) (((-584 (-2 (|:| -1780 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1411 (((-584 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-584 (-142 |#1|)) |#2|) 43 T ELT))) +(((-155 |#1| |#2|) (-10 -7 (-15 -1411 ((-584 (-142 |#1|)) |#2|)) (-15 -1411 ((-584 (-142 |#1|)) |#2| |#1|)) (-15 -1412 ((-584 (-2 (|:| -1780 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2| (-85))) (-15 -1412 ((-584 (-2 (|:| -1780 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2|)) (-15 -3733 ((-348 |#2|) |#2| |#1| (-85))) (-15 -3733 ((-348 |#2|) |#2| |#1|)) (-15 -3733 ((-348 |#2|) |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -3133 (|#1| |#2|)) (-15 -1414 ((-348 |#2|) |#2| |#1| (-85))) (-15 -1414 ((-348 |#2|) |#2| |#1|)) (-15 -1415 (|#2| |#2|)) (-15 -1416 (|#1| |#2| |#1|)) (-15 -1416 (|#1| |#2|)) (-15 -1417 ((-142 |#1|) |#2|)) (-15 -1418 (|#1| |#1|)) (-15 -1419 ((-2 (|:| |start| |#2|) (|:| -1780 (-348 |#2|))) |#2|))) (-13 (-312) (-756)) (-1156 (-142 |#1|))) (T -155)) +((-1419 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-2 (|:| |start| *3) (|:| -1780 (-348 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1418 (*1 *2 *2) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1417 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-756))) (-4 *3 (-1156 *2)))) (-1416 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1416 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1156 (-142 *3))))) (-1414 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1414 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-3133 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1156 (-142 *3))))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-3733 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-3733 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1412 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-2 (|:| -1780 (-584 *3)) (|:| -1597 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1412 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-756))) (-5 *2 (-584 (-2 (|:| -1780 (-584 *3)) (|:| -1597 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1156 (-142 *5))))) (-1411 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1411 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4)))))) +((-1420 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1421 (((-695) |#2|) 18 T ELT)) (-1422 ((|#2| |#2| |#2|) 20 T ELT))) +(((-156 |#1| |#2|) (-10 -7 (-15 -1420 ((-3 |#2| "failed") |#2|)) (-15 -1421 ((-695) |#2|)) (-15 -1422 (|#2| |#2| |#2|))) (-1130) (-617 |#1|)) (T -156)) +((-1422 (*1 *2 *2 *2) (-12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3)))) (-1421 (*1 *2 *3) (-12 (-4 *4 (-1130)) (-5 *2 (-695)) (-5 *1 (-156 *4 *3)) (-4 *3 (-617 *4)))) (-1420 (*1 *2 *2) (|partial| -12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1425 (((-584 (-775)) $) NIL T ELT)) (-3543 (((-447) $) 8 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) 10 T ELT)) (-2634 (((-85) $ (-447)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1423 (((-633 $) (-447)) 17 T ELT)) (-1426 (((-584 (-85)) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2522 (((-55) $) 12 T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-157) (-13 (-160) (-10 -8 (-15 -1423 ((-633 $) (-447)))))) (T -157)) +((-1423 (*1 *2 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-157))) (-5 *1 (-157))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1483 ((|#1| $) 7 T ELT)) (-3947 (((-773) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1424 (((-584 (-1096)) $) 10 T ELT)) (-3057 (((-85) $ $) 12 T ELT))) +(((-158 |#1|) (-13 (-1014) (-10 -8 (-15 -1483 (|#1| $)) (-15 -1424 ((-584 (-1096)) $)))) (-160)) (T -158)) +((-1483 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) +((-1425 (((-584 (-775)) $) 16 T ELT)) (-1427 (((-161) $) 8 T ELT)) (-1426 (((-584 (-85)) $) 13 T ELT)) (-2522 (((-55) $) 10 T ELT))) +(((-159 |#1|) (-10 -7 (-15 -1425 ((-584 (-775)) |#1|)) (-15 -1426 ((-584 (-85)) |#1|)) (-15 -1427 ((-161) |#1|)) (-15 -2522 ((-55) |#1|))) (-160)) (T -159)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-1425 (((-584 (-775)) $) 22 T ELT)) (-3543 (((-447) $) 19 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-1427 (((-161) $) 24 T ELT)) (-2634 (((-85) $ (-447)) 17 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1426 (((-584 (-85)) $) 23 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2522 (((-55) $) 18 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) (((-160) (-113)) (T -160)) -((-1426 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-85))))) (-1424 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-774)))))) -(-13 (-747 (-446)) (-10 -8 (-15 -1426 ((-161) $)) (-15 -1425 ((-583 (-85)) $)) (-15 -1424 ((-583 (-774)) $)))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-747 (-446)) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3946 (((-772) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 10 T ELT))) -(((-161) (-13 (-1013) (-10 -8 (-15 -9 ($) -3952) (-15 -8 ($) -3952) (-15 -7 ($) -3952)))) (T -161)) +((-1427 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-85))))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-775)))))) +(-13 (-748 (-447)) (-10 -8 (-15 -1427 ((-161) $)) (-15 -1426 ((-584 (-85)) $)) (-15 -1425 ((-584 (-775)) $)))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-748 (-447)) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3947 (((-773) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 10 T ELT))) +(((-161) (-13 (-1014) (-10 -8 (-15 -9 ($) -3953) (-15 -8 ($) -3953) (-15 -7 ($) -3953)))) (T -161)) ((-9 (*1 *1) (-5 *1 (-161))) (-8 (*1 *1) (-5 *1 (-161))) (-7 (*1 *1) (-5 *1 (-161)))) -((-3642 ((|#2| |#2|) 28 T ELT)) (-3645 (((-85) |#2|) 19 T ELT)) (-3643 (((-265 |#1|) |#2|) 12 T ELT)) (-3644 (((-265 |#1|) |#2|) 14 T ELT)) (-3640 ((|#2| |#2| (-1090)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3646 (((-142 (-265 |#1|)) |#2|) 10 T ELT)) (-3641 ((|#2| |#2| (-1090)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) -(((-162 |#1| |#2|) (-10 -7 (-15 -3640 (|#2| |#2|)) (-15 -3640 (|#2| |#2| (-1090))) (-15 -3641 (|#2| |#2|)) (-15 -3641 (|#2| |#2| (-1090))) (-15 -3643 ((-265 |#1|) |#2|)) (-15 -3644 ((-265 |#1|) |#2|)) (-15 -3645 ((-85) |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3646 ((-142 (-265 |#1|)) |#2|))) (-13 (-495) (-950 (-484))) (-13 (-27) (-1115) (-364 (-142 |#1|)))) (T -162)) -((-3646 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-142 (-265 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3)))))) (-3645 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3644 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3643 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3641 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3)))))) (-3640 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3))))))) -((-1430 (((-1179 (-630 (-857 |#1|))) (-1179 (-630 |#1|))) 26 T ELT)) (-3946 (((-1179 (-630 (-350 (-857 |#1|)))) (-1179 (-630 |#1|))) 37 T ELT))) -(((-163 |#1|) (-10 -7 (-15 -1430 ((-1179 (-630 (-857 |#1|))) (-1179 (-630 |#1|)))) (-15 -3946 ((-1179 (-630 (-350 (-857 |#1|)))) (-1179 (-630 |#1|))))) (-146)) (T -163)) -((-3946 (*1 *2 *3) (-12 (-5 *3 (-1179 (-630 *4))) (-4 *4 (-146)) (-5 *2 (-1179 (-630 (-350 (-857 *4))))) (-5 *1 (-163 *4)))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-1179 (-630 *4))) (-4 *4 (-146)) (-5 *2 (-1179 (-630 (-857 *4)))) (-5 *1 (-163 *4))))) -((-1438 (((-1092 (-350 (-484))) (-1092 (-350 (-484))) (-1092 (-350 (-484)))) 93 T ELT)) (-1440 (((-1092 (-350 (-484))) (-583 (-484)) (-583 (-484))) 106 T ELT)) (-1431 (((-1092 (-350 (-484))) (-830)) 54 T ELT)) (-3854 (((-1092 (-350 (-484))) (-830)) 79 T ELT)) (-3768 (((-350 (-484)) (-1092 (-350 (-484)))) 89 T ELT)) (-1432 (((-1092 (-350 (-484))) (-830)) 37 T ELT)) (-1435 (((-1092 (-350 (-484))) (-830)) 66 T ELT)) (-1434 (((-1092 (-350 (-484))) (-830)) 61 T ELT)) (-1437 (((-1092 (-350 (-484))) (-1092 (-350 (-484))) (-1092 (-350 (-484)))) 87 T ELT)) (-2891 (((-1092 (-350 (-484))) (-830)) 29 T ELT)) (-1436 (((-350 (-484)) (-1092 (-350 (-484))) (-1092 (-350 (-484)))) 91 T ELT)) (-1433 (((-1092 (-350 (-484))) (-830)) 35 T ELT)) (-1439 (((-1092 (-350 (-484))) (-583 (-830))) 100 T ELT))) -(((-164) (-10 -7 (-15 -2891 ((-1092 (-350 (-484))) (-830))) (-15 -1431 ((-1092 (-350 (-484))) (-830))) (-15 -1432 ((-1092 (-350 (-484))) (-830))) (-15 -1433 ((-1092 (-350 (-484))) (-830))) (-15 -1434 ((-1092 (-350 (-484))) (-830))) (-15 -1435 ((-1092 (-350 (-484))) (-830))) (-15 -3854 ((-1092 (-350 (-484))) (-830))) (-15 -1436 ((-350 (-484)) (-1092 (-350 (-484))) (-1092 (-350 (-484))))) (-15 -1437 ((-1092 (-350 (-484))) (-1092 (-350 (-484))) (-1092 (-350 (-484))))) (-15 -3768 ((-350 (-484)) (-1092 (-350 (-484))))) (-15 -1438 ((-1092 (-350 (-484))) (-1092 (-350 (-484))) (-1092 (-350 (-484))))) (-15 -1439 ((-1092 (-350 (-484))) (-583 (-830)))) (-15 -1440 ((-1092 (-350 (-484))) (-583 (-484)) (-583 (-484)))))) (T -164)) -((-1440 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1438 (*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-1092 (-350 (-484)))) (-5 *2 (-350 (-484))) (-5 *1 (-164)))) (-1437 (*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1436 (*1 *2 *3 *3) (-12 (-5 *3 (-1092 (-350 (-484)))) (-5 *2 (-350 (-484))) (-5 *1 (-164)))) (-3854 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164))))) -((-1442 (((-348 (-1085 (-484))) (-484)) 38 T ELT)) (-1441 (((-583 (-1085 (-484))) (-484)) 33 T ELT)) (-2801 (((-1085 (-484)) (-484)) 28 T ELT))) -(((-165) (-10 -7 (-15 -1441 ((-583 (-1085 (-484))) (-484))) (-15 -2801 ((-1085 (-484)) (-484))) (-15 -1442 ((-348 (-1085 (-484))) (-484))))) (T -165)) -((-1442 (*1 *2 *3) (-12 (-5 *2 (-348 (-1085 (-484)))) (-5 *1 (-165)) (-5 *3 (-484)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-165)) (-5 *3 (-484)))) (-1441 (*1 *2 *3) (-12 (-5 *2 (-583 (-1085 (-484)))) (-5 *1 (-165)) (-5 *3 (-484))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1443 ((|#2| $ (-694) |#2|) 11 T ELT)) (-3112 ((|#2| $ (-694)) 10 T ELT)) (-3614 (($) 8 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 23 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 13 T ELT))) -(((-166 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3614 ($)) (-15 -3112 (|#2| $ (-694))) (-15 -1443 (|#2| $ (-694) |#2|)))) (-830) (-1013)) (T -166)) -((-3614 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-830)) (-4 *3 (-1013)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *2 (-1013)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)))) (-1443 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)) (-4 *2 (-1013))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1963 (((-1185) $) 36 T ELT) (((-1185) $ (-830) (-830)) 40 T ELT)) (-3800 (($ $ (-902)) 19 T ELT) (((-203 (-1073)) $ (-1090)) 15 T ELT)) (-3617 (((-1185) $) 34 T ELT)) (-3946 (((-772) $) 31 T ELT) (($ (-583 |#1|)) 8 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $ $) 26 T ELT)) (-3839 (($ $ $) 22 T ELT))) -(((-167 |#1|) (-13 (-1013) (-555 (-583 |#1|)) (-10 -8 (-15 -3800 ($ $ (-902))) (-15 -3800 ((-203 (-1073)) $ (-1090))) (-15 -3839 ($ $ $)) (-15 -3837 ($ $ $)) (-15 -3617 ((-1185) $)) (-15 -1963 ((-1185) $)) (-15 -1963 ((-1185) $ (-830) (-830))))) (-13 (-756) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $)) (-15 -1963 ((-1185) $))))) (T -167)) -((-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $)) (-15 -1963 ((-1185) $))))))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-203 (-1073))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3800 ((-1073) $ *3)) (-15 -3617 ((-1185) $)) (-15 -1963 ((-1185) $))))))) (-3839 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-756) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $)) (-15 -1963 ((-1185) $))))))) (-3837 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-756) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $)) (-15 -1963 ((-1185) $))))))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 (*2 $)) (-15 -1963 (*2 $))))))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 (*2 $)) (-15 -1963 (*2 $))))))) (-1963 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1185)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 (*2 $)) (-15 -1963 (*2 $)))))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 10 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2851 (($ (-577 |#1|)) 11 T ELT)) (-3946 (((-772) $) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) -(((-168 |#1|) (-13 (-752) (-10 -8 (-15 -2851 ($ (-577 |#1|))))) (-583 (-1090))) (T -168)) -((-2851 (*1 *1 *2) (-12 (-5 *2 (-577 *3)) (-14 *3 (-583 (-1090))) (-5 *1 (-168 *3))))) -((-1444 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) -(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1444 (|#2| |#4| (-1 |#2| |#2|)))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -169)) -((-1444 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1155 (-350 *2))) (-4 *2 (-1155 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) -((-1448 ((|#2| |#2| (-694) |#2|) 55 T ELT)) (-1447 ((|#2| |#2| (-694) |#2|) 51 T ELT)) (-2371 (((-583 |#2|) (-583 (-2 (|:| |deg| (-694)) (|:| -2575 |#2|)))) 79 T ELT)) (-1446 (((-583 (-2 (|:| |deg| (-694)) (|:| -2575 |#2|))) |#2|) 72 T ELT)) (-1449 (((-85) |#2|) 70 T ELT)) (-3733 (((-348 |#2|) |#2|) 92 T ELT)) (-3732 (((-348 |#2|) |#2|) 91 T ELT)) (-2372 ((|#2| |#2| (-694) |#2|) 49 T ELT)) (-1445 (((-2 (|:| |cont| |#1|) (|:| -1779 (-583 (-2 (|:| |irr| |#2|) (|:| -2395 (-484)))))) |#2| (-85)) 86 T ELT))) -(((-170 |#1| |#2|) (-10 -7 (-15 -3732 ((-348 |#2|) |#2|)) (-15 -3733 ((-348 |#2|) |#2|)) (-15 -1445 ((-2 (|:| |cont| |#1|) (|:| -1779 (-583 (-2 (|:| |irr| |#2|) (|:| -2395 (-484)))))) |#2| (-85))) (-15 -1446 ((-583 (-2 (|:| |deg| (-694)) (|:| -2575 |#2|))) |#2|)) (-15 -2371 ((-583 |#2|) (-583 (-2 (|:| |deg| (-694)) (|:| -2575 |#2|))))) (-15 -2372 (|#2| |#2| (-694) |#2|)) (-15 -1447 (|#2| |#2| (-694) |#2|)) (-15 -1448 (|#2| |#2| (-694) |#2|)) (-15 -1449 ((-85) |#2|))) (-299) (-1155 |#1|)) (T -170)) -((-1449 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4)))) (-1448 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4)))) (-1447 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4)))) (-2372 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-694)) (|:| -2575 *5)))) (-4 *5 (-1155 *4)) (-4 *4 (-299)) (-5 *2 (-583 *5)) (-5 *1 (-170 *4 *5)))) (-1446 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -2575 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4)))) (-1445 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1779 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1155 *5)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-484) $) NIL (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-3156 (((-484) $) NIL T ELT) (((-1090) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-484) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| (-484) (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) NIL T ELT)) (-3445 (((-632 $) $) NIL (|has| (-484) (-1066)) ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3958 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-484) (-1066)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-484) (-258)) ELT) (((-350 (-484)) $) NIL T ELT)) (-3130 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3768 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1090)) (-583 (-484))) NIL (|has| (-484) (-455 (-1090) (-484))) ELT) (($ $ (-1090) (-484)) NIL (|has| (-484) (-455 (-1090) (-484))) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3800 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) NIL T ELT)) (-1450 (($ (-350 (-484))) 9 T ELT)) (-3972 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| (-484) (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-330) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1090)) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL T ELT) (((-917 10) $) 10 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3949 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT))) -(((-171) (-13 (-904 (-484)) (-552 (-350 (-484))) (-552 (-917 10)) (-10 -8 (-15 -3128 ((-350 (-484)) $)) (-15 -1450 ($ (-350 (-484))))))) (T -171)) -((-3128 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-171)))) (-1450 (*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-171))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3319 (((-1028) $) 14 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3178 (((-423) $) 11 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 24 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3233 (((-1049) $) 16 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-172) (-13 (-995) (-10 -8 (-15 -3178 ((-423) $)) (-15 -3319 ((-1028) $)) (-15 -3233 ((-1049) $))))) (T -172)) -((-3178 (*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-172)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-172)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-172))))) -((-3812 (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1004 (-750 |#2|)) (-1073)) 29 T ELT) (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1004 (-750 |#2|))) 25 T ELT)) (-1451 (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1090) (-750 |#2|) (-750 |#2|) (-85)) 17 T ELT))) -(((-173 |#1| |#2|) (-10 -7 (-15 -3812 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1004 (-750 |#2|)))) (-15 -3812 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1004 (-750 |#2|)) (-1073))) (-15 -1451 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1090) (-750 |#2|) (-750 |#2|) (-85)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-871) (-29 |#1|))) (T -173)) -((-1451 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1090)) (-5 *6 (-85)) (-4 *7 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-4 *3 (-13 (-1115) (-871) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-750 *3)))) (-3812 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-750 *3))) (-5 *5 (-1073)) (-4 *3 (-13 (-1115) (-871) (-29 *6))) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-750 *3))) (-4 *3 (-13 (-1115) (-871) (-29 *5))) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3))))) -((-3812 (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-857 |#1|)) (-1004 (-750 (-350 (-857 |#1|)))) (-1073)) 49 T ELT) (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-857 |#1|)) (-1004 (-750 (-350 (-857 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-857 |#1|)) (-1004 (-750 (-265 |#1|))) (-1073)) 50 T ELT) (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-857 |#1|)) (-1004 (-750 (-265 |#1|)))) 22 T ELT))) -(((-174 |#1|) (-10 -7 (-15 -3812 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-857 |#1|)) (-1004 (-750 (-265 |#1|))))) (-15 -3812 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-857 |#1|)) (-1004 (-750 (-265 |#1|))) (-1073))) (-15 -3812 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-857 |#1|)) (-1004 (-750 (-350 (-857 |#1|)))))) (-15 -3812 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-857 |#1|)) (-1004 (-750 (-350 (-857 |#1|)))) (-1073)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (T -174)) -((-3812 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-750 (-350 (-857 *6))))) (-5 *5 (-1073)) (-5 *3 (-350 (-857 *6))) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-750 (-350 (-857 *5))))) (-5 *3 (-350 (-857 *5))) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3812 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-350 (-857 *6))) (-5 *4 (-1004 (-750 (-265 *6)))) (-5 *5 (-1073)) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1004 (-750 (-265 *5)))) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5))))) -((-3842 (((-2 (|:| -2004 (-1085 |#1|)) (|:| |deg| (-830))) (-1085 |#1|)) 26 T ELT)) (-3963 (((-583 (-265 |#2|)) (-265 |#2|) (-830)) 51 T ELT))) -(((-175 |#1| |#2|) (-10 -7 (-15 -3842 ((-2 (|:| -2004 (-1085 |#1|)) (|:| |deg| (-830))) (-1085 |#1|))) (-15 -3963 ((-583 (-265 |#2|)) (-265 |#2|) (-830)))) (-961) (-495)) (T -175)) -((-3963 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *6 (-495)) (-5 *2 (-583 (-265 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-961)))) (-3842 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -2004 (-1085 *4)) (|:| |deg| (-830)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1085 *4)) (-4 *5 (-495))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1495 ((|#1| $) NIL T ELT)) (-3323 ((|#1| $) 31 T ELT)) (-3724 (($) NIL T CONST)) (-3002 (($ $) NIL T ELT)) (-2297 (($ $) 40 T ELT)) (-3325 ((|#1| |#1| $) NIL T ELT)) (-3324 ((|#1| $) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3833 (((-694) $) NIL T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) NIL T ELT)) (-1493 ((|#1| |#1| $) 36 T ELT)) (-1492 ((|#1| |#1| $) 38 T ELT)) (-3609 (($ |#1| $) NIL T ELT)) (-2603 (((-694) $) 34 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3001 ((|#1| $) NIL T ELT)) (-1491 ((|#1| $) 32 T ELT)) (-1490 ((|#1| $) 30 T ELT)) (-1275 ((|#1| $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3004 ((|#1| |#1| $) NIL T ELT)) (-3403 (((-85) $) 9 T ELT)) (-3565 (($) NIL T ELT)) (-3003 ((|#1| $) NIL T ELT)) (-1496 (($) NIL T ELT) (($ (-583 |#1|)) 17 T ELT)) (-3322 (((-694) $) NIL T ELT)) (-1946 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1494 ((|#1| $) 14 T ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) NIL T ELT)) (-3000 ((|#1| $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1496 ($ (-583 |#1|))))) (-1013)) (T -176)) -((-1496 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-176 *3))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1453 (($ (-265 |#1|)) 24 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2664 (((-85) $) NIL T ELT)) (-3157 (((-3 (-265 |#1|) #1#) $) NIL T ELT)) (-3156 (((-265 |#1|) $) NIL T ELT)) (-3959 (($ $) 32 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3958 (($ (-1 (-265 |#1|) (-265 |#1|)) $) NIL T ELT)) (-3174 (((-265 |#1|) $) NIL T ELT)) (-1455 (($ $) 31 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1454 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($ (-694)) NIL T ELT)) (-1452 (($ $) 33 T ELT)) (-3948 (((-484) $) NIL T ELT)) (-3946 (((-772) $) 65 T ELT) (($ (-484)) NIL T ELT) (($ (-265 |#1|)) NIL T ELT)) (-3677 (((-265 |#1|) $ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 26 T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) 29 T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-265 |#1|) $) 19 T ELT))) -(((-177 |#1| |#2|) (-13 (-560 (-265 |#1|)) (-950 (-265 |#1|)) (-10 -8 (-15 -3174 ((-265 |#1|) $)) (-15 -1455 ($ $)) (-15 -3959 ($ $)) (-15 -3677 ((-265 |#1|) $ $)) (-15 -2409 ($ (-694))) (-15 -1454 ((-85) $)) (-15 -2664 ((-85) $)) (-15 -3948 ((-484) $)) (-15 -3958 ($ (-1 (-265 |#1|) (-265 |#1|)) $)) (-15 -1453 ($ (-265 |#1|))) (-15 -1452 ($ $)))) (-13 (-961) (-756)) (-583 (-1090))) (T -177)) -((-3174 (*1 *2 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1090))))) (-1455 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1090))))) (-3959 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1090))))) (-3677 (*1 *2 *1 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1090))))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1090))))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1090))))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1090))))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1090))))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1090))))) (-1453 (*1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1090))))) (-1452 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1090)))))) -((-1456 (((-85) (-1073)) 26 T ELT)) (-1457 (((-3 (-750 |#2|) #1="failed") (-550 |#2|) |#2| (-750 |#2|) (-750 |#2|) (-85)) 35 T ELT)) (-1458 (((-3 (-85) #1#) (-1085 |#2|) (-750 |#2|) (-750 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-857 |#1|) (-1090) (-750 |#2|) (-750 |#2|) (-85)) 84 T ELT))) -(((-178 |#1| |#2|) (-10 -7 (-15 -1456 ((-85) (-1073))) (-15 -1457 ((-3 (-750 |#2|) #1="failed") (-550 |#2|) |#2| (-750 |#2|) (-750 |#2|) (-85))) (-15 -1458 ((-3 (-85) #1#) (-857 |#1|) (-1090) (-750 |#2|) (-750 |#2|) (-85))) (-15 -1458 ((-3 (-85) #1#) (-1085 |#2|) (-750 |#2|) (-750 |#2|) (-85)))) (-13 (-392) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-29 |#1|))) (T -178)) -((-1458 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1085 *6)) (-5 *4 (-750 *6)) (-4 *6 (-13 (-1115) (-29 *5))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *5 *6)))) (-1458 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-857 *6)) (-5 *4 (-1090)) (-5 *5 (-750 *7)) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-4 *7 (-13 (-1115) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1457 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-750 *4)) (-5 *3 (-550 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1115) (-29 *6))) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *6 *4)))) (-1456 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1115) (-29 *4)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 86 T ELT)) (-3129 (((-484) $) 18 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3492 (($ $) 73 T ELT)) (-3639 (($ $) 61 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-3037 (($ $) 52 T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3490 (($ $) 71 T ELT)) (-3638 (($ $) 59 T ELT)) (-3623 (((-484) $) 83 T ELT)) (-3494 (($ $) 76 T ELT)) (-3637 (($ $) 63 T ELT)) (-3724 (($) NIL T CONST)) (-3127 (($ $) NIL T ELT)) (-3157 (((-3 (-484) #1#) $) 116 T ELT) (((-3 (-350 (-484)) #1#) $) 113 T ELT)) (-3156 (((-484) $) 114 T ELT) (((-350 (-484)) $) 111 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 91 T ELT)) (-1744 (((-350 (-484)) $ (-694)) 106 T ELT) (((-350 (-484)) $ (-694) (-694)) 105 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-1768 (((-830)) 12 T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3986)) ELT)) (-3186 (((-85) $) 107 T ELT)) (-3627 (($) 31 T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL T ELT)) (-3772 (((-484) $) 25 T ELT)) (-1214 (((-85) $ $) 141 T ELT)) (-2410 (((-85) $) 87 T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-3132 (($ $) NIL T ELT)) (-3187 (((-85) $) 85 T ELT)) (-1459 (((-85) $) 140 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) 49 T ELT) (($) 21 (-12 (-2560 (|has| $ (-6 -3978))) (-2560 (|has| $ (-6 -3986)))) ELT)) (-2857 (($ $ $) 48 T ELT) (($) 20 (-12 (-2560 (|has| $ (-6 -3978))) (-2560 (|has| $ (-6 -3986)))) ELT)) (-1770 (((-484) $) 10 T ELT)) (-1743 (($ $) 16 T ELT)) (-1742 (($ $) 53 T ELT)) (-3942 (($ $) 58 T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-1767 (((-830) (-484)) NIL (|has| $ (-6 -3986)) ELT)) (-3243 (((-1033) $) 89 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL T ELT)) (-3130 (($ $) NIL T ELT)) (-3254 (($ (-484) (-484)) NIL T ELT) (($ (-484) (-484) (-830)) 98 T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2401 (((-484) $) 11 T ELT)) (-1741 (($) 30 T ELT)) (-3943 (($ $) 57 T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2615 (((-830)) NIL T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3986)) ELT)) (-3758 (($ $) 92 T ELT) (($ $ (-694)) NIL T ELT)) (-1766 (((-830) (-484)) NIL (|has| $ (-6 -3986)) ELT)) (-3495 (($ $) 74 T ELT)) (-3636 (($ $) 64 T ELT)) (-3493 (($ $) 75 T ELT)) (-3635 (($ $) 62 T ELT)) (-3491 (($ $) 72 T ELT)) (-3634 (($ $) 60 T ELT)) (-3972 (((-330) $) 102 T ELT) (((-179) $) 99 T ELT) (((-800 (-330)) $) NIL T ELT) (((-473) $) 38 T ELT)) (-3946 (((-772) $) 35 T ELT) (($ (-484)) 56 T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-484)) 56 T ELT) (($ (-350 (-484))) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (($ $) NIL T ELT)) (-1769 (((-830)) 19 T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3986)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2694 (((-830)) 7 T ELT)) (-3498 (($ $) 79 T ELT)) (-3486 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3496 (($ $) 77 T ELT)) (-3484 (($ $) 65 T ELT)) (-3500 (($ $) 82 T ELT)) (-3488 (($ $) 70 T ELT)) (-3125 (((-85) $ $) 143 T ELT)) (-3501 (($ $) 80 T ELT)) (-3489 (($ $) 68 T ELT)) (-3499 (($ $) 81 T ELT)) (-3487 (($ $) 69 T ELT)) (-3497 (($ $) 78 T ELT)) (-3485 (($ $) 66 T ELT)) (-3383 (($ $) 108 T ELT)) (-2660 (($) 27 T CONST)) (-2666 (($) 28 T CONST)) (-3387 (($ $) 95 T ELT)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3384 (($ $ $) 97 T ELT)) (-2566 (((-85) $ $) 42 T ELT)) (-2567 (((-85) $ $) 40 T ELT)) (-3056 (((-85) $ $) 50 T ELT)) (-2684 (((-85) $ $) 41 T ELT)) (-2685 (((-85) $ $) 39 T ELT)) (-3949 (($ $ $) 29 T ELT) (($ $ (-484)) 51 T ELT)) (-3837 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3839 (($ $ $) 44 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 54 T ELT) (($ $ (-350 (-484))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT))) -(((-179) (-13 (-347) (-190) (-1115) (-553 (-473)) (-10 -8 (-15 -3949 ($ $ (-484))) (-15 ** ($ $ $)) (-15 -1741 ($)) (-15 -1743 ($ $)) (-15 -1742 ($ $)) (-15 -3486 ($ $ $)) (-15 -3387 ($ $)) (-15 -3384 ($ $ $)) (-15 -1744 ((-350 (-484)) $ (-694))) (-15 -1744 ((-350 (-484)) $ (-694) (-694))) (-15 -1459 ((-85) $))))) (T -179)) -((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3949 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-179)))) (-1741 (*1 *1) (-5 *1 (-179))) (-1743 (*1 *1 *1) (-5 *1 (-179))) (-1742 (*1 *1 *1) (-5 *1 (-179))) (-3486 (*1 *1 *1 *1) (-5 *1 (-179))) (-3387 (*1 *1 *1) (-5 *1 (-179))) (-3384 (*1 *1 *1 *1) (-5 *1 (-179))) (-1744 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-179)))) (-1744 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-179)))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) -((-3386 (((-142 (-179)) (-694) (-142 (-179))) 11 T ELT) (((-179) (-694) (-179)) 12 T ELT)) (-1460 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1461 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3385 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3389 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3391 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3388 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3390 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3393 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3392 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3387 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3384 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT))) -(((-180) (-10 -7 (-15 -3387 ((-179) (-179))) (-15 -3387 ((-142 (-179)) (-142 (-179)))) (-15 -3384 ((-179) (-179) (-179))) (-15 -3384 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1460 ((-179) (-179))) (-15 -1460 ((-142 (-179)) (-142 (-179)))) (-15 -3385 ((-179) (-179))) (-15 -3385 ((-142 (-179)) (-142 (-179)))) (-15 -3386 ((-179) (-694) (-179))) (-15 -3386 ((-142 (-179)) (-694) (-142 (-179)))) (-15 -3388 ((-179) (-179) (-179))) (-15 -3388 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3389 ((-179) (-179) (-179))) (-15 -3389 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3390 ((-179) (-179) (-179))) (-15 -3390 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3391 ((-179) (-179) (-179))) (-15 -3391 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3392 ((-142 (-179)) (-142 (-179)))) (-15 -3392 ((-179) (-179))) (-15 -3393 ((-179) (-179))) (-15 -3393 ((-142 (-179)) (-142 (-179)))) (-15 -1461 ((-179) (-179) (-179))) (-15 -1461 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180)) -((-1461 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1461 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3393 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3393 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3388 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3388 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3386 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-694)) (-5 *1 (-180)))) (-3386 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-694)) (-5 *1 (-180)))) (-3385 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3385 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1460 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1460 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3384 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3384 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3387 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3387 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3838 (($ (-694) (-694)) NIL T ELT)) (-2350 (($ $ $) NIL T ELT)) (-3414 (($ (-1179 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3873 (($ |#1| |#1| |#1|) 33 T ELT)) (-3120 (((-85) $) NIL T ELT)) (-2349 (($ $ (-484) (-484)) NIL T ELT)) (-2348 (($ $ (-484) (-484)) NIL T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) NIL T ELT)) (-2352 (($ $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2346 (($ $ (-484) (-484) $) NIL T ELT)) (-3788 ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) NIL T ELT)) (-1257 (($ $ (-484) (-1179 |#1|)) NIL T ELT)) (-1256 (($ $ (-484) (-1179 |#1|)) NIL T ELT)) (-3847 (($ |#1| |#1| |#1|) 32 T ELT)) (-3333 (($ (-694) |#1|) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3109 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3111 (((-1179 |#1|) $ (-484)) NIL T ELT)) (-1462 (($ |#1|) 31 T ELT)) (-1463 (($ |#1|) 30 T ELT)) (-1464 (($ |#1|) 29 T ELT)) (-3108 (((-694) $) NIL (|has| |#1| (-495)) ELT)) (-1576 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3112 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3107 (((-694) $) NIL (|has| |#1| (-495)) ELT)) (-3106 (((-583 (-1179 |#1|)) $) NIL (|has| |#1| (-495)) ELT)) (-3114 (((-694) $) NIL T ELT)) (-3614 (($ (-694) (-694) |#1|) NIL T ELT)) (-3113 (((-694) $) NIL T ELT)) (-3327 ((|#1| $) NIL (|has| |#1| (-6 (-3997 #1="*"))) ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-3123 (($ (-583 (-583 |#1|))) 11 T ELT) (($ (-694) (-694) (-1 |#1| (-484) (-484))) NIL T ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3594 (((-583 (-583 |#1|)) $) NIL T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3590 (((-3 $ #2="failed") $) NIL (|has| |#1| (-312)) ELT)) (-1465 (($) 12 T ELT)) (-2351 (($ $ $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) NIL T ELT)) (-3466 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484))) NIL T ELT)) (-3332 (($ (-583 |#1|)) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3328 ((|#1| $) NIL (|has| |#1| (-6 (-3997 #1#))) ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3400 (($ $) NIL T ELT)) (-3110 (((-1179 |#1|) $ (-484)) NIL T ELT)) (-3946 (($ (-1179 |#1|)) NIL T ELT) (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-484) $) NIL T ELT) (((-1179 |#1|) $ (-1179 |#1|)) 15 T ELT) (((-1179 |#1|) (-1179 |#1|) $) NIL T ELT) (((-854 |#1|) $ (-854 |#1|)) 21 T ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-181 |#1|) (-13 (-627 |#1| (-1179 |#1|) (-1179 |#1|)) (-10 -8 (-15 * ((-854 |#1|) $ (-854 |#1|))) (-15 -1465 ($)) (-15 -1464 ($ |#1|)) (-15 -1463 ($ |#1|)) (-15 -1462 ($ |#1|)) (-15 -3847 ($ |#1| |#1| |#1|)) (-15 -3873 ($ |#1| |#1| |#1|)))) (-13 (-312) (-1115))) (T -181)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115))) (-5 *1 (-181 *3)))) (-1465 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) (-1464 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) (-1463 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) (-1462 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) (-3847 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) (-3873 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115)))))) -((-1570 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3405 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1466 (($) NIL T ELT) (($ (-583 |#2|)) 11 T ELT)) (-3056 (((-85) $ $) 26 T ELT))) -(((-182 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -1570 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3405 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -1466 (|#1| (-583 |#2|))) (-15 -1466 (|#1|))) (-183 |#2|) (-1013)) (T -182)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-1353 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ |#1| $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3995)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-1466 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 54 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-183 |#1|) (-113) (-1013)) (T -183)) +((-3643 ((|#2| |#2|) 28 T ELT)) (-3646 (((-85) |#2|) 19 T ELT)) (-3644 (((-265 |#1|) |#2|) 12 T ELT)) (-3645 (((-265 |#1|) |#2|) 14 T ELT)) (-3641 ((|#2| |#2| (-1091)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3647 (((-142 (-265 |#1|)) |#2|) 10 T ELT)) (-3642 ((|#2| |#2| (-1091)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) +(((-162 |#1| |#2|) (-10 -7 (-15 -3641 (|#2| |#2|)) (-15 -3641 (|#2| |#2| (-1091))) (-15 -3642 (|#2| |#2|)) (-15 -3642 (|#2| |#2| (-1091))) (-15 -3644 ((-265 |#1|) |#2|)) (-15 -3645 ((-265 |#1|) |#2|)) (-15 -3646 ((-85) |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3647 ((-142 (-265 |#1|)) |#2|))) (-13 (-496) (-951 (-485))) (-13 (-27) (-1116) (-364 (-142 |#1|)))) (T -162)) +((-3647 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-142 (-265 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3)))))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3645 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3644 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3642 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3)))))) (-3641 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3))))))) +((-1431 (((-1180 (-631 (-858 |#1|))) (-1180 (-631 |#1|))) 26 T ELT)) (-3947 (((-1180 (-631 (-350 (-858 |#1|)))) (-1180 (-631 |#1|))) 37 T ELT))) +(((-163 |#1|) (-10 -7 (-15 -1431 ((-1180 (-631 (-858 |#1|))) (-1180 (-631 |#1|)))) (-15 -3947 ((-1180 (-631 (-350 (-858 |#1|)))) (-1180 (-631 |#1|))))) (-146)) (T -163)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-146)) (-5 *2 (-1180 (-631 (-350 (-858 *4))))) (-5 *1 (-163 *4)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-146)) (-5 *2 (-1180 (-631 (-858 *4)))) (-5 *1 (-163 *4))))) +((-1439 (((-1093 (-350 (-485))) (-1093 (-350 (-485))) (-1093 (-350 (-485)))) 93 T ELT)) (-1441 (((-1093 (-350 (-485))) (-584 (-485)) (-584 (-485))) 106 T ELT)) (-1432 (((-1093 (-350 (-485))) (-831)) 54 T ELT)) (-3855 (((-1093 (-350 (-485))) (-831)) 79 T ELT)) (-3769 (((-350 (-485)) (-1093 (-350 (-485)))) 89 T ELT)) (-1433 (((-1093 (-350 (-485))) (-831)) 37 T ELT)) (-1436 (((-1093 (-350 (-485))) (-831)) 66 T ELT)) (-1435 (((-1093 (-350 (-485))) (-831)) 61 T ELT)) (-1438 (((-1093 (-350 (-485))) (-1093 (-350 (-485))) (-1093 (-350 (-485)))) 87 T ELT)) (-2892 (((-1093 (-350 (-485))) (-831)) 29 T ELT)) (-1437 (((-350 (-485)) (-1093 (-350 (-485))) (-1093 (-350 (-485)))) 91 T ELT)) (-1434 (((-1093 (-350 (-485))) (-831)) 35 T ELT)) (-1440 (((-1093 (-350 (-485))) (-584 (-831))) 100 T ELT))) +(((-164) (-10 -7 (-15 -2892 ((-1093 (-350 (-485))) (-831))) (-15 -1432 ((-1093 (-350 (-485))) (-831))) (-15 -1433 ((-1093 (-350 (-485))) (-831))) (-15 -1434 ((-1093 (-350 (-485))) (-831))) (-15 -1435 ((-1093 (-350 (-485))) (-831))) (-15 -1436 ((-1093 (-350 (-485))) (-831))) (-15 -3855 ((-1093 (-350 (-485))) (-831))) (-15 -1437 ((-350 (-485)) (-1093 (-350 (-485))) (-1093 (-350 (-485))))) (-15 -1438 ((-1093 (-350 (-485))) (-1093 (-350 (-485))) (-1093 (-350 (-485))))) (-15 -3769 ((-350 (-485)) (-1093 (-350 (-485))))) (-15 -1439 ((-1093 (-350 (-485))) (-1093 (-350 (-485))) (-1093 (-350 (-485))))) (-15 -1440 ((-1093 (-350 (-485))) (-584 (-831)))) (-15 -1441 ((-1093 (-350 (-485))) (-584 (-485)) (-584 (-485)))))) (T -164)) +((-1441 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1440 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1439 (*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-1093 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164)))) (-1438 (*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1437 (*1 *2 *3 *3) (-12 (-5 *3 (-1093 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-2892 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) +((-1443 (((-348 (-1086 (-485))) (-485)) 38 T ELT)) (-1442 (((-584 (-1086 (-485))) (-485)) 33 T ELT)) (-2802 (((-1086 (-485)) (-485)) 28 T ELT))) +(((-165) (-10 -7 (-15 -1442 ((-584 (-1086 (-485))) (-485))) (-15 -2802 ((-1086 (-485)) (-485))) (-15 -1443 ((-348 (-1086 (-485))) (-485))))) (T -165)) +((-1443 (*1 *2 *3) (-12 (-5 *2 (-348 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-165)) (-5 *3 (-485)))) (-1442 (*1 *2 *3) (-12 (-5 *2 (-584 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1444 ((|#2| $ (-695) |#2|) 11 T ELT)) (-3113 ((|#2| $ (-695)) 10 T ELT)) (-3615 (($) 8 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 23 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 13 T ELT))) +(((-166 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3615 ($)) (-15 -3113 (|#2| $ (-695))) (-15 -1444 (|#2| $ (-695) |#2|)))) (-831) (-1014)) (T -166)) +((-3615 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-831)) (-4 *3 (-1014)))) (-3113 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *2 (-1014)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)))) (-1444 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)) (-4 *2 (-1014))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1964 (((-1186) $) 36 T ELT) (((-1186) $ (-831) (-831)) 40 T ELT)) (-3801 (($ $ (-903)) 19 T ELT) (((-203 (-1074)) $ (-1091)) 15 T ELT)) (-3618 (((-1186) $) 34 T ELT)) (-3947 (((-773) $) 31 T ELT) (($ (-584 |#1|)) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $ $) 26 T ELT)) (-3840 (($ $ $) 22 T ELT))) +(((-167 |#1|) (-13 (-1014) (-556 (-584 |#1|)) (-10 -8 (-15 -3801 ($ $ (-903))) (-15 -3801 ((-203 (-1074)) $ (-1091))) (-15 -3840 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -3618 ((-1186) $)) (-15 -1964 ((-1186) $)) (-15 -1964 ((-1186) $ (-831) (-831))))) (-13 (-757) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) (-15 -1964 ((-1186) $))))) (T -167)) +((-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) (-15 -1964 ((-1186) $))))))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-203 (-1074))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3801 ((-1074) $ *3)) (-15 -3618 ((-1186) $)) (-15 -1964 ((-1186) $))))))) (-3840 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-757) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) (-15 -1964 ((-1186) $))))))) (-3838 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-757) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) (-15 -1964 ((-1186) $))))))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 (*2 $)) (-15 -1964 (*2 $))))))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 (*2 $)) (-15 -1964 (*2 $))))))) (-1964 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 (*2 $)) (-15 -1964 (*2 $)))))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 10 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2852 (($ (-578 |#1|)) 11 T ELT)) (-3947 (((-773) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT))) +(((-168 |#1|) (-13 (-753) (-10 -8 (-15 -2852 ($ (-578 |#1|))))) (-584 (-1091))) (T -168)) +((-2852 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-14 *3 (-584 (-1091))) (-5 *1 (-168 *3))))) +((-1445 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) +(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1445 (|#2| |#4| (-1 |#2| |#2|)))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -169)) +((-1445 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1156 (-350 *2))) (-4 *2 (-1156 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) +((-1449 ((|#2| |#2| (-695) |#2|) 55 T ELT)) (-1448 ((|#2| |#2| (-695) |#2|) 51 T ELT)) (-2372 (((-584 |#2|) (-584 (-2 (|:| |deg| (-695)) (|:| -2576 |#2|)))) 79 T ELT)) (-1447 (((-584 (-2 (|:| |deg| (-695)) (|:| -2576 |#2|))) |#2|) 72 T ELT)) (-1450 (((-85) |#2|) 70 T ELT)) (-3734 (((-348 |#2|) |#2|) 92 T ELT)) (-3733 (((-348 |#2|) |#2|) 91 T ELT)) (-2373 ((|#2| |#2| (-695) |#2|) 49 T ELT)) (-1446 (((-2 (|:| |cont| |#1|) (|:| -1780 (-584 (-2 (|:| |irr| |#2|) (|:| -2396 (-485)))))) |#2| (-85)) 86 T ELT))) +(((-170 |#1| |#2|) (-10 -7 (-15 -3733 ((-348 |#2|) |#2|)) (-15 -3734 ((-348 |#2|) |#2|)) (-15 -1446 ((-2 (|:| |cont| |#1|) (|:| -1780 (-584 (-2 (|:| |irr| |#2|) (|:| -2396 (-485)))))) |#2| (-85))) (-15 -1447 ((-584 (-2 (|:| |deg| (-695)) (|:| -2576 |#2|))) |#2|)) (-15 -2372 ((-584 |#2|) (-584 (-2 (|:| |deg| (-695)) (|:| -2576 |#2|))))) (-15 -2373 (|#2| |#2| (-695) |#2|)) (-15 -1448 (|#2| |#2| (-695) |#2|)) (-15 -1449 (|#2| |#2| (-695) |#2|)) (-15 -1450 ((-85) |#2|))) (-299) (-1156 |#1|)) (T -170)) +((-1450 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4)))) (-1449 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))) (-1448 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))) (-2373 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |deg| (-695)) (|:| -2576 *5)))) (-4 *5 (-1156 *4)) (-4 *4 (-299)) (-5 *2 (-584 *5)) (-5 *1 (-170 *4 *5)))) (-1447 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -2576 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4)))) (-1446 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1780 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1156 *5)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-485) $) NIL (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-3157 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-485) (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) NIL T ELT)) (-3446 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3959 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-485) (-1067)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) NIL T ELT)) (-3131 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3769 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3801 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-485) $) NIL T ELT)) (-1451 (($ (-350 (-485))) 9 T ELT)) (-3973 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL T ELT) (((-918 10) $) 10 T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3950 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT))) +(((-171) (-13 (-905 (-485)) (-553 (-350 (-485))) (-553 (-918 10)) (-10 -8 (-15 -3129 ((-350 (-485)) $)) (-15 -1451 ($ (-350 (-485))))))) (T -171)) +((-3129 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171)))) (-1451 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3320 (((-1029) $) 14 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3179 (((-423) $) 11 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 24 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3234 (((-1050) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-172) (-13 (-996) (-10 -8 (-15 -3179 ((-423) $)) (-15 -3320 ((-1029) $)) (-15 -3234 ((-1050) $))))) (T -172)) +((-3179 (*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-172)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-172)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-172))))) +((-3813 (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1005 (-751 |#2|)) (-1074)) 29 T ELT) (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1005 (-751 |#2|))) 25 T ELT)) (-1452 (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1091) (-751 |#2|) (-751 |#2|) (-85)) 17 T ELT))) +(((-173 |#1| |#2|) (-10 -7 (-15 -3813 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1005 (-751 |#2|)))) (-15 -3813 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1005 (-751 |#2|)) (-1074))) (-15 -1452 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1091) (-751 |#2|) (-751 |#2|) (-85)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-872) (-29 |#1|))) (T -173)) +((-1452 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1091)) (-5 *6 (-85)) (-4 *7 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-4 *3 (-13 (-1116) (-872) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-751 *3)))) (-3813 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1005 (-751 *3))) (-5 *5 (-1074)) (-4 *3 (-13 (-1116) (-872) (-29 *6))) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-751 *3))) (-4 *3 (-13 (-1116) (-872) (-29 *5))) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3))))) +((-3813 (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|)))) (-1074)) 49 T ELT) (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|))) (-1074)) 50 T ELT) (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|)))) 22 T ELT))) +(((-174 |#1|) (-10 -7 (-15 -3813 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|))))) (-15 -3813 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|))) (-1074))) (-15 -3813 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|)))))) (-15 -3813 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|)))) (-1074)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (T -174)) +((-3813 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1005 (-751 (-350 (-858 *6))))) (-5 *5 (-1074)) (-5 *3 (-350 (-858 *6))) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-751 (-350 (-858 *5))))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3813 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1005 (-751 (-265 *6)))) (-5 *5 (-1074)) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1005 (-751 (-265 *5)))) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5))))) +((-3843 (((-2 (|:| -2005 (-1086 |#1|)) (|:| |deg| (-831))) (-1086 |#1|)) 26 T ELT)) (-3964 (((-584 (-265 |#2|)) (-265 |#2|) (-831)) 51 T ELT))) +(((-175 |#1| |#2|) (-10 -7 (-15 -3843 ((-2 (|:| -2005 (-1086 |#1|)) (|:| |deg| (-831))) (-1086 |#1|))) (-15 -3964 ((-584 (-265 |#2|)) (-265 |#2|) (-831)))) (-962) (-496)) (T -175)) +((-3964 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *6 (-496)) (-5 *2 (-584 (-265 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-962)))) (-3843 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-2 (|:| -2005 (-1086 *4)) (|:| |deg| (-831)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1086 *4)) (-4 *5 (-496))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1496 ((|#1| $) NIL T ELT)) (-3324 ((|#1| $) 31 T ELT)) (-3725 (($) NIL T CONST)) (-3003 (($ $) NIL T ELT)) (-2298 (($ $) 40 T ELT)) (-3326 ((|#1| |#1| $) NIL T ELT)) (-3325 ((|#1| $) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3834 (((-695) $) NIL T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) NIL T ELT)) (-1494 ((|#1| |#1| $) 36 T ELT)) (-1493 ((|#1| |#1| $) 38 T ELT)) (-3610 (($ |#1| $) NIL T ELT)) (-2604 (((-695) $) 34 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3002 ((|#1| $) NIL T ELT)) (-1492 ((|#1| $) 32 T ELT)) (-1491 ((|#1| $) 30 T ELT)) (-1276 ((|#1| $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3005 ((|#1| |#1| $) NIL T ELT)) (-3404 (((-85) $) 9 T ELT)) (-3566 (($) NIL T ELT)) (-3004 ((|#1| $) NIL T ELT)) (-1497 (($) NIL T ELT) (($ (-584 |#1|)) 17 T ELT)) (-3323 (((-695) $) NIL T ELT)) (-1947 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1495 ((|#1| $) 14 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-3001 ((|#1| $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1497 ($ (-584 |#1|))))) (-1014)) (T -176)) +((-1497 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-176 *3))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1454 (($ (-265 |#1|)) 24 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2665 (((-85) $) NIL T ELT)) (-3158 (((-3 (-265 |#1|) #1#) $) NIL T ELT)) (-3157 (((-265 |#1|) $) NIL T ELT)) (-3960 (($ $) 32 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3959 (($ (-1 (-265 |#1|) (-265 |#1|)) $) NIL T ELT)) (-3175 (((-265 |#1|) $) NIL T ELT)) (-1456 (($ $) 31 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1455 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($ (-695)) NIL T ELT)) (-1453 (($ $) 33 T ELT)) (-3949 (((-485) $) NIL T ELT)) (-3947 (((-773) $) 65 T ELT) (($ (-485)) NIL T ELT) (($ (-265 |#1|)) NIL T ELT)) (-3678 (((-265 |#1|) $ $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 26 T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) 29 T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-265 |#1|) $) 19 T ELT))) +(((-177 |#1| |#2|) (-13 (-561 (-265 |#1|)) (-951 (-265 |#1|)) (-10 -8 (-15 -3175 ((-265 |#1|) $)) (-15 -1456 ($ $)) (-15 -3960 ($ $)) (-15 -3678 ((-265 |#1|) $ $)) (-15 -2410 ($ (-695))) (-15 -1455 ((-85) $)) (-15 -2665 ((-85) $)) (-15 -3949 ((-485) $)) (-15 -3959 ($ (-1 (-265 |#1|) (-265 |#1|)) $)) (-15 -1454 ($ (-265 |#1|))) (-15 -1453 ($ $)))) (-13 (-962) (-757)) (-584 (-1091))) (T -177)) +((-3175 (*1 *2 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1091))))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1091))))) (-3678 (*1 *2 *1 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1091))))) (-1454 (*1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1091))))) (-1453 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1091)))))) +((-1457 (((-85) (-1074)) 26 T ELT)) (-1458 (((-3 (-751 |#2|) #1="failed") (-551 |#2|) |#2| (-751 |#2|) (-751 |#2|) (-85)) 35 T ELT)) (-1459 (((-3 (-85) #1#) (-1086 |#2|) (-751 |#2|) (-751 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-858 |#1|) (-1091) (-751 |#2|) (-751 |#2|) (-85)) 84 T ELT))) +(((-178 |#1| |#2|) (-10 -7 (-15 -1457 ((-85) (-1074))) (-15 -1458 ((-3 (-751 |#2|) #1="failed") (-551 |#2|) |#2| (-751 |#2|) (-751 |#2|) (-85))) (-15 -1459 ((-3 (-85) #1#) (-858 |#1|) (-1091) (-751 |#2|) (-751 |#2|) (-85))) (-15 -1459 ((-3 (-85) #1#) (-1086 |#2|) (-751 |#2|) (-751 |#2|) (-85)))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-29 |#1|))) (T -178)) +((-1459 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1086 *6)) (-5 *4 (-751 *6)) (-4 *6 (-13 (-1116) (-29 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *5 *6)))) (-1459 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-858 *6)) (-5 *4 (-1091)) (-5 *5 (-751 *7)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *7 (-13 (-1116) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1458 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-751 *4)) (-5 *3 (-551 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1116) (-29 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *6 *4)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1116) (-29 *4)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 86 T ELT)) (-3130 (((-485) $) 18 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3493 (($ $) 73 T ELT)) (-3640 (($ $) 61 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-3038 (($ $) 52 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3491 (($ $) 71 T ELT)) (-3639 (($ $) 59 T ELT)) (-3624 (((-485) $) 83 T ELT)) (-3495 (($ $) 76 T ELT)) (-3638 (($ $) 63 T ELT)) (-3725 (($) NIL T CONST)) (-3128 (($ $) NIL T ELT)) (-3158 (((-3 (-485) #1#) $) 116 T ELT) (((-3 (-350 (-485)) #1#) $) 113 T ELT)) (-3157 (((-485) $) 114 T ELT) (((-350 (-485)) $) 111 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 91 T ELT)) (-1745 (((-350 (-485)) $ (-695)) 106 T ELT) (((-350 (-485)) $ (-695) (-695)) 105 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-1769 (((-831)) 12 T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3987)) ELT)) (-3187 (((-85) $) 107 T ELT)) (-3628 (($) 31 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL T ELT)) (-3773 (((-485) $) 25 T ELT)) (-1215 (((-85) $ $) 141 T ELT)) (-2411 (((-85) $) 87 T ELT)) (-3012 (($ $ (-485)) NIL T ELT)) (-3133 (($ $) NIL T ELT)) (-3188 (((-85) $) 85 T ELT)) (-1460 (((-85) $) 140 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) 49 T ELT) (($) 21 (-12 (-2561 (|has| $ (-6 -3979))) (-2561 (|has| $ (-6 -3987)))) ELT)) (-2858 (($ $ $) 48 T ELT) (($) 20 (-12 (-2561 (|has| $ (-6 -3979))) (-2561 (|has| $ (-6 -3987)))) ELT)) (-1771 (((-485) $) 10 T ELT)) (-1744 (($ $) 16 T ELT)) (-1743 (($ $) 53 T ELT)) (-3943 (($ $) 58 T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-1768 (((-831) (-485)) NIL (|has| $ (-6 -3987)) ELT)) (-3244 (((-1034) $) 89 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL T ELT)) (-3131 (($ $) NIL T ELT)) (-3255 (($ (-485) (-485)) NIL T ELT) (($ (-485) (-485) (-831)) 98 T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2402 (((-485) $) 11 T ELT)) (-1742 (($) 30 T ELT)) (-3944 (($ $) 57 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2616 (((-831)) NIL T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3987)) ELT)) (-3759 (($ $) 92 T ELT) (($ $ (-695)) NIL T ELT)) (-1767 (((-831) (-485)) NIL (|has| $ (-6 -3987)) ELT)) (-3496 (($ $) 74 T ELT)) (-3637 (($ $) 64 T ELT)) (-3494 (($ $) 75 T ELT)) (-3636 (($ $) 62 T ELT)) (-3492 (($ $) 72 T ELT)) (-3635 (($ $) 60 T ELT)) (-3973 (((-330) $) 102 T ELT) (((-179) $) 99 T ELT) (((-801 (-330)) $) NIL T ELT) (((-474) $) 38 T ELT)) (-3947 (((-773) $) 35 T ELT) (($ (-485)) 56 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) 56 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (($ $) NIL T ELT)) (-1770 (((-831)) 19 T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3987)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2695 (((-831)) 7 T ELT)) (-3499 (($ $) 79 T ELT)) (-3487 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 77 T ELT)) (-3485 (($ $) 65 T ELT)) (-3501 (($ $) 82 T ELT)) (-3489 (($ $) 70 T ELT)) (-3126 (((-85) $ $) 143 T ELT)) (-3502 (($ $) 80 T ELT)) (-3490 (($ $) 68 T ELT)) (-3500 (($ $) 81 T ELT)) (-3488 (($ $) 69 T ELT)) (-3498 (($ $) 78 T ELT)) (-3486 (($ $) 66 T ELT)) (-3384 (($ $) 108 T ELT)) (-2661 (($) 27 T CONST)) (-2667 (($) 28 T CONST)) (-3388 (($ $) 95 T ELT)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3385 (($ $ $) 97 T ELT)) (-2567 (((-85) $ $) 42 T ELT)) (-2568 (((-85) $ $) 40 T ELT)) (-3057 (((-85) $ $) 50 T ELT)) (-2685 (((-85) $ $) 41 T ELT)) (-2686 (((-85) $ $) 39 T ELT)) (-3950 (($ $ $) 29 T ELT) (($ $ (-485)) 51 T ELT)) (-3838 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3840 (($ $ $) 44 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 54 T ELT) (($ $ (-350 (-485))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT))) +(((-179) (-13 (-347) (-190) (-1116) (-554 (-474)) (-10 -8 (-15 -3950 ($ $ (-485))) (-15 ** ($ $ $)) (-15 -1742 ($)) (-15 -1744 ($ $)) (-15 -1743 ($ $)) (-15 -3487 ($ $ $)) (-15 -3388 ($ $)) (-15 -3385 ($ $ $)) (-15 -1745 ((-350 (-485)) $ (-695))) (-15 -1745 ((-350 (-485)) $ (-695) (-695))) (-15 -1460 ((-85) $))))) (T -179)) +((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-179)))) (-1742 (*1 *1) (-5 *1 (-179))) (-1744 (*1 *1 *1) (-5 *1 (-179))) (-1743 (*1 *1 *1) (-5 *1 (-179))) (-3487 (*1 *1 *1 *1) (-5 *1 (-179))) (-3388 (*1 *1 *1) (-5 *1 (-179))) (-3385 (*1 *1 *1 *1) (-5 *1 (-179))) (-1745 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179)))) (-1745 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) +((-3387 (((-142 (-179)) (-695) (-142 (-179))) 11 T ELT) (((-179) (-695) (-179)) 12 T ELT)) (-1461 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1462 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3386 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3390 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3392 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3389 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3391 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3394 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3393 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3388 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3385 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT))) +(((-180) (-10 -7 (-15 -3388 ((-179) (-179))) (-15 -3388 ((-142 (-179)) (-142 (-179)))) (-15 -3385 ((-179) (-179) (-179))) (-15 -3385 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1461 ((-179) (-179))) (-15 -1461 ((-142 (-179)) (-142 (-179)))) (-15 -3386 ((-179) (-179))) (-15 -3386 ((-142 (-179)) (-142 (-179)))) (-15 -3387 ((-179) (-695) (-179))) (-15 -3387 ((-142 (-179)) (-695) (-142 (-179)))) (-15 -3389 ((-179) (-179) (-179))) (-15 -3389 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3390 ((-179) (-179) (-179))) (-15 -3390 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3391 ((-179) (-179) (-179))) (-15 -3391 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3392 ((-179) (-179) (-179))) (-15 -3392 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3393 ((-142 (-179)) (-142 (-179)))) (-15 -3393 ((-179) (-179))) (-15 -3394 ((-179) (-179))) (-15 -3394 ((-142 (-179)) (-142 (-179)))) (-15 -1462 ((-179) (-179) (-179))) (-15 -1462 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180)) +((-1462 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1462 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3394 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3394 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3393 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3393 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3392 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3392 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3387 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-695)) (-5 *1 (-180)))) (-3387 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-695)) (-5 *1 (-180)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1461 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1461 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3388 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3388 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3839 (($ (-695) (-695)) NIL T ELT)) (-2351 (($ $ $) NIL T ELT)) (-3415 (($ (-1180 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3874 (($ |#1| |#1| |#1|) 33 T ELT)) (-3121 (((-85) $) NIL T ELT)) (-2350 (($ $ (-485) (-485)) NIL T ELT)) (-2349 (($ $ (-485) (-485)) NIL T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) NIL T ELT)) (-2353 (($ $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-2347 (($ $ (-485) (-485) $) NIL T ELT)) (-3789 ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) NIL T ELT)) (-1258 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-1257 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-3848 (($ |#1| |#1| |#1|) 32 T ELT)) (-3334 (($ (-695) |#1|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3110 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3112 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-1463 (($ |#1|) 31 T ELT)) (-1464 (($ |#1|) 30 T ELT)) (-1465 (($ |#1|) 29 T ELT)) (-3109 (((-695) $) NIL (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-3113 ((|#1| $ (-485) (-485)) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3108 (((-695) $) NIL (|has| |#1| (-496)) ELT)) (-3107 (((-584 (-1180 |#1|)) $) NIL (|has| |#1| (-496)) ELT)) (-3115 (((-695) $) NIL T ELT)) (-3615 (($ (-695) (-695) |#1|) NIL T ELT)) (-3114 (((-695) $) NIL T ELT)) (-3328 ((|#1| $) NIL (|has| |#1| (-6 (-3998 #1="*"))) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3118 (((-485) $) NIL T ELT)) (-3116 (((-485) $) NIL T ELT)) (-3124 (($ (-584 (-584 |#1|))) 11 T ELT) (($ (-695) (-695) (-1 |#1| (-485) (-485))) NIL T ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3595 (((-584 (-584 |#1|)) $) NIL T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3591 (((-3 $ #2="failed") $) NIL (|has| |#1| (-312)) ELT)) (-1466 (($) 12 T ELT)) (-2352 (($ $ $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) NIL T ELT)) (-3467 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485))) NIL T ELT)) (-3333 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3329 ((|#1| $) NIL (|has| |#1| (-6 (-3998 #1#))) ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3111 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-3947 (($ (-1180 |#1|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-485) $) NIL T ELT) (((-1180 |#1|) $ (-1180 |#1|)) 15 T ELT) (((-1180 |#1|) (-1180 |#1|) $) NIL T ELT) (((-855 |#1|) $ (-855 |#1|)) 21 T ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-181 |#1|) (-13 (-628 |#1| (-1180 |#1|) (-1180 |#1|)) (-10 -8 (-15 * ((-855 |#1|) $ (-855 |#1|))) (-15 -1466 ($)) (-15 -1465 ($ |#1|)) (-15 -1464 ($ |#1|)) (-15 -1463 ($ |#1|)) (-15 -3848 ($ |#1| |#1| |#1|)) (-15 -3874 ($ |#1| |#1| |#1|)))) (-13 (-312) (-1116))) (T -181)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116))) (-5 *1 (-181 *3)))) (-1466 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-1465 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-1464 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-1463 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-3848 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-3874 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))) +((-1571 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3406 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1467 (($) NIL T ELT) (($ (-584 |#2|)) 11 T ELT)) (-3057 (((-85) $ $) 26 T ELT))) +(((-182 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -1571 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3406 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3406 (|#1| |#2| |#1|)) (-15 -1467 (|#1| (-584 |#2|))) (-15 -1467 (|#1|))) (-183 |#2|) (-1014)) (T -182)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-1354 (($ $) 62 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ |#1| $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) 61 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3996)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-1467 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 54 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-183 |#1|) (-113) (-1014)) (T -183)) NIL (-13 (-193 |t#1|)) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3758 (($ $ (-1 |#1| |#1|) (-694)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1090)) 63 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 61 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 60 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 59 (|has| |#1| (-811 (-1090))) ELT) (($ $) 55 (|has| |#1| (-189)) ELT) (($ $ (-694)) 53 (|has| |#1| (-189)) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#1| |#1|) (-694)) 67 T ELT) (($ $ (-1 |#1| |#1|)) 66 T ELT) (($ $ (-1090)) 62 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 58 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 57 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 56 (|has| |#1| (-811 (-1090))) ELT) (($ $) 54 (|has| |#1| (-189)) ELT) (($ $ (-694)) 52 (|has| |#1| (-189)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-184 |#1|) (-113) (-961)) (T -184)) -NIL -(-13 (-961) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-809 (-1090))) (-6 (-809 (-1090))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-806 $ (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-809 (-1090)) |has| |#1| (-809 (-1090))) ((-811 (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2669 ((|#2| $) 9 T ELT))) -(((-185 |#1| |#2|) (-10 -7 (-15 -2669 (|#2| |#1|))) (-186 |#2|) (-1129)) (T -185)) -NIL -((-3758 ((|#1| $) 7 T ELT)) (-2669 ((|#1| $) 6 T ELT))) -(((-186 |#1|) (-113) (-1129)) (T -186)) -((-3758 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1129)))) (-2669 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1129))))) -(-13 (-1129) (-10 -8 (-15 -3758 (|t#1| $)) (-15 -2669 (|t#1| $)))) -(((-13) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3758 (($ $ (-694)) 43 T ELT) (($ $) 41 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-2669 (($ $ (-694)) 44 T ELT) (($ $) 42 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-187 |#1|) (-113) (-961)) (T -187)) -NIL -(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-3758 (($ $) NIL T ELT) (($ $ (-694)) 9 T ELT)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) 11 T ELT))) -(((-188 |#1|) (-10 -7 (-15 -2669 (|#1| |#1| (-694))) (-15 -3758 (|#1| |#1| (-694))) (-15 -2669 (|#1| |#1|)) (-15 -3758 (|#1| |#1|))) (-189)) (T -188)) -NIL -((-3758 (($ $) 7 T ELT) (($ $ (-694)) 10 T ELT)) (-2669 (($ $) 6 T ELT) (($ $ (-694)) 9 T ELT))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3759 (($ $ (-1 |#1| |#1|) (-695)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1091)) 63 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 61 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 60 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 59 (|has| |#1| (-812 (-1091))) ELT) (($ $) 55 (|has| |#1| (-189)) ELT) (($ $ (-695)) 53 (|has| |#1| (-189)) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#1| |#1|) (-695)) 67 T ELT) (($ $ (-1 |#1| |#1|)) 66 T ELT) (($ $ (-1091)) 62 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 58 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 57 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 56 (|has| |#1| (-812 (-1091))) ELT) (($ $) 54 (|has| |#1| (-189)) ELT) (($ $ (-695)) 52 (|has| |#1| (-189)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-184 |#1|) (-113) (-962)) (T -184)) +NIL +(-13 (-962) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-810 (-1091))) (-6 (-810 (-1091))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2670 ((|#2| $) 9 T ELT))) +(((-185 |#1| |#2|) (-10 -7 (-15 -2670 (|#2| |#1|))) (-186 |#2|) (-1130)) (T -185)) +NIL +((-3759 ((|#1| $) 7 T ELT)) (-2670 ((|#1| $) 6 T ELT))) +(((-186 |#1|) (-113) (-1130)) (T -186)) +((-3759 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130))))) +(-13 (-1130) (-10 -8 (-15 -3759 (|t#1| $)) (-15 -2670 (|t#1| $)))) +(((-13) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3759 (($ $ (-695)) 43 T ELT) (($ $) 41 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-2670 (($ $ (-695)) 44 T ELT) (($ $) 42 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-187 |#1|) (-113) (-962)) (T -187)) +NIL +(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-3759 (($ $) NIL T ELT) (($ $ (-695)) 9 T ELT)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) 11 T ELT))) +(((-188 |#1|) (-10 -7 (-15 -2670 (|#1| |#1| (-695))) (-15 -3759 (|#1| |#1| (-695))) (-15 -2670 (|#1| |#1|)) (-15 -3759 (|#1| |#1|))) (-189)) (T -188)) +NIL +((-3759 (($ $) 7 T ELT) (($ $ (-695)) 10 T ELT)) (-2670 (($ $) 6 T ELT) (($ $ (-695)) 9 T ELT))) (((-189) (-113)) (T -189)) -((-3758 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694)))) (-2669 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694))))) -(-13 (-186 $) (-10 -8 (-15 -3758 ($ $ (-694))) (-15 -2669 ($ $ (-694))))) -(((-186 $) . T) ((-13) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3758 (($ $ (-694)) 50 T ELT) (($ $) 48 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-694)) 51 T ELT) (($ $) 49 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-3759 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695)))) (-2670 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695))))) +(-13 (-186 $) (-10 -8 (-15 -3759 ($ $ (-695))) (-15 -2670 ($ $ (-695))))) +(((-186 $) . T) ((-13) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3759 (($ $ (-695)) 50 T ELT) (($ $) 48 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-695)) 51 T ELT) (($ $) 49 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-190) (-113)) (T -190)) NIL -(-13 (-961) (-189)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-3724 (($) 30 T CONST)) (-3467 (((-3 $ "failed") $) 36 T ELT)) (-3186 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-2410 (((-85) $) 38 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 29 T CONST)) (-2666 (($) 39 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3839 (($ $ $) 25 T ELT)) (** (($ $ (-830)) 40 T ELT) (($ $ (-694)) 37 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ $ $) 41 T ELT))) +(-13 (-962) (-189)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-3725 (($) 30 T CONST)) (-3468 (((-3 $ "failed") $) 36 T ELT)) (-3187 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2411 (((-85) $) 38 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 29 T CONST)) (-2667 (($) 39 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 25 T ELT)) (** (($ $ (-831)) 40 T ELT) (($ $ (-695)) 37 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ $ $) 41 T ELT))) (((-191) (-113)) (T -191)) NIL -(-13 (-716) (-1061)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-716) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-1466 (($) 12 T ELT) (($ (-583 |#2|)) NIL T ELT)) (-3400 (($ $) 14 T ELT)) (-3530 (($ (-583 |#2|)) 10 T ELT)) (-3946 (((-772) $) 21 T ELT))) -(((-192 |#1| |#2|) (-10 -7 (-15 -3946 ((-772) |#1|)) (-15 -1466 (|#1| (-583 |#2|))) (-15 -1466 (|#1|)) (-15 -3530 (|#1| (-583 |#2|))) (-15 -3400 (|#1| |#1|))) (-193 |#2|) (-1013)) (T -192)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-1353 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ |#1| $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3995)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-1466 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 54 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-193 |#1|) (-113) (-1013)) (T -193)) -((-1466 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1013)))) (-1466 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-193 *3)))) (-3405 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-193 *2)) (-4 *2 (-1013)))) (-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-193 *3)) (-4 *3 (-1013)))) (-1570 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-193 *3)) (-4 *3 (-1013))))) -(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1466 ($)) (-15 -1466 ($ (-583 |t#1|))) (IF (|has| $ (-6 -3995)) (PROGN (-15 -3405 ($ |t#1| $)) (-15 -3405 ($ (-1 (-85) |t#1|) $)) (-15 -1570 ($ (-1 (-85) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T)) -((-1467 (((-2 (|:| |varOrder| (-583 (-1090))) (|:| |inhom| (-3 (-583 (-1179 (-694))) "failed")) (|:| |hom| (-583 (-1179 (-694))))) (-249 (-857 (-484)))) 42 T ELT))) -(((-194) (-10 -7 (-15 -1467 ((-2 (|:| |varOrder| (-583 (-1090))) (|:| |inhom| (-3 (-583 (-1179 (-694))) "failed")) (|:| |hom| (-583 (-1179 (-694))))) (-249 (-857 (-484))))))) (T -194)) -((-1467 (*1 *2 *3) (-12 (-5 *3 (-249 (-857 (-484)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1090))) (|:| |inhom| (-3 (-583 (-1179 (-694))) "failed")) (|:| |hom| (-583 (-1179 (-694)))))) (-5 *1 (-194))))) -((-3136 (((-694)) 56 T ELT)) (-2279 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-630 $) (-1179 $)) 53 T ELT) (((-630 |#3|) (-630 $)) 44 T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3911 (((-107)) 62 T ELT)) (-3758 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3946 (((-1179 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-772) $) NIL T ELT) (($ (-484)) 12 T ELT) (($ (-350 (-484))) NIL T ELT)) (-3126 (((-694)) 15 T CONST)) (-3949 (($ $ |#3|) 59 T ELT))) -(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3946 (|#1| (-350 (-484)))) (-15 -3946 (|#1| (-484))) (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-694))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3758 (|#1| |#1| (-583 (-1090)))) (-15 -3758 (|#1| |#1| (-1090) (-694))) (-15 -3758 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3946 ((-772) |#1|)) (-15 -3126 ((-694)) -3952) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 |#1|) (-1179 |#1|))) (-15 -3946 (|#1| |#3|)) (-15 -3758 (|#1| |#1| (-1 |#3| |#3|) (-694))) (-15 -3758 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2279 ((-630 |#3|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-630 |#1|) (-1179 |#1|))) (-15 -3136 ((-694))) (-15 -3949 (|#1| |#1| |#3|)) (-15 -3911 ((-107))) (-15 -3946 ((-1179 |#3|) |#1|))) (-196 |#2| |#3|) (-694) (-1129)) (T -195)) -((-3911 (*1 *2) (-12 (-14 *4 (-694)) (-4 *5 (-1129)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3136 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1129)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3126 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1129)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5))))) -((-2568 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-3188 (((-85) $) 81 (|has| |#2| (-23)) ELT)) (-3707 (($ (-830)) 137 (|has| |#2| (-961)) ELT)) (-2198 (((-1185) $ (-484) (-484)) 44 (|has| $ (-6 -3996)) ELT)) (-2483 (($ $ $) 133 (|has| |#2| (-717)) ELT)) (-1312 (((-3 $ "failed") $ $) 84 (|has| |#2| (-104)) ELT)) (-3136 (((-694)) 122 (|has| |#2| (-320)) ELT)) (-3788 ((|#2| $ (-484) |#2|) 56 (|has| $ (-6 -3996)) ELT)) (-3724 (($) 7 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 76 (-2562 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-350 (-484)) #1#) $) 73 (-2562 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) 70 (|has| |#2| (-1013)) ELT)) (-3156 (((-484) $) 75 (-2562 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-350 (-484)) $) 72 (-2562 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) 71 (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) 119 (-2562 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 118 (-2562 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) 117 (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) 116 (|has| |#2| (-961)) ELT)) (-3467 (((-3 $ "failed") $) 96 (|has| |#2| (-961)) ELT)) (-2994 (($) 125 (|has| |#2| (-320)) ELT)) (-1576 ((|#2| $ (-484) |#2|) 57 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ (-484)) 55 T ELT)) (-3186 (((-85) $) 132 (|has| |#2| (-717)) ELT)) (-2889 (((-583 |#2|) $) 30 (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) 83 (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) 94 (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 126 (|has| |#2| (-756)) ELT)) (-2608 (((-583 |#2|) $) 29 T ELT)) (-3245 (((-85) |#2| $) 27 (|has| |#2| (-72)) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 127 (|has| |#2| (-756)) ELT)) (-3326 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2010 (((-830) $) 124 (|has| |#2| (-320)) ELT)) (-2280 (((-630 (-484)) (-1179 $)) 121 (-2562 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 120 (-2562 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) 115 (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1179 $)) 114 (|has| |#2| (-961)) ELT)) (-3242 (((-1073) $) 22 (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-2400 (($ (-830)) 123 (|has| |#2| (-320)) ELT)) (-3243 (((-1033) $) 21 (|has| |#2| (-1013)) ELT)) (-3801 ((|#2| $) 46 (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#2|))) 26 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#2| $ (-484) |#2|) 54 T ELT) ((|#2| $ (-484)) 53 T ELT)) (-3836 ((|#2| $ $) 136 (|has| |#2| (-961)) ELT)) (-1468 (($ (-1179 |#2|)) 138 T ELT)) (-3911 (((-107)) 135 (|has| |#2| (-312)) ELT)) (-3758 (($ $ (-694)) 112 (-2562 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) 110 (-2562 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 106 (-2562 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) 105 (-2562 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) 104 (-2562 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) 102 (-2562 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) 101 (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) 100 (|has| |#2| (-961)) ELT)) (-1946 (((-694) |#2| $) 28 (|has| |#2| (-72)) ELT) (((-694) (-1 (-85) |#2|) $) 31 T ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-1179 |#2|) $) 139 T ELT) (($ (-484)) 77 (OR (-2562 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-350 (-484))) 74 (-2562 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) 69 (|has| |#2| (-1013)) ELT) (((-772) $) 17 (|has| |#2| (-552 (-772))) ELT)) (-3126 (((-694)) 97 (|has| |#2| (-961)) CONST)) (-1265 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 33 T ELT)) (-3125 (((-85) $ $) 92 (|has| |#2| (-961)) ELT)) (-2660 (($) 80 (|has| |#2| (-23)) CONST)) (-2666 (($) 93 (|has| |#2| (-961)) CONST)) (-2669 (($ $ (-694)) 113 (-2562 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) 111 (-2562 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 109 (-2562 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) 108 (-2562 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) 107 (-2562 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) 103 (-2562 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) 99 (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) 98 (|has| |#2| (-961)) ELT)) (-2566 (((-85) $ $) 128 (|has| |#2| (-756)) ELT)) (-2567 (((-85) $ $) 130 (|has| |#2| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-2684 (((-85) $ $) 129 (|has| |#2| (-756)) ELT)) (-2685 (((-85) $ $) 131 (|has| |#2| (-756)) ELT)) (-3949 (($ $ |#2|) 134 (|has| |#2| (-312)) ELT)) (-3837 (($ $ $) 87 (|has| |#2| (-21)) ELT) (($ $) 86 (|has| |#2| (-21)) ELT)) (-3839 (($ $ $) 78 (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) 95 (|has| |#2| (-961)) ELT) (($ $ (-830)) 90 (|has| |#2| (-961)) ELT)) (* (($ $ $) 91 (|has| |#2| (-961)) ELT) (($ $ |#2|) 89 (|has| |#2| (-663)) ELT) (($ |#2| $) 88 (|has| |#2| (-663)) ELT) (($ (-484) $) 85 (|has| |#2| (-21)) ELT) (($ (-694) $) 82 (|has| |#2| (-23)) ELT) (($ (-830) $) 79 (|has| |#2| (-25)) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-196 |#1| |#2|) (-113) (-694) (-1129)) (T -196)) -((-1468 (*1 *1 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1129)) (-4 *1 (-196 *3 *4)))) (-3707 (*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-196 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1129)))) (-3836 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1129)) (-4 *2 (-961))))) -(-13 (-538 (-484) |t#2|) (-318 |t#2|) (-552 (-1179 |t#2|)) (-10 -8 (-15 -1468 ($ (-1179 |t#2|))) (IF (|has| |t#2| (-1013)) (-6 (-355 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-961)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-329 |t#2|)) (-15 -3707 ($ (-830))) (-15 -3836 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-663)) (-6 (-582 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-654 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3992)) (-6 -3992) |%noBranch|) (IF (|has| |t#2| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#2| (-717)) (-6 (-717)) |%noBranch|) (IF (|has| |t#2| (-312)) (-6 (-1187 |t#2|)) |%noBranch|))) -(((-21) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1013)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-555 (-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ((-555 (-484)) OR (|has| |#2| (-961)) (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013)))) ((-555 |#2|) |has| |#2| (-1013)) ((-552 (-772)) OR (|has| |#2| (-1013)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-552 (-772))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-552 (-1179 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) (-12 (|has| |#2| (-190)) (|has| |#2| (-961)))) ((-184 |#2|) |has| |#2| (-961)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-961))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) (-12 (|has| |#2| (-190)) (|has| |#2| (-961)))) ((-225 |#2|) |has| |#2| (-961)) ((-241 (-484) |#2|) . T) ((-243 (-484) |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-320) |has| |#2| (-320)) ((-318 |#2|) . T) ((-329 |#2|) |has| |#2| (-961)) ((-355 |#2|) |has| |#2| (-1013)) ((-429 |#2|) . T) ((-538 (-484) |#2|) . T) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-588 (-484)) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-588 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-663)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-588 $) |has| |#2| (-961)) ((-590 (-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ((-590 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-590 $) |has| |#2| (-961)) ((-582 |#2|) OR (|has| |#2| (-663)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-580 (-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ((-580 |#2|) |has| |#2| (-961)) ((-654 |#2|) OR (|has| |#2| (-312)) (|has| |#2| (-146))) ((-663) |has| |#2| (-961)) ((-716) |has| |#2| (-717)) ((-717) |has| |#2| (-717)) ((-718) |has| |#2| (-717)) ((-721) |has| |#2| (-717)) ((-756) OR (|has| |#2| (-756)) (|has| |#2| (-717))) ((-759) OR (|has| |#2| (-756)) (|has| |#2| (-717))) ((-806 $ (-1090)) OR (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961)))) ((-809 (-1090)) -12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))) ((-811 (-1090)) OR (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961)))) ((-950 (-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ((-950 (-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ((-950 |#2|) |has| |#2| (-1013)) ((-963 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-663)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-968 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-961) |has| |#2| (-961)) ((-970) |has| |#2| (-961)) ((-1025) |has| |#2| (-961)) ((-1061) |has| |#2| (-961)) ((-1013) OR (|has| |#2| (-1013)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1129) . T) ((-1187 |#2|) |has| |#2| (-312))) -((-2568 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3707 (($ (-830)) 63 (|has| |#2| (-961)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-2483 (($ $ $) 69 (|has| |#2| (-717)) ELT)) (-1312 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3136 (((-694)) NIL (|has| |#2| (-320)) ELT)) (-3788 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1013)) ELT)) (-3156 (((-484) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-350 (-484)) $) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) 29 (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3467 (((-3 $ #1#) $) 59 (|has| |#2| (-961)) ELT)) (-2994 (($) NIL (|has| |#2| (-320)) ELT)) (-1576 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ (-484)) 57 T ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-2889 (((-583 |#2|) $) 14 (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) 20 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2608 (((-583 |#2|) $) NIL T ELT)) (-3245 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-3326 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#2| (-320)) ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1179 $)) NIL (|has| |#2| (-961)) ELT)) (-3242 (((-1073) $) NIL (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#2| (-320)) ELT)) (-3243 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3801 ((|#2| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3768 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) 21 T ELT)) (-3836 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1468 (($ (-1179 |#2|)) 18 T ELT)) (-3911 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3758 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1946 (((-694) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-694) (-1 (-85) |#2|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-1179 |#2|) $) 9 T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-350 (-484))) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) 12 (|has| |#2| (-1013)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3126 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1265 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#2| (-961)) ELT)) (-2660 (($) 37 (|has| |#2| (-23)) CONST)) (-2666 (($) 41 (|has| |#2| (-961)) CONST)) (-2669 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3056 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2685 (((-85) $ $) 67 (|has| |#2| (-756)) ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3839 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) 47 (|has| |#2| (-961)) ELT) (($ $ |#2|) 45 (|has| |#2| (-663)) ELT) (($ |#2| $) 46 (|has| |#2| (-663)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-197 |#1| |#2|) (-196 |#1| |#2|) (-694) (-1129)) (T -197)) -NIL -((-3841 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3842 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3958 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT))) -(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3842 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3958 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-694) (-1129) (-1129)) (T -198)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1129)) (-4 *2 (-1129)) (-5 *1 (-198 *5 *6 *2)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-694)) (-4 *7 (-1129)) (-4 *5 (-1129)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5))))) -((-1472 (((-484) (-583 (-1073))) 36 T ELT) (((-484) (-1073)) 29 T ELT)) (-1471 (((-1185) (-583 (-1073))) 40 T ELT) (((-1185) (-1073)) 39 T ELT)) (-1469 (((-1073)) 16 T ELT)) (-1470 (((-1073) (-484) (-1073)) 23 T ELT)) (-3773 (((-583 (-1073)) (-583 (-1073)) (-484) (-1073)) 37 T ELT) (((-1073) (-1073) (-484) (-1073)) 35 T ELT)) (-2620 (((-583 (-1073)) (-583 (-1073))) 15 T ELT) (((-583 (-1073)) (-1073)) 11 T ELT))) -(((-199) (-10 -7 (-15 -2620 ((-583 (-1073)) (-1073))) (-15 -2620 ((-583 (-1073)) (-583 (-1073)))) (-15 -1469 ((-1073))) (-15 -1470 ((-1073) (-484) (-1073))) (-15 -3773 ((-1073) (-1073) (-484) (-1073))) (-15 -3773 ((-583 (-1073)) (-583 (-1073)) (-484) (-1073))) (-15 -1471 ((-1185) (-1073))) (-15 -1471 ((-1185) (-583 (-1073)))) (-15 -1472 ((-484) (-1073))) (-15 -1472 ((-484) (-583 (-1073)))))) (T -199)) -((-1472 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-484)) (-5 *1 (-199)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-484)) (-5 *1 (-199)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1185)) (-5 *1 (-199)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-199)))) (-3773 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-484)) (-5 *4 (-1073)) (-5 *1 (-199)))) (-3773 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-484)) (-5 *1 (-199)))) (-1470 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-484)) (-5 *1 (-199)))) (-1469 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-199)))) (-2620 (*1 *2 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-199)))) (-2620 (*1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-199)) (-5 *3 (-1073))))) -((** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 18 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-484)) $) 25 T ELT) (($ $ (-350 (-484))) NIL T ELT))) -(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-484))) (-15 * (|#1| |#1| (-350 (-484)))) (-15 * (|#1| (-350 (-484)) |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-201)) (T -200)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 55 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 59 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 56 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-484)) $) 58 T ELT) (($ $ (-350 (-484))) 57 T ELT))) +(-13 (-717) (-1062)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-717) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-1467 (($) 12 T ELT) (($ (-584 |#2|)) NIL T ELT)) (-3401 (($ $) 14 T ELT)) (-3531 (($ (-584 |#2|)) 10 T ELT)) (-3947 (((-773) $) 21 T ELT))) +(((-192 |#1| |#2|) (-10 -7 (-15 -3947 ((-773) |#1|)) (-15 -1467 (|#1| (-584 |#2|))) (-15 -1467 (|#1|)) (-15 -3531 (|#1| (-584 |#2|))) (-15 -3401 (|#1| |#1|))) (-193 |#2|) (-1014)) (T -192)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-1354 (($ $) 62 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ |#1| $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) 61 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3996)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-1467 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 54 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-193 |#1|) (-113) (-1014)) (T -193)) +((-1467 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1014)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-193 *3)))) (-3406 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-193 *2)) (-4 *2 (-1014)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-193 *3)) (-4 *3 (-1014)))) (-1571 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-193 *3)) (-4 *3 (-1014))))) +(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1467 ($)) (-15 -1467 ($ (-584 |t#1|))) (IF (|has| $ (-6 -3996)) (PROGN (-15 -3406 ($ |t#1| $)) (-15 -3406 ($ (-1 (-85) |t#1|) $)) (-15 -1571 ($ (-1 (-85) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) +((-1468 (((-2 (|:| |varOrder| (-584 (-1091))) (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed")) (|:| |hom| (-584 (-1180 (-695))))) (-249 (-858 (-485)))) 42 T ELT))) +(((-194) (-10 -7 (-15 -1468 ((-2 (|:| |varOrder| (-584 (-1091))) (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed")) (|:| |hom| (-584 (-1180 (-695))))) (-249 (-858 (-485))))))) (T -194)) +((-1468 (*1 *2 *3) (-12 (-5 *3 (-249 (-858 (-485)))) (-5 *2 (-2 (|:| |varOrder| (-584 (-1091))) (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed")) (|:| |hom| (-584 (-1180 (-695)))))) (-5 *1 (-194))))) +((-3137 (((-695)) 56 T ELT)) (-2280 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) 53 T ELT) (((-631 |#3|) (-631 $)) 44 T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3912 (((-107)) 62 T ELT)) (-3759 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3947 (((-1180 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-773) $) NIL T ELT) (($ (-485)) 12 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3127 (((-695)) 15 T CONST)) (-3950 (($ $ |#3|) 59 T ELT))) +(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3947 (|#1| (-350 (-485)))) (-15 -3947 (|#1| (-485))) (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-695))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3759 (|#1| |#1| (-584 (-1091)))) (-15 -3759 (|#1| |#1| (-1091) (-695))) (-15 -3759 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3947 ((-773) |#1|)) (-15 -3127 ((-695)) -3953) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -3947 (|#1| |#3|)) (-15 -3759 (|#1| |#1| (-1 |#3| |#3|) (-695))) (-15 -3759 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2280 ((-631 |#3|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 |#1|) (-1180 |#1|))) (-15 -3137 ((-695))) (-15 -3950 (|#1| |#1| |#3|)) (-15 -3912 ((-107))) (-15 -3947 ((-1180 |#3|) |#1|))) (-196 |#2| |#3|) (-695) (-1130)) (T -195)) +((-3912 (*1 *2) (-12 (-14 *4 (-695)) (-4 *5 (-1130)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3137 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3127 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5))))) +((-2569 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-3189 (((-85) $) 81 (|has| |#2| (-23)) ELT)) (-3708 (($ (-831)) 137 (|has| |#2| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-2484 (($ $ $) 133 (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ "failed") $ $) 84 (|has| |#2| (-104)) ELT)) (-3137 (((-695)) 122 (|has| |#2| (-320)) ELT)) (-3789 ((|#2| $ (-485) |#2|) 56 (|has| $ (-6 -3997)) ELT)) (-3725 (($) 7 T CONST)) (-3158 (((-3 (-485) #1="failed") $) 76 (-2563 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) 73 (-2563 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) 70 (|has| |#2| (-1014)) ELT)) (-3157 (((-485) $) 75 (-2563 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) 72 (-2563 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) 71 (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) 119 (-2563 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 118 (-2563 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 117 (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) 116 (|has| |#2| (-962)) ELT)) (-3468 (((-3 $ "failed") $) 96 (|has| |#2| (-962)) ELT)) (-2995 (($) 125 (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-485) |#2|) 57 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ (-485)) 55 T ELT)) (-3187 (((-85) $) 132 (|has| |#2| (-718)) ELT)) (-2890 (((-584 |#2|) $) 30 (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) 83 (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) 94 (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 126 (|has| |#2| (-757)) ELT)) (-2609 (((-584 |#2|) $) 29 T ELT)) (-3246 (((-85) |#2| $) 27 (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 127 (|has| |#2| (-757)) ELT)) (-3327 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2011 (((-831) $) 124 (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1180 $)) 121 (-2563 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 120 (-2563 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) 115 (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) 114 (|has| |#2| (-962)) ELT)) (-3243 (((-1074) $) 22 (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-2401 (($ (-831)) 123 (|has| |#2| (-320)) ELT)) (-3244 (((-1034) $) 21 (|has| |#2| (-1014)) ELT)) (-3802 ((|#2| $) 46 (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#2|))) 26 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#2| $ (-485) |#2|) 54 T ELT) ((|#2| $ (-485)) 53 T ELT)) (-3837 ((|#2| $ $) 136 (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) 138 T ELT)) (-3912 (((-107)) 135 (|has| |#2| (-312)) ELT)) (-3759 (($ $ (-695)) 112 (-2563 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) 110 (-2563 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 106 (-2563 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) 105 (-2563 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) 104 (-2563 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) 102 (-2563 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) 101 (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) 100 (|has| |#2| (-962)) ELT)) (-1947 (((-695) |#2| $) 28 (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) 31 T ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-1180 |#2|) $) 139 T ELT) (($ (-485)) 77 (OR (-2563 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) 74 (-2563 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) 69 (|has| |#2| (-1014)) ELT) (((-773) $) 17 (|has| |#2| (-553 (-773))) ELT)) (-3127 (((-695)) 97 (|has| |#2| (-962)) CONST)) (-1266 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 33 T ELT)) (-3126 (((-85) $ $) 92 (|has| |#2| (-962)) ELT)) (-2661 (($) 80 (|has| |#2| (-23)) CONST)) (-2667 (($) 93 (|has| |#2| (-962)) CONST)) (-2670 (($ $ (-695)) 113 (-2563 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) 111 (-2563 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 109 (-2563 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) 108 (-2563 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) 107 (-2563 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) 103 (-2563 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) 99 (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) 98 (|has| |#2| (-962)) ELT)) (-2567 (((-85) $ $) 128 (|has| |#2| (-757)) ELT)) (-2568 (((-85) $ $) 130 (|has| |#2| (-757)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-2685 (((-85) $ $) 129 (|has| |#2| (-757)) ELT)) (-2686 (((-85) $ $) 131 (|has| |#2| (-757)) ELT)) (-3950 (($ $ |#2|) 134 (|has| |#2| (-312)) ELT)) (-3838 (($ $ $) 87 (|has| |#2| (-21)) ELT) (($ $) 86 (|has| |#2| (-21)) ELT)) (-3840 (($ $ $) 78 (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) 95 (|has| |#2| (-962)) ELT) (($ $ (-831)) 90 (|has| |#2| (-962)) ELT)) (* (($ $ $) 91 (|has| |#2| (-962)) ELT) (($ $ |#2|) 89 (|has| |#2| (-664)) ELT) (($ |#2| $) 88 (|has| |#2| (-664)) ELT) (($ (-485) $) 85 (|has| |#2| (-21)) ELT) (($ (-695) $) 82 (|has| |#2| (-23)) ELT) (($ (-831) $) 79 (|has| |#2| (-25)) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-196 |#1| |#2|) (-113) (-695) (-1130)) (T -196)) +((-1469 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1130)) (-4 *1 (-196 *3 *4)))) (-3708 (*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-196 *3 *4)) (-4 *4 (-962)) (-4 *4 (-1130)))) (-3837 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1130)) (-4 *2 (-962))))) +(-13 (-539 (-485) |t#2|) (-318 |t#2|) (-553 (-1180 |t#2|)) (-10 -8 (-15 -1469 ($ (-1180 |t#2|))) (IF (|has| |t#2| (-1014)) (-6 (-355 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-962)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-329 |t#2|)) (-15 -3708 ($ (-831))) (-15 -3837 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-664)) (-6 (-583 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-655 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3993)) (-6 -3993) |%noBranch|) (IF (|has| |t#2| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#2| (-718)) (-6 (-718)) |%noBranch|) (IF (|has| |t#2| (-312)) (-6 (-1188 |t#2|)) |%noBranch|))) +(((-21) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1014)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-556 (-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ((-556 (-485)) OR (|has| |#2| (-962)) (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014)))) ((-556 |#2|) |has| |#2| (-1014)) ((-553 (-773)) OR (|has| |#2| (-1014)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-553 (-773))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-553 (-1180 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) (-12 (|has| |#2| (-190)) (|has| |#2| (-962)))) ((-184 |#2|) |has| |#2| (-962)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-962))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) (-12 (|has| |#2| (-190)) (|has| |#2| (-962)))) ((-225 |#2|) |has| |#2| (-962)) ((-241 (-485) |#2|) . T) ((-243 (-485) |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-320) |has| |#2| (-320)) ((-318 |#2|) . T) ((-329 |#2|) |has| |#2| (-962)) ((-355 |#2|) |has| |#2| (-1014)) ((-429 |#2|) . T) ((-539 (-485) |#2|) . T) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-589 (-485)) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-589 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-664)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-589 $) |has| |#2| (-962)) ((-591 (-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ((-591 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-591 $) |has| |#2| (-962)) ((-583 |#2|) OR (|has| |#2| (-664)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-581 (-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ((-581 |#2|) |has| |#2| (-962)) ((-655 |#2|) OR (|has| |#2| (-312)) (|has| |#2| (-146))) ((-664) |has| |#2| (-962)) ((-717) |has| |#2| (-718)) ((-718) |has| |#2| (-718)) ((-719) |has| |#2| (-718)) ((-722) |has| |#2| (-718)) ((-757) OR (|has| |#2| (-757)) (|has| |#2| (-718))) ((-760) OR (|has| |#2| (-757)) (|has| |#2| (-718))) ((-807 $ (-1091)) OR (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962)))) ((-810 (-1091)) -12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) ((-812 (-1091)) OR (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962)))) ((-951 (-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ((-951 (-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ((-951 |#2|) |has| |#2| (-1014)) ((-964 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-664)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-969 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-962) |has| |#2| (-962)) ((-971) |has| |#2| (-962)) ((-1026) |has| |#2| (-962)) ((-1062) |has| |#2| (-962)) ((-1014) OR (|has| |#2| (-1014)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1130) . T) ((-1188 |#2|) |has| |#2| (-312))) +((-2569 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3708 (($ (-831)) 63 (|has| |#2| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-2484 (($ $ $) 69 (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3137 (((-695)) NIL (|has| |#2| (-320)) ELT)) (-3789 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1014)) ELT)) (-3157 (((-485) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) 29 (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3468 (((-3 $ #1#) $) 59 (|has| |#2| (-962)) ELT)) (-2995 (($) NIL (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ (-485)) 57 T ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-2890 (((-584 |#2|) $) 14 (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) 20 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2609 (((-584 |#2|) $) NIL T ELT)) (-3246 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3327 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) NIL (|has| |#2| (-962)) ELT)) (-3243 (((-1074) $) NIL (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#2| (-320)) ELT)) (-3244 (((-1034) $) NIL (|has| |#2| (-1014)) ELT)) (-3802 ((|#2| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3769 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) 21 T ELT)) (-3837 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) 18 T ELT)) (-3912 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1947 (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1180 |#2|) $) 9 T ELT) (($ (-485)) NIL (OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) 12 (|has| |#2| (-1014)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3127 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#2| (-962)) ELT)) (-2661 (($) 37 (|has| |#2| (-23)) CONST)) (-2667 (($) 41 (|has| |#2| (-962)) CONST)) (-2670 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3057 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2686 (((-85) $ $) 67 (|has| |#2| (-757)) ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3840 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) 47 (|has| |#2| (-962)) ELT) (($ $ |#2|) 45 (|has| |#2| (-664)) ELT) (($ |#2| $) 46 (|has| |#2| (-664)) ELT) (($ (-485) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-197 |#1| |#2|) (-196 |#1| |#2|) (-695) (-1130)) (T -197)) +NIL +((-3842 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3843 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3959 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT))) +(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3842 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3843 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3959 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-695) (-1130) (-1130)) (T -198)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1130)) (-4 *2 (-1130)) (-5 *1 (-198 *5 *6 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-695)) (-4 *7 (-1130)) (-4 *5 (-1130)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5))))) +((-1473 (((-485) (-584 (-1074))) 36 T ELT) (((-485) (-1074)) 29 T ELT)) (-1472 (((-1186) (-584 (-1074))) 40 T ELT) (((-1186) (-1074)) 39 T ELT)) (-1470 (((-1074)) 16 T ELT)) (-1471 (((-1074) (-485) (-1074)) 23 T ELT)) (-3774 (((-584 (-1074)) (-584 (-1074)) (-485) (-1074)) 37 T ELT) (((-1074) (-1074) (-485) (-1074)) 35 T ELT)) (-2621 (((-584 (-1074)) (-584 (-1074))) 15 T ELT) (((-584 (-1074)) (-1074)) 11 T ELT))) +(((-199) (-10 -7 (-15 -2621 ((-584 (-1074)) (-1074))) (-15 -2621 ((-584 (-1074)) (-584 (-1074)))) (-15 -1470 ((-1074))) (-15 -1471 ((-1074) (-485) (-1074))) (-15 -3774 ((-1074) (-1074) (-485) (-1074))) (-15 -3774 ((-584 (-1074)) (-584 (-1074)) (-485) (-1074))) (-15 -1472 ((-1186) (-1074))) (-15 -1472 ((-1186) (-584 (-1074)))) (-15 -1473 ((-485) (-1074))) (-15 -1473 ((-485) (-584 (-1074)))))) (T -199)) +((-1473 (*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-485)) (-5 *1 (-199)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-199)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1186)) (-5 *1 (-199)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-199)))) (-3774 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-584 (-1074))) (-5 *3 (-485)) (-5 *4 (-1074)) (-5 *1 (-199)))) (-3774 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199)))) (-1471 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199)))) (-1470 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-199)))) (-2621 (*1 *2 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-199)))) (-2621 (*1 *2 *3) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-199)) (-5 *3 (-1074))))) +((** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 18 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-485)) $) 25 T ELT) (($ $ (-350 (-485))) NIL T ELT))) +(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-485))) (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-201)) (T -200)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 55 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 59 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 56 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-485)) $) 58 T ELT) (($ $ (-350 (-485))) 57 T ELT))) (((-201) (-113)) (T -201)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-484)))) (-2484 (*1 *1 *1) (-4 *1 (-201)))) -(-13 (-246) (-38 (-350 (-484))) (-10 -8 (-15 ** ($ $ (-484))) (-15 -2484 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-246) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-654 (-350 (-484))) . T) ((-663) . T) ((-963 (-350 (-484))) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3797 (($ $) 63 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-1474 (($ $ $) 59 (|has| $ (-6 -3996)) ELT)) (-1473 (($ $ $) 58 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3996)) ELT)) (-3724 (($) 7 T CONST)) (-1476 (($ $) 62 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-1475 (($ $) 61 T ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) 65 T ELT)) (-3178 (($ $) 64 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ #1#) 51 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3791 (($ $ $) 60 (|has| $ (-6 -3996)) ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-202 |#1|) (-113) (-1129)) (T -202)) -((-3798 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-1476 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-1475 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-3791 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-1474 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-1473 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-202 *2)) (-4 *2 (-1129))))) -(-13 (-923 |t#1|) (-10 -8 (-15 -3798 (|t#1| $)) (-15 -3178 ($ $)) (-15 -3797 ($ $)) (-15 -1476 ($ $)) (-15 -1475 ($ $)) (IF (|has| $ (-6 -3996)) (PROGN (-15 -3791 ($ $ $)) (-15 -1474 ($ $ $)) (-15 -1473 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T)) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) NIL T ELT)) (-3795 ((|#1| $) NIL T ELT)) (-3797 (($ $) NIL T ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) $) NIL (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1730 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-756))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2909 (($ $) 10 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3442 (((-85) $ (-694)) NIL T ELT)) (-3025 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) NIL (|has| $ (-6 -3996)) ELT)) (-3786 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3789 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -3996)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3796 ((|#1| $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) NIL T ELT)) (-3799 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2368 (($ $) NIL (|has| |#1| (-1013)) ELT)) (-1353 (($ $) 7 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3443 (((-85) $) NIL T ELT)) (-3419 (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) (-1 (-85) |#1|) $) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3614 (($ (-694) |#1|) NIL T ELT)) (-3719 (((-85) $ (-694)) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3518 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3534 (($ |#1|) NIL T ELT)) (-3716 (((-85) $ (-694)) NIL T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3527 (((-85) $) NIL T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3609 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3444 (((-85) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) ((|#1| $ (-484) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-694) $ "count") 16 T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-1571 (($ $ (-1146 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2305 (($ $ (-1146 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1477 (($ (-583 |#1|)) 22 T ELT)) (-3633 (((-85) $) NIL T ELT)) (-3792 (($ $) NIL T ELT)) (-3790 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-3793 (((-694) $) NIL T ELT)) (-3794 (($ $) NIL T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) NIL T ELT)) (-3791 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3802 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3946 (($ (-583 |#1|)) 17 T ELT) (((-583 |#1|) $) 18 T ELT) (((-772) $) 21 (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3957 (((-694) $) 14 T ELT))) -(((-203 |#1|) (-13 (-608 |#1|) (-430 (-583 |#1|)) (-10 -8 (-15 -1477 ($ (-583 |#1|))) (-15 -3800 ($ $ "unique")) (-15 -3800 ($ $ "sort")) (-15 -3800 ((-694) $ "count")))) (-756)) (T -203)) -((-1477 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-203 *3)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-756)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-756)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-694)) (-5 *1 (-203 *4)) (-4 *4 (-756))))) -((-1478 (((-3 (-694) "failed") |#1| |#1| (-694)) 40 T ELT))) -(((-204 |#1|) (-10 -7 (-15 -1478 ((-3 (-694) "failed") |#1| |#1| (-694)))) (-13 (-663) (-320) (-10 -7 (-15 ** (|#1| |#1| (-484)))))) (T -204)) -((-1478 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-694)) (-4 *3 (-13 (-663) (-320) (-10 -7 (-15 ** (*3 *3 (-484)))))) (-5 *1 (-204 *3))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3758 (($ $) 60 (|has| |#1| (-189)) ELT) (($ $ (-694)) 58 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 56 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 54 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 53 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 52 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1 |#1| |#1|) (-694)) 46 T ELT) (($ $ (-1 |#1| |#1|)) 45 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-2669 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-694)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 55 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 51 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 50 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 49 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1 |#1| |#1|) (-694)) 48 T ELT) (($ $ (-1 |#1| |#1|)) 47 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-205 |#1|) (-113) (-961)) (T -205)) -NIL -(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-811 (-1090))) (-6 (-808 |t#1| (-1090))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-811 (-1090)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-654 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-811 (-1090)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-806 $ (-1090)) |has| |#1| (-811 (-1090))) ((-808 |#1| (-1090)) |has| |#1| (-811 (-1090))) ((-811 (-1090)) |has| |#1| (-811 (-1090))) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3083 (((-1085 $) $ (-773 |#1|)) NIL T ELT) (((-1085 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3775 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3756 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1937 (($ $ (-583 (-484))) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1624 (($ $ |#2| (-197 (-3957 |#1|) (-694)) $) NIL T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-330))) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1085 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1085 $) (-773 |#1|)) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-197 (-3957 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2820 (((-197 (-3957 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1625 (($ (-1 (-197 (-3957 |#1|) (-694)) (-197 (-3957 |#1|) (-694))) $) NIL T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3082 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#2| $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-392)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#2| (-821)) ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3768 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3757 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3758 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3948 (((-197 (-3957 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3972 (((-800 (-330)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3817 (((-583 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-197 (-3957 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-206 |#1| |#2|) (-13 (-861 |#2| (-197 (-3957 |#1|) (-694)) (-773 |#1|)) (-10 -8 (-15 -1937 ($ $ (-583 (-484)))))) (-583 (-1090)) (-961)) (T -206)) -((-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-206 *3 *4)) (-14 *3 (-583 (-1090))) (-4 *4 (-961))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1479 (((-1185) $) 17 T ELT)) (-1481 (((-158 (-208)) $) 11 T ELT)) (-1480 (($ (-158 (-208))) 12 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1482 (((-208) $) 7 T ELT)) (-3946 (((-772) $) 9 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 15 T ELT))) -(((-207) (-13 (-1013) (-10 -8 (-15 -1482 ((-208) $)) (-15 -1481 ((-158 (-208)) $)) (-15 -1480 ($ (-158 (-208)))) (-15 -1479 ((-1185) $))))) (T -207)) -((-1482 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1481 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-207))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1424 (((-583 (-774)) $) NIL T ELT)) (-3542 (((-446) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1426 (((-161) $) NIL T ELT)) (-2633 (((-85) $ (-446)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1483 (((-282) $) 7 T ELT)) (-1425 (((-583 (-85)) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2521 (((-55) $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-208) (-13 (-160) (-552 (-157)) (-10 -8 (-15 -1483 ((-282) $))))) (T -208)) -((-1483 (*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (((-1095) $ (-694)) 14 T ELT)) (-3946 (((-772) $) 20 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 17 T ELT)) (-3957 (((-694) $) 11 T ELT))) -(((-209) (-13 (-1013) (-241 (-694) (-1095)) (-10 -8 (-15 -3957 ((-694) $))))) (T -209)) -((-3957 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-209))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3707 (($ (-830)) NIL (|has| |#4| (-961)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-2483 (($ $ $) NIL (|has| |#4| (-717)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#4| (-320)) ELT)) (-3788 ((|#4| $ (-484) |#4|) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1013)) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| |#4| (-950 (-350 (-484)))) (|has| |#4| (-1013))) ELT)) (-3156 ((|#4| $) NIL (|has| |#4| (-1013)) ELT) (((-484) $) NIL (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) ELT) (((-350 (-484)) $) NIL (-12 (|has| |#4| (-950 (-350 (-484)))) (|has| |#4| (-1013))) ELT)) (-2279 (((-2 (|:| |mat| (-630 |#4|)) (|:| |vec| (-1179 |#4|))) (-630 $) (-1179 $)) NIL (|has| |#4| (-961)) ELT) (((-630 |#4|) (-630 $)) NIL (|has| |#4| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT)) (-3467 (((-3 $ #1#) $) NIL (|has| |#4| (-961)) ELT)) (-2994 (($) NIL (|has| |#4| (-320)) ELT)) (-1576 ((|#4| $ (-484) |#4|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#4| $ (-484)) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#4| (-717)) ELT)) (-2889 (((-583 |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL (|has| |#4| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#4| (-756)) ELT)) (-2608 (((-583 |#4|) $) NIL T ELT)) (-3245 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#4| (-756)) ELT)) (-3326 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#4| (-320)) ELT)) (-2280 (((-2 (|:| |mat| (-630 |#4|)) (|:| |vec| (-1179 |#4|))) (-1179 $) $) NIL (|has| |#4| (-961)) ELT) (((-630 |#4|) (-1179 $)) NIL (|has| |#4| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT) (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#4| (-320)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3801 ((|#4| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#4|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT)) (-2205 (((-583 |#4|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#4| $ (-484) |#4|) NIL T ELT) ((|#4| $ (-484)) 12 T ELT)) (-3836 ((|#4| $ $) NIL (|has| |#4| (-961)) ELT)) (-1468 (($ (-1179 |#4|)) NIL T ELT)) (-3911 (((-107)) NIL (|has| |#4| (-312)) ELT)) (-3758 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961)) ELT) (($ $ (-1 |#4| |#4|) (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT)) (-1946 (((-694) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-1179 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1013)) ELT) (((-772) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) (|has| |#4| (-961))) ELT) (($ (-350 (-484))) NIL (-12 (|has| |#4| (-950 (-350 (-484)))) (|has| |#4| (-1013))) ELT)) (-3126 (((-694)) NIL (|has| |#4| (-961)) CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#4| (-961)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL (|has| |#4| (-961)) CONST)) (-2669 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961)) ELT) (($ $ (-1 |#4| |#4|) (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT)) (-2566 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-3949 (($ $ |#4|) NIL (|has| |#4| (-312)) ELT)) (-3837 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-830)) NIL (|has| |#4| (-961)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-663)) ELT) (($ |#4| $) NIL (|has| |#4| (-663)) ELT) (($ $ $) NIL (|has| |#4| (-961)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-590 |#2|) (-590 |#3|)) (-830) (-961) (-1037 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-590 |#2|)) (T -210)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3707 (($ (-830)) NIL (|has| |#3| (-961)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-2483 (($ $ $) NIL (|has| |#3| (-717)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#3| (-320)) ELT)) (-3788 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1013)) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))) ELT)) (-3156 ((|#3| $) NIL (|has| |#3| (-1013)) ELT) (((-484) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-350 (-484)) $) NIL (-12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))) ELT)) (-2279 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-630 $) (-1179 $)) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-630 $)) NIL (|has| |#3| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT)) (-3467 (((-3 $ #1#) $) NIL (|has| |#3| (-961)) ELT)) (-2994 (($) NIL (|has| |#3| (-320)) ELT)) (-1576 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#3| $ (-484)) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#3| (-717)) ELT)) (-2889 (((-583 |#3|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL (|has| |#3| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-2608 (((-583 |#3|) $) NIL T ELT)) (-3245 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-3326 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#3| (-320)) ELT)) (-2280 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-1179 $) $) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-1179 $)) NIL (|has| |#3| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#3| (-320)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3801 ((|#3| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#3|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#3| (-1013))) ELT)) (-2205 (((-583 |#3|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#3| $ (-484) |#3|) NIL T ELT) ((|#3| $ (-484)) 11 T ELT)) (-3836 ((|#3| $ $) NIL (|has| |#3| (-961)) ELT)) (-1468 (($ (-1179 |#3|)) NIL T ELT)) (-3911 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3758 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT)) (-1946 (((-694) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-694) (-1 (-85) |#3|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-1179 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1013)) ELT) (((-772) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ELT) (($ (-350 (-484))) NIL (-12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))) ELT)) (-3126 (((-694)) NIL (|has| |#3| (-961)) CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#3| (-961)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL (|has| |#3| (-961)) CONST)) (-2669 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT)) (-2566 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3949 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3837 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-830)) NIL (|has| |#3| (-961)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-663)) ELT) (($ |#3| $) NIL (|has| |#3| (-663)) ELT) (($ $ $) NIL (|has| |#3| (-961)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-590 |#2|)) (-694) (-961) (-590 |#2|)) (T -211)) -NIL -((-1488 (((-583 (-694)) $) 56 T ELT) (((-583 (-694)) $ |#3|) 59 T ELT)) (-1522 (((-694) $) 58 T ELT) (((-694) $ |#3|) 61 T ELT)) (-1484 (($ $) 76 T ELT)) (-3157 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3772 (((-694) $ |#3|) 43 T ELT) (((-694) $) 38 T ELT)) (-1523 (((-1 $ (-694)) |#3|) 15 T ELT) (((-1 $ (-694)) $) 88 T ELT)) (-1486 ((|#4| $) 69 T ELT)) (-1487 (((-85) $) 67 T ELT)) (-1485 (($ $) 75 T ELT)) (-3768 (($ $ (-583 (-249 $))) 111 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-583 |#4|) (-583 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-583 |#4|) (-583 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-583 |#3|) (-583 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-583 |#3|) (-583 |#2|)) 97 T ELT)) (-3758 (($ $ (-583 |#4|) (-583 (-694))) NIL T ELT) (($ $ |#4| (-694)) NIL T ELT) (($ $ (-583 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-1489 (((-583 |#3|) $) 86 T ELT)) (-3948 ((|#5| $) NIL T ELT) (((-694) $ |#4|) NIL T ELT) (((-583 (-694)) $ (-583 |#4|)) NIL T ELT) (((-694) $ |#3|) 49 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT))) -(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3758 (|#1| |#1| (-694))) (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3758 (|#1| |#1| (-1090) (-694))) (-15 -3758 (|#1| |#1| (-583 (-1090)))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3946 (|#1| |#1|)) (-15 -3946 (|#1| (-350 (-484)))) (-15 -3768 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -3768 (|#1| |#1| |#3| |#2|)) (-15 -3768 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -3768 (|#1| |#1| |#3| |#1|)) (-15 -1523 ((-1 |#1| (-694)) |#1|)) (-15 -1484 (|#1| |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1486 (|#4| |#1|)) (-15 -1487 ((-85) |#1|)) (-15 -1522 ((-694) |#1| |#3|)) (-15 -1488 ((-583 (-694)) |#1| |#3|)) (-15 -1522 ((-694) |#1|)) (-15 -1488 ((-583 (-694)) |#1|)) (-15 -3948 ((-694) |#1| |#3|)) (-15 -3772 ((-694) |#1|)) (-15 -3772 ((-694) |#1| |#3|)) (-15 -1489 ((-583 |#3|) |#1|)) (-15 -1523 ((-1 |#1| (-694)) |#3|)) (-15 -3946 (|#1| |#3|)) (-15 -3157 ((-3 |#3| #1="failed") |#1|)) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3948 ((-583 (-694)) |#1| (-583 |#4|))) (-15 -3948 ((-694) |#1| |#4|)) (-15 -3946 (|#1| |#4|)) (-15 -3157 ((-3 |#4| #1#) |#1|)) (-15 -3768 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3768 (|#1| |#1| |#4| |#1|)) (-15 -3768 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3768 (|#1| |#1| |#4| |#2|)) (-15 -3768 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3768 (|#1| |#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| (-249 |#1|))) (-15 -3768 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3948 (|#5| |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3157 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 -3758 (|#1| |#1| |#4|)) (-15 -3758 (|#1| |#1| (-583 |#4|))) (-15 -3758 (|#1| |#1| |#4| (-694))) (-15 -3758 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -3946 (|#1| (-484))) (-15 -3946 ((-772) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-961) (-756) (-228 |#3|) (-717)) (T -212)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1488 (((-583 (-694)) $) 251 T ELT) (((-583 (-694)) $ |#2|) 249 T ELT)) (-1522 (((-694) $) 250 T ELT) (((-694) $ |#2|) 248 T ELT)) (-3081 (((-583 |#3|) $) 123 T ELT)) (-3083 (((-1085 $) $ |#3|) 138 T ELT) (((-1085 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) 125 T ELT) (((-694) $ (-583 |#3|)) 124 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 113 (|has| |#1| (-821)) ELT)) (-3775 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 116 (|has| |#1| (-821)) ELT)) (-1484 (($ $) 244 T ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-484)) #2#) $) 178 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 |#2| #2#) $) 258 T ELT)) (-3156 ((|#1| $) 180 T ELT) (((-350 (-484)) $) 179 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) ((|#3| $) 154 T ELT) ((|#2| $) 259 T ELT)) (-3756 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3959 (($ $) 171 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3503 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2818 (((-583 $) $) 122 T ELT)) (-3723 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| |#4| $) 189 T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 97 (-12 (|has| |#3| (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| |#3| (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3772 (((-694) $ |#2|) 254 T ELT) (((-694) $) 253 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3084 (($ (-1085 |#1|) |#3|) 130 T ELT) (($ (-1085 $) |#3|) 129 T ELT)) (-2821 (((-583 $) $) 139 T ELT)) (-3937 (((-85) $) 169 T ELT)) (-2893 (($ |#1| |#4|) 170 T ELT) (($ $ |#3| (-694)) 132 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 131 T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#3|) 133 T ELT)) (-2820 ((|#4| $) 187 T ELT) (((-694) $ |#3|) 135 T ELT) (((-583 (-694)) $ (-583 |#3|)) 134 T ELT)) (-1625 (($ (-1 |#4| |#4|) $) 188 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-1523 (((-1 $ (-694)) |#2|) 256 T ELT) (((-1 $ (-694)) $) 243 (|has| |#1| (-190)) ELT)) (-3082 (((-3 |#3| #3="failed") $) 136 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 145 T ELT) (((-630 |#1|) (-1179 $)) 144 T ELT)) (-2894 (($ $) 166 T ELT)) (-3174 ((|#1| $) 165 T ELT)) (-1486 ((|#3| $) 246 T ELT)) (-1891 (($ (-583 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3242 (((-1073) $) 11 T ELT)) (-1487 (((-85) $) 247 T ELT)) (-2823 (((-3 (-583 $) #3#) $) 127 T ELT)) (-2822 (((-3 (-583 $) #3#) $) 128 T ELT)) (-2824 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) #3#) $) 126 T ELT)) (-1485 (($ $) 245 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1797 (((-85) $) 183 T ELT)) (-1796 ((|#1| $) 184 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 108 (|has| |#1| (-392)) ELT)) (-3144 (($ (-583 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) 115 (|has| |#1| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 114 (|has| |#1| (-821)) ELT)) (-3732 (((-348 $) $) 112 (|has| |#1| (-821)) ELT)) (-3466 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-583 |#3|) (-583 $)) 155 T ELT) (($ $ |#2| $) 242 (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 $)) 241 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 240 (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 |#1|)) 239 (|has| |#1| (-190)) ELT)) (-3757 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-583 |#3|) (-583 (-694))) 52 T ELT) (($ $ |#3| (-694)) 51 T ELT) (($ $ (-583 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT) (($ $ (-1 |#1| |#1|)) 263 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 262 T ELT) (($ $) 238 (|has| |#1| (-189)) ELT) (($ $ (-694)) 236 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 234 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 232 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 231 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 230 (|has| |#1| (-811 (-1090))) ELT)) (-1489 (((-583 |#2|) $) 255 T ELT)) (-3948 ((|#4| $) 167 T ELT) (((-694) $ |#3|) 143 T ELT) (((-583 (-694)) $ (-583 |#3|)) 142 T ELT) (((-694) $ |#2|) 252 T ELT)) (-3972 (((-800 (-330)) $) 95 (-12 (|has| |#3| (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| |#3| (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| |#3| (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) 117 (-2562 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ |#2|) 257 T ELT) (($ (-350 (-484))) 91 (OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ELT) (($ $) 98 (|has| |#1| (-495)) ELT)) (-3817 (((-583 |#1|) $) 185 T ELT)) (-3677 ((|#1| $ |#4|) 172 T ELT) (($ $ |#3| (-694)) 141 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 140 T ELT)) (-2702 (((-632 $) $) 92 (OR (-2562 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1623 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 |#3|) (-583 (-694))) 55 T ELT) (($ $ |#3| (-694)) 54 T ELT) (($ $ (-583 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 260 T ELT) (($ $) 237 (|has| |#1| (-189)) ELT) (($ $ (-694)) 235 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 233 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 229 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 228 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 227 (|has| |#1| (-811 (-1090))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 175 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) 174 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) -(((-213 |#1| |#2| |#3| |#4|) (-113) (-961) (-756) (-228 |t#2|) (-717)) (T -213)) -((-1523 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 *4)))) (-3772 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) (-3948 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1488 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))) (-1522 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-85)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-717)) (-4 *2 (-228 *4)))) (-1485 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-228 *3)) (-4 *5 (-717)))) (-1484 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-228 *3)) (-4 *5 (-717)))) (-1523 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *3 *4 *5 *6))))) -(-13 (-861 |t#1| |t#4| |t#3|) (-184 |t#1|) (-950 |t#2|) (-10 -8 (-15 -1523 ((-1 $ (-694)) |t#2|)) (-15 -1489 ((-583 |t#2|) $)) (-15 -3772 ((-694) $ |t#2|)) (-15 -3772 ((-694) $)) (-15 -3948 ((-694) $ |t#2|)) (-15 -1488 ((-583 (-694)) $)) (-15 -1522 ((-694) $)) (-15 -1488 ((-583 (-694)) $ |t#2|)) (-15 -1522 ((-694) $ |t#2|)) (-15 -1487 ((-85) $)) (-15 -1486 (|t#3| $)) (-15 -1485 ($ $)) (-15 -1484 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-455 |t#2| |t#1|)) (-6 (-455 |t#2| $)) (-6 (-260 $)) (-15 -1523 ((-1 $ (-694)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 |#2|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ((-553 (-800 (-330))) -12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#3| (-553 (-800 (-330))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#4|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-821)) (|has| |#1| (-392))) ((-455 |#2| |#1|) |has| |#1| (-190)) ((-455 |#2| $) |has| |#1| (-190)) ((-455 |#3| |#1|) . T) ((-455 |#3| $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-663) . T) ((-806 $ (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-806 $ |#3|) . T) ((-809 (-1090)) |has| |#1| (-809 (-1090))) ((-809 |#3|) . T) ((-811 (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-811 |#3|) . T) ((-796 (-330)) -12 (|has| |#1| (-796 (-330))) (|has| |#3| (-796 (-330)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ((-861 |#1| |#4| |#3|) . T) ((-821) |has| |#1| (-821)) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-950 |#2|) . T) ((-950 |#3|) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) |has| |#1| (-821))) -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1495 ((|#1| $) 59 T ELT)) (-3323 ((|#1| $) 49 T ELT)) (-3724 (($) 7 T CONST)) (-3002 (($ $) 65 T ELT)) (-2297 (($ $) 53 T ELT)) (-3325 ((|#1| |#1| $) 51 T ELT)) (-3324 ((|#1| $) 50 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3833 (((-694) $) 66 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-1493 ((|#1| |#1| $) 57 T ELT)) (-1492 ((|#1| |#1| $) 56 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-2603 (((-694) $) 60 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3001 ((|#1| $) 67 T ELT)) (-1491 ((|#1| $) 55 T ELT)) (-1490 ((|#1| $) 54 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3004 ((|#1| |#1| $) 63 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3003 ((|#1| $) 64 T ELT)) (-1496 (($) 62 T ELT) (($ (-583 |#1|)) 61 T ELT)) (-3322 (((-694) $) 48 T ELT)) (-1946 (((-694) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1494 ((|#1| $) 58 T ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 46 T ELT)) (-3000 ((|#1| $) 68 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-214 |#1|) (-113) (-1129)) (T -214)) -((-1496 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-4 *1 (-214 *3)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1493 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1492 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-2297 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129))))) -(-13 (-1034 |t#1|) (-908 |t#1|) (-10 -8 (-15 -1496 ($)) (-15 -1496 ($ (-583 |t#1|))) (-15 -2603 ((-694) $)) (-15 -1495 (|t#1| $)) (-15 -1494 (|t#1| $)) (-15 -1493 (|t#1| |t#1| $)) (-15 -1492 (|t#1| |t#1| $)) (-15 -1491 (|t#1| $)) (-15 -1490 (|t#1| $)) (-15 -2297 ($ $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-908 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1034 |#1|) . T) ((-1129) . T)) -((-1497 (((-1047 (-179)) (-792 |#1|) (-1004 (-330)) (-1004 (-330))) 75 T ELT) (((-1047 (-179)) (-792 |#1|) (-1004 (-330)) (-1004 (-330)) (-583 (-221))) 74 T ELT) (((-1047 (-179)) |#1| (-1004 (-330)) (-1004 (-330))) 65 T ELT) (((-1047 (-179)) |#1| (-1004 (-330)) (-1004 (-330)) (-583 (-221))) 64 T ELT) (((-1047 (-179)) (-789 |#1|) (-1004 (-330))) 56 T ELT) (((-1047 (-179)) (-789 |#1|) (-1004 (-330)) (-583 (-221))) 55 T ELT)) (-1504 (((-1183) (-792 |#1|) (-1004 (-330)) (-1004 (-330))) 78 T ELT) (((-1183) (-792 |#1|) (-1004 (-330)) (-1004 (-330)) (-583 (-221))) 77 T ELT) (((-1183) |#1| (-1004 (-330)) (-1004 (-330))) 68 T ELT) (((-1183) |#1| (-1004 (-330)) (-1004 (-330)) (-583 (-221))) 67 T ELT) (((-1183) (-789 |#1|) (-1004 (-330))) 60 T ELT) (((-1183) (-789 |#1|) (-1004 (-330)) (-583 (-221))) 59 T ELT) (((-1182) (-787 |#1|) (-1004 (-330))) 47 T ELT) (((-1182) (-787 |#1|) (-1004 (-330)) (-583 (-221))) 46 T ELT) (((-1182) |#1| (-1004 (-330))) 38 T ELT) (((-1182) |#1| (-1004 (-330)) (-583 (-221))) 36 T ELT))) -(((-215 |#1|) (-10 -7 (-15 -1504 ((-1182) |#1| (-1004 (-330)) (-583 (-221)))) (-15 -1504 ((-1182) |#1| (-1004 (-330)))) (-15 -1504 ((-1182) (-787 |#1|) (-1004 (-330)) (-583 (-221)))) (-15 -1504 ((-1182) (-787 |#1|) (-1004 (-330)))) (-15 -1504 ((-1183) (-789 |#1|) (-1004 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) (-789 |#1|) (-1004 (-330)))) (-15 -1497 ((-1047 (-179)) (-789 |#1|) (-1004 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) (-789 |#1|) (-1004 (-330)))) (-15 -1504 ((-1183) |#1| (-1004 (-330)) (-1004 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) |#1| (-1004 (-330)) (-1004 (-330)))) (-15 -1497 ((-1047 (-179)) |#1| (-1004 (-330)) (-1004 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) |#1| (-1004 (-330)) (-1004 (-330)))) (-15 -1504 ((-1183) (-792 |#1|) (-1004 (-330)) (-1004 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) (-792 |#1|) (-1004 (-330)) (-1004 (-330)))) (-15 -1497 ((-1047 (-179)) (-792 |#1|) (-1004 (-330)) (-1004 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) (-792 |#1|) (-1004 (-330)) (-1004 (-330))))) (-13 (-553 (-473)) (-1013))) (T -215)) -((-1497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-330))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *5)))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *6)))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-330))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *5)))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *6)))) (-1497 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1004 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1004 (-330))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-330))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *5)))) (-1497 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *6)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-330))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *5)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *6)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-787 *5)) (-5 *4 (-1004 (-330))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-330))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013)))))) -((-1498 (((-1 (-854 (-179)) (-179) (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1497 (((-1047 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330))) 178 T ELT) (((-1047 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330)) (-583 (-221))) 176 T ELT) (((-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330))) 181 T ELT) (((-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221))) 177 T ELT) (((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330))) 169 T ELT) (((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221))) 168 T ELT) (((-1047 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-330))) 150 T ELT) (((-1047 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-330)) (-583 (-221))) 148 T ELT) (((-1047 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-330))) 149 T ELT) (((-1047 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-330)) (-583 (-221))) 146 T ELT)) (-1504 (((-1183) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330))) 180 T ELT) (((-1183) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330)) (-583 (-221))) 179 T ELT) (((-1183) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330))) 183 T ELT) (((-1183) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221))) 182 T ELT) (((-1183) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330))) 171 T ELT) (((-1183) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221))) 170 T ELT) (((-1183) (-1 (-854 (-179)) (-179)) (-1001 (-330))) 156 T ELT) (((-1183) (-1 (-854 (-179)) (-179)) (-1001 (-330)) (-583 (-221))) 155 T ELT) (((-1183) (-789 (-1 (-179) (-179))) (-1001 (-330))) 154 T ELT) (((-1183) (-789 (-1 (-179) (-179))) (-1001 (-330)) (-583 (-221))) 153 T ELT) (((-1182) (-787 (-1 (-179) (-179))) (-1001 (-330))) 118 T ELT) (((-1182) (-787 (-1 (-179) (-179))) (-1001 (-330)) (-583 (-221))) 117 T ELT) (((-1182) (-1 (-179) (-179)) (-1001 (-330))) 112 T ELT) (((-1182) (-1 (-179) (-179)) (-1001 (-330)) (-583 (-221))) 110 T ELT))) -(((-216) (-10 -7 (-15 -1504 ((-1182) (-1 (-179) (-179)) (-1001 (-330)) (-583 (-221)))) (-15 -1504 ((-1182) (-1 (-179) (-179)) (-1001 (-330)))) (-15 -1504 ((-1182) (-787 (-1 (-179) (-179))) (-1001 (-330)) (-583 (-221)))) (-15 -1504 ((-1182) (-787 (-1 (-179) (-179))) (-1001 (-330)))) (-15 -1504 ((-1183) (-789 (-1 (-179) (-179))) (-1001 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) (-789 (-1 (-179) (-179))) (-1001 (-330)))) (-15 -1504 ((-1183) (-1 (-854 (-179)) (-179)) (-1001 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) (-1 (-854 (-179)) (-179)) (-1001 (-330)))) (-15 -1497 ((-1047 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-330)))) (-15 -1497 ((-1047 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-330)))) (-15 -1504 ((-1183) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330)))) (-15 -1497 ((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330)))) (-15 -1504 ((-1183) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330)))) (-15 -1497 ((-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330)))) (-15 -1504 ((-1183) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330)))) (-15 -1497 ((-1047 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330)))) (-15 -1498 ((-1 (-854 (-179)) (-179) (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216)) -((-1498 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216))))) -((-1504 (((-1182) (-249 |#2|) (-1090) (-1090) (-583 (-221))) 102 T ELT))) -(((-217 |#1| |#2|) (-10 -7 (-15 -1504 ((-1182) (-249 |#2|) (-1090) (-1090) (-583 (-221))))) (-13 (-495) (-756) (-950 (-484))) (-364 |#1|)) (T -217)) -((-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-1090)) (-5 *5 (-583 (-221))) (-4 *7 (-364 *6)) (-4 *6 (-13 (-495) (-756) (-950 (-484)))) (-5 *2 (-1182)) (-5 *1 (-217 *6 *7))))) -((-1501 (((-484) (-484)) 71 T ELT)) (-1502 (((-484) (-484)) 72 T ELT)) (-1503 (((-179) (-179)) 73 T ELT)) (-1500 (((-1183) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179))) 70 T ELT)) (-1499 (((-1183) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)) (-85)) 68 T ELT))) -(((-218) (-10 -7 (-15 -1499 ((-1183) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)) (-85))) (-15 -1500 ((-1183) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)))) (-15 -1501 ((-484) (-484))) (-15 -1502 ((-484) (-484))) (-15 -1503 ((-179) (-179))))) (T -218)) -((-1503 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))) (-1500 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) (-5 *2 (-1183)) (-5 *1 (-218)))) (-1499 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) (-5 *5 (-85)) (-5 *2 (-1183)) (-5 *1 (-218))))) -((-3946 (((-1004 (-330)) (-1004 (-265 |#1|))) 16 T ELT))) -(((-219 |#1|) (-10 -7 (-15 -3946 ((-1004 (-330)) (-1004 (-265 |#1|))))) (-13 (-756) (-495) (-553 (-330)))) (T -219)) -((-3946 (*1 *2 *3) (-12 (-5 *3 (-1004 (-265 *4))) (-4 *4 (-13 (-756) (-495) (-553 (-330)))) (-5 *2 (-1004 (-330))) (-5 *1 (-219 *4))))) -((-1504 (((-1183) (-583 (-179)) (-583 (-179)) (-583 (-179)) (-583 (-221))) 23 T ELT) (((-1183) (-583 (-179)) (-583 (-179)) (-583 (-179))) 24 T ELT) (((-1182) (-583 (-854 (-179))) (-583 (-221))) 16 T ELT) (((-1182) (-583 (-854 (-179)))) 17 T ELT) (((-1182) (-583 (-179)) (-583 (-179)) (-583 (-221))) 20 T ELT) (((-1182) (-583 (-179)) (-583 (-179))) 21 T ELT))) -(((-220) (-10 -7 (-15 -1504 ((-1182) (-583 (-179)) (-583 (-179)))) (-15 -1504 ((-1182) (-583 (-179)) (-583 (-179)) (-583 (-221)))) (-15 -1504 ((-1182) (-583 (-854 (-179))))) (-15 -1504 ((-1182) (-583 (-854 (-179))) (-583 (-221)))) (-15 -1504 ((-1183) (-583 (-179)) (-583 (-179)) (-583 (-179)))) (-15 -1504 ((-1183) (-583 (-179)) (-583 (-179)) (-583 (-179)) (-583 (-221)))))) (T -220)) -((-1504 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1504 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1504 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1504 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1182)) (-5 *1 (-220))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3881 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1517 (($ (-830)) 81 T ELT)) (-1516 (($ (-830)) 80 T ELT)) (-1772 (($ (-583 (-330))) 87 T ELT)) (-1520 (($ (-330)) 66 T ELT)) (-1519 (($ (-830)) 82 T ELT)) (-1513 (($ (-85)) 33 T ELT)) (-3883 (($ (-1073)) 28 T ELT)) (-1512 (($ (-1073)) 29 T ELT)) (-1518 (($ (-1047 (-179))) 76 T ELT)) (-1928 (($ (-583 (-1001 (-330)))) 72 T ELT)) (-1506 (($ (-583 (-1001 (-330)))) 68 T ELT) (($ (-583 (-1001 (-350 (-484))))) 71 T ELT)) (-1509 (($ (-330)) 38 T ELT) (($ (-783)) 42 T ELT)) (-1505 (((-85) (-583 $) (-1090)) 100 T ELT)) (-1521 (((-3 (-51) "failed") (-583 $) (-1090)) 102 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1508 (($ (-330)) 43 T ELT) (($ (-783)) 44 T ELT)) (-3224 (($ (-1 (-854 (-179)) (-854 (-179)))) 65 T ELT)) (-2266 (($ (-1 (-854 (-179)) (-854 (-179)))) 83 T ELT)) (-1507 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3946 (((-772) $) 93 T ELT)) (-1510 (($ (-85)) 34 T ELT) (($ (-583 (-1001 (-330)))) 60 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1923 (($ (-85)) 35 T ELT)) (-3056 (((-85) $ $) 97 T ELT))) -(((-221) (-13 (-1013) (-10 -8 (-15 -1923 ($ (-85))) (-15 -1510 ($ (-85))) (-15 -3881 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3883 ($ (-1073))) (-15 -1512 ($ (-1073))) (-15 -1513 ($ (-85))) (-15 -1510 ($ (-583 (-1001 (-330))))) (-15 -3224 ($ (-1 (-854 (-179)) (-854 (-179))))) (-15 -1509 ($ (-330))) (-15 -1509 ($ (-783))) (-15 -1508 ($ (-330))) (-15 -1508 ($ (-783))) (-15 -1507 ($ (-1 (-179) (-179)))) (-15 -1507 ($ (-1 (-179) (-179) (-179)))) (-15 -1507 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1520 ($ (-330))) (-15 -1506 ($ (-583 (-1001 (-330))))) (-15 -1506 ($ (-583 (-1001 (-350 (-484)))))) (-15 -1928 ($ (-583 (-1001 (-330))))) (-15 -1518 ($ (-1047 (-179)))) (-15 -1516 ($ (-830))) (-15 -1517 ($ (-830))) (-15 -1519 ($ (-830))) (-15 -2266 ($ (-1 (-854 (-179)) (-854 (-179))))) (-15 -1772 ($ (-583 (-330)))) (-15 -1521 ((-3 (-51) "failed") (-583 $) (-1090))) (-15 -1505 ((-85) (-583 $) (-1090)))))) (T -221)) -((-1923 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3881 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3883 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221)))) (-1512 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-221)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-350 (-484))))) (-5 *1 (-221)))) (-1928 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-221)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-221)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-1519 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-2266 (*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) (-1772 (*1 *1 *2) (-12 (-5 *2 (-583 (-330))) (-5 *1 (-221)))) (-1521 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1090)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-221))) (-5 *4 (-1090)) (-5 *2 (-85)) (-5 *1 (-221))))) -((-3881 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-583 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1517 (((-830) (-583 (-221)) (-830)) 52 T ELT)) (-1516 (((-830) (-583 (-221)) (-830)) 51 T ELT)) (-3851 (((-583 (-330)) (-583 (-221)) (-583 (-330))) 68 T ELT)) (-1520 (((-330) (-583 (-221)) (-330)) 57 T ELT)) (-1519 (((-830) (-583 (-221)) (-830)) 53 T ELT)) (-1513 (((-85) (-583 (-221)) (-85)) 27 T ELT)) (-3883 (((-1073) (-583 (-221)) (-1073)) 19 T ELT)) (-1512 (((-1073) (-583 (-221)) (-1073)) 26 T ELT)) (-1518 (((-1047 (-179)) (-583 (-221))) 46 T ELT)) (-1928 (((-583 (-1001 (-330))) (-583 (-221)) (-583 (-1001 (-330)))) 40 T ELT)) (-1514 (((-783) (-583 (-221)) (-783)) 32 T ELT)) (-1515 (((-783) (-583 (-221)) (-783)) 33 T ELT)) (-2266 (((-1 (-854 (-179)) (-854 (-179))) (-583 (-221)) (-1 (-854 (-179)) (-854 (-179)))) 63 T ELT)) (-1511 (((-85) (-583 (-221)) (-85)) 14 T ELT)) (-1923 (((-85) (-583 (-221)) (-85)) 13 T ELT))) -(((-222) (-10 -7 (-15 -1923 ((-85) (-583 (-221)) (-85))) (-15 -1511 ((-85) (-583 (-221)) (-85))) (-15 -3881 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-583 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3883 ((-1073) (-583 (-221)) (-1073))) (-15 -1512 ((-1073) (-583 (-221)) (-1073))) (-15 -1513 ((-85) (-583 (-221)) (-85))) (-15 -1514 ((-783) (-583 (-221)) (-783))) (-15 -1515 ((-783) (-583 (-221)) (-783))) (-15 -1928 ((-583 (-1001 (-330))) (-583 (-221)) (-583 (-1001 (-330))))) (-15 -1516 ((-830) (-583 (-221)) (-830))) (-15 -1517 ((-830) (-583 (-221)) (-830))) (-15 -1518 ((-1047 (-179)) (-583 (-221)))) (-15 -1519 ((-830) (-583 (-221)) (-830))) (-15 -1520 ((-330) (-583 (-221)) (-330))) (-15 -2266 ((-1 (-854 (-179)) (-854 (-179))) (-583 (-221)) (-1 (-854 (-179)) (-854 (-179))))) (-15 -3851 ((-583 (-330)) (-583 (-221)) (-583 (-330)))))) (T -222)) -((-3851 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-330))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-2266 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1520 (*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1519 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-222)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1928 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-3883 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-3881 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1511 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1923 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) -((-1521 (((-3 |#1| "failed") (-583 (-221)) (-1090)) 17 T ELT))) -(((-223 |#1|) (-10 -7 (-15 -1521 ((-3 |#1| "failed") (-583 (-221)) (-1090)))) (-1129)) (T -223)) -((-1521 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1090)) (-5 *1 (-223 *2)) (-4 *2 (-1129))))) -((-3758 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) 11 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) 19 T ELT) (($ $ (-694)) NIL T ELT) (($ $) 16 T ELT)) (-2669 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-694)) 14 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT))) -(((-224 |#1| |#2|) (-10 -7 (-15 -3758 (|#1| |#1|)) (-15 -2669 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-694))) (-15 -2669 (|#1| |#1| (-694))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -2669 (|#1| |#1| (-1090))) (-15 -3758 (|#1| |#1| (-583 (-1090)))) (-15 -3758 (|#1| |#1| (-1090) (-694))) (-15 -3758 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -2669 (|#1| |#1| (-583 (-1090)))) (-15 -2669 (|#1| |#1| (-1090) (-694))) (-15 -2669 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -2669 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -2669 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1129)) (T -224)) -NIL -((-3758 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 22 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) 16 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 15 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 14 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090)) 12 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-694)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2669 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 20 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) 19 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 18 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 17 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090)) 13 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-694)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT))) -(((-225 |#1|) (-113) (-1129)) (T -225)) -((-3758 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1129)))) (-3758 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1129)))) (-2669 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1129)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1129))))) -(-13 (-1129) (-10 -8 (-15 -3758 ($ $ (-1 |t#1| |t#1|))) (-15 -3758 ($ $ (-1 |t#1| |t#1|) (-694))) (-15 -2669 ($ $ (-1 |t#1| |t#1|))) (-15 -2669 ($ $ (-1 |t#1| |t#1|) (-694))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-811 (-1090))) (-6 (-811 (-1090))) |%noBranch|))) -(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-806 $ (-1090)) |has| |#1| (-811 (-1090))) ((-811 (-1090)) |has| |#1| (-811 (-1090))) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1488 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ |#2|) NIL T ELT)) (-1522 (((-694) $) NIL T ELT) (((-694) $ |#2|) NIL T ELT)) (-3081 (((-583 |#3|) $) NIL T ELT)) (-3083 (((-1085 $) $ |#3|) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 |#3|)) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-1484 (($ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1039 |#1| |#2|) #1#) $) 23 T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1039 |#1| |#2|) $) NIL T ELT)) (-3756 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3959 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#3|) NIL (|has| |#1| (-392)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-469 |#3|) $) NIL T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| |#1| (-796 (-330))) (|has| |#3| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ELT)) (-3772 (((-694) $ |#2|) NIL T ELT) (((-694) $) 10 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1085 |#1|) |#3|) NIL T ELT) (($ (-1085 $) |#3|) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-469 |#3|)) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#3|) NIL T ELT)) (-2820 (((-469 |#3|) $) NIL T ELT) (((-694) $ |#3|) NIL T ELT) (((-583 (-694)) $ (-583 |#3|)) NIL T ELT)) (-1625 (($ (-1 (-469 |#3|) (-469 |#3|)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1523 (((-1 $ (-694)) |#2|) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3082 (((-3 |#3| #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1486 ((|#3| $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1487 (((-85) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-1485 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-583 |#3|) (-583 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-583 |#3|) (-583 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3757 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1489 (((-583 |#2|) $) NIL T ELT)) (-3948 (((-469 |#3|) $) NIL T ELT) (((-694) $ |#3|) NIL T ELT) (((-583 (-694)) $ (-583 |#3|)) NIL T ELT) (((-694) $ |#2|) NIL T ELT)) (-3972 (((-800 (-330)) $) NIL (-12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#3| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ |#3|) NIL (|has| |#1| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1039 |#1| |#2|)) 32 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3817 (((-583 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-469 |#3|)) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-469 |#3|)) (-950 (-1039 |#1| |#2|))) (-961) (-756) (-228 |#2|)) (T -226)) -NIL -((-1522 (((-694) $) 37 T ELT)) (-3157 (((-3 |#2| "failed") $) 22 T ELT)) (-3156 ((|#2| $) 33 T ELT)) (-3758 (($ $ (-694)) 18 T ELT) (($ $) 14 T ELT)) (-3946 (((-772) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3056 (((-85) $ $) 26 T ELT)) (-2685 (((-85) $ $) 36 T ELT))) -(((-227 |#1| |#2|) (-10 -7 (-15 -1522 ((-694) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 -3157 ((-3 |#2| "failed") |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-694))) (-15 -2685 ((-85) |#1| |#1|)) (-15 -3946 ((-772) |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-228 |#2|) (-756)) (T -227)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-1522 (((-694) $) 26 T ELT)) (-3831 ((|#1| $) 27 T ELT)) (-3157 (((-3 |#1| "failed") $) 31 T ELT)) (-3156 ((|#1| $) 32 T ELT)) (-3772 (((-694) $) 28 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-1523 (($ |#1| (-694)) 29 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3758 (($ $ (-694)) 35 T ELT) (($ $) 33 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2669 (($ $ (-694)) 36 T ELT) (($ $) 34 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT))) -(((-228 |#1|) (-113) (-756)) (T -228)) -((-1523 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-228 *2)) (-4 *2 (-756)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-756)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694))))) -(-13 (-756) (-189) (-950 |t#1|) (-10 -8 (-15 -1523 ($ |t#1| (-694))) (-15 -3772 ((-694) $)) (-15 -3831 (|t#1| $)) (-15 -1522 ((-694) $)))) -(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-950 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1525 (((-583 (-484)) $) 28 T ELT)) (-3948 (((-694) $) 26 T ELT)) (-3946 (((-772) $) 32 T ELT) (($ (-583 (-484))) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1524 (($ (-694)) 29 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 11 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 18 T ELT))) -(((-229) (-13 (-756) (-10 -8 (-15 -3946 ($ (-583 (-484)))) (-15 -3948 ((-694) $)) (-15 -1525 ((-583 (-484)) $)) (-15 -1524 ($ (-694)))))) (T -229)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-229)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-229))))) -((-3492 ((|#2| |#2|) 77 T ELT)) (-3639 ((|#2| |#2|) 65 T ELT)) (-1554 (((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3490 ((|#2| |#2|) 75 T ELT)) (-3638 ((|#2| |#2|) 63 T ELT)) (-3494 ((|#2| |#2|) 79 T ELT)) (-3637 ((|#2| |#2|) 67 T ELT)) (-3627 ((|#2|) 46 T ELT)) (-3595 (((-86) (-86)) 97 T ELT)) (-3942 ((|#2| |#2|) 61 T ELT)) (-1555 (((-85) |#2|) 146 T ELT)) (-1544 ((|#2| |#2|) 193 T ELT)) (-1532 ((|#2| |#2|) 169 T ELT)) (-1527 ((|#2|) 59 T ELT)) (-1526 ((|#2|) 58 T ELT)) (-1542 ((|#2| |#2|) 189 T ELT)) (-1530 ((|#2| |#2|) 165 T ELT)) (-1546 ((|#2| |#2|) 197 T ELT)) (-1534 ((|#2| |#2|) 173 T ELT)) (-1529 ((|#2| |#2|) 161 T ELT)) (-1528 ((|#2| |#2|) 163 T ELT)) (-1547 ((|#2| |#2|) 199 T ELT)) (-1535 ((|#2| |#2|) 175 T ELT)) (-1545 ((|#2| |#2|) 195 T ELT)) (-1533 ((|#2| |#2|) 171 T ELT)) (-1543 ((|#2| |#2|) 191 T ELT)) (-1531 ((|#2| |#2|) 167 T ELT)) (-1550 ((|#2| |#2|) 205 T ELT)) (-1538 ((|#2| |#2|) 181 T ELT)) (-1548 ((|#2| |#2|) 201 T ELT)) (-1536 ((|#2| |#2|) 177 T ELT)) (-1552 ((|#2| |#2|) 209 T ELT)) (-1540 ((|#2| |#2|) 185 T ELT)) (-1553 ((|#2| |#2|) 211 T ELT)) (-1541 ((|#2| |#2|) 187 T ELT)) (-1551 ((|#2| |#2|) 207 T ELT)) (-1539 ((|#2| |#2|) 183 T ELT)) (-1549 ((|#2| |#2|) 203 T ELT)) (-1537 ((|#2| |#2|) 179 T ELT)) (-3943 ((|#2| |#2|) 62 T ELT)) (-3495 ((|#2| |#2|) 80 T ELT)) (-3636 ((|#2| |#2|) 68 T ELT)) (-3493 ((|#2| |#2|) 78 T ELT)) (-3635 ((|#2| |#2|) 66 T ELT)) (-3491 ((|#2| |#2|) 76 T ELT)) (-3634 ((|#2| |#2|) 64 T ELT)) (-2254 (((-85) (-86)) 95 T ELT)) (-3498 ((|#2| |#2|) 83 T ELT)) (-3486 ((|#2| |#2|) 71 T ELT)) (-3496 ((|#2| |#2|) 81 T ELT)) (-3484 ((|#2| |#2|) 69 T ELT)) (-3500 ((|#2| |#2|) 85 T ELT)) (-3488 ((|#2| |#2|) 73 T ELT)) (-3501 ((|#2| |#2|) 86 T ELT)) (-3489 ((|#2| |#2|) 74 T ELT)) (-3499 ((|#2| |#2|) 84 T ELT)) (-3487 ((|#2| |#2|) 72 T ELT)) (-3497 ((|#2| |#2|) 82 T ELT)) (-3485 ((|#2| |#2|) 70 T ELT))) -(((-230 |#1| |#2|) (-10 -7 (-15 -3943 (|#2| |#2|)) (-15 -3942 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3484 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -3627 (|#2|)) (-15 -2254 ((-85) (-86))) (-15 -3595 ((-86) (-86))) (-15 -1526 (|#2|)) (-15 -1527 (|#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -1554 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1555 ((-85) |#2|))) (-495) (-13 (-364 |#1|) (-915))) (T -230)) -((-1555 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-364 *4) (-915))))) (-1554 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-364 *4) (-915))) (-4 *4 (-495)) (-5 *1 (-230 *4 *2)))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1527 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-1526 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-364 *3) (-915))))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-364 *4) (-915))))) (-3627 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) -((-1558 (((-3 |#2| "failed") (-583 (-550 |#2|)) |#2| (-1090)) 151 T ELT)) (-1560 ((|#2| (-350 (-484)) |#2|) 49 T ELT)) (-1559 ((|#2| |#2| (-550 |#2|)) 144 T ELT)) (-1556 (((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-550 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1090)) 143 T ELT)) (-1557 ((|#2| |#2| (-1090)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2443 ((|#2| |#2| (-1090)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) -(((-231 |#1| |#2|) (-10 -7 (-15 -2443 (|#2| |#2|)) (-15 -2443 (|#2| |#2| (-1090))) (-15 -1556 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-550 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1090))) (-15 -1557 (|#2| |#2|)) (-15 -1557 (|#2| |#2| (-1090))) (-15 -1558 ((-3 |#2| "failed") (-583 (-550 |#2|)) |#2| (-1090))) (-15 -1559 (|#2| |#2| (-550 |#2|))) (-15 -1560 (|#2| (-350 (-484)) |#2|))) (-13 (-495) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|))) (T -231)) -((-1560 (*1 *2 *3 *2) (-12 (-5 *3 (-350 (-484))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-1559 (*1 *2 *2 *3) (-12 (-5 *3 (-550 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)))) (-1558 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-1090)) (-4 *2 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *5 *2)))) (-1557 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))) (-1556 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-550 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-2443 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-2443 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3)))))) -((-2975 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3492 ((|#3| |#3|) 142 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3639 ((|#3| |#3|) 132 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3490 ((|#3| |#3|) 140 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3638 ((|#3| |#3|) 130 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3494 ((|#3| |#3|) 144 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3637 ((|#3| |#3|) 134 T ELT)) (-2958 (((-3 |#3| #1#) |#3| (-694)) 41 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3942 ((|#3| |#3|) 129 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3943 ((|#3| |#3|) 128 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3495 ((|#3| |#3|) 145 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3636 ((|#3| |#3|) 135 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3493 ((|#3| |#3|) 143 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3635 ((|#3| |#3|) 133 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3491 ((|#3| |#3|) 141 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3634 ((|#3| |#3|) 131 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3498 ((|#3| |#3|) 148 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3486 ((|#3| |#3|) 152 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3496 ((|#3| |#3|) 146 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3484 ((|#3| |#3|) 136 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3500 ((|#3| |#3|) 150 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3488 ((|#3| |#3|) 138 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3501 ((|#3| |#3|) 151 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3489 ((|#3| |#3|) 139 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3499 ((|#3| |#3|) 149 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3487 ((|#3| |#3|) 153 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3497 ((|#3| |#3|) 147 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3485 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-350 (-484))) 47 (|has| |#1| (-312)) ELT))) -(((-232 |#1| |#2| |#3|) (-13 (-896 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-484)))) |%noBranch|) (-15 -3943 (|#3| |#3|)) (-15 -3942 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)))) (-38 (-350 (-484))) (-1172 |#1|) (-1143 |#1| |#2|)) (T -232)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1172 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1143 *4 *5)))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))) -((-2975 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3492 ((|#3| |#3|) 137 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3639 ((|#3| |#3|) 125 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3490 ((|#3| |#3|) 135 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3638 ((|#3| |#3|) 123 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3494 ((|#3| |#3|) 139 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3637 ((|#3| |#3|) 127 T ELT)) (-2958 (((-3 |#3| #1#) |#3| (-694)) 38 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3942 ((|#3| |#3|) 111 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3943 ((|#3| |#3|) 122 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3495 ((|#3| |#3|) 140 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3636 ((|#3| |#3|) 128 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3493 ((|#3| |#3|) 138 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3635 ((|#3| |#3|) 126 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3491 ((|#3| |#3|) 136 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3634 ((|#3| |#3|) 124 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3498 ((|#3| |#3|) 143 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3486 ((|#3| |#3|) 131 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3496 ((|#3| |#3|) 141 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3484 ((|#3| |#3|) 129 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3500 ((|#3| |#3|) 145 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3488 ((|#3| |#3|) 133 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3501 ((|#3| |#3|) 146 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3489 ((|#3| |#3|) 134 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3499 ((|#3| |#3|) 144 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3487 ((|#3| |#3|) 132 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3497 ((|#3| |#3|) 142 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3485 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-350 (-484))) 44 (|has| |#1| (-312)) ELT))) -(((-233 |#1| |#2| |#3| |#4|) (-13 (-896 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-484)))) |%noBranch|) (-15 -3943 (|#3| |#3|)) (-15 -3942 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)))) (-38 (-350 (-484))) (-1141 |#1|) (-1164 |#1| |#2|) (-896 |#2|)) (T -233)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1141 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1164 *4 *5)) (-4 *6 (-896 *5)))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))) -((-1563 (((-85) $) 20 T ELT)) (-1565 (((-1095) $) 9 T ELT)) (-3569 (((-3 (-446) #1="failed") $) 15 T ELT)) (-3568 (((-3 (-583 $) #1#) $) NIL T ELT)) (-1562 (((-3 (-446) #1#) $) 21 T ELT)) (-1564 (((-3 (-1015) #1#) $) 19 T ELT)) (-3953 (((-85) $) 17 T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1561 (((-85) $) 10 T ELT))) -(((-234) (-13 (-552 (-772)) (-10 -8 (-15 -1565 ((-1095) $)) (-15 -3953 ((-85) $)) (-15 -1564 ((-3 (-1015) #1="failed") $)) (-15 -1563 ((-85) $)) (-15 -1562 ((-3 (-446) #1#) $)) (-15 -1561 ((-85) $)) (-15 -3569 ((-3 (-446) #1#) $)) (-15 -3568 ((-3 (-583 $) #1#) $))))) (T -234)) -((-1565 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-234)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1564 (*1 *2 *1) (|partial| -12 (-5 *2 (-1015)) (-5 *1 (-234)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1562 (*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234)))) (-1561 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3569 (*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234)))) (-3568 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-234))) (-5 *1 (-234))))) -((-1567 (((-532) $) 10 T ELT)) (-1568 (((-522) $) 8 T ELT)) (-1566 (((-247) $) 12 T ELT)) (-1569 (($ (-522) (-532) (-247)) NIL T ELT)) (-3946 (((-772) $) 19 T ELT))) -(((-235) (-13 (-552 (-772)) (-10 -8 (-15 -1569 ($ (-522) (-532) (-247))) (-15 -1568 ((-522) $)) (-15 -1567 ((-532) $)) (-15 -1566 ((-247) $))))) (T -235)) -((-1569 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-522)) (-5 *3 (-532)) (-5 *4 (-247)) (-5 *1 (-235)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-235)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-532)) (-5 *1 (-235)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235))))) -((-3710 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1353 (($ $) 38 T ELT)) (-3405 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3406 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2856 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2304 (($ |#2| $ (-484)) 20 T ELT) (($ $ $ (-484)) 22 T ELT)) (-2305 (($ $ (-484)) 11 T ELT) (($ $ (-1146 (-484))) 14 T ELT)) (-3791 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3802 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-583 $)) NIL T ELT))) -(((-236 |#1| |#2|) (-10 -7 (-15 -2856 (|#1| |#1| |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -2856 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3405 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3791 (|#1| |#1| |#1|)) (-15 -3791 (|#1| |#1| |#2|)) (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -2305 (|#1| |#1| (-1146 (-484)))) (-15 -2305 (|#1| |#1| (-484))) (-15 -3802 (|#1| (-583 |#1|))) (-15 -3802 (|#1| |#1| |#1|)) (-15 -3802 (|#1| |#2| |#1|)) (-15 -3802 (|#1| |#1| |#2|)) (-15 -3406 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3710 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3406 (|#1| |#2| |#1|)) (-15 -1353 (|#1| |#1|))) (-237 |#2|) (-1129)) (T -236)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) 44 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 95 T ELT)) (-3710 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2368 (($ $) 93 (|has| |#1| (-1013)) ELT)) (-1353 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ (-1 (-85) |#1|) $) 99 T ELT) (($ |#1| $) 94 (|has| |#1| (-1013)) ELT)) (-3406 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2856 (($ (-1 (-85) |#1| |#1|) $ $) 96 T ELT) (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-3609 (($ |#1| $ (-484)) 98 T ELT) (($ $ $ (-484)) 97 T ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1146 (-484))) 75 T ELT)) (-1571 (($ $ (-484)) 101 T ELT) (($ $ (-1146 (-484))) 100 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1146 (-484))) 67 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 76 T ELT)) (-3791 (($ $ |#1|) 103 T ELT) (($ $ $) 102 T ELT)) (-3802 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-237 |#1|) (-113) (-1129)) (T -237)) -((-3791 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)))) (-3791 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)))) (-1571 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-1571 (*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-484))) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-3609 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-237 *2)) (-4 *2 (-1129)))) (-3609 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-2856 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-1570 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-3405 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-1013)))) (-2368 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-1013)))) (-2856 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-756))))) -(-13 (-593 |t#1|) (-1035 |t#1|) (-10 -8 (-15 -3791 ($ $ |t#1|)) (-15 -3791 ($ $ $)) (-15 -1571 ($ $ (-484))) (-15 -1571 ($ $ (-1146 (-484)))) (-15 -3405 ($ (-1 (-85) |t#1|) $)) (-15 -3609 ($ |t#1| $ (-484))) (-15 -3609 ($ $ $ (-484))) (-15 -2856 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1570 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3405 ($ |t#1| $)) (-15 -2368 ($ $))) |%noBranch|) (IF (|has| |t#1| (-756)) (-15 -2856 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-485)))) (-2485 (*1 *1 *1) (-4 *1 (-201)))) +(-13 (-246) (-38 (-350 (-485))) (-10 -8 (-15 ** ($ $ (-485))) (-15 -2485 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-246) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-655 (-350 (-485))) . T) ((-664) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3798 (($ $) 63 T ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-1475 (($ $ $) 59 (|has| $ (-6 -3997)) ELT)) (-1474 (($ $ $) 58 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3997)) ELT)) (-3725 (($) 7 T CONST)) (-1477 (($ $) 62 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-1476 (($ $) 61 T ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3799 ((|#1| $) 65 T ELT)) (-3179 (($ $) 64 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ #1#) 51 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3792 (($ $ $) 60 (|has| $ (-6 -3997)) ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-202 |#1|) (-113) (-1130)) (T -202)) +((-3799 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-3179 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1477 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1476 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-3792 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1475 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1474 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-202 *2)) (-4 *2 (-1130))))) +(-13 (-924 |t#1|) (-10 -8 (-15 -3799 (|t#1| $)) (-15 -3179 ($ $)) (-15 -3798 ($ $)) (-15 -1477 ($ $)) (-15 -1476 ($ $)) (IF (|has| $ (-6 -3997)) (PROGN (-15 -3792 ($ $ $)) (-15 -1475 ($ $ $)) (-15 -1474 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) NIL T ELT)) (-3796 ((|#1| $) NIL T ELT)) (-3798 (($ $) NIL T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) $) NIL (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1731 (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-757))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-2910 (($ $) 10 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3443 (((-85) $ (-695)) NIL T ELT)) (-3026 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) NIL (|has| $ (-6 -3997)) ELT)) (-3787 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3790 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -3997)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3797 ((|#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) NIL T ELT)) (-3800 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2369 (($ $) NIL (|has| |#1| (-1014)) ELT)) (-1354 (($ $) 7 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-3406 (($ |#1| $) NIL (|has| |#1| (-1014)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3407 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3444 (((-85) $) NIL T ELT)) (-3420 (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) (-1 (-85) |#1|) $) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3615 (($ (-695) |#1|) NIL T ELT)) (-3720 (((-85) $ (-695)) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3519 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3535 (($ |#1|) NIL T ELT)) (-3717 (((-85) $ (-695)) NIL T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3799 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3610 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3445 (((-85) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) ((|#1| $ (-485) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-695) $ "count") 16 T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2306 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1478 (($ (-584 |#1|)) 22 T ELT)) (-3634 (((-85) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-3791 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-3794 (((-695) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) NIL T ELT)) (-3792 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3803 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3947 (($ (-584 |#1|)) 17 T ELT) (((-584 |#1|) $) 18 T ELT) (((-773) $) 21 (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3958 (((-695) $) 14 T ELT))) +(((-203 |#1|) (-13 (-609 |#1|) (-430 (-584 |#1|)) (-10 -8 (-15 -1478 ($ (-584 |#1|))) (-15 -3801 ($ $ "unique")) (-15 -3801 ($ $ "sort")) (-15 -3801 ((-695) $ "count")))) (-757)) (T -203)) +((-1478 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-203 *3)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-757)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-757)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-695)) (-5 *1 (-203 *4)) (-4 *4 (-757))))) +((-1479 (((-3 (-695) "failed") |#1| |#1| (-695)) 40 T ELT))) +(((-204 |#1|) (-10 -7 (-15 -1479 ((-3 (-695) "failed") |#1| |#1| (-695)))) (-13 (-664) (-320) (-10 -7 (-15 ** (|#1| |#1| (-485)))))) (T -204)) +((-1479 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-695)) (-4 *3 (-13 (-664) (-320) (-10 -7 (-15 ** (*3 *3 (-485)))))) (-5 *1 (-204 *3))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3759 (($ $) 60 (|has| |#1| (-189)) ELT) (($ $ (-695)) 58 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 56 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 54 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 53 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 52 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1 |#1| |#1|) (-695)) 46 T ELT) (($ $ (-1 |#1| |#1|)) 45 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-2670 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-695)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 55 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 51 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 50 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 49 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1 |#1| |#1|) (-695)) 48 T ELT) (($ $ (-1 |#1| |#1|)) 47 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-205 |#1|) (-113) (-962)) (T -205)) +NIL +(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-812 (-1091))) (-6 (-809 |t#1| (-1091))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-812 (-1091)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-655 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-812 (-1091)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-807 $ (-1091)) |has| |#1| (-812 (-1091))) ((-809 |#1| (-1091)) |has| |#1| (-812 (-1091))) ((-812 (-1091)) |has| |#1| (-812 (-1091))) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3084 (((-1086 $) $ (-774 |#1|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3776 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3757 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1938 (($ $ (-584 (-485))) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-197 (-3958 |#1|) (-695)) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3085 (($ (-1086 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1086 $) (-774 |#1|)) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-197 (-3958 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2821 (((-197 (-3958 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-197 (-3958 |#1|) (-695)) (-197 (-3958 |#1|) (-695))) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3083 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#2| $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3769 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3758 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3759 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3949 (((-197 (-3958 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3973 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2818 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3818 (((-584 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-197 (-3958 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-206 |#1| |#2|) (-13 (-862 |#2| (-197 (-3958 |#1|) (-695)) (-774 |#1|)) (-10 -8 (-15 -1938 ($ $ (-584 (-485)))))) (-584 (-1091)) (-962)) (T -206)) +((-1938 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-206 *3 *4)) (-14 *3 (-584 (-1091))) (-4 *4 (-962))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1480 (((-1186) $) 17 T ELT)) (-1482 (((-158 (-208)) $) 11 T ELT)) (-1481 (($ (-158 (-208))) 12 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1483 (((-208) $) 7 T ELT)) (-3947 (((-773) $) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 15 T ELT))) +(((-207) (-13 (-1014) (-10 -8 (-15 -1483 ((-208) $)) (-15 -1482 ((-158 (-208)) $)) (-15 -1481 ($ (-158 (-208)))) (-15 -1480 ((-1186) $))))) (T -207)) +((-1483 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1482 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1481 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-207))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1425 (((-584 (-775)) $) NIL T ELT)) (-3543 (((-447) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) NIL T ELT)) (-2634 (((-85) $ (-447)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1484 (((-282) $) 7 T ELT)) (-1426 (((-584 (-85)) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2522 (((-55) $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-208) (-13 (-160) (-553 (-157)) (-10 -8 (-15 -1484 ((-282) $))))) (T -208)) +((-1484 (*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 (((-1096) $ (-695)) 14 T ELT)) (-3947 (((-773) $) 20 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 17 T ELT)) (-3958 (((-695) $) 11 T ELT))) +(((-209) (-13 (-1014) (-241 (-695) (-1096)) (-10 -8 (-15 -3958 ((-695) $))))) (T -209)) +((-3958 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-209))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3708 (($ (-831)) NIL (|has| |#4| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-2484 (($ $ $) NIL (|has| |#4| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| |#4| (-320)) ELT)) (-3789 ((|#4| $ (-485) |#4|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1014)) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))) ELT)) (-3157 ((|#4| $) NIL (|has| |#4| (-1014)) ELT) (((-485) $) NIL (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))) ELT)) (-2280 (((-2 (|:| |mat| (-631 |#4|)) (|:| |vec| (-1180 |#4|))) (-631 $) (-1180 $)) NIL (|has| |#4| (-962)) ELT) (((-631 |#4|) (-631 $)) NIL (|has| |#4| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#4| (-962)) ELT)) (-2995 (($) NIL (|has| |#4| (-320)) ELT)) (-1577 ((|#4| $ (-485) |#4|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#4| $ (-485)) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#4| (-718)) ELT)) (-2890 (((-584 |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL (|has| |#4| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#4| (-757)) ELT)) (-2609 (((-584 |#4|) $) NIL T ELT)) (-3246 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#4| (-757)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#4| (-320)) ELT)) (-2281 (((-2 (|:| |mat| (-631 |#4|)) (|:| |vec| (-1180 |#4|))) (-1180 $) $) NIL (|has| |#4| (-962)) ELT) (((-631 |#4|) (-1180 $)) NIL (|has| |#4| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#4| (-320)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3802 ((|#4| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#4|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT)) (-2206 (((-584 |#4|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#4| $ (-485) |#4|) NIL T ELT) ((|#4| $ (-485)) 12 T ELT)) (-3837 ((|#4| $ $) NIL (|has| |#4| (-962)) ELT)) (-1469 (($ (-1180 |#4|)) NIL T ELT)) (-3912 (((-107)) NIL (|has| |#4| (-312)) ELT)) (-3759 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962)) ELT) (($ $ (-1 |#4| |#4|) (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT)) (-1947 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1180 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1014)) ELT) (((-773) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) (|has| |#4| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))) ELT)) (-3127 (((-695)) NIL (|has| |#4| (-962)) CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#4| (-962)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL (|has| |#4| (-962)) CONST)) (-2670 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962)) ELT) (($ $ (-1 |#4| |#4|) (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT)) (-2567 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-3950 (($ $ |#4|) NIL (|has| |#4| (-312)) ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-831)) NIL (|has| |#4| (-962)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-664)) ELT) (($ |#4| $) NIL (|has| |#4| (-664)) ELT) (($ $ $) NIL (|has| |#4| (-962)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-591 |#2|) (-591 |#3|)) (-831) (-962) (-1038 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-591 |#2|)) (T -210)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3708 (($ (-831)) NIL (|has| |#3| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-2484 (($ $ $) NIL (|has| |#3| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| |#3| (-320)) ELT)) (-3789 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1014)) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT)) (-3157 ((|#3| $) NIL (|has| |#3| (-1014)) ELT) (((-485) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT)) (-2280 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#3| (-962)) ELT)) (-2995 (($) NIL (|has| |#3| (-320)) ELT)) (-1577 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#3| $ (-485)) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#3| (-718)) ELT)) (-2890 (((-584 |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL (|has| |#3| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-2609 (((-584 |#3|) $) NIL T ELT)) (-3246 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-3327 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#3| (-320)) ELT)) (-2281 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-1180 $) $) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-1180 $)) NIL (|has| |#3| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#3| (-320)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3802 ((|#3| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#3| (-1014))) ELT)) (-2206 (((-584 |#3|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#3| $ (-485) |#3|) NIL T ELT) ((|#3| $ (-485)) 11 T ELT)) (-3837 ((|#3| $ $) NIL (|has| |#3| (-962)) ELT)) (-1469 (($ (-1180 |#3|)) NIL T ELT)) (-3912 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3759 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT)) (-1947 (((-695) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1180 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1014)) ELT) (((-773) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT)) (-3127 (((-695)) NIL (|has| |#3| (-962)) CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#3| (-962)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL (|has| |#3| (-962)) CONST)) (-2670 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT)) (-2567 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3950 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-831)) NIL (|has| |#3| (-962)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-664)) ELT) (($ |#3| $) NIL (|has| |#3| (-664)) ELT) (($ $ $) NIL (|has| |#3| (-962)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-591 |#2|)) (-695) (-962) (-591 |#2|)) (T -211)) +NIL +((-1489 (((-584 (-695)) $) 56 T ELT) (((-584 (-695)) $ |#3|) 59 T ELT)) (-1523 (((-695) $) 58 T ELT) (((-695) $ |#3|) 61 T ELT)) (-1485 (($ $) 76 T ELT)) (-3158 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3773 (((-695) $ |#3|) 43 T ELT) (((-695) $) 38 T ELT)) (-1524 (((-1 $ (-695)) |#3|) 15 T ELT) (((-1 $ (-695)) $) 88 T ELT)) (-1487 ((|#4| $) 69 T ELT)) (-1488 (((-85) $) 67 T ELT)) (-1486 (($ $) 75 T ELT)) (-3769 (($ $ (-584 (-249 $))) 111 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-584 |#4|) (-584 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-584 |#4|) (-584 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-584 |#3|) (-584 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-584 |#3|) (-584 |#2|)) 97 T ELT)) (-3759 (($ $ (-584 |#4|) (-584 (-695))) NIL T ELT) (($ $ |#4| (-695)) NIL T ELT) (($ $ (-584 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-1490 (((-584 |#3|) $) 86 T ELT)) (-3949 ((|#5| $) NIL T ELT) (((-695) $ |#4|) NIL T ELT) (((-584 (-695)) $ (-584 |#4|)) NIL T ELT) (((-695) $ |#3|) 49 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT))) +(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3759 (|#1| |#1| (-695))) (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3759 (|#1| |#1| (-1091) (-695))) (-15 -3759 (|#1| |#1| (-584 (-1091)))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3947 (|#1| |#1|)) (-15 -3947 (|#1| (-350 (-485)))) (-15 -3769 (|#1| |#1| (-584 |#3|) (-584 |#2|))) (-15 -3769 (|#1| |#1| |#3| |#2|)) (-15 -3769 (|#1| |#1| (-584 |#3|) (-584 |#1|))) (-15 -3769 (|#1| |#1| |#3| |#1|)) (-15 -1524 ((-1 |#1| (-695)) |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1486 (|#1| |#1|)) (-15 -1487 (|#4| |#1|)) (-15 -1488 ((-85) |#1|)) (-15 -1523 ((-695) |#1| |#3|)) (-15 -1489 ((-584 (-695)) |#1| |#3|)) (-15 -1523 ((-695) |#1|)) (-15 -1489 ((-584 (-695)) |#1|)) (-15 -3949 ((-695) |#1| |#3|)) (-15 -3773 ((-695) |#1|)) (-15 -3773 ((-695) |#1| |#3|)) (-15 -1490 ((-584 |#3|) |#1|)) (-15 -1524 ((-1 |#1| (-695)) |#3|)) (-15 -3947 (|#1| |#3|)) (-15 -3158 ((-3 |#3| #1="failed") |#1|)) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3949 ((-584 (-695)) |#1| (-584 |#4|))) (-15 -3949 ((-695) |#1| |#4|)) (-15 -3947 (|#1| |#4|)) (-15 -3158 ((-3 |#4| #1#) |#1|)) (-15 -3769 (|#1| |#1| (-584 |#4|) (-584 |#1|))) (-15 -3769 (|#1| |#1| |#4| |#1|)) (-15 -3769 (|#1| |#1| (-584 |#4|) (-584 |#2|))) (-15 -3769 (|#1| |#1| |#4| |#2|)) (-15 -3769 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3769 (|#1| |#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| (-249 |#1|))) (-15 -3769 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3949 (|#5| |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| (-584 |#4|))) (-15 -3759 (|#1| |#1| |#4| (-695))) (-15 -3759 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -3947 (|#1| (-485))) (-15 -3947 ((-773) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-962) (-757) (-228 |#3|) (-718)) (T -212)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1489 (((-584 (-695)) $) 251 T ELT) (((-584 (-695)) $ |#2|) 249 T ELT)) (-1523 (((-695) $) 250 T ELT) (((-695) $ |#2|) 248 T ELT)) (-3082 (((-584 |#3|) $) 123 T ELT)) (-3084 (((-1086 $) $ |#3|) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) 125 T ELT) (((-695) $ (-584 |#3|)) 124 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-822)) ELT)) (-3776 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-1485 (($ $) 244 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 |#2| #2#) $) 258 T ELT)) (-3157 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) ((|#3| $) 154 T ELT) ((|#2| $) 259 T ELT)) (-3757 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3960 (($ $) 171 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3504 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) 122 T ELT)) (-3724 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| |#4| $) 189 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| |#3| (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| |#3| (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3773 (((-695) $ |#2|) 254 T ELT) (((-695) $) 253 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3085 (($ (-1086 |#1|) |#3|) 130 T ELT) (($ (-1086 $) |#3|) 129 T ELT)) (-2822 (((-584 $) $) 139 T ELT)) (-3938 (((-85) $) 169 T ELT)) (-2894 (($ |#1| |#4|) 170 T ELT) (($ $ |#3| (-695)) 132 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 131 T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |#3|) 133 T ELT)) (-2821 ((|#4| $) 187 T ELT) (((-695) $ |#3|) 135 T ELT) (((-584 (-695)) $ (-584 |#3|)) 134 T ELT)) (-1626 (($ (-1 |#4| |#4|) $) 188 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-1524 (((-1 $ (-695)) |#2|) 256 T ELT) (((-1 $ (-695)) $) 243 (|has| |#1| (-190)) ELT)) (-3083 (((-3 |#3| #3="failed") $) 136 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-631 |#1|) (-1180 $)) 144 T ELT)) (-2895 (($ $) 166 T ELT)) (-3175 ((|#1| $) 165 T ELT)) (-1487 ((|#3| $) 246 T ELT)) (-1892 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3243 (((-1074) $) 11 T ELT)) (-1488 (((-85) $) 247 T ELT)) (-2824 (((-3 (-584 $) #3#) $) 127 T ELT)) (-2823 (((-3 (-584 $) #3#) $) 128 T ELT)) (-2825 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) #3#) $) 126 T ELT)) (-1486 (($ $) 245 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1798 (((-85) $) 183 T ELT)) (-1797 ((|#1| $) 184 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3733 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-3467 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-584 |#3|) (-584 $)) 155 T ELT) (($ $ |#2| $) 242 (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 $)) 241 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 240 (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 |#1|)) 239 (|has| |#1| (-190)) ELT)) (-3758 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-584 |#3|) (-584 (-695))) 52 T ELT) (($ $ |#3| (-695)) 51 T ELT) (($ $ (-584 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT) (($ $ (-1 |#1| |#1|)) 263 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 262 T ELT) (($ $) 238 (|has| |#1| (-189)) ELT) (($ $ (-695)) 236 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 234 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 232 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 231 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 230 (|has| |#1| (-812 (-1091))) ELT)) (-1490 (((-584 |#2|) $) 255 T ELT)) (-3949 ((|#4| $) 167 T ELT) (((-695) $ |#3|) 143 T ELT) (((-584 (-695)) $ (-584 |#3|)) 142 T ELT) (((-695) $ |#2|) 252 T ELT)) (-3973 (((-801 (-330)) $) 95 (-12 (|has| |#3| (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| |#3| (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| |#3| (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) 117 (-2563 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ |#2|) 257 T ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT) (($ $) 98 (|has| |#1| (-496)) ELT)) (-3818 (((-584 |#1|) $) 185 T ELT)) (-3678 ((|#1| $ |#4|) 172 T ELT) (($ $ |#3| (-695)) 141 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 140 T ELT)) (-2703 (((-633 $) $) 92 (OR (-2563 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-584 |#3|) (-584 (-695))) 55 T ELT) (($ $ |#3| (-695)) 54 T ELT) (($ $ (-584 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 260 T ELT) (($ $) 237 (|has| |#1| (-189)) ELT) (($ $ (-695)) 235 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 233 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 229 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 228 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 227 (|has| |#1| (-812 (-1091))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-213 |#1| |#2| |#3| |#4|) (-113) (-962) (-757) (-228 |t#2|) (-718)) (T -213)) +((-1524 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 *4)))) (-3773 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) (-3949 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1489 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) (-1523 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-85)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-718)) (-4 *2 (-228 *4)))) (-1486 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-228 *3)) (-4 *5 (-718)))) (-1485 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-228 *3)) (-4 *5 (-718)))) (-1524 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *3 *4 *5 *6))))) +(-13 (-862 |t#1| |t#4| |t#3|) (-184 |t#1|) (-951 |t#2|) (-10 -8 (-15 -1524 ((-1 $ (-695)) |t#2|)) (-15 -1490 ((-584 |t#2|) $)) (-15 -3773 ((-695) $ |t#2|)) (-15 -3773 ((-695) $)) (-15 -3949 ((-695) $ |t#2|)) (-15 -1489 ((-584 (-695)) $)) (-15 -1523 ((-695) $)) (-15 -1489 ((-584 (-695)) $ |t#2|)) (-15 -1523 ((-695) $ |t#2|)) (-15 -1488 ((-85) $)) (-15 -1487 (|t#3| $)) (-15 -1486 ($ $)) (-15 -1485 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-456 |t#2| |t#1|)) (-6 (-456 |t#2| $)) (-6 (-260 $)) (-15 -1524 ((-1 $ (-695)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 |#2|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#4|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392))) ((-456 |#2| |#1|) |has| |#1| (-190)) ((-456 |#2| $) |has| |#1| (-190)) ((-456 |#3| |#1|) . T) ((-456 |#3| $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-807 $ |#3|) . T) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-810 |#3|) . T) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-812 |#3|) . T) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ((-862 |#1| |#4| |#3|) . T) ((-822) |has| |#1| (-822)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-951 |#2|) . T) ((-951 |#3|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-822))) +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1496 ((|#1| $) 59 T ELT)) (-3324 ((|#1| $) 49 T ELT)) (-3725 (($) 7 T CONST)) (-3003 (($ $) 65 T ELT)) (-2298 (($ $) 53 T ELT)) (-3326 ((|#1| |#1| $) 51 T ELT)) (-3325 ((|#1| $) 50 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3834 (((-695) $) 66 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-1494 ((|#1| |#1| $) 57 T ELT)) (-1493 ((|#1| |#1| $) 56 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-2604 (((-695) $) 60 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3002 ((|#1| $) 67 T ELT)) (-1492 ((|#1| $) 55 T ELT)) (-1491 ((|#1| $) 54 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3005 ((|#1| |#1| $) 63 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3004 ((|#1| $) 64 T ELT)) (-1497 (($) 62 T ELT) (($ (-584 |#1|)) 61 T ELT)) (-3323 (((-695) $) 48 T ELT)) (-1947 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1495 ((|#1| $) 58 T ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 46 T ELT)) (-3001 ((|#1| $) 68 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-214 |#1|) (-113) (-1130)) (T -214)) +((-1497 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1497 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-214 *3)))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1494 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1493 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-2298 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(-13 (-1035 |t#1|) (-909 |t#1|) (-10 -8 (-15 -1497 ($)) (-15 -1497 ($ (-584 |t#1|))) (-15 -2604 ((-695) $)) (-15 -1496 (|t#1| $)) (-15 -1495 (|t#1| $)) (-15 -1494 (|t#1| |t#1| $)) (-15 -1493 (|t#1| |t#1| $)) (-15 -1492 (|t#1| $)) (-15 -1491 (|t#1| $)) (-15 -2298 ($ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-909 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1035 |#1|) . T) ((-1130) . T)) +((-1498 (((-1048 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330))) 75 T ELT) (((-1048 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 74 T ELT) (((-1048 (-179)) |#1| (-1005 (-330)) (-1005 (-330))) 65 T ELT) (((-1048 (-179)) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 64 T ELT) (((-1048 (-179)) (-790 |#1|) (-1005 (-330))) 56 T ELT) (((-1048 (-179)) (-790 |#1|) (-1005 (-330)) (-584 (-221))) 55 T ELT)) (-1505 (((-1184) (-793 |#1|) (-1005 (-330)) (-1005 (-330))) 78 T ELT) (((-1184) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 77 T ELT) (((-1184) |#1| (-1005 (-330)) (-1005 (-330))) 68 T ELT) (((-1184) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 67 T ELT) (((-1184) (-790 |#1|) (-1005 (-330))) 60 T ELT) (((-1184) (-790 |#1|) (-1005 (-330)) (-584 (-221))) 59 T ELT) (((-1183) (-788 |#1|) (-1005 (-330))) 47 T ELT) (((-1183) (-788 |#1|) (-1005 (-330)) (-584 (-221))) 46 T ELT) (((-1183) |#1| (-1005 (-330))) 38 T ELT) (((-1183) |#1| (-1005 (-330)) (-584 (-221))) 36 T ELT))) +(((-215 |#1|) (-10 -7 (-15 -1505 ((-1183) |#1| (-1005 (-330)) (-584 (-221)))) (-15 -1505 ((-1183) |#1| (-1005 (-330)))) (-15 -1505 ((-1183) (-788 |#1|) (-1005 (-330)) (-584 (-221)))) (-15 -1505 ((-1183) (-788 |#1|) (-1005 (-330)))) (-15 -1505 ((-1184) (-790 |#1|) (-1005 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-790 |#1|) (-1005 (-330)))) (-15 -1498 ((-1048 (-179)) (-790 |#1|) (-1005 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-790 |#1|) (-1005 (-330)))) (-15 -1505 ((-1184) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) |#1| (-1005 (-330)) (-1005 (-330)))) (-15 -1498 ((-1048 (-179)) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) |#1| (-1005 (-330)) (-1005 (-330)))) (-15 -1505 ((-1184) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-793 |#1|) (-1005 (-330)) (-1005 (-330)))) (-15 -1498 ((-1048 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330))))) (-13 (-554 (-474)) (-1014))) (T -215)) +((-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *5)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *5)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-788 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *5)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014)))))) +((-1499 (((-1 (-855 (-179)) (-179) (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1498 (((-1048 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330))) 178 T ELT) (((-1048 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 176 T ELT) (((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 181 T ELT) (((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 177 T ELT) (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 169 T ELT) (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 168 T ELT) (((-1048 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330))) 150 T ELT) (((-1048 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221))) 148 T ELT) (((-1048 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330))) 149 T ELT) (((-1048 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221))) 146 T ELT)) (-1505 (((-1184) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330))) 180 T ELT) (((-1184) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 179 T ELT) (((-1184) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 183 T ELT) (((-1184) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 182 T ELT) (((-1184) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 171 T ELT) (((-1184) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 170 T ELT) (((-1184) (-1 (-855 (-179)) (-179)) (-1002 (-330))) 156 T ELT) (((-1184) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221))) 155 T ELT) (((-1184) (-790 (-1 (-179) (-179))) (-1002 (-330))) 154 T ELT) (((-1184) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221))) 153 T ELT) (((-1183) (-788 (-1 (-179) (-179))) (-1002 (-330))) 118 T ELT) (((-1183) (-788 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221))) 117 T ELT) (((-1183) (-1 (-179) (-179)) (-1002 (-330))) 112 T ELT) (((-1183) (-1 (-179) (-179)) (-1002 (-330)) (-584 (-221))) 110 T ELT))) +(((-216) (-10 -7 (-15 -1505 ((-1183) (-1 (-179) (-179)) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1183) (-1 (-179) (-179)) (-1002 (-330)))) (-15 -1505 ((-1183) (-788 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1183) (-788 (-1 (-179) (-179))) (-1002 (-330)))) (-15 -1505 ((-1184) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-790 (-1 (-179) (-179))) (-1002 (-330)))) (-15 -1505 ((-1184) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-1 (-855 (-179)) (-179)) (-1002 (-330)))) (-15 -1498 ((-1048 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330)))) (-15 -1498 ((-1048 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330)))) (-15 -1505 ((-1184) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1498 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1505 ((-1184) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1498 ((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1505 ((-1184) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)))) (-15 -1498 ((-1048 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)))) (-15 -1499 ((-1 (-855 (-179)) (-179) (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216)) +((-1499 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216))))) +((-1505 (((-1183) (-249 |#2|) (-1091) (-1091) (-584 (-221))) 102 T ELT))) +(((-217 |#1| |#2|) (-10 -7 (-15 -1505 ((-1183) (-249 |#2|) (-1091) (-1091) (-584 (-221))))) (-13 (-496) (-757) (-951 (-485))) (-364 |#1|)) (T -217)) +((-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-1091)) (-5 *5 (-584 (-221))) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-757) (-951 (-485)))) (-5 *2 (-1183)) (-5 *1 (-217 *6 *7))))) +((-1502 (((-485) (-485)) 71 T ELT)) (-1503 (((-485) (-485)) 72 T ELT)) (-1504 (((-179) (-179)) 73 T ELT)) (-1501 (((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179))) 70 T ELT)) (-1500 (((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179)) (-85)) 68 T ELT))) +(((-218) (-10 -7 (-15 -1500 ((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179)) (-85))) (-15 -1501 ((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179)))) (-15 -1502 ((-485) (-485))) (-15 -1503 ((-485) (-485))) (-15 -1504 ((-179) (-179))))) (T -218)) +((-1504 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1503 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179))) (-5 *2 (-1184)) (-5 *1 (-218)))) (-1500 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179))) (-5 *5 (-85)) (-5 *2 (-1184)) (-5 *1 (-218))))) +((-3947 (((-1005 (-330)) (-1005 (-265 |#1|))) 16 T ELT))) +(((-219 |#1|) (-10 -7 (-15 -3947 ((-1005 (-330)) (-1005 (-265 |#1|))))) (-13 (-757) (-496) (-554 (-330)))) (T -219)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-1005 (-265 *4))) (-4 *4 (-13 (-757) (-496) (-554 (-330)))) (-5 *2 (-1005 (-330))) (-5 *1 (-219 *4))))) +((-1505 (((-1184) (-584 (-179)) (-584 (-179)) (-584 (-179)) (-584 (-221))) 23 T ELT) (((-1184) (-584 (-179)) (-584 (-179)) (-584 (-179))) 24 T ELT) (((-1183) (-584 (-855 (-179))) (-584 (-221))) 16 T ELT) (((-1183) (-584 (-855 (-179)))) 17 T ELT) (((-1183) (-584 (-179)) (-584 (-179)) (-584 (-221))) 20 T ELT) (((-1183) (-584 (-179)) (-584 (-179))) 21 T ELT))) +(((-220) (-10 -7 (-15 -1505 ((-1183) (-584 (-179)) (-584 (-179)))) (-15 -1505 ((-1183) (-584 (-179)) (-584 (-179)) (-584 (-221)))) (-15 -1505 ((-1183) (-584 (-855 (-179))))) (-15 -1505 ((-1183) (-584 (-855 (-179))) (-584 (-221)))) (-15 -1505 ((-1184) (-584 (-179)) (-584 (-179)) (-584 (-179)))) (-15 -1505 ((-1184) (-584 (-179)) (-584 (-179)) (-584 (-179)) (-584 (-221)))))) (T -220)) +((-1505 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1184)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1183)) (-5 *1 (-220))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3882 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1518 (($ (-831)) 81 T ELT)) (-1517 (($ (-831)) 80 T ELT)) (-1773 (($ (-584 (-330))) 87 T ELT)) (-1521 (($ (-330)) 66 T ELT)) (-1520 (($ (-831)) 82 T ELT)) (-1514 (($ (-85)) 33 T ELT)) (-3884 (($ (-1074)) 28 T ELT)) (-1513 (($ (-1074)) 29 T ELT)) (-1519 (($ (-1048 (-179))) 76 T ELT)) (-1929 (($ (-584 (-1002 (-330)))) 72 T ELT)) (-1507 (($ (-584 (-1002 (-330)))) 68 T ELT) (($ (-584 (-1002 (-350 (-485))))) 71 T ELT)) (-1510 (($ (-330)) 38 T ELT) (($ (-784)) 42 T ELT)) (-1506 (((-85) (-584 $) (-1091)) 100 T ELT)) (-1522 (((-3 (-51) "failed") (-584 $) (-1091)) 102 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1509 (($ (-330)) 43 T ELT) (($ (-784)) 44 T ELT)) (-3225 (($ (-1 (-855 (-179)) (-855 (-179)))) 65 T ELT)) (-2267 (($ (-1 (-855 (-179)) (-855 (-179)))) 83 T ELT)) (-1508 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3947 (((-773) $) 93 T ELT)) (-1511 (($ (-85)) 34 T ELT) (($ (-584 (-1002 (-330)))) 60 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1924 (($ (-85)) 35 T ELT)) (-3057 (((-85) $ $) 97 T ELT))) +(((-221) (-13 (-1014) (-10 -8 (-15 -1924 ($ (-85))) (-15 -1511 ($ (-85))) (-15 -3882 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3884 ($ (-1074))) (-15 -1513 ($ (-1074))) (-15 -1514 ($ (-85))) (-15 -1511 ($ (-584 (-1002 (-330))))) (-15 -3225 ($ (-1 (-855 (-179)) (-855 (-179))))) (-15 -1510 ($ (-330))) (-15 -1510 ($ (-784))) (-15 -1509 ($ (-330))) (-15 -1509 ($ (-784))) (-15 -1508 ($ (-1 (-179) (-179)))) (-15 -1508 ($ (-1 (-179) (-179) (-179)))) (-15 -1508 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1521 ($ (-330))) (-15 -1507 ($ (-584 (-1002 (-330))))) (-15 -1507 ($ (-584 (-1002 (-350 (-485)))))) (-15 -1929 ($ (-584 (-1002 (-330))))) (-15 -1519 ($ (-1048 (-179)))) (-15 -1517 ($ (-831))) (-15 -1518 ($ (-831))) (-15 -1520 ($ (-831))) (-15 -2267 ($ (-1 (-855 (-179)) (-855 (-179))))) (-15 -1773 ($ (-584 (-330)))) (-15 -1522 ((-3 (-51) "failed") (-584 $) (-1091))) (-15 -1506 ((-85) (-584 $) (-1091)))))) (T -221)) +((-1924 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) (-3225 (*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-350 (-485))))) (-5 *1 (-221)))) (-1929 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) (-1519 (*1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-221)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) (-1773 (*1 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-221)))) (-1522 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *2 (-85)) (-5 *1 (-221))))) +((-3882 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-584 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1518 (((-831) (-584 (-221)) (-831)) 52 T ELT)) (-1517 (((-831) (-584 (-221)) (-831)) 51 T ELT)) (-3852 (((-584 (-330)) (-584 (-221)) (-584 (-330))) 68 T ELT)) (-1521 (((-330) (-584 (-221)) (-330)) 57 T ELT)) (-1520 (((-831) (-584 (-221)) (-831)) 53 T ELT)) (-1514 (((-85) (-584 (-221)) (-85)) 27 T ELT)) (-3884 (((-1074) (-584 (-221)) (-1074)) 19 T ELT)) (-1513 (((-1074) (-584 (-221)) (-1074)) 26 T ELT)) (-1519 (((-1048 (-179)) (-584 (-221))) 46 T ELT)) (-1929 (((-584 (-1002 (-330))) (-584 (-221)) (-584 (-1002 (-330)))) 40 T ELT)) (-1515 (((-784) (-584 (-221)) (-784)) 32 T ELT)) (-1516 (((-784) (-584 (-221)) (-784)) 33 T ELT)) (-2267 (((-1 (-855 (-179)) (-855 (-179))) (-584 (-221)) (-1 (-855 (-179)) (-855 (-179)))) 63 T ELT)) (-1512 (((-85) (-584 (-221)) (-85)) 14 T ELT)) (-1924 (((-85) (-584 (-221)) (-85)) 13 T ELT))) +(((-222) (-10 -7 (-15 -1924 ((-85) (-584 (-221)) (-85))) (-15 -1512 ((-85) (-584 (-221)) (-85))) (-15 -3882 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-584 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3884 ((-1074) (-584 (-221)) (-1074))) (-15 -1513 ((-1074) (-584 (-221)) (-1074))) (-15 -1514 ((-85) (-584 (-221)) (-85))) (-15 -1515 ((-784) (-584 (-221)) (-784))) (-15 -1516 ((-784) (-584 (-221)) (-784))) (-15 -1929 ((-584 (-1002 (-330))) (-584 (-221)) (-584 (-1002 (-330))))) (-15 -1517 ((-831) (-584 (-221)) (-831))) (-15 -1518 ((-831) (-584 (-221)) (-831))) (-15 -1519 ((-1048 (-179)) (-584 (-221)))) (-15 -1520 ((-831) (-584 (-221)) (-831))) (-15 -1521 ((-330) (-584 (-221)) (-330))) (-15 -2267 ((-1 (-855 (-179)) (-855 (-179))) (-584 (-221)) (-1 (-855 (-179)) (-855 (-179))))) (-15 -3852 ((-584 (-330)) (-584 (-221)) (-584 (-330)))))) (T -222)) +((-3852 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-330))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-2267 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1521 (*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1520 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-222)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1929 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-3884 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-3882 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1924 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) +((-1522 (((-3 |#1| "failed") (-584 (-221)) (-1091)) 17 T ELT))) +(((-223 |#1|) (-10 -7 (-15 -1522 ((-3 |#1| "failed") (-584 (-221)) (-1091)))) (-1130)) (T -223)) +((-1522 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *1 (-223 *2)) (-4 *2 (-1130))))) +((-3759 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) 11 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) 19 T ELT) (($ $ (-695)) NIL T ELT) (($ $) 16 T ELT)) (-2670 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-695)) 14 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT))) +(((-224 |#1| |#2|) (-10 -7 (-15 -3759 (|#1| |#1|)) (-15 -2670 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-695))) (-15 -2670 (|#1| |#1| (-695))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -2670 (|#1| |#1| (-1091))) (-15 -3759 (|#1| |#1| (-584 (-1091)))) (-15 -3759 (|#1| |#1| (-1091) (-695))) (-15 -3759 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -2670 (|#1| |#1| (-584 (-1091)))) (-15 -2670 (|#1| |#1| (-1091) (-695))) (-15 -2670 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -2670 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -2670 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1130)) (T -224)) +NIL +((-3759 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 22 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 16 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 15 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 14 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091)) 12 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-695)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2670 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 20 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 19 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 18 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 17 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091)) 13 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-695)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT))) +(((-225 |#1|) (-113) (-1130)) (T -225)) +((-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130)))) (-3759 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1130)))) (-2670 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1130))))) +(-13 (-1130) (-10 -8 (-15 -3759 ($ $ (-1 |t#1| |t#1|))) (-15 -3759 ($ $ (-1 |t#1| |t#1|) (-695))) (-15 -2670 ($ $ (-1 |t#1| |t#1|))) (-15 -2670 ($ $ (-1 |t#1| |t#1|) (-695))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-812 (-1091))) (-6 (-812 (-1091))) |%noBranch|))) +(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-807 $ (-1091)) |has| |#1| (-812 (-1091))) ((-812 (-1091)) |has| |#1| (-812 (-1091))) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1489 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ |#2|) NIL T ELT)) (-1523 (((-695) $) NIL T ELT) (((-695) $ |#2|) NIL T ELT)) (-3082 (((-584 |#3|) $) NIL T ELT)) (-3084 (((-1086 $) $ |#3|) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 |#3|)) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1485 (($ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1040 |#1| |#2|) #1#) $) 23 T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1040 |#1| |#2|) $) NIL T ELT)) (-3757 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3960 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#3|) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 |#3|) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ELT)) (-3773 (((-695) $ |#2|) NIL T ELT) (((-695) $) 10 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3085 (($ (-1086 |#1|) |#3|) NIL T ELT) (($ (-1086 $) |#3|) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-470 |#3|)) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |#3|) NIL T ELT)) (-2821 (((-470 |#3|) $) NIL T ELT) (((-695) $ |#3|) NIL T ELT) (((-584 (-695)) $ (-584 |#3|)) NIL T ELT)) (-1626 (($ (-1 (-470 |#3|) (-470 |#3|)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-695)) |#2|) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3083 (((-3 |#3| #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1487 ((|#3| $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1488 (((-85) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-584 |#3|) (-584 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-584 |#3|) (-584 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3758 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1490 (((-584 |#2|) $) NIL T ELT)) (-3949 (((-470 |#3|) $) NIL T ELT) (((-695) $ |#3|) NIL T ELT) (((-584 (-695)) $ (-584 |#3|)) NIL T ELT) (((-695) $ |#2|) NIL T ELT)) (-3973 (((-801 (-330)) $) NIL (-12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ |#3|) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1040 |#1| |#2|)) 32 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-584 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-470 |#3|)) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-470 |#3|)) (-951 (-1040 |#1| |#2|))) (-962) (-757) (-228 |#2|)) (T -226)) +NIL +((-1523 (((-695) $) 37 T ELT)) (-3158 (((-3 |#2| "failed") $) 22 T ELT)) (-3157 ((|#2| $) 33 T ELT)) (-3759 (($ $ (-695)) 18 T ELT) (($ $) 14 T ELT)) (-3947 (((-773) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3057 (((-85) $ $) 26 T ELT)) (-2686 (((-85) $ $) 36 T ELT))) +(((-227 |#1| |#2|) (-10 -7 (-15 -1523 ((-695) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3158 ((-3 |#2| "failed") |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-695))) (-15 -2686 ((-85) |#1| |#1|)) (-15 -3947 ((-773) |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-228 |#2|) (-757)) (T -227)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-1523 (((-695) $) 26 T ELT)) (-3832 ((|#1| $) 27 T ELT)) (-3158 (((-3 |#1| "failed") $) 31 T ELT)) (-3157 ((|#1| $) 32 T ELT)) (-3773 (((-695) $) 28 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-1524 (($ |#1| (-695)) 29 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3759 (($ $ (-695)) 35 T ELT) (($ $) 33 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2670 (($ $ (-695)) 36 T ELT) (($ $) 34 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT))) +(((-228 |#1|) (-113) (-757)) (T -228)) +((-1524 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-228 *2)) (-4 *2 (-757)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-757)))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695))))) +(-13 (-757) (-189) (-951 |t#1|) (-10 -8 (-15 -1524 ($ |t#1| (-695))) (-15 -3773 ((-695) $)) (-15 -3832 (|t#1| $)) (-15 -1523 ((-695) $)))) +(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-951 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1526 (((-584 (-485)) $) 28 T ELT)) (-3949 (((-695) $) 26 T ELT)) (-3947 (((-773) $) 32 T ELT) (($ (-584 (-485))) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1525 (($ (-695)) 29 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 11 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 18 T ELT))) +(((-229) (-13 (-757) (-10 -8 (-15 -3947 ($ (-584 (-485)))) (-15 -3949 ((-695) $)) (-15 -1526 ((-584 (-485)) $)) (-15 -1525 ($ (-695)))))) (T -229)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-229)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229)))) (-1525 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-229))))) +((-3493 ((|#2| |#2|) 77 T ELT)) (-3640 ((|#2| |#2|) 65 T ELT)) (-1555 (((-3 |#2| "failed") |#2| (-584 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3491 ((|#2| |#2|) 75 T ELT)) (-3639 ((|#2| |#2|) 63 T ELT)) (-3495 ((|#2| |#2|) 79 T ELT)) (-3638 ((|#2| |#2|) 67 T ELT)) (-3628 ((|#2|) 46 T ELT)) (-3596 (((-86) (-86)) 97 T ELT)) (-3943 ((|#2| |#2|) 61 T ELT)) (-1556 (((-85) |#2|) 146 T ELT)) (-1545 ((|#2| |#2|) 193 T ELT)) (-1533 ((|#2| |#2|) 169 T ELT)) (-1528 ((|#2|) 59 T ELT)) (-1527 ((|#2|) 58 T ELT)) (-1543 ((|#2| |#2|) 189 T ELT)) (-1531 ((|#2| |#2|) 165 T ELT)) (-1547 ((|#2| |#2|) 197 T ELT)) (-1535 ((|#2| |#2|) 173 T ELT)) (-1530 ((|#2| |#2|) 161 T ELT)) (-1529 ((|#2| |#2|) 163 T ELT)) (-1548 ((|#2| |#2|) 199 T ELT)) (-1536 ((|#2| |#2|) 175 T ELT)) (-1546 ((|#2| |#2|) 195 T ELT)) (-1534 ((|#2| |#2|) 171 T ELT)) (-1544 ((|#2| |#2|) 191 T ELT)) (-1532 ((|#2| |#2|) 167 T ELT)) (-1551 ((|#2| |#2|) 205 T ELT)) (-1539 ((|#2| |#2|) 181 T ELT)) (-1549 ((|#2| |#2|) 201 T ELT)) (-1537 ((|#2| |#2|) 177 T ELT)) (-1553 ((|#2| |#2|) 209 T ELT)) (-1541 ((|#2| |#2|) 185 T ELT)) (-1554 ((|#2| |#2|) 211 T ELT)) (-1542 ((|#2| |#2|) 187 T ELT)) (-1552 ((|#2| |#2|) 207 T ELT)) (-1540 ((|#2| |#2|) 183 T ELT)) (-1550 ((|#2| |#2|) 203 T ELT)) (-1538 ((|#2| |#2|) 179 T ELT)) (-3944 ((|#2| |#2|) 62 T ELT)) (-3496 ((|#2| |#2|) 80 T ELT)) (-3637 ((|#2| |#2|) 68 T ELT)) (-3494 ((|#2| |#2|) 78 T ELT)) (-3636 ((|#2| |#2|) 66 T ELT)) (-3492 ((|#2| |#2|) 76 T ELT)) (-3635 ((|#2| |#2|) 64 T ELT)) (-2255 (((-85) (-86)) 95 T ELT)) (-3499 ((|#2| |#2|) 83 T ELT)) (-3487 ((|#2| |#2|) 71 T ELT)) (-3497 ((|#2| |#2|) 81 T ELT)) (-3485 ((|#2| |#2|) 69 T ELT)) (-3501 ((|#2| |#2|) 85 T ELT)) (-3489 ((|#2| |#2|) 73 T ELT)) (-3502 ((|#2| |#2|) 86 T ELT)) (-3490 ((|#2| |#2|) 74 T ELT)) (-3500 ((|#2| |#2|) 84 T ELT)) (-3488 ((|#2| |#2|) 72 T ELT)) (-3498 ((|#2| |#2|) 82 T ELT)) (-3486 ((|#2| |#2|) 70 T ELT))) +(((-230 |#1| |#2|) (-10 -7 (-15 -3944 (|#2| |#2|)) (-15 -3943 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -3628 (|#2|)) (-15 -2255 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 -1527 (|#2|)) (-15 -1528 (|#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -1554 (|#2| |#2|)) (-15 -1555 ((-3 |#2| "failed") |#2| (-584 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1556 ((-85) |#2|))) (-496) (-13 (-364 |#1|) (-916))) (T -230)) +((-1556 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-364 *4) (-916))))) (-1555 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-584 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-364 *4) (-916))) (-4 *4 (-496)) (-5 *1 (-230 *4 *2)))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1528 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) (-1527 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-364 *3) (-916))))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-364 *4) (-916))))) (-3628 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) +((-1559 (((-3 |#2| "failed") (-584 (-551 |#2|)) |#2| (-1091)) 151 T ELT)) (-1561 ((|#2| (-350 (-485)) |#2|) 49 T ELT)) (-1560 ((|#2| |#2| (-551 |#2|)) 144 T ELT)) (-1557 (((-2 (|:| |func| |#2|) (|:| |kers| (-584 (-551 |#2|))) (|:| |vals| (-584 |#2|))) |#2| (-1091)) 143 T ELT)) (-1558 ((|#2| |#2| (-1091)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2444 ((|#2| |#2| (-1091)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) +(((-231 |#1| |#2|) (-10 -7 (-15 -2444 (|#2| |#2|)) (-15 -2444 (|#2| |#2| (-1091))) (-15 -1557 ((-2 (|:| |func| |#2|) (|:| |kers| (-584 (-551 |#2|))) (|:| |vals| (-584 |#2|))) |#2| (-1091))) (-15 -1558 (|#2| |#2|)) (-15 -1558 (|#2| |#2| (-1091))) (-15 -1559 ((-3 |#2| "failed") (-584 (-551 |#2|)) |#2| (-1091))) (-15 -1560 (|#2| |#2| (-551 |#2|))) (-15 -1561 (|#2| (-350 (-485)) |#2|))) (-13 (-496) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -231)) +((-1561 (*1 *2 *3 *2) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-1560 (*1 *2 *2 *3) (-12 (-5 *3 (-551 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)))) (-1559 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-1091)) (-4 *2 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *5 *2)))) (-1558 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))) (-1557 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-584 (-551 *3))) (|:| |vals| (-584 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-2444 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-2444 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3)))))) +((-2976 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3493 ((|#3| |#3|) 142 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3640 ((|#3| |#3|) 132 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3491 ((|#3| |#3|) 140 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3639 ((|#3| |#3|) 130 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3495 ((|#3| |#3|) 144 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3638 ((|#3| |#3|) 134 T ELT)) (-2959 (((-3 |#3| #1#) |#3| (-695)) 41 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3943 ((|#3| |#3|) 129 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3944 ((|#3| |#3|) 128 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3496 ((|#3| |#3|) 145 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3637 ((|#3| |#3|) 135 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3494 ((|#3| |#3|) 143 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3636 ((|#3| |#3|) 133 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3492 ((|#3| |#3|) 141 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3635 ((|#3| |#3|) 131 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3499 ((|#3| |#3|) 148 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3487 ((|#3| |#3|) 152 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3497 ((|#3| |#3|) 146 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3485 ((|#3| |#3|) 136 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3501 ((|#3| |#3|) 150 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3489 ((|#3| |#3|) 138 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3502 ((|#3| |#3|) 151 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3490 ((|#3| |#3|) 139 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3500 ((|#3| |#3|) 149 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3488 ((|#3| |#3|) 153 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3498 ((|#3| |#3|) 147 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3486 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-350 (-485))) 47 (|has| |#1| (-312)) ELT))) +(((-232 |#1| |#2| |#3|) (-13 (-897 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-485)))) |%noBranch|) (-15 -3944 (|#3| |#3|)) (-15 -3943 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)))) (-38 (-350 (-485))) (-1173 |#1|) (-1144 |#1| |#2|)) (T -232)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1173 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1144 *4 *5)))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4))))) +((-2976 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3493 ((|#3| |#3|) 137 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3640 ((|#3| |#3|) 125 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3491 ((|#3| |#3|) 135 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3639 ((|#3| |#3|) 123 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3495 ((|#3| |#3|) 139 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3638 ((|#3| |#3|) 127 T ELT)) (-2959 (((-3 |#3| #1#) |#3| (-695)) 38 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3943 ((|#3| |#3|) 111 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3944 ((|#3| |#3|) 122 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3496 ((|#3| |#3|) 140 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3637 ((|#3| |#3|) 128 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3494 ((|#3| |#3|) 138 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3636 ((|#3| |#3|) 126 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3492 ((|#3| |#3|) 136 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3635 ((|#3| |#3|) 124 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3499 ((|#3| |#3|) 143 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3487 ((|#3| |#3|) 131 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3497 ((|#3| |#3|) 141 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3485 ((|#3| |#3|) 129 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3501 ((|#3| |#3|) 145 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3489 ((|#3| |#3|) 133 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3502 ((|#3| |#3|) 146 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3490 ((|#3| |#3|) 134 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3500 ((|#3| |#3|) 144 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3488 ((|#3| |#3|) 132 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3498 ((|#3| |#3|) 142 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3486 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-350 (-485))) 44 (|has| |#1| (-312)) ELT))) +(((-233 |#1| |#2| |#3| |#4|) (-13 (-897 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-485)))) |%noBranch|) (-15 -3944 (|#3| |#3|)) (-15 -3943 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)))) (-38 (-350 (-485))) (-1142 |#1|) (-1165 |#1| |#2|) (-897 |#2|)) (T -233)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1142 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1165 *4 *5)) (-4 *6 (-897 *5)))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))) +((-1564 (((-85) $) 20 T ELT)) (-1566 (((-1096) $) 9 T ELT)) (-3570 (((-3 (-447) #1="failed") $) 15 T ELT)) (-3569 (((-3 (-584 $) #1#) $) NIL T ELT)) (-1563 (((-3 (-447) #1#) $) 21 T ELT)) (-1565 (((-3 (-1016) #1#) $) 19 T ELT)) (-3954 (((-85) $) 17 T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1562 (((-85) $) 10 T ELT))) +(((-234) (-13 (-553 (-773)) (-10 -8 (-15 -1566 ((-1096) $)) (-15 -3954 ((-85) $)) (-15 -1565 ((-3 (-1016) #1="failed") $)) (-15 -1564 ((-85) $)) (-15 -1563 ((-3 (-447) #1#) $)) (-15 -1562 ((-85) $)) (-15 -3570 ((-3 (-447) #1#) $)) (-15 -3569 ((-3 (-584 $) #1#) $))))) (T -234)) +((-1566 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-234)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1565 (*1 *2 *1) (|partial| -12 (-5 *2 (-1016)) (-5 *1 (-234)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1563 (*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3570 (*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234)))) (-3569 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-234))) (-5 *1 (-234))))) +((-1568 (((-533) $) 10 T ELT)) (-1569 (((-523) $) 8 T ELT)) (-1567 (((-247) $) 12 T ELT)) (-1570 (($ (-523) (-533) (-247)) NIL T ELT)) (-3947 (((-773) $) 19 T ELT))) +(((-235) (-13 (-553 (-773)) (-10 -8 (-15 -1570 ($ (-523) (-533) (-247))) (-15 -1569 ((-523) $)) (-15 -1568 ((-533) $)) (-15 -1567 ((-247) $))))) (T -235)) +((-1570 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-523)) (-5 *3 (-533)) (-5 *4 (-247)) (-5 *1 (-235)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-235)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-533)) (-5 *1 (-235)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235))))) +((-3711 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1354 (($ $) 38 T ELT)) (-3406 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3407 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2857 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2305 (($ |#2| $ (-485)) 20 T ELT) (($ $ $ (-485)) 22 T ELT)) (-2306 (($ $ (-485)) 11 T ELT) (($ $ (-1147 (-485))) 14 T ELT)) (-3792 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3803 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-584 $)) NIL T ELT))) +(((-236 |#1| |#2|) (-10 -7 (-15 -2857 (|#1| |#1| |#1|)) (-15 -3406 (|#1| |#2| |#1|)) (-15 -2857 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3406 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -3792 (|#1| |#1| |#2|)) (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -2306 (|#1| |#1| (-1147 (-485)))) (-15 -2306 (|#1| |#1| (-485))) (-15 -3803 (|#1| (-584 |#1|))) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3803 (|#1| |#1| |#2|)) (-15 -3407 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3711 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3407 (|#1| |#2| |#1|)) (-15 -1354 (|#1| |#1|))) (-237 |#2|) (-1130)) (T -236)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 95 T ELT)) (-3711 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2369 (($ $) 93 (|has| |#1| (-1014)) ELT)) (-1354 (($ $) 84 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ (-1 (-85) |#1|) $) 99 T ELT) (($ |#1| $) 94 (|has| |#1| (-1014)) ELT)) (-3407 (($ |#1| $) 83 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) 55 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-695) |#1|) 74 T ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2857 (($ (-1 (-85) |#1| |#1|) $ $) 96 T ELT) (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3610 (($ |#1| $ (-485)) 98 T ELT) (($ $ $ (-485)) 97 T ELT)) (-2305 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) 46 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2200 (($ $ |#1|) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-1572 (($ $ (-485)) 101 T ELT) (($ $ (-1147 (-485))) 100 T ELT)) (-2306 (($ $ (-485)) 68 T ELT) (($ $ (-1147 (-485))) 67 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 85 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 76 T ELT)) (-3792 (($ $ |#1|) 103 T ELT) (($ $ $) 102 T ELT)) (-3803 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-237 |#1|) (-113) (-1130)) (T -237)) +((-3792 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)))) (-3792 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)))) (-1572 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-1572 (*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-3610 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-237 *2)) (-4 *2 (-1130)))) (-3610 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-2857 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-1571 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-3406 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-1014)))) (-2369 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-1014)))) (-2857 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-757))))) +(-13 (-594 |t#1|) (-1036 |t#1|) (-10 -8 (-15 -3792 ($ $ |t#1|)) (-15 -3792 ($ $ $)) (-15 -1572 ($ $ (-485))) (-15 -1572 ($ $ (-1147 (-485)))) (-15 -3406 ($ (-1 (-85) |t#1|) $)) (-15 -3610 ($ |t#1| $ (-485))) (-15 -3610 ($ $ $ (-485))) (-15 -2857 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1571 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -3406 ($ |t#1| $)) (-15 -2369 ($ $))) |%noBranch|) (IF (|has| |t#1| (-757)) (-15 -2857 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) ((** (($ $ $) 10 T ELT))) (((-238 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-239)) (T -238)) NIL -((-3942 (($ $) 6 T ELT)) (-3943 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) +((-3943 (($ $) 6 T ELT)) (-3944 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) (((-239) (-113)) (T -239)) -((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3943 (*1 *1 *1) (-4 *1 (-239))) (-3942 (*1 *1 *1) (-4 *1 (-239)))) -(-13 (-10 -8 (-15 -3942 ($ $)) (-15 -3943 ($ $)) (-15 ** ($ $ $)))) -((-1575 (((-583 (-1069 |#1|)) (-1069 |#1|) |#1|) 35 T ELT)) (-1572 ((|#2| |#2| |#1|) 39 T ELT)) (-1574 ((|#2| |#2| |#1|) 41 T ELT)) (-1573 ((|#2| |#2| |#1|) 40 T ELT))) -(((-240 |#1| |#2|) (-10 -7 (-15 -1572 (|#2| |#2| |#1|)) (-15 -1573 (|#2| |#2| |#1|)) (-15 -1574 (|#2| |#2| |#1|)) (-15 -1575 ((-583 (-1069 |#1|)) (-1069 |#1|) |#1|))) (-312) (-1172 |#1|)) (T -240)) -((-1575 (*1 *2 *3 *4) (-12 (-4 *4 (-312)) (-5 *2 (-583 (-1069 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1069 *4)) (-4 *5 (-1172 *4)))) (-1574 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3)))) (-1573 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3)))) (-1572 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3))))) -((-3800 ((|#2| $ |#1|) 6 T ELT))) -(((-241 |#1| |#2|) (-113) (-1129) (-1129)) (T -241)) -((-3800 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1129)) (-4 *2 (-1129))))) -(-13 (-1129) (-10 -8 (-15 -3800 (|t#2| $ |t#1|)))) -(((-13) . T) ((-1129) . T)) -((-1576 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3112 ((|#3| $ |#2|) 10 T ELT))) -(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1576 (|#3| |#1| |#2| |#3|)) (-15 -3112 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-1013) (-1129)) (T -242)) -NIL -((-3788 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3996)) ELT)) (-1576 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ |#1|) 11 T ELT)) (-3800 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) -(((-243 |#1| |#2|) (-113) (-1013) (-1129)) (T -243)) -((-3800 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1129)))) (-3112 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1129)))) (-3788 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1129)))) (-1576 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1129))))) -(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3800 (|t#2| $ |t#1| |t#2|)) (-15 -3112 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3996)) (PROGN (-15 -3788 (|t#2| $ |t#1| |t#2|)) (-15 -1576 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-241 |#1| |#2|) . T) ((-13) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 37 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 44 T ELT)) (-2063 (($ $) 41 T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2564 (($ $ $) 35 T ELT)) (-3842 (($ |#2| |#3|) 18 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2614 ((|#3| $) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 19 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2402 (((-3 $ #1#) $ $) NIL T ELT)) (-1607 (((-694) $) 36 T ELT)) (-3800 ((|#2| $ |#2|) 46 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 23 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 31 T CONST)) (-2666 (($) 39 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT))) -(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-258) (-241 |#2| |#2|) (-10 -8 (-15 -2614 (|#3| $)) (-15 -3946 (|#2| $)) (-15 -3842 ($ |#2| |#3|)) (-15 -2402 ((-3 $ #1="failed") $ $)) (-15 -3467 ((-3 $ #1#) $)) (-15 -2484 ($ $)))) (-146) (-1155 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244)) -((-3467 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2614 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1155 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3946 (*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3842 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1155 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2402 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2484 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) -((-3125 (((-85) $ $) 10 T ELT))) -(((-245 |#1|) (-10 -7 (-15 -3125 ((-85) |#1| |#1|))) (-246)) (T -245)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3944 (*1 *1 *1) (-4 *1 (-239))) (-3943 (*1 *1 *1) (-4 *1 (-239)))) +(-13 (-10 -8 (-15 -3943 ($ $)) (-15 -3944 ($ $)) (-15 ** ($ $ $)))) +((-1576 (((-584 (-1070 |#1|)) (-1070 |#1|) |#1|) 35 T ELT)) (-1573 ((|#2| |#2| |#1|) 39 T ELT)) (-1575 ((|#2| |#2| |#1|) 41 T ELT)) (-1574 ((|#2| |#2| |#1|) 40 T ELT))) +(((-240 |#1| |#2|) (-10 -7 (-15 -1573 (|#2| |#2| |#1|)) (-15 -1574 (|#2| |#2| |#1|)) (-15 -1575 (|#2| |#2| |#1|)) (-15 -1576 ((-584 (-1070 |#1|)) (-1070 |#1|) |#1|))) (-312) (-1173 |#1|)) (T -240)) +((-1576 (*1 *2 *3 *4) (-12 (-4 *4 (-312)) (-5 *2 (-584 (-1070 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1070 *4)) (-4 *5 (-1173 *4)))) (-1575 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3)))) (-1574 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3)))) (-1573 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3))))) +((-3801 ((|#2| $ |#1|) 6 T ELT))) +(((-241 |#1| |#2|) (-113) (-1130) (-1130)) (T -241)) +((-3801 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))) +(-13 (-1130) (-10 -8 (-15 -3801 (|t#2| $ |t#1|)))) +(((-13) . T) ((-1130) . T)) +((-1577 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3113 ((|#3| $ |#2|) 10 T ELT))) +(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1577 (|#3| |#1| |#2| |#3|)) (-15 -3113 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-1014) (-1130)) (T -242)) +NIL +((-3789 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3997)) ELT)) (-1577 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) 11 T ELT)) (-3801 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) +(((-243 |#1| |#2|) (-113) (-1014) (-1130)) (T -243)) +((-3801 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) (-3113 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) (-3789 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) (-1577 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130))))) +(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3801 (|t#2| $ |t#1| |t#2|)) (-15 -3113 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3997)) (PROGN (-15 -3789 (|t#2| $ |t#1| |t#2|)) (-15 -1577 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-241 |#1| |#2|) . T) ((-13) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 37 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 44 T ELT)) (-2064 (($ $) 41 T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) 35 T ELT)) (-3843 (($ |#2| |#3|) 18 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2615 ((|#3| $) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 19 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2403 (((-3 $ #1#) $ $) NIL T ELT)) (-1608 (((-695) $) 36 T ELT)) (-3801 ((|#2| $ |#2|) 46 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 23 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 31 T CONST)) (-2667 (($) 39 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT))) +(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-258) (-241 |#2| |#2|) (-10 -8 (-15 -2615 (|#3| $)) (-15 -3947 (|#2| $)) (-15 -3843 ($ |#2| |#3|)) (-15 -2403 ((-3 $ #1="failed") $ $)) (-15 -3468 ((-3 $ #1#) $)) (-15 -2485 ($ $)))) (-146) (-1156 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244)) +((-3468 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2615 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1156 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3947 (*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3843 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1156 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2403 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2485 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) +((-3126 (((-85) $ $) 10 T ELT))) +(((-245 |#1|) (-10 -7 (-15 -3126 ((-85) |#1| |#1|))) (-246)) (T -245)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-246) (-113)) (T -246)) NIL -(-13 (-961) (-82 $ $) (-10 -7 (-6 -3988))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-1584 (((-583 (-997)) $) 10 T ELT)) (-1582 (($ (-446) (-446) (-1015) $) 19 T ELT)) (-1580 (($ (-446) (-583 (-876)) $) 23 T ELT)) (-1578 (($) 25 T ELT)) (-1583 (((-632 (-1015)) (-446) (-446) $) 18 T ELT)) (-1581 (((-583 (-876)) (-446) $) 22 T ELT)) (-3565 (($) 7 T ELT)) (-1579 (($) 24 T ELT)) (-3946 (((-772) $) 29 T ELT)) (-1577 (($) 26 T ELT))) -(((-247) (-13 (-552 (-772)) (-10 -8 (-15 -3565 ($)) (-15 -1584 ((-583 (-997)) $)) (-15 -1583 ((-632 (-1015)) (-446) (-446) $)) (-15 -1582 ($ (-446) (-446) (-1015) $)) (-15 -1581 ((-583 (-876)) (-446) $)) (-15 -1580 ($ (-446) (-583 (-876)) $)) (-15 -1579 ($)) (-15 -1578 ($)) (-15 -1577 ($))))) (T -247)) -((-3565 (*1 *1) (-5 *1 (-247))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-583 (-997))) (-5 *1 (-247)))) (-1583 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-1015))) (-5 *1 (-247)))) (-1582 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-247)))) (-1581 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-583 (-876))) (-5 *1 (-247)))) (-1580 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-247)))) (-1579 (*1 *1) (-5 *1 (-247))) (-1578 (*1 *1) (-5 *1 (-247))) (-1577 (*1 *1) (-5 *1 (-247)))) -((-1588 (((-583 (-2 (|:| |eigval| (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (|:| |geneigvec| (-583 (-630 (-350 (-857 |#1|))))))) (-630 (-350 (-857 |#1|)))) 103 T ELT)) (-1587 (((-583 (-630 (-350 (-857 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-350 (-857 |#1|)))))) (-630 (-350 (-857 |#1|)))) 98 T ELT) (((-583 (-630 (-350 (-857 |#1|)))) (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|))) (-630 (-350 (-857 |#1|))) (-694) (-694)) 42 T ELT)) (-1589 (((-583 (-2 (|:| |eigval| (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-350 (-857 |#1|))))))) (-630 (-350 (-857 |#1|)))) 100 T ELT)) (-1586 (((-583 (-630 (-350 (-857 |#1|)))) (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|))) (-630 (-350 (-857 |#1|)))) 76 T ELT)) (-1585 (((-583 (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (-630 (-350 (-857 |#1|)))) 75 T ELT)) (-2449 (((-857 |#1|) (-630 (-350 (-857 |#1|)))) 56 T ELT) (((-857 |#1|) (-630 (-350 (-857 |#1|))) (-1090)) 57 T ELT))) -(((-248 |#1|) (-10 -7 (-15 -2449 ((-857 |#1|) (-630 (-350 (-857 |#1|))) (-1090))) (-15 -2449 ((-857 |#1|) (-630 (-350 (-857 |#1|))))) (-15 -1585 ((-583 (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (-630 (-350 (-857 |#1|))))) (-15 -1586 ((-583 (-630 (-350 (-857 |#1|)))) (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|))) (-630 (-350 (-857 |#1|))))) (-15 -1587 ((-583 (-630 (-350 (-857 |#1|)))) (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|))) (-630 (-350 (-857 |#1|))) (-694) (-694))) (-15 -1587 ((-583 (-630 (-350 (-857 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-350 (-857 |#1|)))))) (-630 (-350 (-857 |#1|))))) (-15 -1588 ((-583 (-2 (|:| |eigval| (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (|:| |geneigvec| (-583 (-630 (-350 (-857 |#1|))))))) (-630 (-350 (-857 |#1|))))) (-15 -1589 ((-583 (-2 (|:| |eigval| (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-350 (-857 |#1|))))))) (-630 (-350 (-857 |#1|)))))) (-392)) (T -248)) -((-1589 (*1 *2 *3) (-12 (-4 *4 (-392)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-350 (-857 *4)) (-1080 (-1090) (-857 *4)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-350 (-857 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-630 (-350 (-857 *4)))))) (-1588 (*1 *2 *3) (-12 (-4 *4 (-392)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-350 (-857 *4)) (-1080 (-1090) (-857 *4)))) (|:| |geneigvec| (-583 (-630 (-350 (-857 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-630 (-350 (-857 *4)))))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-350 (-857 *5)) (-1080 (-1090) (-857 *5)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-392)) (-5 *2 (-583 (-630 (-350 (-857 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-630 (-350 (-857 *5)))))) (-1587 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-350 (-857 *6)) (-1080 (-1090) (-857 *6)))) (-5 *5 (-694)) (-4 *6 (-392)) (-5 *2 (-583 (-630 (-350 (-857 *6))))) (-5 *1 (-248 *6)) (-5 *4 (-630 (-350 (-857 *6)))))) (-1586 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-350 (-857 *5)) (-1080 (-1090) (-857 *5)))) (-4 *5 (-392)) (-5 *2 (-583 (-630 (-350 (-857 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-630 (-350 (-857 *5)))))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-630 (-350 (-857 *4)))) (-4 *4 (-392)) (-5 *2 (-583 (-3 (-350 (-857 *4)) (-1080 (-1090) (-857 *4))))) (-5 *1 (-248 *4)))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-630 (-350 (-857 *4)))) (-5 *2 (-857 *4)) (-5 *1 (-248 *4)) (-4 *4 (-392)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-350 (-857 *5)))) (-5 *4 (-1090)) (-5 *2 (-857 *5)) (-5 *1 (-248 *5)) (-4 *5 (-392))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1595 (($ $) 12 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1604 (($ $ $) 95 (|has| |#1| (-254)) ELT)) (-3724 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-663))) CONST)) (-1593 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1591 (((-3 $ #1#) $) 62 (|has| |#1| (-663)) ELT)) (-3528 ((|#1| $) 11 T ELT)) (-3467 (((-3 $ #1#) $) 60 (|has| |#1| (-663)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2410 (((-85) $) NIL (|has| |#1| (-663)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3529 ((|#1| $) 10 T ELT)) (-1594 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1592 (((-3 $ #1#) $) 61 (|has| |#1| (-663)) ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-2484 (($ $) 64 (OR (|has| |#1| (-312)) (|has| |#1| (-413))) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1590 (((-583 $) $) 85 (|has| |#1| (-495)) ELT)) (-3768 (($ $ $) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 $)) 28 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-1090) |#1|) 17 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) 21 (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-3226 (($ |#1| |#1|) 9 T ELT)) (-3911 (((-107)) 90 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) 87 (|has| |#1| (-809 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-809 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-809 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-809 (-1090))) ELT)) (-3009 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-2435 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-3946 (($ (-484)) NIL (|has| |#1| (-961)) ELT) (((-85) $) 37 (|has| |#1| (-1013)) ELT) (((-772) $) 36 (|has| |#1| (-1013)) ELT)) (-3126 (((-694)) 67 (|has| |#1| (-961)) CONST)) (-1265 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3125 (((-85) $ $) NIL (|has| |#1| (-961)) ELT)) (-2660 (($) 47 (|has| |#1| (-21)) CONST)) (-2666 (($) 57 (|has| |#1| (-663)) CONST)) (-2669 (($ $ (-1090)) NIL (|has| |#1| (-809 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-809 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-809 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-809 (-1090))) ELT)) (-3056 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1013)) ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 92 (OR (|has| |#1| (-312)) (|has| |#1| (-413))) ELT)) (-3837 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3839 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-484)) NIL (|has| |#1| (-413)) ELT) (($ $ (-694)) NIL (|has| |#1| (-663)) ELT) (($ $ (-830)) NIL (|has| |#1| (-1025)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1025)) ELT) (($ |#1| $) 54 (|has| |#1| (-1025)) ELT) (($ $ $) 53 (|has| |#1| (-1025)) ELT) (($ (-484) $) 70 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-25)) ELT))) -(((-249 |#1|) (-13 (-1129) (-10 -8 (-15 -3056 ($ |#1| |#1|)) (-15 -3226 ($ |#1| |#1|)) (-15 -1595 ($ $)) (-15 -3529 (|#1| $)) (-15 -3528 (|#1| $)) (-15 -3958 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455 (-1090) |#1|)) (-6 (-455 (-1090) |#1|)) |%noBranch|) (IF (|has| |#1| (-1013)) (PROGN (-6 (-1013)) (-6 (-552 (-85))) (IF (|has| |#1| (-260 |#1|)) (PROGN (-15 -3768 ($ $ $)) (-15 -3768 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3839 ($ |#1| $)) (-15 -3839 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1594 ($ $)) (-15 -1593 ($ $)) (-15 -3837 ($ |#1| $)) (-15 -3837 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-663)) (PROGN (-6 (-663)) (-15 -1592 ((-3 $ #1="failed") $)) (-15 -1591 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-413)) (PROGN (-6 (-413)) (-15 -1592 ((-3 $ #1#) $)) (-15 -1591 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-654 |#1|)) |%noBranch|) (IF (|has| |#1| (-495)) (-15 -1590 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-809 (-1090))) (-6 (-809 (-1090))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-1187 |#1|)) (-15 -3949 ($ $ $)) (-15 -2484 ($ $))) |%noBranch|) (IF (|has| |#1| (-254)) (-15 -1604 ($ $ $)) |%noBranch|))) (-1129)) (T -249)) -((-3056 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) (-3226 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) (-1595 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) (-3529 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) (-3528 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-249 *3)))) (-3768 (*1 *1 *1 *1) (-12 (-4 *2 (-260 *2)) (-4 *2 (-1013)) (-4 *2 (-1129)) (-5 *1 (-249 *2)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1013)) (-4 *3 (-1129)) (-5 *1 (-249 *3)))) (-3839 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1129)))) (-3839 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1129)))) (-1594 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))) (-1593 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))) (-3837 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))) (-3837 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))) (-1592 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1129)))) (-1591 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1129)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-583 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-495)) (-4 *3 (-1129)))) (-1604 (*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1129)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1129)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1129)))) (-3949 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1129))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1129))))) (-2484 (*1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1129))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1129)))))) -((-3958 (((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)) 14 T ELT))) -(((-250 |#1| |#2|) (-10 -7 (-15 -3958 ((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)))) (-1129) (-1129)) (T -250)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6))))) -((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3801 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3530 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3946 (((-772) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-251 |#1| |#2|) (-1107 |#1| |#2|) (-1013) (-1013)) (T -251)) -NIL -((-1596 (((-262) (-1073) (-583 (-1073))) 17 T ELT) (((-262) (-1073) (-1073)) 16 T ELT) (((-262) (-583 (-1073))) 15 T ELT) (((-262) (-1073)) 14 T ELT))) -(((-252) (-10 -7 (-15 -1596 ((-262) (-1073))) (-15 -1596 ((-262) (-583 (-1073)))) (-15 -1596 ((-262) (-1073) (-1073))) (-15 -1596 ((-262) (-1073) (-583 (-1073)))))) (T -252)) -((-1596 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1596 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-262)) (-5 *1 (-252)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252))))) -((-1600 (((-583 (-550 $)) $) 27 T ELT)) (-1604 (($ $ (-249 $)) 78 T ELT) (($ $ (-583 (-249 $))) 140 T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3157 (((-3 (-550 $) #1="failed") $) 128 T ELT)) (-3156 (((-550 $) $) 127 T ELT)) (-2573 (($ $) 17 T ELT) (($ (-583 $)) 54 T ELT)) (-1599 (((-583 (-86)) $) 35 T ELT)) (-3595 (((-86) (-86)) 89 T ELT)) (-2673 (((-85) $) 151 T ELT)) (-3958 (($ (-1 $ $) (-550 $)) 87 T ELT)) (-1602 (((-3 (-550 $) #1#) $) 95 T ELT)) (-2235 (($ (-86) $) 59 T ELT) (($ (-86) (-583 $)) 111 T ELT)) (-2633 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1090)) 132 T ELT)) (-2603 (((-694) $) 44 T ELT)) (-1598 (((-85) $ $) 57 T ELT) (((-85) $ (-1090)) 49 T ELT)) (-2674 (((-85) $) 149 T ELT)) (-3768 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) 138 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) 81 T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1090) (-1 $ (-583 $))) 67 T ELT) (($ $ (-1090) (-1 $ $)) 72 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 80 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-583 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3800 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-583 $)) 124 T ELT)) (-1603 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2590 (($ $) 15 T ELT) (($ (-583 $)) 53 T ELT)) (-2254 (((-85) (-86)) 21 T ELT))) -(((-253 |#1|) (-10 -7 (-15 -2673 ((-85) |#1|)) (-15 -2674 ((-85) |#1|)) (-15 -3768 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3768 (|#1| |#1| (-86) (-1 |#1| (-583 |#1|)))) (-15 -3768 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3768 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| |#1|)))) (-15 -3768 (|#1| |#1| (-1090) (-1 |#1| |#1|))) (-15 -3768 (|#1| |#1| (-1090) (-1 |#1| (-583 |#1|)))) (-15 -3768 (|#1| |#1| (-583 (-1090)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3768 (|#1| |#1| (-583 (-1090)) (-583 (-1 |#1| |#1|)))) (-15 -1598 ((-85) |#1| (-1090))) (-15 -1598 ((-85) |#1| |#1|)) (-15 -3958 (|#1| (-1 |#1| |#1|) (-550 |#1|))) (-15 -2235 (|#1| (-86) (-583 |#1|))) (-15 -2235 (|#1| (-86) |#1|)) (-15 -2633 ((-85) |#1| (-1090))) (-15 -2633 ((-85) |#1| (-86))) (-15 -2254 ((-85) (-86))) (-15 -3595 ((-86) (-86))) (-15 -1599 ((-583 (-86)) |#1|)) (-15 -1600 ((-583 (-550 |#1|)) |#1|)) (-15 -1602 ((-3 (-550 |#1|) #1="failed") |#1|)) (-15 -2603 ((-694) |#1|)) (-15 -1603 (|#1| |#1| |#1|)) (-15 -1603 (|#1| |#1|)) (-15 -2573 (|#1| (-583 |#1|))) (-15 -2573 (|#1| |#1|)) (-15 -2590 (|#1| (-583 |#1|))) (-15 -2590 (|#1| |#1|)) (-15 -1604 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -1604 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -1604 (|#1| |#1| (-249 |#1|))) (-15 -3800 (|#1| (-86) (-583 |#1|))) (-15 -3800 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3800 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3800 (|#1| (-86) |#1| |#1|)) (-15 -3800 (|#1| (-86) |#1|)) (-15 -3768 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3768 (|#1| |#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| (-249 |#1|))) (-15 -3768 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3768 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -3768 (|#1| |#1| (-550 |#1|) |#1|)) (-15 -3157 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -3156 ((-550 |#1|) |#1|))) (-254)) (T -253)) -((-3595 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254))))) -((-2568 (((-85) $ $) 7 T ELT)) (-1600 (((-583 (-550 $)) $) 42 T ELT)) (-1604 (($ $ (-249 $)) 54 T ELT) (($ $ (-583 (-249 $))) 53 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 52 T ELT)) (-3157 (((-3 (-550 $) "failed") $) 67 T ELT)) (-3156 (((-550 $) $) 68 T ELT)) (-2573 (($ $) 49 T ELT) (($ (-583 $)) 48 T ELT)) (-1599 (((-583 (-86)) $) 41 T ELT)) (-3595 (((-86) (-86)) 40 T ELT)) (-2673 (((-85) $) 20 (|has| $ (-950 (-484))) ELT)) (-1597 (((-1085 $) (-550 $)) 23 (|has| $ (-961)) ELT)) (-3958 (($ (-1 $ $) (-550 $)) 34 T ELT)) (-1602 (((-3 (-550 $) "failed") $) 44 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-1601 (((-583 (-550 $)) $) 43 T ELT)) (-2235 (($ (-86) $) 36 T ELT) (($ (-86) (-583 $)) 35 T ELT)) (-2633 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1090)) 37 T ELT)) (-2603 (((-694) $) 45 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1598 (((-85) $ $) 33 T ELT) (((-85) $ (-1090)) 32 T ELT)) (-2674 (((-85) $) 21 (|has| $ (-950 (-484))) ELT)) (-3768 (($ $ (-550 $) $) 65 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 64 T ELT) (($ $ (-583 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-583 $) (-583 $)) 60 T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) 31 T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) 30 T ELT) (($ $ (-1090) (-1 $ (-583 $))) 29 T ELT) (($ $ (-1090) (-1 $ $)) 28 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 27 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-583 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3800 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-583 $)) 55 T ELT)) (-1603 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3185 (($ $) 22 (|has| $ (-961)) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-550 $)) 66 T ELT)) (-2590 (($ $) 51 T ELT) (($ (-583 $)) 50 T ELT)) (-2254 (((-85) (-86)) 39 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +(-13 (-962) (-82 $ $) (-10 -7 (-6 -3989))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-1585 (((-584 (-998)) $) 10 T ELT)) (-1583 (($ (-447) (-447) (-1016) $) 19 T ELT)) (-1581 (($ (-447) (-584 (-877)) $) 23 T ELT)) (-1579 (($) 25 T ELT)) (-1584 (((-633 (-1016)) (-447) (-447) $) 18 T ELT)) (-1582 (((-584 (-877)) (-447) $) 22 T ELT)) (-3566 (($) 7 T ELT)) (-1580 (($) 24 T ELT)) (-3947 (((-773) $) 29 T ELT)) (-1578 (($) 26 T ELT))) +(((-247) (-13 (-553 (-773)) (-10 -8 (-15 -3566 ($)) (-15 -1585 ((-584 (-998)) $)) (-15 -1584 ((-633 (-1016)) (-447) (-447) $)) (-15 -1583 ($ (-447) (-447) (-1016) $)) (-15 -1582 ((-584 (-877)) (-447) $)) (-15 -1581 ($ (-447) (-584 (-877)) $)) (-15 -1580 ($)) (-15 -1579 ($)) (-15 -1578 ($))))) (T -247)) +((-3566 (*1 *1) (-5 *1 (-247))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-584 (-998))) (-5 *1 (-247)))) (-1584 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-1016))) (-5 *1 (-247)))) (-1583 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-247)))) (-1582 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-584 (-877))) (-5 *1 (-247)))) (-1581 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-247)))) (-1580 (*1 *1) (-5 *1 (-247))) (-1579 (*1 *1) (-5 *1 (-247))) (-1578 (*1 *1) (-5 *1 (-247)))) +((-1589 (((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |geneigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|)))) 103 T ELT)) (-1588 (((-584 (-631 (-350 (-858 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|)))))) (-631 (-350 (-858 |#1|)))) 98 T ELT) (((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-350 (-858 |#1|))) (-695) (-695)) 42 T ELT)) (-1590 (((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|)))) 100 T ELT)) (-1587 (((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-350 (-858 |#1|)))) 76 T ELT)) (-1586 (((-584 (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (-631 (-350 (-858 |#1|)))) 75 T ELT)) (-2450 (((-858 |#1|) (-631 (-350 (-858 |#1|)))) 56 T ELT) (((-858 |#1|) (-631 (-350 (-858 |#1|))) (-1091)) 57 T ELT))) +(((-248 |#1|) (-10 -7 (-15 -2450 ((-858 |#1|) (-631 (-350 (-858 |#1|))) (-1091))) (-15 -2450 ((-858 |#1|) (-631 (-350 (-858 |#1|))))) (-15 -1586 ((-584 (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (-631 (-350 (-858 |#1|))))) (-15 -1587 ((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-350 (-858 |#1|))))) (-15 -1588 ((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-350 (-858 |#1|))) (-695) (-695))) (-15 -1588 ((-584 (-631 (-350 (-858 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|)))))) (-631 (-350 (-858 |#1|))))) (-15 -1589 ((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |geneigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|))))) (-15 -1590 ((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|)))))) (-392)) (T -248)) +((-1590 (*1 *2 *3) (-12 (-4 *4 (-392)) (-5 *2 (-584 (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4)))))) (-1589 (*1 *2 *3) (-12 (-4 *4 (-392)) (-5 *2 (-584 (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4)))) (|:| |geneigvec| (-584 (-631 (-350 (-858 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4)))))) (-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-350 (-858 *5)) (-1081 (-1091) (-858 *5)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 *4)))) (-4 *5 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-631 (-350 (-858 *5)))))) (-1588 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-350 (-858 *6)) (-1081 (-1091) (-858 *6)))) (-5 *5 (-695)) (-4 *6 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *6))))) (-5 *1 (-248 *6)) (-5 *4 (-631 (-350 (-858 *6)))))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-350 (-858 *5)) (-1081 (-1091) (-858 *5)))) (-4 *5 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-631 (-350 (-858 *5)))))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-4 *4 (-392)) (-5 *2 (-584 (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4))))) (-5 *1 (-248 *4)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-5 *2 (-858 *4)) (-5 *1 (-248 *4)) (-4 *4 (-392)))) (-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-858 *5)))) (-5 *4 (-1091)) (-5 *2 (-858 *5)) (-5 *1 (-248 *5)) (-4 *5 (-392))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1596 (($ $) 12 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1605 (($ $ $) 95 (|has| |#1| (-254)) ELT)) (-3725 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-664))) CONST)) (-1594 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1592 (((-3 $ #1#) $) 62 (|has| |#1| (-664)) ELT)) (-3529 ((|#1| $) 11 T ELT)) (-3468 (((-3 $ #1#) $) 60 (|has| |#1| (-664)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2411 (((-85) $) NIL (|has| |#1| (-664)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3530 ((|#1| $) 10 T ELT)) (-1595 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1593 (((-3 $ #1#) $) 61 (|has| |#1| (-664)) ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2485 (($ $) 64 (OR (|has| |#1| (-312)) (|has| |#1| (-413))) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1591 (((-584 $) $) 85 (|has| |#1| (-496)) ELT)) (-3769 (($ $ $) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 $)) 28 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-1091) |#1|) 17 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 21 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3227 (($ |#1| |#1|) 9 T ELT)) (-3912 (((-107)) 90 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) 87 (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-810 (-1091))) ELT)) (-3010 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-2436 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-3947 (($ (-485)) NIL (|has| |#1| (-962)) ELT) (((-85) $) 37 (|has| |#1| (-1014)) ELT) (((-773) $) 36 (|has| |#1| (-1014)) ELT)) (-3127 (((-695)) 67 (|has| |#1| (-962)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3126 (((-85) $ $) NIL (|has| |#1| (-962)) ELT)) (-2661 (($) 47 (|has| |#1| (-21)) CONST)) (-2667 (($) 57 (|has| |#1| (-664)) CONST)) (-2670 (($ $ (-1091)) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-810 (-1091))) ELT)) (-3057 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1014)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 92 (OR (|has| |#1| (-312)) (|has| |#1| (-413))) ELT)) (-3838 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3840 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-485)) NIL (|has| |#1| (-413)) ELT) (($ $ (-695)) NIL (|has| |#1| (-664)) ELT) (($ $ (-831)) NIL (|has| |#1| (-1026)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1026)) ELT) (($ |#1| $) 54 (|has| |#1| (-1026)) ELT) (($ $ $) 53 (|has| |#1| (-1026)) ELT) (($ (-485) $) 70 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-25)) ELT))) +(((-249 |#1|) (-13 (-1130) (-10 -8 (-15 -3057 ($ |#1| |#1|)) (-15 -3227 ($ |#1| |#1|)) (-15 -1596 ($ $)) (-15 -3530 (|#1| $)) (-15 -3529 (|#1| $)) (-15 -3959 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-456 (-1091) |#1|)) (-6 (-456 (-1091) |#1|)) |%noBranch|) (IF (|has| |#1| (-1014)) (PROGN (-6 (-1014)) (-6 (-553 (-85))) (IF (|has| |#1| (-260 |#1|)) (PROGN (-15 -3769 ($ $ $)) (-15 -3769 ($ $ (-584 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3840 ($ |#1| $)) (-15 -3840 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1595 ($ $)) (-15 -1594 ($ $)) (-15 -3838 ($ |#1| $)) (-15 -3838 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1026)) (PROGN (-6 (-1026)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-664)) (PROGN (-6 (-664)) (-15 -1593 ((-3 $ #1="failed") $)) (-15 -1592 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-413)) (PROGN (-6 (-413)) (-15 -1593 ((-3 $ #1#) $)) (-15 -1592 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-6 (-962)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-655 |#1|)) |%noBranch|) (IF (|has| |#1| (-496)) (-15 -1591 ((-584 $) $)) |%noBranch|) (IF (|has| |#1| (-810 (-1091))) (-6 (-810 (-1091))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-1188 |#1|)) (-15 -3950 ($ $ $)) (-15 -2485 ($ $))) |%noBranch|) (IF (|has| |#1| (-254)) (-15 -1605 ($ $ $)) |%noBranch|))) (-1130)) (T -249)) +((-3057 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3227 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-1596 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3530 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3529 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-249 *3)))) (-3769 (*1 *1 *1 *1) (-12 (-4 *2 (-260 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)) (-5 *1 (-249 *2)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)) (-5 *1 (-249 *3)))) (-3840 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130)))) (-3840 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130)))) (-1595 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-1594 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-3838 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-3838 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-1593 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1130)))) (-1592 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1130)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-584 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-496)) (-4 *3 (-1130)))) (-1605 (*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1130)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1130)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1130)))) (-3950 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1130))))) (-2485 (*1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1130)))))) +((-3959 (((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)) 14 T ELT))) +(((-250 |#1| |#2|) (-10 -7 (-15 -3959 ((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)))) (-1130) (-1130)) (T -250)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6))))) +((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-72))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3531 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-773) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-251 |#1| |#2|) (-1108 |#1| |#2|) (-1014) (-1014)) (T -251)) +NIL +((-1597 (((-262) (-1074) (-584 (-1074))) 17 T ELT) (((-262) (-1074) (-1074)) 16 T ELT) (((-262) (-584 (-1074))) 15 T ELT) (((-262) (-1074)) 14 T ELT))) +(((-252) (-10 -7 (-15 -1597 ((-262) (-1074))) (-15 -1597 ((-262) (-584 (-1074)))) (-15 -1597 ((-262) (-1074) (-1074))) (-15 -1597 ((-262) (-1074) (-584 (-1074)))))) (T -252)) +((-1597 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1074))) (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1597 (*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-262)) (-5 *1 (-252)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252))))) +((-1601 (((-584 (-551 $)) $) 27 T ELT)) (-1605 (($ $ (-249 $)) 78 T ELT) (($ $ (-584 (-249 $))) 140 T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3158 (((-3 (-551 $) #1="failed") $) 128 T ELT)) (-3157 (((-551 $) $) 127 T ELT)) (-2574 (($ $) 17 T ELT) (($ (-584 $)) 54 T ELT)) (-1600 (((-584 (-86)) $) 35 T ELT)) (-3596 (((-86) (-86)) 89 T ELT)) (-2674 (((-85) $) 151 T ELT)) (-3959 (($ (-1 $ $) (-551 $)) 87 T ELT)) (-1603 (((-3 (-551 $) #1#) $) 95 T ELT)) (-2236 (($ (-86) $) 59 T ELT) (($ (-86) (-584 $)) 111 T ELT)) (-2634 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1091)) 132 T ELT)) (-2604 (((-695) $) 44 T ELT)) (-1599 (((-85) $ $) 57 T ELT) (((-85) $ (-1091)) 49 T ELT)) (-2675 (((-85) $) 149 T ELT)) (-3769 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) 138 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 81 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) 67 T ELT) (($ $ (-1091) (-1 $ $)) 72 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 80 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-584 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3801 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-584 $)) 124 T ELT)) (-1604 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2591 (($ $) 15 T ELT) (($ (-584 $)) 53 T ELT)) (-2255 (((-85) (-86)) 21 T ELT))) +(((-253 |#1|) (-10 -7 (-15 -2674 ((-85) |#1|)) (-15 -2675 ((-85) |#1|)) (-15 -3769 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3769 (|#1| |#1| (-86) (-1 |#1| (-584 |#1|)))) (-15 -3769 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3769 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| |#1|)))) (-15 -3769 (|#1| |#1| (-1091) (-1 |#1| |#1|))) (-15 -3769 (|#1| |#1| (-1091) (-1 |#1| (-584 |#1|)))) (-15 -3769 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3769 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| |#1|)))) (-15 -1599 ((-85) |#1| (-1091))) (-15 -1599 ((-85) |#1| |#1|)) (-15 -3959 (|#1| (-1 |#1| |#1|) (-551 |#1|))) (-15 -2236 (|#1| (-86) (-584 |#1|))) (-15 -2236 (|#1| (-86) |#1|)) (-15 -2634 ((-85) |#1| (-1091))) (-15 -2634 ((-85) |#1| (-86))) (-15 -2255 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 -1600 ((-584 (-86)) |#1|)) (-15 -1601 ((-584 (-551 |#1|)) |#1|)) (-15 -1603 ((-3 (-551 |#1|) #1="failed") |#1|)) (-15 -2604 ((-695) |#1|)) (-15 -1604 (|#1| |#1| |#1|)) (-15 -1604 (|#1| |#1|)) (-15 -2574 (|#1| (-584 |#1|))) (-15 -2574 (|#1| |#1|)) (-15 -2591 (|#1| (-584 |#1|))) (-15 -2591 (|#1| |#1|)) (-15 -1605 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -1605 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -1605 (|#1| |#1| (-249 |#1|))) (-15 -3801 (|#1| (-86) (-584 |#1|))) (-15 -3801 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1|)) (-15 -3769 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3769 (|#1| |#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| (-249 |#1|))) (-15 -3769 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3769 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -3769 (|#1| |#1| (-551 |#1|) |#1|)) (-15 -3158 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -3157 ((-551 |#1|) |#1|))) (-254)) (T -253)) +((-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254))))) +((-2569 (((-85) $ $) 7 T ELT)) (-1601 (((-584 (-551 $)) $) 42 T ELT)) (-1605 (($ $ (-249 $)) 54 T ELT) (($ $ (-584 (-249 $))) 53 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 52 T ELT)) (-3158 (((-3 (-551 $) "failed") $) 67 T ELT)) (-3157 (((-551 $) $) 68 T ELT)) (-2574 (($ $) 49 T ELT) (($ (-584 $)) 48 T ELT)) (-1600 (((-584 (-86)) $) 41 T ELT)) (-3596 (((-86) (-86)) 40 T ELT)) (-2674 (((-85) $) 20 (|has| $ (-951 (-485))) ELT)) (-1598 (((-1086 $) (-551 $)) 23 (|has| $ (-962)) ELT)) (-3959 (($ (-1 $ $) (-551 $)) 34 T ELT)) (-1603 (((-3 (-551 $) "failed") $) 44 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-1602 (((-584 (-551 $)) $) 43 T ELT)) (-2236 (($ (-86) $) 36 T ELT) (($ (-86) (-584 $)) 35 T ELT)) (-2634 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1091)) 37 T ELT)) (-2604 (((-695) $) 45 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1599 (((-85) $ $) 33 T ELT) (((-85) $ (-1091)) 32 T ELT)) (-2675 (((-85) $) 21 (|has| $ (-951 (-485))) ELT)) (-3769 (($ $ (-551 $) $) 65 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 64 T ELT) (($ $ (-584 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-584 $) (-584 $)) 60 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 31 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 30 T ELT) (($ $ (-1091) (-1 $ (-584 $))) 29 T ELT) (($ $ (-1091) (-1 $ $)) 28 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 27 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-584 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3801 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-584 $)) 55 T ELT)) (-1604 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3186 (($ $) 22 (|has| $ (-962)) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-551 $)) 66 T ELT)) (-2591 (($ $) 51 T ELT) (($ (-584 $)) 50 T ELT)) (-2255 (((-85) (-86)) 39 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) (((-254) (-113)) (T -254)) -((-3800 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3800 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3800 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3800 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3800 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254)))) (-1604 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254)))) (-1604 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *1))) (-4 *1 (-254)))) (-1604 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-550 *1))) (-5 *3 (-583 *1)) (-4 *1 (-254)))) (-2590 (*1 *1 *1) (-4 *1 (-254))) (-2590 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254)))) (-2573 (*1 *1 *1) (-4 *1 (-254))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254)))) (-1603 (*1 *1 *1) (-4 *1 (-254))) (-1603 (*1 *1 *1 *1) (-4 *1 (-254))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-694)))) (-1602 (*1 *2 *1) (|partial| -12 (-5 *2 (-550 *1)) (-4 *1 (-254)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254)))) (-1599 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-583 (-86))))) (-3595 (*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2254 (*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2633 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2633 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1090)) (-5 *2 (-85)))) (-2235 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2235 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254)))) (-3958 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-550 *1)) (-4 *1 (-254)))) (-1598 (*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85)))) (-1598 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1090)) (-5 *2 (-85)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-550 *1)) (-4 *1 (-961)) (-4 *1 (-254)) (-5 *2 (-1085 *1)))) (-3185 (*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-254)))) (-2674 (*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85))))) -(-13 (-1013) (-950 (-550 $)) (-455 (-550 $) $) (-260 $) (-10 -8 (-15 -3800 ($ (-86) $)) (-15 -3800 ($ (-86) $ $)) (-15 -3800 ($ (-86) $ $ $)) (-15 -3800 ($ (-86) $ $ $ $)) (-15 -3800 ($ (-86) (-583 $))) (-15 -1604 ($ $ (-249 $))) (-15 -1604 ($ $ (-583 (-249 $)))) (-15 -1604 ($ $ (-583 (-550 $)) (-583 $))) (-15 -2590 ($ $)) (-15 -2590 ($ (-583 $))) (-15 -2573 ($ $)) (-15 -2573 ($ (-583 $))) (-15 -1603 ($ $)) (-15 -1603 ($ $ $)) (-15 -2603 ((-694) $)) (-15 -1602 ((-3 (-550 $) "failed") $)) (-15 -1601 ((-583 (-550 $)) $)) (-15 -1600 ((-583 (-550 $)) $)) (-15 -1599 ((-583 (-86)) $)) (-15 -3595 ((-86) (-86))) (-15 -2254 ((-85) (-86))) (-15 -2633 ((-85) $ (-86))) (-15 -2633 ((-85) $ (-1090))) (-15 -2235 ($ (-86) $)) (-15 -2235 ($ (-86) (-583 $))) (-15 -3958 ($ (-1 $ $) (-550 $))) (-15 -1598 ((-85) $ $)) (-15 -1598 ((-85) $ (-1090))) (-15 -3768 ($ $ (-583 (-1090)) (-583 (-1 $ $)))) (-15 -3768 ($ $ (-583 (-1090)) (-583 (-1 $ (-583 $))))) (-15 -3768 ($ $ (-1090) (-1 $ (-583 $)))) (-15 -3768 ($ $ (-1090) (-1 $ $))) (-15 -3768 ($ $ (-583 (-86)) (-583 (-1 $ $)))) (-15 -3768 ($ $ (-583 (-86)) (-583 (-1 $ (-583 $))))) (-15 -3768 ($ $ (-86) (-1 $ (-583 $)))) (-15 -3768 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-961)) (PROGN (-15 -1597 ((-1085 $) (-550 $))) (-15 -3185 ($ $))) |%noBranch|) (IF (|has| $ (-950 (-484))) (PROGN (-15 -2674 ((-85) $)) (-15 -2673 ((-85) $))) |%noBranch|))) -(((-72) . T) ((-555 (-550 $)) . T) ((-552 (-772)) . T) ((-260 $) . T) ((-455 (-550 $) $) . T) ((-455 $ $) . T) ((-13) . T) ((-950 (-550 $)) . T) ((-1013) . T) ((-1129) . T)) -((-3958 ((|#2| (-1 |#2| |#1|) (-1073) (-550 |#1|)) 18 T ELT))) -(((-255 |#1| |#2|) (-10 -7 (-15 -3958 (|#2| (-1 |#2| |#1|) (-1073) (-550 |#1|)))) (-254) (-1129)) (T -255)) -((-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1073)) (-5 *5 (-550 *6)) (-4 *6 (-254)) (-4 *2 (-1129)) (-5 *1 (-255 *6 *2))))) -((-3958 ((|#2| (-1 |#2| |#1|) (-550 |#1|)) 17 T ELT))) -(((-256 |#1| |#2|) (-10 -7 (-15 -3958 (|#2| (-1 |#2| |#1|) (-550 |#1|)))) (-254) (-254)) (T -256)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-550 *5)) (-4 *5 (-254)) (-4 *2 (-254)) (-5 *1 (-256 *5 *2))))) -((-1608 (((-85) $ $) 14 T ELT)) (-2564 (($ $ $) 18 T ELT)) (-2563 (($ $ $) 17 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 50 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 67 T ELT)) (-3144 (($ $ $) 25 T ELT) (($ (-583 $)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3466 (((-3 $ #1#) $ $) 21 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 55 T ELT))) -(((-257 |#1|) (-10 -7 (-15 -1605 ((-3 (-583 |#1|) #1="failed") (-583 |#1|) |#1|)) (-15 -1606 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1606 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2409 |#1|)) |#1| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -1608 ((-85) |#1| |#1|)) (-15 -2740 ((-632 (-583 |#1|)) (-583 |#1|) |#1|)) (-15 -2741 ((-2 (|:| -3954 (-583 |#1|)) (|:| -2409 |#1|)) (-583 |#1|))) (-15 -3144 (|#1| (-583 |#1|))) (-15 -3144 (|#1| |#1| |#1|)) (-15 -3466 ((-3 |#1| #1#) |#1| |#1|))) (-258)) (T -257)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3724 (($) 23 T CONST)) (-2564 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1605 (((-3 (-583 $) "failed") (-583 $) $) 68 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-3801 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3801 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3801 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3801 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3801 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *1))) (-4 *1 (-254)))) (-1605 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-551 *1))) (-5 *3 (-584 *1)) (-4 *1 (-254)))) (-2591 (*1 *1 *1) (-4 *1 (-254))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254)))) (-2574 (*1 *1 *1) (-4 *1 (-254))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254)))) (-1604 (*1 *1 *1) (-4 *1 (-254))) (-1604 (*1 *1 *1 *1) (-4 *1 (-254))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-695)))) (-1603 (*1 *2 *1) (|partial| -12 (-5 *2 (-551 *1)) (-4 *1 (-254)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254)))) (-1600 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-584 (-86))))) (-3596 (*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2255 (*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2634 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2634 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85)))) (-2236 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2236 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254)))) (-3959 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-551 *1)) (-4 *1 (-254)))) (-1599 (*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85)))) (-1599 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-551 *1)) (-4 *1 (-962)) (-4 *1 (-254)) (-5 *2 (-1086 *1)))) (-3186 (*1 *1 *1) (-12 (-4 *1 (-962)) (-4 *1 (-254)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85)))) (-2674 (*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85))))) +(-13 (-1014) (-951 (-551 $)) (-456 (-551 $) $) (-260 $) (-10 -8 (-15 -3801 ($ (-86) $)) (-15 -3801 ($ (-86) $ $)) (-15 -3801 ($ (-86) $ $ $)) (-15 -3801 ($ (-86) $ $ $ $)) (-15 -3801 ($ (-86) (-584 $))) (-15 -1605 ($ $ (-249 $))) (-15 -1605 ($ $ (-584 (-249 $)))) (-15 -1605 ($ $ (-584 (-551 $)) (-584 $))) (-15 -2591 ($ $)) (-15 -2591 ($ (-584 $))) (-15 -2574 ($ $)) (-15 -2574 ($ (-584 $))) (-15 -1604 ($ $)) (-15 -1604 ($ $ $)) (-15 -2604 ((-695) $)) (-15 -1603 ((-3 (-551 $) "failed") $)) (-15 -1602 ((-584 (-551 $)) $)) (-15 -1601 ((-584 (-551 $)) $)) (-15 -1600 ((-584 (-86)) $)) (-15 -3596 ((-86) (-86))) (-15 -2255 ((-85) (-86))) (-15 -2634 ((-85) $ (-86))) (-15 -2634 ((-85) $ (-1091))) (-15 -2236 ($ (-86) $)) (-15 -2236 ($ (-86) (-584 $))) (-15 -3959 ($ (-1 $ $) (-551 $))) (-15 -1599 ((-85) $ $)) (-15 -1599 ((-85) $ (-1091))) (-15 -3769 ($ $ (-584 (-1091)) (-584 (-1 $ $)))) (-15 -3769 ($ $ (-584 (-1091)) (-584 (-1 $ (-584 $))))) (-15 -3769 ($ $ (-1091) (-1 $ (-584 $)))) (-15 -3769 ($ $ (-1091) (-1 $ $))) (-15 -3769 ($ $ (-584 (-86)) (-584 (-1 $ $)))) (-15 -3769 ($ $ (-584 (-86)) (-584 (-1 $ (-584 $))))) (-15 -3769 ($ $ (-86) (-1 $ (-584 $)))) (-15 -3769 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-962)) (PROGN (-15 -1598 ((-1086 $) (-551 $))) (-15 -3186 ($ $))) |%noBranch|) (IF (|has| $ (-951 (-485))) (PROGN (-15 -2675 ((-85) $)) (-15 -2674 ((-85) $))) |%noBranch|))) +(((-72) . T) ((-556 (-551 $)) . T) ((-553 (-773)) . T) ((-260 $) . T) ((-456 (-551 $) $) . T) ((-456 $ $) . T) ((-13) . T) ((-951 (-551 $)) . T) ((-1014) . T) ((-1130) . T)) +((-3959 ((|#2| (-1 |#2| |#1|) (-1074) (-551 |#1|)) 18 T ELT))) +(((-255 |#1| |#2|) (-10 -7 (-15 -3959 (|#2| (-1 |#2| |#1|) (-1074) (-551 |#1|)))) (-254) (-1130)) (T -255)) +((-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1074)) (-5 *5 (-551 *6)) (-4 *6 (-254)) (-4 *2 (-1130)) (-5 *1 (-255 *6 *2))))) +((-3959 ((|#2| (-1 |#2| |#1|) (-551 |#1|)) 17 T ELT))) +(((-256 |#1| |#2|) (-10 -7 (-15 -3959 (|#2| (-1 |#2| |#1|) (-551 |#1|)))) (-254) (-254)) (T -256)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-551 *5)) (-4 *5 (-254)) (-4 *2 (-254)) (-5 *1 (-256 *5 *2))))) +((-1609 (((-85) $ $) 14 T ELT)) (-2565 (($ $ $) 18 T ELT)) (-2564 (($ $ $) 17 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 50 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 67 T ELT)) (-3145 (($ $ $) 25 T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3467 (((-3 $ #1#) $ $) 21 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 55 T ELT))) +(((-257 |#1|) (-10 -7 (-15 -1606 ((-3 (-584 |#1|) #1="failed") (-584 |#1|) |#1|)) (-15 -1607 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1607 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2410 |#1|)) |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -1609 ((-85) |#1| |#1|)) (-15 -2741 ((-633 (-584 |#1|)) (-584 |#1|) |#1|)) (-15 -2742 ((-2 (|:| -3955 (-584 |#1|)) (|:| -2410 |#1|)) (-584 |#1|))) (-15 -3145 (|#1| (-584 |#1|))) (-15 -3145 (|#1| |#1| |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1| |#1|))) (-258)) (T -257)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1606 (((-3 (-584 $) "failed") (-584 $) $) 68 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-258) (-113)) (T -258)) -((-1608 (*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85)))) (-1607 (*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-694)))) (-2879 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-258)))) (-2563 (*1 *1 *1 *1) (-4 *1 (-258))) (-2564 (*1 *1 *1 *1) (-4 *1 (-258))) (-1606 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) (-4 *1 (-258)))) (-1606 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-258)))) (-1605 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-258))))) -(-13 (-832) (-10 -8 (-15 -1608 ((-85) $ $)) (-15 -1607 ((-694) $)) (-15 -2879 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -2563 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -1606 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $)) (-15 -1606 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1605 ((-3 (-583 $) "failed") (-583 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-3768 (($ $ (-583 |#2|) (-583 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-249 |#2|)) 11 T ELT) (($ $ (-583 (-249 |#2|))) NIL T ELT))) -(((-259 |#1| |#2|) (-10 -7 (-15 -3768 (|#1| |#1| (-583 (-249 |#2|)))) (-15 -3768 (|#1| |#1| (-249 |#2|))) (-15 -3768 (|#1| |#1| |#2| |#2|)) (-15 -3768 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) (-260 |#2|) (-1013)) (T -259)) -NIL -((-3768 (($ $ (-583 |#1|) (-583 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-249 |#1|)) 13 T ELT) (($ $ (-583 (-249 |#1|))) 12 T ELT))) -(((-260 |#1|) (-113) (-1013)) (T -260)) -((-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1013)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1013))))) -(-13 (-455 |t#1| |t#1|) (-10 -8 (-15 -3768 ($ $ (-249 |t#1|))) (-15 -3768 ($ $ (-583 (-249 |t#1|)))))) -(((-455 |#1| |#1|) . T)) -((-3768 ((|#1| (-1 |#1| (-484)) (-1092 (-350 (-484)))) 26 T ELT))) -(((-261 |#1|) (-10 -7 (-15 -3768 (|#1| (-1 |#1| (-484)) (-1092 (-350 (-484)))))) (-38 (-350 (-484)))) (T -261)) -((-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-484))) (-5 *4 (-1092 (-350 (-484)))) (-5 *1 (-261 *2)) (-4 *2 (-38 (-350 (-484))))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 7 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 9 T ELT))) -(((-262) (-1013)) (T -262)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3506 (((-484) $) 13 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1049) $) 10 T ELT)) (-3946 (((-772) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-263) (-13 (-995) (-10 -8 (-15 -3206 ((-1049) $)) (-15 -3506 ((-484) $))))) (T -263)) -((-3206 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-263)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-263))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 60 T ELT)) (-3129 (((-1166 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-484) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-1166 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-3 (-1160 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3156 (((-1166 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1090) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-1160 |#2| |#3| |#4|) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-1166 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1179 (-1166 |#1| |#2| |#3| |#4|)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-1166 |#1| |#2| |#3| |#4|)) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-1166 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3445 (((-632 $) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-1066)) ELT)) (-3187 (((-85) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3958 (($ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3784 (((-3 (-750 |#2|) #1#) $) 80 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-1166 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1179 (-1166 |#1| |#2| |#3| |#4|)))) (-1179 $) $) NIL T ELT) (((-630 (-1166 |#1| |#2| |#3| |#4|)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-1066)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-3130 (((-1166 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3768 (($ $ (-583 (-1166 |#1| |#2| |#3| |#4|)) (-583 (-1166 |#1| |#2| |#3| |#4|))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-249 (-1166 |#1| |#2| |#3| |#4|))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-583 (-249 (-1166 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-583 (-1090)) (-583 (-1166 |#1| |#2| |#3| |#4|))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-455 (-1090) (-1166 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1090) (-1166 |#1| |#2| |#3| |#4|)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-455 (-1090) (-1166 |#1| |#2| |#3| |#4|))) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3800 (($ $ (-1166 |#1| |#2| |#3| |#4|)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-241 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-1166 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3972 (((-800 (-484)) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-553 (-473))) ELT) (((-330) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-933)) ELT) (((-179) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-933)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1166 |#1| |#2| |#3| |#4|) (-821))) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-1166 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1090)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-950 (-1090))) ELT) (($ (-1160 |#2| |#3| |#4|)) 37 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1166 |#1| |#2| |#3| |#4|) (-821))) (|has| (-1166 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-1166 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3949 (($ $ $) 35 T ELT) (($ (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ (-1166 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1166 |#1| |#2| |#3| |#4|)) NIL T ELT))) -(((-264 |#1| |#2| |#3| |#4|) (-13 (-904 (-1166 |#1| |#2| |#3| |#4|)) (-950 (-1160 |#2| |#3| |#4|)) (-10 -8 (-15 -3784 ((-3 (-750 |#2|) "failed") $)) (-15 -3946 ($ (-1160 |#2| |#3| |#4|))))) (-13 (-950 (-484)) (-580 (-484)) (-392)) (-13 (-27) (-1115) (-364 |#1|)) (-1090) |#2|) (T -264)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-1160 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4) (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392))) (-5 *1 (-264 *3 *4 *5 *6)))) (-3784 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392))) (-5 *2 (-750 *4)) (-5 *1 (-264 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4)))) -((-2568 (((-85) $ $) NIL T ELT)) (-1215 (((-583 $) $ (-1090)) NIL (|has| |#1| (-495)) ELT) (((-583 $) $) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1085 $) (-1090)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1085 $)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-1216 (($ $ (-1090)) NIL (|has| |#1| (-495)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-1085 $) (-1090)) NIL (|has| |#1| (-495)) ELT) (($ (-1085 $)) NIL (|has| |#1| (-495)) ELT) (($ (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-3188 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-3081 (((-583 (-1090)) $) 365 T ELT)) (-3083 (((-350 (-1085 $)) $ (-550 $)) NIL (|has| |#1| (-495)) ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1600 (((-583 (-550 $)) $) NIL T ELT)) (-3492 (($ $) 170 (|has| |#1| (-495)) ELT)) (-3639 (($ $) 146 (|has| |#1| (-495)) ELT)) (-1372 (($ $ (-1004 $)) 231 (|has| |#1| (-495)) ELT) (($ $ (-1090)) 227 (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-1604 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) 383 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 438 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 305 (-12 (|has| |#1| (-392)) (|has| |#1| (-495))) ELT)) (-3775 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-495)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-495)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3490 (($ $) 166 (|has| |#1| (-495)) ELT)) (-3638 (($ $) 142 (|has| |#1| (-495)) ELT)) (-1609 (($ $ (-484)) 68 (|has| |#1| (-495)) ELT)) (-3494 (($ $) 174 (|has| |#1| (-495)) ELT)) (-3637 (($ $) 150 (|has| |#1| (-495)) ELT)) (-3724 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) (|has| |#1| (-1025))) CONST)) (-1217 (((-583 $) $ (-1090)) NIL (|has| |#1| (-495)) ELT) (((-583 $) $) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1085 $) (-1090)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1085 $)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-3183 (($ $ (-1090)) NIL (|has| |#1| (-495)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-1085 $) (-1090)) 133 (|has| |#1| (-495)) ELT) (($ (-1085 $)) NIL (|has| |#1| (-495)) ELT) (($ (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 (-550 $) #1#) $) 18 T ELT) (((-3 (-1090) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-857 |#1|)) #1#) $) NIL (|has| |#1| (-495)) ELT) (((-3 (-857 |#1|) #1#) $) NIL (|has| |#1| (-961)) ELT) (((-3 (-350 (-484)) #1#) $) 48 (OR (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3156 (((-550 $) $) 12 T ELT) (((-1090) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-857 |#1|)) $) NIL (|has| |#1| (-495)) ELT) (((-857 |#1|) $) NIL (|has| |#1| (-961)) ELT) (((-350 (-484)) $) 316 (OR (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-2279 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 124 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-630 $)) 114 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT)) (-3842 (($ $) 95 (|has| |#1| (-495)) ELT)) (-3467 (((-3 $ #1#) $) NIL (|has| |#1| (-1025)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3944 (($ $ (-1004 $)) 235 (|has| |#1| (-495)) ELT) (($ $ (-1090)) 233 (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-495)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3386 (($ $ $) 201 (|has| |#1| (-495)) ELT)) (-3627 (($) 136 (|has| |#1| (-495)) ELT)) (-1369 (($ $ $) 221 (|has| |#1| (-495)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 389 (|has| |#1| (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 396 (|has| |#1| (-796 (-330))) ELT)) (-2573 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1214 (((-85) $ $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-1599 (((-583 (-86)) $) NIL T ELT)) (-3595 (((-86) (-86)) 275 T ELT)) (-2410 (((-85) $) 27 (|has| |#1| (-1025)) ELT)) (-2673 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-2996 (($ $) 73 (|has| |#1| (-961)) ELT)) (-2998 (((-1039 |#1| (-550 $)) $) 90 (|has| |#1| (-961)) ELT)) (-1610 (((-85) $) 49 (|has| |#1| (-495)) ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-495)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-495)) ELT)) (-1597 (((-1085 $) (-550 $)) 276 (|has| $ (-961)) ELT)) (-3958 (($ (-1 $ $) (-550 $)) 434 T ELT)) (-1602 (((-3 (-550 $) #1#) $) NIL T ELT)) (-3942 (($ $) 140 (|has| |#1| (-495)) ELT)) (-2257 (($ $) 246 (|has| |#1| (-495)) ELT)) (-2280 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL (|has| |#1| (-961)) ELT) (((-630 |#1|) (-1179 $)) NIL (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1601 (((-583 (-550 $)) $) 51 T ELT)) (-2235 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) 439 T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL (|has| |#1| (-1025)) ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) #1#) $) NIL (|has| |#1| (-961)) ELT)) (-2822 (((-3 (-583 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1794 (((-3 (-2 (|:| -3954 (-484)) (|:| |var| (-550 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2824 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $) NIL (|has| |#1| (-1025)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-86)) NIL (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-1090)) NIL (|has| |#1| (-961)) ELT)) (-2633 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1090)) 53 T ELT)) (-2484 (($ $) NIL (OR (|has| |#1| (-413)) (|has| |#1| (-495))) ELT)) (-2832 (($ $ (-1090)) 250 (|has| |#1| (-495)) ELT) (($ $ (-1004 $)) 252 (|has| |#1| (-495)) ELT)) (-2603 (((-694) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) 45 T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 298 (|has| |#1| (-495)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-1598 (((-85) $ $) NIL T ELT) (((-85) $ (-1090)) NIL T ELT)) (-1373 (($ $ (-1090)) 225 (|has| |#1| (-495)) ELT) (($ $) 223 (|has| |#1| (-495)) ELT)) (-1367 (($ $) 217 (|has| |#1| (-495)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 303 (-12 (|has| |#1| (-392)) (|has| |#1| (-495))) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-495)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-495)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-495)) ELT)) (-3943 (($ $) 138 (|has| |#1| (-495)) ELT)) (-2674 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-3768 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 433 T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1090) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1090) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 376 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-553 (-473))) ELT) (($ $) NIL (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) $ (-1090)) 363 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-86)) (-583 $) (-1090)) 362 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ $))) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ (-583 $)))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694) (-1 $ (-583 $))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694) (-1 $ $)) NIL (|has| |#1| (-961)) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-495)) ELT)) (-2255 (($ $) 238 (|has| |#1| (-495)) ELT)) (-3800 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-1603 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2256 (($ $) 248 (|has| |#1| (-495)) ELT)) (-3385 (($ $) 199 (|has| |#1| (-495)) ELT)) (-3758 (($ $ (-1090)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-961)) ELT)) (-2995 (($ $) 74 (|has| |#1| (-495)) ELT)) (-2997 (((-1039 |#1| (-550 $)) $) 92 (|has| |#1| (-495)) ELT)) (-3185 (($ $) 314 (|has| $ (-961)) ELT)) (-3495 (($ $) 176 (|has| |#1| (-495)) ELT)) (-3636 (($ $) 152 (|has| |#1| (-495)) ELT)) (-3493 (($ $) 172 (|has| |#1| (-495)) ELT)) (-3635 (($ $) 148 (|has| |#1| (-495)) ELT)) (-3491 (($ $) 168 (|has| |#1| (-495)) ELT)) (-3634 (($ $) 144 (|has| |#1| (-495)) ELT)) (-3972 (((-800 (-484)) $) NIL (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| |#1| (-553 (-800 (-330)))) ELT) (($ (-348 $)) NIL (|has| |#1| (-495)) ELT) (((-473) $) 360 (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-2435 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-3946 (((-772) $) 432 T ELT) (($ (-550 $)) 423 T ELT) (($ (-1090)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) ELT) (($ (-1039 |#1| (-550 $))) 94 (|has| |#1| (-961)) ELT) (($ (-350 |#1|)) NIL (|has| |#1| (-495)) ELT) (($ (-857 (-350 |#1|))) NIL (|has| |#1| (-495)) ELT) (($ (-350 (-857 (-350 |#1|)))) NIL (|has| |#1| (-495)) ELT) (($ (-350 (-857 |#1|))) NIL (|has| |#1| (-495)) ELT) (($ (-857 |#1|)) NIL (|has| |#1| (-961)) ELT) (($ (-484)) 36 (OR (|has| |#1| (-950 (-484))) (|has| |#1| (-961))) ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-495)) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL (|has| |#1| (-961)) CONST)) (-2590 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3101 (($ $ $) 219 (|has| |#1| (-495)) ELT)) (-3389 (($ $ $) 205 (|has| |#1| (-495)) ELT)) (-3391 (($ $ $) 209 (|has| |#1| (-495)) ELT)) (-3388 (($ $ $) 203 (|has| |#1| (-495)) ELT)) (-3390 (($ $ $) 207 (|has| |#1| (-495)) ELT)) (-2254 (((-85) (-86)) 10 T ELT)) (-1265 (((-85) $ $) 85 T ELT)) (-3498 (($ $) 182 (|has| |#1| (-495)) ELT)) (-3486 (($ $) 158 (|has| |#1| (-495)) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3496 (($ $) 178 (|has| |#1| (-495)) ELT)) (-3484 (($ $) 154 (|has| |#1| (-495)) ELT)) (-3500 (($ $) 186 (|has| |#1| (-495)) ELT)) (-3488 (($ $) 162 (|has| |#1| (-495)) ELT)) (-1795 (($ (-1090) $) NIL T ELT) (($ (-1090) $ $) NIL T ELT) (($ (-1090) $ $ $) NIL T ELT) (($ (-1090) $ $ $ $) NIL T ELT) (($ (-1090) (-583 $)) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#1| (-961)) ELT)) (-3393 (($ $) 213 (|has| |#1| (-495)) ELT)) (-3392 (($ $) 211 (|has| |#1| (-495)) ELT)) (-3501 (($ $) 188 (|has| |#1| (-495)) ELT)) (-3489 (($ $) 164 (|has| |#1| (-495)) ELT)) (-3499 (($ $) 184 (|has| |#1| (-495)) ELT)) (-3487 (($ $) 160 (|has| |#1| (-495)) ELT)) (-3497 (($ $) 180 (|has| |#1| (-495)) ELT)) (-3485 (($ $) 156 (|has| |#1| (-495)) ELT)) (-3383 (($ $) 191 (|has| |#1| (-495)) ELT)) (-2660 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) CONST)) (-2259 (($ $) 242 (|has| |#1| (-495)) ELT)) (-2666 (($) 25 (|has| |#1| (-1025)) CONST)) (-3387 (($ $) 193 (|has| |#1| (-495)) ELT) (($ $ $) 195 (|has| |#1| (-495)) ELT)) (-2260 (($ $) 240 (|has| |#1| (-495)) ELT)) (-2669 (($ $ (-1090)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-961)) ELT)) (-2258 (($ $) 244 (|has| |#1| (-495)) ELT)) (-3384 (($ $ $) 197 (|has| |#1| (-495)) ELT)) (-3056 (((-85) $ $) 87 T ELT)) (-3949 (($ (-1039 |#1| (-550 $)) (-1039 |#1| (-550 $))) 105 (|has| |#1| (-495)) ELT) (($ $ $) 44 (OR (|has| |#1| (-413)) (|has| |#1| (-495))) ELT)) (-3837 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-3839 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-495)) ELT) (($ $ (-350 (-484))) 311 (|has| |#1| (-495)) ELT) (($ $ (-484)) 79 (OR (|has| |#1| (-413)) (|has| |#1| (-495))) ELT) (($ $ (-694)) 75 (|has| |#1| (-1025)) ELT) (($ $ (-830)) 83 (|has| |#1| (-1025)) ELT)) (* (($ (-350 (-484)) $) NIL (|has| |#1| (-495)) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-495)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-961)) ELT) (($ $ $) 38 (|has| |#1| (-1025)) ELT) (($ (-484) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (($ (-694) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (($ (-830) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT))) -(((-265 |#1|) (-13 (-364 |#1|) (-10 -8 (IF (|has| |#1| (-495)) (PROGN (-6 (-29 |#1|)) (-6 (-1115)) (-6 (-133)) (-6 (-569)) (-6 (-1053)) (-15 -3842 ($ $)) (-15 -1610 ((-85) $)) (-15 -1609 ($ $ (-484))) (IF (|has| |#1| (-392)) (PROGN (-15 -2706 ((-348 (-1085 $)) (-1085 $))) (-15 -2707 ((-348 (-1085 $)) (-1085 $)))) |%noBranch|) (IF (|has| |#1| (-950 (-484))) (-6 (-950 (-48))) |%noBranch|)) |%noBranch|))) (-1013)) (T -265)) -((-3842 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-495)) (-4 *2 (-1013)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-1609 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-2706 (*1 *2 *3) (-12 (-5 *2 (-348 (-1085 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1085 *1)) (-4 *4 (-392)) (-4 *4 (-495)) (-4 *4 (-1013)))) (-2707 (*1 *2 *3) (-12 (-5 *2 (-348 (-1085 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1085 *1)) (-4 *4 (-392)) (-4 *4 (-495)) (-4 *4 (-1013))))) -((-3958 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 13 T ELT))) -(((-266 |#1| |#2|) (-10 -7 (-15 -3958 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1013) (-1013)) (T -266)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6))))) -((-3729 (((-51) |#2| (-249 |#2|) (-694)) 40 T ELT) (((-51) |#2| (-249 |#2|)) 32 T ELT) (((-51) |#2| (-694)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1090)) 26 T ELT)) (-3818 (((-51) |#2| (-249 |#2|) (-350 (-484))) 59 T ELT) (((-51) |#2| (-249 |#2|)) 56 T ELT) (((-51) |#2| (-350 (-484))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1090)) 55 T ELT)) (-3782 (((-51) |#2| (-249 |#2|) (-350 (-484))) 54 T ELT) (((-51) |#2| (-249 |#2|)) 51 T ELT) (((-51) |#2| (-350 (-484))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1090)) 50 T ELT)) (-3779 (((-51) |#2| (-249 |#2|) (-484)) 47 T ELT) (((-51) |#2| (-249 |#2|)) 44 T ELT) (((-51) |#2| (-484)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1090)) 43 T ELT))) -(((-267 |#1| |#2|) (-10 -7 (-15 -3729 ((-51) (-1090))) (-15 -3729 ((-51) |#2|)) (-15 -3729 ((-51) |#2| (-694))) (-15 -3729 ((-51) |#2| (-249 |#2|))) (-15 -3729 ((-51) |#2| (-249 |#2|) (-694))) (-15 -3779 ((-51) (-1090))) (-15 -3779 ((-51) |#2|)) (-15 -3779 ((-51) |#2| (-484))) (-15 -3779 ((-51) |#2| (-249 |#2|))) (-15 -3779 ((-51) |#2| (-249 |#2|) (-484))) (-15 -3782 ((-51) (-1090))) (-15 -3782 ((-51) |#2|)) (-15 -3782 ((-51) |#2| (-350 (-484)))) (-15 -3782 ((-51) |#2| (-249 |#2|))) (-15 -3782 ((-51) |#2| (-249 |#2|) (-350 (-484)))) (-15 -3818 ((-51) (-1090))) (-15 -3818 ((-51) |#2|)) (-15 -3818 ((-51) |#2| (-350 (-484)))) (-15 -3818 ((-51) |#2| (-249 |#2|))) (-15 -3818 ((-51) |#2| (-249 |#2|) (-350 (-484))))) (-13 (-392) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|))) (T -267)) -((-3818 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-484))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-3818 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4))))) (-3782 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-484))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-3782 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4))))) (-3779 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-950 *5) (-580 *5))) (-5 *5 (-484)) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3779 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3779 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *5 (-13 (-392) (-950 *4) (-580 *4))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-3779 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3779 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4))))) (-3729 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-694)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4)))))) -((-1611 (((-51) |#2| (-86) (-249 |#2|) (-583 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-249 |#2|) (-249 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-249 |#2|) |#2|) 87 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|) 88 T ELT) (((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|))) 81 T ELT) (((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 |#2|)) 83 T ELT) (((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 |#2|)) 84 T ELT) (((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|))) 82 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|)) 90 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|)) 86 T ELT))) -(((-268 |#1| |#2|) (-10 -7 (-15 -1611 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|))) (-15 -1611 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|))) (-15 -1611 ((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|)))) (-15 -1611 ((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 |#2|))) (-15 -1611 ((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 |#2|))) (-15 -1611 ((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|)))) (-15 -1611 ((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|)) (-15 -1611 ((-51) |#2| (-86) (-249 |#2|) |#2|)) (-15 -1611 ((-51) |#2| (-86) (-249 |#2|) (-249 |#2|))) (-15 -1611 ((-51) |#2| (-86) (-249 |#2|) (-583 |#2|)))) (-13 (-495) (-553 (-473))) (-364 |#1|)) (T -268)) -((-1611 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-583 *3)) (-4 *3 (-364 *7)) (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))) (-1611 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1611 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1611 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) (-1611 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-86))) (-5 *6 (-583 (-249 *8))) (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1611 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1611 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-249 *8))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *8)) (-5 *6 (-583 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1611 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1611 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-583 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1611 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-364 *5)) (-4 *5 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6))))) -((-1613 (((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484) (-1073)) 67 T ELT) (((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484)) 68 T ELT) (((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484) (-1073)) 64 T ELT) (((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484)) 65 T ELT)) (-1612 (((-1 (-179) (-179)) (-179)) 66 T ELT))) -(((-269) (-10 -7 (-15 -1612 ((-1 (-179) (-179)) (-179))) (-15 -1613 ((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484))) (-15 -1613 ((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484) (-1073))) (-15 -1613 ((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484))) (-15 -1613 ((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484) (-1073))))) (T -269)) -((-1613 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-179)) (-5 *7 (-484)) (-5 *8 (-1073)) (-5 *2 (-1125 (-838))) (-5 *1 (-269)))) (-1613 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-179)) (-5 *7 (-484)) (-5 *2 (-1125 (-838))) (-5 *1 (-269)))) (-1613 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-484)) (-5 *7 (-1073)) (-5 *2 (-1125 (-838))) (-5 *1 (-269)))) (-1613 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-484)) (-5 *2 (-1125 (-838))) (-5 *1 (-269)))) (-1612 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 26 T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3831 (((-1090) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3771 (($ $ (-350 (-484))) NIL T ELT) (($ $ (-350 (-484)) (-350 (-484))) NIL T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|))) $) 20 T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3818 (($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) NIL T CONST)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) 36 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3186 (((-85) $) NIL T ELT)) (-2892 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3772 (((-350 (-484)) $) NIL T ELT) (((-350 (-484)) $ (-350 (-484))) 16 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3777 (($ $ (-830)) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-350 (-484))) NIL T ELT) (($ $ (-994) (-350 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-350 (-484)))) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3812 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3081 ((-583 (-1090)) |#1|))))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-350 (-484))) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-1614 (((-350 (-484)) $) 17 T ELT)) (-3090 (($ (-1160 |#1| |#2| |#3|)) 11 T ELT)) (-2401 (((-1160 |#1| |#2| |#3|) $) 12 T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-350 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-3948 (((-350 (-484)) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2891 (($ $) 10 T ELT)) (-3946 (((-772) $) 42 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3677 ((|#1| $ (-350 (-484))) 34 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3773 ((|#1| $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 ((|#1| $ (-350 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 28 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 37 T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-270 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-716) (-10 -8 (-15 -3090 ($ (-1160 |#1| |#2| |#3|))) (-15 -2401 ((-1160 |#1| |#2| |#3|) $)) (-15 -1614 ((-350 (-484)) $)))) (-312) (-1090) |#1|) (T -270)) -((-3090 (*1 *1 *2) (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-270 *3 *4 *5)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-1160 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1090)) (-14 *5 *3))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1090)) (-14 *5 *3)))) -((-3011 (((-2 (|:| -2401 (-694)) (|:| -3954 |#1|) (|:| |radicand| (-583 |#1|))) (-348 |#1|) (-694)) 35 T ELT)) (-3942 (((-583 (-2 (|:| -3954 (-694)) (|:| |logand| |#1|))) (-348 |#1|)) 40 T ELT))) -(((-271 |#1|) (-10 -7 (-15 -3011 ((-2 (|:| -2401 (-694)) (|:| -3954 |#1|) (|:| |radicand| (-583 |#1|))) (-348 |#1|) (-694))) (-15 -3942 ((-583 (-2 (|:| -3954 (-694)) (|:| |logand| |#1|))) (-348 |#1|)))) (-495)) (T -271)) -((-3942 (*1 *2 *3) (-12 (-5 *3 (-348 *4)) (-4 *4 (-495)) (-5 *2 (-583 (-2 (|:| -3954 (-694)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) (-3011 (*1 *2 *3 *4) (-12 (-5 *3 (-348 *5)) (-4 *5 (-495)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3954 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-271 *5)) (-5 *4 (-694))))) -((-3081 (((-583 |#2|) (-1085 |#4|)) 45 T ELT)) (-1619 ((|#3| (-484)) 48 T ELT)) (-1617 (((-1085 |#4|) (-1085 |#3|)) 30 T ELT)) (-1618 (((-1085 |#4|) (-1085 |#4|) (-484)) 67 T ELT)) (-1616 (((-1085 |#3|) (-1085 |#4|)) 21 T ELT)) (-3948 (((-583 (-694)) (-1085 |#4|) (-583 |#2|)) 41 T ELT)) (-1615 (((-1085 |#3|) (-1085 |#4|) (-583 |#2|) (-583 |#3|)) 35 T ELT))) -(((-272 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1615 ((-1085 |#3|) (-1085 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3948 ((-583 (-694)) (-1085 |#4|) (-583 |#2|))) (-15 -3081 ((-583 |#2|) (-1085 |#4|))) (-15 -1616 ((-1085 |#3|) (-1085 |#4|))) (-15 -1617 ((-1085 |#4|) (-1085 |#3|))) (-15 -1618 ((-1085 |#4|) (-1085 |#4|) (-484))) (-15 -1619 (|#3| (-484)))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|)) (T -272)) -((-1619 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-961)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-861 *2 *4 *5)))) (-1618 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 *7)) (-5 *3 (-484)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *1 (-272 *4 *5 *6 *7)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-1085 *6)) (-4 *6 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-1085 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-1085 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *2 (-1085 *6)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-1085 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *8)) (-5 *4 (-583 *6)) (-4 *6 (-756)) (-4 *8 (-861 *7 *5 *6)) (-4 *5 (-717)) (-4 *7 (-961)) (-5 *2 (-583 (-694))) (-5 *1 (-272 *5 *6 *7 *8)))) (-1615 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1085 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-756)) (-4 *8 (-961)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-1085 *8)) (-5 *1 (-272 *6 *7 *8 *9))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 19 T ELT)) (-3774 (((-583 (-2 (|:| |gen| |#1|) (|:| -3943 (-484)))) $) 21 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-1622 (((-484) $ (-484)) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2290 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1621 (($ (-1 (-484) (-484)) $) 11 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1620 (($ $ $) NIL (|has| (-484) (-716)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3677 (((-484) |#1| $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 30 (|has| |#1| (-756)) ELT)) (-3837 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3839 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ (-484) |#1|) 28 T ELT))) -(((-273 |#1|) (-13 (-21) (-654 (-484)) (-274 |#1| (-484)) (-10 -7 (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|))) (-1013)) (T -273)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3774 (((-583 (-2 (|:| |gen| |#1|) (|:| -3943 |#2|))) $) 34 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3136 (((-694) $) 35 T ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 |#1| "failed") $) 39 T ELT)) (-3156 ((|#1| $) 40 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2299 ((|#1| $ (-484)) 32 T ELT)) (-1622 ((|#2| $ (-484)) 33 T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-1621 (($ (-1 |#2| |#2|) $) 30 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-1620 (($ $ $) 28 (|has| |#2| (-716)) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ |#1|) 38 T ELT)) (-3677 ((|#2| |#1| $) 31 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3839 (($ $ $) 18 T ELT) (($ |#1| $) 37 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ |#2| |#1|) 36 T ELT))) -(((-274 |#1| |#2|) (-113) (-1013) (-104)) (T -274)) -((-3839 (*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-694)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3943 *4)))))) (-1622 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1013)) (-4 *2 (-104)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1013)))) (-3677 (*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) (-1621 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))) (-1620 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)) (-4 *3 (-716))))) -(-13 (-104) (-950 |t#1|) (-10 -8 (-15 -3839 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3136 ((-694) $)) (-15 -3774 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3943 |t#2|))) $)) (-15 -1622 (|t#2| $ (-484))) (-15 -2299 (|t#1| $ (-484))) (-15 -3677 (|t#2| |t#1| $)) (-15 -1621 ($ (-1 |t#2| |t#2|) $)) (-15 -2290 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-716)) (-15 -1620 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-950 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3774 (((-583 (-2 (|:| |gen| |#1|) (|:| -3943 (-694)))) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-1622 (((-694) $ (-484)) NIL T ELT)) (-2290 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1621 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1620 (($ $ $) NIL (|has| (-694) (-716)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3677 (((-694) |#1| $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-694) |#1|) NIL T ELT))) -(((-275 |#1|) (-274 |#1| (-694)) (-1013)) (T -275)) -NIL -((-3503 (($ $) 72 T ELT)) (-1624 (($ $ |#2| |#3| $) 14 T ELT)) (-1625 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1797 (((-85) $) 42 T ELT)) (-1796 ((|#2| $) 44 T ELT)) (-3466 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2817 ((|#2| $) 68 T ELT)) (-3817 (((-583 |#2|) $) 56 T ELT)) (-1623 (($ $ $ (-694)) 37 T ELT)) (-3949 (($ $ |#2|) 60 T ELT))) -(((-276 |#1| |#2| |#3|) (-10 -7 (-15 -3503 (|#1| |#1|)) (-15 -2817 (|#2| |#1|)) (-15 -3466 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1623 (|#1| |#1| |#1| (-694))) (-15 -1624 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1625 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3817 ((-583 |#2|) |#1|)) (-15 -1796 (|#2| |#1|)) (-15 -1797 ((-85) |#1|)) (-15 -3466 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3949 (|#1| |#1| |#2|))) (-277 |#2| |#3|) (-961) (-716)) (T -276)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 109 (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 107 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 104 T ELT)) (-3156 (((-484) $) 108 (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) 106 (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 105 T ELT)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3503 (($ $) 93 (|has| |#1| (-392)) ELT)) (-1624 (($ $ |#1| |#2| $) 97 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 100 T ELT)) (-3937 (((-85) $) 82 T ELT)) (-2893 (($ |#1| |#2|) 81 T ELT)) (-2820 ((|#2| $) 99 T ELT)) (-1625 (($ (-1 |#2| |#2|) $) 98 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1797 (((-85) $) 103 T ELT)) (-1796 ((|#1| $) 102 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ |#1|) 95 (|has| |#1| (-495)) ELT)) (-3948 ((|#2| $) 84 T ELT)) (-2817 ((|#1| $) 94 (|has| |#1| (-392)) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 T ELT) (($ (-350 (-484))) 77 (OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ELT)) (-3817 (((-583 |#1|) $) 101 T ELT)) (-3677 ((|#1| $ |#2|) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1623 (($ $ $ (-694)) 96 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-277 |#1| |#2|) (-113) (-961) (-716)) (T -277)) -((-1797 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-583 *3)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-694)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-1625 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-1624 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-1623 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *3 (-146)))) (-3466 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-495)))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)) (-4 *2 (-392)))) (-3503 (*1 *1 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-392))))) -(-13 (-47 |t#1| |t#2|) (-355 |t#1|) (-10 -8 (-15 -1797 ((-85) $)) (-15 -1796 (|t#1| $)) (-15 -3817 ((-583 |t#1|) $)) (-15 -2420 ((-694) $)) (-15 -2820 (|t#2| $)) (-15 -1625 ($ (-1 |t#2| |t#2|) $)) (-15 -1624 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1623 ($ $ $ (-694))) |%noBranch|) (IF (|has| |t#1| (-495)) (-15 -3466 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -2817 (|t#1| $)) (-15 -3503 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-246) |has| |#1| (-495)) ((-355 |#1|) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-1986 (((-85) (-85)) NIL T ELT)) (-3788 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) NIL T ELT)) (-2368 (($ $) NIL (|has| |#1| (-1013)) ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3419 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-1987 (($ $ (-484)) NIL T ELT)) (-1988 (((-694) $) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3609 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1989 (($ (-583 |#1|)) NIL T ELT)) (-3801 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1571 (($ $ (-1146 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) NIL T ELT)) (-3791 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3802 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-278 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1989 ($ (-583 |#1|))) (-15 -1988 ((-694) $)) (-15 -1987 ($ $ (-484))) (-15 -1986 ((-85) (-85))))) (-1129)) (T -278)) -((-1989 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-278 *3)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-278 *3)) (-4 *3 (-1129)))) (-1987 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-278 *3)) (-4 *3 (-1129)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1129))))) -((-3932 (((-85) $) 47 T ELT)) (-3929 (((-694)) 23 T ELT)) (-3330 ((|#2| $) 51 T ELT) (($ $ (-830)) 123 T ELT)) (-3136 (((-694)) 124 T ELT)) (-1792 (($ (-1179 |#2|)) 20 T ELT)) (-2011 (((-85) $) 136 T ELT)) (-3132 ((|#2| $) 53 T ELT) (($ $ (-830)) 120 T ELT)) (-2014 (((-1085 |#2|) $) NIL T ELT) (((-1085 $) $ (-830)) 111 T ELT)) (-1627 (((-1085 |#2|) $) 95 T ELT)) (-1626 (((-1085 |#2|) $) 91 T ELT) (((-3 (-1085 |#2|) "failed") $ $) 88 T ELT)) (-1628 (($ $ (-1085 |#2|)) 58 T ELT)) (-3930 (((-743 (-830))) 30 T ELT) (((-830)) 48 T ELT)) (-3911 (((-107)) 27 T ELT)) (-3948 (((-743 (-830)) $) 32 T ELT) (((-830) $) 139 T ELT)) (-1629 (($) 130 T ELT)) (-3224 (((-1179 |#2|) $) NIL T ELT) (((-630 |#2|) (-1179 $)) 42 T ELT)) (-2702 (($ $) NIL T ELT) (((-632 $) $) 100 T ELT)) (-3933 (((-85) $) 45 T ELT))) -(((-279 |#1| |#2|) (-10 -7 (-15 -2702 ((-632 |#1|) |#1|)) (-15 -3136 ((-694))) (-15 -2702 (|#1| |#1|)) (-15 -1626 ((-3 (-1085 |#2|) "failed") |#1| |#1|)) (-15 -1626 ((-1085 |#2|) |#1|)) (-15 -1627 ((-1085 |#2|) |#1|)) (-15 -1628 (|#1| |#1| (-1085 |#2|))) (-15 -2011 ((-85) |#1|)) (-15 -1629 (|#1|)) (-15 -3330 (|#1| |#1| (-830))) (-15 -3132 (|#1| |#1| (-830))) (-15 -2014 ((-1085 |#1|) |#1| (-830))) (-15 -3330 (|#2| |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -3948 ((-830) |#1|)) (-15 -3930 ((-830))) (-15 -2014 ((-1085 |#2|) |#1|)) (-15 -1792 (|#1| (-1179 |#2|))) (-15 -3224 ((-630 |#2|) (-1179 |#1|))) (-15 -3224 ((-1179 |#2|) |#1|)) (-15 -3929 ((-694))) (-15 -3930 ((-743 (-830)))) (-15 -3948 ((-743 (-830)) |#1|)) (-15 -3932 ((-85) |#1|)) (-15 -3933 ((-85) |#1|)) (-15 -3911 ((-107)))) (-280 |#2|) (-312)) (T -279)) -((-3911 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3930 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-743 (-830))) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3929 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3930 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-830)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3136 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3932 (((-85) $) 114 T ELT)) (-3929 (((-694)) 110 T ELT)) (-3330 ((|#1| $) 162 T ELT) (($ $ (-830)) 159 (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 144 (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3136 (((-694)) 134 (|has| |#1| (-320)) ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 |#1| "failed") $) 121 T ELT)) (-3156 ((|#1| $) 122 T ELT)) (-1792 (($ (-1179 |#1|)) 168 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2994 (($) 131 (|has| |#1| (-320)) ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-2833 (($) 146 (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) 147 (|has| |#1| (-320)) ELT)) (-1764 (($ $ (-694)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) 89 T ELT)) (-3772 (((-830) $) 149 (|has| |#1| (-320)) ELT) (((-743 (-830)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2013 (($) 157 (|has| |#1| (-320)) ELT)) (-2011 (((-85) $) 156 (|has| |#1| (-320)) ELT)) (-3132 ((|#1| $) 163 T ELT) (($ $ (-830)) 160 (|has| |#1| (-320)) ELT)) (-3445 (((-632 $) $) 135 (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-2014 (((-1085 |#1|) $) 167 T ELT) (((-1085 $) $ (-830)) 161 (|has| |#1| (-320)) ELT)) (-2010 (((-830) $) 132 (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) 153 (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) 152 (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) "failed") $ $) 151 (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) 154 (|has| |#1| (-320)) ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3446 (($) 136 (|has| |#1| (-320)) CONST)) (-2400 (($ (-830)) 133 (|has| |#1| (-320)) ELT)) (-3931 (((-85) $) 113 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2409 (($) 155 (|has| |#1| (-320)) ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) 143 (|has| |#1| (-320)) ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-3930 (((-743 (-830))) 111 T ELT) (((-830)) 165 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-1765 (((-694) $) 148 (|has| |#1| (-320)) ELT) (((-3 (-694) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) 119 T ELT)) (-3758 (($ $ (-694)) 139 (|has| |#1| (-320)) ELT) (($ $) 137 (|has| |#1| (-320)) ELT)) (-3948 (((-743 (-830)) $) 112 T ELT) (((-830) $) 164 T ELT)) (-3185 (((-1085 |#1|)) 166 T ELT)) (-1674 (($) 145 (|has| |#1| (-320)) ELT)) (-1629 (($) 158 (|has| |#1| (-320)) ELT)) (-3224 (((-1179 |#1|) $) 170 T ELT) (((-630 |#1|) (-1179 $)) 169 T ELT)) (-2703 (((-3 (-1179 $) "failed") (-630 $)) 142 (|has| |#1| (-320)) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2702 (($ $) 141 (|has| |#1| (-320)) ELT) (((-632 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2012 (((-1179 $)) 172 T ELT) (((-1179 $) (-830)) 171 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3933 (((-85) $) 115 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3928 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-694)) 108 (|has| |#1| (-320)) ELT)) (-2669 (($ $ (-694)) 140 (|has| |#1| (-320)) ELT) (($ $) 138 (|has| |#1| (-320)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) +((-1609 (*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-695)))) (-2880 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-258)))) (-2564 (*1 *1 *1 *1) (-4 *1 (-258))) (-2565 (*1 *1 *1 *1) (-4 *1 (-258))) (-1607 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) (-4 *1 (-258)))) (-1607 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-258)))) (-1606 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-584 *1)) (-4 *1 (-258))))) +(-13 (-833) (-10 -8 (-15 -1609 ((-85) $ $)) (-15 -1608 ((-695) $)) (-15 -2880 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -2564 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -1607 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $)) (-15 -1607 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1606 ((-3 (-584 $) "failed") (-584 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-3769 (($ $ (-584 |#2|) (-584 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-249 |#2|)) 11 T ELT) (($ $ (-584 (-249 |#2|))) NIL T ELT))) +(((-259 |#1| |#2|) (-10 -7 (-15 -3769 (|#1| |#1| (-584 (-249 |#2|)))) (-15 -3769 (|#1| |#1| (-249 |#2|))) (-15 -3769 (|#1| |#1| |#2| |#2|)) (-15 -3769 (|#1| |#1| (-584 |#2|) (-584 |#2|)))) (-260 |#2|) (-1014)) (T -259)) +NIL +((-3769 (($ $ (-584 |#1|) (-584 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-249 |#1|)) 13 T ELT) (($ $ (-584 (-249 |#1|))) 12 T ELT))) +(((-260 |#1|) (-113) (-1014)) (T -260)) +((-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1014)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1014))))) +(-13 (-456 |t#1| |t#1|) (-10 -8 (-15 -3769 ($ $ (-249 |t#1|))) (-15 -3769 ($ $ (-584 (-249 |t#1|)))))) +(((-456 |#1| |#1|) . T)) +((-3769 ((|#1| (-1 |#1| (-485)) (-1093 (-350 (-485)))) 26 T ELT))) +(((-261 |#1|) (-10 -7 (-15 -3769 (|#1| (-1 |#1| (-485)) (-1093 (-350 (-485)))))) (-38 (-350 (-485)))) (T -261)) +((-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-485))) (-5 *4 (-1093 (-350 (-485)))) (-5 *1 (-261 *2)) (-4 *2 (-38 (-350 (-485))))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 9 T ELT))) +(((-262) (-1014)) (T -262)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3507 (((-485) $) 13 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3207 (((-1050) $) 10 T ELT)) (-3947 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-263) (-13 (-996) (-10 -8 (-15 -3207 ((-1050) $)) (-15 -3507 ((-485) $))))) (T -263)) +((-3207 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-263)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-263))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 60 T ELT)) (-3130 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-1167 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-3 (-1161 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3157 (((-1167 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1091) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-1161 |#2| |#3| |#4|) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-1167 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1180 (-1167 |#1| |#2| |#3| |#4|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-1167 |#1| |#2| |#3| |#4|)) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-1167 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3446 (((-633 $) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1067)) ELT)) (-3188 (((-85) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3959 (($ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3785 (((-3 (-751 |#2|) #1#) $) 80 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-1167 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1180 (-1167 |#1| |#2| |#3| |#4|)))) (-1180 $) $) NIL T ELT) (((-631 (-1167 |#1| |#2| |#3| |#4|)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1067)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-3131 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3769 (($ $ (-584 (-1167 |#1| |#2| |#3| |#4|)) (-584 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-249 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-584 (-249 (-1167 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-584 (-1091)) (-584 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-456 (-1091) (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1091) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-456 (-1091) (-1167 |#1| |#2| |#3| |#4|))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3801 (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-241 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-1167 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3973 (((-801 (-485)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-934)) ELT) (((-179) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-934)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-822))) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-1167 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1091)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-1091))) ELT) (($ (-1161 |#2| |#3| |#4|)) 37 T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-822))) (|has| (-1167 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3950 (($ $ $) 35 T ELT) (($ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-1167 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL T ELT))) +(((-264 |#1| |#2| |#3| |#4|) (-13 (-905 (-1167 |#1| |#2| |#3| |#4|)) (-951 (-1161 |#2| |#3| |#4|)) (-10 -8 (-15 -3785 ((-3 (-751 |#2|) "failed") $)) (-15 -3947 ($ (-1161 |#2| |#3| |#4|))))) (-13 (-951 (-485)) (-581 (-485)) (-392)) (-13 (-27) (-1116) (-364 |#1|)) (-1091) |#2|) (T -264)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1161 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4) (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *1 (-264 *3 *4 *5 *6)))) (-3785 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-751 *4)) (-5 *1 (-264 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4)))) +((-2569 (((-85) $ $) NIL T ELT)) (-1216 (((-584 $) $ (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) $) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $) (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-1217 (($ $ (-1091)) NIL (|has| |#1| (-496)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-1086 $) (-1091)) NIL (|has| |#1| (-496)) ELT) (($ (-1086 $)) NIL (|has| |#1| (-496)) ELT) (($ (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-3189 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-3082 (((-584 (-1091)) $) 365 T ELT)) (-3084 (((-350 (-1086 $)) $ (-551 $)) NIL (|has| |#1| (-496)) ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1601 (((-584 (-551 $)) $) NIL T ELT)) (-3493 (($ $) 170 (|has| |#1| (-496)) ELT)) (-3640 (($ $) 146 (|has| |#1| (-496)) ELT)) (-1373 (($ $ (-1005 $)) 231 (|has| |#1| (-496)) ELT) (($ $ (-1091)) 227 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) 383 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 438 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 305 (-12 (|has| |#1| (-392)) (|has| |#1| (-496))) ELT)) (-3776 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-496)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-496)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3491 (($ $) 166 (|has| |#1| (-496)) ELT)) (-3639 (($ $) 142 (|has| |#1| (-496)) ELT)) (-1610 (($ $ (-485)) 68 (|has| |#1| (-496)) ELT)) (-3495 (($ $) 174 (|has| |#1| (-496)) ELT)) (-3638 (($ $) 150 (|has| |#1| (-496)) ELT)) (-3725 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) (|has| |#1| (-1026))) CONST)) (-1218 (((-584 $) $ (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) $) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $) (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-3184 (($ $ (-1091)) NIL (|has| |#1| (-496)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-1086 $) (-1091)) 133 (|has| |#1| (-496)) ELT) (($ (-1086 $)) NIL (|has| |#1| (-496)) ELT) (($ (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-3158 (((-3 (-551 $) #1#) $) 18 T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-858 |#1|)) #1#) $) NIL (|has| |#1| (-496)) ELT) (((-3 (-858 |#1|) #1#) $) NIL (|has| |#1| (-962)) ELT) (((-3 (-350 (-485)) #1#) $) 48 (OR (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3157 (((-551 $) $) 12 T ELT) (((-1091) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-858 |#1|)) $) NIL (|has| |#1| (-496)) ELT) (((-858 |#1|) $) NIL (|has| |#1| (-962)) ELT) (((-350 (-485)) $) 316 (OR (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-2280 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 124 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-631 $)) 114 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT)) (-3843 (($ $) 95 (|has| |#1| (-496)) ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#1| (-1026)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3945 (($ $ (-1005 $)) 235 (|has| |#1| (-496)) ELT) (($ $ (-1091)) 233 (|has| |#1| (-496)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-496)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3387 (($ $ $) 201 (|has| |#1| (-496)) ELT)) (-3628 (($) 136 (|has| |#1| (-496)) ELT)) (-1370 (($ $ $) 221 (|has| |#1| (-496)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 389 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 396 (|has| |#1| (-797 (-330))) ELT)) (-2574 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-1600 (((-584 (-86)) $) NIL T ELT)) (-3596 (((-86) (-86)) 275 T ELT)) (-2411 (((-85) $) 27 (|has| |#1| (-1026)) ELT)) (-2674 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-2997 (($ $) 73 (|has| |#1| (-962)) ELT)) (-2999 (((-1040 |#1| (-551 $)) $) 90 (|has| |#1| (-962)) ELT)) (-1611 (((-85) $) 49 (|has| |#1| (-496)) ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-496)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-496)) ELT)) (-1598 (((-1086 $) (-551 $)) 276 (|has| $ (-962)) ELT)) (-3959 (($ (-1 $ $) (-551 $)) 434 T ELT)) (-1603 (((-3 (-551 $) #1#) $) NIL T ELT)) (-3943 (($ $) 140 (|has| |#1| (-496)) ELT)) (-2258 (($ $) 246 (|has| |#1| (-496)) ELT)) (-2281 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL (|has| |#1| (-962)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1602 (((-584 (-551 $)) $) 51 T ELT)) (-2236 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) 439 T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL (|has| |#1| (-1026)) ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) #1#) $) NIL (|has| |#1| (-962)) ELT)) (-2823 (((-3 (-584 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1795 (((-3 (-2 (|:| -3955 (-485)) (|:| |var| (-551 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2825 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $) NIL (|has| |#1| (-1026)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-86)) NIL (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-1091)) NIL (|has| |#1| (-962)) ELT)) (-2634 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1091)) 53 T ELT)) (-2485 (($ $) NIL (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-2833 (($ $ (-1091)) 250 (|has| |#1| (-496)) ELT) (($ $ (-1005 $)) 252 (|has| |#1| (-496)) ELT)) (-2604 (((-695) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) 45 T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 298 (|has| |#1| (-496)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-1599 (((-85) $ $) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-1374 (($ $ (-1091)) 225 (|has| |#1| (-496)) ELT) (($ $) 223 (|has| |#1| (-496)) ELT)) (-1368 (($ $) 217 (|has| |#1| (-496)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 303 (-12 (|has| |#1| (-392)) (|has| |#1| (-496))) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-496)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-496)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-496)) ELT)) (-3944 (($ $) 138 (|has| |#1| (-496)) ELT)) (-2675 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3769 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 433 T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 376 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-554 (-474))) ELT) (($ $) NIL (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) $ (-1091)) 363 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-86)) (-584 $) (-1091)) 362 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ $)) NIL (|has| |#1| (-962)) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-496)) ELT)) (-2256 (($ $) 238 (|has| |#1| (-496)) ELT)) (-3801 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2257 (($ $) 248 (|has| |#1| (-496)) ELT)) (-3386 (($ $) 199 (|has| |#1| (-496)) ELT)) (-3759 (($ $ (-1091)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-962)) ELT)) (-2996 (($ $) 74 (|has| |#1| (-496)) ELT)) (-2998 (((-1040 |#1| (-551 $)) $) 92 (|has| |#1| (-496)) ELT)) (-3186 (($ $) 314 (|has| $ (-962)) ELT)) (-3496 (($ $) 176 (|has| |#1| (-496)) ELT)) (-3637 (($ $) 152 (|has| |#1| (-496)) ELT)) (-3494 (($ $) 172 (|has| |#1| (-496)) ELT)) (-3636 (($ $) 148 (|has| |#1| (-496)) ELT)) (-3492 (($ $) 168 (|has| |#1| (-496)) ELT)) (-3635 (($ $) 144 (|has| |#1| (-496)) ELT)) (-3973 (((-801 (-485)) $) NIL (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#1| (-554 (-801 (-330)))) ELT) (($ (-348 $)) NIL (|has| |#1| (-496)) ELT) (((-474) $) 360 (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-2436 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-3947 (((-773) $) 432 T ELT) (($ (-551 $)) 423 T ELT) (($ (-1091)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) ELT) (($ (-1040 |#1| (-551 $))) 94 (|has| |#1| (-962)) ELT) (($ (-350 |#1|)) NIL (|has| |#1| (-496)) ELT) (($ (-858 (-350 |#1|))) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-858 (-350 |#1|)))) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-858 |#1|))) NIL (|has| |#1| (-496)) ELT) (($ (-858 |#1|)) NIL (|has| |#1| (-962)) ELT) (($ (-485)) 36 (OR (|has| |#1| (-951 (-485))) (|has| |#1| (-962))) ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-496)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL (|has| |#1| (-962)) CONST)) (-2591 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3102 (($ $ $) 219 (|has| |#1| (-496)) ELT)) (-3390 (($ $ $) 205 (|has| |#1| (-496)) ELT)) (-3392 (($ $ $) 209 (|has| |#1| (-496)) ELT)) (-3389 (($ $ $) 203 (|has| |#1| (-496)) ELT)) (-3391 (($ $ $) 207 (|has| |#1| (-496)) ELT)) (-2255 (((-85) (-86)) 10 T ELT)) (-1266 (((-85) $ $) 85 T ELT)) (-3499 (($ $) 182 (|has| |#1| (-496)) ELT)) (-3487 (($ $) 158 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) 178 (|has| |#1| (-496)) ELT)) (-3485 (($ $) 154 (|has| |#1| (-496)) ELT)) (-3501 (($ $) 186 (|has| |#1| (-496)) ELT)) (-3489 (($ $) 162 (|has| |#1| (-496)) ELT)) (-1796 (($ (-1091) $) NIL T ELT) (($ (-1091) $ $) NIL T ELT) (($ (-1091) $ $ $) NIL T ELT) (($ (-1091) $ $ $ $) NIL T ELT) (($ (-1091) (-584 $)) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#1| (-962)) ELT)) (-3394 (($ $) 213 (|has| |#1| (-496)) ELT)) (-3393 (($ $) 211 (|has| |#1| (-496)) ELT)) (-3502 (($ $) 188 (|has| |#1| (-496)) ELT)) (-3490 (($ $) 164 (|has| |#1| (-496)) ELT)) (-3500 (($ $) 184 (|has| |#1| (-496)) ELT)) (-3488 (($ $) 160 (|has| |#1| (-496)) ELT)) (-3498 (($ $) 180 (|has| |#1| (-496)) ELT)) (-3486 (($ $) 156 (|has| |#1| (-496)) ELT)) (-3384 (($ $) 191 (|has| |#1| (-496)) ELT)) (-2661 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) CONST)) (-2260 (($ $) 242 (|has| |#1| (-496)) ELT)) (-2667 (($) 25 (|has| |#1| (-1026)) CONST)) (-3388 (($ $) 193 (|has| |#1| (-496)) ELT) (($ $ $) 195 (|has| |#1| (-496)) ELT)) (-2261 (($ $) 240 (|has| |#1| (-496)) ELT)) (-2670 (($ $ (-1091)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-962)) ELT)) (-2259 (($ $) 244 (|has| |#1| (-496)) ELT)) (-3385 (($ $ $) 197 (|has| |#1| (-496)) ELT)) (-3057 (((-85) $ $) 87 T ELT)) (-3950 (($ (-1040 |#1| (-551 $)) (-1040 |#1| (-551 $))) 105 (|has| |#1| (-496)) ELT) (($ $ $) 44 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-3838 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-3840 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-496)) ELT) (($ $ (-350 (-485))) 311 (|has| |#1| (-496)) ELT) (($ $ (-485)) 79 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT) (($ $ (-695)) 75 (|has| |#1| (-1026)) ELT) (($ $ (-831)) 83 (|has| |#1| (-1026)) ELT)) (* (($ (-350 (-485)) $) NIL (|has| |#1| (-496)) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-496)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-962)) ELT) (($ $ $) 38 (|has| |#1| (-1026)) ELT) (($ (-485) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (($ (-695) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (($ (-831) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT))) +(((-265 |#1|) (-13 (-364 |#1|) (-10 -8 (IF (|has| |#1| (-496)) (PROGN (-6 (-29 |#1|)) (-6 (-1116)) (-6 (-133)) (-6 (-570)) (-6 (-1054)) (-15 -3843 ($ $)) (-15 -1611 ((-85) $)) (-15 -1610 ($ $ (-485))) (IF (|has| |#1| (-392)) (PROGN (-15 -2707 ((-348 (-1086 $)) (-1086 $))) (-15 -2708 ((-348 (-1086 $)) (-1086 $)))) |%noBranch|) (IF (|has| |#1| (-951 (-485))) (-6 (-951 (-48))) |%noBranch|)) |%noBranch|))) (-1014)) (T -265)) +((-3843 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-496)) (-4 *2 (-1014)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) (-1610 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) (-2707 (*1 *2 *3) (-12 (-5 *2 (-348 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1)) (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014)))) (-2708 (*1 *2 *3) (-12 (-5 *2 (-348 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1)) (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014))))) +((-3959 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 13 T ELT))) +(((-266 |#1| |#2|) (-10 -7 (-15 -3959 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1014) (-1014)) (T -266)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6))))) +((-3730 (((-51) |#2| (-249 |#2|) (-695)) 40 T ELT) (((-51) |#2| (-249 |#2|)) 32 T ELT) (((-51) |#2| (-695)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1091)) 26 T ELT)) (-3819 (((-51) |#2| (-249 |#2|) (-350 (-485))) 59 T ELT) (((-51) |#2| (-249 |#2|)) 56 T ELT) (((-51) |#2| (-350 (-485))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1091)) 55 T ELT)) (-3783 (((-51) |#2| (-249 |#2|) (-350 (-485))) 54 T ELT) (((-51) |#2| (-249 |#2|)) 51 T ELT) (((-51) |#2| (-350 (-485))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1091)) 50 T ELT)) (-3780 (((-51) |#2| (-249 |#2|) (-485)) 47 T ELT) (((-51) |#2| (-249 |#2|)) 44 T ELT) (((-51) |#2| (-485)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1091)) 43 T ELT))) +(((-267 |#1| |#2|) (-10 -7 (-15 -3730 ((-51) (-1091))) (-15 -3730 ((-51) |#2|)) (-15 -3730 ((-51) |#2| (-695))) (-15 -3730 ((-51) |#2| (-249 |#2|))) (-15 -3730 ((-51) |#2| (-249 |#2|) (-695))) (-15 -3780 ((-51) (-1091))) (-15 -3780 ((-51) |#2|)) (-15 -3780 ((-51) |#2| (-485))) (-15 -3780 ((-51) |#2| (-249 |#2|))) (-15 -3780 ((-51) |#2| (-249 |#2|) (-485))) (-15 -3783 ((-51) (-1091))) (-15 -3783 ((-51) |#2|)) (-15 -3783 ((-51) |#2| (-350 (-485)))) (-15 -3783 ((-51) |#2| (-249 |#2|))) (-15 -3783 ((-51) |#2| (-249 |#2|) (-350 (-485)))) (-15 -3819 ((-51) (-1091))) (-15 -3819 ((-51) |#2|)) (-15 -3819 ((-51) |#2| (-350 (-485)))) (-15 -3819 ((-51) |#2| (-249 |#2|))) (-15 -3819 ((-51) |#2| (-249 |#2|) (-350 (-485))))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -267)) +((-3819 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-3819 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) (-3783 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-3783 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) (-3780 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-951 *5) (-581 *5))) (-5 *5 (-485)) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3780 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3780 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-4 *5 (-13 (-392) (-951 *4) (-581 *4))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-3780 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) (-3730 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-695)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-3730 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4)))))) +((-1612 (((-51) |#2| (-86) (-249 |#2|) (-584 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-249 |#2|) (-249 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-249 |#2|) |#2|) 87 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|) 88 T ELT) (((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|))) 81 T ELT) (((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 |#2|)) 83 T ELT) (((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 |#2|)) 84 T ELT) (((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|))) 82 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|)) 90 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|)) 86 T ELT))) +(((-268 |#1| |#2|) (-10 -7 (-15 -1612 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|))) (-15 -1612 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|))) (-15 -1612 ((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|)))) (-15 -1612 ((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 |#2|))) (-15 -1612 ((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 |#2|))) (-15 -1612 ((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|)))) (-15 -1612 ((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|)) (-15 -1612 ((-51) |#2| (-86) (-249 |#2|) |#2|)) (-15 -1612 ((-51) |#2| (-86) (-249 |#2|) (-249 |#2|))) (-15 -1612 ((-51) |#2| (-86) (-249 |#2|) (-584 |#2|)))) (-13 (-496) (-554 (-474))) (-364 |#1|)) (T -268)) +((-1612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-584 *3)) (-4 *3 (-364 *7)) (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))) (-1612 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1612 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1612 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) (-1612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-86))) (-5 *6 (-584 (-249 *8))) (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1612 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 (-249 *8))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *8)) (-5 *6 (-584 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1612 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1612 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-584 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1612 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-364 *5)) (-4 *5 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6))))) +((-1614 (((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485) (-1074)) 67 T ELT) (((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485)) 68 T ELT) (((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485) (-1074)) 64 T ELT) (((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485)) 65 T ELT)) (-1613 (((-1 (-179) (-179)) (-179)) 66 T ELT))) +(((-269) (-10 -7 (-15 -1613 ((-1 (-179) (-179)) (-179))) (-15 -1614 ((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485))) (-15 -1614 ((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485) (-1074))) (-15 -1614 ((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485))) (-15 -1614 ((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485) (-1074))))) (T -269)) +((-1614 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-179)) (-5 *7 (-485)) (-5 *8 (-1074)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-179)) (-5 *7 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-485)) (-5 *7 (-1074)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) (-1613 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 26 T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3832 (((-1091) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 20 T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3819 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) 36 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3187 (((-85) $) NIL T ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3773 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3778 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-350 (-485))) NIL T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3082 ((-584 (-1091)) |#1|))))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-350 (-485))) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-1615 (((-350 (-485)) $) 17 T ELT)) (-3091 (($ (-1161 |#1| |#2| |#3|)) 11 T ELT)) (-2402 (((-1161 |#1| |#2| |#3|) $) 12 T ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3949 (((-350 (-485)) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 10 T ELT)) (-3947 (((-773) $) 42 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-350 (-485))) 34 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3774 ((|#1| $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 28 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 37 T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-270 |#1| |#2| |#3|) (-13 (-1163 |#1|) (-717) (-10 -8 (-15 -3091 ($ (-1161 |#1| |#2| |#3|))) (-15 -2402 ((-1161 |#1| |#2| |#3|) $)) (-15 -1615 ((-350 (-485)) $)))) (-312) (-1091) |#1|) (T -270)) +((-3091 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-270 *3 *4 *5)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-1161 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3)))) +((-3012 (((-2 (|:| -2402 (-695)) (|:| -3955 |#1|) (|:| |radicand| (-584 |#1|))) (-348 |#1|) (-695)) 35 T ELT)) (-3943 (((-584 (-2 (|:| -3955 (-695)) (|:| |logand| |#1|))) (-348 |#1|)) 40 T ELT))) +(((-271 |#1|) (-10 -7 (-15 -3012 ((-2 (|:| -2402 (-695)) (|:| -3955 |#1|) (|:| |radicand| (-584 |#1|))) (-348 |#1|) (-695))) (-15 -3943 ((-584 (-2 (|:| -3955 (-695)) (|:| |logand| |#1|))) (-348 |#1|)))) (-496)) (T -271)) +((-3943 (*1 *2 *3) (-12 (-5 *3 (-348 *4)) (-4 *4 (-496)) (-5 *2 (-584 (-2 (|:| -3955 (-695)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) (-3012 (*1 *2 *3 *4) (-12 (-5 *3 (-348 *5)) (-4 *5 (-496)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3955 *5) (|:| |radicand| (-584 *5)))) (-5 *1 (-271 *5)) (-5 *4 (-695))))) +((-3082 (((-584 |#2|) (-1086 |#4|)) 45 T ELT)) (-1620 ((|#3| (-485)) 48 T ELT)) (-1618 (((-1086 |#4|) (-1086 |#3|)) 30 T ELT)) (-1619 (((-1086 |#4|) (-1086 |#4|) (-485)) 67 T ELT)) (-1617 (((-1086 |#3|) (-1086 |#4|)) 21 T ELT)) (-3949 (((-584 (-695)) (-1086 |#4|) (-584 |#2|)) 41 T ELT)) (-1616 (((-1086 |#3|) (-1086 |#4|) (-584 |#2|) (-584 |#3|)) 35 T ELT))) +(((-272 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1616 ((-1086 |#3|) (-1086 |#4|) (-584 |#2|) (-584 |#3|))) (-15 -3949 ((-584 (-695)) (-1086 |#4|) (-584 |#2|))) (-15 -3082 ((-584 |#2|) (-1086 |#4|))) (-15 -1617 ((-1086 |#3|) (-1086 |#4|))) (-15 -1618 ((-1086 |#4|) (-1086 |#3|))) (-15 -1619 ((-1086 |#4|) (-1086 |#4|) (-485))) (-15 -1620 (|#3| (-485)))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|)) (T -272)) +((-1620 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-962)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-862 *2 *4 *5)))) (-1619 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 *7)) (-5 *3 (-485)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *1 (-272 *4 *5 *6 *7)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-1086 *6)) (-4 *6 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-1086 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *2 (-1086 *6)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *2 (-584 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *8)) (-5 *4 (-584 *6)) (-4 *6 (-757)) (-4 *8 (-862 *7 *5 *6)) (-4 *5 (-718)) (-4 *7 (-962)) (-5 *2 (-584 (-695))) (-5 *1 (-272 *5 *6 *7 *8)))) (-1616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 *8)) (-4 *7 (-757)) (-4 *8 (-962)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-1086 *8)) (-5 *1 (-272 *6 *7 *8 *9))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 19 T ELT)) (-3775 (((-584 (-2 (|:| |gen| |#1|) (|:| -3944 (-485)))) $) 21 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-1623 (((-485) $ (-485)) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2291 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1622 (($ (-1 (-485) (-485)) $) 11 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1621 (($ $ $) NIL (|has| (-485) (-717)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3678 (((-485) |#1| $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 30 (|has| |#1| (-757)) ELT)) (-3838 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3840 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ (-485) |#1|) 28 T ELT))) +(((-273 |#1|) (-13 (-21) (-655 (-485)) (-274 |#1| (-485)) (-10 -7 (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|))) (-1014)) (T -273)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3775 (((-584 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $) 34 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3137 (((-695) $) 35 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| "failed") $) 39 T ELT)) (-3157 ((|#1| $) 40 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2300 ((|#1| $ (-485)) 32 T ELT)) (-1623 ((|#2| $ (-485)) 33 T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 30 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-1621 (($ $ $) 28 (|has| |#2| (-717)) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ |#1|) 38 T ELT)) (-3678 ((|#2| |#1| $) 31 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT) (($ |#1| $) 37 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ |#2| |#1|) 36 T ELT))) +(((-274 |#1| |#2|) (-113) (-1014) (-104)) (T -274)) +((-3840 (*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)) (-5 *2 (-695)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)) (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3944 *4)))))) (-1623 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1014)) (-4 *2 (-104)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1014)))) (-3678 (*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104)))) (-1622 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)))) (-1621 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104)) (-4 *3 (-717))))) +(-13 (-104) (-951 |t#1|) (-10 -8 (-15 -3840 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3137 ((-695) $)) (-15 -3775 ((-584 (-2 (|:| |gen| |t#1|) (|:| -3944 |t#2|))) $)) (-15 -1623 (|t#2| $ (-485))) (-15 -2300 (|t#1| $ (-485))) (-15 -3678 (|t#2| |t#1| $)) (-15 -1622 ($ (-1 |t#2| |t#2|) $)) (-15 -2291 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-717)) (-15 -1621 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-951 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3775 (((-584 (-2 (|:| |gen| |#1|) (|:| -3944 (-695)))) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-1623 (((-695) $ (-485)) NIL T ELT)) (-2291 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1622 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1621 (($ $ $) NIL (|has| (-695) (-717)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3678 (((-695) |#1| $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-695) |#1|) NIL T ELT))) +(((-275 |#1|) (-274 |#1| (-695)) (-1014)) (T -275)) +NIL +((-3504 (($ $) 72 T ELT)) (-1625 (($ $ |#2| |#3| $) 14 T ELT)) (-1626 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1798 (((-85) $) 42 T ELT)) (-1797 ((|#2| $) 44 T ELT)) (-3467 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2818 ((|#2| $) 68 T ELT)) (-3818 (((-584 |#2|) $) 56 T ELT)) (-1624 (($ $ $ (-695)) 37 T ELT)) (-3950 (($ $ |#2|) 60 T ELT))) +(((-276 |#1| |#2| |#3|) (-10 -7 (-15 -3504 (|#1| |#1|)) (-15 -2818 (|#2| |#1|)) (-15 -3467 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1624 (|#1| |#1| |#1| (-695))) (-15 -1625 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1626 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3818 ((-584 |#2|) |#1|)) (-15 -1797 (|#2| |#1|)) (-15 -1798 ((-85) |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3950 (|#1| |#1| |#2|))) (-277 |#2| |#3|) (-962) (-717)) (T -276)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-485) #1="failed") $) 109 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 107 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 104 T ELT)) (-3157 (((-485) $) 108 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 106 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 105 T ELT)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3504 (($ $) 93 (|has| |#1| (-392)) ELT)) (-1625 (($ $ |#1| |#2| $) 97 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 100 T ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| |#2|) 81 T ELT)) (-2821 ((|#2| $) 99 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 98 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1798 (((-85) $) 103 T ELT)) (-1797 ((|#1| $) 102 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ |#1|) 95 (|has| |#1| (-496)) ELT)) (-3949 ((|#2| $) 84 T ELT)) (-2818 ((|#1| $) 94 (|has| |#1| (-392)) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 T ELT) (($ (-350 (-485))) 77 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3818 (((-584 |#1|) $) 101 T ELT)) (-3678 ((|#1| $ |#2|) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 96 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-277 |#1| |#2|) (-113) (-962) (-717)) (T -277)) +((-1798 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-584 *3)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-695)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-1625 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-1624 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *3 (-146)))) (-3467 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-496)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)) (-4 *2 (-392)))) (-3504 (*1 *1 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-392))))) +(-13 (-47 |t#1| |t#2|) (-355 |t#1|) (-10 -8 (-15 -1798 ((-85) $)) (-15 -1797 (|t#1| $)) (-15 -3818 ((-584 |t#1|) $)) (-15 -2421 ((-695) $)) (-15 -2821 (|t#2| $)) (-15 -1626 ($ (-1 |t#2| |t#2|) $)) (-15 -1625 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1624 ($ $ $ (-695))) |%noBranch|) (IF (|has| |t#1| (-496)) (-15 -3467 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -2818 (|t#1| $)) (-15 -3504 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-246) |has| |#1| (-496)) ((-355 |#1|) . T) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-757))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-1987 (((-85) (-85)) NIL T ELT)) (-3789 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) NIL T ELT)) (-2369 (($ $) NIL (|has| |#1| (-1014)) ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-3406 (($ |#1| $) NIL (|has| |#1| (-1014)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT)) (-1988 (($ $ (-485)) NIL T ELT)) (-1989 (((-695) $) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3610 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1990 (($ (-584 |#1|)) NIL T ELT)) (-3802 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) NIL T ELT)) (-3792 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-278 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1990 ($ (-584 |#1|))) (-15 -1989 ((-695) $)) (-15 -1988 ($ $ (-485))) (-15 -1987 ((-85) (-85))))) (-1130)) (T -278)) +((-1990 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-278 *3)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) (-1988 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1130))))) +((-3933 (((-85) $) 47 T ELT)) (-3930 (((-695)) 23 T ELT)) (-3331 ((|#2| $) 51 T ELT) (($ $ (-831)) 123 T ELT)) (-3137 (((-695)) 124 T ELT)) (-1793 (($ (-1180 |#2|)) 20 T ELT)) (-2012 (((-85) $) 136 T ELT)) (-3133 ((|#2| $) 53 T ELT) (($ $ (-831)) 120 T ELT)) (-2015 (((-1086 |#2|) $) NIL T ELT) (((-1086 $) $ (-831)) 111 T ELT)) (-1628 (((-1086 |#2|) $) 95 T ELT)) (-1627 (((-1086 |#2|) $) 91 T ELT) (((-3 (-1086 |#2|) "failed") $ $) 88 T ELT)) (-1629 (($ $ (-1086 |#2|)) 58 T ELT)) (-3931 (((-744 (-831))) 30 T ELT) (((-831)) 48 T ELT)) (-3912 (((-107)) 27 T ELT)) (-3949 (((-744 (-831)) $) 32 T ELT) (((-831) $) 139 T ELT)) (-1630 (($) 130 T ELT)) (-3225 (((-1180 |#2|) $) NIL T ELT) (((-631 |#2|) (-1180 $)) 42 T ELT)) (-2703 (($ $) NIL T ELT) (((-633 $) $) 100 T ELT)) (-3934 (((-85) $) 45 T ELT))) +(((-279 |#1| |#2|) (-10 -7 (-15 -2703 ((-633 |#1|) |#1|)) (-15 -3137 ((-695))) (-15 -2703 (|#1| |#1|)) (-15 -1627 ((-3 (-1086 |#2|) "failed") |#1| |#1|)) (-15 -1627 ((-1086 |#2|) |#1|)) (-15 -1628 ((-1086 |#2|) |#1|)) (-15 -1629 (|#1| |#1| (-1086 |#2|))) (-15 -2012 ((-85) |#1|)) (-15 -1630 (|#1|)) (-15 -3331 (|#1| |#1| (-831))) (-15 -3133 (|#1| |#1| (-831))) (-15 -2015 ((-1086 |#1|) |#1| (-831))) (-15 -3331 (|#2| |#1|)) (-15 -3133 (|#2| |#1|)) (-15 -3949 ((-831) |#1|)) (-15 -3931 ((-831))) (-15 -2015 ((-1086 |#2|) |#1|)) (-15 -1793 (|#1| (-1180 |#2|))) (-15 -3225 ((-631 |#2|) (-1180 |#1|))) (-15 -3225 ((-1180 |#2|) |#1|)) (-15 -3930 ((-695))) (-15 -3931 ((-744 (-831)))) (-15 -3949 ((-744 (-831)) |#1|)) (-15 -3933 ((-85) |#1|)) (-15 -3934 ((-85) |#1|)) (-15 -3912 ((-107)))) (-280 |#2|) (-312)) (T -279)) +((-3912 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3931 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-744 (-831))) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3930 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3931 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-831)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3137 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3933 (((-85) $) 114 T ELT)) (-3930 (((-695)) 110 T ELT)) (-3331 ((|#1| $) 162 T ELT) (($ $ (-831)) 159 (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 144 (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3137 (((-695)) 134 (|has| |#1| (-320)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| "failed") $) 121 T ELT)) (-3157 ((|#1| $) 122 T ELT)) (-1793 (($ (-1180 |#1|)) 168 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2995 (($) 131 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-2834 (($) 146 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) 147 (|has| |#1| (-320)) ELT)) (-1765 (($ $ (-695)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) 89 T ELT)) (-3773 (((-831) $) 149 (|has| |#1| (-320)) ELT) (((-744 (-831)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2014 (($) 157 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) 156 (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) 163 T ELT) (($ $ (-831)) 160 (|has| |#1| (-320)) ELT)) (-3446 (((-633 $) $) 135 (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-2015 (((-1086 |#1|) $) 167 T ELT) (((-1086 $) $ (-831)) 161 (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 132 (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) 153 (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) 152 (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) "failed") $ $) 151 (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) 154 (|has| |#1| (-320)) ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3447 (($) 136 (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 133 (|has| |#1| (-320)) ELT)) (-3932 (((-85) $) 113 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2410 (($) 155 (|has| |#1| (-320)) ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) 143 (|has| |#1| (-320)) ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-3931 (((-744 (-831))) 111 T ELT) (((-831)) 165 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-1766 (((-695) $) 148 (|has| |#1| (-320)) ELT) (((-3 (-695) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) 119 T ELT)) (-3759 (($ $ (-695)) 139 (|has| |#1| (-320)) ELT) (($ $) 137 (|has| |#1| (-320)) ELT)) (-3949 (((-744 (-831)) $) 112 T ELT) (((-831) $) 164 T ELT)) (-3186 (((-1086 |#1|)) 166 T ELT)) (-1675 (($) 145 (|has| |#1| (-320)) ELT)) (-1630 (($) 158 (|has| |#1| (-320)) ELT)) (-3225 (((-1180 |#1|) $) 170 T ELT) (((-631 |#1|) (-1180 $)) 169 T ELT)) (-2704 (((-3 (-1180 $) "failed") (-631 $)) 142 (|has| |#1| (-320)) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2703 (($ $) 141 (|has| |#1| (-320)) ELT) (((-633 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 172 T ELT) (((-1180 $) (-831)) 171 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3934 (((-85) $) 115 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3929 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-695)) 108 (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-695)) 140 (|has| |#1| (-320)) ELT) (($ $) 138 (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) (((-280 |#1|) (-113) (-312)) (T -280)) -((-2012 (*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1179 *1)) (-4 *1 (-280 *3)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-312)) (-5 *2 (-1179 *1)) (-4 *1 (-280 *4)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1179 *3)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4)))) (-1792 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1085 *3)))) (-3185 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1085 *3)))) (-3930 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-2014 (*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1085 *1)) (-4 *1 (-280 *4)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-3330 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-1629 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2013 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-85)))) (-2409 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-1628 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312)))) (-1627 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1085 *3)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1085 *3)))) (-1626 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1085 *3))))) -(-13 (-1198 |t#1|) (-950 |t#1|) (-10 -8 (-15 -2012 ((-1179 $))) (-15 -2012 ((-1179 $) (-830))) (-15 -3224 ((-1179 |t#1|) $)) (-15 -3224 ((-630 |t#1|) (-1179 $))) (-15 -1792 ($ (-1179 |t#1|))) (-15 -2014 ((-1085 |t#1|) $)) (-15 -3185 ((-1085 |t#1|))) (-15 -3930 ((-830))) (-15 -3948 ((-830) $)) (-15 -3132 (|t#1| $)) (-15 -3330 (|t#1| $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-299)) (-15 -2014 ((-1085 $) $ (-830))) (-15 -3132 ($ $ (-830))) (-15 -3330 ($ $ (-830))) (-15 -1629 ($)) (-15 -2013 ($)) (-15 -2011 ((-85) $)) (-15 -2409 ($)) (-15 -1628 ($ $ (-1085 |t#1|))) (-15 -1627 ((-1085 |t#1|) $)) (-15 -1626 ((-1085 |t#1|) $)) (-15 -1626 ((-3 (-1085 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-186 $) |has| |#1| (-320)) ((-190) |has| |#1| (-320)) ((-189) |has| |#1| (-320)) ((-201) . T) ((-246) . T) ((-258) . T) ((-1198 |#1|) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-320) |has| |#1| (-320)) ((-299) |has| |#1| (-320)) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-950 |#1|) . T) ((-963 (-350 (-484))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) |has| |#1| (-320)) ((-1129) . T) ((-1134) . T) ((-1187 |#1|) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-1630 (((-85) $) 13 T ELT)) (-3638 (($ |#1|) 10 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3634 (($ |#1|) 12 T ELT)) (-3946 (((-772) $) 19 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2236 ((|#1| $) 14 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 21 T ELT))) -(((-281 |#1|) (-13 (-756) (-10 -8 (-15 -3638 ($ |#1|)) (-15 -3634 ($ |#1|)) (-15 -1630 ((-85) $)) (-15 -2236 (|#1| $)))) (-756)) (T -281)) -((-3638 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))) (-3634 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-756)))) (-2236 (*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1631 (((-446) $) 20 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1632 (((-869 (-694)) $) 18 T ELT)) (-1634 (((-209) $) 7 T ELT)) (-3946 (((-772) $) 26 T ELT)) (-2206 (((-869 (-158 (-112))) $) 16 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1633 (((-583 (-782 (-1095) (-694))) $) 12 T ELT)) (-3056 (((-85) $ $) 22 T ELT))) -(((-282) (-13 (-1013) (-10 -8 (-15 -1634 ((-209) $)) (-15 -1633 ((-583 (-782 (-1095) (-694))) $)) (-15 -1632 ((-869 (-694)) $)) (-15 -2206 ((-869 (-158 (-112))) $)) (-15 -1631 ((-446) $))))) (T -282)) -((-1634 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-1095) (-694)))) (-5 *1 (-282)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-869 (-694))) (-5 *1 (-282)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-869 (-158 (-112)))) (-5 *1 (-282)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-282))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3842 (($ $) 34 T ELT)) (-1637 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1635 (((-1179 |#4|) $) 133 T ELT)) (-1968 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 32 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (((-3 |#4| #1#) $) 37 T ELT)) (-1636 (((-1179 |#4|) $) 125 T ELT)) (-1638 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-484)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3435 (((-2 (|:| -2336 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3946 (((-772) $) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 15 T CONST)) (-3056 (((-85) $ $) 21 T ELT)) (-3837 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 26 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 24 T ELT))) -(((-283 |#1| |#2| |#3| |#4|) (-13 (-286 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1636 ((-1179 |#4|) $)) (-15 -1635 ((-1179 |#4|) $)))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -283)) -((-1636 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-1179 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))) (-1635 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-1179 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) -((-3958 (((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)) 33 T ELT))) -(((-284 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3958 ((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-312) (-1155 |#5|) (-1155 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -284)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *9 (-312)) (-4 *10 (-1155 *9)) (-4 *11 (-1155 (-350 *10))) (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-291 *9 *10 *11))))) -((-1637 (((-85) $) 14 T ELT))) -(((-285 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1637 ((-85) |#1|))) (-286 |#2| |#3| |#4| |#5|) (-312) (-1155 |#2|) (-1155 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -285)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3842 (($ $) 35 T ELT)) (-1637 (((-85) $) 34 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-1968 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 41 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2409 (((-3 |#4| "failed") $) 33 T ELT)) (-1638 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 40 T ELT) (($ |#4|) 39 T ELT) (($ |#1| |#1|) 38 T ELT) (($ |#1| |#1| (-484)) 37 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 32 T ELT)) (-3435 (((-2 (|:| -2336 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 36 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT))) -(((-286 |#1| |#2| |#3| |#4|) (-113) (-312) (-1155 |t#1|) (-1155 (-350 |t#2|)) (-291 |t#1| |t#2| |t#3|)) (T -286)) -((-1968 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-356 *4 (-350 *4) *5 *6)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) (-4 *1 (-286 *3 *4 *5 *6)))) (-1638 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) (-1638 (*1 *1 *2 *2) (-12 (-4 *2 (-312)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-350 *3))) (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) (-1638 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-484)) (-4 *2 (-312)) (-4 *4 (-1155 *2)) (-4 *5 (-1155 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6)) (-4 *6 (-291 *2 *4 *5)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-2 (|:| -2336 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6))))) (-3842 (*1 *1 *1) (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-350 *3))) (-4 *5 (-291 *2 *3 *4)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))) (-2409 (*1 *2 *1) (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *2 (-291 *3 *4 *5)))) (-1638 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-312)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1968 ((-356 |t#2| (-350 |t#2|) |t#3| |t#4|) $)) (-15 -1638 ($ (-356 |t#2| (-350 |t#2|) |t#3| |t#4|))) (-15 -1638 ($ |t#4|)) (-15 -1638 ($ |t#1| |t#1|)) (-15 -1638 ($ |t#1| |t#1| (-484))) (-15 -3435 ((-2 (|:| -2336 (-356 |t#2| (-350 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3842 ($ $)) (-15 -1637 ((-85) $)) (-15 -2409 ((-3 |t#4| "failed") $)) (-15 -1638 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-1013) . T) ((-1129) . T)) -((-3768 (($ $ (-1090) |#2|) NIL T ELT) (($ $ (-583 (-1090)) (-583 |#2|)) 20 T ELT) (($ $ (-583 (-249 |#2|))) 15 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL T ELT)) (-3800 (($ $ |#2|) 11 T ELT))) -(((-287 |#1| |#2|) (-10 -7 (-15 -3800 (|#1| |#1| |#2|)) (-15 -3768 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3768 (|#1| |#1| |#2| |#2|)) (-15 -3768 (|#1| |#1| (-249 |#2|))) (-15 -3768 (|#1| |#1| (-583 (-249 |#2|)))) (-15 -3768 (|#1| |#1| (-583 (-1090)) (-583 |#2|))) (-15 -3768 (|#1| |#1| (-1090) |#2|))) (-288 |#2|) (-1013)) (T -287)) -NIL -((-3958 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3768 (($ $ (-1090) |#1|) 17 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) 16 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 15 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 14 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 12 (|has| |#1| (-260 |#1|)) ELT)) (-3800 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT))) -(((-288 |#1|) (-113) (-1013)) (T -288)) -((-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1013))))) -(-13 (-10 -8 (-15 -3958 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-455 (-1090) |t#1|)) (-6 (-455 (-1090) |t#1|)) |%noBranch|))) -(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-455 (-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) |has| |#1| (-241 |#1| |#1|)) ((-1129) |has| |#1| (-241 |#1| |#1|))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-694)) NIL T ELT)) (-3330 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3156 (((-817 |#1|) $) NIL T ELT)) (-1792 (($ (-1179 (-817 |#1|))) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1680 (((-85) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1764 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-830) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2011 (((-85) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3132 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3445 (((-632 $) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 (-817 |#1|)) $) NIL T ELT) (((-1085 $) $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2010 (((-830) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1627 (((-1085 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1626 (((-1085 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-3 (-1085 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1628 (($ $ (-1085 (-817 |#1|))) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-817 |#1|) (-320)) CONST)) (-2400 (($ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1765 (((-694) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3948 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1085 (-817 |#1|))) NIL T ELT)) (-1674 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1629 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3224 (((-1179 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1179 $)) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2702 (($ $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT) (((-1179 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3928 (($ $) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2669 (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT))) -(((-289 |#1| |#2|) (-280 (-817 |#1|)) (-830) (-830)) (T -289)) -NIL -((-1647 (((-2 (|:| |num| (-1179 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1792 (($ (-1179 (-350 |#3|)) (-1179 $)) NIL T ELT) (($ (-1179 (-350 |#3|))) NIL T ELT) (($ (-1179 |#3|) |#3|) 172 T ELT)) (-1652 (((-1179 $) (-1179 $)) 156 T ELT)) (-1639 (((-583 (-583 |#2|))) 126 T ELT)) (-1664 (((-85) |#2| |#2|) 76 T ELT)) (-3503 (($ $) 148 T ELT)) (-3377 (((-694)) 171 T ELT)) (-1653 (((-1179 $) (-1179 $)) 219 T ELT)) (-1640 (((-583 (-857 |#2|)) (-1090)) 115 T ELT)) (-1656 (((-85) $) 168 T ELT)) (-1655 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1642 (((-3 |#3| #1="failed")) 52 T ELT)) (-1666 (((-694)) 183 T ELT)) (-3800 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1643 (((-3 |#3| #1#)) 71 T ELT)) (-3758 (($ $ (-1 (-350 |#3|) (-350 |#3|))) NIL T ELT) (($ $ (-1 (-350 |#3|) (-350 |#3|)) (-694)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-1654 (((-1179 $) (-1179 $)) 162 T ELT)) (-1641 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1665 (((-85)) 34 T ELT))) -(((-290 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-694))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3758 (|#1| |#1| (-583 (-1090)))) (-15 -3758 (|#1| |#1| (-1090) (-694))) (-15 -3758 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -1639 ((-583 (-583 |#2|)))) (-15 -1640 ((-583 (-857 |#2|)) (-1090))) (-15 -1641 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1642 ((-3 |#3| #1="failed"))) (-15 -1643 ((-3 |#3| #1#))) (-15 -3800 (|#2| |#1| |#2| |#2|)) (-15 -3503 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1655 ((-85) |#1| |#3|)) (-15 -1655 ((-85) |#1| |#2|)) (-15 -1792 (|#1| (-1179 |#3|) |#3|)) (-15 -1647 ((-2 (|:| |num| (-1179 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1652 ((-1179 |#1|) (-1179 |#1|))) (-15 -1653 ((-1179 |#1|) (-1179 |#1|))) (-15 -1654 ((-1179 |#1|) (-1179 |#1|))) (-15 -1655 ((-85) |#1|)) (-15 -1656 ((-85) |#1|)) (-15 -1664 ((-85) |#2| |#2|)) (-15 -1665 ((-85))) (-15 -1666 ((-694))) (-15 -3377 ((-694))) (-15 -3758 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)) (-694))) (-15 -3758 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)))) (-15 -1792 (|#1| (-1179 (-350 |#3|)))) (-15 -1792 (|#1| (-1179 (-350 |#3|)) (-1179 |#1|)))) (-291 |#2| |#3| |#4|) (-1134) (-1155 |#2|) (-1155 (-350 |#3|))) (T -290)) -((-3377 (*1 *2) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1666 (*1 *2) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1665 (*1 *2) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1664 (*1 *2 *3 *3) (-12 (-4 *3 (-1134)) (-4 *5 (-1155 *3)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) (-1643 (*1 *2) (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1642 (*1 *2) (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *5 (-1134)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-5 *2 (-583 (-857 *5))) (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) (-1639 (*1 *2) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1647 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 225 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 114 (|has| (-350 |#2|) (-312)) ELT)) (-2063 (($ $) 115 (|has| (-350 |#2|) (-312)) ELT)) (-2061 (((-85) $) 117 (|has| (-350 |#2|) (-312)) ELT)) (-1782 (((-630 (-350 |#2|)) (-1179 $)) 61 T ELT) (((-630 (-350 |#2|))) 77 T ELT)) (-3330 (((-350 |#2|) $) 67 T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 167 (|has| (-350 |#2|) (-299)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 134 (|has| (-350 |#2|) (-312)) ELT)) (-3971 (((-348 $) $) 135 (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-85) $ $) 125 (|has| (-350 |#2|) (-312)) ELT)) (-3136 (((-694)) 108 (|has| (-350 |#2|) (-320)) ELT)) (-1661 (((-85)) 242 T ELT)) (-1660 (((-85) |#1|) 241 T ELT) (((-85) |#2|) 240 T ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 194 (|has| (-350 |#2|) (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 192 (|has| (-350 |#2|) (-950 (-350 (-484)))) ELT) (((-3 (-350 |#2|) #1#) $) 189 T ELT)) (-3156 (((-484) $) 193 (|has| (-350 |#2|) (-950 (-484))) ELT) (((-350 (-484)) $) 191 (|has| (-350 |#2|) (-950 (-350 (-484)))) ELT) (((-350 |#2|) $) 190 T ELT)) (-1792 (($ (-1179 (-350 |#2|)) (-1179 $)) 63 T ELT) (($ (-1179 (-350 |#2|))) 80 T ELT) (($ (-1179 |#2|) |#2|) 224 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| (-350 |#2|) (-299)) ELT)) (-2564 (($ $ $) 129 (|has| (-350 |#2|) (-312)) ELT)) (-1781 (((-630 (-350 |#2|)) $ (-1179 $)) 68 T ELT) (((-630 (-350 |#2|)) $) 75 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 186 (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 185 (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-630 $) (-1179 $)) 184 T ELT) (((-630 (-350 |#2|)) (-630 $)) 183 T ELT)) (-1652 (((-1179 $) (-1179 $)) 230 T ELT)) (-3842 (($ |#3|) 178 T ELT) (((-3 $ "failed") (-350 |#3|)) 175 (|has| (-350 |#2|) (-312)) ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1639 (((-583 (-583 |#1|))) 211 (|has| |#1| (-320)) ELT)) (-1664 (((-85) |#1| |#1|) 246 T ELT)) (-3108 (((-830)) 69 T ELT)) (-2994 (($) 111 (|has| (-350 |#2|) (-320)) ELT)) (-1659 (((-85)) 239 T ELT)) (-1658 (((-85) |#1|) 238 T ELT) (((-85) |#2|) 237 T ELT)) (-2563 (($ $ $) 128 (|has| (-350 |#2|) (-312)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 123 (|has| (-350 |#2|) (-312)) ELT)) (-3503 (($ $) 217 T ELT)) (-2833 (($) 169 (|has| (-350 |#2|) (-299)) ELT)) (-1680 (((-85) $) 170 (|has| (-350 |#2|) (-299)) ELT)) (-1764 (($ $ (-694)) 161 (|has| (-350 |#2|) (-299)) ELT) (($ $) 160 (|has| (-350 |#2|) (-299)) ELT)) (-3723 (((-85) $) 136 (|has| (-350 |#2|) (-312)) ELT)) (-3772 (((-830) $) 172 (|has| (-350 |#2|) (-299)) ELT) (((-743 (-830)) $) 158 (|has| (-350 |#2|) (-299)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3377 (((-694)) 249 T ELT)) (-1653 (((-1179 $) (-1179 $)) 231 T ELT)) (-3132 (((-350 |#2|) $) 66 T ELT)) (-1640 (((-583 (-857 |#1|)) (-1090)) 212 (|has| |#1| (-312)) ELT)) (-3445 (((-632 $) $) 162 (|has| (-350 |#2|) (-299)) ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 132 (|has| (-350 |#2|) (-312)) ELT)) (-2014 ((|#3| $) 59 (|has| (-350 |#2|) (-312)) ELT)) (-2010 (((-830) $) 110 (|has| (-350 |#2|) (-320)) ELT)) (-3079 ((|#3| $) 176 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 188 (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 187 (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-1179 $) $) 182 T ELT) (((-630 (-350 |#2|)) (-1179 $)) 181 T ELT)) (-1891 (($ (-583 $)) 121 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 120 (|has| (-350 |#2|) (-312)) ELT)) (-3242 (((-1073) $) 11 T ELT)) (-1648 (((-630 (-350 |#2|))) 226 T ELT)) (-1650 (((-630 (-350 |#2|))) 228 T ELT)) (-2484 (($ $) 137 (|has| (-350 |#2|) (-312)) ELT)) (-1645 (($ (-1179 |#2|) |#2|) 222 T ELT)) (-1649 (((-630 (-350 |#2|))) 227 T ELT)) (-1651 (((-630 (-350 |#2|))) 229 T ELT)) (-1644 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 221 T ELT)) (-1646 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-1657 (((-1179 $)) 235 T ELT)) (-3918 (((-1179 $)) 236 T ELT)) (-1656 (((-85) $) 234 T ELT)) (-1655 (((-85) $) 233 T ELT) (((-85) $ |#1|) 220 T ELT) (((-85) $ |#2|) 219 T ELT)) (-3446 (($) 163 (|has| (-350 |#2|) (-299)) CONST)) (-2400 (($ (-830)) 109 (|has| (-350 |#2|) (-320)) ELT)) (-1642 (((-3 |#2| "failed")) 214 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1666 (((-694)) 248 T ELT)) (-2409 (($) 180 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 122 (|has| (-350 |#2|) (-312)) ELT)) (-3144 (($ (-583 $)) 119 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 118 (|has| (-350 |#2|) (-312)) ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) 166 (|has| (-350 |#2|) (-299)) ELT)) (-3732 (((-348 $) $) 133 (|has| (-350 |#2|) (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 130 (|has| (-350 |#2|) (-312)) ELT)) (-3466 (((-3 $ "failed") $ $) 113 (|has| (-350 |#2|) (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 124 (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-694) $) 126 (|has| (-350 |#2|) (-312)) ELT)) (-3800 ((|#1| $ |#1| |#1|) 216 T ELT)) (-1643 (((-3 |#2| "failed")) 215 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 127 (|has| (-350 |#2|) (-312)) ELT)) (-3757 (((-350 |#2|) (-1179 $)) 62 T ELT) (((-350 |#2|)) 76 T ELT)) (-1765 (((-694) $) 171 (|has| (-350 |#2|) (-299)) ELT) (((-3 (-694) "failed") $ $) 159 (|has| (-350 |#2|) (-299)) ELT)) (-3758 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 145 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-694)) 144 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 218 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) 150 (OR (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2562 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1090) (-694)) 149 (OR (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2562 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-583 (-1090))) 148 (OR (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2562 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1090)) 146 (OR (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2562 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-694)) 156 (OR (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2562 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 154 (OR (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2562 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2408 (((-630 (-350 |#2|)) (-1179 $) (-1 (-350 |#2|) (-350 |#2|))) 174 (|has| (-350 |#2|) (-312)) ELT)) (-3185 ((|#3|) 179 T ELT)) (-1674 (($) 168 (|has| (-350 |#2|) (-299)) ELT)) (-3224 (((-1179 (-350 |#2|)) $ (-1179 $)) 65 T ELT) (((-630 (-350 |#2|)) (-1179 $) (-1179 $)) 64 T ELT) (((-1179 (-350 |#2|)) $) 82 T ELT) (((-630 (-350 |#2|)) (-1179 $)) 81 T ELT)) (-3972 (((-1179 (-350 |#2|)) $) 79 T ELT) (($ (-1179 (-350 |#2|))) 78 T ELT) ((|#3| $) 195 T ELT) (($ |#3|) 177 T ELT)) (-2703 (((-3 (-1179 $) "failed") (-630 $)) 165 (|has| (-350 |#2|) (-299)) ELT)) (-1654 (((-1179 $) (-1179 $)) 232 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 |#2|)) 52 T ELT) (($ (-350 (-484))) 107 (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-950 (-350 (-484))))) ELT) (($ $) 112 (|has| (-350 |#2|) (-312)) ELT)) (-2702 (($ $) 164 (|has| (-350 |#2|) (-299)) ELT) (((-632 $) $) 58 (|has| (-350 |#2|) (-118)) ELT)) (-2449 ((|#3| $) 60 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1663 (((-85)) 245 T ELT)) (-1662 (((-85) |#1|) 244 T ELT) (((-85) |#2|) 243 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2012 (((-1179 $)) 83 T ELT)) (-2062 (((-85) $ $) 116 (|has| (-350 |#2|) (-312)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-1641 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 213 T ELT)) (-1665 (((-85)) 247 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 143 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-694)) 142 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 153 (OR (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2562 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1090) (-694)) 152 (OR (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2562 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-583 (-1090))) 151 (OR (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2562 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1090)) 147 (OR (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2562 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-694)) 157 (OR (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2562 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 155 (OR (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2562 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2562 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 141 (|has| (-350 |#2|) (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 138 (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 |#2|)) 54 T ELT) (($ (-350 |#2|) $) 53 T ELT) (($ (-350 (-484)) $) 140 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-484))) 139 (|has| (-350 |#2|) (-312)) ELT))) -(((-291 |#1| |#2| |#3|) (-113) (-1134) (-1155 |t#1|) (-1155 (-350 |t#2|))) (T -291)) -((-3377 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-694)))) (-1666 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-694)))) (-1665 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1664 (*1 *2 *3 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1663 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1662 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1662 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) (-1661 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1660 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1660 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) (-1659 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1658 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1658 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) (-3918 (*1 *2) (-12 (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1657 (*1 *2) (-12 (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))) (-1653 (*1 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))) (-1651 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4))))) (-1650 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4))))) (-1649 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4))))) (-1648 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4))))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4))))) (-1792 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1134)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1155 (-350 *3))))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4))))) (-1645 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1134)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1155 (-350 *3))))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-2 (|:| |num| (-630 *5)) (|:| |den| *5))))) (-1655 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1655 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) (-3758 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))) (-3503 (*1 *1 *1) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1134)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-350 *3))))) (-3800 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1134)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-350 *3))))) (-1643 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1134)) (-4 *4 (-1155 (-350 *2))) (-4 *2 (-1155 *3)))) (-1642 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1134)) (-4 *4 (-1155 (-350 *2))) (-4 *2 (-1155 *3)))) (-1641 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-1134)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-291 *4 *5 *6)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-4 *4 (-312)) (-5 *2 (-583 (-857 *4))))) (-1639 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-583 (-583 *3)))))) -(-13 (-661 (-350 |t#2|) |t#3|) (-10 -8 (-15 -3377 ((-694))) (-15 -1666 ((-694))) (-15 -1665 ((-85))) (-15 -1664 ((-85) |t#1| |t#1|)) (-15 -1663 ((-85))) (-15 -1662 ((-85) |t#1|)) (-15 -1662 ((-85) |t#2|)) (-15 -1661 ((-85))) (-15 -1660 ((-85) |t#1|)) (-15 -1660 ((-85) |t#2|)) (-15 -1659 ((-85))) (-15 -1658 ((-85) |t#1|)) (-15 -1658 ((-85) |t#2|)) (-15 -3918 ((-1179 $))) (-15 -1657 ((-1179 $))) (-15 -1656 ((-85) $)) (-15 -1655 ((-85) $)) (-15 -1654 ((-1179 $) (-1179 $))) (-15 -1653 ((-1179 $) (-1179 $))) (-15 -1652 ((-1179 $) (-1179 $))) (-15 -1651 ((-630 (-350 |t#2|)))) (-15 -1650 ((-630 (-350 |t#2|)))) (-15 -1649 ((-630 (-350 |t#2|)))) (-15 -1648 ((-630 (-350 |t#2|)))) (-15 -1647 ((-2 (|:| |num| (-1179 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1792 ($ (-1179 |t#2|) |t#2|)) (-15 -1646 ((-2 (|:| |num| (-1179 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1645 ($ (-1179 |t#2|) |t#2|)) (-15 -1644 ((-2 (|:| |num| (-630 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1655 ((-85) $ |t#1|)) (-15 -1655 ((-85) $ |t#2|)) (-15 -3758 ($ $ (-1 |t#2| |t#2|))) (-15 -3503 ($ $)) (-15 -3800 (|t#1| $ |t#1| |t#1|)) (-15 -1643 ((-3 |t#2| "failed"))) (-15 -1642 ((-3 |t#2| "failed"))) (-15 -1641 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-312)) (-15 -1640 ((-583 (-857 |t#1|)) (-1090))) |%noBranch|) (IF (|has| |t#1| (-320)) (-15 -1639 ((-583 (-583 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-38 (-350 |#2|)) . T) ((-38 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-82 (-350 |#2|) (-350 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-118))) ((-120) |has| (-350 |#2|) (-120)) ((-555 (-350 (-484))) OR (|has| (-350 |#2|) (-950 (-350 (-484)))) (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-555 (-350 |#2|)) . T) ((-555 (-484)) . T) ((-555 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-552 (-772)) . T) ((-146) . T) ((-553 |#3|) . T) ((-186 $) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-184 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-190) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-189) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-225 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-201) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-246) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-258) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-312) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-345) |has| (-350 |#2|) (-299)) ((-320) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-320))) ((-299) |has| (-350 |#2|) (-299)) ((-322 (-350 |#2|) |#3|) . T) ((-353 (-350 |#2|) |#3|) . T) ((-329 (-350 |#2|)) . T) ((-355 (-350 |#2|)) . T) ((-392) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-495) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-13) . T) ((-588 (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-588 (-350 |#2|)) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-590 (-350 |#2|)) . T) ((-590 (-484)) |has| (-350 |#2|) (-580 (-484))) ((-590 $) . T) ((-582 (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-582 (-350 |#2|)) . T) ((-582 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-580 (-350 |#2|)) . T) ((-580 (-484)) |has| (-350 |#2|) (-580 (-484))) ((-654 (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-654 (-350 |#2|)) . T) ((-654 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-661 (-350 |#2|) |#3|) . T) ((-663) . T) ((-806 $ (-1090)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090))))) ((-809 (-1090)) -12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) ((-811 (-1090)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090))))) ((-832) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-950 (-350 (-484))) |has| (-350 |#2|) (-950 (-350 (-484)))) ((-950 (-350 |#2|)) . T) ((-950 (-484)) |has| (-350 |#2|) (-950 (-484))) ((-963 (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-963 (-350 |#2|)) . T) ((-963 $) . T) ((-968 (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-968 (-350 |#2|)) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) |has| (-350 |#2|) (-299)) ((-1129) . T) ((-1134) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312)))) -((-3958 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) -(((-292 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3958 (|#8| (-1 |#5| |#1|) |#4|))) (-1134) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-1134) (-1155 |#5|) (-1155 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -292)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1134)) (-4 *8 (-1134)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *9 (-1155 *8)) (-4 *2 (-291 *8 *9 *10)) (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) (-4 *10 (-1155 (-350 *9)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-694)) NIL T ELT)) (-3330 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3156 (((-817 |#1|) $) NIL T ELT)) (-1792 (($ (-1179 (-817 |#1|))) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1680 (((-85) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1764 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-830) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2011 (((-85) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3132 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3445 (((-632 $) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 (-817 |#1|)) $) NIL T ELT) (((-1085 $) $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2010 (((-830) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1627 (((-1085 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1626 (((-1085 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-3 (-1085 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1628 (($ $ (-1085 (-817 |#1|))) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-817 |#1|) (-320)) CONST)) (-2400 (($ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1667 (((-869 (-1033))) NIL T ELT)) (-2409 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1765 (((-694) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3948 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1085 (-817 |#1|))) NIL T ELT)) (-1674 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1629 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3224 (((-1179 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1179 $)) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2702 (($ $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT) (((-1179 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3928 (($ $) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2669 (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT))) -(((-293 |#1| |#2|) (-13 (-280 (-817 |#1|)) (-10 -7 (-15 -1667 ((-869 (-1033)))))) (-830) (-830)) (T -293)) -((-1667 (*1 *2) (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-293 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 58 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-694)) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 56 (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 139 T ELT)) (-3156 ((|#1| $) 111 T ELT)) (-1792 (($ (-1179 |#1|)) 128 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) 122 (|has| |#1| (-320)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) 155 (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) 65 (|has| |#1| (-320)) ELT)) (-1764 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-830) $) 60 (|has| |#1| (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 62 T ELT)) (-2013 (($) 157 (|has| |#1| (-320)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3132 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3445 (((-632 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 |#1|) $) 115 T ELT) (((-1085 $) $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-2010 (((-830) $) 165 (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 172 T ELT)) (-3446 (($) NIL (|has| |#1| (-320)) CONST)) (-2400 (($ (-830)) 94 (|has| |#1| (-320)) ELT)) (-3931 (((-85) $) 142 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1667 (((-869 (-1033))) 57 T ELT)) (-2409 (($) 153 (|has| |#1| (-320)) ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) 117 (|has| |#1| (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-743 (-830))) 88 T ELT) (((-830)) 89 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1765 (((-694) $) 156 (|has| |#1| (-320)) ELT) (((-3 (-694) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1085 |#1|)) 120 T ELT)) (-1674 (($) 154 (|has| |#1| (-320)) ELT)) (-1629 (($) 162 (|has| |#1| (-320)) ELT)) (-3224 (((-1179 |#1|) $) 76 T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| |#1| (-320)) ELT)) (-3946 (((-772) $) 168 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2702 (($ $) NIL (|has| |#1| (-320)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3126 (((-694)) 150 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) 141 T ELT) (((-1179 $) (-830)) 96 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2660 (($) 66 T CONST)) (-2666 (($) 101 T CONST)) (-3928 (($ $) 105 (|has| |#1| (-320)) ELT) (($ $ (-694)) NIL (|has| |#1| (-320)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3056 (((-85) $ $) 64 T ELT)) (-3949 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3837 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 84 T ELT)) (** (($ $ (-830)) 174 T ELT) (($ $ (-694)) 175 T ELT) (($ $ (-484)) 173 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT))) -(((-294 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1667 ((-869 (-1033)))))) (-299) (-1085 |#1|)) (T -294)) -((-1667 (*1 *2) (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) (-14 *4 (-1085 *3))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-694)) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1792 (($ (-1179 |#1|)) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| |#1| (-320)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1764 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-830) $) NIL (|has| |#1| (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3132 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3445 (((-632 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 |#1|) $) NIL T ELT) (((-1085 $) $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| |#1| (-320)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1667 (((-869 (-1033))) NIL T ELT)) (-2409 (($) NIL (|has| |#1| (-320)) ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1765 (((-694) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1085 |#1|)) NIL T ELT)) (-1674 (($) NIL (|has| |#1| (-320)) ELT)) (-1629 (($) NIL (|has| |#1| (-320)) ELT)) (-3224 (((-1179 |#1|) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| |#1| (-320)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2702 (($ $) NIL (|has| |#1| (-320)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT) (((-1179 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3928 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-694)) NIL (|has| |#1| (-320)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-295 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1667 ((-869 (-1033)))))) (-299) (-830)) (T -295)) -((-1667 (*1 *2) (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830))))) -((-1677 (((-694) (-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033)))))) 61 T ELT)) (-1668 (((-869 (-1033)) (-1085 |#1|)) 112 T ELT)) (-1669 (((-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033))))) (-1085 |#1|)) 103 T ELT)) (-1670 (((-630 |#1|) (-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033)))))) 113 T ELT)) (-1671 (((-3 (-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033))))) "failed") (-830)) 13 T ELT)) (-1672 (((-3 (-1085 |#1|) (-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033)))))) (-830)) 18 T ELT))) -(((-296 |#1|) (-10 -7 (-15 -1668 ((-869 (-1033)) (-1085 |#1|))) (-15 -1669 ((-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033))))) (-1085 |#1|))) (-15 -1670 ((-630 |#1|) (-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033))))))) (-15 -1677 ((-694) (-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033))))))) (-15 -1671 ((-3 (-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033))))) "failed") (-830))) (-15 -1672 ((-3 (-1085 |#1|) (-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033)))))) (-830)))) (-299)) (T -296)) -((-1672 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-3 (-1085 *4) (-1179 (-583 (-2 (|:| -3402 *4) (|:| -2400 (-1033))))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1671 (*1 *2 *3) (|partial| -12 (-5 *3 (-830)) (-5 *2 (-1179 (-583 (-2 (|:| -3402 *4) (|:| -2400 (-1033)))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-1179 (-583 (-2 (|:| -3402 *4) (|:| -2400 (-1033)))))) (-4 *4 (-299)) (-5 *2 (-694)) (-5 *1 (-296 *4)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-1179 (-583 (-2 (|:| -3402 *4) (|:| -2400 (-1033)))))) (-4 *4 (-299)) (-5 *2 (-630 *4)) (-5 *1 (-296 *4)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-1179 (-583 (-2 (|:| -3402 *4) (|:| -2400 (-1033)))))) (-5 *1 (-296 *4)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-869 (-1033))) (-5 *1 (-296 *4))))) -((-3946 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) -(((-297 |#1| |#2| |#3|) (-10 -7 (-15 -3946 (|#3| |#1|)) (-15 -3946 (|#1| |#3|))) (-280 |#2|) (-299) (-280 |#2|)) (T -297)) -((-3946 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) (-4 *3 (-280 *4)))) (-3946 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) (-4 *3 (-280 *4))))) -((-1680 (((-85) $) 65 T ELT)) (-3772 (((-743 (-830)) $) 26 T ELT) (((-830) $) 69 T ELT)) (-3445 (((-632 $) $) 21 T ELT)) (-3446 (($) 9 T CONST)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 120 T ELT)) (-1765 (((-3 (-694) #1="failed") $ $) 98 T ELT) (((-694) $) 84 T ELT)) (-3758 (($ $) 8 T ELT) (($ $ (-694)) NIL T ELT)) (-1674 (($) 58 T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) 41 T ELT)) (-2702 (((-632 $) $) 50 T ELT) (($ $) 47 T ELT))) -(((-298 |#1|) (-10 -7 (-15 -3772 ((-830) |#1|)) (-15 -1765 ((-694) |#1|)) (-15 -1680 ((-85) |#1|)) (-15 -1674 (|#1|)) (-15 -2703 ((-3 (-1179 |#1|) #1="failed") (-630 |#1|))) (-15 -2702 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-694))) (-15 -3758 (|#1| |#1|)) (-15 -3446 (|#1|) -3952) (-15 -3445 ((-632 |#1|) |#1|)) (-15 -1765 ((-3 (-694) #1#) |#1| |#1|)) (-15 -3772 ((-743 (-830)) |#1|)) (-15 -2702 ((-632 |#1|) |#1|)) (-15 -2708 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|)))) (-299)) (T -298)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 113 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3136 (((-694)) 123 T ELT)) (-3724 (($) 23 T CONST)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 107 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2994 (($) 126 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-2833 (($) 111 T ELT)) (-1680 (((-85) $) 110 T ELT)) (-1764 (($ $) 97 T ELT) (($ $ (-694)) 96 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-3772 (((-743 (-830)) $) 99 T ELT) (((-830) $) 108 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3445 (((-632 $) $) 122 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-2010 (((-830) $) 125 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3446 (($) 121 T CONST)) (-2400 (($ (-830)) 124 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) 114 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-1765 (((-3 (-694) "failed") $ $) 98 T ELT) (((-694) $) 109 T ELT)) (-3758 (($ $) 120 T ELT) (($ $ (-694)) 118 T ELT)) (-1674 (($) 112 T ELT)) (-2703 (((-3 (-1179 $) "failed") (-630 $)) 115 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT)) (-2702 (((-632 $) $) 100 T ELT) (($ $) 116 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $) 119 T ELT) (($ $ (-694)) 117 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 83 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT))) +((-2013 (*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *3)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *4)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1180 *3)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4)))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3)))) (-3186 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3)))) (-3931 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-2015 (*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1086 *1)) (-4 *1 (-280 *4)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-3331 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-1630 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2014 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-85)))) (-2410 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-1629 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312)))) (-1628 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1086 *3)))) (-1627 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1086 *3)))) (-1627 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1086 *3))))) +(-13 (-1199 |t#1|) (-951 |t#1|) (-10 -8 (-15 -2013 ((-1180 $))) (-15 -2013 ((-1180 $) (-831))) (-15 -3225 ((-1180 |t#1|) $)) (-15 -3225 ((-631 |t#1|) (-1180 $))) (-15 -1793 ($ (-1180 |t#1|))) (-15 -2015 ((-1086 |t#1|) $)) (-15 -3186 ((-1086 |t#1|))) (-15 -3931 ((-831))) (-15 -3949 ((-831) $)) (-15 -3133 (|t#1| $)) (-15 -3331 (|t#1| $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-299)) (-15 -2015 ((-1086 $) $ (-831))) (-15 -3133 ($ $ (-831))) (-15 -3331 ($ $ (-831))) (-15 -1630 ($)) (-15 -2014 ($)) (-15 -2012 ((-85) $)) (-15 -2410 ($)) (-15 -1629 ($ $ (-1086 |t#1|))) (-15 -1628 ((-1086 |t#1|) $)) (-15 -1627 ((-1086 |t#1|) $)) (-15 -1627 ((-3 (-1086 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-186 $) |has| |#1| (-320)) ((-190) |has| |#1| (-320)) ((-189) |has| |#1| (-320)) ((-201) . T) ((-246) . T) ((-258) . T) ((-1199 |#1|) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-320) |has| |#1| (-320)) ((-299) |has| |#1| (-320)) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-320)) ((-1130) . T) ((-1135) . T) ((-1188 |#1|) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-1631 (((-85) $) 13 T ELT)) (-3639 (($ |#1|) 10 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3635 (($ |#1|) 12 T ELT)) (-3947 (((-773) $) 19 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2237 ((|#1| $) 14 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 21 T ELT))) +(((-281 |#1|) (-13 (-757) (-10 -8 (-15 -3639 ($ |#1|)) (-15 -3635 ($ |#1|)) (-15 -1631 ((-85) $)) (-15 -2237 (|#1| $)))) (-757)) (T -281)) +((-3639 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))) (-3635 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-757)))) (-2237 (*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1632 (((-447) $) 20 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1633 (((-870 (-695)) $) 18 T ELT)) (-1635 (((-209) $) 7 T ELT)) (-3947 (((-773) $) 26 T ELT)) (-2207 (((-870 (-158 (-112))) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1634 (((-584 (-783 (-1096) (-695))) $) 12 T ELT)) (-3057 (((-85) $ $) 22 T ELT))) +(((-282) (-13 (-1014) (-10 -8 (-15 -1635 ((-209) $)) (-15 -1634 ((-584 (-783 (-1096) (-695))) $)) (-15 -1633 ((-870 (-695)) $)) (-15 -2207 ((-870 (-158 (-112))) $)) (-15 -1632 ((-447) $))))) (T -282)) +((-1635 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-1096) (-695)))) (-5 *1 (-282)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-870 (-695))) (-5 *1 (-282)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-870 (-158 (-112)))) (-5 *1 (-282)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-282))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3843 (($ $) 34 T ELT)) (-1638 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1636 (((-1180 |#4|) $) 133 T ELT)) (-1969 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 32 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (((-3 |#4| #1#) $) 37 T ELT)) (-1637 (((-1180 |#4|) $) 125 T ELT)) (-1639 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-485)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3436 (((-2 (|:| -2337 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3947 (((-773) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 15 T CONST)) (-3057 (((-85) $ $) 21 T ELT)) (-3838 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 26 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 24 T ELT))) +(((-283 |#1| |#2| |#3| |#4|) (-13 (-286 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1637 ((-1180 |#4|) $)) (-15 -1636 ((-1180 |#4|) $)))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -283)) +((-1637 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))) (-1636 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) +((-3959 (((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)) 33 T ELT))) +(((-284 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3959 ((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-312) (-1156 |#5|) (-1156 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -284)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *9 (-312)) (-4 *10 (-1156 *9)) (-4 *11 (-1156 (-350 *10))) (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-291 *9 *10 *11))))) +((-1638 (((-85) $) 14 T ELT))) +(((-285 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1638 ((-85) |#1|))) (-286 |#2| |#3| |#4| |#5|) (-312) (-1156 |#2|) (-1156 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -285)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3843 (($ $) 35 T ELT)) (-1638 (((-85) $) 34 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-1969 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 41 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2410 (((-3 |#4| "failed") $) 33 T ELT)) (-1639 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 40 T ELT) (($ |#4|) 39 T ELT) (($ |#1| |#1|) 38 T ELT) (($ |#1| |#1| (-485)) 37 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 32 T ELT)) (-3436 (((-2 (|:| -2337 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 36 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT))) +(((-286 |#1| |#2| |#3| |#4|) (-113) (-312) (-1156 |t#1|) (-1156 (-350 |t#2|)) (-291 |t#1| |t#2| |t#3|)) (T -286)) +((-1969 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-356 *4 (-350 *4) *5 *6)))) (-1639 (*1 *1 *2) (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) (-4 *1 (-286 *3 *4 *5 *6)))) (-1639 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) (-1639 (*1 *1 *2 *2) (-12 (-4 *2 (-312)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-350 *3))) (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) (-1639 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-485)) (-4 *2 (-312)) (-4 *4 (-1156 *2)) (-4 *5 (-1156 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6)) (-4 *6 (-291 *2 *4 *5)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-2 (|:| -2337 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6))))) (-3843 (*1 *1 *1) (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-350 *3))) (-4 *5 (-291 *2 *3 *4)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))) (-2410 (*1 *2 *1) (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *2 (-291 *3 *4 *5)))) (-1639 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-312)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1969 ((-356 |t#2| (-350 |t#2|) |t#3| |t#4|) $)) (-15 -1639 ($ (-356 |t#2| (-350 |t#2|) |t#3| |t#4|))) (-15 -1639 ($ |t#4|)) (-15 -1639 ($ |t#1| |t#1|)) (-15 -1639 ($ |t#1| |t#1| (-485))) (-15 -3436 ((-2 (|:| -2337 (-356 |t#2| (-350 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3843 ($ $)) (-15 -1638 ((-85) $)) (-15 -2410 ((-3 |t#4| "failed") $)) (-15 -1639 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-1014) . T) ((-1130) . T)) +((-3769 (($ $ (-1091) |#2|) NIL T ELT) (($ $ (-584 (-1091)) (-584 |#2|)) 20 T ELT) (($ $ (-584 (-249 |#2|))) 15 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL T ELT)) (-3801 (($ $ |#2|) 11 T ELT))) +(((-287 |#1| |#2|) (-10 -7 (-15 -3801 (|#1| |#1| |#2|)) (-15 -3769 (|#1| |#1| (-584 |#2|) (-584 |#2|))) (-15 -3769 (|#1| |#1| |#2| |#2|)) (-15 -3769 (|#1| |#1| (-249 |#2|))) (-15 -3769 (|#1| |#1| (-584 (-249 |#2|)))) (-15 -3769 (|#1| |#1| (-584 (-1091)) (-584 |#2|))) (-15 -3769 (|#1| |#1| (-1091) |#2|))) (-288 |#2|) (-1014)) (T -287)) +NIL +((-3959 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3769 (($ $ (-1091) |#1|) 17 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 16 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 15 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 14 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 12 (|has| |#1| (-260 |#1|)) ELT)) (-3801 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT))) +(((-288 |#1|) (-113) (-1014)) (T -288)) +((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1014))))) +(-13 (-10 -8 (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-456 (-1091) |t#1|)) (-6 (-456 (-1091) |t#1|)) |%noBranch|))) +(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) |has| |#1| (-241 |#1| |#1|)) ((-1130) |has| |#1| (-241 |#1| |#1|))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-695)) NIL T ELT)) (-3331 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3157 (((-818 |#1|) $) NIL T ELT)) (-1793 (($ (-1180 (-818 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1765 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3133 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3446 (((-633 $) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 (-818 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1628 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1627 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-1086 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1629 (($ $ (-1086 (-818 |#1|))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-818 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1766 (((-695) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3949 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1086 (-818 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3225 (((-1180 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1180 $)) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2703 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT))) +(((-289 |#1| |#2|) (-280 (-818 |#1|)) (-831) (-831)) (T -289)) +NIL +((-1648 (((-2 (|:| |num| (-1180 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1793 (($ (-1180 (-350 |#3|)) (-1180 $)) NIL T ELT) (($ (-1180 (-350 |#3|))) NIL T ELT) (($ (-1180 |#3|) |#3|) 172 T ELT)) (-1653 (((-1180 $) (-1180 $)) 156 T ELT)) (-1640 (((-584 (-584 |#2|))) 126 T ELT)) (-1665 (((-85) |#2| |#2|) 76 T ELT)) (-3504 (($ $) 148 T ELT)) (-3378 (((-695)) 171 T ELT)) (-1654 (((-1180 $) (-1180 $)) 219 T ELT)) (-1641 (((-584 (-858 |#2|)) (-1091)) 115 T ELT)) (-1657 (((-85) $) 168 T ELT)) (-1656 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1643 (((-3 |#3| #1="failed")) 52 T ELT)) (-1667 (((-695)) 183 T ELT)) (-3801 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1644 (((-3 |#3| #1#)) 71 T ELT)) (-3759 (($ $ (-1 (-350 |#3|) (-350 |#3|))) NIL T ELT) (($ $ (-1 (-350 |#3|) (-350 |#3|)) (-695)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-1655 (((-1180 $) (-1180 $)) 162 T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1666 (((-85)) 34 T ELT))) +(((-290 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-695))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3759 (|#1| |#1| (-584 (-1091)))) (-15 -3759 (|#1| |#1| (-1091) (-695))) (-15 -3759 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -1640 ((-584 (-584 |#2|)))) (-15 -1641 ((-584 (-858 |#2|)) (-1091))) (-15 -1642 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1643 ((-3 |#3| #1="failed"))) (-15 -1644 ((-3 |#3| #1#))) (-15 -3801 (|#2| |#1| |#2| |#2|)) (-15 -3504 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1656 ((-85) |#1| |#3|)) (-15 -1656 ((-85) |#1| |#2|)) (-15 -1793 (|#1| (-1180 |#3|) |#3|)) (-15 -1648 ((-2 (|:| |num| (-1180 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1653 ((-1180 |#1|) (-1180 |#1|))) (-15 -1654 ((-1180 |#1|) (-1180 |#1|))) (-15 -1655 ((-1180 |#1|) (-1180 |#1|))) (-15 -1656 ((-85) |#1|)) (-15 -1657 ((-85) |#1|)) (-15 -1665 ((-85) |#2| |#2|)) (-15 -1666 ((-85))) (-15 -1667 ((-695))) (-15 -3378 ((-695))) (-15 -3759 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)) (-695))) (-15 -3759 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)))) (-15 -1793 (|#1| (-1180 (-350 |#3|)))) (-15 -1793 (|#1| (-1180 (-350 |#3|)) (-1180 |#1|)))) (-291 |#2| |#3| |#4|) (-1135) (-1156 |#2|) (-1156 (-350 |#3|))) (T -290)) +((-3378 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1667 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1666 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1665 (*1 *2 *3 *3) (-12 (-4 *3 (-1135)) (-4 *5 (-1156 *3)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) (-1644 (*1 *2) (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1643 (*1 *2) (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-5 *2 (-584 (-858 *5))) (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) (-1640 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-584 (-584 *4))) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1648 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 225 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 114 (|has| (-350 |#2|) (-312)) ELT)) (-2064 (($ $) 115 (|has| (-350 |#2|) (-312)) ELT)) (-2062 (((-85) $) 117 (|has| (-350 |#2|) (-312)) ELT)) (-1783 (((-631 (-350 |#2|)) (-1180 $)) 61 T ELT) (((-631 (-350 |#2|))) 77 T ELT)) (-3331 (((-350 |#2|) $) 67 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 167 (|has| (-350 |#2|) (-299)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 134 (|has| (-350 |#2|) (-312)) ELT)) (-3972 (((-348 $) $) 135 (|has| (-350 |#2|) (-312)) ELT)) (-1609 (((-85) $ $) 125 (|has| (-350 |#2|) (-312)) ELT)) (-3137 (((-695)) 108 (|has| (-350 |#2|) (-320)) ELT)) (-1662 (((-85)) 242 T ELT)) (-1661 (((-85) |#1|) 241 T ELT) (((-85) |#2|) 240 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-485) #1="failed") $) 194 (|has| (-350 |#2|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 192 (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-3 (-350 |#2|) #1#) $) 189 T ELT)) (-3157 (((-485) $) 193 (|has| (-350 |#2|) (-951 (-485))) ELT) (((-350 (-485)) $) 191 (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-350 |#2|) $) 190 T ELT)) (-1793 (($ (-1180 (-350 |#2|)) (-1180 $)) 63 T ELT) (($ (-1180 (-350 |#2|))) 80 T ELT) (($ (-1180 |#2|) |#2|) 224 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| (-350 |#2|) (-299)) ELT)) (-2565 (($ $ $) 129 (|has| (-350 |#2|) (-312)) ELT)) (-1782 (((-631 (-350 |#2|)) $ (-1180 $)) 68 T ELT) (((-631 (-350 |#2|)) $) 75 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 186 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 185 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-631 $) (-1180 $)) 184 T ELT) (((-631 (-350 |#2|)) (-631 $)) 183 T ELT)) (-1653 (((-1180 $) (-1180 $)) 230 T ELT)) (-3843 (($ |#3|) 178 T ELT) (((-3 $ "failed") (-350 |#3|)) 175 (|has| (-350 |#2|) (-312)) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1640 (((-584 (-584 |#1|))) 211 (|has| |#1| (-320)) ELT)) (-1665 (((-85) |#1| |#1|) 246 T ELT)) (-3109 (((-831)) 69 T ELT)) (-2995 (($) 111 (|has| (-350 |#2|) (-320)) ELT)) (-1660 (((-85)) 239 T ELT)) (-1659 (((-85) |#1|) 238 T ELT) (((-85) |#2|) 237 T ELT)) (-2564 (($ $ $) 128 (|has| (-350 |#2|) (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 123 (|has| (-350 |#2|) (-312)) ELT)) (-3504 (($ $) 217 T ELT)) (-2834 (($) 169 (|has| (-350 |#2|) (-299)) ELT)) (-1681 (((-85) $) 170 (|has| (-350 |#2|) (-299)) ELT)) (-1765 (($ $ (-695)) 161 (|has| (-350 |#2|) (-299)) ELT) (($ $) 160 (|has| (-350 |#2|) (-299)) ELT)) (-3724 (((-85) $) 136 (|has| (-350 |#2|) (-312)) ELT)) (-3773 (((-831) $) 172 (|has| (-350 |#2|) (-299)) ELT) (((-744 (-831)) $) 158 (|has| (-350 |#2|) (-299)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3378 (((-695)) 249 T ELT)) (-1654 (((-1180 $) (-1180 $)) 231 T ELT)) (-3133 (((-350 |#2|) $) 66 T ELT)) (-1641 (((-584 (-858 |#1|)) (-1091)) 212 (|has| |#1| (-312)) ELT)) (-3446 (((-633 $) $) 162 (|has| (-350 |#2|) (-299)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 132 (|has| (-350 |#2|) (-312)) ELT)) (-2015 ((|#3| $) 59 (|has| (-350 |#2|) (-312)) ELT)) (-2011 (((-831) $) 110 (|has| (-350 |#2|) (-320)) ELT)) (-3080 ((|#3| $) 176 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 188 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 187 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-1180 $) $) 182 T ELT) (((-631 (-350 |#2|)) (-1180 $)) 181 T ELT)) (-1892 (($ (-584 $)) 121 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 120 (|has| (-350 |#2|) (-312)) ELT)) (-3243 (((-1074) $) 11 T ELT)) (-1649 (((-631 (-350 |#2|))) 226 T ELT)) (-1651 (((-631 (-350 |#2|))) 228 T ELT)) (-2485 (($ $) 137 (|has| (-350 |#2|) (-312)) ELT)) (-1646 (($ (-1180 |#2|) |#2|) 222 T ELT)) (-1650 (((-631 (-350 |#2|))) 227 T ELT)) (-1652 (((-631 (-350 |#2|))) 229 T ELT)) (-1645 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 221 T ELT)) (-1647 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-1658 (((-1180 $)) 235 T ELT)) (-3919 (((-1180 $)) 236 T ELT)) (-1657 (((-85) $) 234 T ELT)) (-1656 (((-85) $) 233 T ELT) (((-85) $ |#1|) 220 T ELT) (((-85) $ |#2|) 219 T ELT)) (-3447 (($) 163 (|has| (-350 |#2|) (-299)) CONST)) (-2401 (($ (-831)) 109 (|has| (-350 |#2|) (-320)) ELT)) (-1643 (((-3 |#2| "failed")) 214 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1667 (((-695)) 248 T ELT)) (-2410 (($) 180 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 122 (|has| (-350 |#2|) (-312)) ELT)) (-3145 (($ (-584 $)) 119 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 118 (|has| (-350 |#2|) (-312)) ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) 166 (|has| (-350 |#2|) (-299)) ELT)) (-3733 (((-348 $) $) 133 (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 130 (|has| (-350 |#2|) (-312)) ELT)) (-3467 (((-3 $ "failed") $ $) 113 (|has| (-350 |#2|) (-312)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 124 (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-695) $) 126 (|has| (-350 |#2|) (-312)) ELT)) (-3801 ((|#1| $ |#1| |#1|) 216 T ELT)) (-1644 (((-3 |#2| "failed")) 215 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 127 (|has| (-350 |#2|) (-312)) ELT)) (-3758 (((-350 |#2|) (-1180 $)) 62 T ELT) (((-350 |#2|)) 76 T ELT)) (-1766 (((-695) $) 171 (|has| (-350 |#2|) (-299)) ELT) (((-3 (-695) "failed") $ $) 159 (|has| (-350 |#2|) (-299)) ELT)) (-3759 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 145 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) 144 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 218 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 150 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2563 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1091) (-695)) 149 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2563 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-584 (-1091))) 148 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2563 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1091)) 146 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2563 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-695)) 156 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2563 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 154 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2563 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2409 (((-631 (-350 |#2|)) (-1180 $) (-1 (-350 |#2|) (-350 |#2|))) 174 (|has| (-350 |#2|) (-312)) ELT)) (-3186 ((|#3|) 179 T ELT)) (-1675 (($) 168 (|has| (-350 |#2|) (-299)) ELT)) (-3225 (((-1180 (-350 |#2|)) $ (-1180 $)) 65 T ELT) (((-631 (-350 |#2|)) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 (-350 |#2|)) $) 82 T ELT) (((-631 (-350 |#2|)) (-1180 $)) 81 T ELT)) (-3973 (((-1180 (-350 |#2|)) $) 79 T ELT) (($ (-1180 (-350 |#2|))) 78 T ELT) ((|#3| $) 195 T ELT) (($ |#3|) 177 T ELT)) (-2704 (((-3 (-1180 $) "failed") (-631 $)) 165 (|has| (-350 |#2|) (-299)) ELT)) (-1655 (((-1180 $) (-1180 $)) 232 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 |#2|)) 52 T ELT) (($ (-350 (-485))) 107 (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-951 (-350 (-485))))) ELT) (($ $) 112 (|has| (-350 |#2|) (-312)) ELT)) (-2703 (($ $) 164 (|has| (-350 |#2|) (-299)) ELT) (((-633 $) $) 58 (|has| (-350 |#2|) (-118)) ELT)) (-2450 ((|#3| $) 60 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1664 (((-85)) 245 T ELT)) (-1663 (((-85) |#1|) 244 T ELT) (((-85) |#2|) 243 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 83 T ELT)) (-2063 (((-85) $ $) 116 (|has| (-350 |#2|) (-312)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 213 T ELT)) (-1666 (((-85)) 247 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 143 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) 142 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 153 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2563 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1091) (-695)) 152 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2563 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-584 (-1091))) 151 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2563 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1091)) 147 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2563 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-695)) 157 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2563 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 155 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2563 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 141 (|has| (-350 |#2|) (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 138 (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 |#2|)) 54 T ELT) (($ (-350 |#2|) $) 53 T ELT) (($ (-350 (-485)) $) 140 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-485))) 139 (|has| (-350 |#2|) (-312)) ELT))) +(((-291 |#1| |#2| |#3|) (-113) (-1135) (-1156 |t#1|) (-1156 (-350 |t#2|))) (T -291)) +((-3378 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-695)))) (-1667 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-695)))) (-1666 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1665 (*1 *2 *3 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1664 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1663 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1663 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) (-1662 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) (-1660 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) (-3919 (*1 *2) (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1658 (*1 *2) (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1655 (*1 *2 *2) (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))) (-1653 (*1 *2 *2) (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))) (-1652 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1651 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1650 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1649 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1648 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4))))) (-1793 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-350 *3))))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4))))) (-1646 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-350 *3))))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5))))) (-1656 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))) (-3504 (*1 *1 *1) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-350 *3))))) (-3801 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-350 *3))))) (-1644 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135)) (-4 *4 (-1156 (-350 *2))) (-4 *2 (-1156 *3)))) (-1643 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135)) (-4 *4 (-1156 (-350 *2))) (-4 *2 (-1156 *3)))) (-1642 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-1135)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-291 *4 *5 *6)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-4 *4 (-312)) (-5 *2 (-584 (-858 *4))))) (-1640 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-584 (-584 *3)))))) +(-13 (-662 (-350 |t#2|) |t#3|) (-10 -8 (-15 -3378 ((-695))) (-15 -1667 ((-695))) (-15 -1666 ((-85))) (-15 -1665 ((-85) |t#1| |t#1|)) (-15 -1664 ((-85))) (-15 -1663 ((-85) |t#1|)) (-15 -1663 ((-85) |t#2|)) (-15 -1662 ((-85))) (-15 -1661 ((-85) |t#1|)) (-15 -1661 ((-85) |t#2|)) (-15 -1660 ((-85))) (-15 -1659 ((-85) |t#1|)) (-15 -1659 ((-85) |t#2|)) (-15 -3919 ((-1180 $))) (-15 -1658 ((-1180 $))) (-15 -1657 ((-85) $)) (-15 -1656 ((-85) $)) (-15 -1655 ((-1180 $) (-1180 $))) (-15 -1654 ((-1180 $) (-1180 $))) (-15 -1653 ((-1180 $) (-1180 $))) (-15 -1652 ((-631 (-350 |t#2|)))) (-15 -1651 ((-631 (-350 |t#2|)))) (-15 -1650 ((-631 (-350 |t#2|)))) (-15 -1649 ((-631 (-350 |t#2|)))) (-15 -1648 ((-2 (|:| |num| (-1180 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1793 ($ (-1180 |t#2|) |t#2|)) (-15 -1647 ((-2 (|:| |num| (-1180 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1646 ($ (-1180 |t#2|) |t#2|)) (-15 -1645 ((-2 (|:| |num| (-631 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1656 ((-85) $ |t#1|)) (-15 -1656 ((-85) $ |t#2|)) (-15 -3759 ($ $ (-1 |t#2| |t#2|))) (-15 -3504 ($ $)) (-15 -3801 (|t#1| $ |t#1| |t#1|)) (-15 -1644 ((-3 |t#2| "failed"))) (-15 -1643 ((-3 |t#2| "failed"))) (-15 -1642 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-312)) (-15 -1641 ((-584 (-858 |t#1|)) (-1091))) |%noBranch|) (IF (|has| |t#1| (-320)) (-15 -1640 ((-584 (-584 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-38 (-350 |#2|)) . T) ((-38 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-82 (-350 |#2|) (-350 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-118))) ((-120) |has| (-350 |#2|) (-120)) ((-556 (-350 (-485))) OR (|has| (-350 |#2|) (-951 (-350 (-485)))) (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-556 (-350 |#2|)) . T) ((-556 (-485)) . T) ((-556 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-553 (-773)) . T) ((-146) . T) ((-554 |#3|) . T) ((-186 $) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-184 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-190) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-189) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-225 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-201) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-246) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-258) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-312) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-345) |has| (-350 |#2|) (-299)) ((-320) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-320))) ((-299) |has| (-350 |#2|) (-299)) ((-322 (-350 |#2|) |#3|) . T) ((-353 (-350 |#2|) |#3|) . T) ((-329 (-350 |#2|)) . T) ((-355 (-350 |#2|)) . T) ((-392) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-496) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-589 (-350 |#2|)) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-591 (-350 |#2|)) . T) ((-591 (-485)) |has| (-350 |#2|) (-581 (-485))) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-583 (-350 |#2|)) . T) ((-583 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-581 (-350 |#2|)) . T) ((-581 (-485)) |has| (-350 |#2|) (-581 (-485))) ((-655 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-655 (-350 |#2|)) . T) ((-655 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-662 (-350 |#2|) |#3|) . T) ((-664) . T) ((-807 $ (-1091)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091))))) ((-810 (-1091)) -12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) ((-812 (-1091)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091))))) ((-833) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-951 (-350 (-485))) |has| (-350 |#2|) (-951 (-350 (-485)))) ((-951 (-350 |#2|)) . T) ((-951 (-485)) |has| (-350 |#2|) (-951 (-485))) ((-964 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-964 (-350 |#2|)) . T) ((-964 $) . T) ((-969 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-969 (-350 |#2|)) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| (-350 |#2|) (-299)) ((-1130) . T) ((-1135) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312)))) +((-3959 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) +(((-292 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3959 (|#8| (-1 |#5| |#1|) |#4|))) (-1135) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-1135) (-1156 |#5|) (-1156 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -292)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1135)) (-4 *8 (-1135)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *9 (-1156 *8)) (-4 *2 (-291 *8 *9 *10)) (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) (-4 *10 (-1156 (-350 *9)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-695)) NIL T ELT)) (-3331 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3157 (((-818 |#1|) $) NIL T ELT)) (-1793 (($ (-1180 (-818 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1765 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3133 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3446 (((-633 $) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 (-818 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1628 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1627 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-1086 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1629 (($ $ (-1086 (-818 |#1|))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-818 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1668 (((-870 (-1034))) NIL T ELT)) (-2410 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1766 (((-695) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3949 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1086 (-818 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3225 (((-1180 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1180 $)) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2703 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT))) +(((-293 |#1| |#2|) (-13 (-280 (-818 |#1|)) (-10 -7 (-15 -1668 ((-870 (-1034)))))) (-831) (-831)) (T -293)) +((-1668 (*1 *2) (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-293 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 58 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-695)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 56 (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 139 T ELT)) (-3157 ((|#1| $) 111 T ELT)) (-1793 (($ (-1180 |#1|)) 128 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) 122 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) 155 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) 65 (|has| |#1| (-320)) ELT)) (-1765 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-831) $) 60 (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 62 T ELT)) (-2014 (($) 157 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3446 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) 115 T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 165 (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 172 T ELT)) (-3447 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 94 (|has| |#1| (-320)) ELT)) (-3932 (((-85) $) 142 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1668 (((-870 (-1034))) 57 T ELT)) (-2410 (($) 153 (|has| |#1| (-320)) ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) 117 (|has| |#1| (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-744 (-831))) 88 T ELT) (((-831)) 89 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1766 (((-695) $) 156 (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1086 |#1|)) 120 T ELT)) (-1675 (($) 154 (|has| |#1| (-320)) ELT)) (-1630 (($) 162 (|has| |#1| (-320)) ELT)) (-3225 (((-1180 |#1|) $) 76 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3947 (((-773) $) 168 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) 150 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 141 T ELT) (((-1180 $) (-831)) 96 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) 66 T CONST)) (-2667 (($) 101 T CONST)) (-3929 (($ $) 105 (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) 64 T ELT)) (-3950 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3838 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 84 T ELT)) (** (($ $ (-831)) 174 T ELT) (($ $ (-695)) 175 T ELT) (($ $ (-485)) 173 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT))) +(((-294 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1668 ((-870 (-1034)))))) (-299) (-1086 |#1|)) (T -294)) +((-1668 (*1 *2) (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) (-14 *4 (-1086 *3))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-695)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1793 (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1765 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3446 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1668 (((-870 (-1034))) NIL T ELT)) (-2410 (($) NIL (|has| |#1| (-320)) ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1766 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1086 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3225 (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-295 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1668 ((-870 (-1034)))))) (-299) (-831)) (T -295)) +((-1668 (*1 *2) (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831))))) +((-1678 (((-695) (-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034)))))) 61 T ELT)) (-1669 (((-870 (-1034)) (-1086 |#1|)) 112 T ELT)) (-1670 (((-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034))))) (-1086 |#1|)) 103 T ELT)) (-1671 (((-631 |#1|) (-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034)))))) 113 T ELT)) (-1672 (((-3 (-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034))))) "failed") (-831)) 13 T ELT)) (-1673 (((-3 (-1086 |#1|) (-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034)))))) (-831)) 18 T ELT))) +(((-296 |#1|) (-10 -7 (-15 -1669 ((-870 (-1034)) (-1086 |#1|))) (-15 -1670 ((-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034))))) (-1086 |#1|))) (-15 -1671 ((-631 |#1|) (-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034))))))) (-15 -1678 ((-695) (-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034))))))) (-15 -1672 ((-3 (-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034))))) "failed") (-831))) (-15 -1673 ((-3 (-1086 |#1|) (-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034)))))) (-831)))) (-299)) (T -296)) +((-1673 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-3 (-1086 *4) (-1180 (-584 (-2 (|:| -3403 *4) (|:| -2401 (-1034))))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1672 (*1 *2 *3) (|partial| -12 (-5 *3 (-831)) (-5 *2 (-1180 (-584 (-2 (|:| -3403 *4) (|:| -2401 (-1034)))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3403 *4) (|:| -2401 (-1034)))))) (-4 *4 (-299)) (-5 *2 (-695)) (-5 *1 (-296 *4)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3403 *4) (|:| -2401 (-1034)))))) (-4 *4 (-299)) (-5 *2 (-631 *4)) (-5 *1 (-296 *4)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-1180 (-584 (-2 (|:| -3403 *4) (|:| -2401 (-1034)))))) (-5 *1 (-296 *4)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-870 (-1034))) (-5 *1 (-296 *4))))) +((-3947 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) +(((-297 |#1| |#2| |#3|) (-10 -7 (-15 -3947 (|#3| |#1|)) (-15 -3947 (|#1| |#3|))) (-280 |#2|) (-299) (-280 |#2|)) (T -297)) +((-3947 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) (-4 *3 (-280 *4)))) (-3947 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) (-4 *3 (-280 *4))))) +((-1681 (((-85) $) 65 T ELT)) (-3773 (((-744 (-831)) $) 26 T ELT) (((-831) $) 69 T ELT)) (-3446 (((-633 $) $) 21 T ELT)) (-3447 (($) 9 T CONST)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 120 T ELT)) (-1766 (((-3 (-695) #1="failed") $ $) 98 T ELT) (((-695) $) 84 T ELT)) (-3759 (($ $) 8 T ELT) (($ $ (-695)) NIL T ELT)) (-1675 (($) 58 T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) 41 T ELT)) (-2703 (((-633 $) $) 50 T ELT) (($ $) 47 T ELT))) +(((-298 |#1|) (-10 -7 (-15 -3773 ((-831) |#1|)) (-15 -1766 ((-695) |#1|)) (-15 -1681 ((-85) |#1|)) (-15 -1675 (|#1|)) (-15 -2704 ((-3 (-1180 |#1|) #1="failed") (-631 |#1|))) (-15 -2703 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-695))) (-15 -3759 (|#1| |#1|)) (-15 -3447 (|#1|) -3953) (-15 -3446 ((-633 |#1|) |#1|)) (-15 -1766 ((-3 (-695) #1#) |#1| |#1|)) (-15 -3773 ((-744 (-831)) |#1|)) (-15 -2703 ((-633 |#1|) |#1|)) (-15 -2709 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) (-299)) (T -298)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 113 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3137 (((-695)) 123 T ELT)) (-3725 (($) 23 T CONST)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 107 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2995 (($) 126 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-2834 (($) 111 T ELT)) (-1681 (((-85) $) 110 T ELT)) (-1765 (($ $) 97 T ELT) (($ $ (-695)) 96 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-3773 (((-744 (-831)) $) 99 T ELT) (((-831) $) 108 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3446 (((-633 $) $) 122 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-2011 (((-831) $) 125 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3447 (($) 121 T CONST)) (-2401 (($ (-831)) 124 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) 114 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-1766 (((-3 (-695) "failed") $ $) 98 T ELT) (((-695) $) 109 T ELT)) (-3759 (($ $) 120 T ELT) (($ $ (-695)) 118 T ELT)) (-1675 (($) 112 T ELT)) (-2704 (((-3 (-1180 $) "failed") (-631 $)) 115 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-2703 (((-633 $) $) 100 T ELT) (($ $) 116 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $) 119 T ELT) (($ $ (-695)) 117 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT))) (((-299) (-113)) (T -299)) -((-2702 (*1 *1 *1) (-4 *1 (-299))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-299)) (-5 *2 (-1179 *1)))) (-1676 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))))) (-1675 (*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-484)) (-5 *2 (-1102 (-830) (-694))))) (-1674 (*1 *1) (-4 *1 (-299))) (-2833 (*1 *1) (-4 *1 (-299))) (-1680 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-694)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-830)))) (-1673 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-345) (-320) (-1066) (-190) (-10 -8 (-15 -2702 ($ $)) (-15 -2703 ((-3 (-1179 $) "failed") (-630 $))) (-15 -1676 ((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484)))))) (-15 -1675 ((-1102 (-830) (-694)) (-484))) (-15 -1674 ($)) (-15 -2833 ($)) (-15 -1680 ((-85) $)) (-15 -1765 ((-694) $)) (-15 -3772 ((-830) $)) (-15 -1673 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) . T) ((-320) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-350 (-484))) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) . T) ((-1129) . T) ((-1134) . T)) -((-3919 (((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) |#1|) 55 T ELT)) (-3918 (((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))) 53 T ELT))) -(((-300 |#1| |#2| |#3|) (-10 -7 (-15 -3918 ((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))))) (-15 -3919 ((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) |#1|))) (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $)))) (-1155 |#1|) (-353 |#1| |#2|)) (T -300)) -((-3919 (*1 *2 *3) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3918 (*1 *2) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-694)) NIL T ELT)) (-3330 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1677 (((-694)) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3156 (((-817 |#1|) $) NIL T ELT)) (-1792 (($ (-1179 (-817 |#1|))) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1680 (((-85) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1764 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-830) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2011 (((-85) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3132 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3445 (((-632 $) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 (-817 |#1|)) $) NIL T ELT) (((-1085 $) $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2010 (((-830) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1627 (((-1085 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1626 (((-1085 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-3 (-1085 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1628 (($ $ (-1085 (-817 |#1|))) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-817 |#1|) (-320)) CONST)) (-2400 (($ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1679 (((-1179 (-583 (-2 (|:| -3402 (-817 |#1|)) (|:| -2400 (-1033)))))) NIL T ELT)) (-1678 (((-630 (-817 |#1|))) NIL T ELT)) (-2409 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1765 (((-694) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3948 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1085 (-817 |#1|))) NIL T ELT)) (-1674 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1629 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3224 (((-1179 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1179 $)) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2702 (($ $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT) (((-1179 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3928 (($ $) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2669 (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT))) -(((-301 |#1| |#2|) (-13 (-280 (-817 |#1|)) (-10 -7 (-15 -1679 ((-1179 (-583 (-2 (|:| -3402 (-817 |#1|)) (|:| -2400 (-1033))))))) (-15 -1678 ((-630 (-817 |#1|)))) (-15 -1677 ((-694))))) (-830) (-830)) (T -301)) -((-1679 (*1 *2) (-12 (-5 *2 (-1179 (-583 (-2 (|:| -3402 (-817 *3)) (|:| -2400 (-1033)))))) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-1678 (*1 *2) (-12 (-5 *2 (-630 (-817 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-1677 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830))))) -((-2568 (((-85) $ $) 72 T ELT)) (-3188 (((-85) $) 87 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-694)) NIL T ELT)) (-3330 ((|#1| $) 105 T ELT) (($ $ (-830)) 103 (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 168 (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1677 (((-694)) 102 T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) 185 (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 126 T ELT)) (-3156 ((|#1| $) 104 T ELT)) (-1792 (($ (-1179 |#1|)) 70 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) 180 (|has| |#1| (-320)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) 169 (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1764 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-830) $) NIL (|has| |#1| (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) 112 (|has| |#1| (-320)) ELT)) (-2011 (((-85) $) 198 (|has| |#1| (-320)) ELT)) (-3132 ((|#1| $) 107 T ELT) (($ $ (-830)) 106 (|has| |#1| (-320)) ELT)) (-3445 (((-632 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 |#1|) $) 212 T ELT) (((-1085 $) $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-2010 (((-830) $) 146 (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) 86 (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) 83 (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) 95 (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) 82 (|has| |#1| (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 216 T ELT)) (-3446 (($) NIL (|has| |#1| (-320)) CONST)) (-2400 (($ (-830)) 148 (|has| |#1| (-320)) ELT)) (-3931 (((-85) $) 122 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1679 (((-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033)))))) 96 T ELT)) (-1678 (((-630 |#1|)) 100 T ELT)) (-2409 (($) 109 (|has| |#1| (-320)) ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) 171 (|has| |#1| (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-743 (-830))) NIL T ELT) (((-830)) 172 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1765 (((-694) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-743 (-830)) $) NIL T ELT) (((-830) $) 74 T ELT)) (-3185 (((-1085 |#1|)) 173 T ELT)) (-1674 (($) 145 (|has| |#1| (-320)) ELT)) (-1629 (($) NIL (|has| |#1| (-320)) ELT)) (-3224 (((-1179 |#1|) $) 120 T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| |#1| (-320)) ELT)) (-3946 (((-772) $) 138 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2702 (($ $) NIL (|has| |#1| (-320)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3126 (((-694)) 178 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) 195 T ELT) (((-1179 $) (-830)) 115 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2660 (($) 184 T CONST)) (-2666 (($) 159 T CONST)) (-3928 (($ $) 121 (|has| |#1| (-320)) ELT) (($ $ (-694)) 113 (|has| |#1| (-320)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3056 (((-85) $ $) 206 T ELT)) (-3949 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3837 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3839 (($ $ $) 202 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 151 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT))) -(((-302 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1679 ((-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033))))))) (-15 -1678 ((-630 |#1|))) (-15 -1677 ((-694))))) (-299) (-3 (-1085 |#1|) (-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033))))))) (T -302)) -((-1679 (*1 *2) (-12 (-5 *2 (-1179 (-583 (-2 (|:| -3402 *3) (|:| -2400 (-1033)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1085 *3) *2)))) (-1678 (*1 *2) (-12 (-5 *2 (-630 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1085 *3) (-1179 (-583 (-2 (|:| -3402 *3) (|:| -2400 (-1033))))))))) (-1677 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1085 *3) (-1179 (-583 (-2 (|:| -3402 *3) (|:| -2400 (-1033)))))))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-694)) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1677 (((-694)) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1792 (($ (-1179 |#1|)) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| |#1| (-320)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1764 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-830) $) NIL (|has| |#1| (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3132 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3445 (((-632 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 |#1|) $) NIL T ELT) (((-1085 $) $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| |#1| (-320)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1679 (((-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033)))))) NIL T ELT)) (-1678 (((-630 |#1|)) NIL T ELT)) (-2409 (($) NIL (|has| |#1| (-320)) ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1765 (((-694) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1085 |#1|)) NIL T ELT)) (-1674 (($) NIL (|has| |#1| (-320)) ELT)) (-1629 (($) NIL (|has| |#1| (-320)) ELT)) (-3224 (((-1179 |#1|) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| |#1| (-320)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2702 (($ $) NIL (|has| |#1| (-320)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT) (((-1179 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3928 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-694)) NIL (|has| |#1| (-320)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-303 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1679 ((-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033))))))) (-15 -1678 ((-630 |#1|))) (-15 -1677 ((-694))))) (-299) (-830)) (T -303)) -((-1679 (*1 *2) (-12 (-5 *2 (-1179 (-583 (-2 (|:| -3402 *3) (|:| -2400 (-1033)))))) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))) (-1678 (*1 *2) (-12 (-5 *2 (-630 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))) (-1677 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-694)) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 130 (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) 156 (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 104 T ELT)) (-3156 ((|#1| $) 101 T ELT)) (-1792 (($ (-1179 |#1|)) 96 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) 93 (|has| |#1| (-320)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) 52 (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1764 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-830) $) NIL (|has| |#1| (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) 131 (|has| |#1| (-320)) ELT)) (-2011 (((-85) $) 85 (|has| |#1| (-320)) ELT)) (-3132 ((|#1| $) 48 T ELT) (($ $ (-830)) 53 (|has| |#1| (-320)) ELT)) (-3445 (((-632 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 |#1|) $) 76 T ELT) (((-1085 $) $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-2010 (((-830) $) 108 (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| |#1| (-320)) CONST)) (-2400 (($ (-830)) 106 (|has| |#1| (-320)) ELT)) (-3931 (((-85) $) 158 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) 45 (|has| |#1| (-320)) ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) 125 (|has| |#1| (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-743 (-830))) NIL T ELT) (((-830)) 155 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1765 (((-694) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-743 (-830)) $) NIL T ELT) (((-830) $) 68 T ELT)) (-3185 (((-1085 |#1|)) 99 T ELT)) (-1674 (($) 136 (|has| |#1| (-320)) ELT)) (-1629 (($) NIL (|has| |#1| (-320)) ELT)) (-3224 (((-1179 |#1|) $) 64 T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| |#1| (-320)) ELT)) (-3946 (((-772) $) 154 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2702 (($ $) NIL (|has| |#1| (-320)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3126 (((-694)) 160 T CONST)) (-1265 (((-85) $ $) 162 T ELT)) (-2012 (((-1179 $)) 120 T ELT) (((-1179 $) (-830)) 59 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2660 (($) 122 T CONST)) (-2666 (($) 40 T CONST)) (-3928 (($ $) 79 (|has| |#1| (-320)) ELT) (($ $ (-694)) NIL (|has| |#1| (-320)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3056 (((-85) $ $) 118 T ELT)) (-3949 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3837 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3839 (($ $ $) 114 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 54 T ELT) (($ $ (-484)) 139 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT))) -(((-304 |#1| |#2|) (-280 |#1|) (-299) (-1085 |#1|)) (T -304)) -NIL -((-1695 (((-869 (-1085 |#1|)) (-1085 |#1|)) 49 T ELT)) (-2994 (((-1085 |#1|) (-830) (-830)) 159 T ELT) (((-1085 |#1|) (-830)) 155 T ELT)) (-1680 (((-85) (-1085 |#1|)) 110 T ELT)) (-1682 (((-830) (-830)) 85 T ELT)) (-1683 (((-830) (-830)) 94 T ELT)) (-1681 (((-830) (-830)) 83 T ELT)) (-2011 (((-85) (-1085 |#1|)) 114 T ELT)) (-1690 (((-3 (-1085 |#1|) #1="failed") (-1085 |#1|)) 139 T ELT)) (-1693 (((-3 (-1085 |#1|) #1#) (-1085 |#1|)) 144 T ELT)) (-1692 (((-3 (-1085 |#1|) #1#) (-1085 |#1|)) 143 T ELT)) (-1691 (((-3 (-1085 |#1|) #1#) (-1085 |#1|)) 142 T ELT)) (-1689 (((-3 (-1085 |#1|) #1#) (-1085 |#1|)) 134 T ELT)) (-1694 (((-1085 |#1|) (-1085 |#1|)) 71 T ELT)) (-1685 (((-1085 |#1|) (-830)) 149 T ELT)) (-1688 (((-1085 |#1|) (-830)) 152 T ELT)) (-1687 (((-1085 |#1|) (-830)) 151 T ELT)) (-1686 (((-1085 |#1|) (-830)) 150 T ELT)) (-1684 (((-1085 |#1|) (-830)) 147 T ELT))) -(((-305 |#1|) (-10 -7 (-15 -1680 ((-85) (-1085 |#1|))) (-15 -2011 ((-85) (-1085 |#1|))) (-15 -1681 ((-830) (-830))) (-15 -1682 ((-830) (-830))) (-15 -1683 ((-830) (-830))) (-15 -1684 ((-1085 |#1|) (-830))) (-15 -1685 ((-1085 |#1|) (-830))) (-15 -1686 ((-1085 |#1|) (-830))) (-15 -1687 ((-1085 |#1|) (-830))) (-15 -1688 ((-1085 |#1|) (-830))) (-15 -1689 ((-3 (-1085 |#1|) #1="failed") (-1085 |#1|))) (-15 -1690 ((-3 (-1085 |#1|) #1#) (-1085 |#1|))) (-15 -1691 ((-3 (-1085 |#1|) #1#) (-1085 |#1|))) (-15 -1692 ((-3 (-1085 |#1|) #1#) (-1085 |#1|))) (-15 -1693 ((-3 (-1085 |#1|) #1#) (-1085 |#1|))) (-15 -2994 ((-1085 |#1|) (-830))) (-15 -2994 ((-1085 |#1|) (-830) (-830))) (-15 -1694 ((-1085 |#1|) (-1085 |#1|))) (-15 -1695 ((-869 (-1085 |#1|)) (-1085 |#1|)))) (-299)) (T -305)) -((-1695 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-869 (-1085 *4))) (-5 *1 (-305 *4)) (-5 *3 (-1085 *4)))) (-1694 (*1 *2 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-2994 (*1 *2 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-2994 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1693 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1692 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1691 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1689 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) (-1680 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) -((-1696 ((|#1| (-1085 |#2|)) 60 T ELT))) -(((-306 |#1| |#2|) (-10 -7 (-15 -1696 (|#1| (-1085 |#2|)))) (-13 (-345) (-10 -7 (-15 -3946 (|#1| |#2|)) (-15 -2010 ((-830) |#1|)) (-15 -2012 ((-1179 |#1|) (-830))) (-15 -3928 (|#1| |#1|)))) (-299)) (T -306)) -((-1696 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-4 *2 (-13 (-345) (-10 -7 (-15 -3946 (*2 *4)) (-15 -2010 ((-830) *2)) (-15 -2012 ((-1179 *2) (-830))) (-15 -3928 (*2 *2))))) (-5 *1 (-306 *2 *4))))) -((-2704 (((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|) 40 T ELT))) -(((-307 |#1| |#2| |#3|) (-10 -7 (-15 -2704 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) (-299) (-1155 |#1|) (-1155 |#2|)) (T -307)) -((-2704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-694)) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1792 (($ (-1179 |#1|)) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| |#1| (-320)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1764 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-830) $) NIL (|has| |#1| (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3132 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3445 (((-632 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 |#1|) $) NIL T ELT) (((-1085 $) $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| |#1| (-320)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| |#1| (-320)) ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1765 (((-694) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1085 |#1|)) NIL T ELT)) (-1674 (($) NIL (|has| |#1| (-320)) ELT)) (-1629 (($) NIL (|has| |#1| (-320)) ELT)) (-3224 (((-1179 |#1|) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| |#1| (-320)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2702 (($ $) NIL (|has| |#1| (-320)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT) (((-1179 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3928 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-694)) NIL (|has| |#1| (-320)) ELT)) (-2669 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-308 |#1| |#2|) (-280 |#1|) (-299) (-830)) (T -308)) -NIL -((-2249 (((-85) (-583 (-857 |#1|))) 41 T ELT)) (-2251 (((-583 (-857 |#1|)) (-583 (-857 |#1|))) 53 T ELT)) (-2250 (((-3 (-583 (-857 |#1|)) "failed") (-583 (-857 |#1|))) 48 T ELT))) -(((-309 |#1| |#2|) (-10 -7 (-15 -2249 ((-85) (-583 (-857 |#1|)))) (-15 -2250 ((-3 (-583 (-857 |#1|)) "failed") (-583 (-857 |#1|)))) (-15 -2251 ((-583 (-857 |#1|)) (-583 (-857 |#1|))))) (-392) (-583 (-1090))) (T -309)) -((-2251 (*1 *2 *2) (-12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) (-14 *4 (-583 (-1090))))) (-2250 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) (-14 *4 (-583 (-1090))))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-392)) (-5 *2 (-85)) (-5 *1 (-309 *4 *5)) (-14 *5 (-583 (-1090)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2410 (((-85) $) 17 T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-2300 (((-484) $ (-484)) NIL T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2291 (($ (-1 (-484) (-484)) $) 26 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 28 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1779 (((-583 (-2 (|:| |gen| |#1|) (|:| -3943 (-484)))) $) 30 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3946 (((-772) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2666 (($) 7 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ |#1| (-484)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) -(((-310 |#1|) (-13 (-413) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-484))) (-15 -3136 ((-694) $)) (-15 -2300 ((-484) $ (-484))) (-15 -2299 (|#1| $ (-484))) (-15 -2291 ($ (-1 (-484) (-484)) $)) (-15 -2290 ($ (-1 |#1| |#1|) $)) (-15 -1779 ((-583 (-2 (|:| |gen| |#1|) (|:| -3943 (-484)))) $)))) (-1013)) (T -310)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) (-2300 (*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-484) (-484))) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-310 *3)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3943 (-484))))) (-5 *1 (-310 *3)) (-4 *3 (-1013))))) -((-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 13 T ELT)) (-2063 (($ $) 14 T ELT)) (-3971 (((-348 $) $) 31 T ELT)) (-3723 (((-85) $) 27 T ELT)) (-2484 (($ $) 19 T ELT)) (-3144 (($ $ $) 22 T ELT) (($ (-583 $)) NIL T ELT)) (-3732 (((-348 $) $) 32 T ELT)) (-3466 (((-3 $ "failed") $ $) 21 T ELT)) (-1607 (((-694) $) 25 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 36 T ELT)) (-2062 (((-85) $ $) 16 T ELT)) (-3949 (($ $ $) 34 T ELT))) -(((-311 |#1|) (-10 -7 (-15 -3949 (|#1| |#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -3723 ((-85) |#1|)) (-15 -3971 ((-348 |#1|) |#1|)) (-15 -3732 ((-348 |#1|) |#1|)) (-15 -2879 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -1607 ((-694) |#1|)) (-15 -3144 (|#1| (-583 |#1|))) (-15 -3144 (|#1| |#1| |#1|)) (-15 -2062 ((-85) |#1| |#1|)) (-15 -2063 (|#1| |#1|)) (-15 -2064 ((-2 (|:| -1772 |#1|) (|:| -3982 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3466 ((-3 |#1| "failed") |#1| |#1|))) (-312)) (T -311)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3724 (($) 23 T CONST)) (-2564 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 83 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT))) +((-2703 (*1 *1 *1) (-4 *1 (-299))) (-2704 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-299)) (-5 *2 (-1180 *1)))) (-1677 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))))) (-1676 (*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-485)) (-5 *2 (-1103 (-831) (-695))))) (-1675 (*1 *1) (-4 *1 (-299))) (-2834 (*1 *1) (-4 *1 (-299))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-695)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-831)))) (-1674 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-345) (-320) (-1067) (-190) (-10 -8 (-15 -2703 ($ $)) (-15 -2704 ((-3 (-1180 $) "failed") (-631 $))) (-15 -1677 ((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485)))))) (-15 -1676 ((-1103 (-831) (-695)) (-485))) (-15 -1675 ($)) (-15 -2834 ($)) (-15 -1681 ((-85) $)) (-15 -1766 ((-695) $)) (-15 -3773 ((-831) $)) (-15 -1674 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) . T) ((-320) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) . T) ((-1130) . T) ((-1135) . T)) +((-3920 (((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|) 55 T ELT)) (-3919 (((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 53 T ELT))) +(((-300 |#1| |#2| |#3|) (-10 -7 (-15 -3919 ((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))))) (-15 -3920 ((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|))) (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $)))) (-1156 |#1|) (-353 |#1| |#2|)) (T -300)) +((-3920 (*1 *2 *3) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3919 (*1 *2) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-695)) NIL T ELT)) (-3331 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1678 (((-695)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3157 (((-818 |#1|) $) NIL T ELT)) (-1793 (($ (-1180 (-818 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1765 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3133 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3446 (((-633 $) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 (-818 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1628 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1627 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-1086 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1629 (($ $ (-1086 (-818 |#1|))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-818 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1680 (((-1180 (-584 (-2 (|:| -3403 (-818 |#1|)) (|:| -2401 (-1034)))))) NIL T ELT)) (-1679 (((-631 (-818 |#1|))) NIL T ELT)) (-2410 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1766 (((-695) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3949 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1086 (-818 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3225 (((-1180 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1180 $)) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2703 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT))) +(((-301 |#1| |#2|) (-13 (-280 (-818 |#1|)) (-10 -7 (-15 -1680 ((-1180 (-584 (-2 (|:| -3403 (-818 |#1|)) (|:| -2401 (-1034))))))) (-15 -1679 ((-631 (-818 |#1|)))) (-15 -1678 ((-695))))) (-831) (-831)) (T -301)) +((-1680 (*1 *2) (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3403 (-818 *3)) (|:| -2401 (-1034)))))) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-1679 (*1 *2) (-12 (-5 *2 (-631 (-818 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-1678 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831))))) +((-2569 (((-85) $ $) 72 T ELT)) (-3189 (((-85) $) 87 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-695)) NIL T ELT)) (-3331 ((|#1| $) 105 T ELT) (($ $ (-831)) 103 (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 168 (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1678 (((-695)) 102 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) 185 (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 126 T ELT)) (-3157 ((|#1| $) 104 T ELT)) (-1793 (($ (-1180 |#1|)) 70 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) 180 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) 169 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1765 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) 112 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) 198 (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) 107 T ELT) (($ $ (-831)) 106 (|has| |#1| (-320)) ELT)) (-3446 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) 212 T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 146 (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) 86 (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) 83 (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) 95 (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) 82 (|has| |#1| (-320)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 216 T ELT)) (-3447 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 148 (|has| |#1| (-320)) ELT)) (-3932 (((-85) $) 122 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1680 (((-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034)))))) 96 T ELT)) (-1679 (((-631 |#1|)) 100 T ELT)) (-2410 (($) 109 (|has| |#1| (-320)) ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) 171 (|has| |#1| (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-744 (-831))) NIL T ELT) (((-831)) 172 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1766 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-744 (-831)) $) NIL T ELT) (((-831) $) 74 T ELT)) (-3186 (((-1086 |#1|)) 173 T ELT)) (-1675 (($) 145 (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3225 (((-1180 |#1|) $) 120 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3947 (((-773) $) 138 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) 178 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 195 T ELT) (((-1180 $) (-831)) 115 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) 184 T CONST)) (-2667 (($) 159 T CONST)) (-3929 (($ $) 121 (|has| |#1| (-320)) ELT) (($ $ (-695)) 113 (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) 206 T ELT)) (-3950 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3838 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3840 (($ $ $) 202 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 151 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT))) +(((-302 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1680 ((-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034))))))) (-15 -1679 ((-631 |#1|))) (-15 -1678 ((-695))))) (-299) (-3 (-1086 |#1|) (-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034))))))) (T -302)) +((-1680 (*1 *2) (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3403 *3) (|:| -2401 (-1034)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) *2)))) (-1679 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3403 *3) (|:| -2401 (-1034))))))))) (-1678 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3403 *3) (|:| -2401 (-1034)))))))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-695)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1678 (((-695)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1793 (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1765 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3446 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1680 (((-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034)))))) NIL T ELT)) (-1679 (((-631 |#1|)) NIL T ELT)) (-2410 (($) NIL (|has| |#1| (-320)) ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1766 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1086 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3225 (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-303 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1680 ((-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034))))))) (-15 -1679 ((-631 |#1|))) (-15 -1678 ((-695))))) (-299) (-831)) (T -303)) +((-1680 (*1 *2) (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3403 *3) (|:| -2401 (-1034)))))) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))) (-1679 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))) (-1678 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-695)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 130 (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) 156 (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 104 T ELT)) (-3157 ((|#1| $) 101 T ELT)) (-1793 (($ (-1180 |#1|)) 96 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) 93 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) 52 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1765 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) 131 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) 85 (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) 48 T ELT) (($ $ (-831)) 53 (|has| |#1| (-320)) ELT)) (-3446 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) 76 T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 108 (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 106 (|has| |#1| (-320)) ELT)) (-3932 (((-85) $) 158 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) 45 (|has| |#1| (-320)) ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) 125 (|has| |#1| (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-744 (-831))) NIL T ELT) (((-831)) 155 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1766 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-744 (-831)) $) NIL T ELT) (((-831) $) 68 T ELT)) (-3186 (((-1086 |#1|)) 99 T ELT)) (-1675 (($) 136 (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3225 (((-1180 |#1|) $) 64 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3947 (((-773) $) 154 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) 160 T CONST)) (-1266 (((-85) $ $) 162 T ELT)) (-2013 (((-1180 $)) 120 T ELT) (((-1180 $) (-831)) 59 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) 122 T CONST)) (-2667 (($) 40 T CONST)) (-3929 (($ $) 79 (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) 118 T ELT)) (-3950 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3838 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3840 (($ $ $) 114 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 54 T ELT) (($ $ (-485)) 139 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT))) +(((-304 |#1| |#2|) (-280 |#1|) (-299) (-1086 |#1|)) (T -304)) +NIL +((-1696 (((-870 (-1086 |#1|)) (-1086 |#1|)) 49 T ELT)) (-2995 (((-1086 |#1|) (-831) (-831)) 159 T ELT) (((-1086 |#1|) (-831)) 155 T ELT)) (-1681 (((-85) (-1086 |#1|)) 110 T ELT)) (-1683 (((-831) (-831)) 85 T ELT)) (-1684 (((-831) (-831)) 94 T ELT)) (-1682 (((-831) (-831)) 83 T ELT)) (-2012 (((-85) (-1086 |#1|)) 114 T ELT)) (-1691 (((-3 (-1086 |#1|) #1="failed") (-1086 |#1|)) 139 T ELT)) (-1694 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 144 T ELT)) (-1693 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 143 T ELT)) (-1692 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 142 T ELT)) (-1690 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 134 T ELT)) (-1695 (((-1086 |#1|) (-1086 |#1|)) 71 T ELT)) (-1686 (((-1086 |#1|) (-831)) 149 T ELT)) (-1689 (((-1086 |#1|) (-831)) 152 T ELT)) (-1688 (((-1086 |#1|) (-831)) 151 T ELT)) (-1687 (((-1086 |#1|) (-831)) 150 T ELT)) (-1685 (((-1086 |#1|) (-831)) 147 T ELT))) +(((-305 |#1|) (-10 -7 (-15 -1681 ((-85) (-1086 |#1|))) (-15 -2012 ((-85) (-1086 |#1|))) (-15 -1682 ((-831) (-831))) (-15 -1683 ((-831) (-831))) (-15 -1684 ((-831) (-831))) (-15 -1685 ((-1086 |#1|) (-831))) (-15 -1686 ((-1086 |#1|) (-831))) (-15 -1687 ((-1086 |#1|) (-831))) (-15 -1688 ((-1086 |#1|) (-831))) (-15 -1689 ((-1086 |#1|) (-831))) (-15 -1690 ((-3 (-1086 |#1|) #1="failed") (-1086 |#1|))) (-15 -1691 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -1692 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -1693 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -1694 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -2995 ((-1086 |#1|) (-831))) (-15 -2995 ((-1086 |#1|) (-831) (-831))) (-15 -1695 ((-1086 |#1|) (-1086 |#1|))) (-15 -1696 ((-870 (-1086 |#1|)) (-1086 |#1|)))) (-299)) (T -305)) +((-1696 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-870 (-1086 *4))) (-5 *1 (-305 *4)) (-5 *3 (-1086 *4)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-2995 (*1 *2 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1694 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1693 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1692 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1691 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1684 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) +((-1697 ((|#1| (-1086 |#2|)) 60 T ELT))) +(((-306 |#1| |#2|) (-10 -7 (-15 -1697 (|#1| (-1086 |#2|)))) (-13 (-345) (-10 -7 (-15 -3947 (|#1| |#2|)) (-15 -2011 ((-831) |#1|)) (-15 -2013 ((-1180 |#1|) (-831))) (-15 -3929 (|#1| |#1|)))) (-299)) (T -306)) +((-1697 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-4 *2 (-13 (-345) (-10 -7 (-15 -3947 (*2 *4)) (-15 -2011 ((-831) *2)) (-15 -2013 ((-1180 *2) (-831))) (-15 -3929 (*2 *2))))) (-5 *1 (-306 *2 *4))))) +((-2705 (((-3 (-584 |#3|) "failed") (-584 |#3|) |#3|) 40 T ELT))) +(((-307 |#1| |#2| |#3|) (-10 -7 (-15 -2705 ((-3 (-584 |#3|) "failed") (-584 |#3|) |#3|))) (-299) (-1156 |#1|) (-1156 |#2|)) (T -307)) +((-2705 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-695)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1793 (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1765 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3446 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| |#1| (-320)) ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1766 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1086 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3225 (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-308 |#1| |#2|) (-280 |#1|) (-299) (-831)) (T -308)) +NIL +((-2250 (((-85) (-584 (-858 |#1|))) 41 T ELT)) (-2252 (((-584 (-858 |#1|)) (-584 (-858 |#1|))) 53 T ELT)) (-2251 (((-3 (-584 (-858 |#1|)) "failed") (-584 (-858 |#1|))) 48 T ELT))) +(((-309 |#1| |#2|) (-10 -7 (-15 -2250 ((-85) (-584 (-858 |#1|)))) (-15 -2251 ((-3 (-584 (-858 |#1|)) "failed") (-584 (-858 |#1|)))) (-15 -2252 ((-584 (-858 |#1|)) (-584 (-858 |#1|))))) (-392) (-584 (-1091))) (T -309)) +((-2252 (*1 *2 *2) (-12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) (-14 *4 (-584 (-1091))))) (-2251 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) (-14 *4 (-584 (-1091))))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-85)) (-5 *1 (-309 *4 *5)) (-14 *5 (-584 (-1091)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2411 (((-85) $) 17 T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-2301 (((-485) $ (-485)) NIL T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2292 (($ (-1 (-485) (-485)) $) 26 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 28 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1780 (((-584 (-2 (|:| |gen| |#1|) (|:| -3944 (-485)))) $) 30 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3947 (((-773) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2667 (($) 7 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ |#1| (-485)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) +(((-310 |#1|) (-13 (-413) (-951 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-485))) (-15 -3137 ((-695) $)) (-15 -2301 ((-485) $ (-485))) (-15 -2300 (|#1| $ (-485))) (-15 -2292 ($ (-1 (-485) (-485)) $)) (-15 -2291 ($ (-1 |#1| |#1|) $)) (-15 -1780 ((-584 (-2 (|:| |gen| |#1|) (|:| -3944 (-485)))) $)))) (-1014)) (T -310)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) (-2301 (*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-485) (-485))) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-310 *3)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3944 (-485))))) (-5 *1 (-310 *3)) (-4 *3 (-1014))))) +((-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 13 T ELT)) (-2064 (($ $) 14 T ELT)) (-3972 (((-348 $) $) 31 T ELT)) (-3724 (((-85) $) 27 T ELT)) (-2485 (($ $) 19 T ELT)) (-3145 (($ $ $) 22 T ELT) (($ (-584 $)) NIL T ELT)) (-3733 (((-348 $) $) 32 T ELT)) (-3467 (((-3 $ "failed") $ $) 21 T ELT)) (-1608 (((-695) $) 25 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 36 T ELT)) (-2063 (((-85) $ $) 16 T ELT)) (-3950 (($ $ $) 34 T ELT))) +(((-311 |#1|) (-10 -7 (-15 -3950 (|#1| |#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -3724 ((-85) |#1|)) (-15 -3972 ((-348 |#1|) |#1|)) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -2880 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -1608 ((-695) |#1|)) (-15 -3145 (|#1| (-584 |#1|))) (-15 -3145 (|#1| |#1| |#1|)) (-15 -2063 ((-85) |#1| |#1|)) (-15 -2064 (|#1| |#1|)) (-15 -2065 ((-2 (|:| -1773 |#1|) (|:| -3983 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3467 ((-3 |#1| "failed") |#1| |#1|))) (-312)) (T -311)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT))) (((-312) (-113)) (T -312)) -((-3949 (*1 *1 *1 *1) (-4 *1 (-312)))) -(-13 (-258) (-1134) (-201) (-10 -8 (-15 -3949 ($ $ $)) (-6 -3993) (-6 -3987))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-350 (-484))) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-1697 ((|#1| $ |#1|) 35 T ELT)) (-1701 (($ $ (-1073)) 23 T ELT)) (-3619 (((-3 |#1| "failed") $) 34 T ELT)) (-1698 ((|#1| $) 32 T ELT)) (-1702 (($ (-338)) 22 T ELT) (($ (-338) (-1073)) 21 T ELT)) (-3542 (((-338) $) 25 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1699 (((-1073) $) 26 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 20 T ELT)) (-1700 (($ $) 24 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 19 T ELT))) -(((-313 |#1|) (-13 (-314 (-338) |#1|) (-10 -8 (-15 -3619 ((-3 |#1| "failed") $)))) (-1013)) (T -313)) -((-3619 (*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1013))))) -((-2568 (((-85) $ $) 7 T ELT)) (-1697 ((|#2| $ |#2|) 17 T ELT)) (-1701 (($ $ (-1073)) 22 T ELT)) (-1698 ((|#2| $) 18 T ELT)) (-1702 (($ |#1|) 24 T ELT) (($ |#1| (-1073)) 23 T ELT)) (-3542 ((|#1| $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-1699 (((-1073) $) 19 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1700 (($ $) 21 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) -(((-314 |#1| |#2|) (-113) (-1013) (-1013)) (T -314)) -((-1702 (*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-1702 (*1 *1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1013)) (-4 *4 (-1013)))) (-1701 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-1073)))) (-1698 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-1697 (*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) -(-13 (-1013) (-10 -8 (-15 -1702 ($ |t#1|)) (-15 -1702 ($ |t#1| (-1073))) (-15 -1701 ($ $ (-1073))) (-15 -1700 ($ $)) (-15 -3542 (|t#1| $)) (-15 -1699 ((-1073) $)) (-15 -1698 (|t#2| $)) (-15 -1697 (|t#2| $ |t#2|)))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-3223 (((-1179 (-630 |#2|)) (-1179 $)) 67 T ELT)) (-1788 (((-630 |#2|) (-1179 $)) 139 T ELT)) (-1727 ((|#2| $) 36 T ELT)) (-1786 (((-630 |#2|) $ (-1179 $)) 142 T ELT)) (-2404 (((-3 $ #1="failed") $) 89 T ELT)) (-1725 ((|#2| $) 39 T ELT)) (-1705 (((-1085 |#2|) $) 98 T ELT)) (-1790 ((|#2| (-1179 $)) 122 T ELT)) (-1723 (((-1085 |#2|) $) 32 T ELT)) (-1717 (((-85)) 116 T ELT)) (-1792 (($ (-1179 |#2|) (-1179 $)) 132 T ELT)) (-3467 (((-3 $ #1#) $) 93 T ELT)) (-1710 (((-85)) 111 T ELT)) (-1708 (((-85)) 106 T ELT)) (-1712 (((-85)) 58 T ELT)) (-1789 (((-630 |#2|) (-1179 $)) 137 T ELT)) (-1728 ((|#2| $) 35 T ELT)) (-1787 (((-630 |#2|) $ (-1179 $)) 141 T ELT)) (-2405 (((-3 $ #1#) $) 87 T ELT)) (-1726 ((|#2| $) 38 T ELT)) (-1706 (((-1085 |#2|) $) 97 T ELT)) (-1791 ((|#2| (-1179 $)) 120 T ELT)) (-1724 (((-1085 |#2|) $) 30 T ELT)) (-1718 (((-85)) 115 T ELT)) (-1709 (((-85)) 108 T ELT)) (-1711 (((-85)) 56 T ELT)) (-1713 (((-85)) 103 T ELT)) (-1716 (((-85)) 117 T ELT)) (-3224 (((-1179 |#2|) $ (-1179 $)) NIL T ELT) (((-630 |#2|) (-1179 $) (-1179 $)) 128 T ELT)) (-1722 (((-85)) 113 T ELT)) (-1707 (((-583 (-1179 |#2|))) 102 T ELT)) (-1720 (((-85)) 114 T ELT)) (-1721 (((-85)) 112 T ELT)) (-1719 (((-85)) 51 T ELT)) (-1715 (((-85)) 118 T ELT))) -(((-315 |#1| |#2|) (-10 -7 (-15 -1705 ((-1085 |#2|) |#1|)) (-15 -1706 ((-1085 |#2|) |#1|)) (-15 -1707 ((-583 (-1179 |#2|)))) (-15 -2404 ((-3 |#1| #1="failed") |#1|)) (-15 -2405 ((-3 |#1| #1#) |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1|)) (-15 -1708 ((-85))) (-15 -1709 ((-85))) (-15 -1710 ((-85))) (-15 -1711 ((-85))) (-15 -1712 ((-85))) (-15 -1713 ((-85))) (-15 -1715 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-85))) (-15 -1721 ((-85))) (-15 -1722 ((-85))) (-15 -1723 ((-1085 |#2|) |#1|)) (-15 -1724 ((-1085 |#2|) |#1|)) (-15 -1788 ((-630 |#2|) (-1179 |#1|))) (-15 -1789 ((-630 |#2|) (-1179 |#1|))) (-15 -1790 (|#2| (-1179 |#1|))) (-15 -1791 (|#2| (-1179 |#1|))) (-15 -1792 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3224 ((-630 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3224 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1725 (|#2| |#1|)) (-15 -1726 (|#2| |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -1728 (|#2| |#1|)) (-15 -1786 ((-630 |#2|) |#1| (-1179 |#1|))) (-15 -1787 ((-630 |#2|) |#1| (-1179 |#1|))) (-15 -3223 ((-1179 (-630 |#2|)) (-1179 |#1|)))) (-316 |#2|) (-146)) (T -315)) -((-1722 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1721 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1720 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1715 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1712 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1711 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1707 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-583 (-1179 *4))) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1772 (((-3 $ "failed")) 48 (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3223 (((-1179 (-630 |#1|)) (-1179 $)) 89 T ELT)) (-1729 (((-1179 $)) 92 T ELT)) (-3724 (($) 23 T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed")) 51 (|has| |#1| (-495)) ELT)) (-1703 (((-3 $ "failed")) 49 (|has| |#1| (-495)) ELT)) (-1788 (((-630 |#1|) (-1179 $)) 76 T ELT)) (-1727 ((|#1| $) 85 T ELT)) (-1786 (((-630 |#1|) $ (-1179 $)) 87 T ELT)) (-2404 (((-3 $ "failed") $) 56 (|has| |#1| (-495)) ELT)) (-2407 (($ $ (-830)) 37 T ELT)) (-1725 ((|#1| $) 83 T ELT)) (-1705 (((-1085 |#1|) $) 53 (|has| |#1| (-495)) ELT)) (-1790 ((|#1| (-1179 $)) 78 T ELT)) (-1723 (((-1085 |#1|) $) 74 T ELT)) (-1717 (((-85)) 68 T ELT)) (-1792 (($ (-1179 |#1|) (-1179 $)) 80 T ELT)) (-3467 (((-3 $ "failed") $) 58 (|has| |#1| (-495)) ELT)) (-3108 (((-830)) 91 T ELT)) (-1714 (((-85)) 65 T ELT)) (-2433 (($ $ (-830)) 44 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-1710 (((-85)) 61 T ELT)) (-1708 (((-85)) 59 T ELT)) (-1712 (((-85)) 63 T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed")) 52 (|has| |#1| (-495)) ELT)) (-1704 (((-3 $ "failed")) 50 (|has| |#1| (-495)) ELT)) (-1789 (((-630 |#1|) (-1179 $)) 77 T ELT)) (-1728 ((|#1| $) 86 T ELT)) (-1787 (((-630 |#1|) $ (-1179 $)) 88 T ELT)) (-2405 (((-3 $ "failed") $) 57 (|has| |#1| (-495)) ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-1726 ((|#1| $) 84 T ELT)) (-1706 (((-1085 |#1|) $) 54 (|has| |#1| (-495)) ELT)) (-1791 ((|#1| (-1179 $)) 79 T ELT)) (-1724 (((-1085 |#1|) $) 75 T ELT)) (-1718 (((-85)) 69 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-1709 (((-85)) 60 T ELT)) (-1711 (((-85)) 62 T ELT)) (-1713 (((-85)) 64 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1716 (((-85)) 67 T ELT)) (-3224 (((-1179 |#1|) $ (-1179 $)) 82 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) 81 T ELT)) (-1892 (((-583 (-857 |#1|)) (-1179 $)) 90 T ELT)) (-2435 (($ $ $) 34 T ELT)) (-1722 (((-85)) 73 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-1707 (((-583 (-1179 |#1|))) 55 (|has| |#1| (-495)) ELT)) (-2436 (($ $ $ $) 35 T ELT)) (-1720 (((-85)) 71 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-1721 (((-85)) 72 T ELT)) (-1719 (((-85)) 70 T ELT)) (-1715 (((-85)) 66 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +((-3950 (*1 *1 *1 *1) (-4 *1 (-312)))) +(-13 (-258) (-1135) (-201) (-10 -8 (-15 -3950 ($ $ $)) (-6 -3994) (-6 -3988))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-1698 ((|#1| $ |#1|) 35 T ELT)) (-1702 (($ $ (-1074)) 23 T ELT)) (-3620 (((-3 |#1| "failed") $) 34 T ELT)) (-1699 ((|#1| $) 32 T ELT)) (-1703 (($ (-338)) 22 T ELT) (($ (-338) (-1074)) 21 T ELT)) (-3543 (((-338) $) 25 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1700 (((-1074) $) 26 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 20 T ELT)) (-1701 (($ $) 24 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 19 T ELT))) +(((-313 |#1|) (-13 (-314 (-338) |#1|) (-10 -8 (-15 -3620 ((-3 |#1| "failed") $)))) (-1014)) (T -313)) +((-3620 (*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1014))))) +((-2569 (((-85) $ $) 7 T ELT)) (-1698 ((|#2| $ |#2|) 17 T ELT)) (-1702 (($ $ (-1074)) 22 T ELT)) (-1699 ((|#2| $) 18 T ELT)) (-1703 (($ |#1|) 24 T ELT) (($ |#1| (-1074)) 23 T ELT)) (-3543 ((|#1| $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-1700 (((-1074) $) 19 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1701 (($ $) 21 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) +(((-314 |#1| |#2|) (-113) (-1014) (-1014)) (T -314)) +((-1703 (*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1014)) (-4 *4 (-1014)))) (-1702 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-1701 (*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-1074)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-1698 (*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) +(-13 (-1014) (-10 -8 (-15 -1703 ($ |t#1|)) (-15 -1703 ($ |t#1| (-1074))) (-15 -1702 ($ $ (-1074))) (-15 -1701 ($ $)) (-15 -3543 (|t#1| $)) (-15 -1700 ((-1074) $)) (-15 -1699 (|t#2| $)) (-15 -1698 (|t#2| $ |t#2|)))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-3224 (((-1180 (-631 |#2|)) (-1180 $)) 67 T ELT)) (-1789 (((-631 |#2|) (-1180 $)) 139 T ELT)) (-1728 ((|#2| $) 36 T ELT)) (-1787 (((-631 |#2|) $ (-1180 $)) 142 T ELT)) (-2405 (((-3 $ #1="failed") $) 89 T ELT)) (-1726 ((|#2| $) 39 T ELT)) (-1706 (((-1086 |#2|) $) 98 T ELT)) (-1791 ((|#2| (-1180 $)) 122 T ELT)) (-1724 (((-1086 |#2|) $) 32 T ELT)) (-1718 (((-85)) 116 T ELT)) (-1793 (($ (-1180 |#2|) (-1180 $)) 132 T ELT)) (-3468 (((-3 $ #1#) $) 93 T ELT)) (-1711 (((-85)) 111 T ELT)) (-1709 (((-85)) 106 T ELT)) (-1713 (((-85)) 58 T ELT)) (-1790 (((-631 |#2|) (-1180 $)) 137 T ELT)) (-1729 ((|#2| $) 35 T ELT)) (-1788 (((-631 |#2|) $ (-1180 $)) 141 T ELT)) (-2406 (((-3 $ #1#) $) 87 T ELT)) (-1727 ((|#2| $) 38 T ELT)) (-1707 (((-1086 |#2|) $) 97 T ELT)) (-1792 ((|#2| (-1180 $)) 120 T ELT)) (-1725 (((-1086 |#2|) $) 30 T ELT)) (-1719 (((-85)) 115 T ELT)) (-1710 (((-85)) 108 T ELT)) (-1712 (((-85)) 56 T ELT)) (-1714 (((-85)) 103 T ELT)) (-1717 (((-85)) 117 T ELT)) (-3225 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) 128 T ELT)) (-1723 (((-85)) 113 T ELT)) (-1708 (((-584 (-1180 |#2|))) 102 T ELT)) (-1721 (((-85)) 114 T ELT)) (-1722 (((-85)) 112 T ELT)) (-1720 (((-85)) 51 T ELT)) (-1716 (((-85)) 118 T ELT))) +(((-315 |#1| |#2|) (-10 -7 (-15 -1706 ((-1086 |#2|) |#1|)) (-15 -1707 ((-1086 |#2|) |#1|)) (-15 -1708 ((-584 (-1180 |#2|)))) (-15 -2405 ((-3 |#1| #1="failed") |#1|)) (-15 -2406 ((-3 |#1| #1#) |#1|)) (-15 -3468 ((-3 |#1| #1#) |#1|)) (-15 -1709 ((-85))) (-15 -1710 ((-85))) (-15 -1711 ((-85))) (-15 -1712 ((-85))) (-15 -1713 ((-85))) (-15 -1714 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-85))) (-15 -1721 ((-85))) (-15 -1722 ((-85))) (-15 -1723 ((-85))) (-15 -1724 ((-1086 |#2|) |#1|)) (-15 -1725 ((-1086 |#2|) |#1|)) (-15 -1789 ((-631 |#2|) (-1180 |#1|))) (-15 -1790 ((-631 |#2|) (-1180 |#1|))) (-15 -1791 (|#2| (-1180 |#1|))) (-15 -1792 (|#2| (-1180 |#1|))) (-15 -1793 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3225 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3225 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1726 (|#2| |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -1728 (|#2| |#1|)) (-15 -1729 (|#2| |#1|)) (-15 -1787 ((-631 |#2|) |#1| (-1180 |#1|))) (-15 -1788 ((-631 |#2|) |#1| (-1180 |#1|))) (-15 -3224 ((-1180 (-631 |#2|)) (-1180 |#1|)))) (-316 |#2|) (-146)) (T -315)) +((-1723 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1722 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1721 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1720 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1714 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1712 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1711 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-584 (-1180 *4))) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1773 (((-3 $ "failed")) 48 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3224 (((-1180 (-631 |#1|)) (-1180 $)) 89 T ELT)) (-1730 (((-1180 $)) 92 T ELT)) (-3725 (($) 23 T CONST)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed")) 51 (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ "failed")) 49 (|has| |#1| (-496)) ELT)) (-1789 (((-631 |#1|) (-1180 $)) 76 T ELT)) (-1728 ((|#1| $) 85 T ELT)) (-1787 (((-631 |#1|) $ (-1180 $)) 87 T ELT)) (-2405 (((-3 $ "failed") $) 56 (|has| |#1| (-496)) ELT)) (-2408 (($ $ (-831)) 37 T ELT)) (-1726 ((|#1| $) 83 T ELT)) (-1706 (((-1086 |#1|) $) 53 (|has| |#1| (-496)) ELT)) (-1791 ((|#1| (-1180 $)) 78 T ELT)) (-1724 (((-1086 |#1|) $) 74 T ELT)) (-1718 (((-85)) 68 T ELT)) (-1793 (($ (-1180 |#1|) (-1180 $)) 80 T ELT)) (-3468 (((-3 $ "failed") $) 58 (|has| |#1| (-496)) ELT)) (-3109 (((-831)) 91 T ELT)) (-1715 (((-85)) 65 T ELT)) (-2434 (($ $ (-831)) 44 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-1711 (((-85)) 61 T ELT)) (-1709 (((-85)) 59 T ELT)) (-1713 (((-85)) 63 T ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed")) 52 (|has| |#1| (-496)) ELT)) (-1705 (((-3 $ "failed")) 50 (|has| |#1| (-496)) ELT)) (-1790 (((-631 |#1|) (-1180 $)) 77 T ELT)) (-1729 ((|#1| $) 86 T ELT)) (-1788 (((-631 |#1|) $ (-1180 $)) 88 T ELT)) (-2406 (((-3 $ "failed") $) 57 (|has| |#1| (-496)) ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-1727 ((|#1| $) 84 T ELT)) (-1707 (((-1086 |#1|) $) 54 (|has| |#1| (-496)) ELT)) (-1792 ((|#1| (-1180 $)) 79 T ELT)) (-1725 (((-1086 |#1|) $) 75 T ELT)) (-1719 (((-85)) 69 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-1710 (((-85)) 60 T ELT)) (-1712 (((-85)) 62 T ELT)) (-1714 (((-85)) 64 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1717 (((-85)) 67 T ELT)) (-3225 (((-1180 |#1|) $ (-1180 $)) 82 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 81 T ELT)) (-1893 (((-584 (-858 |#1|)) (-1180 $)) 90 T ELT)) (-2436 (($ $ $) 34 T ELT)) (-1723 (((-85)) 73 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1708 (((-584 (-1180 |#1|))) 55 (|has| |#1| (-496)) ELT)) (-2437 (($ $ $ $) 35 T ELT)) (-1721 (((-85)) 71 T ELT)) (-2435 (($ $ $) 33 T ELT)) (-1722 (((-85)) 72 T ELT)) (-1720 (((-85)) 70 T ELT)) (-1716 (((-85)) 66 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) (((-316 |#1|) (-113) (-146)) (T -316)) -((-1729 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1179 *1)) (-4 *1 (-316 *3)))) (-3108 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-830)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1179 (-630 *4))))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1728 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1179 *4)))) (-3224 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1792 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1085 *3)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1085 *3)))) (-1722 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1721 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1720 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1719 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1709 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1708 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3467 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-2405 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-2404 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-1707 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-583 (-1179 *3))))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1085 *3)))) (-1705 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1085 *3)))) (-1907 (*1 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3)))) (-1906 (*1 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3)))) (-1704 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))) (-1703 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))) (-1772 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146))))) -(-13 (-683 |t#1|) (-10 -8 (-15 -1729 ((-1179 $))) (-15 -3108 ((-830))) (-15 -1892 ((-583 (-857 |t#1|)) (-1179 $))) (-15 -3223 ((-1179 (-630 |t#1|)) (-1179 $))) (-15 -1787 ((-630 |t#1|) $ (-1179 $))) (-15 -1786 ((-630 |t#1|) $ (-1179 $))) (-15 -1728 (|t#1| $)) (-15 -1727 (|t#1| $)) (-15 -1726 (|t#1| $)) (-15 -1725 (|t#1| $)) (-15 -3224 ((-1179 |t#1|) $ (-1179 $))) (-15 -3224 ((-630 |t#1|) (-1179 $) (-1179 $))) (-15 -1792 ($ (-1179 |t#1|) (-1179 $))) (-15 -1791 (|t#1| (-1179 $))) (-15 -1790 (|t#1| (-1179 $))) (-15 -1789 ((-630 |t#1|) (-1179 $))) (-15 -1788 ((-630 |t#1|) (-1179 $))) (-15 -1724 ((-1085 |t#1|) $)) (-15 -1723 ((-1085 |t#1|) $)) (-15 -1722 ((-85))) (-15 -1721 ((-85))) (-15 -1720 ((-85))) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (-15 -1709 ((-85))) (-15 -1708 ((-85))) (IF (|has| |t#1| (-495)) (PROGN (-15 -3467 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $)) (-15 -2404 ((-3 $ "failed") $)) (-15 -1707 ((-583 (-1179 |t#1|)))) (-15 -1706 ((-1085 |t#1|) $)) (-15 -1705 ((-1085 |t#1|) $)) (-15 -1907 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed"))) (-15 -1906 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed"))) (-15 -1704 ((-3 $ "failed"))) (-15 -1703 ((-3 $ "failed"))) (-15 -1772 ((-3 $ "failed"))) (-6 -3992)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-683 |#1|) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-3245 (((-85) |#2| $) 33 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3403 (((-85) $) 13 T ELT)) (-1946 (((-694) (-1 (-85) |#2|) $) 28 T ELT) (((-694) |#2| $) 31 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3957 (((-694) $) 17 T ELT))) -(((-317 |#1| |#2|) (-10 -7 (-15 -3245 ((-85) |#2| |#1|)) (-15 -1946 ((-694) |#2| |#1|)) (-15 -1946 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3957 ((-694) |#1|)) (-15 -3403 ((-85) |#1|))) (-318 |#2|) (-1129)) (T -317)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3724 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 T ELT) (((-694) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-318 |#1|) (-113) (-1129)) (T -318)) -((-3957 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))) (-1948 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-1947 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-1946 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-694)))) (-2608 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-5 *2 (-583 *3)))) (-1946 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-694)))) (-3245 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-85))))) -(-13 (-429 |t#1|) (-10 -8 (-6 -3995) (-15 -3957 ((-694) $)) (-15 -1948 ((-85) (-1 (-85) |t#1|) $)) (-15 -1947 ((-85) (-1 (-85) |t#1|) $)) (-15 -1946 ((-694) (-1 (-85) |t#1|) $)) (-15 -2608 ((-583 |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -1946 ((-694) |t#1| $)) (-15 -3245 ((-85) |t#1| $))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T)) -((-2994 (($) 15 T ELT))) -(((-319 |#1|) (-10 -7 (-15 -2994 (|#1|))) (-320)) (T -319)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3136 (((-694)) 20 T ELT)) (-2994 (($) 17 T ELT)) (-2010 (((-830) $) 18 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2400 (($ (-830)) 19 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +((-1730 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-316 *3)))) (-3109 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-831)))) (-1893 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1180 (-631 *4))))) (-1788 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1728 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-3225 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1180 *4)))) (-3225 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1793 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1790 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3)))) (-1723 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1722 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1721 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1720 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1719 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1709 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3468 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-2406 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-2405 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-1708 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-584 (-1180 *3))))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3)))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3)))) (-1908 (*1 *2) (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3)))) (-1907 (*1 *2) (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3)))) (-1705 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))) (-1704 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))) (-1773 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146))))) +(-13 (-684 |t#1|) (-10 -8 (-15 -1730 ((-1180 $))) (-15 -3109 ((-831))) (-15 -1893 ((-584 (-858 |t#1|)) (-1180 $))) (-15 -3224 ((-1180 (-631 |t#1|)) (-1180 $))) (-15 -1788 ((-631 |t#1|) $ (-1180 $))) (-15 -1787 ((-631 |t#1|) $ (-1180 $))) (-15 -1729 (|t#1| $)) (-15 -1728 (|t#1| $)) (-15 -1727 (|t#1| $)) (-15 -1726 (|t#1| $)) (-15 -3225 ((-1180 |t#1|) $ (-1180 $))) (-15 -3225 ((-631 |t#1|) (-1180 $) (-1180 $))) (-15 -1793 ($ (-1180 |t#1|) (-1180 $))) (-15 -1792 (|t#1| (-1180 $))) (-15 -1791 (|t#1| (-1180 $))) (-15 -1790 ((-631 |t#1|) (-1180 $))) (-15 -1789 ((-631 |t#1|) (-1180 $))) (-15 -1725 ((-1086 |t#1|) $)) (-15 -1724 ((-1086 |t#1|) $)) (-15 -1723 ((-85))) (-15 -1722 ((-85))) (-15 -1721 ((-85))) (-15 -1720 ((-85))) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (-15 -1709 ((-85))) (IF (|has| |t#1| (-496)) (PROGN (-15 -3468 ((-3 $ "failed") $)) (-15 -2406 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $)) (-15 -1708 ((-584 (-1180 |t#1|)))) (-15 -1707 ((-1086 |t#1|) $)) (-15 -1706 ((-1086 |t#1|) $)) (-15 -1908 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed"))) (-15 -1907 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed"))) (-15 -1705 ((-3 $ "failed"))) (-15 -1704 ((-3 $ "failed"))) (-15 -1773 ((-3 $ "failed"))) (-6 -3993)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-684 |#1|) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-3246 (((-85) |#2| $) 32 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3404 (((-85) $) 13 T ELT)) (-1947 (((-695) (-1 (-85) |#2|) $) 27 T ELT) (((-695) |#2| $) 30 T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3958 (((-695) $) 17 T ELT))) +(((-317 |#1| |#2|) (-10 -7 (-15 -3246 ((-85) |#2| |#1|)) (-15 -1947 ((-695) |#2| |#1|)) (-15 -1947 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1949 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3958 ((-695) |#1|)) (-15 -3404 ((-85) |#1|))) (-318 |#2|) (-1130)) (T -317)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3725 (($) 7 T CONST)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 T ELT) (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-318 |#1|) (-113) (-1130)) (T -318)) +((-3958 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-1949 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-1948 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-1947 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-695)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3)))) (-1947 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-695)))) (-3246 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85))))) +(-13 (-429 |t#1|) (-10 -8 (-6 -3996) (-15 -3958 ((-695) $)) (-15 -1949 ((-85) (-1 (-85) |t#1|) $)) (-15 -1948 ((-85) (-1 (-85) |t#1|) $)) (-15 -1947 ((-695) (-1 (-85) |t#1|) $)) (-15 -2609 ((-584 |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -1947 ((-695) |t#1| $)) (-15 -3246 ((-85) |t#1| $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) +((-2995 (($) 15 T ELT))) +(((-319 |#1|) (-10 -7 (-15 -2995 (|#1|))) (-320)) (T -319)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3137 (((-695)) 20 T ELT)) (-2995 (($) 17 T ELT)) (-2011 (((-831) $) 18 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2401 (($ (-831)) 19 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) (((-320) (-113)) (T -320)) -((-3136 (*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-694)))) (-2400 (*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-320)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-830)))) (-2994 (*1 *1) (-4 *1 (-320)))) -(-13 (-1013) (-10 -8 (-15 -3136 ((-694))) (-15 -2400 ($ (-830))) (-15 -2010 ((-830) $)) (-15 -2994 ($)))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-1782 (((-630 |#2|) (-1179 $)) 45 T ELT)) (-1792 (($ (-1179 |#2|) (-1179 $)) 39 T ELT)) (-1781 (((-630 |#2|) $ (-1179 $)) 47 T ELT)) (-3757 ((|#2| (-1179 $)) 13 T ELT)) (-3224 (((-1179 |#2|) $ (-1179 $)) NIL T ELT) (((-630 |#2|) (-1179 $) (-1179 $)) 27 T ELT))) -(((-321 |#1| |#2| |#3|) (-10 -7 (-15 -1782 ((-630 |#2|) (-1179 |#1|))) (-15 -3757 (|#2| (-1179 |#1|))) (-15 -1792 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3224 ((-630 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3224 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1781 ((-630 |#2|) |#1| (-1179 |#1|)))) (-322 |#2| |#3|) (-146) (-1155 |#2|)) (T -321)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1782 (((-630 |#1|) (-1179 $)) 61 T ELT)) (-3330 ((|#1| $) 67 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1792 (($ (-1179 |#1|) (-1179 $)) 63 T ELT)) (-1781 (((-630 |#1|) $ (-1179 $)) 68 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3108 (((-830)) 69 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3132 ((|#1| $) 66 T ELT)) (-2014 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 ((|#1| (-1179 $)) 62 T ELT)) (-3224 (((-1179 |#1|) $ (-1179 $)) 65 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) 64 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2702 (((-632 $) $) 58 (|has| |#1| (-118)) ELT)) (-2449 ((|#2| $) 60 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) -(((-322 |#1| |#2|) (-113) (-146) (-1155 |t#1|)) (T -322)) -((-3108 (*1 *2) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-830)))) (-1781 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-630 *4)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146)))) (-3224 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *4)))) (-3224 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-630 *4)))) (-1792 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-146)) (-4 *1 (-322 *4 *5)) (-4 *5 (-1155 *4)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1155 *2)) (-4 *2 (-146)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-630 *4)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1155 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3108 ((-830))) (-15 -1781 ((-630 |t#1|) $ (-1179 $))) (-15 -3330 (|t#1| $)) (-15 -3132 (|t#1| $)) (-15 -3224 ((-1179 |t#1|) $ (-1179 $))) (-15 -3224 ((-630 |t#1|) (-1179 $) (-1179 $))) (-15 -1792 ($ (-1179 |t#1|) (-1179 $))) (-15 -3757 (|t#1| (-1179 $))) (-15 -1782 ((-630 |t#1|) (-1179 $))) (-15 -2449 (|t#2| $)) (IF (|has| |t#1| (-312)) (-15 -2014 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-1732 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1730 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2909 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2298 (($ $) 25 T ELT)) (-3419 (((-484) (-1 (-85) |#2|) $) NIL T ELT) (((-484) |#2| $) 11 T ELT) (((-484) |#2| $ (-484)) NIL T ELT)) (-3518 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) -(((-323 |#1| |#2|) (-10 -7 (-15 -1730 (|#1| |#1|)) (-15 -1730 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1732 ((-85) |#1|)) (-15 -2909 (|#1| |#1|)) (-15 -3518 (|#1| |#1| |#1|)) (-15 -3419 ((-484) |#2| |#1| (-484))) (-15 -3419 ((-484) |#2| |#1|)) (-15 -3419 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2909 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -3518 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-324 |#2|) (-1129)) (T -323)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) 44 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-756)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3996)) ELT) (($ $) 98 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3996))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-756)) ELT)) (-3788 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2297 (($ $) 100 (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) 110 T ELT)) (-1353 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-3419 (((-484) (-1 (-85) |#1|) $) 107 T ELT) (((-484) |#1| $) 106 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 105 (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 93 (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1146 (-484))) 75 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1146 (-484))) 67 T ELT)) (-1946 (((-694) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-1731 (($ $ $ (-484)) 101 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 76 T ELT)) (-3802 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2566 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 97 (|has| |#1| (-756)) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-324 |#1|) (-113) (-1129)) (T -324)) -((-3518 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))) (-2298 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)))) (-2909 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))) (-1732 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-3419 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1129)) (-5 *2 (-484)))) (-3419 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-1013)) (-5 *2 (-484)))) (-3419 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-1013)))) (-3518 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-756)))) (-2909 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-756)))) (-1732 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-756)) (-5 *2 (-85)))) (-1731 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (|has| *1 (-6 -3996)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))) (-2297 (*1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-324 *2)) (-4 *2 (-1129)))) (-1730 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3996)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))) (-1730 (*1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-756))))) -(-13 (-593 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3518 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2298 ($ $)) (-15 -2909 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1732 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3419 ((-484) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3419 ((-484) |t#1| $)) (-15 -3419 ((-484) |t#1| $ (-484)))) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-6 (-756)) (-15 -3518 ($ $ $)) (-15 -2909 ($ $)) (-15 -1732 ((-85) $))) |%noBranch|) (IF (|has| $ (-6 -3996)) (PROGN (-15 -1731 ($ $ $ (-484))) (-15 -2297 ($ $)) (-15 -1730 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-756)) (-15 -1730 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1129) . T)) -((-3841 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3842 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3958 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) -(((-325 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3842 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3841 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1129) (-324 |#1|) (-1129) (-324 |#3|)) (T -325)) -((-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-4 *2 (-324 *5)) (-5 *1 (-325 *6 *4 *5 *2)) (-4 *4 (-324 *6)))) (-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-325 *5 *4 *2 *6)) (-4 *4 (-324 *5)) (-4 *6 (-324 *2)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *2 (-324 *6)) (-5 *1 (-325 *5 *4 *6 *2)) (-4 *4 (-324 *5))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3934 (((-583 |#1|) $) 43 T ELT)) (-3947 (($ $ (-694)) 44 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3939 (((-1204 |#1| |#2|) (-1204 |#1| |#2|) $) 47 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-3936 (($ $) 45 T ELT)) (-3940 (((-1204 |#1| |#2|) (-1204 |#1| |#2|) $) 48 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3768 (($ $ |#1| $) 42 T ELT) (($ $ (-583 |#1|) (-583 $)) 41 T ELT)) (-3948 (((-694) $) 49 T ELT)) (-3530 (($ $ $) 40 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ |#1|) 52 T ELT) (((-1195 |#1| |#2|) $) 51 T ELT) (((-1204 |#1| |#2|) $) 50 T ELT)) (-3954 ((|#2| (-1204 |#1| |#2|) $) 53 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-1733 (($ (-614 |#1|)) 46 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#2|) 39 (|has| |#2| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#2| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) -(((-326 |#1| |#2|) (-113) (-756) (-146)) (T -326)) -((-3954 (*1 *2 *3 *1) (-12 (-5 *3 (-1204 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-756)) (-4 *2 (-146)))) (-3946 (*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-1195 *3 *4)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-1204 *3 *4)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-694)))) (-3940 (*1 *2 *2 *1) (-12 (-5 *2 (-1204 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3939 (*1 *2 *2 *1) (-12 (-5 *2 (-1204 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146)))) (-3936 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3947 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-583 *3)))) (-3768 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-756)) (-4 *5 (-146))))) -(-13 (-574 |t#2|) (-10 -8 (-15 -3954 (|t#2| (-1204 |t#1| |t#2|) $)) (-15 -3946 ($ |t#1|)) (-15 -3946 ((-1195 |t#1| |t#2|) $)) (-15 -3946 ((-1204 |t#1| |t#2|) $)) (-15 -3948 ((-694) $)) (-15 -3940 ((-1204 |t#1| |t#2|) (-1204 |t#1| |t#2|) $)) (-15 -3939 ((-1204 |t#1| |t#2|) (-1204 |t#1| |t#2|) $)) (-15 -1733 ($ (-614 |t#1|))) (-15 -3936 ($ $)) (-15 -3947 ($ $ (-694))) (-15 -3934 ((-583 |t#1|) $)) (-15 -3768 ($ $ |t#1| $)) (-15 -3768 ($ $ (-583 |t#1|) (-583 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-590 |#2|) . T) ((-574 |#2|) . T) ((-582 |#2|) . T) ((-654 |#2|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-1013) . T) ((-1129) . T)) -((-1736 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1734 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1735 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT))) -(((-327 |#1| |#2|) (-10 -7 (-15 -1734 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1735 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1736 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1129) (-13 (-324 |#1|) (-10 -7 (-6 -3996)))) (T -327)) -((-1736 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996)))))) (-1735 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996)))))) (-1734 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996))))))) -((-2279 (((-630 |#2|) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 22 T ELT) (((-630 (-484)) (-630 $)) 14 T ELT))) -(((-328 |#1| |#2|) (-10 -7 (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-630 |#2|) (-630 |#1|)))) (-329 |#2|) (-961)) (T -328)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-2279 (((-630 |#1|) (-630 $)) 36 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 35 T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 47 (|has| |#1| (-580 (-484))) ELT) (((-630 (-484)) (-630 $)) 46 (|has| |#1| (-580 (-484))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2280 (((-630 |#1|) (-1179 $)) 38 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 37 T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 45 (|has| |#1| (-580 (-484))) ELT) (((-630 (-484)) (-1179 $)) 44 (|has| |#1| (-580 (-484))) ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT))) -(((-329 |#1|) (-113) (-961)) (T -329)) -NIL -(-13 (-580 |t#1|) (-10 -7 (IF (|has| |t#1| (-580 (-484))) (-6 (-580 (-484))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 16 T ELT)) (-3129 (((-484) $) 44 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3771 (($ $) 120 T ELT)) (-3492 (($ $) 81 T ELT)) (-3639 (($ $) 72 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-3037 (($ $) 28 T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3490 (($ $) 79 T ELT)) (-3638 (($ $) 67 T ELT)) (-3623 (((-484) $) 60 T ELT)) (-2441 (($ $ (-484)) 55 T ELT)) (-3494 (($ $) NIL T ELT)) (-3637 (($ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3127 (($ $) 122 T ELT)) (-3157 (((-3 (-484) #1#) $) 217 T ELT) (((-3 (-350 (-484)) #1#) $) 213 T ELT)) (-3156 (((-484) $) 215 T ELT) (((-350 (-484)) $) 211 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-1745 (((-484) $ $) 110 T ELT)) (-3467 (((-3 $ #1#) $) 125 T ELT)) (-1744 (((-350 (-484)) $ (-694)) 218 T ELT) (((-350 (-484)) $ (-694) (-694)) 210 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-1768 (((-830)) 106 T ELT) (((-830) (-830)) 107 (|has| $ (-6 -3986)) ELT)) (-3186 (((-85) $) 38 T ELT)) (-3627 (($) 22 T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL T ELT)) (-1737 (((-1185) (-694)) 177 T ELT)) (-1738 (((-1185)) 182 T ELT) (((-1185) (-694)) 183 T ELT)) (-1740 (((-1185)) 184 T ELT) (((-1185) (-694)) 185 T ELT)) (-1739 (((-1185)) 180 T ELT) (((-1185) (-694)) 181 T ELT)) (-3772 (((-484) $) 50 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 21 T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-2443 (($ $) 32 T ELT)) (-3132 (($ $) NIL T ELT)) (-3187 (((-85) $) 18 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL (-12 (-2560 (|has| $ (-6 -3978))) (-2560 (|has| $ (-6 -3986)))) ELT)) (-2857 (($ $ $) NIL T ELT) (($) NIL (-12 (-2560 (|has| $ (-6 -3978))) (-2560 (|has| $ (-6 -3986)))) ELT)) (-1770 (((-484) $) 112 T ELT)) (-1743 (($) 90 T ELT) (($ $) 97 T ELT)) (-1742 (($) 96 T ELT) (($ $) 98 T ELT)) (-3942 (($ $) 84 T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 127 T ELT)) (-1767 (((-830) (-484)) 27 (|has| $ (-6 -3986)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) 41 T ELT)) (-3130 (($ $) 119 T ELT)) (-3254 (($ (-484) (-484)) 115 T ELT) (($ (-484) (-484) (-830)) 116 T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2401 (((-484) $) 113 T ELT)) (-1741 (($) 99 T ELT)) (-3943 (($ $) 78 T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2615 (((-830)) 108 T ELT) (((-830) (-830)) 109 (|has| $ (-6 -3986)) ELT)) (-3758 (($ $) 126 T ELT) (($ $ (-694)) NIL T ELT)) (-1766 (((-830) (-484)) 31 (|has| $ (-6 -3986)) ELT)) (-3495 (($ $) NIL T ELT)) (-3636 (($ $) NIL T ELT)) (-3493 (($ $) NIL T ELT)) (-3635 (($ $) NIL T ELT)) (-3491 (($ $) 80 T ELT)) (-3634 (($ $) 71 T ELT)) (-3972 (((-330) $) 202 T ELT) (((-179) $) 204 T ELT) (((-800 (-330)) $) NIL T ELT) (((-1073) $) 188 T ELT) (((-473) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3946 (((-772) $) 192 T ELT) (($ (-484)) 214 T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-484)) 214 T ELT) (($ (-350 (-484))) NIL T ELT) (((-179) $) 205 T ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (($ $) 121 T ELT)) (-1769 (((-830)) 42 T ELT) (((-830) (-830)) 62 (|has| $ (-6 -3986)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2694 (((-830)) 111 T ELT)) (-3498 (($ $) 87 T ELT)) (-3486 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3496 (($ $) 85 T ELT)) (-3484 (($ $) 20 T ELT)) (-3500 (($ $) NIL T ELT)) (-3488 (($ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL T ELT)) (-3489 (($ $) NIL T ELT)) (-3499 (($ $) NIL T ELT)) (-3487 (($ $) NIL T ELT)) (-3497 (($ $) 86 T ELT)) (-3485 (($ $) 33 T ELT)) (-3383 (($ $) 39 T ELT)) (-2660 (($) 17 T CONST)) (-2666 (($) 24 T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2566 (((-85) $ $) 189 T ELT)) (-2567 (((-85) $ $) 26 T ELT)) (-3056 (((-85) $ $) 37 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 43 T ELT)) (-3949 (($ $ $) 29 T ELT) (($ $ (-484)) 23 T ELT)) (-3837 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3839 (($ $ $) 54 T ELT)) (** (($ $ (-830)) 65 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 91 T ELT) (($ $ (-350 (-484))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-830) $) 61 T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT))) -(((-330) (-13 (-347) (-190) (-553 (-1073)) (-552 (-179)) (-1115) (-553 (-473)) (-557 (-179)) (-10 -8 (-15 -3949 ($ $ (-484))) (-15 ** ($ $ $)) (-15 -2443 ($ $)) (-15 -1745 ((-484) $ $)) (-15 -2441 ($ $ (-484))) (-15 -1744 ((-350 (-484)) $ (-694))) (-15 -1744 ((-350 (-484)) $ (-694) (-694))) (-15 -1743 ($)) (-15 -1742 ($)) (-15 -1741 ($)) (-15 -3486 ($ $ $)) (-15 -1743 ($ $)) (-15 -1742 ($ $)) (-15 -1740 ((-1185))) (-15 -1740 ((-1185) (-694))) (-15 -1739 ((-1185))) (-15 -1739 ((-1185) (-694))) (-15 -1738 ((-1185))) (-15 -1738 ((-1185) (-694))) (-15 -1737 ((-1185) (-694))) (-6 -3986) (-6 -3978)))) (T -330)) -((** (*1 *1 *1 *1) (-5 *1 (-330))) (-3949 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-330)))) (-2443 (*1 *1 *1) (-5 *1 (-330))) (-1745 (*1 *2 *1 *1) (-12 (-5 *2 (-484)) (-5 *1 (-330)))) (-2441 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-330)))) (-1744 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-330)))) (-1744 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-330)))) (-1743 (*1 *1) (-5 *1 (-330))) (-1742 (*1 *1) (-5 *1 (-330))) (-1741 (*1 *1) (-5 *1 (-330))) (-3486 (*1 *1 *1 *1) (-5 *1 (-330))) (-1743 (*1 *1 *1) (-5 *1 (-330))) (-1742 (*1 *1 *1) (-5 *1 (-330))) (-1740 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330)))) (-1739 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330)))) (-1738 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330))))) -((-1746 (((-583 (-249 (-857 (-142 |#1|)))) (-249 (-350 (-857 (-142 (-484))))) |#1|) 52 T ELT) (((-583 (-249 (-857 (-142 |#1|)))) (-350 (-857 (-142 (-484)))) |#1|) 51 T ELT) (((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-249 (-350 (-857 (-142 (-484)))))) |#1|) 48 T ELT) (((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-350 (-857 (-142 (-484))))) |#1|) 42 T ELT)) (-1747 (((-583 (-583 (-142 |#1|))) (-583 (-350 (-857 (-142 (-484))))) (-583 (-1090)) |#1|) 30 T ELT) (((-583 (-142 |#1|)) (-350 (-857 (-142 (-484)))) |#1|) 18 T ELT))) -(((-331 |#1|) (-10 -7 (-15 -1746 ((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-350 (-857 (-142 (-484))))) |#1|)) (-15 -1746 ((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-249 (-350 (-857 (-142 (-484)))))) |#1|)) (-15 -1746 ((-583 (-249 (-857 (-142 |#1|)))) (-350 (-857 (-142 (-484)))) |#1|)) (-15 -1746 ((-583 (-249 (-857 (-142 |#1|)))) (-249 (-350 (-857 (-142 (-484))))) |#1|)) (-15 -1747 ((-583 (-142 |#1|)) (-350 (-857 (-142 (-484)))) |#1|)) (-15 -1747 ((-583 (-583 (-142 |#1|))) (-583 (-350 (-857 (-142 (-484))))) (-583 (-1090)) |#1|))) (-13 (-312) (-755))) (T -331)) -((-1747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-350 (-857 (-142 (-484)))))) (-5 *4 (-583 (-1090))) (-5 *2 (-583 (-583 (-142 *5)))) (-5 *1 (-331 *5)) (-4 *5 (-13 (-312) (-755))))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 (-142 (-484))))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-755))))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-857 (-142 (-484)))))) (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-755))))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 (-142 (-484))))) (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-755))))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-249 (-350 (-857 (-142 (-484))))))) (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-755))))) (-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-350 (-857 (-142 (-484)))))) (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-755)))))) -((-3573 (((-583 (-249 (-857 |#1|))) (-249 (-350 (-857 (-484)))) |#1|) 47 T ELT) (((-583 (-249 (-857 |#1|))) (-350 (-857 (-484))) |#1|) 46 T ELT) (((-583 (-583 (-249 (-857 |#1|)))) (-583 (-249 (-350 (-857 (-484))))) |#1|) 43 T ELT) (((-583 (-583 (-249 (-857 |#1|)))) (-583 (-350 (-857 (-484)))) |#1|) 37 T ELT)) (-1748 (((-583 |#1|) (-350 (-857 (-484))) |#1|) 20 T ELT) (((-583 (-583 |#1|)) (-583 (-350 (-857 (-484)))) (-583 (-1090)) |#1|) 30 T ELT))) -(((-332 |#1|) (-10 -7 (-15 -3573 ((-583 (-583 (-249 (-857 |#1|)))) (-583 (-350 (-857 (-484)))) |#1|)) (-15 -3573 ((-583 (-583 (-249 (-857 |#1|)))) (-583 (-249 (-350 (-857 (-484))))) |#1|)) (-15 -3573 ((-583 (-249 (-857 |#1|))) (-350 (-857 (-484))) |#1|)) (-15 -3573 ((-583 (-249 (-857 |#1|))) (-249 (-350 (-857 (-484)))) |#1|)) (-15 -1748 ((-583 (-583 |#1|)) (-583 (-350 (-857 (-484)))) (-583 (-1090)) |#1|)) (-15 -1748 ((-583 |#1|) (-350 (-857 (-484))) |#1|))) (-13 (-755) (-312))) (T -332)) -((-1748 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-332 *4)) (-4 *4 (-13 (-755) (-312))))) (-1748 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-350 (-857 (-484))))) (-5 *4 (-583 (-1090))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-755) (-312))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-857 (-484))))) (-5 *2 (-583 (-249 (-857 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-755) (-312))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 (-484)))) (-5 *2 (-583 (-249 (-857 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-755) (-312))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-249 (-350 (-857 (-484)))))) (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-755) (-312))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-350 (-857 (-484))))) (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-755) (-312)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3774 (((-583 (-453 |#1| |#2|)) $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2893 (($ |#1| |#2|) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3972 (($ (-583 (-453 |#1| |#2|))) NIL T ELT)) (-3946 (((-772) $) 34 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 12 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) -(((-333 |#1| |#2|) (-13 (-82 |#1| |#1|) (-449 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-654 |#1|)) |%noBranch|))) (-961) (-759)) (T -333)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) 29 T ELT)) (-3156 ((|#2| $) 31 T ELT)) (-3959 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2420 (((-694) $) 13 T ELT)) (-2821 (((-583 $) $) 23 T ELT)) (-3937 (((-85) $) NIL T ELT)) (-3938 (($ |#2| |#1|) 21 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1749 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2894 ((|#2| $) 18 T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3817 (((-583 |#1|) $) 20 T ELT)) (-3677 ((|#1| $ |#2|) 54 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 32 T CONST)) (-2665 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) -(((-334 |#1| |#2|) (-13 (-335 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-961) (-756)) (T -334)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 |#2| "failed") $) 55 T ELT)) (-3156 ((|#2| $) 56 T ELT)) (-3959 (($ $) 41 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2420 (((-694) $) 45 T ELT)) (-2821 (((-583 $) $) 46 T ELT)) (-3937 (((-85) $) 49 T ELT)) (-3938 (($ |#2| |#1|) 50 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 51 T ELT)) (-1749 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 42 T ELT)) (-2894 ((|#2| $) 44 T ELT)) (-3174 ((|#1| $) 43 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ |#2|) 54 T ELT)) (-3817 (((-583 |#1|) $) 47 T ELT)) (-3677 ((|#1| $ |#2|) 52 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-2665 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 48 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 53 T ELT))) -(((-335 |#1| |#2|) (-113) (-961) (-1013)) (T -335)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013)))) (-3677 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)))) (-3938 (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-85)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *3)))) (-2821 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-335 *3 *4)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-694)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3959 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013))))) -(-13 (-82 |t#1| |t#1|) (-950 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3677 (|t#1| $ |t#2|)) (-15 -3958 ($ (-1 |t#1| |t#1|) $)) (-15 -3938 ($ |t#2| |t#1|)) (-15 -3937 ((-85) $)) (-15 -2665 ((-583 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3817 ((-583 |t#1|) $)) (-15 -2821 ((-583 $) $)) (-15 -2420 ((-694) $)) (-15 -2894 (|t#2| $)) (-15 -3174 (|t#1| $)) (-15 -1749 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3959 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-950 |#2|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 7 T ELT)) (-3136 (((-694) $) 40 T ELT)) (-3724 (($) 23 T CONST)) (-3939 (((-3 $ "failed") $ $) 43 T ELT)) (-3157 (((-3 |#1| "failed") $) 51 T ELT)) (-3156 ((|#1| $) 52 T ELT)) (-3467 (((-3 $ "failed") $) 20 T ELT)) (-1750 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-2299 ((|#1| $ (-484)) 37 T ELT)) (-2300 (((-694) $ (-484)) 38 T ELT)) (-2531 (($ $ $) 29 (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) 30 (|has| |#1| (-756)) ELT)) (-2290 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2291 (($ (-1 (-694) (-694)) $) 36 T ELT)) (-3940 (((-3 $ "failed") $ $) 44 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-1751 (($ $ $) 45 T ELT)) (-1752 (($ $ $) 46 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1779 (((-583 (-2 (|:| |gen| |#1|) (|:| -3943 (-694)))) $) 39 T ELT)) (-2879 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-2566 (((-85) $ $) 31 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 33 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 32 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 34 (|has| |#1| (-756)) ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ |#1| (-694)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) -(((-336 |#1|) (-113) (-1013)) (T -336)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (-1752 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (-1751 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (-3940 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (-3939 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (-2879 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-1750 (*1 *2 *1 *1) (-12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1013)) (-5 *2 (-694)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3943 (-694))))))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-336 *4)) (-4 *4 (-1013)) (-5 *2 (-694)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-694) (-694))) (-4 *1 (-336 *3)) (-4 *3 (-1013)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1013))))) -(-13 (-663) (-950 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-694))) (-15 -1752 ($ $ $)) (-15 -1751 ($ $ $)) (-15 -3940 ((-3 $ "failed") $ $)) (-15 -3939 ((-3 $ "failed") $ $)) (-15 -2879 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1750 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3136 ((-694) $)) (-15 -1779 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3943 (-694)))) $)) (-15 -2300 ((-694) $ (-484))) (-15 -2299 (|t#1| $ (-484))) (-15 -2291 ($ (-1 (-694) (-694)) $)) (-15 -2290 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|))) -(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-950 |#1|) . T) ((-1025) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694) $) 74 T ELT)) (-3724 (($) NIL T CONST)) (-3939 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1750 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2410 (((-85) $) 17 T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-2300 (((-694) $ (-484)) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2290 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2291 (($ (-1 (-694) (-694)) $) 37 T ELT)) (-3940 (((-3 $ #1#) $ $) 60 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1751 (($ $ $) 28 T ELT)) (-1752 (($ $ $) 26 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1779 (((-583 (-2 (|:| |gen| |#1|) (|:| -3943 (-694)))) $) 34 T ELT)) (-2879 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3946 (((-772) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2666 (($) 7 T CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 83 (|has| |#1| (-756)) ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ |#1| (-694)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) -(((-337 |#1|) (-336 |#1|) (-1013)) (T -337)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-1753 (((-85) $) 25 T ELT)) (-1754 (((-85) $) 22 T ELT)) (-3614 (($ (-1073) (-1073) (-1073)) 26 T ELT)) (-3542 (((-1073) $) 16 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1758 (($ (-1073) (-1073) (-1073)) 14 T ELT)) (-1756 (((-1073) $) 17 T ELT)) (-1755 (((-85) $) 18 T ELT)) (-1757 (((-1073) $) 15 T ELT)) (-3946 (((-772) $) 12 T ELT) (($ (-1073)) 13 T ELT) (((-1073) $) 9 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 7 T ELT))) +((-3137 (*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-695)))) (-2401 (*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-320)))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-831)))) (-2995 (*1 *1) (-4 *1 (-320)))) +(-13 (-1014) (-10 -8 (-15 -3137 ((-695))) (-15 -2401 ($ (-831))) (-15 -2011 ((-831) $)) (-15 -2995 ($)))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-1783 (((-631 |#2|) (-1180 $)) 45 T ELT)) (-1793 (($ (-1180 |#2|) (-1180 $)) 39 T ELT)) (-1782 (((-631 |#2|) $ (-1180 $)) 47 T ELT)) (-3758 ((|#2| (-1180 $)) 13 T ELT)) (-3225 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) 27 T ELT))) +(((-321 |#1| |#2| |#3|) (-10 -7 (-15 -1783 ((-631 |#2|) (-1180 |#1|))) (-15 -3758 (|#2| (-1180 |#1|))) (-15 -1793 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3225 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3225 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1782 ((-631 |#2|) |#1| (-1180 |#1|)))) (-322 |#2| |#3|) (-146) (-1156 |#2|)) (T -321)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1783 (((-631 |#1|) (-1180 $)) 61 T ELT)) (-3331 ((|#1| $) 67 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1793 (($ (-1180 |#1|) (-1180 $)) 63 T ELT)) (-1782 (((-631 |#1|) $ (-1180 $)) 68 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3109 (((-831)) 69 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3133 ((|#1| $) 66 T ELT)) (-2015 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3758 ((|#1| (-1180 $)) 62 T ELT)) (-3225 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2703 (((-633 $) $) 58 (|has| |#1| (-118)) ELT)) (-2450 ((|#2| $) 60 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-322 |#1| |#2|) (-113) (-146) (-1156 |t#1|)) (T -322)) +((-3109 (*1 *2) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-831)))) (-1782 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) (-3225 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *4)))) (-3225 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-1793 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146)) (-4 *1 (-322 *4 *5)) (-4 *5 (-1156 *4)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1156 *2)) (-4 *2 (-146)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-2450 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1156 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3109 ((-831))) (-15 -1782 ((-631 |t#1|) $ (-1180 $))) (-15 -3331 (|t#1| $)) (-15 -3133 (|t#1| $)) (-15 -3225 ((-1180 |t#1|) $ (-1180 $))) (-15 -3225 ((-631 |t#1|) (-1180 $) (-1180 $))) (-15 -1793 ($ (-1180 |t#1|) (-1180 $))) (-15 -3758 (|t#1| (-1180 $))) (-15 -1783 ((-631 |t#1|) (-1180 $))) (-15 -2450 (|t#2| $)) (IF (|has| |t#1| (-312)) (-15 -2015 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-1733 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1731 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2910 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2299 (($ $) 25 T ELT)) (-3420 (((-485) (-1 (-85) |#2|) $) NIL T ELT) (((-485) |#2| $) 11 T ELT) (((-485) |#2| $ (-485)) NIL T ELT)) (-3519 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) +(((-323 |#1| |#2|) (-10 -7 (-15 -1731 (|#1| |#1|)) (-15 -1731 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1733 ((-85) |#1|)) (-15 -2910 (|#1| |#1|)) (-15 -3519 (|#1| |#1| |#1|)) (-15 -3420 ((-485) |#2| |#1| (-485))) (-15 -3420 ((-485) |#2| |#1|)) (-15 -3420 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2910 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -3519 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-324 |#2|) (-1130)) (T -323)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-757)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3997)) ELT) (($ $) 98 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3997))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-757)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2298 (($ $) 100 (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) 110 T ELT)) (-1354 (($ $) 84 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#1| $) 83 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) 55 T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) 107 T ELT) (((-485) |#1| $) 106 (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) 105 (|has| |#1| (-1014)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-695) |#1|) 74 T ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 93 (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) 46 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2200 (($ $ |#1|) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-2306 (($ $ (-485)) 68 T ELT) (($ $ (-1147 (-485))) 67 T ELT)) (-1947 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-1732 (($ $ $ (-485)) 101 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 85 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 76 T ELT)) (-3803 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2567 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 97 (|has| |#1| (-757)) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-324 |#1|) (-113) (-1130)) (T -324)) +((-3519 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)))) (-2910 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) (-1733 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-3420 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1130)) (-5 *2 (-485)))) (-3420 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-1014)) (-5 *2 (-485)))) (-3420 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-1014)))) (-3519 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) (-2910 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-757)) (-5 *2 (-85)))) (-1732 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (|has| *1 (-6 -3997)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) (-2298 (*1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-324 *2)) (-4 *2 (-1130)))) (-1731 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3997)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) (-1731 (*1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757))))) +(-13 (-594 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3519 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2299 ($ $)) (-15 -2910 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1733 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3420 ((-485) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -3420 ((-485) |t#1| $)) (-15 -3420 ((-485) |t#1| $ (-485)))) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-6 (-757)) (-15 -3519 ($ $ $)) (-15 -2910 ($ $)) (-15 -1733 ((-85) $))) |%noBranch|) (IF (|has| $ (-6 -3997)) (PROGN (-15 -1732 ($ $ $ (-485))) (-15 -2298 ($ $)) (-15 -1731 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-757)) (-15 -1731 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1130) . T)) +((-3842 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3843 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3959 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) +(((-325 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3843 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3842 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1130) (-324 |#1|) (-1130) (-324 |#3|)) (T -325)) +((-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-4 *2 (-324 *5)) (-5 *1 (-325 *6 *4 *5 *2)) (-4 *4 (-324 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-325 *5 *4 *2 *6)) (-4 *4 (-324 *5)) (-4 *6 (-324 *2)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-324 *6)) (-5 *1 (-325 *5 *4 *6 *2)) (-4 *4 (-324 *5))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3935 (((-584 |#1|) $) 43 T ELT)) (-3948 (($ $ (-695)) 44 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3940 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 47 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3937 (($ $) 45 T ELT)) (-3941 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 48 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3769 (($ $ |#1| $) 42 T ELT) (($ $ (-584 |#1|) (-584 $)) 41 T ELT)) (-3949 (((-695) $) 49 T ELT)) (-3531 (($ $ $) 40 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ |#1|) 52 T ELT) (((-1196 |#1| |#2|) $) 51 T ELT) (((-1205 |#1| |#2|) $) 50 T ELT)) (-3955 ((|#2| (-1205 |#1| |#2|) $) 53 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-1734 (($ (-615 |#1|)) 46 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#2|) 39 (|has| |#2| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#2| $) 33 T ELT) (($ $ |#2|) 37 T ELT))) +(((-326 |#1| |#2|) (-113) (-757) (-146)) (T -326)) +((-3955 (*1 *2 *3 *1) (-12 (-5 *3 (-1205 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-757)) (-4 *2 (-146)))) (-3947 (*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-1196 *3 *4)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-1205 *3 *4)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-695)))) (-3941 (*1 *2 *2 *1) (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3940 (*1 *2 *2 *1) (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-1734 (*1 *1 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146)))) (-3937 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-584 *3)))) (-3769 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-757)) (-4 *5 (-146))))) +(-13 (-575 |t#2|) (-10 -8 (-15 -3955 (|t#2| (-1205 |t#1| |t#2|) $)) (-15 -3947 ($ |t#1|)) (-15 -3947 ((-1196 |t#1| |t#2|) $)) (-15 -3947 ((-1205 |t#1| |t#2|) $)) (-15 -3949 ((-695) $)) (-15 -3941 ((-1205 |t#1| |t#2|) (-1205 |t#1| |t#2|) $)) (-15 -3940 ((-1205 |t#1| |t#2|) (-1205 |t#1| |t#2|) $)) (-15 -1734 ($ (-615 |t#1|))) (-15 -3937 ($ $)) (-15 -3948 ($ $ (-695))) (-15 -3935 ((-584 |t#1|) $)) (-15 -3769 ($ $ |t#1| $)) (-15 -3769 ($ $ (-584 |t#1|) (-584 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-591 |#2|) . T) ((-575 |#2|) . T) ((-583 |#2|) . T) ((-655 |#2|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-1014) . T) ((-1130) . T)) +((-1737 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1735 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1736 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT))) +(((-327 |#1| |#2|) (-10 -7 (-15 -1735 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1736 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1737 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1130) (-13 (-324 |#1|) (-10 -7 (-6 -3997)))) (T -327)) +((-1737 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3997)))))) (-1736 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3997)))))) (-1735 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3997))))))) +((-2280 (((-631 |#2|) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 22 T ELT) (((-631 (-485)) (-631 $)) 14 T ELT))) +(((-328 |#1| |#2|) (-10 -7 (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-631 |#2|) (-631 |#1|)))) (-329 |#2|) (-962)) (T -328)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2280 (((-631 |#1|) (-631 $)) 36 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 35 T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 47 (|has| |#1| (-581 (-485))) ELT) (((-631 (-485)) (-631 $)) 46 (|has| |#1| (-581 (-485))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2281 (((-631 |#1|) (-1180 $)) 38 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 37 T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 45 (|has| |#1| (-581 (-485))) ELT) (((-631 (-485)) (-1180 $)) 44 (|has| |#1| (-581 (-485))) ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT))) +(((-329 |#1|) (-113) (-962)) (T -329)) +NIL +(-13 (-581 |t#1|) (-10 -7 (IF (|has| |t#1| (-581 (-485))) (-6 (-581 (-485))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 16 T ELT)) (-3130 (((-485) $) 44 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3772 (($ $) 120 T ELT)) (-3493 (($ $) 81 T ELT)) (-3640 (($ $) 72 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-3038 (($ $) 28 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3491 (($ $) 79 T ELT)) (-3639 (($ $) 67 T ELT)) (-3624 (((-485) $) 60 T ELT)) (-2442 (($ $ (-485)) 55 T ELT)) (-3495 (($ $) NIL T ELT)) (-3638 (($ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3128 (($ $) 122 T ELT)) (-3158 (((-3 (-485) #1#) $) 217 T ELT) (((-3 (-350 (-485)) #1#) $) 213 T ELT)) (-3157 (((-485) $) 215 T ELT) (((-350 (-485)) $) 211 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-1746 (((-485) $ $) 110 T ELT)) (-3468 (((-3 $ #1#) $) 125 T ELT)) (-1745 (((-350 (-485)) $ (-695)) 218 T ELT) (((-350 (-485)) $ (-695) (-695)) 210 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-1769 (((-831)) 106 T ELT) (((-831) (-831)) 107 (|has| $ (-6 -3987)) ELT)) (-3187 (((-85) $) 38 T ELT)) (-3628 (($) 22 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL T ELT)) (-1738 (((-1186) (-695)) 177 T ELT)) (-1739 (((-1186)) 182 T ELT) (((-1186) (-695)) 183 T ELT)) (-1741 (((-1186)) 184 T ELT) (((-1186) (-695)) 185 T ELT)) (-1740 (((-1186)) 180 T ELT) (((-1186) (-695)) 181 T ELT)) (-3773 (((-485) $) 50 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 21 T ELT)) (-3012 (($ $ (-485)) NIL T ELT)) (-2444 (($ $) 32 T ELT)) (-3133 (($ $) NIL T ELT)) (-3188 (((-85) $) 18 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL (-12 (-2561 (|has| $ (-6 -3979))) (-2561 (|has| $ (-6 -3987)))) ELT)) (-2858 (($ $ $) NIL T ELT) (($) NIL (-12 (-2561 (|has| $ (-6 -3979))) (-2561 (|has| $ (-6 -3987)))) ELT)) (-1771 (((-485) $) 112 T ELT)) (-1744 (($) 90 T ELT) (($ $) 97 T ELT)) (-1743 (($) 96 T ELT) (($ $) 98 T ELT)) (-3943 (($ $) 84 T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 127 T ELT)) (-1768 (((-831) (-485)) 27 (|has| $ (-6 -3987)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) 41 T ELT)) (-3131 (($ $) 119 T ELT)) (-3255 (($ (-485) (-485)) 115 T ELT) (($ (-485) (-485) (-831)) 116 T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2402 (((-485) $) 113 T ELT)) (-1742 (($) 99 T ELT)) (-3944 (($ $) 78 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2616 (((-831)) 108 T ELT) (((-831) (-831)) 109 (|has| $ (-6 -3987)) ELT)) (-3759 (($ $) 126 T ELT) (($ $ (-695)) NIL T ELT)) (-1767 (((-831) (-485)) 31 (|has| $ (-6 -3987)) ELT)) (-3496 (($ $) NIL T ELT)) (-3637 (($ $) NIL T ELT)) (-3494 (($ $) NIL T ELT)) (-3636 (($ $) NIL T ELT)) (-3492 (($ $) 80 T ELT)) (-3635 (($ $) 71 T ELT)) (-3973 (((-330) $) 202 T ELT) (((-179) $) 204 T ELT) (((-801 (-330)) $) NIL T ELT) (((-1074) $) 188 T ELT) (((-474) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3947 (((-773) $) 192 T ELT) (($ (-485)) 214 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) 214 T ELT) (($ (-350 (-485))) NIL T ELT) (((-179) $) 205 T ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (($ $) 121 T ELT)) (-1770 (((-831)) 42 T ELT) (((-831) (-831)) 62 (|has| $ (-6 -3987)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2695 (((-831)) 111 T ELT)) (-3499 (($ $) 87 T ELT)) (-3487 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 85 T ELT)) (-3485 (($ $) 20 T ELT)) (-3501 (($ $) NIL T ELT)) (-3489 (($ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-3500 (($ $) NIL T ELT)) (-3488 (($ $) NIL T ELT)) (-3498 (($ $) 86 T ELT)) (-3486 (($ $) 33 T ELT)) (-3384 (($ $) 39 T ELT)) (-2661 (($) 17 T CONST)) (-2667 (($) 24 T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2567 (((-85) $ $) 189 T ELT)) (-2568 (((-85) $ $) 26 T ELT)) (-3057 (((-85) $ $) 37 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 43 T ELT)) (-3950 (($ $ $) 29 T ELT) (($ $ (-485)) 23 T ELT)) (-3838 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3840 (($ $ $) 54 T ELT)) (** (($ $ (-831)) 65 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 91 T ELT) (($ $ (-350 (-485))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-831) $) 61 T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT))) +(((-330) (-13 (-347) (-190) (-554 (-1074)) (-553 (-179)) (-1116) (-554 (-474)) (-558 (-179)) (-10 -8 (-15 -3950 ($ $ (-485))) (-15 ** ($ $ $)) (-15 -2444 ($ $)) (-15 -1746 ((-485) $ $)) (-15 -2442 ($ $ (-485))) (-15 -1745 ((-350 (-485)) $ (-695))) (-15 -1745 ((-350 (-485)) $ (-695) (-695))) (-15 -1744 ($)) (-15 -1743 ($)) (-15 -1742 ($)) (-15 -3487 ($ $ $)) (-15 -1744 ($ $)) (-15 -1743 ($ $)) (-15 -1741 ((-1186))) (-15 -1741 ((-1186) (-695))) (-15 -1740 ((-1186))) (-15 -1740 ((-1186) (-695))) (-15 -1739 ((-1186))) (-15 -1739 ((-1186) (-695))) (-15 -1738 ((-1186) (-695))) (-6 -3987) (-6 -3979)))) (T -330)) +((** (*1 *1 *1 *1) (-5 *1 (-330))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) (-2444 (*1 *1 *1) (-5 *1 (-330))) (-1746 (*1 *2 *1 *1) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) (-2442 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) (-1745 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330)))) (-1745 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330)))) (-1744 (*1 *1) (-5 *1 (-330))) (-1743 (*1 *1) (-5 *1 (-330))) (-1742 (*1 *1) (-5 *1 (-330))) (-3487 (*1 *1 *1 *1) (-5 *1 (-330))) (-1744 (*1 *1 *1) (-5 *1 (-330))) (-1743 (*1 *1 *1) (-5 *1 (-330))) (-1741 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))) (-1740 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))) (-1739 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330))))) +((-1747 (((-584 (-249 (-858 (-142 |#1|)))) (-249 (-350 (-858 (-142 (-485))))) |#1|) 52 T ELT) (((-584 (-249 (-858 (-142 |#1|)))) (-350 (-858 (-142 (-485)))) |#1|) 51 T ELT) (((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-249 (-350 (-858 (-142 (-485)))))) |#1|) 48 T ELT) (((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-350 (-858 (-142 (-485))))) |#1|) 42 T ELT)) (-1748 (((-584 (-584 (-142 |#1|))) (-584 (-350 (-858 (-142 (-485))))) (-584 (-1091)) |#1|) 30 T ELT) (((-584 (-142 |#1|)) (-350 (-858 (-142 (-485)))) |#1|) 18 T ELT))) +(((-331 |#1|) (-10 -7 (-15 -1747 ((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-350 (-858 (-142 (-485))))) |#1|)) (-15 -1747 ((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-249 (-350 (-858 (-142 (-485)))))) |#1|)) (-15 -1747 ((-584 (-249 (-858 (-142 |#1|)))) (-350 (-858 (-142 (-485)))) |#1|)) (-15 -1747 ((-584 (-249 (-858 (-142 |#1|)))) (-249 (-350 (-858 (-142 (-485))))) |#1|)) (-15 -1748 ((-584 (-142 |#1|)) (-350 (-858 (-142 (-485)))) |#1|)) (-15 -1748 ((-584 (-584 (-142 |#1|))) (-584 (-350 (-858 (-142 (-485))))) (-584 (-1091)) |#1|))) (-13 (-312) (-756))) (T -331)) +((-1748 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485)))))) (-5 *4 (-584 (-1091))) (-5 *2 (-584 (-584 (-142 *5)))) (-5 *1 (-331 *5)) (-4 *5 (-13 (-312) (-756))))) (-1748 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-142 (-485))))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 (-142 (-485)))))) (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-142 (-485))))) (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-249 (-350 (-858 (-142 (-485))))))) (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485)))))) (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756)))))) +((-3574 (((-584 (-249 (-858 |#1|))) (-249 (-350 (-858 (-485)))) |#1|) 47 T ELT) (((-584 (-249 (-858 |#1|))) (-350 (-858 (-485))) |#1|) 46 T ELT) (((-584 (-584 (-249 (-858 |#1|)))) (-584 (-249 (-350 (-858 (-485))))) |#1|) 43 T ELT) (((-584 (-584 (-249 (-858 |#1|)))) (-584 (-350 (-858 (-485)))) |#1|) 37 T ELT)) (-1749 (((-584 |#1|) (-350 (-858 (-485))) |#1|) 20 T ELT) (((-584 (-584 |#1|)) (-584 (-350 (-858 (-485)))) (-584 (-1091)) |#1|) 30 T ELT))) +(((-332 |#1|) (-10 -7 (-15 -3574 ((-584 (-584 (-249 (-858 |#1|)))) (-584 (-350 (-858 (-485)))) |#1|)) (-15 -3574 ((-584 (-584 (-249 (-858 |#1|)))) (-584 (-249 (-350 (-858 (-485))))) |#1|)) (-15 -3574 ((-584 (-249 (-858 |#1|))) (-350 (-858 (-485))) |#1|)) (-15 -3574 ((-584 (-249 (-858 |#1|))) (-249 (-350 (-858 (-485)))) |#1|)) (-15 -1749 ((-584 (-584 |#1|)) (-584 (-350 (-858 (-485)))) (-584 (-1091)) |#1|)) (-15 -1749 ((-584 |#1|) (-350 (-858 (-485))) |#1|))) (-13 (-756) (-312))) (T -332)) +((-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-1749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-350 (-858 (-485))))) (-5 *4 (-584 (-1091))) (-5 *2 (-584 (-584 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-756) (-312))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 (-485))))) (-5 *2 (-584 (-249 (-858 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 (-249 (-858 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-249 (-350 (-858 (-485)))))) (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 (-485))))) (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3775 (((-584 (-454 |#1| |#2|)) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2894 (($ |#1| |#2|) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3973 (($ (-584 (-454 |#1| |#2|))) NIL T ELT)) (-3947 (((-773) $) 34 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 12 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) +(((-333 |#1| |#2|) (-13 (-82 |#1| |#1|) (-450 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-655 |#1|)) |%noBranch|))) (-962) (-760)) (T -333)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) 29 T ELT)) (-3157 ((|#2| $) 31 T ELT)) (-3960 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2421 (((-695) $) 13 T ELT)) (-2822 (((-584 $) $) 23 T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ |#2| |#1|) 21 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1750 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2895 ((|#2| $) 18 T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3818 (((-584 |#1|) $) 20 T ELT)) (-3678 ((|#1| $ |#2|) 54 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 32 T CONST)) (-2666 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) +(((-334 |#1| |#2|) (-13 (-335 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-962) (-757)) (T -334)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#2| "failed") $) 55 T ELT)) (-3157 ((|#2| $) 56 T ELT)) (-3960 (($ $) 41 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2421 (((-695) $) 45 T ELT)) (-2822 (((-584 $) $) 46 T ELT)) (-3938 (((-85) $) 49 T ELT)) (-3939 (($ |#2| |#1|) 50 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 51 T ELT)) (-1750 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 42 T ELT)) (-2895 ((|#2| $) 44 T ELT)) (-3175 ((|#1| $) 43 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ |#2|) 54 T ELT)) (-3818 (((-584 |#1|) $) 47 T ELT)) (-3678 ((|#1| $ |#2|) 52 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-2666 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 48 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 53 T ELT))) +(((-335 |#1| |#2|) (-113) (-962) (-1014)) (T -335)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014)))) (-3678 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)))) (-3939 (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-85)))) (-2666 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *3)))) (-2822 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-335 *3 *4)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-695)))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014))))) +(-13 (-82 |t#1| |t#1|) (-951 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3678 (|t#1| $ |t#2|)) (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (-15 -3939 ($ |t#2| |t#1|)) (-15 -3938 ((-85) $)) (-15 -2666 ((-584 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3818 ((-584 |t#1|) $)) (-15 -2822 ((-584 $) $)) (-15 -2421 ((-695) $)) (-15 -2895 (|t#2| $)) (-15 -3175 (|t#1| $)) (-15 -1750 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3960 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-951 |#2|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 7 T ELT)) (-3137 (((-695) $) 40 T ELT)) (-3725 (($) 23 T CONST)) (-3940 (((-3 $ "failed") $ $) 43 T ELT)) (-3158 (((-3 |#1| "failed") $) 51 T ELT)) (-3157 ((|#1| $) 52 T ELT)) (-3468 (((-3 $ "failed") $) 20 T ELT)) (-1751 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-2300 ((|#1| $ (-485)) 37 T ELT)) (-2301 (((-695) $ (-485)) 38 T ELT)) (-2532 (($ $ $) 29 (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) 30 (|has| |#1| (-757)) ELT)) (-2291 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2292 (($ (-1 (-695) (-695)) $) 36 T ELT)) (-3941 (((-3 $ "failed") $ $) 44 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-1752 (($ $ $) 45 T ELT)) (-1753 (($ $ $) 46 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1780 (((-584 (-2 (|:| |gen| |#1|) (|:| -3944 (-695)))) $) 39 T ELT)) (-2880 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2667 (($) 24 T CONST)) (-2567 (((-85) $ $) 31 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 33 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 32 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 34 (|has| |#1| (-757)) ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ |#1| (-695)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) +(((-336 |#1|) (-113) (-1014)) (T -336)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-1753 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-1752 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-3941 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-3940 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-2880 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-1751 (*1 *2 *1 *1) (-12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014)) (-5 *2 (-695)))) (-1780 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3944 (-695))))))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-336 *4)) (-4 *4 (-1014)) (-5 *2 (-695)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-695) (-695))) (-4 *1 (-336 *3)) (-4 *3 (-1014)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1014))))) +(-13 (-664) (-951 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-695))) (-15 -1753 ($ $ $)) (-15 -1752 ($ $ $)) (-15 -3941 ((-3 $ "failed") $ $)) (-15 -3940 ((-3 $ "failed") $ $)) (-15 -2880 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1751 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3137 ((-695) $)) (-15 -1780 ((-584 (-2 (|:| |gen| |t#1|) (|:| -3944 (-695)))) $)) (-15 -2301 ((-695) $ (-485))) (-15 -2300 (|t#1| $ (-485))) (-15 -2292 ($ (-1 (-695) (-695)) $)) (-15 -2291 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|))) +(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-951 |#1|) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695) $) 74 T ELT)) (-3725 (($) NIL T CONST)) (-3940 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1751 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2411 (((-85) $) 17 T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-2301 (((-695) $ (-485)) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2291 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2292 (($ (-1 (-695) (-695)) $) 37 T ELT)) (-3941 (((-3 $ #1#) $ $) 60 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1752 (($ $ $) 28 T ELT)) (-1753 (($ $ $) 26 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1780 (((-584 (-2 (|:| |gen| |#1|) (|:| -3944 (-695)))) $) 34 T ELT)) (-2880 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3947 (((-773) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2667 (($) 7 T CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 83 (|has| |#1| (-757)) ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ |#1| (-695)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) +(((-337 |#1|) (-336 |#1|) (-1014)) (T -337)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-1754 (((-85) $) 25 T ELT)) (-1755 (((-85) $) 22 T ELT)) (-3615 (($ (-1074) (-1074) (-1074)) 26 T ELT)) (-3543 (((-1074) $) 16 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1759 (($ (-1074) (-1074) (-1074)) 14 T ELT)) (-1757 (((-1074) $) 17 T ELT)) (-1756 (((-85) $) 18 T ELT)) (-1758 (((-1074) $) 15 T ELT)) (-3947 (((-773) $) 12 T ELT) (($ (-1074)) 13 T ELT) (((-1074) $) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 7 T ELT))) (((-338) (-339)) (T -338)) NIL -((-2568 (((-85) $ $) 7 T ELT)) (-1753 (((-85) $) 20 T ELT)) (-1754 (((-85) $) 21 T ELT)) (-3614 (($ (-1073) (-1073) (-1073)) 19 T ELT)) (-3542 (((-1073) $) 24 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1758 (($ (-1073) (-1073) (-1073)) 26 T ELT)) (-1756 (((-1073) $) 23 T ELT)) (-1755 (((-85) $) 22 T ELT)) (-1757 (((-1073) $) 25 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-1073)) 28 T ELT) (((-1073) $) 27 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) +((-2569 (((-85) $ $) 7 T ELT)) (-1754 (((-85) $) 20 T ELT)) (-1755 (((-85) $) 21 T ELT)) (-3615 (($ (-1074) (-1074) (-1074)) 19 T ELT)) (-3543 (((-1074) $) 24 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1759 (($ (-1074) (-1074) (-1074)) 26 T ELT)) (-1757 (((-1074) $) 23 T ELT)) (-1756 (((-85) $) 22 T ELT)) (-1758 (((-1074) $) 25 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-1074)) 28 T ELT) (((-1074) $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) (((-339) (-113)) (T -339)) -((-1758 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-339)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073)))) (-1756 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-3614 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-339))))) -(-13 (-1013) (-430 (-1073)) (-10 -8 (-15 -1758 ($ (-1073) (-1073) (-1073))) (-15 -1757 ((-1073) $)) (-15 -3542 ((-1073) $)) (-15 -1756 ((-1073) $)) (-15 -1755 ((-85) $)) (-15 -1754 ((-85) $)) (-15 -1753 ((-85) $)) (-15 -3614 ($ (-1073) (-1073) (-1073))))) -(((-72) . T) ((-555 (-1073)) . T) ((-552 (-772)) . T) ((-552 (-1073)) . T) ((-430 (-1073)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-1759 (((-772) $) 64 T ELT)) (-3724 (($) NIL T CONST)) (-2407 (($ $ (-830)) NIL T ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($ (-694)) 38 T ELT)) (-3911 (((-694)) 18 T ELT)) (-1760 (((-772) $) 66 T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 41 T ELT)) (-3837 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3839 (($ $ $) 51 T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) -(((-340 |#1| |#2| |#3|) (-13 (-683 |#3|) (-10 -8 (-15 -3911 ((-694))) (-15 -1760 ((-772) $)) (-15 -1759 ((-772) $)) (-15 -2409 ($ (-694))))) (-694) (-694) (-146)) (T -340)) -((-3911 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1760 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) (-4 *5 (-146)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146))))) -((-3772 (((-694) (-283 |#1| |#2| |#3| |#4|)) 16 T ELT))) -(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3772 ((-694) (-283 |#1| |#2| |#3| |#4|)))) (-13 (-320) (-312)) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -341)) -((-3772 (*1 *2 *3) (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-320) (-312))) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-4 *7 (-291 *4 *5 *6)) (-5 *2 (-694)) (-5 *1 (-341 *4 *5 *6 *7))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1762 ((|#2| $) 38 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1763 (($ (-350 |#2|)) 93 T ELT)) (-1761 (((-583 (-2 (|:| -2401 (-694)) (|:| -3773 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3758 (($ $ (-694)) 36 T ELT) (($ $) 34 T ELT)) (-3972 (((-350 |#2|) $) 49 T ELT)) (-3530 (($ (-583 (-2 (|:| -2401 (-694)) (|:| -3773 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3946 (((-772) $) 131 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2669 (($ $ (-694)) 37 T ELT) (($ $) 35 T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3839 (($ |#2| $) 41 T ELT))) -(((-342 |#1| |#2|) (-13 (-1013) (-189) (-553 (-350 |#2|)) (-10 -8 (-15 -3839 ($ |#2| $)) (-15 -1763 ($ (-350 |#2|))) (-15 -1762 (|#2| $)) (-15 -1761 ((-583 (-2 (|:| -2401 (-694)) (|:| -3773 |#2|) (|:| |num| |#2|))) $)) (-15 -3530 ($ (-583 (-2 (|:| -2401 (-694)) (|:| -3773 |#2|) (|:| |num| |#2|))))))) (-13 (-312) (-120)) (-1155 |#1|)) (T -342)) -((-3839 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1155 *3)))) (-1763 (*1 *1 *2) (-12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))) (-1762 (*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120))))) (-1761 (*1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3773 *4) (|:| |num| *4)))) (-5 *1 (-342 *3 *4)) (-4 *4 (-1155 *3)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3773 *4) (|:| |num| *4)))) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4))))) -((-2568 (((-85) $ $) 10 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 16 (|has| |#1| (-796 (-330))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 15 (|has| |#1| (-796 (-484))) ELT)) (-3242 (((-1073) $) 14 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ELT)) (-3243 (((-1033) $) 13 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ELT)) (-3946 (((-772) $) 12 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ELT)) (-1265 (((-85) $ $) 11 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ELT)) (-3056 (((-85) $ $) 9 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ELT))) -(((-343 |#1|) (-113) (-1129)) (T -343)) -NIL -(-13 (-1129) (-10 -7 (IF (|has| |t#1| (-796 (-484))) (-6 (-796 (-484))) |%noBranch|) (IF (|has| |t#1| (-796 (-330))) (-6 (-796 (-330))) |%noBranch|))) -(((-72) OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ((-552 (-772)) OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ((-13) . T) ((-796 (-330)) |has| |#1| (-796 (-330))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-1013) OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ((-1129) . T)) -((-1764 (($ $) 10 T ELT) (($ $ (-694)) 12 T ELT))) -(((-344 |#1|) (-10 -7 (-15 -1764 (|#1| |#1| (-694))) (-15 -1764 (|#1| |#1|))) (-345)) (T -344)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3724 (($) 23 T CONST)) (-2564 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1764 (($ $) 97 T ELT) (($ $ (-694)) 96 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-3772 (((-743 (-830)) $) 99 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-1765 (((-3 (-694) "failed") $ $) 98 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT)) (-2702 (((-632 $) $) 100 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 83 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT))) +((-1759 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-339)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074)))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074)))) (-1756 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-3615 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-339))))) +(-13 (-1014) (-430 (-1074)) (-10 -8 (-15 -1759 ($ (-1074) (-1074) (-1074))) (-15 -1758 ((-1074) $)) (-15 -3543 ((-1074) $)) (-15 -1757 ((-1074) $)) (-15 -1756 ((-85) $)) (-15 -1755 ((-85) $)) (-15 -1754 ((-85) $)) (-15 -3615 ($ (-1074) (-1074) (-1074))))) +(((-72) . T) ((-556 (-1074)) . T) ((-553 (-773)) . T) ((-553 (-1074)) . T) ((-430 (-1074)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-1760 (((-773) $) 64 T ELT)) (-3725 (($) NIL T CONST)) (-2408 (($ $ (-831)) NIL T ELT)) (-2434 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($ (-695)) 38 T ELT)) (-3912 (((-695)) 18 T ELT)) (-1761 (((-773) $) 66 T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 41 T ELT)) (-3838 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3840 (($ $ $) 51 T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) +(((-340 |#1| |#2| |#3|) (-13 (-684 |#3|) (-10 -8 (-15 -3912 ((-695))) (-15 -1761 ((-773) $)) (-15 -1760 ((-773) $)) (-15 -2410 ($ (-695))))) (-695) (-695) (-146)) (T -340)) +((-3912 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1761 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1760 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) (-4 *5 (-146)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146))))) +((-3773 (((-695) (-283 |#1| |#2| |#3| |#4|)) 16 T ELT))) +(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3773 ((-695) (-283 |#1| |#2| |#3| |#4|)))) (-13 (-320) (-312)) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -341)) +((-3773 (*1 *2 *3) (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-320) (-312))) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-4 *7 (-291 *4 *5 *6)) (-5 *2 (-695)) (-5 *1 (-341 *4 *5 *6 *7))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1763 ((|#2| $) 38 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1764 (($ (-350 |#2|)) 93 T ELT)) (-1762 (((-584 (-2 (|:| -2402 (-695)) (|:| -3774 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3759 (($ $ (-695)) 36 T ELT) (($ $) 34 T ELT)) (-3973 (((-350 |#2|) $) 49 T ELT)) (-3531 (($ (-584 (-2 (|:| -2402 (-695)) (|:| -3774 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3947 (((-773) $) 131 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2670 (($ $ (-695)) 37 T ELT) (($ $) 35 T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3840 (($ |#2| $) 41 T ELT))) +(((-342 |#1| |#2|) (-13 (-1014) (-189) (-554 (-350 |#2|)) (-10 -8 (-15 -3840 ($ |#2| $)) (-15 -1764 ($ (-350 |#2|))) (-15 -1763 (|#2| $)) (-15 -1762 ((-584 (-2 (|:| -2402 (-695)) (|:| -3774 |#2|) (|:| |num| |#2|))) $)) (-15 -3531 ($ (-584 (-2 (|:| -2402 (-695)) (|:| -3774 |#2|) (|:| |num| |#2|))))))) (-13 (-312) (-120)) (-1156 |#1|)) (T -342)) +((-3840 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1156 *3)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))) (-1763 (*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120))))) (-1762 (*1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3774 *4) (|:| |num| *4)))) (-5 *1 (-342 *3 *4)) (-4 *4 (-1156 *3)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3774 *4) (|:| |num| *4)))) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4))))) +((-2569 (((-85) $ $) 10 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 16 (|has| |#1| (-797 (-330))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 15 (|has| |#1| (-797 (-485))) ELT)) (-3243 (((-1074) $) 14 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-3244 (((-1034) $) 13 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-3947 (((-773) $) 12 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-1266 (((-85) $ $) 11 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-3057 (((-85) $ $) 9 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT))) +(((-343 |#1|) (-113) (-1130)) (T -343)) +NIL +(-13 (-1130) (-10 -7 (IF (|has| |t#1| (-797 (-485))) (-6 (-797 (-485))) |%noBranch|) (IF (|has| |t#1| (-797 (-330))) (-6 (-797 (-330))) |%noBranch|))) +(((-72) OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ((-553 (-773)) OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ((-13) . T) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-1014) OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ((-1130) . T)) +((-1765 (($ $) 10 T ELT) (($ $ (-695)) 12 T ELT))) +(((-344 |#1|) (-10 -7 (-15 -1765 (|#1| |#1| (-695))) (-15 -1765 (|#1| |#1|))) (-345)) (T -344)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1765 (($ $) 97 T ELT) (($ $ (-695)) 96 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-3773 (((-744 (-831)) $) 99 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-1766 (((-3 (-695) "failed") $ $) 98 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-2703 (((-633 $) $) 100 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT))) (((-345) (-113)) (T -345)) -((-3772 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-743 (-830))))) (-1765 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-694)))) (-1764 (*1 *1 *1) (-4 *1 (-345))) (-1764 (*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-694))))) -(-13 (-312) (-118) (-10 -8 (-15 -3772 ((-743 (-830)) $)) (-15 -1765 ((-3 (-694) "failed") $ $)) (-15 -1764 ($ $)) (-15 -1764 ($ $ (-694))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-350 (-484))) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T)) -((-3254 (($ (-484) (-484)) 11 T ELT) (($ (-484) (-484) (-830)) NIL T ELT)) (-2615 (((-830)) 19 T ELT) (((-830) (-830)) NIL T ELT))) -(((-346 |#1|) (-10 -7 (-15 -2615 ((-830) (-830))) (-15 -2615 ((-830))) (-15 -3254 (|#1| (-484) (-484) (-830))) (-15 -3254 (|#1| (-484) (-484)))) (-347)) (T -346)) -((-2615 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-346 *3)) (-4 *3 (-347))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3129 (((-484) $) 108 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3771 (($ $) 106 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-3037 (($ $) 116 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3623 (((-484) $) 133 T ELT)) (-3724 (($) 23 T CONST)) (-3127 (($ $) 105 T ELT)) (-3157 (((-3 (-484) #1="failed") $) 121 T ELT) (((-3 (-350 (-484)) #1#) $) 118 T ELT)) (-3156 (((-484) $) 122 T ELT) (((-350 (-484)) $) 119 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-1768 (((-830)) 149 T ELT) (((-830) (-830)) 146 (|has| $ (-6 -3986)) ELT)) (-3186 (((-85) $) 131 T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 112 T ELT)) (-3772 (((-484) $) 155 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 115 T ELT)) (-3132 (($ $) 111 T ELT)) (-3187 (((-85) $) 132 T ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 68 T ELT)) (-2531 (($ $ $) 125 T ELT) (($) 143 (-12 (-2560 (|has| $ (-6 -3986))) (-2560 (|has| $ (-6 -3978)))) ELT)) (-2857 (($ $ $) 126 T ELT) (($) 142 (-12 (-2560 (|has| $ (-6 -3986))) (-2560 (|has| $ (-6 -3978)))) ELT)) (-1770 (((-484) $) 152 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-1767 (((-830) (-484)) 145 (|has| $ (-6 -3986)) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3128 (($ $) 107 T ELT)) (-3130 (($ $) 109 T ELT)) (-3254 (($ (-484) (-484)) 157 T ELT) (($ (-484) (-484) (-830)) 156 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-2401 (((-484) $) 153 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-2615 (((-830)) 150 T ELT) (((-830) (-830)) 147 (|has| $ (-6 -3986)) ELT)) (-1766 (((-830) (-484)) 144 (|has| $ (-6 -3986)) ELT)) (-3972 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-800 (-330)) $) 113 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT) (($ (-484)) 120 T ELT) (($ (-350 (-484))) 117 T ELT)) (-3126 (((-694)) 40 T CONST)) (-3131 (($ $) 110 T ELT)) (-1769 (((-830)) 151 T ELT) (((-830) (-830)) 148 (|has| $ (-6 -3986)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2694 (((-830)) 154 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3383 (($ $) 134 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 127 T ELT)) (-2567 (((-85) $ $) 129 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 128 T ELT)) (-2685 (((-85) $ $) 130 T ELT)) (-3949 (($ $ $) 83 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-350 (-484))) 114 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT))) +((-3773 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-744 (-831))))) (-1766 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-695)))) (-1765 (*1 *1 *1) (-4 *1 (-345))) (-1765 (*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-695))))) +(-13 (-312) (-118) (-10 -8 (-15 -3773 ((-744 (-831)) $)) (-15 -1766 ((-3 (-695) "failed") $ $)) (-15 -1765 ($ $)) (-15 -1765 ($ $ (-695))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) +((-3255 (($ (-485) (-485)) 11 T ELT) (($ (-485) (-485) (-831)) NIL T ELT)) (-2616 (((-831)) 19 T ELT) (((-831) (-831)) NIL T ELT))) +(((-346 |#1|) (-10 -7 (-15 -2616 ((-831) (-831))) (-15 -2616 ((-831))) (-15 -3255 (|#1| (-485) (-485) (-831))) (-15 -3255 (|#1| (-485) (-485)))) (-347)) (T -346)) +((-2616 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3130 (((-485) $) 108 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3772 (($ $) 106 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-3038 (($ $) 116 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3624 (((-485) $) 133 T ELT)) (-3725 (($) 23 T CONST)) (-3128 (($ $) 105 T ELT)) (-3158 (((-3 (-485) #1="failed") $) 121 T ELT) (((-3 (-350 (-485)) #1#) $) 118 T ELT)) (-3157 (((-485) $) 122 T ELT) (((-350 (-485)) $) 119 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-1769 (((-831)) 149 T ELT) (((-831) (-831)) 146 (|has| $ (-6 -3987)) ELT)) (-3187 (((-85) $) 131 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 112 T ELT)) (-3773 (((-485) $) 155 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 115 T ELT)) (-3133 (($ $) 111 T ELT)) (-3188 (((-85) $) 132 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 68 T ELT)) (-2532 (($ $ $) 125 T ELT) (($) 143 (-12 (-2561 (|has| $ (-6 -3987))) (-2561 (|has| $ (-6 -3979)))) ELT)) (-2858 (($ $ $) 126 T ELT) (($) 142 (-12 (-2561 (|has| $ (-6 -3987))) (-2561 (|has| $ (-6 -3979)))) ELT)) (-1771 (((-485) $) 152 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-1768 (((-831) (-485)) 145 (|has| $ (-6 -3987)) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3129 (($ $) 107 T ELT)) (-3131 (($ $) 109 T ELT)) (-3255 (($ (-485) (-485)) 157 T ELT) (($ (-485) (-485) (-831)) 156 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-2402 (((-485) $) 153 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-2616 (((-831)) 150 T ELT) (((-831) (-831)) 147 (|has| $ (-6 -3987)) ELT)) (-1767 (((-831) (-485)) 144 (|has| $ (-6 -3987)) ELT)) (-3973 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-801 (-330)) $) 113 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ (-485)) 120 T ELT) (($ (-350 (-485))) 117 T ELT)) (-3127 (((-695)) 40 T CONST)) (-3132 (($ $) 110 T ELT)) (-1770 (((-831)) 151 T ELT) (((-831) (-831)) 148 (|has| $ (-6 -3987)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2695 (((-831)) 154 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3384 (($ $) 134 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 127 T ELT)) (-2568 (((-85) $ $) 129 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 128 T ELT)) (-2686 (((-85) $ $) 130 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 114 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT))) (((-347) (-113)) (T -347)) -((-3254 (*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-347)))) (-3254 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-830)) (-4 *1 (-347)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-484)))) (-2694 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-484)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-484)))) (-1769 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830)))) (-2615 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830)))) (-1768 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830)))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3986)) (-4 *1 (-347)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3986)) (-4 *1 (-347)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3986)) (-4 *1 (-347)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-484)) (|has| *1 (-6 -3986)) (-4 *1 (-347)) (-5 *2 (-830)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-484)) (|has| *1 (-6 -3986)) (-4 *1 (-347)) (-5 *2 (-830)))) (-2531 (*1 *1) (-12 (-4 *1 (-347)) (-2560 (|has| *1 (-6 -3986))) (-2560 (|has| *1 (-6 -3978))))) (-2857 (*1 *1) (-12 (-4 *1 (-347)) (-2560 (|has| *1 (-6 -3986))) (-2560 (|has| *1 (-6 -3978)))))) -(-13 (-973) (-10 -8 (-6 -3770) (-15 -3254 ($ (-484) (-484))) (-15 -3254 ($ (-484) (-484) (-830))) (-15 -3772 ((-484) $)) (-15 -2694 ((-830))) (-15 -2401 ((-484) $)) (-15 -1770 ((-484) $)) (-15 -1769 ((-830))) (-15 -2615 ((-830))) (-15 -1768 ((-830))) (IF (|has| $ (-6 -3986)) (PROGN (-15 -1769 ((-830) (-830))) (-15 -2615 ((-830) (-830))) (-15 -1768 ((-830) (-830))) (-15 -1767 ((-830) (-484))) (-15 -1766 ((-830) (-484)))) |%noBranch|) (IF (|has| $ (-6 -3978)) |%noBranch| (IF (|has| $ (-6 -3986)) |%noBranch| (PROGN (-15 -2531 ($)) (-15 -2857 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-330)) . T) ((-553 (-800 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-330)) . T) ((-832) . T) ((-915) . T) ((-933) . T) ((-973) . T) ((-950 (-350 (-484))) . T) ((-950 (-484)) . T) ((-963 (-350 (-484))) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 59 T ELT)) (-1771 (($ $) 77 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 189 T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) 48 T ELT)) (-1772 ((|#1| $) 16 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#1| (-1134)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-1134)) ELT)) (-1774 (($ |#1| (-484)) 42 T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 73 T ELT)) (-3467 (((-3 $ #1#) $) 163 T ELT)) (-3024 (((-3 (-350 (-484)) #1#) $) 84 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 80 (|has| |#1| (-483)) ELT)) (-3022 (((-350 (-484)) $) 82 (|has| |#1| (-483)) ELT)) (-1775 (($ |#1| (-484)) 44 T ELT)) (-3723 (((-85) $) 209 (|has| |#1| (-1134)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 61 T ELT)) (-1834 (((-694) $) 51 T ELT)) (-1776 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-484)) 174 T ELT)) (-2299 ((|#1| $ (-484)) 173 T ELT)) (-1777 (((-484) $ (-484)) 172 T ELT)) (-1780 (($ |#1| (-484)) 41 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1831 (($ |#1| (-583 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484))))) 78 T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1778 (($ |#1| (-484)) 43 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) 190 (|has| |#1| (-392)) ELT)) (-1773 (($ |#1| (-484) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1779 (((-583 (-2 (|:| -3732 |#1|) (|:| -2401 (-484)))) $) 72 T ELT)) (-1951 (((-583 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))) $) 12 T ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-1134)) ELT)) (-3466 (((-3 $ #1#) $ $) 175 T ELT)) (-2401 (((-484) $) 166 T ELT)) (-3963 ((|#1| $) 74 T ELT)) (-3768 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) 105 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) $) NIL (|has| |#1| (-455 (-1090) $)) ELT) (($ $ (-583 (-1090)) (-583 $)) 106 (|has| |#1| (-455 (-1090) $)) ELT) (($ $ (-583 (-249 $))) 102 (|has| |#1| (-260 $)) ELT) (($ $ (-249 $)) NIL (|has| |#1| (-260 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-260 $)) ELT) (($ $ (-583 $) (-583 $)) NIL (|has| |#1| (-260 $)) ELT)) (-3800 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3758 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3972 (((-473) $) 39 (|has| |#1| (-553 (-473))) ELT) (((-330) $) 112 (|has| |#1| (-933)) ELT) (((-179) $) 118 (|has| |#1| (-933)) ELT)) (-3946 (((-772) $) 145 T ELT) (($ (-484)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT)) (-3126 (((-694)) 66 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 53 T CONST)) (-2666 (($) 52 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3056 (((-85) $ $) 158 T ELT)) (-3837 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 179 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 124 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) -(((-348 |#1|) (-13 (-495) (-184 |#1|) (-38 |#1|) (-288 |#1|) (-355 |#1|) (-10 -8 (-15 -3963 (|#1| $)) (-15 -2401 ((-484) $)) (-15 -1831 ($ |#1| (-583 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))))) (-15 -1951 ((-583 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))) $)) (-15 -1780 ($ |#1| (-484))) (-15 -1779 ((-583 (-2 (|:| -3732 |#1|) (|:| -2401 (-484)))) $)) (-15 -1778 ($ |#1| (-484))) (-15 -1777 ((-484) $ (-484))) (-15 -2299 (|#1| $ (-484))) (-15 -1776 ((-3 #1# #2# #3# #4#) $ (-484))) (-15 -1834 ((-694) $)) (-15 -1775 ($ |#1| (-484))) (-15 -1774 ($ |#1| (-484))) (-15 -1773 ($ |#1| (-484) (-3 #1# #2# #3# #4#))) (-15 -1772 (|#1| $)) (-15 -1771 ($ $)) (-15 -3958 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-392)) (-6 (-392)) |%noBranch|) (IF (|has| |#1| (-933)) (-6 (-933)) |%noBranch|) (IF (|has| |#1| (-1134)) (-6 (-1134)) |%noBranch|) (IF (|has| |#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-350 (-484)) $)) (-15 -3024 ((-3 (-350 (-484)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-260 $)) (-6 (-260 $)) |%noBranch|) (IF (|has| |#1| (-455 (-1090) $)) (-6 (-455 (-1090) $)) |%noBranch|))) (-495)) (T -348)) -((-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-495)) (-5 *1 (-348 *3)))) (-3963 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-348 *3)) (-4 *3 (-495)))) (-1831 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-484))))) (-4 *2 (-495)) (-5 *1 (-348 *2)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-484))))) (-5 *1 (-348 *3)) (-4 *3 (-495)))) (-1780 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3732 *3) (|:| -2401 (-484))))) (-5 *1 (-348 *3)) (-4 *3 (-495)))) (-1778 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-1777 (*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-348 *3)) (-4 *3 (-495)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-1776 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *4)) (-4 *4 (-495)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-348 *3)) (-4 *3 (-495)))) (-1775 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-1774 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-1773 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-484)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-1772 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-1771 (*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-348 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) (-3024 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-348 *3)) (-4 *3 (-483)) (-4 *3 (-495))))) -((-3958 (((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)) 20 T ELT))) -(((-349 |#1| |#2|) (-10 -7 (-15 -3958 ((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)))) (-495) (-495)) (T -349)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 13 T ELT)) (-3129 ((|#1| $) 21 (|has| |#1| (-258)) ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-484) $) NIL (|has| |#1| (-740)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1090) #1#) $) NIL (|has| |#1| (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) 54 (|has| |#1| (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT)) (-3156 ((|#1| $) 15 T ELT) (((-1090) $) NIL (|has| |#1| (-950 (-1090))) ELT) (((-350 (-484)) $) 51 (|has| |#1| (-950 (-484))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) 32 T ELT)) (-2994 (($) NIL (|has| |#1| (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| |#1| (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| |#1| (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 38 T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 ((|#1| $) 55 T ELT)) (-3445 (((-632 $) $) NIL (|has| |#1| (-1066)) ELT)) (-3187 (((-85) $) 22 (|has| |#1| (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| |#1| (-1066)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 82 T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3130 ((|#1| $) 26 (|has| |#1| (-483)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) 133 (|has| |#1| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 128 (|has| |#1| (-821)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3768 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3800 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 ((|#1| $) 57 T ELT)) (-3972 (((-800 (-484)) $) NIL (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| |#1| (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT) (((-330) $) NIL (|has| |#1| (-933)) ELT) (((-179) $) NIL (|has| |#1| (-933)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1090)) NIL (|has| |#1| (-950 (-1090))) ELT)) (-2702 (((-632 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 93 T CONST)) (-3131 ((|#1| $) 24 (|has| |#1| (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| |#1| (-740)) ELT)) (-2660 (($) 28 T CONST)) (-2666 (($) 8 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 48 T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3949 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3837 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3839 (($ $ $) 35 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 122 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) -(((-350 |#1|) (-13 (-904 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3982)) (IF (|has| |#1| (-392)) (IF (|has| |#1| (-6 -3993)) (-6 -3982) |%noBranch|) |%noBranch|) |%noBranch|))) (-495)) (T -350)) -NIL -((-3958 (((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)) 13 T ELT))) -(((-351 |#1| |#2|) (-10 -7 (-15 -3958 ((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)))) (-495) (-495)) (T -351)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-5 *2 (-350 *6)) (-5 *1 (-351 *5 *6))))) -((-1782 (((-630 |#2|) (-1179 $)) NIL T ELT) (((-630 |#2|)) 18 T ELT)) (-1792 (($ (-1179 |#2|) (-1179 $)) NIL T ELT) (($ (-1179 |#2|)) 24 T ELT)) (-1781 (((-630 |#2|) $ (-1179 $)) NIL T ELT) (((-630 |#2|) $) 40 T ELT)) (-2014 ((|#3| $) 69 T ELT)) (-3757 ((|#2| (-1179 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3224 (((-1179 |#2|) $ (-1179 $)) NIL T ELT) (((-630 |#2|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#2|) $) 22 T ELT) (((-630 |#2|) (-1179 $)) 38 T ELT)) (-3972 (((-1179 |#2|) $) 11 T ELT) (($ (-1179 |#2|)) 13 T ELT)) (-2449 ((|#3| $) 55 T ELT))) -(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -1781 ((-630 |#2|) |#1|)) (-15 -3757 (|#2|)) (-15 -1782 ((-630 |#2|))) (-15 -3972 (|#1| (-1179 |#2|))) (-15 -3972 ((-1179 |#2|) |#1|)) (-15 -1792 (|#1| (-1179 |#2|))) (-15 -3224 ((-630 |#2|) (-1179 |#1|))) (-15 -3224 ((-1179 |#2|) |#1|)) (-15 -2014 (|#3| |#1|)) (-15 -2449 (|#3| |#1|)) (-15 -1782 ((-630 |#2|) (-1179 |#1|))) (-15 -3757 (|#2| (-1179 |#1|))) (-15 -1792 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3224 ((-630 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3224 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1781 ((-630 |#2|) |#1| (-1179 |#1|)))) (-353 |#2| |#3|) (-146) (-1155 |#2|)) (T -352)) -((-1782 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-630 *4)) (-5 *1 (-352 *3 *4 *5)) (-4 *3 (-353 *4 *5)))) (-3757 (*1 *2) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4)) (-4 *3 (-353 *2 *4))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1782 (((-630 |#1|) (-1179 $)) 61 T ELT) (((-630 |#1|)) 77 T ELT)) (-3330 ((|#1| $) 67 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1792 (($ (-1179 |#1|) (-1179 $)) 63 T ELT) (($ (-1179 |#1|)) 80 T ELT)) (-1781 (((-630 |#1|) $ (-1179 $)) 68 T ELT) (((-630 |#1|) $) 75 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3108 (((-830)) 69 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3132 ((|#1| $) 66 T ELT)) (-2014 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3757 ((|#1| (-1179 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-3224 (((-1179 |#1|) $ (-1179 $)) 65 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) 64 T ELT) (((-1179 |#1|) $) 82 T ELT) (((-630 |#1|) (-1179 $)) 81 T ELT)) (-3972 (((-1179 |#1|) $) 79 T ELT) (($ (-1179 |#1|)) 78 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2702 (((-632 $) $) 58 (|has| |#1| (-118)) ELT)) (-2449 ((|#2| $) 60 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2012 (((-1179 $)) 83 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) -(((-353 |#1| |#2|) (-113) (-146) (-1155 |t#1|)) (T -353)) -((-2012 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *1)) (-4 *1 (-353 *3 *4)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *3)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-630 *4)))) (-1792 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1155 *3)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *3)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1155 *3)))) (-1782 (*1 *2) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-630 *3)))) (-3757 (*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-630 *3))))) -(-13 (-322 |t#1| |t#2|) (-10 -8 (-15 -2012 ((-1179 $))) (-15 -3224 ((-1179 |t#1|) $)) (-15 -3224 ((-630 |t#1|) (-1179 $))) (-15 -1792 ($ (-1179 |t#1|))) (-15 -3972 ((-1179 |t#1|) $)) (-15 -3972 ($ (-1179 |t#1|))) (-15 -1782 ((-630 |t#1|))) (-15 -3757 (|t#1|)) (-15 -1781 ((-630 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-322 |#1| |#2|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-3157 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) 27 T ELT) (((-3 (-484) #1#) $) 19 T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-350 (-484)) $) 24 T ELT) (((-484) $) 14 T ELT)) (-3946 (($ |#2|) NIL T ELT) (($ (-350 (-484))) 22 T ELT) (($ (-484)) 11 T ELT))) -(((-354 |#1| |#2|) (-10 -7 (-15 -3946 (|#1| (-484))) (-15 -3157 ((-3 (-484) #1="failed") |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3946 (|#1| (-350 (-484)))) (-15 -3157 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3156 ((-350 (-484)) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3946 (|#1| |#2|))) (-355 |#2|) (-1129)) (T -354)) -NIL -((-3157 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-350 (-484)) #1#) $) 16 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) 13 (|has| |#1| (-950 (-484))) ELT)) (-3156 ((|#1| $) 8 T ELT) (((-350 (-484)) $) 17 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) 14 (|has| |#1| (-950 (-484))) ELT)) (-3946 (($ |#1|) 6 T ELT) (($ (-350 (-484))) 15 (|has| |#1| (-950 (-350 (-484)))) ELT) (($ (-484)) 12 (|has| |#1| (-950 (-484))) ELT))) -(((-355 |#1|) (-113) (-1129)) (T -355)) -NIL -(-13 (-950 |t#1|) (-10 -7 (IF (|has| |t#1| (-950 (-484))) (-6 (-950 (-484))) |%noBranch|) (IF (|has| |t#1| (-950 (-350 (-484)))) (-6 (-950 (-350 (-484)))) |%noBranch|))) -(((-555 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-555 (-484)) |has| |#1| (-950 (-484))) ((-555 |#1|) . T) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ "failed") $) NIL T ELT)) (-1783 ((|#4| (-694) (-1179 |#4|)) 55 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2998 (((-1179 |#4|) $) 15 T ELT)) (-3132 ((|#2| $) 53 T ELT)) (-1784 (($ $) 156 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 103 T ELT)) (-1968 (($ (-1179 |#4|)) 102 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2997 ((|#1| $) 16 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3946 (((-772) $) 147 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 |#4|) $) 140 T ELT)) (-2666 (($) 11 T CONST)) (-3056 (((-85) $ $) 39 T ELT)) (-3949 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 133 T ELT)) (* (($ $ $) 130 T ELT))) -(((-356 |#1| |#2| |#3| |#4|) (-13 (-413) (-10 -8 (-15 -1968 ($ (-1179 |#4|))) (-15 -2012 ((-1179 |#4|) $)) (-15 -3132 (|#2| $)) (-15 -2998 ((-1179 |#4|) $)) (-15 -2997 (|#1| $)) (-15 -1784 ($ $)) (-15 -1783 (|#4| (-694) (-1179 |#4|))))) (-258) (-904 |#1|) (-1155 |#2|) (-13 (-353 |#2| |#3|) (-950 |#2|))) (T -356)) -((-1968 (*1 *1 *2) (-12 (-5 *2 (-1179 *6)) (-4 *6 (-13 (-353 *4 *5) (-950 *4))) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-4 *3 (-258)) (-5 *1 (-356 *3 *4 *5 *6)))) (-2012 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-950 *4))))) (-3132 (*1 *2 *1) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-904 *3)) (-5 *1 (-356 *3 *2 *4 *5)) (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-950 *2))))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-950 *4))))) (-2997 (*1 *2 *1) (-12 (-4 *3 (-904 *2)) (-4 *4 (-1155 *3)) (-4 *2 (-258)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-950 *3))))) (-1784 (*1 *1 *1) (-12 (-4 *2 (-258)) (-4 *3 (-904 *2)) (-4 *4 (-1155 *3)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-950 *3))))) (-1783 (*1 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-1179 *2)) (-4 *5 (-258)) (-4 *6 (-904 *5)) (-4 *2 (-13 (-353 *6 *7) (-950 *6))) (-5 *1 (-356 *5 *6 *7 *2)) (-4 *7 (-1155 *6))))) -((-3958 (((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)) 35 T ELT))) -(((-357 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3958 ((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)))) (-258) (-904 |#1|) (-1155 |#2|) (-13 (-353 |#2| |#3|) (-950 |#2|)) (-258) (-904 |#5|) (-1155 |#6|) (-13 (-353 |#6| |#7|) (-950 |#6|))) (T -357)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-356 *5 *6 *7 *8)) (-4 *5 (-258)) (-4 *6 (-904 *5)) (-4 *7 (-1155 *6)) (-4 *8 (-13 (-353 *6 *7) (-950 *6))) (-4 *9 (-258)) (-4 *10 (-904 *9)) (-4 *11 (-1155 *10)) (-5 *2 (-356 *9 *10 *11 *12)) (-5 *1 (-357 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-353 *10 *11) (-950 *10)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3132 ((|#2| $) 69 T ELT)) (-1785 (($ (-1179 |#4|)) 27 T ELT) (($ (-356 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-950 |#2|)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 37 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 |#4|) $) 28 T ELT)) (-2666 (($) 26 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ $ $) 80 T ELT))) -(((-358 |#1| |#2| |#3| |#4| |#5|) (-13 (-663) (-10 -8 (-15 -2012 ((-1179 |#4|) $)) (-15 -3132 (|#2| $)) (-15 -1785 ($ (-1179 |#4|))) (IF (|has| |#4| (-950 |#2|)) (-15 -1785 ($ (-356 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-258) (-904 |#1|) (-1155 |#2|) (-353 |#2| |#3|) (-1179 |#4|)) (T -358)) -((-2012 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-4 *6 (-353 *4 *5)) (-14 *7 *2))) (-3132 (*1 *2 *1) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-904 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6)) (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1179 *5)))) (-1785 (*1 *1 *2) (-12 (-5 *2 (-1179 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1785 (*1 *1 *2) (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-4 *6 (-353 *4 *5)) (-14 *7 (-1179 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7))))) -((-3958 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) -(((-359 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#3| (-1 |#4| |#2|) |#1|))) (-361 |#2|) (-146) (-361 |#4|) (-146)) (T -359)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-361 *6)) (-5 *1 (-359 *4 *5 *2 *6)) (-4 *4 (-361 *5))))) -((-1772 (((-3 $ #1="failed")) 99 T ELT)) (-3223 (((-1179 (-630 |#2|)) (-1179 $)) NIL T ELT) (((-1179 (-630 |#2|))) 104 T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 97 T ELT)) (-1703 (((-3 $ #1#)) 96 T ELT)) (-1788 (((-630 |#2|) (-1179 $)) NIL T ELT) (((-630 |#2|)) 115 T ELT)) (-1786 (((-630 |#2|) $ (-1179 $)) NIL T ELT) (((-630 |#2|) $) 123 T ELT)) (-1900 (((-1085 (-857 |#2|))) 64 T ELT)) (-1790 ((|#2| (-1179 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1792 (($ (-1179 |#2|) (-1179 $)) NIL T ELT) (($ (-1179 |#2|)) 125 T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 95 T ELT)) (-1704 (((-3 $ #1#)) 87 T ELT)) (-1789 (((-630 |#2|) (-1179 $)) NIL T ELT) (((-630 |#2|)) 113 T ELT)) (-1787 (((-630 |#2|) $ (-1179 $)) NIL T ELT) (((-630 |#2|) $) 121 T ELT)) (-1904 (((-1085 (-857 |#2|))) 63 T ELT)) (-1791 ((|#2| (-1179 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3224 (((-1179 |#2|) $ (-1179 $)) NIL T ELT) (((-630 |#2|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#2|) $) 124 T ELT) (((-630 |#2|) (-1179 $)) 133 T ELT)) (-3972 (((-1179 |#2|) $) 109 T ELT) (($ (-1179 |#2|)) 111 T ELT)) (-1892 (((-583 (-857 |#2|)) (-1179 $)) NIL T ELT) (((-583 (-857 |#2|))) 107 T ELT)) (-2545 (($ (-630 |#2|) $) 103 T ELT))) -(((-360 |#1| |#2|) (-10 -7 (-15 -2545 (|#1| (-630 |#2|) |#1|)) (-15 -1900 ((-1085 (-857 |#2|)))) (-15 -1904 ((-1085 (-857 |#2|)))) (-15 -1786 ((-630 |#2|) |#1|)) (-15 -1787 ((-630 |#2|) |#1|)) (-15 -1788 ((-630 |#2|))) (-15 -1789 ((-630 |#2|))) (-15 -1790 (|#2|)) (-15 -1791 (|#2|)) (-15 -3972 (|#1| (-1179 |#2|))) (-15 -3972 ((-1179 |#2|) |#1|)) (-15 -1792 (|#1| (-1179 |#2|))) (-15 -1892 ((-583 (-857 |#2|)))) (-15 -3223 ((-1179 (-630 |#2|)))) (-15 -3224 ((-630 |#2|) (-1179 |#1|))) (-15 -3224 ((-1179 |#2|) |#1|)) (-15 -1772 ((-3 |#1| #1="failed"))) (-15 -1703 ((-3 |#1| #1#))) (-15 -1704 ((-3 |#1| #1#))) (-15 -1906 ((-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#))) (-15 -1907 ((-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#))) (-15 -1788 ((-630 |#2|) (-1179 |#1|))) (-15 -1789 ((-630 |#2|) (-1179 |#1|))) (-15 -1790 (|#2| (-1179 |#1|))) (-15 -1791 (|#2| (-1179 |#1|))) (-15 -1792 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3224 ((-630 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3224 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1786 ((-630 |#2|) |#1| (-1179 |#1|))) (-15 -1787 ((-630 |#2|) |#1| (-1179 |#1|))) (-15 -3223 ((-1179 (-630 |#2|)) (-1179 |#1|))) (-15 -1892 ((-583 (-857 |#2|)) (-1179 |#1|)))) (-361 |#2|) (-146)) (T -360)) -((-3223 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1179 (-630 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1892 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1791 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1790 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1789 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1788 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1904 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1085 (-857 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1900 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1085 (-857 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1772 (((-3 $ #1="failed")) 48 (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3223 (((-1179 (-630 |#1|)) (-1179 $)) 89 T ELT) (((-1179 (-630 |#1|))) 115 T ELT)) (-1729 (((-1179 $)) 92 T ELT)) (-3724 (($) 23 T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 51 (|has| |#1| (-495)) ELT)) (-1703 (((-3 $ #1#)) 49 (|has| |#1| (-495)) ELT)) (-1788 (((-630 |#1|) (-1179 $)) 76 T ELT) (((-630 |#1|)) 107 T ELT)) (-1727 ((|#1| $) 85 T ELT)) (-1786 (((-630 |#1|) $ (-1179 $)) 87 T ELT) (((-630 |#1|) $) 105 T ELT)) (-2404 (((-3 $ #1#) $) 56 (|has| |#1| (-495)) ELT)) (-1900 (((-1085 (-857 |#1|))) 103 (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-830)) 37 T ELT)) (-1725 ((|#1| $) 83 T ELT)) (-1705 (((-1085 |#1|) $) 53 (|has| |#1| (-495)) ELT)) (-1790 ((|#1| (-1179 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1723 (((-1085 |#1|) $) 74 T ELT)) (-1717 (((-85)) 68 T ELT)) (-1792 (($ (-1179 |#1|) (-1179 $)) 80 T ELT) (($ (-1179 |#1|)) 113 T ELT)) (-3467 (((-3 $ #1#) $) 58 (|has| |#1| (-495)) ELT)) (-3108 (((-830)) 91 T ELT)) (-1714 (((-85)) 65 T ELT)) (-2433 (($ $ (-830)) 44 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-1710 (((-85)) 61 T ELT)) (-1708 (((-85)) 59 T ELT)) (-1712 (((-85)) 63 T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 52 (|has| |#1| (-495)) ELT)) (-1704 (((-3 $ #1#)) 50 (|has| |#1| (-495)) ELT)) (-1789 (((-630 |#1|) (-1179 $)) 77 T ELT) (((-630 |#1|)) 108 T ELT)) (-1728 ((|#1| $) 86 T ELT)) (-1787 (((-630 |#1|) $ (-1179 $)) 88 T ELT) (((-630 |#1|) $) 106 T ELT)) (-2405 (((-3 $ #1#) $) 57 (|has| |#1| (-495)) ELT)) (-1904 (((-1085 (-857 |#1|))) 104 (|has| |#1| (-312)) ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-1726 ((|#1| $) 84 T ELT)) (-1706 (((-1085 |#1|) $) 54 (|has| |#1| (-495)) ELT)) (-1791 ((|#1| (-1179 $)) 79 T ELT) ((|#1|) 110 T ELT)) (-1724 (((-1085 |#1|) $) 75 T ELT)) (-1718 (((-85)) 69 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-1709 (((-85)) 60 T ELT)) (-1711 (((-85)) 62 T ELT)) (-1713 (((-85)) 64 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1716 (((-85)) 67 T ELT)) (-3800 ((|#1| $ (-484)) 119 T ELT)) (-3224 (((-1179 |#1|) $ (-1179 $)) 82 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) 81 T ELT) (((-1179 |#1|) $) 117 T ELT) (((-630 |#1|) (-1179 $)) 116 T ELT)) (-3972 (((-1179 |#1|) $) 112 T ELT) (($ (-1179 |#1|)) 111 T ELT)) (-1892 (((-583 (-857 |#1|)) (-1179 $)) 90 T ELT) (((-583 (-857 |#1|))) 114 T ELT)) (-2435 (($ $ $) 34 T ELT)) (-1722 (((-85)) 73 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2012 (((-1179 $)) 118 T ELT)) (-1707 (((-583 (-1179 |#1|))) 55 (|has| |#1| (-495)) ELT)) (-2436 (($ $ $ $) 35 T ELT)) (-1720 (((-85)) 71 T ELT)) (-2545 (($ (-630 |#1|) $) 102 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-1721 (((-85)) 72 T ELT)) (-1719 (((-85)) 70 T ELT)) (-1715 (((-85)) 66 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +((-3255 (*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-347)))) (-3255 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-831)) (-4 *1 (-347)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) (-2695 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) (-1770 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-2616 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-1769 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3987)) (-4 *1 (-347)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3987)) (-4 *1 (-347)))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3987)) (-4 *1 (-347)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-485)) (|has| *1 (-6 -3987)) (-4 *1 (-347)) (-5 *2 (-831)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-485)) (|has| *1 (-6 -3987)) (-4 *1 (-347)) (-5 *2 (-831)))) (-2532 (*1 *1) (-12 (-4 *1 (-347)) (-2561 (|has| *1 (-6 -3987))) (-2561 (|has| *1 (-6 -3979))))) (-2858 (*1 *1) (-12 (-4 *1 (-347)) (-2561 (|has| *1 (-6 -3987))) (-2561 (|has| *1 (-6 -3979)))))) +(-13 (-974) (-10 -8 (-6 -3771) (-15 -3255 ($ (-485) (-485))) (-15 -3255 ($ (-485) (-485) (-831))) (-15 -3773 ((-485) $)) (-15 -2695 ((-831))) (-15 -2402 ((-485) $)) (-15 -1771 ((-485) $)) (-15 -1770 ((-831))) (-15 -2616 ((-831))) (-15 -1769 ((-831))) (IF (|has| $ (-6 -3987)) (PROGN (-15 -1770 ((-831) (-831))) (-15 -2616 ((-831) (-831))) (-15 -1769 ((-831) (-831))) (-15 -1768 ((-831) (-485))) (-15 -1767 ((-831) (-485)))) |%noBranch|) (IF (|has| $ (-6 -3979)) |%noBranch| (IF (|has| $ (-6 -3987)) |%noBranch| (PROGN (-15 -2532 ($)) (-15 -2858 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-330)) . T) ((-554 (-801 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-330)) . T) ((-833) . T) ((-916) . T) ((-934) . T) ((-974) . T) ((-951 (-350 (-485))) . T) ((-951 (-485)) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 59 T ELT)) (-1772 (($ $) 77 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 189 T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) 48 T ELT)) (-1773 ((|#1| $) 16 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-1135)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-1135)) ELT)) (-1775 (($ |#1| (-485)) 42 T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 73 T ELT)) (-3468 (((-3 $ #1#) $) 163 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) 84 (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) 80 (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) 82 (|has| |#1| (-484)) ELT)) (-1776 (($ |#1| (-485)) 44 T ELT)) (-3724 (((-85) $) 209 (|has| |#1| (-1135)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 61 T ELT)) (-1835 (((-695) $) 51 T ELT)) (-1777 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-485)) 174 T ELT)) (-2300 ((|#1| $ (-485)) 173 T ELT)) (-1778 (((-485) $ (-485)) 172 T ELT)) (-1781 (($ |#1| (-485)) 41 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1832 (($ |#1| (-584 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485))))) 78 T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1779 (($ |#1| (-485)) 43 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) 190 (|has| |#1| (-392)) ELT)) (-1774 (($ |#1| (-485) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1780 (((-584 (-2 (|:| -3733 |#1|) (|:| -2402 (-485)))) $) 72 T ELT)) (-1952 (((-584 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))) $) 12 T ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-1135)) ELT)) (-3467 (((-3 $ #1#) $ $) 175 T ELT)) (-2402 (((-485) $) 166 T ELT)) (-3964 ((|#1| $) 74 T ELT)) (-3769 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 105 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) $) NIL (|has| |#1| (-456 (-1091) $)) ELT) (($ $ (-584 (-1091)) (-584 $)) 106 (|has| |#1| (-456 (-1091) $)) ELT) (($ $ (-584 (-249 $))) 102 (|has| |#1| (-260 $)) ELT) (($ $ (-249 $)) NIL (|has| |#1| (-260 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-260 $)) ELT) (($ $ (-584 $) (-584 $)) NIL (|has| |#1| (-260 $)) ELT)) (-3801 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3759 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3973 (((-474) $) 39 (|has| |#1| (-554 (-474))) ELT) (((-330) $) 112 (|has| |#1| (-934)) ELT) (((-179) $) 118 (|has| |#1| (-934)) ELT)) (-3947 (((-773) $) 145 T ELT) (($ (-485)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT)) (-3127 (((-695)) 66 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 53 T CONST)) (-2667 (($) 52 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3057 (((-85) $ $) 158 T ELT)) (-3838 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 179 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 124 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) +(((-348 |#1|) (-13 (-496) (-184 |#1|) (-38 |#1|) (-288 |#1|) (-355 |#1|) (-10 -8 (-15 -3964 (|#1| $)) (-15 -2402 ((-485) $)) (-15 -1832 ($ |#1| (-584 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))))) (-15 -1952 ((-584 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))) $)) (-15 -1781 ($ |#1| (-485))) (-15 -1780 ((-584 (-2 (|:| -3733 |#1|) (|:| -2402 (-485)))) $)) (-15 -1779 ($ |#1| (-485))) (-15 -1778 ((-485) $ (-485))) (-15 -2300 (|#1| $ (-485))) (-15 -1777 ((-3 #1# #2# #3# #4#) $ (-485))) (-15 -1835 ((-695) $)) (-15 -1776 ($ |#1| (-485))) (-15 -1775 ($ |#1| (-485))) (-15 -1774 ($ |#1| (-485) (-3 #1# #2# #3# #4#))) (-15 -1773 (|#1| $)) (-15 -1772 ($ $)) (-15 -3959 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-392)) (-6 (-392)) |%noBranch|) (IF (|has| |#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |#1| (-1135)) (-6 (-1135)) |%noBranch|) (IF (|has| |#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-485)) $)) (-15 -3025 ((-3 (-350 (-485)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-260 $)) (-6 (-260 $)) |%noBranch|) (IF (|has| |#1| (-456 (-1091) $)) (-6 (-456 (-1091) $)) |%noBranch|))) (-496)) (T -348)) +((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-496)) (-5 *1 (-348 *3)))) (-3964 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-485))))) (-4 *2 (-496)) (-5 *1 (-348 *2)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-485))))) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1781 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3733 *3) (|:| -2402 (-485))))) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1779 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1778 (*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1777 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *4)) (-4 *4 (-496)))) (-1835 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1776 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1775 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1774 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-485)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1773 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1772 (*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) (-3025 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496))))) +((-3959 (((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)) 20 T ELT))) +(((-349 |#1| |#2|) (-10 -7 (-15 -3959 ((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)))) (-496) (-496)) (T -349)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 13 T ELT)) (-3130 ((|#1| $) 21 (|has| |#1| (-258)) ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| |#1| (-741)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1091) #1#) $) NIL (|has| |#1| (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) 54 (|has| |#1| (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT)) (-3157 ((|#1| $) 15 T ELT) (((-1091) $) NIL (|has| |#1| (-951 (-1091))) ELT) (((-350 (-485)) $) 51 (|has| |#1| (-951 (-485))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) 32 T ELT)) (-2995 (($) NIL (|has| |#1| (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| |#1| (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 38 T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 ((|#1| $) 55 T ELT)) (-3446 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3188 (((-85) $) 22 (|has| |#1| (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| |#1| (-1067)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 82 T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3131 ((|#1| $) 26 (|has| |#1| (-484)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) 133 (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 128 (|has| |#1| (-822)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3769 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3801 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 ((|#1| $) 57 T ELT)) (-3973 (((-801 (-485)) $) NIL (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#1| (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT) (((-330) $) NIL (|has| |#1| (-934)) ELT) (((-179) $) NIL (|has| |#1| (-934)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1091)) NIL (|has| |#1| (-951 (-1091))) ELT)) (-2703 (((-633 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) 93 T CONST)) (-3132 ((|#1| $) 24 (|has| |#1| (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| |#1| (-741)) ELT)) (-2661 (($) 28 T CONST)) (-2667 (($) 8 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 48 T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3950 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3838 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3840 (($ $ $) 35 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 122 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) +(((-350 |#1|) (-13 (-905 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3983)) (IF (|has| |#1| (-392)) (IF (|has| |#1| (-6 -3994)) (-6 -3983) |%noBranch|) |%noBranch|) |%noBranch|))) (-496)) (T -350)) +NIL +((-3959 (((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)) 13 T ELT))) +(((-351 |#1| |#2|) (-10 -7 (-15 -3959 ((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)))) (-496) (-496)) (T -351)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-5 *2 (-350 *6)) (-5 *1 (-351 *5 *6))))) +((-1783 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-631 |#2|)) 18 T ELT)) (-1793 (($ (-1180 |#2|) (-1180 $)) NIL T ELT) (($ (-1180 |#2|)) 24 T ELT)) (-1782 (((-631 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) $) 40 T ELT)) (-2015 ((|#3| $) 69 T ELT)) (-3758 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3225 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) 22 T ELT) (((-631 |#2|) (-1180 $)) 38 T ELT)) (-3973 (((-1180 |#2|) $) 11 T ELT) (($ (-1180 |#2|)) 13 T ELT)) (-2450 ((|#3| $) 55 T ELT))) +(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -1782 ((-631 |#2|) |#1|)) (-15 -3758 (|#2|)) (-15 -1783 ((-631 |#2|))) (-15 -3973 (|#1| (-1180 |#2|))) (-15 -3973 ((-1180 |#2|) |#1|)) (-15 -1793 (|#1| (-1180 |#2|))) (-15 -3225 ((-631 |#2|) (-1180 |#1|))) (-15 -3225 ((-1180 |#2|) |#1|)) (-15 -2015 (|#3| |#1|)) (-15 -2450 (|#3| |#1|)) (-15 -1783 ((-631 |#2|) (-1180 |#1|))) (-15 -3758 (|#2| (-1180 |#1|))) (-15 -1793 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3225 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3225 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1782 ((-631 |#2|) |#1| (-1180 |#1|)))) (-353 |#2| |#3|) (-146) (-1156 |#2|)) (T -352)) +((-1783 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)) (-5 *1 (-352 *3 *4 *5)) (-4 *3 (-353 *4 *5)))) (-3758 (*1 *2) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4)) (-4 *3 (-353 *2 *4))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1783 (((-631 |#1|) (-1180 $)) 61 T ELT) (((-631 |#1|)) 77 T ELT)) (-3331 ((|#1| $) 67 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1793 (($ (-1180 |#1|) (-1180 $)) 63 T ELT) (($ (-1180 |#1|)) 80 T ELT)) (-1782 (((-631 |#1|) $ (-1180 $)) 68 T ELT) (((-631 |#1|) $) 75 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3109 (((-831)) 69 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3133 ((|#1| $) 66 T ELT)) (-2015 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3758 ((|#1| (-1180 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-3225 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 |#1|) $) 82 T ELT) (((-631 |#1|) (-1180 $)) 81 T ELT)) (-3973 (((-1180 |#1|) $) 79 T ELT) (($ (-1180 |#1|)) 78 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2703 (((-633 $) $) 58 (|has| |#1| (-118)) ELT)) (-2450 ((|#2| $) 60 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 83 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-353 |#1| |#2|) (-113) (-146) (-1156 |t#1|)) (T -353)) +((-2013 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *1)) (-4 *1 (-353 *3 *4)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *3)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1156 *3)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *3)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1156 *3)))) (-1783 (*1 *2) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-631 *3)))) (-3758 (*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-631 *3))))) +(-13 (-322 |t#1| |t#2|) (-10 -8 (-15 -2013 ((-1180 $))) (-15 -3225 ((-1180 |t#1|) $)) (-15 -3225 ((-631 |t#1|) (-1180 $))) (-15 -1793 ($ (-1180 |t#1|))) (-15 -3973 ((-1180 |t#1|) $)) (-15 -3973 ($ (-1180 |t#1|))) (-15 -1783 ((-631 |t#1|))) (-15 -3758 (|t#1|)) (-15 -1782 ((-631 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-322 |#1| |#2|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-3158 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) 27 T ELT) (((-3 (-485) #1#) $) 19 T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-485)) $) 24 T ELT) (((-485) $) 14 T ELT)) (-3947 (($ |#2|) NIL T ELT) (($ (-350 (-485))) 22 T ELT) (($ (-485)) 11 T ELT))) +(((-354 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| (-485))) (-15 -3158 ((-3 (-485) #1="failed") |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3947 (|#1| (-350 (-485)))) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3947 (|#1| |#2|))) (-355 |#2|) (-1130)) (T -354)) +NIL +((-3158 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-350 (-485)) #1#) $) 16 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) 13 (|has| |#1| (-951 (-485))) ELT)) (-3157 ((|#1| $) 8 T ELT) (((-350 (-485)) $) 17 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 14 (|has| |#1| (-951 (-485))) ELT)) (-3947 (($ |#1|) 6 T ELT) (($ (-350 (-485))) 15 (|has| |#1| (-951 (-350 (-485)))) ELT) (($ (-485)) 12 (|has| |#1| (-951 (-485))) ELT))) +(((-355 |#1|) (-113) (-1130)) (T -355)) +NIL +(-13 (-951 |t#1|) (-10 -7 (IF (|has| |t#1| (-951 (-485))) (-6 (-951 (-485))) |%noBranch|) (IF (|has| |t#1| (-951 (-350 (-485)))) (-6 (-951 (-350 (-485)))) |%noBranch|))) +(((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) |has| |#1| (-951 (-485))) ((-556 |#1|) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-1784 ((|#4| (-695) (-1180 |#4|)) 55 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2999 (((-1180 |#4|) $) 15 T ELT)) (-3133 ((|#2| $) 53 T ELT)) (-1785 (($ $) 156 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 103 T ELT)) (-1969 (($ (-1180 |#4|)) 102 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2998 ((|#1| $) 16 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3947 (((-773) $) 147 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 |#4|) $) 140 T ELT)) (-2667 (($) 11 T CONST)) (-3057 (((-85) $ $) 39 T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 133 T ELT)) (* (($ $ $) 130 T ELT))) +(((-356 |#1| |#2| |#3| |#4|) (-13 (-413) (-10 -8 (-15 -1969 ($ (-1180 |#4|))) (-15 -2013 ((-1180 |#4|) $)) (-15 -3133 (|#2| $)) (-15 -2999 ((-1180 |#4|) $)) (-15 -2998 (|#1| $)) (-15 -1785 ($ $)) (-15 -1784 (|#4| (-695) (-1180 |#4|))))) (-258) (-905 |#1|) (-1156 |#2|) (-13 (-353 |#2| |#3|) (-951 |#2|))) (T -356)) +((-1969 (*1 *1 *2) (-12 (-5 *2 (-1180 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *3 (-258)) (-5 *1 (-356 *3 *4 *5 *6)))) (-2013 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))))) (-3133 (*1 *2 *1) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-356 *3 *2 *4 *5)) (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-951 *2))))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-905 *2)) (-4 *4 (-1156 *3)) (-4 *2 (-258)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3))))) (-1785 (*1 *1 *1) (-12 (-4 *2 (-258)) (-4 *3 (-905 *2)) (-4 *4 (-1156 *3)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3))))) (-1784 (*1 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-1180 *2)) (-4 *5 (-258)) (-4 *6 (-905 *5)) (-4 *2 (-13 (-353 *6 *7) (-951 *6))) (-5 *1 (-356 *5 *6 *7 *2)) (-4 *7 (-1156 *6))))) +((-3959 (((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)) 35 T ELT))) +(((-357 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3959 ((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)))) (-258) (-905 |#1|) (-1156 |#2|) (-13 (-353 |#2| |#3|) (-951 |#2|)) (-258) (-905 |#5|) (-1156 |#6|) (-13 (-353 |#6| |#7|) (-951 |#6|))) (T -357)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-356 *5 *6 *7 *8)) (-4 *5 (-258)) (-4 *6 (-905 *5)) (-4 *7 (-1156 *6)) (-4 *8 (-13 (-353 *6 *7) (-951 *6))) (-4 *9 (-258)) (-4 *10 (-905 *9)) (-4 *11 (-1156 *10)) (-5 *2 (-356 *9 *10 *11 *12)) (-5 *1 (-357 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-353 *10 *11) (-951 *10)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3133 ((|#2| $) 69 T ELT)) (-1786 (($ (-1180 |#4|)) 27 T ELT) (($ (-356 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-951 |#2|)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 37 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 |#4|) $) 28 T ELT)) (-2667 (($) 26 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ $ $) 80 T ELT))) +(((-358 |#1| |#2| |#3| |#4| |#5|) (-13 (-664) (-10 -8 (-15 -2013 ((-1180 |#4|) $)) (-15 -3133 (|#2| $)) (-15 -1786 ($ (-1180 |#4|))) (IF (|has| |#4| (-951 |#2|)) (-15 -1786 ($ (-356 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-258) (-905 |#1|) (-1156 |#2|) (-353 |#2| |#3|) (-1180 |#4|)) (T -358)) +((-2013 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-4 *6 (-353 *4 *5)) (-14 *7 *2))) (-3133 (*1 *2 *1) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6)) (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1180 *5)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-1180 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-951 *4)) (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *6 (-353 *4 *5)) (-14 *7 (-1180 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7))))) +((-3959 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) +(((-359 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#3| (-1 |#4| |#2|) |#1|))) (-361 |#2|) (-146) (-361 |#4|) (-146)) (T -359)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-361 *6)) (-5 *1 (-359 *4 *5 *2 *6)) (-4 *4 (-361 *5))))) +((-1773 (((-3 $ #1="failed")) 99 T ELT)) (-3224 (((-1180 (-631 |#2|)) (-1180 $)) NIL T ELT) (((-1180 (-631 |#2|))) 104 T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 97 T ELT)) (-1704 (((-3 $ #1#)) 96 T ELT)) (-1789 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-631 |#2|)) 115 T ELT)) (-1787 (((-631 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) $) 123 T ELT)) (-1901 (((-1086 (-858 |#2|))) 64 T ELT)) (-1791 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1793 (($ (-1180 |#2|) (-1180 $)) NIL T ELT) (($ (-1180 |#2|)) 125 T ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 95 T ELT)) (-1705 (((-3 $ #1#)) 87 T ELT)) (-1790 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-631 |#2|)) 113 T ELT)) (-1788 (((-631 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) $) 121 T ELT)) (-1905 (((-1086 (-858 |#2|))) 63 T ELT)) (-1792 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3225 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) 124 T ELT) (((-631 |#2|) (-1180 $)) 133 T ELT)) (-3973 (((-1180 |#2|) $) 109 T ELT) (($ (-1180 |#2|)) 111 T ELT)) (-1893 (((-584 (-858 |#2|)) (-1180 $)) NIL T ELT) (((-584 (-858 |#2|))) 107 T ELT)) (-2546 (($ (-631 |#2|) $) 103 T ELT))) +(((-360 |#1| |#2|) (-10 -7 (-15 -2546 (|#1| (-631 |#2|) |#1|)) (-15 -1901 ((-1086 (-858 |#2|)))) (-15 -1905 ((-1086 (-858 |#2|)))) (-15 -1787 ((-631 |#2|) |#1|)) (-15 -1788 ((-631 |#2|) |#1|)) (-15 -1789 ((-631 |#2|))) (-15 -1790 ((-631 |#2|))) (-15 -1791 (|#2|)) (-15 -1792 (|#2|)) (-15 -3973 (|#1| (-1180 |#2|))) (-15 -3973 ((-1180 |#2|) |#1|)) (-15 -1793 (|#1| (-1180 |#2|))) (-15 -1893 ((-584 (-858 |#2|)))) (-15 -3224 ((-1180 (-631 |#2|)))) (-15 -3225 ((-631 |#2|) (-1180 |#1|))) (-15 -3225 ((-1180 |#2|) |#1|)) (-15 -1773 ((-3 |#1| #1="failed"))) (-15 -1704 ((-3 |#1| #1#))) (-15 -1705 ((-3 |#1| #1#))) (-15 -1907 ((-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#))) (-15 -1908 ((-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#))) (-15 -1789 ((-631 |#2|) (-1180 |#1|))) (-15 -1790 ((-631 |#2|) (-1180 |#1|))) (-15 -1791 (|#2| (-1180 |#1|))) (-15 -1792 (|#2| (-1180 |#1|))) (-15 -1793 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3225 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3225 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1787 ((-631 |#2|) |#1| (-1180 |#1|))) (-15 -1788 ((-631 |#2|) |#1| (-1180 |#1|))) (-15 -3224 ((-1180 (-631 |#2|)) (-1180 |#1|))) (-15 -1893 ((-584 (-858 |#2|)) (-1180 |#1|)))) (-361 |#2|) (-146)) (T -360)) +((-3224 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1893 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1792 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1791 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1790 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1789 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1905 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1901 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1773 (((-3 $ #1="failed")) 48 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3224 (((-1180 (-631 |#1|)) (-1180 $)) 89 T ELT) (((-1180 (-631 |#1|))) 115 T ELT)) (-1730 (((-1180 $)) 92 T ELT)) (-3725 (($) 23 T CONST)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 51 (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ #1#)) 49 (|has| |#1| (-496)) ELT)) (-1789 (((-631 |#1|) (-1180 $)) 76 T ELT) (((-631 |#1|)) 107 T ELT)) (-1728 ((|#1| $) 85 T ELT)) (-1787 (((-631 |#1|) $ (-1180 $)) 87 T ELT) (((-631 |#1|) $) 105 T ELT)) (-2405 (((-3 $ #1#) $) 56 (|has| |#1| (-496)) ELT)) (-1901 (((-1086 (-858 |#1|))) 103 (|has| |#1| (-312)) ELT)) (-2408 (($ $ (-831)) 37 T ELT)) (-1726 ((|#1| $) 83 T ELT)) (-1706 (((-1086 |#1|) $) 53 (|has| |#1| (-496)) ELT)) (-1791 ((|#1| (-1180 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1724 (((-1086 |#1|) $) 74 T ELT)) (-1718 (((-85)) 68 T ELT)) (-1793 (($ (-1180 |#1|) (-1180 $)) 80 T ELT) (($ (-1180 |#1|)) 113 T ELT)) (-3468 (((-3 $ #1#) $) 58 (|has| |#1| (-496)) ELT)) (-3109 (((-831)) 91 T ELT)) (-1715 (((-85)) 65 T ELT)) (-2434 (($ $ (-831)) 44 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-1711 (((-85)) 61 T ELT)) (-1709 (((-85)) 59 T ELT)) (-1713 (((-85)) 63 T ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 52 (|has| |#1| (-496)) ELT)) (-1705 (((-3 $ #1#)) 50 (|has| |#1| (-496)) ELT)) (-1790 (((-631 |#1|) (-1180 $)) 77 T ELT) (((-631 |#1|)) 108 T ELT)) (-1729 ((|#1| $) 86 T ELT)) (-1788 (((-631 |#1|) $ (-1180 $)) 88 T ELT) (((-631 |#1|) $) 106 T ELT)) (-2406 (((-3 $ #1#) $) 57 (|has| |#1| (-496)) ELT)) (-1905 (((-1086 (-858 |#1|))) 104 (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-1727 ((|#1| $) 84 T ELT)) (-1707 (((-1086 |#1|) $) 54 (|has| |#1| (-496)) ELT)) (-1792 ((|#1| (-1180 $)) 79 T ELT) ((|#1|) 110 T ELT)) (-1725 (((-1086 |#1|) $) 75 T ELT)) (-1719 (((-85)) 69 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-1710 (((-85)) 60 T ELT)) (-1712 (((-85)) 62 T ELT)) (-1714 (((-85)) 64 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1717 (((-85)) 67 T ELT)) (-3801 ((|#1| $ (-485)) 119 T ELT)) (-3225 (((-1180 |#1|) $ (-1180 $)) 82 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 81 T ELT) (((-1180 |#1|) $) 117 T ELT) (((-631 |#1|) (-1180 $)) 116 T ELT)) (-3973 (((-1180 |#1|) $) 112 T ELT) (($ (-1180 |#1|)) 111 T ELT)) (-1893 (((-584 (-858 |#1|)) (-1180 $)) 90 T ELT) (((-584 (-858 |#1|))) 114 T ELT)) (-2436 (($ $ $) 34 T ELT)) (-1723 (((-85)) 73 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 118 T ELT)) (-1708 (((-584 (-1180 |#1|))) 55 (|has| |#1| (-496)) ELT)) (-2437 (($ $ $ $) 35 T ELT)) (-1721 (((-85)) 71 T ELT)) (-2546 (($ (-631 |#1|) $) 102 T ELT)) (-2435 (($ $ $) 33 T ELT)) (-1722 (((-85)) 72 T ELT)) (-1720 (((-85)) 70 T ELT)) (-1716 (((-85)) 66 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) (((-361 |#1|) (-113) (-146)) (T -361)) -((-2012 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1179 *1)) (-4 *1 (-361 *3)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 *3)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-3223 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 (-630 *3))))) (-1892 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-583 (-857 *3))))) (-1792 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 *3)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-1791 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1790 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1789 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1788 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1904 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1085 (-857 *3))))) (-1900 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1085 (-857 *3))))) (-2545 (*1 *1 *2 *1) (-12 (-5 *2 (-630 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146))))) -(-13 (-316 |t#1|) (-241 (-484) |t#1|) (-10 -8 (-15 -2012 ((-1179 $))) (-15 -3224 ((-1179 |t#1|) $)) (-15 -3224 ((-630 |t#1|) (-1179 $))) (-15 -3223 ((-1179 (-630 |t#1|)))) (-15 -1892 ((-583 (-857 |t#1|)))) (-15 -1792 ($ (-1179 |t#1|))) (-15 -3972 ((-1179 |t#1|) $)) (-15 -3972 ($ (-1179 |t#1|))) (-15 -1791 (|t#1|)) (-15 -1790 (|t#1|)) (-15 -1789 ((-630 |t#1|))) (-15 -1788 ((-630 |t#1|))) (-15 -1787 ((-630 |t#1|) $)) (-15 -1786 ((-630 |t#1|) $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -1904 ((-1085 (-857 |t#1|)))) (-15 -1900 ((-1085 (-857 |t#1|))))) |%noBranch|) (-15 -2545 ($ (-630 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-241 (-484) |#1|) . T) ((-316 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-683 |#1|) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-3134 (((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|)) 28 T ELT)) (-1793 (((-348 |#1|) (-348 |#1|) (-348 |#1|)) 17 T ELT))) -(((-362 |#1|) (-10 -7 (-15 -3134 ((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|))) (-15 -1793 ((-348 |#1|) (-348 |#1|) (-348 |#1|)))) (-495)) (T -362)) -((-1793 (*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-495)) (-5 *1 (-362 *3)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-495)) (-5 *2 (-348 *4)) (-5 *1 (-362 *4))))) -((-3081 (((-583 (-1090)) $) 81 T ELT)) (-3083 (((-350 (-1085 $)) $ (-550 $)) 313 T ELT)) (-1604 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 277 T ELT)) (-3157 (((-3 (-550 $) #1="failed") $) NIL T ELT) (((-3 (-1090) #1#) $) 84 T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-350 (-857 |#2|)) #1#) $) 363 T ELT) (((-3 (-857 |#2|) #1#) $) 275 T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT)) (-3156 (((-550 $) $) NIL T ELT) (((-1090) $) 28 T ELT) (((-484) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-350 (-857 |#2|)) $) 345 T ELT) (((-857 |#2|) $) 272 T ELT) (((-350 (-484)) $) NIL T ELT)) (-3595 (((-86) (-86)) 47 T ELT)) (-2996 (($ $) 99 T ELT)) (-1602 (((-3 (-550 $) #1#) $) 268 T ELT)) (-1601 (((-583 (-550 $)) $) 269 T ELT)) (-2823 (((-3 (-583 $) #1#) $) 287 T ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) #1#) $) 294 T ELT)) (-2822 (((-3 (-583 $) #1#) $) 285 T ELT)) (-1794 (((-3 (-2 (|:| -3954 (-484)) (|:| |var| (-550 $))) #1#) $) 304 T ELT)) (-2824 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-1090)) 257 T ELT)) (-1797 (((-85) $) 17 T ELT)) (-1796 ((|#2| $) 19 T ELT)) (-3768 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 276 T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) 109 T ELT) (($ $ (-1090) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1090) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1090)) 62 T ELT) (($ $ (-583 (-1090))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1090)) 65 T ELT) (($ $ (-583 (-86)) (-583 $) (-1090)) 72 T ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ $))) 120 T ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 282 T ELT) (($ $ (-1090) (-694) (-1 $ (-583 $))) 105 T ELT) (($ $ (-1090) (-694) (-1 $ $)) 104 T ELT)) (-3800 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) 119 T ELT)) (-3758 (($ $ (-1090)) 278 T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT)) (-2995 (($ $) 324 T ELT)) (-3972 (((-800 (-484)) $) 297 T ELT) (((-800 (-330)) $) 301 T ELT) (($ (-348 $)) 359 T ELT) (((-473) $) NIL T ELT)) (-3946 (((-772) $) 279 T ELT) (($ (-550 $)) 93 T ELT) (($ (-1090)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1039 |#2| (-550 $))) NIL T ELT) (($ (-350 |#2|)) 329 T ELT) (($ (-857 (-350 |#2|))) 368 T ELT) (($ (-350 (-857 (-350 |#2|)))) 341 T ELT) (($ (-350 (-857 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-857 |#2|)) 216 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) 373 T ELT)) (-3126 (((-694)) 88 T CONST)) (-2254 (((-85) (-86)) 42 T ELT)) (-1795 (($ (-1090) $) 31 T ELT) (($ (-1090) $ $) 32 T ELT) (($ (-1090) $ $ $) 33 T ELT) (($ (-1090) $ $ $ $) 34 T ELT) (($ (-1090) (-583 $)) 39 T ELT)) (* (($ (-350 (-484)) $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT))) -(((-363 |#1| |#2|) (-10 -7 (-15 * (|#1| (-830) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -3946 (|#1| (-350 (-484)))) (-15 -3157 ((-3 (-350 (-484)) #1="failed") |#1|)) (-15 -3156 ((-350 (-484)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3946 (|#1| (-484))) (-15 -3126 ((-694)) -3952) (-15 * (|#1| |#2| |#1|)) (-15 -3972 ((-473) |#1|)) (-15 -3946 (|#1| (-857 |#2|))) (-15 -3157 ((-3 (-857 |#2|) #1#) |#1|)) (-15 -3156 ((-857 |#2|) |#1|)) (-15 -3758 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3758 (|#1| |#1| (-1090) (-694))) (-15 -3758 (|#1| |#1| (-583 (-1090)))) (-15 -3758 (|#1| |#1| (-1090))) (-15 * (|#1| |#1| |#2|)) (-15 -3946 (|#1| |#1|)) (-15 * (|#1| |#1| (-350 (-484)))) (-15 * (|#1| (-350 (-484)) |#1|)) (-15 -3946 (|#1| (-350 (-857 |#2|)))) (-15 -3157 ((-3 (-350 (-857 |#2|)) #1#) |#1|)) (-15 -3156 ((-350 (-857 |#2|)) |#1|)) (-15 -3083 ((-350 (-1085 |#1|)) |#1| (-550 |#1|))) (-15 -3946 (|#1| (-350 (-857 (-350 |#2|))))) (-15 -3946 (|#1| (-857 (-350 |#2|)))) (-15 -3946 (|#1| (-350 |#2|))) (-15 -2995 (|#1| |#1|)) (-15 -3972 (|#1| (-348 |#1|))) (-15 -3768 (|#1| |#1| (-1090) (-694) (-1 |#1| |#1|))) (-15 -3768 (|#1| |#1| (-1090) (-694) (-1 |#1| (-583 |#1|)))) (-15 -3768 (|#1| |#1| (-583 (-1090)) (-583 (-694)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3768 (|#1| |#1| (-583 (-1090)) (-583 (-694)) (-583 (-1 |#1| |#1|)))) (-15 -2825 ((-3 (-2 (|:| |val| |#1|) (|:| -2401 (-484))) #1#) |#1|)) (-15 -2824 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2401 (-484))) #1#) |#1| (-1090))) (-15 -2824 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2401 (-484))) #1#) |#1| (-86))) (-15 -2996 (|#1| |#1|)) (-15 -3946 (|#1| (-1039 |#2| (-550 |#1|)))) (-15 -1794 ((-3 (-2 (|:| -3954 (-484)) (|:| |var| (-550 |#1|))) #1#) |#1|)) (-15 -2822 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2824 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2401 (-484))) #1#) |#1|)) (-15 -2823 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -3768 (|#1| |#1| (-583 (-86)) (-583 |#1|) (-1090))) (-15 -3768 (|#1| |#1| (-86) |#1| (-1090))) (-15 -3768 (|#1| |#1|)) (-15 -3768 (|#1| |#1| (-583 (-1090)))) (-15 -3768 (|#1| |#1| (-1090))) (-15 -1795 (|#1| (-1090) (-583 |#1|))) (-15 -1795 (|#1| (-1090) |#1| |#1| |#1| |#1|)) (-15 -1795 (|#1| (-1090) |#1| |#1| |#1|)) (-15 -1795 (|#1| (-1090) |#1| |#1|)) (-15 -1795 (|#1| (-1090) |#1|)) (-15 -3081 ((-583 (-1090)) |#1|)) (-15 -1796 (|#2| |#1|)) (-15 -1797 ((-85) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3972 ((-800 (-330)) |#1|)) (-15 -3972 ((-800 (-484)) |#1|)) (-15 -3946 (|#1| (-1090))) (-15 -3157 ((-3 (-1090) #1#) |#1|)) (-15 -3156 ((-1090) |#1|)) (-15 -3768 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3768 (|#1| |#1| (-86) (-1 |#1| (-583 |#1|)))) (-15 -3768 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3768 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| |#1|)))) (-15 -3768 (|#1| |#1| (-1090) (-1 |#1| |#1|))) (-15 -3768 (|#1| |#1| (-1090) (-1 |#1| (-583 |#1|)))) (-15 -3768 (|#1| |#1| (-583 (-1090)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3768 (|#1| |#1| (-583 (-1090)) (-583 (-1 |#1| |#1|)))) (-15 -2254 ((-85) (-86))) (-15 -3595 ((-86) (-86))) (-15 -1601 ((-583 (-550 |#1|)) |#1|)) (-15 -1602 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -1604 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -1604 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -1604 (|#1| |#1| (-249 |#1|))) (-15 -3800 (|#1| (-86) (-583 |#1|))) (-15 -3800 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3800 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3800 (|#1| (-86) |#1| |#1|)) (-15 -3800 (|#1| (-86) |#1|)) (-15 -3768 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3768 (|#1| |#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| (-249 |#1|))) (-15 -3768 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3768 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -3768 (|#1| |#1| (-550 |#1|) |#1|)) (-15 -3946 (|#1| (-550 |#1|))) (-15 -3157 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -3156 ((-550 |#1|) |#1|)) (-15 -3946 ((-772) |#1|))) (-364 |#2|) (-1013)) (T -363)) -((-3595 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1013)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5)) (-4 *4 (-364 *5)))) (-3126 (*1 *2) (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3081 (((-583 (-1090)) $) 222 T ELT)) (-3083 (((-350 (-1085 $)) $ (-550 $)) 190 (|has| |#1| (-495)) ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 162 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 163 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 165 (|has| |#1| (-495)) ELT)) (-1600 (((-583 (-550 $)) $) 42 T ELT)) (-1312 (((-3 $ "failed") $ $) 132 (|has| |#1| (-21)) ELT)) (-1604 (($ $ (-249 $)) 54 T ELT) (($ $ (-583 (-249 $))) 53 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 52 T ELT)) (-3775 (($ $) 182 (|has| |#1| (-495)) ELT)) (-3971 (((-348 $) $) 183 (|has| |#1| (-495)) ELT)) (-1608 (((-85) $ $) 173 (|has| |#1| (-495)) ELT)) (-3724 (($) 117 (OR (|has| |#1| (-1025)) (|has| |#1| (-25))) CONST)) (-3157 (((-3 (-550 $) #1="failed") $) 67 T ELT) (((-3 (-1090) #1#) $) 235 T ELT) (((-3 (-484) #1#) $) 229 (|has| |#1| (-950 (-484))) ELT) (((-3 |#1| #1#) $) 226 T ELT) (((-3 (-350 (-857 |#1|)) #1#) $) 188 (|has| |#1| (-495)) ELT) (((-3 (-857 |#1|) #1#) $) 137 (|has| |#1| (-961)) ELT) (((-3 (-350 (-484)) #1#) $) 111 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3156 (((-550 $) $) 68 T ELT) (((-1090) $) 236 T ELT) (((-484) $) 228 (|has| |#1| (-950 (-484))) ELT) ((|#1| $) 227 T ELT) (((-350 (-857 |#1|)) $) 189 (|has| |#1| (-495)) ELT) (((-857 |#1|) $) 138 (|has| |#1| (-961)) ELT) (((-350 (-484)) $) 112 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2564 (($ $ $) 177 (|has| |#1| (-495)) ELT)) (-2279 (((-630 (-484)) (-630 $)) 155 (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 154 (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 153 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-630 $)) 152 (|has| |#1| (-961)) ELT)) (-3467 (((-3 $ "failed") $) 119 (|has| |#1| (-1025)) ELT)) (-2563 (($ $ $) 176 (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 171 (|has| |#1| (-495)) ELT)) (-3723 (((-85) $) 184 (|has| |#1| (-495)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 231 (|has| |#1| (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 230 (|has| |#1| (-796 (-330))) ELT)) (-2573 (($ $) 49 T ELT) (($ (-583 $)) 48 T ELT)) (-1214 (((-85) $ $) 131 (|has| |#1| (-25)) ELT)) (-1599 (((-583 (-86)) $) 41 T ELT)) (-3595 (((-86) (-86)) 40 T ELT)) (-2410 (((-85) $) 118 (|has| |#1| (-1025)) ELT)) (-2673 (((-85) $) 20 (|has| $ (-950 (-484))) ELT)) (-2996 (($ $) 205 (|has| |#1| (-961)) ELT)) (-2998 (((-1039 |#1| (-550 $)) $) 206 (|has| |#1| (-961)) ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 180 (|has| |#1| (-495)) ELT)) (-1597 (((-1085 $) (-550 $)) 23 (|has| $ (-961)) ELT)) (-3958 (($ (-1 $ $) (-550 $)) 34 T ELT)) (-1602 (((-3 (-550 $) "failed") $) 44 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 157 (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 156 (-2562 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 151 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-1179 $)) 150 (|has| |#1| (-961)) ELT)) (-1891 (($ (-583 $)) 169 (|has| |#1| (-495)) ELT) (($ $ $) 168 (|has| |#1| (-495)) ELT)) (-3242 (((-1073) $) 11 T ELT)) (-1601 (((-583 (-550 $)) $) 43 T ELT)) (-2235 (($ (-86) $) 36 T ELT) (($ (-86) (-583 $)) 35 T ELT)) (-2823 (((-3 (-583 $) "failed") $) 211 (|has| |#1| (-1025)) ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) "failed") $) 202 (|has| |#1| (-961)) ELT)) (-2822 (((-3 (-583 $) "failed") $) 209 (|has| |#1| (-25)) ELT)) (-1794 (((-3 (-2 (|:| -3954 (-484)) (|:| |var| (-550 $))) "failed") $) 208 (|has| |#1| (-25)) ELT)) (-2824 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $) 210 (|has| |#1| (-1025)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-86)) 204 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-1090)) 203 (|has| |#1| (-961)) ELT)) (-2633 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1090)) 37 T ELT)) (-2484 (($ $) 121 (OR (|has| |#1| (-413)) (|has| |#1| (-495))) ELT)) (-2603 (((-694) $) 45 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1797 (((-85) $) 224 T ELT)) (-1796 ((|#1| $) 223 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 170 (|has| |#1| (-495)) ELT)) (-3144 (($ (-583 $)) 167 (|has| |#1| (-495)) ELT) (($ $ $) 166 (|has| |#1| (-495)) ELT)) (-1598 (((-85) $ $) 33 T ELT) (((-85) $ (-1090)) 32 T ELT)) (-3732 (((-348 $) $) 181 (|has| |#1| (-495)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 179 (|has| |#1| (-495)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 178 (|has| |#1| (-495)) ELT)) (-3466 (((-3 $ "failed") $ $) 161 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 172 (|has| |#1| (-495)) ELT)) (-2674 (((-85) $) 21 (|has| $ (-950 (-484))) ELT)) (-3768 (($ $ (-550 $) $) 65 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 64 T ELT) (($ $ (-583 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-583 $) (-583 $)) 60 T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) 31 T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) 30 T ELT) (($ $ (-1090) (-1 $ (-583 $))) 29 T ELT) (($ $ (-1090) (-1 $ $)) 28 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 27 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-583 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1090)) 216 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1090))) 215 (|has| |#1| (-553 (-473))) ELT) (($ $) 214 (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) $ (-1090)) 213 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-86)) (-583 $) (-1090)) 212 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ $))) 201 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 200 (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694) (-1 $ (-583 $))) 199 (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694) (-1 $ $)) 198 (|has| |#1| (-961)) ELT)) (-1607 (((-694) $) 174 (|has| |#1| (-495)) ELT)) (-3800 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-583 $)) 55 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 175 (|has| |#1| (-495)) ELT)) (-1603 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3758 (($ $ (-1090)) 148 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090))) 146 (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694)) 145 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 144 (|has| |#1| (-961)) ELT)) (-2995 (($ $) 195 (|has| |#1| (-495)) ELT)) (-2997 (((-1039 |#1| (-550 $)) $) 196 (|has| |#1| (-495)) ELT)) (-3185 (($ $) 22 (|has| $ (-961)) ELT)) (-3972 (((-800 (-484)) $) 233 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) 232 (|has| |#1| (-553 (-800 (-330)))) ELT) (($ (-348 $)) 197 (|has| |#1| (-495)) ELT) (((-473) $) 113 (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $ $) 124 (|has| |#1| (-413)) ELT)) (-2435 (($ $ $) 125 (|has| |#1| (-413)) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-550 $)) 66 T ELT) (($ (-1090)) 234 T ELT) (($ |#1|) 225 T ELT) (($ (-1039 |#1| (-550 $))) 207 (|has| |#1| (-961)) ELT) (($ (-350 |#1|)) 193 (|has| |#1| (-495)) ELT) (($ (-857 (-350 |#1|))) 192 (|has| |#1| (-495)) ELT) (($ (-350 (-857 (-350 |#1|)))) 191 (|has| |#1| (-495)) ELT) (($ (-350 (-857 |#1|))) 187 (|has| |#1| (-495)) ELT) (($ $) 160 (|has| |#1| (-495)) ELT) (($ (-857 |#1|)) 136 (|has| |#1| (-961)) ELT) (($ (-350 (-484))) 110 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ (-484)) 109 (OR (|has| |#1| (-961)) (|has| |#1| (-950 (-484)))) ELT)) (-2702 (((-632 $) $) 158 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 140 (|has| |#1| (-961)) CONST)) (-2590 (($ $) 51 T ELT) (($ (-583 $)) 50 T ELT)) (-2254 (((-85) (-86)) 39 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 164 (|has| |#1| (-495)) ELT)) (-1795 (($ (-1090) $) 221 T ELT) (($ (-1090) $ $) 220 T ELT) (($ (-1090) $ $ $) 219 T ELT) (($ (-1090) $ $ $ $) 218 T ELT) (($ (-1090) (-583 $)) 217 T ELT)) (-3125 (((-85) $ $) 139 (|has| |#1| (-961)) ELT)) (-2660 (($) 128 (|has| |#1| (-25)) CONST)) (-2666 (($) 116 (|has| |#1| (-1025)) CONST)) (-2669 (($ $ (-1090)) 147 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090))) 143 (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694)) 142 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 141 (|has| |#1| (-961)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ (-1039 |#1| (-550 $)) (-1039 |#1| (-550 $))) 194 (|has| |#1| (-495)) ELT) (($ $ $) 122 (OR (|has| |#1| (-413)) (|has| |#1| (-495))) ELT)) (-3837 (($ $ $) 135 (|has| |#1| (-21)) ELT) (($ $) 134 (|has| |#1| (-21)) ELT)) (-3839 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-484)) 123 (OR (|has| |#1| (-413)) (|has| |#1| (-495))) ELT) (($ $ (-694)) 120 (|has| |#1| (-1025)) ELT) (($ $ (-830)) 115 (|has| |#1| (-1025)) ELT)) (* (($ (-350 (-484)) $) 186 (|has| |#1| (-495)) ELT) (($ $ (-350 (-484))) 185 (|has| |#1| (-495)) ELT) (($ $ |#1|) 159 (|has| |#1| (-146)) ELT) (($ |#1| $) 149 (|has| |#1| (-961)) ELT) (($ (-484) $) 133 (|has| |#1| (-21)) ELT) (($ (-694) $) 130 (|has| |#1| (-25)) ELT) (($ (-830) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1025)) ELT))) -(((-364 |#1|) (-113) (-1013)) (T -364)) -((-1797 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-1090))))) (-1795 (*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013)))) (-1795 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013)))) (-1795 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013)))) (-1795 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013)))) (-1795 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-583 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1013)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-4 *3 (-553 (-473))))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1090))) (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-4 *3 (-553 (-473))))) (-3768 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013)) (-4 *2 (-553 (-473))))) (-3768 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1090)) (-4 *1 (-364 *4)) (-4 *4 (-1013)) (-4 *4 (-553 (-473))))) (-3768 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 *1)) (-5 *4 (-1090)) (-4 *1 (-364 *5)) (-4 *5 (-1013)) (-4 *5 (-553 (-473))))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-364 *3)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-364 *3)))) (-2822 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-364 *3)))) (-1794 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| -3954 (-484)) (|:| |var| (-550 *1)))) (-4 *1 (-364 *3)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1039 *3 (-550 *1))) (-4 *3 (-961)) (-4 *3 (-1013)) (-4 *1 (-364 *3)))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-1013)) (-5 *2 (-1039 *3 (-550 *1))) (-4 *1 (-364 *3)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013)) (-4 *2 (-961)))) (-2824 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-961)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-364 *4)))) (-2824 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-961)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-364 *4)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| |val| *1) (|:| -2401 (-484)))) (-4 *1 (-364 *3)))) (-3768 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3768 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3768 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-694)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3768 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-694)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-2997 (*1 *2 *1) (-12 (-4 *3 (-495)) (-4 *3 (-1013)) (-5 *2 (-1039 *3 (-550 *1))) (-4 *1 (-364 *3)))) (-2995 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013)) (-4 *2 (-495)))) (-3949 (*1 *1 *2 *2) (-12 (-5 *2 (-1039 *3 (-550 *1))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-364 *3)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-364 *3)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-857 (-350 *3))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-364 *3)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-350 (-857 (-350 *3)))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-364 *3)))) (-3083 (*1 *2 *1 *3) (-12 (-5 *3 (-550 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1013)) (-4 *4 (-495)) (-5 *2 (-350 (-1085 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-4 *3 (-1025))))) -(-13 (-254) (-950 (-1090)) (-794 |t#1|) (-343 |t#1|) (-355 |t#1|) (-10 -8 (-15 -1797 ((-85) $)) (-15 -1796 (|t#1| $)) (-15 -3081 ((-583 (-1090)) $)) (-15 -1795 ($ (-1090) $)) (-15 -1795 ($ (-1090) $ $)) (-15 -1795 ($ (-1090) $ $ $)) (-15 -1795 ($ (-1090) $ $ $ $)) (-15 -1795 ($ (-1090) (-583 $))) (IF (|has| |t#1| (-553 (-473))) (PROGN (-6 (-553 (-473))) (-15 -3768 ($ $ (-1090))) (-15 -3768 ($ $ (-583 (-1090)))) (-15 -3768 ($ $)) (-15 -3768 ($ $ (-86) $ (-1090))) (-15 -3768 ($ $ (-583 (-86)) (-583 $) (-1090)))) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-6 (-663)) (-15 ** ($ $ (-694))) (-15 -2823 ((-3 (-583 $) "failed") $)) (-15 -2824 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-413)) (-6 (-413)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2822 ((-3 (-583 $) "failed") $)) (-15 -1794 ((-3 (-2 (|:| -3954 (-484)) (|:| |var| (-550 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-6 (-961)) (-6 (-950 (-857 |t#1|))) (-6 (-809 (-1090))) (-6 (-329 |t#1|)) (-15 -3946 ($ (-1039 |t#1| (-550 $)))) (-15 -2998 ((-1039 |t#1| (-550 $)) $)) (-15 -2996 ($ $)) (-15 -2824 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-86))) (-15 -2824 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-1090))) (-15 -2825 ((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) "failed") $)) (-15 -3768 ($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ $)))) (-15 -3768 ($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ (-583 $))))) (-15 -3768 ($ $ (-1090) (-694) (-1 $ (-583 $)))) (-15 -3768 ($ $ (-1090) (-694) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-6 (-312)) (-6 (-950 (-350 (-857 |t#1|)))) (-15 -3972 ($ (-348 $))) (-15 -2997 ((-1039 |t#1| (-550 $)) $)) (-15 -2995 ($ $)) (-15 -3949 ($ (-1039 |t#1| (-550 $)) (-1039 |t#1| (-550 $)))) (-15 -3946 ($ (-350 |t#1|))) (-15 -3946 ($ (-857 (-350 |t#1|)))) (-15 -3946 ($ (-350 (-857 (-350 |t#1|))))) (-15 -3083 ((-350 (-1085 $)) $ (-550 $))) (IF (|has| |t#1| (-950 (-484))) (-6 (-950 (-350 (-484)))) |%noBranch|)) |%noBranch|))) -(((-21) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-350 (-484))) |has| |#1| (-495)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-495)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-495)) ((-104) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-495))) ((-555 (-350 (-857 |#1|))) |has| |#1| (-495)) ((-555 (-484)) OR (|has| |#1| (-961)) (|has| |#1| (-950 (-484))) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-555 (-550 $)) . T) ((-555 (-857 |#1|)) |has| |#1| (-961)) ((-555 (-1090)) . T) ((-555 |#1|) . T) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) |has| |#1| (-495)) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-330))) |has| |#1| (-553 (-800 (-330)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-201) |has| |#1| (-495)) ((-246) |has| |#1| (-495)) ((-258) |has| |#1| (-495)) ((-260 $) . T) ((-254) . T) ((-312) |has| |#1| (-495)) ((-329 |#1|) |has| |#1| (-961)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-392) |has| |#1| (-495)) ((-413) |has| |#1| (-413)) ((-455 (-550 $) $) . T) ((-455 $ $) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-495)) ((-588 (-484)) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-588 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-588 $) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-590 (-350 (-484))) |has| |#1| (-495)) ((-590 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-590 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-590 $) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-582 (-350 (-484))) |has| |#1| (-495)) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-580 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-580 |#1|) |has| |#1| (-961)) ((-654 (-350 (-484))) |has| |#1| (-495)) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) OR (|has| |#1| (-1025)) (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-413)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-806 $ (-1090)) |has| |#1| (-961)) ((-809 (-1090)) |has| |#1| (-961)) ((-811 (-1090)) |has| |#1| (-961)) ((-796 (-330)) |has| |#1| (-796 (-330))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-832) |has| |#1| (-495)) ((-950 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484))))) ((-950 (-350 (-857 |#1|))) |has| |#1| (-495)) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-550 $)) . T) ((-950 (-857 |#1|)) |has| |#1| (-961)) ((-950 (-1090)) . T) ((-950 |#1|) . T) ((-963 (-350 (-484))) |has| |#1| (-495)) ((-963 |#1|) |has| |#1| (-146)) ((-963 $) |has| |#1| (-495)) ((-968 (-350 (-484))) |has| |#1| (-495)) ((-968 |#1|) |has| |#1| (-146)) ((-968 $) |has| |#1| (-495)) ((-961) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-970) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1025) OR (|has| |#1| (-1025)) (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-413)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1061) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1013) . T) ((-1129) . T) ((-1134) |has| |#1| (-495))) -((-3958 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) -(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-364 |#1|) (-961) (-364 |#3|)) (T -365)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-364 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-364 *5))))) -((-1801 ((|#2| |#2|) 182 T ELT)) (-1798 (((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85)) 60 T ELT))) -(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1798 ((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85))) (-15 -1801 (|#2| |#2|))) (-13 (-392) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|)) (-1090) |#2|) (T -366)) -((-1801 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1115) (-364 *3))) (-14 *4 (-1090)) (-14 *5 *2))) (-1798 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-14 *6 (-1090)) (-14 *7 *3)))) -((-1801 ((|#2| |#2|) 105 T ELT)) (-1799 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85) (-1073)) 52 T ELT)) (-1800 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85) (-1073)) 169 T ELT))) -(((-367 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1799 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85) (-1073))) (-15 -1800 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85) (-1073))) (-15 -1801 (|#2| |#2|))) (-13 (-392) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|) (-10 -8 (-15 -3946 ($ |#3|)))) (-755) (-13 (-1158 |#2| |#3|) (-312) (-1115) (-10 -8 (-15 -3758 ($ $)) (-15 -3812 ($ $)))) (-896 |#4|) (-1090)) (T -367)) -((-1801 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-4 *2 (-13 (-27) (-1115) (-364 *3) (-10 -8 (-15 -3946 ($ *4))))) (-4 *4 (-755)) (-4 *5 (-13 (-1158 *2 *4) (-312) (-1115) (-10 -8 (-15 -3758 ($ $)) (-15 -3812 ($ $))))) (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-896 *5)) (-14 *7 (-1090)))) (-1800 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-4 *3 (-13 (-27) (-1115) (-364 *6) (-10 -8 (-15 -3946 ($ *7))))) (-4 *7 (-755)) (-4 *8 (-13 (-1158 *3 *7) (-312) (-1115) (-10 -8 (-15 -3758 ($ $)) (-15 -3812 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-896 *8)) (-14 *10 (-1090)))) (-1799 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-4 *3 (-13 (-27) (-1115) (-364 *6) (-10 -8 (-15 -3946 ($ *7))))) (-4 *7 (-755)) (-4 *8 (-13 (-1158 *3 *7) (-312) (-1115) (-10 -8 (-15 -3758 ($ $)) (-15 -3812 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-896 *8)) (-14 *10 (-1090))))) -((-1802 (($) 51 T ELT)) (-3234 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3236 (($ $ $) 46 T ELT)) (-3235 (((-85) $ $) 35 T ELT)) (-3136 (((-694)) 55 T ELT)) (-3239 (($ (-583 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2994 (($) 66 T ELT)) (-3241 (((-85) $ $) 15 T ELT)) (-2531 ((|#2| $) 77 T ELT)) (-2857 ((|#2| $) 75 T ELT)) (-2010 (((-830) $) 70 T ELT)) (-3238 (($ $ $) 42 T ELT)) (-2400 (($ (-830)) 60 T ELT)) (-3237 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1946 (((-694) |#2| $) 31 T ELT) (((-694) (-1 (-85) |#2|) $) NIL T ELT)) (-3530 (($ (-583 |#2|)) 27 T ELT)) (-1803 (($ $) 53 T ELT)) (-3946 (((-772) $) 40 T ELT)) (-1804 (((-694) $) 24 T ELT)) (-3240 (($ (-583 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3056 (((-85) $ $) 19 T ELT))) -(((-368 |#1| |#2|) (-10 -7 (-15 -3136 ((-694))) (-15 -2400 (|#1| (-830))) (-15 -2010 ((-830) |#1|)) (-15 -2994 (|#1|)) (-15 -2531 (|#2| |#1|)) (-15 -2857 (|#2| |#1|)) (-15 -1802 (|#1|)) (-15 -1803 (|#1| |#1|)) (-15 -1804 ((-694) |#1|)) (-15 -1946 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-694) |#2| |#1|)) (-15 -3056 ((-85) |#1| |#1|)) (-15 -3946 ((-772) |#1|)) (-15 -3241 ((-85) |#1| |#1|)) (-15 -3240 (|#1|)) (-15 -3240 (|#1| (-583 |#2|))) (-15 -3239 (|#1|)) (-15 -3239 (|#1| (-583 |#2|))) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1| |#2|)) (-15 -3236 (|#1| |#1| |#1|)) (-15 -3235 ((-85) |#1| |#1|)) (-15 -3234 (|#1| |#1| |#1|)) (-15 -3234 (|#1| |#1| |#2|)) (-15 -3234 (|#1| |#2| |#1|)) (-15 -3530 (|#1| (-583 |#2|)))) (-369 |#2|) (-1013)) (T -368)) -((-3136 (*1 *2) (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))) -((-2568 (((-85) $ $) 19 T ELT)) (-1802 (($) 72 (|has| |#1| (-320)) ELT)) (-3234 (($ |#1| $) 87 T ELT) (($ $ |#1|) 86 T ELT) (($ $ $) 85 T ELT)) (-3236 (($ $ $) 83 T ELT)) (-3235 (((-85) $ $) 84 T ELT)) (-3136 (((-694)) 66 (|has| |#1| (-320)) ELT)) (-3239 (($ (-583 |#1|)) 79 T ELT) (($) 78 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-1353 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ |#1| $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3995)) ELT)) (-2994 (($) 69 (|has| |#1| (-320)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3241 (((-85) $ $) 75 T ELT)) (-2531 ((|#1| $) 70 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2857 ((|#1| $) 71 (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2010 (((-830) $) 68 (|has| |#1| (-320)) ELT)) (-3242 (((-1073) $) 22 T ELT)) (-3238 (($ $ $) 80 T ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-2400 (($ (-830)) 67 (|has| |#1| (-320)) ELT)) (-3243 (((-1033) $) 21 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3237 (($ $ |#1|) 82 T ELT) (($ $ $) 81 T ELT)) (-1466 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1946 (((-694) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 54 T ELT)) (-1803 (($ $) 73 (|has| |#1| (-320)) ELT)) (-3946 (((-772) $) 17 T ELT)) (-1804 (((-694) $) 74 T ELT)) (-3240 (($ (-583 |#1|)) 77 T ELT) (($) 76 T ELT)) (-1265 (((-85) $ $) 20 T ELT)) (-1276 (($ (-583 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 T ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-369 |#1|) (-113) (-1013)) (T -369)) -((-1804 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1013)) (-5 *2 (-694)))) (-1803 (*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1013)) (-4 *2 (-320)))) (-1802 (*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1013)))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1013)) (-4 *2 (-756)))) (-2531 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1013)) (-4 *2 (-756))))) -(-13 (-183 |t#1|) (-1011 |t#1|) (-318 |t#1|) (-10 -8 (-15 -1804 ((-694) $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-320)) (-15 -1803 ($ $)) (-15 -1802 ($))) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-15 -2857 (|t#1| $)) (-15 -2531 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-320) |has| |#1| (-320)) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1035 |#1|) . T) ((-1129) . T)) -((-3841 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3842 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3958 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) -(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3842 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3841 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1013) (-369 |#1|) (-1013) (-369 |#3|)) (T -370)) -((-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013)) (-4 *2 (-369 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-369 *6)))) (-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-369 *5)) (-4 *6 (-369 *2)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-369 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-369 *5))))) -((-1805 (((-519 |#2|) |#2| (-1090)) 36 T ELT)) (-2100 (((-519 |#2|) |#2| (-1090)) 21 T ELT)) (-2149 ((|#2| |#2| (-1090)) 26 T ELT))) -(((-371 |#1| |#2|) (-10 -7 (-15 -2100 ((-519 |#2|) |#2| (-1090))) (-15 -1805 ((-519 |#2|) |#2| (-1090))) (-15 -2149 (|#2| |#2| (-1090)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-29 |#1|))) (T -371)) -((-2149 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1115) (-29 *4))))) (-1805 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1115) (-29 *5))))) (-2100 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1115) (-29 *5)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1807 (($ |#2| |#1|) 37 T ELT)) (-1806 (($ |#2| |#1|) 35 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-281 |#2|)) 25 T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 10 T CONST)) (-2666 (($) 16 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 36 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-372 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3982)) (IF (|has| |#1| (-6 -3982)) (-6 -3982) |%noBranch|) |%noBranch|) (-15 -3946 ($ |#1|)) (-15 -3946 ($ (-281 |#2|))) (-15 -1807 ($ |#2| |#1|)) (-15 -1806 ($ |#2| |#1|)))) (-13 (-146) (-38 (-350 (-484)))) (-13 (-756) (-21))) (T -372)) -((-3946 (*1 *1 *2) (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-484))))) (-4 *3 (-13 (-756) (-21))))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-756) (-21))) (-5 *1 (-372 *3 *4)) (-4 *3 (-13 (-146) (-38 (-350 (-484))))))) (-1807 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-484))))) (-4 *2 (-13 (-756) (-21))))) (-1806 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-484))))) (-4 *2 (-13 (-756) (-21)))))) -((-3812 (((-3 |#2| (-583 |#2|)) |#2| (-1090)) 115 T ELT))) -(((-373 |#1| |#2|) (-10 -7 (-15 -3812 ((-3 |#2| (-583 |#2|)) |#2| (-1090)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-871) (-29 |#1|))) (T -373)) -((-3812 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-373 *5 *3)) (-4 *3 (-13 (-1115) (-871) (-29 *5)))))) -((-3386 ((|#2| |#2| |#2|) 31 T ELT)) (-3595 (((-86) (-86)) 43 T ELT)) (-1809 ((|#2| |#2|) 63 T ELT)) (-1808 ((|#2| |#2|) 66 T ELT)) (-3385 ((|#2| |#2|) 30 T ELT)) (-3389 ((|#2| |#2| |#2|) 33 T ELT)) (-3391 ((|#2| |#2| |#2|) 35 T ELT)) (-3388 ((|#2| |#2| |#2|) 32 T ELT)) (-3390 ((|#2| |#2| |#2|) 34 T ELT)) (-2254 (((-85) (-86)) 41 T ELT)) (-3393 ((|#2| |#2|) 37 T ELT)) (-3392 ((|#2| |#2|) 36 T ELT)) (-3383 ((|#2| |#2|) 25 T ELT)) (-3387 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3384 ((|#2| |#2| |#2|) 29 T ELT))) -(((-374 |#1| |#2|) (-10 -7 (-15 -2254 ((-85) (-86))) (-15 -3595 ((-86) (-86))) (-15 -3383 (|#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -3387 (|#2| |#2| |#2|)) (-15 -3384 (|#2| |#2| |#2|)) (-15 -3385 (|#2| |#2|)) (-15 -3386 (|#2| |#2| |#2|)) (-15 -3388 (|#2| |#2| |#2|)) (-15 -3389 (|#2| |#2| |#2|)) (-15 -3390 (|#2| |#2| |#2|)) (-15 -3391 (|#2| |#2| |#2|)) (-15 -3392 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -1808 (|#2| |#2|)) (-15 -1809 (|#2| |#2|))) (-495) (-364 |#1|)) (T -374)) -((-1809 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-1808 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3392 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3391 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3390 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3388 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3386 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3385 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3384 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3387 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3387 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3383 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) (-4 *5 (-364 *4))))) -((-2833 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1085 |#2|)) (|:| |pol2| (-1085 |#2|)) (|:| |prim| (-1085 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1085 |#2|))) (|:| |prim| (-1085 |#2|))) (-583 |#2|)) 65 T ELT))) -(((-375 |#1| |#2|) (-10 -7 (-15 -2833 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1085 |#2|))) (|:| |prim| (-1085 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -2833 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1085 |#2|)) (|:| |pol2| (-1085 |#2|)) (|:| |prim| (-1085 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-495) (-120)) (-364 |#1|)) (T -375)) -((-2833 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1085 *3)) (|:| |pol2| (-1085 *3)) (|:| |prim| (-1085 *3)))) (-5 *1 (-375 *4 *3)) (-4 *3 (-27)) (-4 *3 (-364 *4)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1085 *5))) (|:| |prim| (-1085 *5)))) (-5 *1 (-375 *4 *5))))) -((-1811 (((-1185)) 18 T ELT)) (-1810 (((-1085 (-350 (-484))) |#2| (-550 |#2|)) 40 T ELT) (((-350 (-484)) |#2|) 27 T ELT))) -(((-376 |#1| |#2|) (-10 -7 (-15 -1810 ((-350 (-484)) |#2|)) (-15 -1810 ((-1085 (-350 (-484))) |#2| (-550 |#2|))) (-15 -1811 ((-1185)))) (-13 (-495) (-950 (-484))) (-364 |#1|)) (T -376)) -((-1811 (*1 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *2 (-1185)) (-5 *1 (-376 *3 *4)) (-4 *4 (-364 *3)))) (-1810 (*1 *2 *3 *4) (-12 (-5 *4 (-550 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-376 *5 *3)))) (-1810 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-350 (-484))) (-5 *1 (-376 *4 *3)) (-4 *3 (-364 *4))))) -((-3645 (((-85) $) 33 T ELT)) (-1812 (((-85) $) 35 T ELT)) (-3259 (((-85) $) 36 T ELT)) (-1814 (((-85) $) 39 T ELT)) (-1816 (((-85) $) 34 T ELT)) (-1815 (((-85) $) 38 T ELT)) (-3946 (((-772) $) 20 T ELT) (($ (-1073)) 32 T ELT) (($ (-1090)) 30 T ELT) (((-1090) $) 24 T ELT) (((-1015) $) 23 T ELT)) (-1813 (((-85) $) 37 T ELT)) (-3056 (((-85) $ $) 17 T ELT))) -(((-377) (-13 (-552 (-772)) (-10 -8 (-15 -3946 ($ (-1073))) (-15 -3946 ($ (-1090))) (-15 -3946 ((-1090) $)) (-15 -3946 ((-1015) $)) (-15 -3645 ((-85) $)) (-15 -1816 ((-85) $)) (-15 -3259 ((-85) $)) (-15 -1815 ((-85) $)) (-15 -1814 ((-85) $)) (-15 -1813 ((-85) $)) (-15 -1812 ((-85) $)) (-15 -3056 ((-85) $ $))))) (T -377)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-377)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-377)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-377)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-377)))) (-3645 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3056 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) -((-1818 (((-3 (-348 (-1085 (-350 (-484)))) #1="failed") |#3|) 71 T ELT)) (-1817 (((-348 |#3|) |#3|) 34 T ELT)) (-1820 (((-3 (-348 (-1085 (-48))) #1#) |#3|) 29 (|has| |#2| (-950 (-48))) ELT)) (-1819 (((-3 (|:| |overq| (-1085 (-350 (-484)))) (|:| |overan| (-1085 (-48))) (|:| -2639 (-85))) |#3|) 37 T ELT))) -(((-378 |#1| |#2| |#3|) (-10 -7 (-15 -1817 ((-348 |#3|) |#3|)) (-15 -1818 ((-3 (-348 (-1085 (-350 (-484)))) #1="failed") |#3|)) (-15 -1819 ((-3 (|:| |overq| (-1085 (-350 (-484)))) (|:| |overan| (-1085 (-48))) (|:| -2639 (-85))) |#3|)) (IF (|has| |#2| (-950 (-48))) (-15 -1820 ((-3 (-348 (-1085 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-495) (-950 (-484))) (-364 |#1|) (-1155 |#2|)) (T -378)) -((-1820 (*1 *2 *3) (|partial| -12 (-4 *5 (-950 (-48))) (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1085 (-48)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-1819 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-364 *4)) (-5 *2 (-3 (|:| |overq| (-1085 (-350 (-484)))) (|:| |overan| (-1085 (-48))) (|:| -2639 (-85)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-1818 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1085 (-350 (-484))))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-1817 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3)) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1830 (((-3 (|:| |fst| (-377)) (|:| -3910 #1="void")) $) 11 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1827 (($) 35 T ELT)) (-1824 (($) 41 T ELT)) (-1825 (($) 37 T ELT)) (-1822 (($) 39 T ELT)) (-1826 (($) 36 T ELT)) (-1823 (($) 38 T ELT)) (-1821 (($) 40 T ELT)) (-1828 (((-85) $) 8 T ELT)) (-1829 (((-583 (-857 (-484))) $) 19 T ELT)) (-3530 (($ (-3 (|:| |fst| (-377)) (|:| -3910 #1#)) (-583 (-1090)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-377)) (|:| -3910 #1#)) (-583 (-857 (-484))) (-85)) 30 T ELT)) (-3946 (((-772) $) 24 T ELT) (($ (-377)) 32 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-379) (-13 (-1013) (-10 -8 (-15 -3946 ($ (-377))) (-15 -1830 ((-3 (|:| |fst| (-377)) (|:| -3910 #1="void")) $)) (-15 -1829 ((-583 (-857 (-484))) $)) (-15 -1828 ((-85) $)) (-15 -3530 ($ (-3 (|:| |fst| (-377)) (|:| -3910 #1#)) (-583 (-1090)) (-85))) (-15 -3530 ($ (-3 (|:| |fst| (-377)) (|:| -3910 #1#)) (-583 (-857 (-484))) (-85))) (-15 -1827 ($)) (-15 -1826 ($)) (-15 -1825 ($)) (-15 -1824 ($)) (-15 -1823 ($)) (-15 -1822 ($)) (-15 -1821 ($))))) (T -379)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-379)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 #1="void"))) (-5 *1 (-379)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-583 (-857 (-484)))) (-5 *1 (-379)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) (-3530 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) (-5 *3 (-583 (-1090))) (-5 *4 (-85)) (-5 *1 (-379)))) (-3530 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-85)) (-5 *1 (-379)))) (-1827 (*1 *1) (-5 *1 (-379))) (-1826 (*1 *1) (-5 *1 (-379))) (-1825 (*1 *1) (-5 *1 (-379))) (-1824 (*1 *1) (-5 *1 (-379))) (-1823 (*1 *1) (-5 *1 (-379))) (-1822 (*1 *1) (-5 *1 (-379))) (-1821 (*1 *1) (-5 *1 (-379)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3542 (((-1090) $) 8 T ELT)) (-3242 (((-1073) $) 17 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 14 T ELT))) -(((-380 |#1|) (-13 (-1013) (-10 -8 (-15 -3542 ((-1090) $)))) (-1090)) (T -380)) -((-3542 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-380 *3)) (-14 *3 *2)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3319 (((-1028) $) 7 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 9 T ELT))) -(((-381) (-13 (-1013) (-10 -8 (-15 -3319 ((-1028) $))))) (T -381)) -((-3319 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-381))))) -((-1836 (((-85)) 18 T ELT)) (-1837 (((-85) (-85)) 19 T ELT)) (-1838 (((-85)) 14 T ELT)) (-1839 (((-85) (-85)) 15 T ELT)) (-1841 (((-85)) 16 T ELT)) (-1842 (((-85) (-85)) 17 T ELT)) (-1833 (((-830) (-830)) 22 T ELT) (((-830)) 21 T ELT)) (-1834 (((-694) (-583 (-2 (|:| -3732 |#1|) (|:| -3948 (-484))))) 52 T ELT)) (-1832 (((-830) (-830)) 24 T ELT) (((-830)) 23 T ELT)) (-1835 (((-2 (|:| -2578 (-484)) (|:| -1779 (-583 |#1|))) |#1|) 94 T ELT)) (-1831 (((-348 |#1|) (-2 (|:| |contp| (-484)) (|:| -1779 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484))))))) 176 T ELT)) (-3734 (((-2 (|:| |contp| (-484)) (|:| -1779 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85)) 209 T ELT)) (-3733 (((-348 |#1|) |#1| (-694) (-694)) 224 T ELT) (((-348 |#1|) |#1| (-583 (-694)) (-694)) 221 T ELT) (((-348 |#1|) |#1| (-583 (-694))) 223 T ELT) (((-348 |#1|) |#1| (-694)) 222 T ELT) (((-348 |#1|) |#1|) 220 T ELT)) (-1853 (((-3 |#1| #1="failed") (-830) |#1| (-583 (-694)) (-694) (-85)) 226 T ELT) (((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694)) 227 T ELT) (((-3 |#1| #1#) (-830) |#1| (-583 (-694))) 229 T ELT) (((-3 |#1| #1#) (-830) |#1| (-694)) 228 T ELT) (((-3 |#1| #1#) (-830) |#1|) 230 T ELT)) (-3732 (((-348 |#1|) |#1| (-694) (-694)) 219 T ELT) (((-348 |#1|) |#1| (-583 (-694)) (-694)) 215 T ELT) (((-348 |#1|) |#1| (-583 (-694))) 217 T ELT) (((-348 |#1|) |#1| (-694)) 216 T ELT) (((-348 |#1|) |#1|) 214 T ELT)) (-1840 (((-85) |#1|) 43 T ELT)) (-1852 (((-675 (-694)) (-583 (-2 (|:| -3732 |#1|) (|:| -3948 (-484))))) 99 T ELT)) (-1843 (((-2 (|:| |contp| (-484)) (|:| -1779 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85) (-1009 (-694)) (-694)) 213 T ELT))) -(((-382 |#1|) (-10 -7 (-15 -1831 ((-348 |#1|) (-2 (|:| |contp| (-484)) (|:| -1779 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))))) (-15 -1852 ((-675 (-694)) (-583 (-2 (|:| -3732 |#1|) (|:| -3948 (-484)))))) (-15 -1832 ((-830))) (-15 -1832 ((-830) (-830))) (-15 -1833 ((-830))) (-15 -1833 ((-830) (-830))) (-15 -1834 ((-694) (-583 (-2 (|:| -3732 |#1|) (|:| -3948 (-484)))))) (-15 -1835 ((-2 (|:| -2578 (-484)) (|:| -1779 (-583 |#1|))) |#1|)) (-15 -1836 ((-85))) (-15 -1837 ((-85) (-85))) (-15 -1838 ((-85))) (-15 -1839 ((-85) (-85))) (-15 -1840 ((-85) |#1|)) (-15 -1841 ((-85))) (-15 -1842 ((-85) (-85))) (-15 -3732 ((-348 |#1|) |#1|)) (-15 -3732 ((-348 |#1|) |#1| (-694))) (-15 -3732 ((-348 |#1|) |#1| (-583 (-694)))) (-15 -3732 ((-348 |#1|) |#1| (-583 (-694)) (-694))) (-15 -3732 ((-348 |#1|) |#1| (-694) (-694))) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3733 ((-348 |#1|) |#1| (-694))) (-15 -3733 ((-348 |#1|) |#1| (-583 (-694)))) (-15 -3733 ((-348 |#1|) |#1| (-583 (-694)) (-694))) (-15 -3733 ((-348 |#1|) |#1| (-694) (-694))) (-15 -1853 ((-3 |#1| #1="failed") (-830) |#1|)) (-15 -1853 ((-3 |#1| #1#) (-830) |#1| (-694))) (-15 -1853 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)))) (-15 -1853 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694))) (-15 -1853 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694) (-85))) (-15 -3734 ((-2 (|:| |contp| (-484)) (|:| -1779 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85))) (-15 -1843 ((-2 (|:| |contp| (-484)) (|:| -1779 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85) (-1009 (-694)) (-694)))) (-1155 (-484))) (T -382)) -((-1843 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1009 (-694))) (-5 *6 (-694)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1779 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1779 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1853 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *6 (-85)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484))))) (-1853 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484))))) (-1853 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484))))) (-1853 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-694)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484))))) (-1853 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-830)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484))))) (-3733 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3733 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-694))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3732 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3732 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-694))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1842 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1841 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1840 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1838 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1837 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1836 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1835 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2578 (-484)) (|:| -1779 (-583 *3)))) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3732 *4) (|:| -3948 (-484))))) (-4 *4 (-1155 (-484))) (-5 *2 (-694)) (-5 *1 (-382 *4)))) (-1833 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1833 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1832 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3732 *4) (|:| -3948 (-484))))) (-4 *4 (-1155 (-484))) (-5 *2 (-675 (-694))) (-5 *1 (-382 *4)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-484)) (|:| -1779 (-583 (-2 (|:| |irr| *4) (|:| -2395 (-484))))))) (-4 *4 (-1155 (-484))) (-5 *2 (-348 *4)) (-5 *1 (-382 *4))))) -((-1847 (((-484) |#2|) 52 T ELT) (((-484) |#2| (-694)) 51 T ELT)) (-1846 (((-484) |#2|) 64 T ELT)) (-1848 ((|#3| |#2|) 26 T ELT)) (-3132 ((|#3| |#2| (-830)) 15 T ELT)) (-3833 ((|#3| |#2|) 16 T ELT)) (-1849 ((|#3| |#2|) 9 T ELT)) (-2603 ((|#3| |#2|) 10 T ELT)) (-1845 ((|#3| |#2| (-830)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1844 (((-484) |#2|) 66 T ELT))) -(((-383 |#1| |#2| |#3|) (-10 -7 (-15 -1844 ((-484) |#2|)) (-15 -1845 (|#3| |#2|)) (-15 -1845 (|#3| |#2| (-830))) (-15 -1846 ((-484) |#2|)) (-15 -1847 ((-484) |#2| (-694))) (-15 -1847 ((-484) |#2|)) (-15 -3132 (|#3| |#2| (-830))) (-15 -1848 (|#3| |#2|)) (-15 -1849 (|#3| |#2|)) (-15 -2603 (|#3| |#2|)) (-15 -3833 (|#3| |#2|))) (-961) (-1155 |#1|) (-13 (-347) (-950 |#1|) (-312) (-1115) (-239))) (T -383)) -((-3833 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-2603 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-1849 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-1848 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-961)) (-4 *2 (-13 (-347) (-950 *5) (-312) (-1115) (-239))) (-5 *1 (-383 *5 *3 *2)) (-4 *3 (-1155 *5)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4)) (-4 *5 (-13 (-347) (-950 *4) (-312) (-1115) (-239))))) (-1847 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *5 *3 *6)) (-4 *3 (-1155 *5)) (-4 *6 (-13 (-347) (-950 *5) (-312) (-1115) (-239))))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4)) (-4 *5 (-13 (-347) (-950 *4) (-312) (-1115) (-239))))) (-1845 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-961)) (-4 *2 (-13 (-347) (-950 *5) (-312) (-1115) (-239))) (-5 *1 (-383 *5 *3 *2)) (-4 *3 (-1155 *5)))) (-1845 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-1844 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4)) (-4 *5 (-13 (-347) (-950 *4) (-312) (-1115) (-239)))))) -((-3354 ((|#2| (-1179 |#1|)) 42 T ELT)) (-1851 ((|#2| |#2| |#1|) 58 T ELT)) (-1850 ((|#2| |#2| |#1|) 49 T ELT)) (-2298 ((|#2| |#2|) 44 T ELT)) (-3173 (((-85) |#2|) 32 T ELT)) (-1854 (((-583 |#2|) (-830) (-348 |#2|)) 21 T ELT)) (-1853 ((|#2| (-830) (-348 |#2|)) 25 T ELT)) (-1852 (((-675 (-694)) (-348 |#2|)) 29 T ELT))) -(((-384 |#1| |#2|) (-10 -7 (-15 -3173 ((-85) |#2|)) (-15 -3354 (|#2| (-1179 |#1|))) (-15 -2298 (|#2| |#2|)) (-15 -1850 (|#2| |#2| |#1|)) (-15 -1851 (|#2| |#2| |#1|)) (-15 -1852 ((-675 (-694)) (-348 |#2|))) (-15 -1853 (|#2| (-830) (-348 |#2|))) (-15 -1854 ((-583 |#2|) (-830) (-348 |#2|)))) (-961) (-1155 |#1|)) (T -384)) -((-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-348 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-384 *5 *6)))) (-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-348 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-384 *5 *2)) (-4 *5 (-961)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-348 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-961)) (-5 *2 (-675 (-694))) (-5 *1 (-384 *4 *5)))) (-1851 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3)))) (-1850 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3)))) (-2298 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-961)) (-4 *2 (-1155 *4)) (-5 *1 (-384 *4 *2)))) (-3173 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-384 *4 *3)) (-4 *3 (-1155 *4))))) -((-1857 (((-694)) 59 T ELT)) (-1861 (((-694)) 29 (|has| |#1| (-347)) ELT) (((-694) (-694)) 28 (|has| |#1| (-347)) ELT)) (-1860 (((-484) |#1|) 25 (|has| |#1| (-347)) ELT)) (-1859 (((-484) |#1|) 27 (|has| |#1| (-347)) ELT)) (-1856 (((-694)) 58 T ELT) (((-694) (-694)) 57 T ELT)) (-1855 ((|#1| (-694) (-484)) 37 T ELT)) (-1858 (((-1185)) 61 T ELT))) -(((-385 |#1|) (-10 -7 (-15 -1855 (|#1| (-694) (-484))) (-15 -1856 ((-694) (-694))) (-15 -1856 ((-694))) (-15 -1857 ((-694))) (-15 -1858 ((-1185))) (IF (|has| |#1| (-347)) (PROGN (-15 -1859 ((-484) |#1|)) (-15 -1860 ((-484) |#1|)) (-15 -1861 ((-694) (-694))) (-15 -1861 ((-694)))) |%noBranch|)) (-961)) (T -385)) -((-1861 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961)))) (-1861 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961)))) (-1860 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961)))) (-1859 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961)))) (-1858 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-385 *3)) (-4 *3 (-961)))) (-1857 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-961)))) (-1856 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-961)))) (-1856 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-961)))) (-1855 (*1 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-484)) (-5 *1 (-385 *2)) (-4 *2 (-961))))) -((-1862 (((-583 (-484)) (-484)) 76 T ELT)) (-3723 (((-85) (-142 (-484))) 84 T ELT)) (-3732 (((-348 (-142 (-484))) (-142 (-484))) 75 T ELT))) -(((-386) (-10 -7 (-15 -3732 ((-348 (-142 (-484))) (-142 (-484)))) (-15 -1862 ((-583 (-484)) (-484))) (-15 -3723 ((-85) (-142 (-484)))))) (T -386)) -((-3723 (*1 *2 *3) (-12 (-5 *3 (-142 (-484))) (-5 *2 (-85)) (-5 *1 (-386)))) (-1862 (*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-386)) (-5 *3 (-484)))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-348 (-142 (-484)))) (-5 *1 (-386)) (-5 *3 (-142 (-484)))))) -((-2946 ((|#4| |#4| (-583 |#4|)) 20 (|has| |#1| (-312)) ELT)) (-2251 (((-583 |#4|) (-583 |#4|) (-1073) (-1073)) 46 T ELT) (((-583 |#4|) (-583 |#4|) (-1073)) 45 T ELT) (((-583 |#4|) (-583 |#4|)) 34 T ELT))) -(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2251 ((-583 |#4|) (-583 |#4|))) (-15 -2251 ((-583 |#4|) (-583 |#4|) (-1073))) (-15 -2251 ((-583 |#4|) (-583 |#4|) (-1073) (-1073))) (IF (|has| |#1| (-312)) (-15 -2946 (|#4| |#4| (-583 |#4|))) |%noBranch|)) (-392) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -387)) -((-2946 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2)))) (-2251 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7)))) (-2251 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6))))) -((-1863 ((|#4| |#4| (-583 |#4|)) 82 T ELT)) (-1864 (((-583 |#4|) (-583 |#4|) (-1073) (-1073)) 22 T ELT) (((-583 |#4|) (-583 |#4|) (-1073)) 21 T ELT) (((-583 |#4|) (-583 |#4|)) 13 T ELT))) -(((-388 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1863 (|#4| |#4| (-583 |#4|))) (-15 -1864 ((-583 |#4|) (-583 |#4|))) (-15 -1864 ((-583 |#4|) (-583 |#4|) (-1073))) (-15 -1864 ((-583 |#4|) (-583 |#4|) (-1073) (-1073)))) (-258) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -388)) -((-1864 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1864 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1864 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-388 *3 *4 *5 *6)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-388 *4 *5 *6 *2))))) -((-1866 (((-583 (-583 |#4|)) (-583 |#4|) (-85)) 90 T ELT) (((-583 (-583 |#4|)) (-583 |#4|)) 89 T ELT) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-85)) 83 T ELT) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|)) 84 T ELT)) (-1865 (((-583 (-583 |#4|)) (-583 |#4|) (-85)) 56 T ELT) (((-583 (-583 |#4|)) (-583 |#4|)) 78 T ELT))) -(((-389 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1865 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1865 ((-583 (-583 |#4|)) (-583 |#4|) (-85))) (-15 -1866 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -1866 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-85))) (-15 -1866 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1866 ((-583 (-583 |#4|)) (-583 |#4|) (-85)))) (-13 (-258) (-120)) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -389)) -((-1866 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1866 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1866 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1866 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1865 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1865 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) -((-1890 (((-694) |#4|) 12 T ELT)) (-1878 (((-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|))) |#4| (-694) (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|)))) 39 T ELT)) (-1880 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1879 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1868 ((|#4| |#4| (-583 |#4|)) 54 T ELT)) (-1876 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|)) 96 T ELT)) (-1883 (((-1185) |#4|) 59 T ELT)) (-1886 (((-1185) (-583 |#4|)) 69 T ELT)) (-1884 (((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484)) 66 T ELT)) (-1887 (((-1185) (-484)) 110 T ELT)) (-1881 (((-583 |#4|) (-583 |#4|)) 104 T ELT)) (-1889 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|)) |#4| (-694)) 31 T ELT)) (-1882 (((-484) |#4|) 109 T ELT)) (-1877 ((|#4| |#4|) 37 T ELT)) (-1869 (((-583 |#4|) (-583 |#4|) (-484) (-484)) 74 T ELT)) (-1885 (((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484) (-484)) 123 T ELT)) (-1888 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1870 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1875 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1874 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1871 (((-85) |#2| |#2|) 75 T ELT)) (-1873 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1872 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1867 ((|#4| |#4| (-583 |#4|)) 97 T ELT))) -(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1867 (|#4| |#4| (-583 |#4|))) (-15 -1868 (|#4| |#4| (-583 |#4|))) (-15 -1869 ((-583 |#4|) (-583 |#4|) (-484) (-484))) (-15 -1870 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1871 ((-85) |#2| |#2|)) (-15 -1872 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1873 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1874 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1875 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1876 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -1877 (|#4| |#4|)) (-15 -1878 ((-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|))) |#4| (-694) (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|))))) (-15 -1879 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1880 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1881 ((-583 |#4|) (-583 |#4|))) (-15 -1882 ((-484) |#4|)) (-15 -1883 ((-1185) |#4|)) (-15 -1884 ((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484))) (-15 -1885 ((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484) (-484))) (-15 -1886 ((-1185) (-583 |#4|))) (-15 -1887 ((-1185) (-484))) (-15 -1888 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1889 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|)) |#4| (-694))) (-15 -1890 ((-694) |#4|))) (-392) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -390)) -((-1890 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1889 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-694)) (|:| -2004 *4))) (-5 *5 (-694)) (-4 *4 (-861 *6 *7 *8)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-390 *6 *7 *8 *4)))) (-1888 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1185)) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1185)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1885 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-756)) (-5 *1 (-390 *5 *6 *7 *4)))) (-1884 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-756)) (-5 *1 (-390 *5 *6 *7 *4)))) (-1883 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1185)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1882 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-484)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1881 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1880 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-756)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-717)) (-4 *2 (-861 *4 *5 *6)) (-5 *1 (-390 *4 *5 *6 *2)) (-4 *4 (-392)) (-4 *6 (-756)))) (-1878 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 *3)))) (-5 *4 (-694)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-390 *5 *6 *7 *3)))) (-1877 (*1 *2 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-390 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-1876 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-390 *5 *6 *7 *3)))) (-1875 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-717)) (-4 *6 (-861 *4 *3 *5)) (-4 *4 (-392)) (-4 *5 (-756)) (-5 *1 (-390 *4 *3 *5 *6)))) (-1874 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-756)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1873 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-717)) (-4 *3 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-756)) (-5 *1 (-390 *4 *5 *6 *3)))) (-1872 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-392)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))) (-1871 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1869 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-484)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1868 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-390 *4 *5 *6 *2)))) (-1867 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-390 *4 *5 *6 *2))))) -((-1891 (($ $ $) 14 T ELT) (($ (-583 $)) 21 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 45 T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) 22 T ELT))) -(((-391 |#1|) (-10 -7 (-15 -2708 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|))) (-15 -1891 (|#1| (-583 |#1|))) (-15 -1891 (|#1| |#1| |#1|)) (-15 -3144 (|#1| (-583 |#1|))) (-15 -3144 (|#1| |#1| |#1|))) (-392)) (T -391)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) +((-2013 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-361 *3)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-3224 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 (-631 *3))))) (-1893 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-584 (-858 *3))))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-1792 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1791 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1790 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1789 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1788 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1905 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1086 (-858 *3))))) (-1901 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1086 (-858 *3))))) (-2546 (*1 *1 *2 *1) (-12 (-5 *2 (-631 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146))))) +(-13 (-316 |t#1|) (-241 (-485) |t#1|) (-10 -8 (-15 -2013 ((-1180 $))) (-15 -3225 ((-1180 |t#1|) $)) (-15 -3225 ((-631 |t#1|) (-1180 $))) (-15 -3224 ((-1180 (-631 |t#1|)))) (-15 -1893 ((-584 (-858 |t#1|)))) (-15 -1793 ($ (-1180 |t#1|))) (-15 -3973 ((-1180 |t#1|) $)) (-15 -3973 ($ (-1180 |t#1|))) (-15 -1792 (|t#1|)) (-15 -1791 (|t#1|)) (-15 -1790 ((-631 |t#1|))) (-15 -1789 ((-631 |t#1|))) (-15 -1788 ((-631 |t#1|) $)) (-15 -1787 ((-631 |t#1|) $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -1905 ((-1086 (-858 |t#1|)))) (-15 -1901 ((-1086 (-858 |t#1|))))) |%noBranch|) (-15 -2546 ($ (-631 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-241 (-485) |#1|) . T) ((-316 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-684 |#1|) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-3135 (((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|)) 28 T ELT)) (-1794 (((-348 |#1|) (-348 |#1|) (-348 |#1|)) 17 T ELT))) +(((-362 |#1|) (-10 -7 (-15 -3135 ((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|))) (-15 -1794 ((-348 |#1|) (-348 |#1|) (-348 |#1|)))) (-496)) (T -362)) +((-1794 (*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-496)) (-5 *1 (-362 *3)))) (-3135 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-496)) (-5 *2 (-348 *4)) (-5 *1 (-362 *4))))) +((-3082 (((-584 (-1091)) $) 81 T ELT)) (-3084 (((-350 (-1086 $)) $ (-551 $)) 313 T ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 277 T ELT)) (-3158 (((-3 (-551 $) #1="failed") $) NIL T ELT) (((-3 (-1091) #1#) $) 84 T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-350 (-858 |#2|)) #1#) $) 363 T ELT) (((-3 (-858 |#2|) #1#) $) 275 T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3157 (((-551 $) $) NIL T ELT) (((-1091) $) 28 T ELT) (((-485) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-350 (-858 |#2|)) $) 345 T ELT) (((-858 |#2|) $) 272 T ELT) (((-350 (-485)) $) NIL T ELT)) (-3596 (((-86) (-86)) 47 T ELT)) (-2997 (($ $) 99 T ELT)) (-1603 (((-3 (-551 $) #1#) $) 268 T ELT)) (-1602 (((-584 (-551 $)) $) 269 T ELT)) (-2824 (((-3 (-584 $) #1#) $) 287 T ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) #1#) $) 294 T ELT)) (-2823 (((-3 (-584 $) #1#) $) 285 T ELT)) (-1795 (((-3 (-2 (|:| -3955 (-485)) (|:| |var| (-551 $))) #1#) $) 304 T ELT)) (-2825 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-1091)) 257 T ELT)) (-1798 (((-85) $) 17 T ELT)) (-1797 ((|#2| $) 19 T ELT)) (-3769 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 276 T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 109 T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1091)) 62 T ELT) (($ $ (-584 (-1091))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1091)) 65 T ELT) (($ $ (-584 (-86)) (-584 $) (-1091)) 72 T ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) 120 T ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 282 T ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) 105 T ELT) (($ $ (-1091) (-695) (-1 $ $)) 104 T ELT)) (-3801 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) 119 T ELT)) (-3759 (($ $ (-1091)) 278 T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-2996 (($ $) 324 T ELT)) (-3973 (((-801 (-485)) $) 297 T ELT) (((-801 (-330)) $) 301 T ELT) (($ (-348 $)) 359 T ELT) (((-474) $) NIL T ELT)) (-3947 (((-773) $) 279 T ELT) (($ (-551 $)) 93 T ELT) (($ (-1091)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1040 |#2| (-551 $))) NIL T ELT) (($ (-350 |#2|)) 329 T ELT) (($ (-858 (-350 |#2|))) 368 T ELT) (($ (-350 (-858 (-350 |#2|)))) 341 T ELT) (($ (-350 (-858 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-858 |#2|)) 216 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) 373 T ELT)) (-3127 (((-695)) 88 T CONST)) (-2255 (((-85) (-86)) 42 T ELT)) (-1796 (($ (-1091) $) 31 T ELT) (($ (-1091) $ $) 32 T ELT) (($ (-1091) $ $ $) 33 T ELT) (($ (-1091) $ $ $ $) 34 T ELT) (($ (-1091) (-584 $)) 39 T ELT)) (* (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT))) +(((-363 |#1| |#2|) (-10 -7 (-15 * (|#1| (-831) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 -3947 (|#1| (-350 (-485)))) (-15 -3158 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3947 (|#1| (-485))) (-15 -3127 ((-695)) -3953) (-15 * (|#1| |#2| |#1|)) (-15 -3973 ((-474) |#1|)) (-15 -3947 (|#1| (-858 |#2|))) (-15 -3158 ((-3 (-858 |#2|) #1#) |#1|)) (-15 -3157 ((-858 |#2|) |#1|)) (-15 -3759 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3759 (|#1| |#1| (-1091) (-695))) (-15 -3759 (|#1| |#1| (-584 (-1091)))) (-15 -3759 (|#1| |#1| (-1091))) (-15 * (|#1| |#1| |#2|)) (-15 -3947 (|#1| |#1|)) (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3947 (|#1| (-350 (-858 |#2|)))) (-15 -3158 ((-3 (-350 (-858 |#2|)) #1#) |#1|)) (-15 -3157 ((-350 (-858 |#2|)) |#1|)) (-15 -3084 ((-350 (-1086 |#1|)) |#1| (-551 |#1|))) (-15 -3947 (|#1| (-350 (-858 (-350 |#2|))))) (-15 -3947 (|#1| (-858 (-350 |#2|)))) (-15 -3947 (|#1| (-350 |#2|))) (-15 -2996 (|#1| |#1|)) (-15 -3973 (|#1| (-348 |#1|))) (-15 -3769 (|#1| |#1| (-1091) (-695) (-1 |#1| |#1|))) (-15 -3769 (|#1| |#1| (-1091) (-695) (-1 |#1| (-584 |#1|)))) (-15 -3769 (|#1| |#1| (-584 (-1091)) (-584 (-695)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3769 (|#1| |#1| (-584 (-1091)) (-584 (-695)) (-584 (-1 |#1| |#1|)))) (-15 -2826 ((-3 (-2 (|:| |val| |#1|) (|:| -2402 (-485))) #1#) |#1|)) (-15 -2825 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2402 (-485))) #1#) |#1| (-1091))) (-15 -2825 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2402 (-485))) #1#) |#1| (-86))) (-15 -2997 (|#1| |#1|)) (-15 -3947 (|#1| (-1040 |#2| (-551 |#1|)))) (-15 -1795 ((-3 (-2 (|:| -3955 (-485)) (|:| |var| (-551 |#1|))) #1#) |#1|)) (-15 -2823 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2825 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2402 (-485))) #1#) |#1|)) (-15 -2824 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -3769 (|#1| |#1| (-584 (-86)) (-584 |#1|) (-1091))) (-15 -3769 (|#1| |#1| (-86) |#1| (-1091))) (-15 -3769 (|#1| |#1|)) (-15 -3769 (|#1| |#1| (-584 (-1091)))) (-15 -3769 (|#1| |#1| (-1091))) (-15 -1796 (|#1| (-1091) (-584 |#1|))) (-15 -1796 (|#1| (-1091) |#1| |#1| |#1| |#1|)) (-15 -1796 (|#1| (-1091) |#1| |#1| |#1|)) (-15 -1796 (|#1| (-1091) |#1| |#1|)) (-15 -1796 (|#1| (-1091) |#1|)) (-15 -3082 ((-584 (-1091)) |#1|)) (-15 -1797 (|#2| |#1|)) (-15 -1798 ((-85) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3973 ((-801 (-330)) |#1|)) (-15 -3973 ((-801 (-485)) |#1|)) (-15 -3947 (|#1| (-1091))) (-15 -3158 ((-3 (-1091) #1#) |#1|)) (-15 -3157 ((-1091) |#1|)) (-15 -3769 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3769 (|#1| |#1| (-86) (-1 |#1| (-584 |#1|)))) (-15 -3769 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3769 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| |#1|)))) (-15 -3769 (|#1| |#1| (-1091) (-1 |#1| |#1|))) (-15 -3769 (|#1| |#1| (-1091) (-1 |#1| (-584 |#1|)))) (-15 -3769 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3769 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| |#1|)))) (-15 -2255 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 -1602 ((-584 (-551 |#1|)) |#1|)) (-15 -1603 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -1605 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -1605 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -1605 (|#1| |#1| (-249 |#1|))) (-15 -3801 (|#1| (-86) (-584 |#1|))) (-15 -3801 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1|)) (-15 -3769 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3769 (|#1| |#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| (-249 |#1|))) (-15 -3769 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3769 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -3769 (|#1| |#1| (-551 |#1|) |#1|)) (-15 -3947 (|#1| (-551 |#1|))) (-15 -3158 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -3157 ((-551 |#1|) |#1|)) (-15 -3947 ((-773) |#1|))) (-364 |#2|) (-1014)) (T -363)) +((-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1014)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5)) (-4 *4 (-364 *5)))) (-3127 (*1 *2) (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3082 (((-584 (-1091)) $) 222 T ELT)) (-3084 (((-350 (-1086 $)) $ (-551 $)) 190 (|has| |#1| (-496)) ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 162 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 163 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 165 (|has| |#1| (-496)) ELT)) (-1601 (((-584 (-551 $)) $) 42 T ELT)) (-1313 (((-3 $ "failed") $ $) 132 (|has| |#1| (-21)) ELT)) (-1605 (($ $ (-249 $)) 54 T ELT) (($ $ (-584 (-249 $))) 53 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 52 T ELT)) (-3776 (($ $) 182 (|has| |#1| (-496)) ELT)) (-3972 (((-348 $) $) 183 (|has| |#1| (-496)) ELT)) (-1609 (((-85) $ $) 173 (|has| |#1| (-496)) ELT)) (-3725 (($) 117 (OR (|has| |#1| (-1026)) (|has| |#1| (-25))) CONST)) (-3158 (((-3 (-551 $) #1="failed") $) 67 T ELT) (((-3 (-1091) #1#) $) 235 T ELT) (((-3 (-485) #1#) $) 229 (|has| |#1| (-951 (-485))) ELT) (((-3 |#1| #1#) $) 226 T ELT) (((-3 (-350 (-858 |#1|)) #1#) $) 188 (|has| |#1| (-496)) ELT) (((-3 (-858 |#1|) #1#) $) 137 (|has| |#1| (-962)) ELT) (((-3 (-350 (-485)) #1#) $) 111 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3157 (((-551 $) $) 68 T ELT) (((-1091) $) 236 T ELT) (((-485) $) 228 (|has| |#1| (-951 (-485))) ELT) ((|#1| $) 227 T ELT) (((-350 (-858 |#1|)) $) 189 (|has| |#1| (-496)) ELT) (((-858 |#1|) $) 138 (|has| |#1| (-962)) ELT) (((-350 (-485)) $) 112 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2565 (($ $ $) 177 (|has| |#1| (-496)) ELT)) (-2280 (((-631 (-485)) (-631 $)) 155 (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 154 (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 153 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-631 $)) 152 (|has| |#1| (-962)) ELT)) (-3468 (((-3 $ "failed") $) 119 (|has| |#1| (-1026)) ELT)) (-2564 (($ $ $) 176 (|has| |#1| (-496)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 171 (|has| |#1| (-496)) ELT)) (-3724 (((-85) $) 184 (|has| |#1| (-496)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 231 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 230 (|has| |#1| (-797 (-330))) ELT)) (-2574 (($ $) 49 T ELT) (($ (-584 $)) 48 T ELT)) (-1215 (((-85) $ $) 131 (|has| |#1| (-25)) ELT)) (-1600 (((-584 (-86)) $) 41 T ELT)) (-3596 (((-86) (-86)) 40 T ELT)) (-2411 (((-85) $) 118 (|has| |#1| (-1026)) ELT)) (-2674 (((-85) $) 20 (|has| $ (-951 (-485))) ELT)) (-2997 (($ $) 205 (|has| |#1| (-962)) ELT)) (-2999 (((-1040 |#1| (-551 $)) $) 206 (|has| |#1| (-962)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 180 (|has| |#1| (-496)) ELT)) (-1598 (((-1086 $) (-551 $)) 23 (|has| $ (-962)) ELT)) (-3959 (($ (-1 $ $) (-551 $)) 34 T ELT)) (-1603 (((-3 (-551 $) "failed") $) 44 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 157 (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 156 (-2563 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 151 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-1180 $)) 150 (|has| |#1| (-962)) ELT)) (-1892 (($ (-584 $)) 169 (|has| |#1| (-496)) ELT) (($ $ $) 168 (|has| |#1| (-496)) ELT)) (-3243 (((-1074) $) 11 T ELT)) (-1602 (((-584 (-551 $)) $) 43 T ELT)) (-2236 (($ (-86) $) 36 T ELT) (($ (-86) (-584 $)) 35 T ELT)) (-2824 (((-3 (-584 $) "failed") $) 211 (|has| |#1| (-1026)) ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) "failed") $) 202 (|has| |#1| (-962)) ELT)) (-2823 (((-3 (-584 $) "failed") $) 209 (|has| |#1| (-25)) ELT)) (-1795 (((-3 (-2 (|:| -3955 (-485)) (|:| |var| (-551 $))) "failed") $) 208 (|has| |#1| (-25)) ELT)) (-2825 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $) 210 (|has| |#1| (-1026)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-86)) 204 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-1091)) 203 (|has| |#1| (-962)) ELT)) (-2634 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1091)) 37 T ELT)) (-2485 (($ $) 121 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-2604 (((-695) $) 45 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1798 (((-85) $) 224 T ELT)) (-1797 ((|#1| $) 223 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 170 (|has| |#1| (-496)) ELT)) (-3145 (($ (-584 $)) 167 (|has| |#1| (-496)) ELT) (($ $ $) 166 (|has| |#1| (-496)) ELT)) (-1599 (((-85) $ $) 33 T ELT) (((-85) $ (-1091)) 32 T ELT)) (-3733 (((-348 $) $) 181 (|has| |#1| (-496)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 179 (|has| |#1| (-496)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 178 (|has| |#1| (-496)) ELT)) (-3467 (((-3 $ "failed") $ $) 161 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 172 (|has| |#1| (-496)) ELT)) (-2675 (((-85) $) 21 (|has| $ (-951 (-485))) ELT)) (-3769 (($ $ (-551 $) $) 65 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 64 T ELT) (($ $ (-584 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-584 $) (-584 $)) 60 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 31 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 30 T ELT) (($ $ (-1091) (-1 $ (-584 $))) 29 T ELT) (($ $ (-1091) (-1 $ $)) 28 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 27 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-584 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1091)) 216 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091))) 215 (|has| |#1| (-554 (-474))) ELT) (($ $) 214 (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) $ (-1091)) 213 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-86)) (-584 $) (-1091)) 212 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) 201 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 200 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) 199 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ $)) 198 (|has| |#1| (-962)) ELT)) (-1608 (((-695) $) 174 (|has| |#1| (-496)) ELT)) (-3801 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-584 $)) 55 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 175 (|has| |#1| (-496)) ELT)) (-1604 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3759 (($ $ (-1091)) 148 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 146 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 145 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 144 (|has| |#1| (-962)) ELT)) (-2996 (($ $) 195 (|has| |#1| (-496)) ELT)) (-2998 (((-1040 |#1| (-551 $)) $) 196 (|has| |#1| (-496)) ELT)) (-3186 (($ $) 22 (|has| $ (-962)) ELT)) (-3973 (((-801 (-485)) $) 233 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 232 (|has| |#1| (-554 (-801 (-330)))) ELT) (($ (-348 $)) 197 (|has| |#1| (-496)) ELT) (((-474) $) 113 (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $ $) 124 (|has| |#1| (-413)) ELT)) (-2436 (($ $ $) 125 (|has| |#1| (-413)) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-551 $)) 66 T ELT) (($ (-1091)) 234 T ELT) (($ |#1|) 225 T ELT) (($ (-1040 |#1| (-551 $))) 207 (|has| |#1| (-962)) ELT) (($ (-350 |#1|)) 193 (|has| |#1| (-496)) ELT) (($ (-858 (-350 |#1|))) 192 (|has| |#1| (-496)) ELT) (($ (-350 (-858 (-350 |#1|)))) 191 (|has| |#1| (-496)) ELT) (($ (-350 (-858 |#1|))) 187 (|has| |#1| (-496)) ELT) (($ $) 160 (|has| |#1| (-496)) ELT) (($ (-858 |#1|)) 136 (|has| |#1| (-962)) ELT) (($ (-350 (-485))) 110 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ (-485)) 109 (OR (|has| |#1| (-962)) (|has| |#1| (-951 (-485)))) ELT)) (-2703 (((-633 $) $) 158 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 140 (|has| |#1| (-962)) CONST)) (-2591 (($ $) 51 T ELT) (($ (-584 $)) 50 T ELT)) (-2255 (((-85) (-86)) 39 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 164 (|has| |#1| (-496)) ELT)) (-1796 (($ (-1091) $) 221 T ELT) (($ (-1091) $ $) 220 T ELT) (($ (-1091) $ $ $) 219 T ELT) (($ (-1091) $ $ $ $) 218 T ELT) (($ (-1091) (-584 $)) 217 T ELT)) (-3126 (((-85) $ $) 139 (|has| |#1| (-962)) ELT)) (-2661 (($) 128 (|has| |#1| (-25)) CONST)) (-2667 (($) 116 (|has| |#1| (-1026)) CONST)) (-2670 (($ $ (-1091)) 147 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 143 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 142 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 141 (|has| |#1| (-962)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ (-1040 |#1| (-551 $)) (-1040 |#1| (-551 $))) 194 (|has| |#1| (-496)) ELT) (($ $ $) 122 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-3838 (($ $ $) 135 (|has| |#1| (-21)) ELT) (($ $) 134 (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-485)) 123 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT) (($ $ (-695)) 120 (|has| |#1| (-1026)) ELT) (($ $ (-831)) 115 (|has| |#1| (-1026)) ELT)) (* (($ (-350 (-485)) $) 186 (|has| |#1| (-496)) ELT) (($ $ (-350 (-485))) 185 (|has| |#1| (-496)) ELT) (($ $ |#1|) 159 (|has| |#1| (-146)) ELT) (($ |#1| $) 149 (|has| |#1| (-962)) ELT) (($ (-485) $) 133 (|has| |#1| (-21)) ELT) (($ (-695) $) 130 (|has| |#1| (-25)) ELT) (($ (-831) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1026)) ELT))) +(((-364 |#1|) (-113) (-1014)) (T -364)) +((-1798 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-1091))))) (-1796 (*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1796 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1796 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1796 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1796 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-584 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-554 (-474))))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1091))) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-554 (-474))))) (-3769 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-554 (-474))))) (-3769 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1091)) (-4 *1 (-364 *4)) (-4 *4 (-1014)) (-4 *4 (-554 (-474))))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 *1)) (-5 *4 (-1091)) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-554 (-474))))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-364 *3)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *3)))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-364 *3)))) (-1795 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014)) (-5 *2 (-2 (|:| -3955 (-485)) (|:| |var| (-551 *1)))) (-4 *1 (-364 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-962)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1))) (-4 *1 (-364 *3)))) (-2997 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-962)))) (-2825 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4)))) (-2825 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4)))) (-2826 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *3 (-1014)) (-5 *2 (-2 (|:| |val| *1) (|:| -2402 (-485)))) (-4 *1 (-364 *3)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 (-584 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-496)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1))) (-4 *1 (-364 *3)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-496)))) (-3950 (*1 *1 *2 *2) (-12 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-858 (-350 *3))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-350 (-858 (-350 *3)))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-551 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014)) (-4 *4 (-496)) (-5 *2 (-350 (-1086 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-1026))))) +(-13 (-254) (-951 (-1091)) (-795 |t#1|) (-343 |t#1|) (-355 |t#1|) (-10 -8 (-15 -1798 ((-85) $)) (-15 -1797 (|t#1| $)) (-15 -3082 ((-584 (-1091)) $)) (-15 -1796 ($ (-1091) $)) (-15 -1796 ($ (-1091) $ $)) (-15 -1796 ($ (-1091) $ $ $)) (-15 -1796 ($ (-1091) $ $ $ $)) (-15 -1796 ($ (-1091) (-584 $))) (IF (|has| |t#1| (-554 (-474))) (PROGN (-6 (-554 (-474))) (-15 -3769 ($ $ (-1091))) (-15 -3769 ($ $ (-584 (-1091)))) (-15 -3769 ($ $)) (-15 -3769 ($ $ (-86) $ (-1091))) (-15 -3769 ($ $ (-584 (-86)) (-584 $) (-1091)))) |%noBranch|) (IF (|has| |t#1| (-1026)) (PROGN (-6 (-664)) (-15 ** ($ $ (-695))) (-15 -2824 ((-3 (-584 $) "failed") $)) (-15 -2825 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-413)) (-6 (-413)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2823 ((-3 (-584 $) "failed") $)) (-15 -1795 ((-3 (-2 (|:| -3955 (-485)) (|:| |var| (-551 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-6 (-962)) (-6 (-951 (-858 |t#1|))) (-6 (-810 (-1091))) (-6 (-329 |t#1|)) (-15 -3947 ($ (-1040 |t#1| (-551 $)))) (-15 -2999 ((-1040 |t#1| (-551 $)) $)) (-15 -2997 ($ $)) (-15 -2825 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-86))) (-15 -2825 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-1091))) (-15 -2826 ((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) "failed") $)) (-15 -3769 ($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $)))) (-15 -3769 ($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $))))) (-15 -3769 ($ $ (-1091) (-695) (-1 $ (-584 $)))) (-15 -3769 ($ $ (-1091) (-695) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-6 (-312)) (-6 (-951 (-350 (-858 |t#1|)))) (-15 -3973 ($ (-348 $))) (-15 -2998 ((-1040 |t#1| (-551 $)) $)) (-15 -2996 ($ $)) (-15 -3950 ($ (-1040 |t#1| (-551 $)) (-1040 |t#1| (-551 $)))) (-15 -3947 ($ (-350 |t#1|))) (-15 -3947 ($ (-858 (-350 |t#1|)))) (-15 -3947 ($ (-350 (-858 (-350 |t#1|))))) (-15 -3084 ((-350 (-1086 $)) $ (-551 $))) (IF (|has| |t#1| (-951 (-485))) (-6 (-951 (-350 (-485)))) |%noBranch|)) |%noBranch|))) +(((-21) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-350 (-485))) |has| |#1| (-496)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-496)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-496)) ((-104) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-496))) ((-556 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-556 (-485)) OR (|has| |#1| (-962)) (|has| |#1| (-951 (-485))) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-556 (-551 $)) . T) ((-556 (-858 |#1|)) |has| |#1| (-962)) ((-556 (-1091)) . T) ((-556 |#1|) . T) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) |has| |#1| (-496)) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-201) |has| |#1| (-496)) ((-246) |has| |#1| (-496)) ((-258) |has| |#1| (-496)) ((-260 $) . T) ((-254) . T) ((-312) |has| |#1| (-496)) ((-329 |#1|) |has| |#1| (-962)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-392) |has| |#1| (-496)) ((-413) |has| |#1| (-413)) ((-456 (-551 $) $) . T) ((-456 $ $) . T) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-496)) ((-589 (-485)) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-589 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-589 $) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-591 (-350 (-485))) |has| |#1| (-496)) ((-591 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-591 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-591 $) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-583 (-350 (-485))) |has| |#1| (-496)) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-581 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-581 |#1|) |has| |#1| (-962)) ((-655 (-350 (-485))) |has| |#1| (-496)) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) OR (|has| |#1| (-1026)) (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-413)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-807 $ (-1091)) |has| |#1| (-962)) ((-810 (-1091)) |has| |#1| (-962)) ((-812 (-1091)) |has| |#1| (-962)) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-833) |has| |#1| (-496)) ((-951 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485))))) ((-951 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-551 $)) . T) ((-951 (-858 |#1|)) |has| |#1| (-962)) ((-951 (-1091)) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-496)) ((-964 |#1|) |has| |#1| (-146)) ((-964 $) |has| |#1| (-496)) ((-969 (-350 (-485))) |has| |#1| (-496)) ((-969 |#1|) |has| |#1| (-146)) ((-969 $) |has| |#1| (-496)) ((-962) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-971) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1026) OR (|has| |#1| (-1026)) (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-413)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1062) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-496))) +((-3959 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) +(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#3| |#1|) |#2|))) (-962) (-364 |#1|) (-962) (-364 |#3|)) (T -365)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-364 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-364 *5))))) +((-1802 ((|#2| |#2|) 182 T ELT)) (-1799 (((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85)) 60 T ELT))) +(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1799 ((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85))) (-15 -1802 (|#2| |#2|))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|)) (-1091) |#2|) (T -366)) +((-1802 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1116) (-364 *3))) (-14 *4 (-1091)) (-14 *5 *2))) (-1799 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-14 *6 (-1091)) (-14 *7 *3)))) +((-1802 ((|#2| |#2|) 105 T ELT)) (-1800 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074)) 52 T ELT)) (-1801 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074)) 169 T ELT))) +(((-367 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1800 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074))) (-15 -1801 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074))) (-15 -1802 (|#2| |#2|))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|) (-10 -8 (-15 -3947 ($ |#3|)))) (-756) (-13 (-1159 |#2| |#3|) (-312) (-1116) (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $)))) (-897 |#4|) (-1091)) (T -367)) +((-1802 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *2 (-13 (-27) (-1116) (-364 *3) (-10 -8 (-15 -3947 ($ *4))))) (-4 *4 (-756)) (-4 *5 (-13 (-1159 *2 *4) (-312) (-1116) (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $))))) (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-897 *5)) (-14 *7 (-1091)))) (-1801 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *3 (-13 (-27) (-1116) (-364 *6) (-10 -8 (-15 -3947 ($ *7))))) (-4 *7 (-756)) (-4 *8 (-13 (-1159 *3 *7) (-312) (-1116) (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8)) (-14 *10 (-1091)))) (-1800 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *3 (-13 (-27) (-1116) (-364 *6) (-10 -8 (-15 -3947 ($ *7))))) (-4 *7 (-756)) (-4 *8 (-13 (-1159 *3 *7) (-312) (-1116) (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8)) (-14 *10 (-1091))))) +((-1803 (($) 51 T ELT)) (-3235 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3237 (($ $ $) 46 T ELT)) (-3236 (((-85) $ $) 35 T ELT)) (-3137 (((-695)) 55 T ELT)) (-3240 (($ (-584 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2995 (($) 66 T ELT)) (-3242 (((-85) $ $) 15 T ELT)) (-2532 ((|#2| $) 77 T ELT)) (-2858 ((|#2| $) 75 T ELT)) (-2011 (((-831) $) 70 T ELT)) (-3239 (($ $ $) 42 T ELT)) (-2401 (($ (-831)) 60 T ELT)) (-3238 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1947 (((-695) |#2| $) 31 T ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3531 (($ (-584 |#2|)) 27 T ELT)) (-1804 (($ $) 53 T ELT)) (-3947 (((-773) $) 40 T ELT)) (-1805 (((-695) $) 24 T ELT)) (-3241 (($ (-584 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3057 (((-85) $ $) 19 T ELT))) +(((-368 |#1| |#2|) (-10 -7 (-15 -3137 ((-695))) (-15 -2401 (|#1| (-831))) (-15 -2011 ((-831) |#1|)) (-15 -2995 (|#1|)) (-15 -2532 (|#2| |#1|)) (-15 -2858 (|#2| |#1|)) (-15 -1803 (|#1|)) (-15 -1804 (|#1| |#1|)) (-15 -1805 ((-695) |#1|)) (-15 -1947 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-695) |#2| |#1|)) (-15 -3057 ((-85) |#1| |#1|)) (-15 -3947 ((-773) |#1|)) (-15 -3242 ((-85) |#1| |#1|)) (-15 -3241 (|#1|)) (-15 -3241 (|#1| (-584 |#2|))) (-15 -3240 (|#1|)) (-15 -3240 (|#1| (-584 |#2|))) (-15 -3239 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1| |#2|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -3236 ((-85) |#1| |#1|)) (-15 -3235 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1| |#2|)) (-15 -3235 (|#1| |#2| |#1|)) (-15 -3531 (|#1| (-584 |#2|)))) (-369 |#2|) (-1014)) (T -368)) +((-3137 (*1 *2) (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))) +((-2569 (((-85) $ $) 19 T ELT)) (-1803 (($) 72 (|has| |#1| (-320)) ELT)) (-3235 (($ |#1| $) 87 T ELT) (($ $ |#1|) 86 T ELT) (($ $ $) 85 T ELT)) (-3237 (($ $ $) 83 T ELT)) (-3236 (((-85) $ $) 84 T ELT)) (-3137 (((-695)) 66 (|has| |#1| (-320)) ELT)) (-3240 (($ (-584 |#1|)) 79 T ELT) (($) 78 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-1354 (($ $) 62 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ |#1| $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) 61 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3996)) ELT)) (-2995 (($) 69 (|has| |#1| (-320)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3242 (((-85) $ $) 75 T ELT)) (-2532 ((|#1| $) 70 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2858 ((|#1| $) 71 (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2011 (((-831) $) 68 (|has| |#1| (-320)) ELT)) (-3243 (((-1074) $) 22 T ELT)) (-3239 (($ $ $) 80 T ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-2401 (($ (-831)) 67 (|has| |#1| (-320)) ELT)) (-3244 (((-1034) $) 21 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3238 (($ $ |#1|) 82 T ELT) (($ $ $) 81 T ELT)) (-1467 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1947 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 54 T ELT)) (-1804 (($ $) 73 (|has| |#1| (-320)) ELT)) (-3947 (((-773) $) 17 T ELT)) (-1805 (((-695) $) 74 T ELT)) (-3241 (($ (-584 |#1|)) 77 T ELT) (($) 76 T ELT)) (-1266 (((-85) $ $) 20 T ELT)) (-1277 (($ (-584 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 T ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-369 |#1|) (-113) (-1014)) (T -369)) +((-1805 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1014)) (-5 *2 (-695)))) (-1804 (*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-320)))) (-1803 (*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1014)))) (-2858 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757))))) +(-13 (-183 |t#1|) (-1012 |t#1|) (-318 |t#1|) (-10 -8 (-15 -1805 ((-695) $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-320)) (-15 -1804 ($ $)) (-15 -1803 ($))) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-15 -2858 (|t#1| $)) (-15 -2532 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-320) |has| |#1| (-320)) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1036 |#1|) . T) ((-1130) . T)) +((-3842 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3843 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3959 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) +(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3843 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3842 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1014) (-369 |#1|) (-1014) (-369 |#3|)) (T -370)) +((-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1014)) (-4 *5 (-1014)) (-4 *2 (-369 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-369 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1014)) (-4 *2 (-1014)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-369 *5)) (-4 *6 (-369 *2)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-369 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-369 *5))))) +((-1806 (((-520 |#2|) |#2| (-1091)) 36 T ELT)) (-2101 (((-520 |#2|) |#2| (-1091)) 21 T ELT)) (-2150 ((|#2| |#2| (-1091)) 26 T ELT))) +(((-371 |#1| |#2|) (-10 -7 (-15 -2101 ((-520 |#2|) |#2| (-1091))) (-15 -1806 ((-520 |#2|) |#2| (-1091))) (-15 -2150 (|#2| |#2| (-1091)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-29 |#1|))) (T -371)) +((-2150 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1116) (-29 *4))))) (-1806 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5))))) (-2101 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1808 (($ |#2| |#1|) 37 T ELT)) (-1807 (($ |#2| |#1|) 35 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-281 |#2|)) 25 T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 10 T CONST)) (-2667 (($) 16 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 36 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-372 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3983)) (IF (|has| |#1| (-6 -3983)) (-6 -3983) |%noBranch|) |%noBranch|) (-15 -3947 ($ |#1|)) (-15 -3947 ($ (-281 |#2|))) (-15 -1808 ($ |#2| |#1|)) (-15 -1807 ($ |#2| |#1|)))) (-13 (-146) (-38 (-350 (-485)))) (-13 (-757) (-21))) (T -372)) +((-3947 (*1 *1 *2) (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-485))))) (-4 *3 (-13 (-757) (-21))))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-757) (-21))) (-5 *1 (-372 *3 *4)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))))) (-1808 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))) (-4 *2 (-13 (-757) (-21))))) (-1807 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))) (-4 *2 (-13 (-757) (-21)))))) +((-3813 (((-3 |#2| (-584 |#2|)) |#2| (-1091)) 115 T ELT))) +(((-373 |#1| |#2|) (-10 -7 (-15 -3813 ((-3 |#2| (-584 |#2|)) |#2| (-1091)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-872) (-29 |#1|))) (T -373)) +((-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 *3 (-584 *3))) (-5 *1 (-373 *5 *3)) (-4 *3 (-13 (-1116) (-872) (-29 *5)))))) +((-3387 ((|#2| |#2| |#2|) 31 T ELT)) (-3596 (((-86) (-86)) 43 T ELT)) (-1810 ((|#2| |#2|) 63 T ELT)) (-1809 ((|#2| |#2|) 66 T ELT)) (-3386 ((|#2| |#2|) 30 T ELT)) (-3390 ((|#2| |#2| |#2|) 33 T ELT)) (-3392 ((|#2| |#2| |#2|) 35 T ELT)) (-3389 ((|#2| |#2| |#2|) 32 T ELT)) (-3391 ((|#2| |#2| |#2|) 34 T ELT)) (-2255 (((-85) (-86)) 41 T ELT)) (-3394 ((|#2| |#2|) 37 T ELT)) (-3393 ((|#2| |#2|) 36 T ELT)) (-3384 ((|#2| |#2|) 25 T ELT)) (-3388 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3385 ((|#2| |#2| |#2|) 29 T ELT))) +(((-374 |#1| |#2|) (-10 -7 (-15 -2255 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 -3384 (|#2| |#2|)) (-15 -3388 (|#2| |#2|)) (-15 -3388 (|#2| |#2| |#2|)) (-15 -3385 (|#2| |#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3387 (|#2| |#2| |#2|)) (-15 -3389 (|#2| |#2| |#2|)) (-15 -3390 (|#2| |#2| |#2|)) (-15 -3391 (|#2| |#2| |#2|)) (-15 -3392 (|#2| |#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -1809 (|#2| |#2|)) (-15 -1810 (|#2| |#2|))) (-496) (-364 |#1|)) (T -374)) +((-1810 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-1809 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3394 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3392 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3391 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3390 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3387 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3385 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3388 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3388 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3384 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) (-4 *5 (-364 *4))))) +((-2834 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-584 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-584 |#2|)) 65 T ELT))) +(((-375 |#1| |#2|) (-10 -7 (-15 -2834 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-584 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-584 |#2|))) (IF (|has| |#2| (-27)) (-15 -2834 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-496) (-120)) (-364 |#1|)) (T -375)) +((-2834 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1086 *3)) (|:| |pol2| (-1086 *3)) (|:| |prim| (-1086 *3)))) (-5 *1 (-375 *4 *3)) (-4 *3 (-27)) (-4 *3 (-364 *4)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-496) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-584 (-1086 *5))) (|:| |prim| (-1086 *5)))) (-5 *1 (-375 *4 *5))))) +((-1812 (((-1186)) 18 T ELT)) (-1811 (((-1086 (-350 (-485))) |#2| (-551 |#2|)) 40 T ELT) (((-350 (-485)) |#2|) 27 T ELT))) +(((-376 |#1| |#2|) (-10 -7 (-15 -1811 ((-350 (-485)) |#2|)) (-15 -1811 ((-1086 (-350 (-485))) |#2| (-551 |#2|))) (-15 -1812 ((-1186)))) (-13 (-496) (-951 (-485))) (-364 |#1|)) (T -376)) +((-1812 (*1 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *2 (-1186)) (-5 *1 (-376 *3 *4)) (-4 *4 (-364 *3)))) (-1811 (*1 *2 *3 *4) (-12 (-5 *4 (-551 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-376 *5 *3)))) (-1811 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-376 *4 *3)) (-4 *3 (-364 *4))))) +((-3646 (((-85) $) 33 T ELT)) (-1813 (((-85) $) 35 T ELT)) (-3260 (((-85) $) 36 T ELT)) (-1815 (((-85) $) 39 T ELT)) (-1817 (((-85) $) 34 T ELT)) (-1816 (((-85) $) 38 T ELT)) (-3947 (((-773) $) 20 T ELT) (($ (-1074)) 32 T ELT) (($ (-1091)) 30 T ELT) (((-1091) $) 24 T ELT) (((-1016) $) 23 T ELT)) (-1814 (((-85) $) 37 T ELT)) (-3057 (((-85) $ $) 17 T ELT))) +(((-377) (-13 (-553 (-773)) (-10 -8 (-15 -3947 ($ (-1074))) (-15 -3947 ($ (-1091))) (-15 -3947 ((-1091) $)) (-15 -3947 ((-1016) $)) (-15 -3646 ((-85) $)) (-15 -1817 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -1816 ((-85) $)) (-15 -1815 ((-85) $)) (-15 -1814 ((-85) $)) (-15 -1813 ((-85) $)) (-15 -3057 ((-85) $ $))))) (T -377)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-377)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-377)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-377)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-377)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3057 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) +((-1819 (((-3 (-348 (-1086 (-350 (-485)))) #1="failed") |#3|) 71 T ELT)) (-1818 (((-348 |#3|) |#3|) 34 T ELT)) (-1821 (((-3 (-348 (-1086 (-48))) #1#) |#3|) 29 (|has| |#2| (-951 (-48))) ELT)) (-1820 (((-3 (|:| |overq| (-1086 (-350 (-485)))) (|:| |overan| (-1086 (-48))) (|:| -2640 (-85))) |#3|) 37 T ELT))) +(((-378 |#1| |#2| |#3|) (-10 -7 (-15 -1818 ((-348 |#3|) |#3|)) (-15 -1819 ((-3 (-348 (-1086 (-350 (-485)))) #1="failed") |#3|)) (-15 -1820 ((-3 (|:| |overq| (-1086 (-350 (-485)))) (|:| |overan| (-1086 (-48))) (|:| -2640 (-85))) |#3|)) (IF (|has| |#2| (-951 (-48))) (-15 -1821 ((-3 (-348 (-1086 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-496) (-951 (-485))) (-364 |#1|) (-1156 |#2|)) (T -378)) +((-1821 (*1 *2 *3) (|partial| -12 (-4 *5 (-951 (-48))) (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1086 (-48)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-3 (|:| |overq| (-1086 (-350 (-485)))) (|:| |overan| (-1086 (-48))) (|:| -2640 (-85)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-1819 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1086 (-350 (-485))))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-1818 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3)) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1831 (((-3 (|:| |fst| (-377)) (|:| -3911 #1="void")) $) 11 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1828 (($) 35 T ELT)) (-1825 (($) 41 T ELT)) (-1826 (($) 37 T ELT)) (-1823 (($) 39 T ELT)) (-1827 (($) 36 T ELT)) (-1824 (($) 38 T ELT)) (-1822 (($) 40 T ELT)) (-1829 (((-85) $) 8 T ELT)) (-1830 (((-584 (-858 (-485))) $) 19 T ELT)) (-3531 (($ (-3 (|:| |fst| (-377)) (|:| -3911 #1#)) (-584 (-1091)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-377)) (|:| -3911 #1#)) (-584 (-858 (-485))) (-85)) 30 T ELT)) (-3947 (((-773) $) 24 T ELT) (($ (-377)) 32 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-379) (-13 (-1014) (-10 -8 (-15 -3947 ($ (-377))) (-15 -1831 ((-3 (|:| |fst| (-377)) (|:| -3911 #1="void")) $)) (-15 -1830 ((-584 (-858 (-485))) $)) (-15 -1829 ((-85) $)) (-15 -3531 ($ (-3 (|:| |fst| (-377)) (|:| -3911 #1#)) (-584 (-1091)) (-85))) (-15 -3531 ($ (-3 (|:| |fst| (-377)) (|:| -3911 #1#)) (-584 (-858 (-485))) (-85))) (-15 -1828 ($)) (-15 -1827 ($)) (-15 -1826 ($)) (-15 -1825 ($)) (-15 -1824 ($)) (-15 -1823 ($)) (-15 -1822 ($))))) (T -379)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-379)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 #1="void"))) (-5 *1 (-379)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-584 (-858 (-485)))) (-5 *1 (-379)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) (-3531 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) (-5 *3 (-584 (-1091))) (-5 *4 (-85)) (-5 *1 (-379)))) (-3531 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-85)) (-5 *1 (-379)))) (-1828 (*1 *1) (-5 *1 (-379))) (-1827 (*1 *1) (-5 *1 (-379))) (-1826 (*1 *1) (-5 *1 (-379))) (-1825 (*1 *1) (-5 *1 (-379))) (-1824 (*1 *1) (-5 *1 (-379))) (-1823 (*1 *1) (-5 *1 (-379))) (-1822 (*1 *1) (-5 *1 (-379)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3543 (((-1091) $) 8 T ELT)) (-3243 (((-1074) $) 17 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 14 T ELT))) +(((-380 |#1|) (-13 (-1014) (-10 -8 (-15 -3543 ((-1091) $)))) (-1091)) (T -380)) +((-3543 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-380 *3)) (-14 *3 *2)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3320 (((-1029) $) 7 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 9 T ELT))) +(((-381) (-13 (-1014) (-10 -8 (-15 -3320 ((-1029) $))))) (T -381)) +((-3320 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-381))))) +((-1837 (((-85)) 18 T ELT)) (-1838 (((-85) (-85)) 19 T ELT)) (-1839 (((-85)) 14 T ELT)) (-1840 (((-85) (-85)) 15 T ELT)) (-1842 (((-85)) 16 T ELT)) (-1843 (((-85) (-85)) 17 T ELT)) (-1834 (((-831) (-831)) 22 T ELT) (((-831)) 21 T ELT)) (-1835 (((-695) (-584 (-2 (|:| -3733 |#1|) (|:| -3949 (-485))))) 52 T ELT)) (-1833 (((-831) (-831)) 24 T ELT) (((-831)) 23 T ELT)) (-1836 (((-2 (|:| -2579 (-485)) (|:| -1780 (-584 |#1|))) |#1|) 94 T ELT)) (-1832 (((-348 |#1|) (-2 (|:| |contp| (-485)) (|:| -1780 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485))))))) 176 T ELT)) (-3735 (((-2 (|:| |contp| (-485)) (|:| -1780 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85)) 209 T ELT)) (-3734 (((-348 |#1|) |#1| (-695) (-695)) 224 T ELT) (((-348 |#1|) |#1| (-584 (-695)) (-695)) 221 T ELT) (((-348 |#1|) |#1| (-584 (-695))) 223 T ELT) (((-348 |#1|) |#1| (-695)) 222 T ELT) (((-348 |#1|) |#1|) 220 T ELT)) (-1854 (((-3 |#1| #1="failed") (-831) |#1| (-584 (-695)) (-695) (-85)) 226 T ELT) (((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695)) 227 T ELT) (((-3 |#1| #1#) (-831) |#1| (-584 (-695))) 229 T ELT) (((-3 |#1| #1#) (-831) |#1| (-695)) 228 T ELT) (((-3 |#1| #1#) (-831) |#1|) 230 T ELT)) (-3733 (((-348 |#1|) |#1| (-695) (-695)) 219 T ELT) (((-348 |#1|) |#1| (-584 (-695)) (-695)) 215 T ELT) (((-348 |#1|) |#1| (-584 (-695))) 217 T ELT) (((-348 |#1|) |#1| (-695)) 216 T ELT) (((-348 |#1|) |#1|) 214 T ELT)) (-1841 (((-85) |#1|) 43 T ELT)) (-1853 (((-676 (-695)) (-584 (-2 (|:| -3733 |#1|) (|:| -3949 (-485))))) 99 T ELT)) (-1844 (((-2 (|:| |contp| (-485)) (|:| -1780 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85) (-1010 (-695)) (-695)) 213 T ELT))) +(((-382 |#1|) (-10 -7 (-15 -1832 ((-348 |#1|) (-2 (|:| |contp| (-485)) (|:| -1780 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))))) (-15 -1853 ((-676 (-695)) (-584 (-2 (|:| -3733 |#1|) (|:| -3949 (-485)))))) (-15 -1833 ((-831))) (-15 -1833 ((-831) (-831))) (-15 -1834 ((-831))) (-15 -1834 ((-831) (-831))) (-15 -1835 ((-695) (-584 (-2 (|:| -3733 |#1|) (|:| -3949 (-485)))))) (-15 -1836 ((-2 (|:| -2579 (-485)) (|:| -1780 (-584 |#1|))) |#1|)) (-15 -1837 ((-85))) (-15 -1838 ((-85) (-85))) (-15 -1839 ((-85))) (-15 -1840 ((-85) (-85))) (-15 -1841 ((-85) |#1|)) (-15 -1842 ((-85))) (-15 -1843 ((-85) (-85))) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3733 ((-348 |#1|) |#1| (-695))) (-15 -3733 ((-348 |#1|) |#1| (-584 (-695)))) (-15 -3733 ((-348 |#1|) |#1| (-584 (-695)) (-695))) (-15 -3733 ((-348 |#1|) |#1| (-695) (-695))) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3734 ((-348 |#1|) |#1| (-695))) (-15 -3734 ((-348 |#1|) |#1| (-584 (-695)))) (-15 -3734 ((-348 |#1|) |#1| (-584 (-695)) (-695))) (-15 -3734 ((-348 |#1|) |#1| (-695) (-695))) (-15 -1854 ((-3 |#1| #1="failed") (-831) |#1|)) (-15 -1854 ((-3 |#1| #1#) (-831) |#1| (-695))) (-15 -1854 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)))) (-15 -1854 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695))) (-15 -1854 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695) (-85))) (-15 -3735 ((-2 (|:| |contp| (-485)) (|:| -1780 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85))) (-15 -1844 ((-2 (|:| |contp| (-485)) (|:| -1780 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85) (-1010 (-695)) (-695)))) (-1156 (-485))) (T -382)) +((-1844 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1010 (-695))) (-5 *6 (-695)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1780 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1780 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1854 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *6 (-85)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1854 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1854 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1854 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-695)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1854 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-831)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-3734 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3733 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3733 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1843 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1842 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1841 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1840 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1839 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1838 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1837 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1836 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2579 (-485)) (|:| -1780 (-584 *3)))) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3733 *4) (|:| -3949 (-485))))) (-4 *4 (-1156 (-485))) (-5 *2 (-695)) (-5 *1 (-382 *4)))) (-1834 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1834 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1833 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1833 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3733 *4) (|:| -3949 (-485))))) (-4 *4 (-1156 (-485))) (-5 *2 (-676 (-695))) (-5 *1 (-382 *4)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-485)) (|:| -1780 (-584 (-2 (|:| |irr| *4) (|:| -2396 (-485))))))) (-4 *4 (-1156 (-485))) (-5 *2 (-348 *4)) (-5 *1 (-382 *4))))) +((-1848 (((-485) |#2|) 52 T ELT) (((-485) |#2| (-695)) 51 T ELT)) (-1847 (((-485) |#2|) 64 T ELT)) (-1849 ((|#3| |#2|) 26 T ELT)) (-3133 ((|#3| |#2| (-831)) 15 T ELT)) (-3834 ((|#3| |#2|) 16 T ELT)) (-1850 ((|#3| |#2|) 9 T ELT)) (-2604 ((|#3| |#2|) 10 T ELT)) (-1846 ((|#3| |#2| (-831)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1845 (((-485) |#2|) 66 T ELT))) +(((-383 |#1| |#2| |#3|) (-10 -7 (-15 -1845 ((-485) |#2|)) (-15 -1846 (|#3| |#2|)) (-15 -1846 (|#3| |#2| (-831))) (-15 -1847 ((-485) |#2|)) (-15 -1848 ((-485) |#2| (-695))) (-15 -1848 ((-485) |#2|)) (-15 -3133 (|#3| |#2| (-831))) (-15 -1849 (|#3| |#2|)) (-15 -1850 (|#3| |#2|)) (-15 -2604 (|#3| |#2|)) (-15 -3834 (|#3| |#2|))) (-962) (-1156 |#1|) (-13 (-347) (-951 |#1|) (-312) (-1116) (-239))) (T -383)) +((-3834 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-2604 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-1850 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-1849 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-3133 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-962)) (-4 *2 (-13 (-347) (-951 *5) (-312) (-1116) (-239))) (-5 *1 (-383 *5 *3 *2)) (-4 *3 (-1156 *5)))) (-1848 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239))))) (-1848 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *5 *3 *6)) (-4 *3 (-1156 *5)) (-4 *6 (-13 (-347) (-951 *5) (-312) (-1116) (-239))))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239))))) (-1846 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-962)) (-4 *2 (-13 (-347) (-951 *5) (-312) (-1116) (-239))) (-5 *1 (-383 *5 *3 *2)) (-4 *3 (-1156 *5)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-1845 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239)))))) +((-3355 ((|#2| (-1180 |#1|)) 42 T ELT)) (-1852 ((|#2| |#2| |#1|) 58 T ELT)) (-1851 ((|#2| |#2| |#1|) 49 T ELT)) (-2299 ((|#2| |#2|) 44 T ELT)) (-3174 (((-85) |#2|) 32 T ELT)) (-1855 (((-584 |#2|) (-831) (-348 |#2|)) 21 T ELT)) (-1854 ((|#2| (-831) (-348 |#2|)) 25 T ELT)) (-1853 (((-676 (-695)) (-348 |#2|)) 29 T ELT))) +(((-384 |#1| |#2|) (-10 -7 (-15 -3174 ((-85) |#2|)) (-15 -3355 (|#2| (-1180 |#1|))) (-15 -2299 (|#2| |#2|)) (-15 -1851 (|#2| |#2| |#1|)) (-15 -1852 (|#2| |#2| |#1|)) (-15 -1853 ((-676 (-695)) (-348 |#2|))) (-15 -1854 (|#2| (-831) (-348 |#2|))) (-15 -1855 ((-584 |#2|) (-831) (-348 |#2|)))) (-962) (-1156 |#1|)) (T -384)) +((-1855 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-348 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-962)) (-5 *2 (-584 *6)) (-5 *1 (-384 *5 *6)))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-348 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-384 *5 *2)) (-4 *5 (-962)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-348 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-962)) (-5 *2 (-676 (-695))) (-5 *1 (-384 *4 *5)))) (-1852 (*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))) (-1851 (*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))) (-2299 (*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-962)) (-4 *2 (-1156 *4)) (-5 *1 (-384 *4 *2)))) (-3174 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-384 *4 *3)) (-4 *3 (-1156 *4))))) +((-1858 (((-695)) 59 T ELT)) (-1862 (((-695)) 29 (|has| |#1| (-347)) ELT) (((-695) (-695)) 28 (|has| |#1| (-347)) ELT)) (-1861 (((-485) |#1|) 25 (|has| |#1| (-347)) ELT)) (-1860 (((-485) |#1|) 27 (|has| |#1| (-347)) ELT)) (-1857 (((-695)) 58 T ELT) (((-695) (-695)) 57 T ELT)) (-1856 ((|#1| (-695) (-485)) 37 T ELT)) (-1859 (((-1186)) 61 T ELT))) +(((-385 |#1|) (-10 -7 (-15 -1856 (|#1| (-695) (-485))) (-15 -1857 ((-695) (-695))) (-15 -1857 ((-695))) (-15 -1858 ((-695))) (-15 -1859 ((-1186))) (IF (|has| |#1| (-347)) (PROGN (-15 -1860 ((-485) |#1|)) (-15 -1861 ((-485) |#1|)) (-15 -1862 ((-695) (-695))) (-15 -1862 ((-695)))) |%noBranch|)) (-962)) (T -385)) +((-1862 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1862 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1861 (*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1860 (*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1859 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1858 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1857 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1857 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-485)) (-5 *1 (-385 *2)) (-4 *2 (-962))))) +((-1863 (((-584 (-485)) (-485)) 76 T ELT)) (-3724 (((-85) (-142 (-485))) 84 T ELT)) (-3733 (((-348 (-142 (-485))) (-142 (-485))) 75 T ELT))) +(((-386) (-10 -7 (-15 -3733 ((-348 (-142 (-485))) (-142 (-485)))) (-15 -1863 ((-584 (-485)) (-485))) (-15 -3724 ((-85) (-142 (-485)))))) (T -386)) +((-3724 (*1 *2 *3) (-12 (-5 *3 (-142 (-485))) (-5 *2 (-85)) (-5 *1 (-386)))) (-1863 (*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-386)) (-5 *3 (-485)))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 (-142 (-485)))) (-5 *1 (-386)) (-5 *3 (-142 (-485)))))) +((-2947 ((|#4| |#4| (-584 |#4|)) 20 (|has| |#1| (-312)) ELT)) (-2252 (((-584 |#4|) (-584 |#4|) (-1074) (-1074)) 46 T ELT) (((-584 |#4|) (-584 |#4|) (-1074)) 45 T ELT) (((-584 |#4|) (-584 |#4|)) 34 T ELT))) +(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2252 ((-584 |#4|) (-584 |#4|))) (-15 -2252 ((-584 |#4|) (-584 |#4|) (-1074))) (-15 -2252 ((-584 |#4|) (-584 |#4|) (-1074) (-1074))) (IF (|has| |#1| (-312)) (-15 -2947 (|#4| |#4| (-584 |#4|))) |%noBranch|)) (-392) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -387)) +((-2947 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2)))) (-2252 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) (-2252 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) (-2252 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6))))) +((-1864 ((|#4| |#4| (-584 |#4|)) 82 T ELT)) (-1865 (((-584 |#4|) (-584 |#4|) (-1074) (-1074)) 22 T ELT) (((-584 |#4|) (-584 |#4|) (-1074)) 21 T ELT) (((-584 |#4|) (-584 |#4|)) 13 T ELT))) +(((-388 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1864 (|#4| |#4| (-584 |#4|))) (-15 -1865 ((-584 |#4|) (-584 |#4|))) (-15 -1865 ((-584 |#4|) (-584 |#4|) (-1074))) (-15 -1865 ((-584 |#4|) (-584 |#4|) (-1074) (-1074)))) (-258) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -388)) +((-1865 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1865 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-388 *3 *4 *5 *6)))) (-1864 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *2))))) +((-1867 (((-584 (-584 |#4|)) (-584 |#4|) (-85)) 90 T ELT) (((-584 (-584 |#4|)) (-584 |#4|)) 89 T ELT) (((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|) (-85)) 83 T ELT) (((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|)) 84 T ELT)) (-1866 (((-584 (-584 |#4|)) (-584 |#4|) (-85)) 56 T ELT) (((-584 (-584 |#4|)) (-584 |#4|)) 78 T ELT))) +(((-389 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1866 ((-584 (-584 |#4|)) (-584 |#4|))) (-15 -1866 ((-584 (-584 |#4|)) (-584 |#4|) (-85))) (-15 -1867 ((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|))) (-15 -1867 ((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|) (-85))) (-15 -1867 ((-584 (-584 |#4|)) (-584 |#4|))) (-15 -1867 ((-584 (-584 |#4|)) (-584 |#4|) (-85)))) (-13 (-258) (-120)) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -389)) +((-1867 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1867 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-1867 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1867 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-1866 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1866 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) +((-1891 (((-695) |#4|) 12 T ELT)) (-1879 (((-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|))) |#4| (-695) (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|)))) 39 T ELT)) (-1881 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1880 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1869 ((|#4| |#4| (-584 |#4|)) 54 T ELT)) (-1877 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-584 |#4|)) 96 T ELT)) (-1884 (((-1186) |#4|) 59 T ELT)) (-1887 (((-1186) (-584 |#4|)) 69 T ELT)) (-1885 (((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485)) 66 T ELT)) (-1888 (((-1186) (-485)) 110 T ELT)) (-1882 (((-584 |#4|) (-584 |#4|)) 104 T ELT)) (-1890 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|)) |#4| (-695)) 31 T ELT)) (-1883 (((-485) |#4|) 109 T ELT)) (-1878 ((|#4| |#4|) 37 T ELT)) (-1870 (((-584 |#4|) (-584 |#4|) (-485) (-485)) 74 T ELT)) (-1886 (((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485) (-485)) 123 T ELT)) (-1889 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1871 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1876 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1875 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1872 (((-85) |#2| |#2|) 75 T ELT)) (-1874 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1873 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1868 ((|#4| |#4| (-584 |#4|)) 97 T ELT))) +(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1868 (|#4| |#4| (-584 |#4|))) (-15 -1869 (|#4| |#4| (-584 |#4|))) (-15 -1870 ((-584 |#4|) (-584 |#4|) (-485) (-485))) (-15 -1871 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1872 ((-85) |#2| |#2|)) (-15 -1873 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1874 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1875 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1876 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1877 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-584 |#4|))) (-15 -1878 (|#4| |#4|)) (-15 -1879 ((-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|))) |#4| (-695) (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|))))) (-15 -1880 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1881 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1882 ((-584 |#4|) (-584 |#4|))) (-15 -1883 ((-485) |#4|)) (-15 -1884 ((-1186) |#4|)) (-15 -1885 ((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485))) (-15 -1886 ((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485) (-485))) (-15 -1887 ((-1186) (-584 |#4|))) (-15 -1888 ((-1186) (-485))) (-15 -1889 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1890 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|)) |#4| (-695))) (-15 -1891 ((-695) |#4|))) (-392) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -390)) +((-1891 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1890 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-695)) (|:| -2005 *4))) (-5 *5 (-695)) (-4 *4 (-862 *6 *7 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-390 *6 *7 *8 *4)))) (-1889 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1886 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *4)))) (-1885 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *4)))) (-1884 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1883 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-485)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1882 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1881 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-718)) (-4 *2 (-862 *4 *5 *6)) (-5 *1 (-390 *4 *5 *6 *2)) (-4 *4 (-392)) (-4 *6 (-757)))) (-1879 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 *3)))) (-5 *4 (-695)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *3)))) (-1878 (*1 *2 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-1877 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-390 *5 *6 *7 *3)))) (-1876 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-718)) (-4 *6 (-862 *4 *3 *5)) (-4 *4 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *4 *3 *5 *6)))) (-1875 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1874 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-718)) (-4 *3 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *3)))) (-1873 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))) (-1872 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1870 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-485)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1869 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2)))) (-1868 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2))))) +((-1892 (($ $ $) 14 T ELT) (($ (-584 $)) 21 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 45 T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) 22 T ELT))) +(((-391 |#1|) (-10 -7 (-15 -2709 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -1892 (|#1| (-584 |#1|))) (-15 -1892 (|#1| |#1| |#1|)) (-15 -3145 (|#1| (-584 |#1|))) (-15 -3145 (|#1| |#1| |#1|))) (-392)) (T -391)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) (((-392) (-113)) (T -392)) -((-3144 (*1 *1 *1 *1) (-4 *1 (-392))) (-3144 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-392)))) (-1891 (*1 *1 *1 *1) (-4 *1 (-392))) (-1891 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-392)))) (-2708 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-392))))) -(-13 (-495) (-10 -8 (-15 -3144 ($ $ $)) (-15 -3144 ($ (-583 $))) (-15 -1891 ($ $ $)) (-15 -1891 ($ (-583 $))) (-15 -2708 ((-1085 $) (-1085 $) (-1085 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1772 (((-3 $ #1="failed")) NIL (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-3223 (((-1179 (-630 (-350 (-857 |#1|)))) (-1179 $)) NIL T ELT) (((-1179 (-630 (-350 (-857 |#1|))))) NIL T ELT)) (-1729 (((-1179 $)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL T ELT)) (-1703 (((-3 $ #1#)) NIL (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-1788 (((-630 (-350 (-857 |#1|))) (-1179 $)) NIL T ELT) (((-630 (-350 (-857 |#1|)))) NIL T ELT)) (-1727 (((-350 (-857 |#1|)) $) NIL T ELT)) (-1786 (((-630 (-350 (-857 |#1|))) $ (-1179 $)) NIL T ELT) (((-630 (-350 (-857 |#1|))) $) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-1900 (((-1085 (-857 (-350 (-857 |#1|))))) NIL (|has| (-350 (-857 |#1|)) (-312)) ELT) (((-1085 (-350 (-857 |#1|)))) 89 (|has| |#1| (-495)) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1725 (((-350 (-857 |#1|)) $) NIL T ELT)) (-1705 (((-1085 (-350 (-857 |#1|))) $) 87 (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-1790 (((-350 (-857 |#1|)) (-1179 $)) NIL T ELT) (((-350 (-857 |#1|))) NIL T ELT)) (-1723 (((-1085 (-350 (-857 |#1|))) $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-1792 (($ (-1179 (-350 (-857 |#1|))) (-1179 $)) 111 T ELT) (($ (-1179 (-350 (-857 |#1|)))) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-3108 (((-830)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL T ELT)) (-1704 (((-3 $ #1#)) NIL (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-1789 (((-630 (-350 (-857 |#1|))) (-1179 $)) NIL T ELT) (((-630 (-350 (-857 |#1|)))) NIL T ELT)) (-1728 (((-350 (-857 |#1|)) $) NIL T ELT)) (-1787 (((-630 (-350 (-857 |#1|))) $ (-1179 $)) NIL T ELT) (((-630 (-350 (-857 |#1|))) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-1904 (((-1085 (-857 (-350 (-857 |#1|))))) NIL (|has| (-350 (-857 |#1|)) (-312)) ELT) (((-1085 (-350 (-857 |#1|)))) 88 (|has| |#1| (-495)) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1726 (((-350 (-857 |#1|)) $) NIL T ELT)) (-1706 (((-1085 (-350 (-857 |#1|))) $) 84 (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-1791 (((-350 (-857 |#1|)) (-1179 $)) NIL T ELT) (((-350 (-857 |#1|))) NIL T ELT)) (-1724 (((-1085 (-350 (-857 |#1|))) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1894 (((-350 (-857 |#1|)) $ $) 75 (|has| |#1| (-495)) ELT)) (-1898 (((-350 (-857 |#1|)) $) 74 (|has| |#1| (-495)) ELT)) (-1897 (((-350 (-857 |#1|)) $) 101 (|has| |#1| (-495)) ELT)) (-1899 (((-1085 (-350 (-857 |#1|))) $) 93 (|has| |#1| (-495)) ELT)) (-1893 (((-350 (-857 |#1|))) 76 (|has| |#1| (-495)) ELT)) (-1896 (((-350 (-857 |#1|)) $ $) 64 (|has| |#1| (-495)) ELT)) (-1902 (((-350 (-857 |#1|)) $) 63 (|has| |#1| (-495)) ELT)) (-1901 (((-350 (-857 |#1|)) $) 100 (|has| |#1| (-495)) ELT)) (-1903 (((-1085 (-350 (-857 |#1|))) $) 92 (|has| |#1| (-495)) ELT)) (-1895 (((-350 (-857 |#1|))) 73 (|has| |#1| (-495)) ELT)) (-1905 (($) 107 T ELT) (($ (-1090)) 115 T ELT) (($ (-1179 (-1090))) 114 T ELT) (($ (-1179 $)) 102 T ELT) (($ (-1090) (-1179 $)) 113 T ELT) (($ (-1179 (-1090)) (-1179 $)) 112 T ELT)) (-1716 (((-85)) NIL T ELT)) (-3800 (((-350 (-857 |#1|)) $ (-484)) NIL T ELT)) (-3224 (((-1179 (-350 (-857 |#1|))) $ (-1179 $)) 104 T ELT) (((-630 (-350 (-857 |#1|))) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 (-350 (-857 |#1|))) $) 44 T ELT) (((-630 (-350 (-857 |#1|))) (-1179 $)) NIL T ELT)) (-3972 (((-1179 (-350 (-857 |#1|))) $) NIL T ELT) (($ (-1179 (-350 (-857 |#1|)))) 41 T ELT)) (-1892 (((-583 (-857 (-350 (-857 |#1|)))) (-1179 $)) NIL T ELT) (((-583 (-857 (-350 (-857 |#1|))))) NIL T ELT) (((-583 (-857 |#1|)) (-1179 $)) 105 (|has| |#1| (-495)) ELT) (((-583 (-857 |#1|))) 106 (|has| |#1| (-495)) ELT)) (-2435 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-1179 (-350 (-857 |#1|)))) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) 66 T ELT)) (-1707 (((-583 (-1179 (-350 (-857 |#1|))))) NIL (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-2545 (($ (-630 (-350 (-857 |#1|))) $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2660 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-857 |#1|))) NIL T ELT) (($ (-350 (-857 |#1|)) $) NIL T ELT) (($ (-1056 |#2| (-350 (-857 |#1|))) $) NIL T ELT))) -(((-393 |#1| |#2| |#3| |#4|) (-13 (-361 (-350 (-857 |#1|))) (-590 (-1056 |#2| (-350 (-857 |#1|)))) (-10 -8 (-15 -3946 ($ (-1179 (-350 (-857 |#1|))))) (-15 -1907 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1="failed"))) (-15 -1906 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#))) (-15 -1905 ($)) (-15 -1905 ($ (-1090))) (-15 -1905 ($ (-1179 (-1090)))) (-15 -1905 ($ (-1179 $))) (-15 -1905 ($ (-1090) (-1179 $))) (-15 -1905 ($ (-1179 (-1090)) (-1179 $))) (IF (|has| |#1| (-495)) (PROGN (-15 -1904 ((-1085 (-350 (-857 |#1|))))) (-15 -1903 ((-1085 (-350 (-857 |#1|))) $)) (-15 -1902 ((-350 (-857 |#1|)) $)) (-15 -1901 ((-350 (-857 |#1|)) $)) (-15 -1900 ((-1085 (-350 (-857 |#1|))))) (-15 -1899 ((-1085 (-350 (-857 |#1|))) $)) (-15 -1898 ((-350 (-857 |#1|)) $)) (-15 -1897 ((-350 (-857 |#1|)) $)) (-15 -1896 ((-350 (-857 |#1|)) $ $)) (-15 -1895 ((-350 (-857 |#1|)))) (-15 -1894 ((-350 (-857 |#1|)) $ $)) (-15 -1893 ((-350 (-857 |#1|)))) (-15 -1892 ((-583 (-857 |#1|)) (-1179 $))) (-15 -1892 ((-583 (-857 |#1|))))) |%noBranch|))) (-146) (-830) (-583 (-1090)) (-1179 (-630 |#1|))) (T -393)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-1179 (-350 (-857 *3)))) (-4 *3 (-146)) (-14 *6 (-1179 (-630 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))))) (-1907 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) (|:| -2012 (-583 (-393 *3 *4 *5 *6))))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1906 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) (|:| -2012 (-583 (-393 *3 *4 *5 *6))))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1905 (*1 *1) (-12 (-5 *1 (-393 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-830)) (-14 *4 (-583 (-1090))) (-14 *5 (-1179 (-630 *2))))) (-1905 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 *2)) (-14 *6 (-1179 (-630 *3))))) (-1905 (*1 *1 *2) (-12 (-5 *2 (-1179 (-1090))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1905 (*1 *1 *2) (-12 (-5 *2 (-1179 (-393 *3 *4 *5 *6))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1905 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1179 (-393 *4 *5 *6 *7))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 *2)) (-14 *7 (-1179 (-630 *4))))) (-1905 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 (-1090))) (-5 *3 (-1179 (-393 *4 *5 *6 *7))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 (-1090))) (-14 *7 (-1179 (-630 *4))))) (-1904 (*1 *2) (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1900 (*1 *2) (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1896 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1895 (*1 *2) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1894 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1893 (*1 *2) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-1179 (-393 *4 *5 *6 *7))) (-5 *2 (-583 (-857 *4))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 (-1090))) (-14 *7 (-1179 (-630 *4))))) (-1892 (*1 *2) (-12 (-5 *2 (-583 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 19 T ELT)) (-3081 (((-583 (-773 |#1|)) $) 88 T ELT)) (-3083 (((-1085 $) $ (-773 |#1|)) 53 T ELT) (((-1085 |#2|) $) 140 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-694) $) 28 T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3775 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3156 ((|#2| $) 49 T ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3756 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1937 (($ $ (-583 (-484))) 95 T ELT)) (-3959 (($ $) 81 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1624 (($ $ |#2| |#3| $) NIL T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-330))) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 66 T ELT)) (-3084 (($ (-1085 |#2|) (-773 |#1|)) 145 T ELT) (($ (-1085 $) (-773 |#1|)) 59 T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) 69 T ELT)) (-2893 (($ |#2| |#3|) 36 T ELT) (($ $ (-773 |#1|) (-694)) 38 T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2820 ((|#3| $) NIL T ELT) (((-694) $ (-773 |#1|)) 57 T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) 64 T ELT)) (-1625 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3082 (((-3 (-773 |#1|) #1#) $) 46 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#2| $) 48 T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) 47 T ELT)) (-1796 ((|#2| $) 138 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-392)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) 151 (|has| |#2| (-392)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#2| (-821)) ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3768 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) 102 T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) 108 T ELT) (($ $ (-773 |#1|) $) 100 T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) 126 T ELT)) (-3757 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3758 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) 60 T ELT)) (-3948 ((|#3| $) 80 T ELT) (((-694) $ (-773 |#1|)) 43 T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) 63 T ELT)) (-3972 (((-800 (-330)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#2| $) 147 (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3946 (((-772) $) 175 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-773 |#1|)) 40 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3817 (((-583 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ |#3|) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 23 T CONST)) (-2666 (($) 32 T CONST)) (-2669 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#2|) 77 (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 133 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 131 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-350 (-484))) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT))) -(((-394 |#1| |#2| |#3|) (-13 (-861 |#2| |#3| (-773 |#1|)) (-10 -8 (-15 -1937 ($ $ (-583 (-484)))))) (-583 (-1090)) (-961) (-196 (-3957 |#1|) (-694))) (T -394)) -((-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-14 *3 (-583 (-1090))) (-5 *1 (-394 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-196 (-3957 *3) (-694)))))) -((-1911 (((-85) |#1| (-583 |#2|)) 90 T ELT)) (-1909 (((-3 (-1179 (-583 |#2|)) #1="failed") (-694) |#1| (-583 |#2|)) 99 T ELT)) (-1910 (((-3 (-583 |#2|) #1#) |#2| |#1| (-1179 (-583 |#2|))) 101 T ELT)) (-2037 ((|#2| |#2| |#1|) 35 T ELT)) (-1908 (((-694) |#2| (-583 |#2|)) 26 T ELT))) -(((-395 |#1| |#2|) (-10 -7 (-15 -2037 (|#2| |#2| |#1|)) (-15 -1908 ((-694) |#2| (-583 |#2|))) (-15 -1909 ((-3 (-1179 (-583 |#2|)) #1="failed") (-694) |#1| (-583 |#2|))) (-15 -1910 ((-3 (-583 |#2|) #1#) |#2| |#1| (-1179 (-583 |#2|)))) (-15 -1911 ((-85) |#1| (-583 |#2|)))) (-258) (-1155 |#1|)) (T -395)) -((-1911 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1155 *3)) (-4 *3 (-258)) (-5 *2 (-85)) (-5 *1 (-395 *3 *5)))) (-1910 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1179 (-583 *3))) (-4 *4 (-258)) (-5 *2 (-583 *3)) (-5 *1 (-395 *4 *3)) (-4 *3 (-1155 *4)))) (-1909 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-258)) (-4 *6 (-1155 *4)) (-5 *2 (-1179 (-583 *6))) (-5 *1 (-395 *4 *6)) (-5 *5 (-583 *6)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-258)) (-5 *2 (-694)) (-5 *1 (-395 *5 *3)))) (-2037 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1155 *3))))) -((-3732 (((-348 |#5|) |#5|) 24 T ELT))) -(((-396 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3732 ((-348 |#5|) |#5|))) (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090))))) (-717) (-495) (-495) (-861 |#4| |#2| |#1|)) (T -396)) -((-3732 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090)))))) (-4 *5 (-717)) (-4 *7 (-495)) (-5 *2 (-348 *3)) (-5 *1 (-396 *4 *5 *6 *7 *3)) (-4 *6 (-495)) (-4 *3 (-861 *7 *5 *4))))) -((-2700 ((|#3|) 43 T ELT)) (-2708 (((-1085 |#4|) (-1085 |#4|) (-1085 |#4|)) 34 T ELT))) -(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2708 ((-1085 |#4|) (-1085 |#4|) (-1085 |#4|))) (-15 -2700 (|#3|))) (-717) (-756) (-821) (-861 |#3| |#1| |#2|)) (T -397)) -((-2700 (*1 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-397 *3 *4 *2 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2708 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-821)) (-5 *1 (-397 *3 *4 *5 *6))))) -((-3732 (((-348 (-1085 |#1|)) (-1085 |#1|)) 43 T ELT))) -(((-398 |#1|) (-10 -7 (-15 -3732 ((-348 (-1085 |#1|)) (-1085 |#1|)))) (-258)) (T -398)) -((-3732 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1085 *4))) (-5 *1 (-398 *4)) (-5 *3 (-1085 *4))))) -((-3729 (((-51) |#2| (-1090) (-249 |#2|) (-1146 (-694))) 44 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|) (-1146 (-694))) 43 T ELT) (((-51) |#2| (-1090) (-249 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|)) 29 T ELT)) (-3818 (((-51) |#2| (-1090) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484))) 88 T ELT) (((-51) (-1 |#2| (-350 (-484))) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484))) 87 T ELT) (((-51) |#2| (-1090) (-249 |#2|) (-1146 (-484))) 86 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|) (-1146 (-484))) 85 T ELT) (((-51) |#2| (-1090) (-249 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|)) 79 T ELT)) (-3782 (((-51) |#2| (-1090) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484))) 74 T ELT) (((-51) (-1 |#2| (-350 (-484))) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484))) 72 T ELT)) (-3779 (((-51) |#2| (-1090) (-249 |#2|) (-1146 (-484))) 51 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|) (-1146 (-484))) 50 T ELT))) -(((-399 |#1| |#2|) (-10 -7 (-15 -3729 ((-51) (-1 |#2| (-484)) (-249 |#2|))) (-15 -3729 ((-51) |#2| (-1090) (-249 |#2|))) (-15 -3729 ((-51) (-1 |#2| (-484)) (-249 |#2|) (-1146 (-694)))) (-15 -3729 ((-51) |#2| (-1090) (-249 |#2|) (-1146 (-694)))) (-15 -3779 ((-51) (-1 |#2| (-484)) (-249 |#2|) (-1146 (-484)))) (-15 -3779 ((-51) |#2| (-1090) (-249 |#2|) (-1146 (-484)))) (-15 -3782 ((-51) (-1 |#2| (-350 (-484))) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484)))) (-15 -3782 ((-51) |#2| (-1090) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484)))) (-15 -3818 ((-51) (-1 |#2| (-484)) (-249 |#2|))) (-15 -3818 ((-51) |#2| (-1090) (-249 |#2|))) (-15 -3818 ((-51) (-1 |#2| (-484)) (-249 |#2|) (-1146 (-484)))) (-15 -3818 ((-51) |#2| (-1090) (-249 |#2|) (-1146 (-484)))) (-15 -3818 ((-51) (-1 |#2| (-350 (-484))) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484)))) (-15 -3818 ((-51) |#2| (-1090) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484))))) (-13 (-495) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|))) (T -399)) -((-3818 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-350 (-484)))) (-5 *7 (-350 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *8))) (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *8 *3)))) (-3818 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-484)))) (-5 *4 (-249 *8)) (-5 *5 (-1146 (-350 (-484)))) (-5 *6 (-350 (-484))) (-4 *8 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *8)))) (-3818 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3818 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-484))) (-4 *7 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3818 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *3)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *5 *6)))) (-3782 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-350 (-484)))) (-5 *7 (-350 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *8))) (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *8 *3)))) (-3782 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-484)))) (-5 *4 (-249 *8)) (-5 *5 (-1146 (-350 (-484)))) (-5 *6 (-350 (-484))) (-4 *8 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *8)))) (-3779 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3779 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-484))) (-4 *7 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3729 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-694))) (-4 *3 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3729 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-694))) (-4 *7 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3729 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *3)))) (-3729 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *5 *6))))) -((-2037 ((|#2| |#2| |#1|) 15 T ELT)) (-1913 (((-583 |#2|) |#2| (-583 |#2|) |#1| (-830)) 82 T ELT)) (-1912 (((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-830)) 71 T ELT))) -(((-400 |#1| |#2|) (-10 -7 (-15 -1912 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-830))) (-15 -1913 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-830))) (-15 -2037 (|#2| |#2| |#1|))) (-258) (-1155 |#1|)) (T -400)) -((-2037 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-400 *3 *2)) (-4 *2 (-1155 *3)))) (-1913 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-830)) (-4 *3 (-1155 *4)) (-4 *4 (-258)) (-5 *1 (-400 *4 *3)))) (-1912 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-830)) (-4 *5 (-258)) (-4 *3 (-1155 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-400 *5 *3)) (-5 *4 (-583 *3))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 28 T ELT)) (-3707 (($ |#3|) 25 T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) 32 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1914 (($ |#2| |#4| $) 33 T ELT)) (-2893 (($ |#2| (-650 |#3| |#4| |#5|)) 24 T ELT)) (-2894 (((-650 |#3| |#4| |#5|) $) 15 T ELT)) (-1916 ((|#3| $) 19 T ELT)) (-1917 ((|#4| $) 17 T ELT)) (-3174 ((|#2| $) 29 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1915 (($ |#2| |#3| |#4|) 26 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 36 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 34 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-401 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-654 |#6|) (-654 |#2|) (-10 -8 (-15 -3174 (|#2| $)) (-15 -2894 ((-650 |#3| |#4| |#5|) $)) (-15 -1917 (|#4| $)) (-15 -1916 (|#3| $)) (-15 -3959 ($ $)) (-15 -2893 ($ |#2| (-650 |#3| |#4| |#5|))) (-15 -3707 ($ |#3|)) (-15 -1915 ($ |#2| |#3| |#4|)) (-15 -1914 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-583 (-1090)) (-146) (-756) (-196 (-3957 |#1|) (-694)) (-1 (-85) (-2 (|:| -2400 |#3|) (|:| -2401 |#4|)) (-2 (|:| -2400 |#3|) (|:| -2401 |#4|))) (-861 |#2| |#4| (-773 |#1|))) (T -401)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *6 (-196 (-3957 *3) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) (-2 (|:| -2400 *5) (|:| -2401 *6)))) (-5 *1 (-401 *3 *4 *5 *6 *7 *2)) (-4 *5 (-756)) (-4 *2 (-861 *4 *6 (-773 *3))))) (-3174 (*1 *2 *1) (-12 (-14 *3 (-583 (-1090))) (-4 *5 (-196 (-3957 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5)) (-2 (|:| -2400 *4) (|:| -2401 *5)))) (-4 *2 (-146)) (-5 *1 (-401 *3 *2 *4 *5 *6 *7)) (-4 *4 (-756)) (-4 *7 (-861 *2 *5 (-773 *3))))) (-2894 (*1 *2 *1) (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *6 (-196 (-3957 *3) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) (-2 (|:| -2400 *5) (|:| -2401 *6)))) (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-401 *3 *4 *5 *6 *7 *8)) (-4 *5 (-756)) (-4 *8 (-861 *4 *6 (-773 *3))))) (-1917 (*1 *2 *1) (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *2)) (-2 (|:| -2400 *5) (|:| -2401 *2)))) (-4 *2 (-196 (-3957 *3) (-694))) (-5 *1 (-401 *3 *4 *5 *2 *6 *7)) (-4 *5 (-756)) (-4 *7 (-861 *4 *2 (-773 *3))))) (-1916 (*1 *2 *1) (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *5 (-196 (-3957 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5)) (-2 (|:| -2400 *2) (|:| -2401 *5)))) (-4 *2 (-756)) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *7 (-861 *4 *5 (-773 *3))))) (-3959 (*1 *1 *1) (-12 (-14 *2 (-583 (-1090))) (-4 *3 (-146)) (-4 *5 (-196 (-3957 *2) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5)) (-2 (|:| -2400 *4) (|:| -2401 *5)))) (-5 *1 (-401 *2 *3 *4 *5 *6 *7)) (-4 *4 (-756)) (-4 *7 (-861 *3 *5 (-773 *2))))) (-2893 (*1 *1 *2 *3) (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-756)) (-4 *6 (-196 (-3957 *4) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) (-2 (|:| -2400 *5) (|:| -2401 *6)))) (-14 *4 (-583 (-1090))) (-4 *2 (-146)) (-5 *1 (-401 *4 *2 *5 *6 *7 *8)) (-4 *8 (-861 *2 *6 (-773 *4))))) (-3707 (*1 *1 *2) (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *5 (-196 (-3957 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5)) (-2 (|:| -2400 *2) (|:| -2401 *5)))) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *2 (-756)) (-4 *7 (-861 *4 *5 (-773 *3))))) (-1915 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1090))) (-4 *2 (-146)) (-4 *4 (-196 (-3957 *5) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *4)) (-2 (|:| -2400 *3) (|:| -2401 *4)))) (-5 *1 (-401 *5 *2 *3 *4 *6 *7)) (-4 *3 (-756)) (-4 *7 (-861 *2 *4 (-773 *5))))) (-1914 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1090))) (-4 *2 (-146)) (-4 *3 (-196 (-3957 *4) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *3)) (-2 (|:| -2400 *5) (|:| -2401 *3)))) (-5 *1 (-401 *4 *2 *5 *3 *6 *7)) (-4 *5 (-756)) (-4 *7 (-861 *2 *3 (-773 *4)))))) -((-1918 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) -(((-402 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1918 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-717) (-756) (-495) (-861 |#3| |#1| |#2|) (-13 (-950 (-350 (-484))) (-312) (-10 -8 (-15 -3946 ($ |#4|)) (-15 -2998 (|#4| $)) (-15 -2997 (|#4| $))))) (T -402)) -((-1918 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-756)) (-4 *5 (-717)) (-4 *6 (-495)) (-4 *7 (-861 *6 *5 *3)) (-5 *1 (-402 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-950 (-350 (-484))) (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3081 (((-583 |#3|) $) 41 T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3710 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2904 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1="failed") (-583 |#4|)) 49 T ELT)) (-3156 (($ (-583 |#4|)) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT)) (-3406 (($ |#4| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2889 (((-583 |#4|) $) 18 (|has| $ (-6 -3995)) ELT)) (-3180 ((|#3| $) 47 T ELT)) (-2608 (((-583 |#4|) $) 14 T ELT)) (-3245 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3326 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2914 (((-583 |#3|) $) NIL T ELT)) (-2913 (((-85) |#3| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1354 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3768 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 39 T ELT)) (-3565 (($) 17 T ELT)) (-1946 (((-694) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3400 (($ $) 16 T ELT)) (-3972 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT) (($ (-583 |#4|)) 51 T ELT)) (-3530 (($ (-583 |#4|)) 13 T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3946 (((-772) $) 38 T ELT) (((-583 |#4|) $) 50 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3056 (((-85) $ $) 30 T ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-403 |#1| |#2| |#3| |#4|) (-13 (-889 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3972 ($ (-583 |#4|))) (-6 -3996))) (-961) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -403)) -((-3972 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-403 *3 *4 *5 *6))))) -((-2660 (($) 11 T CONST)) (-2666 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) -(((-404 |#1| |#2| |#3|) (-10 -7 (-15 -2666 (|#1|) -3952) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2660 (|#1|) -3952)) (-405 |#2| |#3|) (-146) (-23)) (T -404)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3157 (((-3 |#1| "failed") $) 30 T ELT)) (-3156 ((|#1| $) 31 T ELT)) (-3944 (($ $ $) 27 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3948 ((|#2| $) 23 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 22 T CONST)) (-2666 (($) 28 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +((-3145 (*1 *1 *1 *1) (-4 *1 (-392))) (-3145 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392)))) (-1892 (*1 *1 *1 *1) (-4 *1 (-392))) (-1892 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392)))) (-2709 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-392))))) +(-13 (-496) (-10 -8 (-15 -3145 ($ $ $)) (-15 -3145 ($ (-584 $))) (-15 -1892 ($ $ $)) (-15 -1892 ($ (-584 $))) (-15 -2709 ((-1086 $) (-1086 $) (-1086 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1773 (((-3 $ #1="failed")) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3224 (((-1180 (-631 (-350 (-858 |#1|)))) (-1180 $)) NIL T ELT) (((-1180 (-631 (-350 (-858 |#1|))))) NIL T ELT)) (-1730 (((-1180 $)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL T ELT)) (-1704 (((-3 $ #1#)) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1789 (((-631 (-350 (-858 |#1|))) (-1180 $)) NIL T ELT) (((-631 (-350 (-858 |#1|)))) NIL T ELT)) (-1728 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1787 (((-631 (-350 (-858 |#1|))) $ (-1180 $)) NIL T ELT) (((-631 (-350 (-858 |#1|))) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1901 (((-1086 (-858 (-350 (-858 |#1|))))) NIL (|has| (-350 (-858 |#1|)) (-312)) ELT) (((-1086 (-350 (-858 |#1|)))) 89 (|has| |#1| (-496)) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1726 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1706 (((-1086 (-350 (-858 |#1|))) $) 87 (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1791 (((-350 (-858 |#1|)) (-1180 $)) NIL T ELT) (((-350 (-858 |#1|))) NIL T ELT)) (-1724 (((-1086 (-350 (-858 |#1|))) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-1793 (($ (-1180 (-350 (-858 |#1|))) (-1180 $)) 111 T ELT) (($ (-1180 (-350 (-858 |#1|)))) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-3109 (((-831)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2434 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL T ELT)) (-1705 (((-3 $ #1#)) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1790 (((-631 (-350 (-858 |#1|))) (-1180 $)) NIL T ELT) (((-631 (-350 (-858 |#1|)))) NIL T ELT)) (-1729 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1788 (((-631 (-350 (-858 |#1|))) $ (-1180 $)) NIL T ELT) (((-631 (-350 (-858 |#1|))) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1905 (((-1086 (-858 (-350 (-858 |#1|))))) NIL (|has| (-350 (-858 |#1|)) (-312)) ELT) (((-1086 (-350 (-858 |#1|)))) 88 (|has| |#1| (-496)) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1727 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1707 (((-1086 (-350 (-858 |#1|))) $) 84 (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1792 (((-350 (-858 |#1|)) (-1180 $)) NIL T ELT) (((-350 (-858 |#1|))) NIL T ELT)) (-1725 (((-1086 (-350 (-858 |#1|))) $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1895 (((-350 (-858 |#1|)) $ $) 75 (|has| |#1| (-496)) ELT)) (-1899 (((-350 (-858 |#1|)) $) 74 (|has| |#1| (-496)) ELT)) (-1898 (((-350 (-858 |#1|)) $) 101 (|has| |#1| (-496)) ELT)) (-1900 (((-1086 (-350 (-858 |#1|))) $) 93 (|has| |#1| (-496)) ELT)) (-1894 (((-350 (-858 |#1|))) 76 (|has| |#1| (-496)) ELT)) (-1897 (((-350 (-858 |#1|)) $ $) 64 (|has| |#1| (-496)) ELT)) (-1903 (((-350 (-858 |#1|)) $) 63 (|has| |#1| (-496)) ELT)) (-1902 (((-350 (-858 |#1|)) $) 100 (|has| |#1| (-496)) ELT)) (-1904 (((-1086 (-350 (-858 |#1|))) $) 92 (|has| |#1| (-496)) ELT)) (-1896 (((-350 (-858 |#1|))) 73 (|has| |#1| (-496)) ELT)) (-1906 (($) 107 T ELT) (($ (-1091)) 115 T ELT) (($ (-1180 (-1091))) 114 T ELT) (($ (-1180 $)) 102 T ELT) (($ (-1091) (-1180 $)) 113 T ELT) (($ (-1180 (-1091)) (-1180 $)) 112 T ELT)) (-1717 (((-85)) NIL T ELT)) (-3801 (((-350 (-858 |#1|)) $ (-485)) NIL T ELT)) (-3225 (((-1180 (-350 (-858 |#1|))) $ (-1180 $)) 104 T ELT) (((-631 (-350 (-858 |#1|))) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 (-350 (-858 |#1|))) $) 44 T ELT) (((-631 (-350 (-858 |#1|))) (-1180 $)) NIL T ELT)) (-3973 (((-1180 (-350 (-858 |#1|))) $) NIL T ELT) (($ (-1180 (-350 (-858 |#1|)))) 41 T ELT)) (-1893 (((-584 (-858 (-350 (-858 |#1|)))) (-1180 $)) NIL T ELT) (((-584 (-858 (-350 (-858 |#1|))))) NIL T ELT) (((-584 (-858 |#1|)) (-1180 $)) 105 (|has| |#1| (-496)) ELT) (((-584 (-858 |#1|))) 106 (|has| |#1| (-496)) ELT)) (-2436 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-1180 (-350 (-858 |#1|)))) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 66 T ELT)) (-1708 (((-584 (-1180 (-350 (-858 |#1|))))) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-2546 (($ (-631 (-350 (-858 |#1|))) $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-2661 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-858 |#1|))) NIL T ELT) (($ (-350 (-858 |#1|)) $) NIL T ELT) (($ (-1057 |#2| (-350 (-858 |#1|))) $) NIL T ELT))) +(((-393 |#1| |#2| |#3| |#4|) (-13 (-361 (-350 (-858 |#1|))) (-591 (-1057 |#2| (-350 (-858 |#1|)))) (-10 -8 (-15 -3947 ($ (-1180 (-350 (-858 |#1|))))) (-15 -1908 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1="failed"))) (-15 -1907 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#))) (-15 -1906 ($)) (-15 -1906 ($ (-1091))) (-15 -1906 ($ (-1180 (-1091)))) (-15 -1906 ($ (-1180 $))) (-15 -1906 ($ (-1091) (-1180 $))) (-15 -1906 ($ (-1180 (-1091)) (-1180 $))) (IF (|has| |#1| (-496)) (PROGN (-15 -1905 ((-1086 (-350 (-858 |#1|))))) (-15 -1904 ((-1086 (-350 (-858 |#1|))) $)) (-15 -1903 ((-350 (-858 |#1|)) $)) (-15 -1902 ((-350 (-858 |#1|)) $)) (-15 -1901 ((-1086 (-350 (-858 |#1|))))) (-15 -1900 ((-1086 (-350 (-858 |#1|))) $)) (-15 -1899 ((-350 (-858 |#1|)) $)) (-15 -1898 ((-350 (-858 |#1|)) $)) (-15 -1897 ((-350 (-858 |#1|)) $ $)) (-15 -1896 ((-350 (-858 |#1|)))) (-15 -1895 ((-350 (-858 |#1|)) $ $)) (-15 -1894 ((-350 (-858 |#1|)))) (-15 -1893 ((-584 (-858 |#1|)) (-1180 $))) (-15 -1893 ((-584 (-858 |#1|))))) |%noBranch|))) (-146) (-831) (-584 (-1091)) (-1180 (-631 |#1|))) (T -393)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1180 (-350 (-858 *3)))) (-4 *3 (-146)) (-14 *6 (-1180 (-631 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))))) (-1908 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) (|:| -2013 (-584 (-393 *3 *4 *5 *6))))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1907 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) (|:| -2013 (-584 (-393 *3 *4 *5 *6))))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1906 (*1 *1) (-12 (-5 *1 (-393 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-831)) (-14 *4 (-584 (-1091))) (-14 *5 (-1180 (-631 *2))))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 *2)) (-14 *6 (-1180 (-631 *3))))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1180 (-1091))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1180 (-393 *3 *4 *5 *6))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 *2)) (-14 *7 (-1180 (-631 *4))))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 (-1091))) (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 (-1091))) (-14 *7 (-1180 (-631 *4))))) (-1905 (*1 *2) (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1901 (*1 *2) (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1897 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1896 (*1 *2) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1895 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1894 (*1 *2) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1893 (*1 *2 *3) (-12 (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *2 (-584 (-858 *4))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 (-1091))) (-14 *7 (-1180 (-631 *4))))) (-1893 (*1 *2) (-12 (-5 *2 (-584 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 19 T ELT)) (-3082 (((-584 (-774 |#1|)) $) 88 T ELT)) (-3084 (((-1086 $) $ (-774 |#1|)) 53 T ELT) (((-1086 |#2|) $) 140 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2820 (((-695) $) 28 T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3776 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3157 ((|#2| $) 49 T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3757 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1938 (($ $ (-584 (-485))) 95 T ELT)) (-3960 (($ $) 81 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| |#3| $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 66 T ELT)) (-3085 (($ (-1086 |#2|) (-774 |#1|)) 145 T ELT) (($ (-1086 $) (-774 |#1|)) 59 T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) 69 T ELT)) (-2894 (($ |#2| |#3|) 36 T ELT) (($ $ (-774 |#1|) (-695)) 38 T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2821 ((|#3| $) NIL T ELT) (((-695) $ (-774 |#1|)) 57 T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) 64 T ELT)) (-1626 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3083 (((-3 (-774 |#1|) #1#) $) 46 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#2| $) 48 T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) 47 T ELT)) (-1797 ((|#2| $) 138 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) 151 (|has| |#2| (-392)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3769 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) 102 T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) 108 T ELT) (($ $ (-774 |#1|) $) 100 T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) 126 T ELT)) (-3758 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3759 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) 60 T ELT)) (-3949 ((|#3| $) 80 T ELT) (((-695) $ (-774 |#1|)) 43 T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) 63 T ELT)) (-3973 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2818 ((|#2| $) 147 (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3947 (((-773) $) 175 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-774 |#1|)) 40 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3818 (((-584 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ |#3|) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 23 T CONST)) (-2667 (($) 32 T CONST)) (-2670 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) 77 (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 133 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 131 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT))) +(((-394 |#1| |#2| |#3|) (-13 (-862 |#2| |#3| (-774 |#1|)) (-10 -8 (-15 -1938 ($ $ (-584 (-485)))))) (-584 (-1091)) (-962) (-196 (-3958 |#1|) (-695))) (T -394)) +((-1938 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-14 *3 (-584 (-1091))) (-5 *1 (-394 *3 *4 *5)) (-4 *4 (-962)) (-4 *5 (-196 (-3958 *3) (-695)))))) +((-1912 (((-85) |#1| (-584 |#2|)) 90 T ELT)) (-1910 (((-3 (-1180 (-584 |#2|)) #1="failed") (-695) |#1| (-584 |#2|)) 99 T ELT)) (-1911 (((-3 (-584 |#2|) #1#) |#2| |#1| (-1180 (-584 |#2|))) 101 T ELT)) (-2038 ((|#2| |#2| |#1|) 35 T ELT)) (-1909 (((-695) |#2| (-584 |#2|)) 26 T ELT))) +(((-395 |#1| |#2|) (-10 -7 (-15 -2038 (|#2| |#2| |#1|)) (-15 -1909 ((-695) |#2| (-584 |#2|))) (-15 -1910 ((-3 (-1180 (-584 |#2|)) #1="failed") (-695) |#1| (-584 |#2|))) (-15 -1911 ((-3 (-584 |#2|) #1#) |#2| |#1| (-1180 (-584 |#2|)))) (-15 -1912 ((-85) |#1| (-584 |#2|)))) (-258) (-1156 |#1|)) (T -395)) +((-1912 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *5)) (-4 *5 (-1156 *3)) (-4 *3 (-258)) (-5 *2 (-85)) (-5 *1 (-395 *3 *5)))) (-1911 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1180 (-584 *3))) (-4 *4 (-258)) (-5 *2 (-584 *3)) (-5 *1 (-395 *4 *3)) (-4 *3 (-1156 *4)))) (-1910 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-258)) (-4 *6 (-1156 *4)) (-5 *2 (-1180 (-584 *6))) (-5 *1 (-395 *4 *6)) (-5 *5 (-584 *6)))) (-1909 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-258)) (-5 *2 (-695)) (-5 *1 (-395 *5 *3)))) (-2038 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1156 *3))))) +((-3733 (((-348 |#5|) |#5|) 24 T ELT))) +(((-396 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3733 ((-348 |#5|) |#5|))) (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091))))) (-718) (-496) (-496) (-862 |#4| |#2| |#1|)) (T -396)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091)))))) (-4 *5 (-718)) (-4 *7 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-396 *4 *5 *6 *7 *3)) (-4 *6 (-496)) (-4 *3 (-862 *7 *5 *4))))) +((-2701 ((|#3|) 43 T ELT)) (-2709 (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 34 T ELT))) +(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2709 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -2701 (|#3|))) (-718) (-757) (-822) (-862 |#3| |#1| |#2|)) (T -397)) +((-2701 (*1 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-397 *3 *4 *2 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2709 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-822)) (-5 *1 (-397 *3 *4 *5 *6))))) +((-3733 (((-348 (-1086 |#1|)) (-1086 |#1|)) 43 T ELT))) +(((-398 |#1|) (-10 -7 (-15 -3733 ((-348 (-1086 |#1|)) (-1086 |#1|)))) (-258)) (T -398)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1086 *4))) (-5 *1 (-398 *4)) (-5 *3 (-1086 *4))))) +((-3730 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-695))) 44 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-695))) 43 T ELT) (((-51) |#2| (-1091) (-249 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|)) 29 T ELT)) (-3819 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485))) 88 T ELT) (((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485))) 87 T ELT) (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485))) 86 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485))) 85 T ELT) (((-51) |#2| (-1091) (-249 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|)) 79 T ELT)) (-3783 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485))) 74 T ELT) (((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485))) 72 T ELT)) (-3780 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485))) 51 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485))) 50 T ELT))) +(((-399 |#1| |#2|) (-10 -7 (-15 -3730 ((-51) (-1 |#2| (-485)) (-249 |#2|))) (-15 -3730 ((-51) |#2| (-1091) (-249 |#2|))) (-15 -3730 ((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-695)))) (-15 -3730 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-695)))) (-15 -3780 ((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485)))) (-15 -3780 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485)))) (-15 -3783 ((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485)))) (-15 -3783 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485)))) (-15 -3819 ((-51) (-1 |#2| (-485)) (-249 |#2|))) (-15 -3819 ((-51) |#2| (-1091) (-249 |#2|))) (-15 -3819 ((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485)))) (-15 -3819 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485)))) (-15 -3819 ((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485)))) (-15 -3819 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485))))) (-13 (-496) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -399)) +((-3819 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-350 (-485)))) (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *8))) (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *8 *3)))) (-3819 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8)) (-5 *5 (-1147 (-350 (-485)))) (-5 *6 (-350 (-485))) (-4 *8 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *8)))) (-3819 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3819 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485))) (-4 *7 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3819 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *3)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *5 *6)))) (-3783 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-350 (-485)))) (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *8))) (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *8 *3)))) (-3783 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8)) (-5 *5 (-1147 (-350 (-485)))) (-5 *6 (-350 (-485))) (-4 *8 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *8)))) (-3780 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3780 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485))) (-4 *7 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3730 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-695))) (-4 *3 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3730 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-695))) (-4 *7 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3730 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *3)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *5 *6))))) +((-2038 ((|#2| |#2| |#1|) 15 T ELT)) (-1914 (((-584 |#2|) |#2| (-584 |#2|) |#1| (-831)) 82 T ELT)) (-1913 (((-2 (|:| |plist| (-584 |#2|)) (|:| |modulo| |#1|)) |#2| (-584 |#2|) |#1| (-831)) 71 T ELT))) +(((-400 |#1| |#2|) (-10 -7 (-15 -1913 ((-2 (|:| |plist| (-584 |#2|)) (|:| |modulo| |#1|)) |#2| (-584 |#2|) |#1| (-831))) (-15 -1914 ((-584 |#2|) |#2| (-584 |#2|) |#1| (-831))) (-15 -2038 (|#2| |#2| |#1|))) (-258) (-1156 |#1|)) (T -400)) +((-2038 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-400 *3 *2)) (-4 *2 (-1156 *3)))) (-1914 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-584 *3)) (-5 *5 (-831)) (-4 *3 (-1156 *4)) (-4 *4 (-258)) (-5 *1 (-400 *4 *3)))) (-1913 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-831)) (-4 *5 (-258)) (-4 *3 (-1156 *5)) (-5 *2 (-2 (|:| |plist| (-584 *3)) (|:| |modulo| *5))) (-5 *1 (-400 *5 *3)) (-5 *4 (-584 *3))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 28 T ELT)) (-3708 (($ |#3|) 25 T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) 32 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1915 (($ |#2| |#4| $) 33 T ELT)) (-2894 (($ |#2| (-651 |#3| |#4| |#5|)) 24 T ELT)) (-2895 (((-651 |#3| |#4| |#5|) $) 15 T ELT)) (-1917 ((|#3| $) 19 T ELT)) (-1918 ((|#4| $) 17 T ELT)) (-3175 ((|#2| $) 29 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1916 (($ |#2| |#3| |#4|) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 36 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 34 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-401 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-655 |#6|) (-655 |#2|) (-10 -8 (-15 -3175 (|#2| $)) (-15 -2895 ((-651 |#3| |#4| |#5|) $)) (-15 -1918 (|#4| $)) (-15 -1917 (|#3| $)) (-15 -3960 ($ $)) (-15 -2894 ($ |#2| (-651 |#3| |#4| |#5|))) (-15 -3708 ($ |#3|)) (-15 -1916 ($ |#2| |#3| |#4|)) (-15 -1915 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-584 (-1091)) (-146) (-757) (-196 (-3958 |#1|) (-695)) (-1 (-85) (-2 (|:| -2401 |#3|) (|:| -2402 |#4|)) (-2 (|:| -2401 |#3|) (|:| -2402 |#4|))) (-862 |#2| |#4| (-774 |#1|))) (T -401)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3958 *3) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) (-2 (|:| -2401 *5) (|:| -2402 *6)))) (-5 *1 (-401 *3 *4 *5 *6 *7 *2)) (-4 *5 (-757)) (-4 *2 (-862 *4 *6 (-774 *3))))) (-3175 (*1 *2 *1) (-12 (-14 *3 (-584 (-1091))) (-4 *5 (-196 (-3958 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5)) (-2 (|:| -2401 *4) (|:| -2402 *5)))) (-4 *2 (-146)) (-5 *1 (-401 *3 *2 *4 *5 *6 *7)) (-4 *4 (-757)) (-4 *7 (-862 *2 *5 (-774 *3))))) (-2895 (*1 *2 *1) (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3958 *3) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) (-2 (|:| -2401 *5) (|:| -2402 *6)))) (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-401 *3 *4 *5 *6 *7 *8)) (-4 *5 (-757)) (-4 *8 (-862 *4 *6 (-774 *3))))) (-1918 (*1 *2 *1) (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *2)) (-2 (|:| -2401 *5) (|:| -2402 *2)))) (-4 *2 (-196 (-3958 *3) (-695))) (-5 *1 (-401 *3 *4 *5 *2 *6 *7)) (-4 *5 (-757)) (-4 *7 (-862 *4 *2 (-774 *3))))) (-1917 (*1 *2 *1) (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3958 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5)) (-2 (|:| -2401 *2) (|:| -2402 *5)))) (-4 *2 (-757)) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *7 (-862 *4 *5 (-774 *3))))) (-3960 (*1 *1 *1) (-12 (-14 *2 (-584 (-1091))) (-4 *3 (-146)) (-4 *5 (-196 (-3958 *2) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5)) (-2 (|:| -2401 *4) (|:| -2402 *5)))) (-5 *1 (-401 *2 *3 *4 *5 *6 *7)) (-4 *4 (-757)) (-4 *7 (-862 *3 *5 (-774 *2))))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-757)) (-4 *6 (-196 (-3958 *4) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) (-2 (|:| -2401 *5) (|:| -2402 *6)))) (-14 *4 (-584 (-1091))) (-4 *2 (-146)) (-5 *1 (-401 *4 *2 *5 *6 *7 *8)) (-4 *8 (-862 *2 *6 (-774 *4))))) (-3708 (*1 *1 *2) (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3958 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5)) (-2 (|:| -2401 *2) (|:| -2402 *5)))) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *2 (-757)) (-4 *7 (-862 *4 *5 (-774 *3))))) (-1916 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-584 (-1091))) (-4 *2 (-146)) (-4 *4 (-196 (-3958 *5) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *4)) (-2 (|:| -2401 *3) (|:| -2402 *4)))) (-5 *1 (-401 *5 *2 *3 *4 *6 *7)) (-4 *3 (-757)) (-4 *7 (-862 *2 *4 (-774 *5))))) (-1915 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-584 (-1091))) (-4 *2 (-146)) (-4 *3 (-196 (-3958 *4) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *3)) (-2 (|:| -2401 *5) (|:| -2402 *3)))) (-5 *1 (-401 *4 *2 *5 *3 *6 *7)) (-4 *5 (-757)) (-4 *7 (-862 *2 *3 (-774 *4)))))) +((-1919 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) +(((-402 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1919 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-718) (-757) (-496) (-862 |#3| |#1| |#2|) (-13 (-951 (-350 (-485))) (-312) (-10 -8 (-15 -3947 ($ |#4|)) (-15 -2999 (|#4| $)) (-15 -2998 (|#4| $))))) (T -402)) +((-1919 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-757)) (-4 *5 (-718)) (-4 *6 (-496)) (-4 *7 (-862 *6 *5 *3)) (-5 *1 (-402 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-951 (-350 (-485))) (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3082 (((-584 |#3|) $) 41 T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3711 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2905 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ #1="failed") (-584 |#4|)) 49 T ELT)) (-3157 (($ (-584 |#4|)) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT)) (-3407 (($ |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2890 (((-584 |#4|) $) 18 (|has| $ (-6 -3996)) ELT)) (-3181 ((|#3| $) 47 T ELT)) (-2609 (((-584 |#4|) $) 14 T ELT)) (-3246 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2915 (((-584 |#3|) $) NIL T ELT)) (-2914 (((-85) |#3| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3769 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 39 T ELT)) (-3566 (($) 17 T ELT)) (-1947 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3401 (($ $) 16 T ELT)) (-3973 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT) (($ (-584 |#4|)) 51 T ELT)) (-3531 (($ (-584 |#4|)) 13 T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3947 (((-773) $) 38 T ELT) (((-584 |#4|) $) 50 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3057 (((-85) $ $) 30 T ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-403 |#1| |#2| |#3| |#4|) (-13 (-890 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3973 ($ (-584 |#4|))) (-6 -3997))) (-962) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -403)) +((-3973 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-403 *3 *4 *5 *6))))) +((-2661 (($) 11 T CONST)) (-2667 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) +(((-404 |#1| |#2| |#3|) (-10 -7 (-15 -2667 (|#1|) -3953) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2661 (|#1|) -3953)) (-405 |#2| |#3|) (-146) (-23)) (T -404)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3158 (((-3 |#1| "failed") $) 30 T ELT)) (-3157 ((|#1| $) 31 T ELT)) (-3945 (($ $ $) 27 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3949 ((|#2| $) 23 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 22 T CONST)) (-2667 (($) 28 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) (((-405 |#1| |#2|) (-113) (-146) (-23)) (T -405)) -((-2666 (*1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3944 (*1 *1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) -(-13 (-410 |t#1| |t#2|) (-950 |t#1|) (-10 -8 (-15 -2666 ($) -3952) (-15 -3944 ($ $ $)))) -(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-410 |#1| |#2|) . T) ((-13) . T) ((-950 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-1919 (((-1179 (-1179 (-484))) (-1179 (-1179 (-484))) (-830)) 26 T ELT)) (-1920 (((-1179 (-1179 (-484))) (-830)) 21 T ELT))) -(((-406) (-10 -7 (-15 -1919 ((-1179 (-1179 (-484))) (-1179 (-1179 (-484))) (-830))) (-15 -1920 ((-1179 (-1179 (-484))) (-830))))) (T -406)) -((-1920 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1179 (-1179 (-484)))) (-5 *1 (-406)))) (-1919 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 (-1179 (-484)))) (-5 *3 (-830)) (-5 *1 (-406))))) -((-2770 (((-484) (-484)) 32 T ELT) (((-484)) 24 T ELT)) (-2774 (((-484) (-484)) 28 T ELT) (((-484)) 20 T ELT)) (-2772 (((-484) (-484)) 30 T ELT) (((-484)) 22 T ELT)) (-1922 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1921 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1923 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT))) -(((-407) (-10 -7 (-15 -1921 ((-85))) (-15 -1922 ((-85))) (-15 -1921 ((-85) (-85))) (-15 -1922 ((-85) (-85))) (-15 -1923 ((-85))) (-15 -2772 ((-484))) (-15 -2774 ((-484))) (-15 -2770 ((-484))) (-15 -1923 ((-85) (-85))) (-15 -2772 ((-484) (-484))) (-15 -2774 ((-484) (-484))) (-15 -2770 ((-484) (-484))))) (T -407)) -((-2770 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) (-1923 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-2770 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) (-2774 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) (-2772 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) (-1923 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1922 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1921 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1922 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1921 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3851 (((-583 (-330)) $) 34 T ELT) (((-583 (-330)) $ (-583 (-330))) 145 T ELT)) (-1928 (((-583 (-1001 (-330))) $) 16 T ELT) (((-583 (-1001 (-330))) $ (-583 (-1001 (-330)))) 142 T ELT)) (-1925 (((-583 (-583 (-854 (-179)))) (-583 (-583 (-854 (-179)))) (-583 (-783))) 58 T ELT)) (-1929 (((-583 (-583 (-854 (-179)))) $) 137 T ELT)) (-3706 (((-1185) $ (-854 (-179)) (-783)) 162 T ELT)) (-1930 (($ $) 136 T ELT) (($ (-583 (-583 (-854 (-179))))) 148 T ELT) (($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830))) 147 T ELT) (($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)) (-583 (-221))) 149 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3860 (((-484) $) 110 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1931 (($) 146 T ELT)) (-1924 (((-583 (-179)) (-583 (-583 (-854 (-179))))) 89 T ELT)) (-1927 (((-1185) $ (-583 (-854 (-179))) (-783) (-783) (-830)) 154 T ELT) (((-1185) $ (-854 (-179))) 156 T ELT) (((-1185) $ (-854 (-179)) (-783) (-783) (-830)) 155 T ELT)) (-3946 (((-772) $) 168 T ELT) (($ (-583 (-583 (-854 (-179))))) 163 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1926 (((-1185) $ (-854 (-179))) 161 T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-408) (-13 (-1013) (-10 -8 (-15 -1931 ($)) (-15 -1930 ($ $)) (-15 -1930 ($ (-583 (-583 (-854 (-179)))))) (-15 -1930 ($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)))) (-15 -1930 ($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)) (-583 (-221)))) (-15 -1929 ((-583 (-583 (-854 (-179)))) $)) (-15 -3860 ((-484) $)) (-15 -1928 ((-583 (-1001 (-330))) $)) (-15 -1928 ((-583 (-1001 (-330))) $ (-583 (-1001 (-330))))) (-15 -3851 ((-583 (-330)) $)) (-15 -3851 ((-583 (-330)) $ (-583 (-330)))) (-15 -1927 ((-1185) $ (-583 (-854 (-179))) (-783) (-783) (-830))) (-15 -1927 ((-1185) $ (-854 (-179)))) (-15 -1927 ((-1185) $ (-854 (-179)) (-783) (-783) (-830))) (-15 -1926 ((-1185) $ (-854 (-179)))) (-15 -3706 ((-1185) $ (-854 (-179)) (-783))) (-15 -3946 ($ (-583 (-583 (-854 (-179)))))) (-15 -3946 ((-772) $)) (-15 -1925 ((-583 (-583 (-854 (-179)))) (-583 (-583 (-854 (-179)))) (-583 (-783)))) (-15 -1924 ((-583 (-179)) (-583 (-583 (-854 (-179))))))))) (T -408)) -((-3946 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-408)))) (-1931 (*1 *1) (-5 *1 (-408))) (-1930 (*1 *1 *1) (-5 *1 (-408))) (-1930 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-408)))) (-1930 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *4 (-583 (-830))) (-5 *1 (-408)))) (-1930 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *4 (-583 (-830))) (-5 *5 (-583 (-221))) (-5 *1 (-408)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-408)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-408)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-408)))) (-1928 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-408)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-583 (-330))) (-5 *1 (-408)))) (-3851 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-330))) (-5 *1 (-408)))) (-1927 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1185)) (-5 *1 (-408)))) (-1927 (*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1185)) (-5 *1 (-408)))) (-1927 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1185)) (-5 *1 (-408)))) (-1926 (*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1185)) (-5 *1 (-408)))) (-3706 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *2 (-1185)) (-5 *1 (-408)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-408)))) (-1925 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *1 (-408)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-179))) (-5 *1 (-408))))) -((-3837 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) -(((-409 |#1| |#2| |#3|) (-10 -7 (-15 -3837 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|))) (-410 |#2| |#3|) (-146) (-23)) (T -409)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3948 ((|#2| $) 23 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 22 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +((-2667 (*1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3945 (*1 *1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) +(-13 (-410 |t#1| |t#2|) (-951 |t#1|) (-10 -8 (-15 -2667 ($) -3953) (-15 -3945 ($ $ $)))) +(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-410 |#1| |#2|) . T) ((-13) . T) ((-951 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-1920 (((-1180 (-1180 (-485))) (-1180 (-1180 (-485))) (-831)) 26 T ELT)) (-1921 (((-1180 (-1180 (-485))) (-831)) 21 T ELT))) +(((-406) (-10 -7 (-15 -1920 ((-1180 (-1180 (-485))) (-1180 (-1180 (-485))) (-831))) (-15 -1921 ((-1180 (-1180 (-485))) (-831))))) (T -406)) +((-1921 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 (-485)))) (-5 *1 (-406)))) (-1920 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 (-1180 (-485)))) (-5 *3 (-831)) (-5 *1 (-406))))) +((-2771 (((-485) (-485)) 32 T ELT) (((-485)) 24 T ELT)) (-2775 (((-485) (-485)) 28 T ELT) (((-485)) 20 T ELT)) (-2773 (((-485) (-485)) 30 T ELT) (((-485)) 22 T ELT)) (-1923 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1922 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1924 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT))) +(((-407) (-10 -7 (-15 -1922 ((-85))) (-15 -1923 ((-85))) (-15 -1922 ((-85) (-85))) (-15 -1923 ((-85) (-85))) (-15 -1924 ((-85))) (-15 -2773 ((-485))) (-15 -2775 ((-485))) (-15 -2771 ((-485))) (-15 -1924 ((-85) (-85))) (-15 -2773 ((-485) (-485))) (-15 -2775 ((-485) (-485))) (-15 -2771 ((-485) (-485))))) (T -407)) +((-2771 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-1924 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-2771 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2775 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2773 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-1924 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1923 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1922 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1923 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1922 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3852 (((-584 (-330)) $) 34 T ELT) (((-584 (-330)) $ (-584 (-330))) 145 T ELT)) (-1929 (((-584 (-1002 (-330))) $) 16 T ELT) (((-584 (-1002 (-330))) $ (-584 (-1002 (-330)))) 142 T ELT)) (-1926 (((-584 (-584 (-855 (-179)))) (-584 (-584 (-855 (-179)))) (-584 (-784))) 58 T ELT)) (-1930 (((-584 (-584 (-855 (-179)))) $) 137 T ELT)) (-3707 (((-1186) $ (-855 (-179)) (-784)) 162 T ELT)) (-1931 (($ $) 136 T ELT) (($ (-584 (-584 (-855 (-179))))) 148 T ELT) (($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831))) 147 T ELT) (($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)) (-584 (-221))) 149 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3861 (((-485) $) 110 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1932 (($) 146 T ELT)) (-1925 (((-584 (-179)) (-584 (-584 (-855 (-179))))) 89 T ELT)) (-1928 (((-1186) $ (-584 (-855 (-179))) (-784) (-784) (-831)) 154 T ELT) (((-1186) $ (-855 (-179))) 156 T ELT) (((-1186) $ (-855 (-179)) (-784) (-784) (-831)) 155 T ELT)) (-3947 (((-773) $) 168 T ELT) (($ (-584 (-584 (-855 (-179))))) 163 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1927 (((-1186) $ (-855 (-179))) 161 T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-408) (-13 (-1014) (-10 -8 (-15 -1932 ($)) (-15 -1931 ($ $)) (-15 -1931 ($ (-584 (-584 (-855 (-179)))))) (-15 -1931 ($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)))) (-15 -1931 ($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)) (-584 (-221)))) (-15 -1930 ((-584 (-584 (-855 (-179)))) $)) (-15 -3861 ((-485) $)) (-15 -1929 ((-584 (-1002 (-330))) $)) (-15 -1929 ((-584 (-1002 (-330))) $ (-584 (-1002 (-330))))) (-15 -3852 ((-584 (-330)) $)) (-15 -3852 ((-584 (-330)) $ (-584 (-330)))) (-15 -1928 ((-1186) $ (-584 (-855 (-179))) (-784) (-784) (-831))) (-15 -1928 ((-1186) $ (-855 (-179)))) (-15 -1928 ((-1186) $ (-855 (-179)) (-784) (-784) (-831))) (-15 -1927 ((-1186) $ (-855 (-179)))) (-15 -3707 ((-1186) $ (-855 (-179)) (-784))) (-15 -3947 ($ (-584 (-584 (-855 (-179)))))) (-15 -3947 ((-773) $)) (-15 -1926 ((-584 (-584 (-855 (-179)))) (-584 (-584 (-855 (-179)))) (-584 (-784)))) (-15 -1925 ((-584 (-179)) (-584 (-584 (-855 (-179))))))))) (T -408)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-408)))) (-1932 (*1 *1) (-5 *1 (-408))) (-1931 (*1 *1 *1) (-5 *1 (-408))) (-1931 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) (-1931 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *4 (-584 (-831))) (-5 *1 (-408)))) (-1931 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *4 (-584 (-831))) (-5 *5 (-584 (-221))) (-5 *1 (-408)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-408)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408)))) (-1929 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408)))) (-3852 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408)))) (-1928 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1186)) (-5 *1 (-408)))) (-1928 (*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-408)))) (-1928 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1186)) (-5 *1 (-408)))) (-1927 (*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-408)))) (-3707 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-408)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) (-1926 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *1 (-408)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-179))) (-5 *1 (-408))))) +((-3838 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) +(((-409 |#1| |#2| |#3|) (-10 -7 (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|))) (-410 |#2| |#3|) (-146) (-23)) (T -409)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3949 ((|#2| $) 23 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 22 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) (((-410 |#1| |#2|) (-113) (-146) (-23)) (T -410)) -((-3948 (*1 *2 *1) (-12 (-4 *1 (-410 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2660 (*1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3837 (*1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3839 (*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3837 (*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) -(-13 (-1013) (-10 -8 (-15 -3948 (|t#2| $)) (-15 -2660 ($) -3952) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3837 ($ $)) (-15 -3839 ($ $ $)) (-15 -3837 ($ $ $)))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-1933 (((-3 (-583 (-421 |#1| |#2|)) "failed") (-583 (-421 |#1| |#2|)) (-583 (-773 |#1|))) 135 T ELT)) (-1932 (((-583 (-583 (-206 |#1| |#2|))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))) 132 T ELT)) (-1934 (((-2 (|:| |dpolys| (-583 (-206 |#1| |#2|))) (|:| |coords| (-583 (-484)))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))) 87 T ELT))) -(((-411 |#1| |#2| |#3|) (-10 -7 (-15 -1932 ((-583 (-583 (-206 |#1| |#2|))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|)))) (-15 -1933 ((-3 (-583 (-421 |#1| |#2|)) "failed") (-583 (-421 |#1| |#2|)) (-583 (-773 |#1|)))) (-15 -1934 ((-2 (|:| |dpolys| (-583 (-206 |#1| |#2|))) (|:| |coords| (-583 (-484)))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))))) (-583 (-1090)) (-392) (-392)) (T -411)) -((-1934 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1090))) (-4 *6 (-392)) (-5 *2 (-2 (|:| |dpolys| (-583 (-206 *5 *6))) (|:| |coords| (-583 (-484))))) (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-392)))) (-1933 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-421 *4 *5))) (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *1 (-411 *4 *5 *6)) (-4 *6 (-392)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1090))) (-4 *6 (-392)) (-5 *2 (-583 (-583 (-206 *5 *6)))) (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-392))))) -((-3467 (((-3 $ "failed") $) 11 T ELT)) (-3009 (($ $ $) 22 T ELT)) (-2435 (($ $ $) 23 T ELT)) (-3949 (($ $ $) 9 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 21 T ELT))) -(((-412 |#1|) (-10 -7 (-15 -2435 (|#1| |#1| |#1|)) (-15 -3009 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3949 (|#1| |#1| |#1|)) (-15 -3467 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830)))) (-413)) (T -412)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 20 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 30 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3009 (($ $ $) 27 T ELT)) (-2435 (($ $ $) 26 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 29 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ $ (-484)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +((-3949 (*1 *2 *1) (-12 (-4 *1 (-410 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2661 (*1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3838 (*1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))) +(-13 (-1014) (-10 -8 (-15 -3949 (|t#2| $)) (-15 -2661 ($) -3953) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3838 ($ $)) (-15 -3840 ($ $ $)) (-15 -3838 ($ $ $)))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-1934 (((-3 (-584 (-421 |#1| |#2|)) "failed") (-584 (-421 |#1| |#2|)) (-584 (-774 |#1|))) 135 T ELT)) (-1933 (((-584 (-584 (-206 |#1| |#2|))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))) 132 T ELT)) (-1935 (((-2 (|:| |dpolys| (-584 (-206 |#1| |#2|))) (|:| |coords| (-584 (-485)))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))) 87 T ELT))) +(((-411 |#1| |#2| |#3|) (-10 -7 (-15 -1933 ((-584 (-584 (-206 |#1| |#2|))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|)))) (-15 -1934 ((-3 (-584 (-421 |#1| |#2|)) "failed") (-584 (-421 |#1| |#2|)) (-584 (-774 |#1|)))) (-15 -1935 ((-2 (|:| |dpolys| (-584 (-206 |#1| |#2|))) (|:| |coords| (-584 (-485)))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))))) (-584 (-1091)) (-392) (-392)) (T -411)) +((-1935 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-2 (|:| |dpolys| (-584 (-206 *5 *6))) (|:| |coords| (-584 (-485))))) (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392)))) (-1934 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-411 *4 *5 *6)) (-4 *6 (-392)))) (-1933 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-584 (-584 (-206 *5 *6)))) (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392))))) +((-3468 (((-3 $ "failed") $) 11 T ELT)) (-3010 (($ $ $) 22 T ELT)) (-2436 (($ $ $) 23 T ELT)) (-3950 (($ $ $) 9 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 21 T ELT))) +(((-412 |#1|) (-10 -7 (-15 -2436 (|#1| |#1| |#1|)) (-15 -3010 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3950 (|#1| |#1| |#1|)) (-15 -3468 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831)))) (-413)) (T -412)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 20 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 30 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3010 (($ $ $) 27 T ELT)) (-2436 (($ $ $) 26 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2667 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 29 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ $ (-485)) 28 T ELT)) (* (($ $ $) 18 T ELT))) (((-413) (-113)) (T -413)) -((-2484 (*1 *1 *1) (-4 *1 (-413))) (-3949 (*1 *1 *1 *1) (-4 *1 (-413))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-484)))) (-3009 (*1 *1 *1 *1) (-4 *1 (-413))) (-2435 (*1 *1 *1 *1) (-4 *1 (-413)))) -(-13 (-663) (-10 -8 (-15 -2484 ($ $)) (-15 -3949 ($ $ $)) (-15 ** ($ $ (-484))) (-6 -3992) (-15 -3009 ($ $ $)) (-15 -2435 ($ $ $)))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-1025) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3831 (((-1090) $) 18 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3771 (($ $ (-350 (-484))) NIL T ELT) (($ $ (-350 (-484)) (-350 (-484))) NIL T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3818 (($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) NIL T CONST)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3772 (((-350 (-484)) $) NIL T ELT) (((-350 (-484)) $ (-350 (-484))) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3777 (($ $ (-830)) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-350 (-484))) NIL T ELT) (($ $ (-994) (-350 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-350 (-484)))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3812 (($ $) 29 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 35 (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3081 ((-583 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 30 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-350 (-484))) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-350 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) 28 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-1176 |#2|)) 16 T ELT)) (-3948 (((-350 (-484)) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2891 (($ $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1176 |#2|)) NIL T ELT) (($ (-1160 |#1| |#2| |#3|)) 9 T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3677 ((|#1| $ (-350 (-484))) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3773 ((|#1| $) 21 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 ((|#1| $ (-350 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-1176 |#2|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-414 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-806 $ (-1176 |#2|)) (-10 -8 (-15 -3946 ($ (-1176 |#2|))) (-15 -3946 ($ (-1160 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3812 ($ $ (-1176 |#2|))) |%noBranch|))) (-961) (-1090) |#1|) (T -414)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-414 *3 *4 *5)))) (-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))) -((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) 18 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3801 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3530 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3946 (((-772) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-415 |#1| |#2| |#3| |#4|) (-1107 |#1| |#2|) (-1013) (-1013) (-1107 |#1| |#2|) |#2|) (T -415)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3681 (((-583 (-2 (|:| -3861 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3682 (((-583 $) (-583 |#4|)) NIL T ELT)) (-3081 (((-583 |#3|) $) NIL T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3710 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2904 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3689 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3156 (($ (-583 |#4|)) NIL T ELT)) (-3799 (((-3 $ #1#) $) 45 T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT)) (-3406 (($ |#4| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3696 (((-2 (|:| -3861 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) NIL T ELT)) (-2889 (((-583 |#4|) $) 18 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3180 ((|#3| $) 38 T ELT)) (-2608 (((-583 |#4|) $) 19 T ELT)) (-3245 (((-85) |#4| $) 27 (|has| |#4| (-72)) ELT)) (-3326 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2914 (((-583 |#3|) $) NIL T ELT)) (-2913 (((-85) |#3| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3798 (((-3 |#4| #1#) $) 42 T ELT)) (-3697 (((-583 |#4|) $) NIL T ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3699 (((-85) $ $) NIL T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3801 (((-3 |#4| #1#) $) 40 T ELT)) (-1354 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3679 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3769 (($ $ |#4|) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3768 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 17 T ELT)) (-3565 (($) 14 T ELT)) (-3948 (((-694) $) NIL T ELT)) (-1946 (((-694) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3400 (($ $) 13 T ELT)) (-3972 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3530 (($ (-583 |#4|)) 22 T ELT)) (-2910 (($ $ |#3|) 49 T ELT)) (-2912 (($ $ |#3|) 51 T ELT)) (-3684 (($ $) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3946 (((-772) $) 35 T ELT) (((-583 |#4|) $) 46 T ELT)) (-3678 (((-694) $) NIL (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-583 |#3|) $) NIL T ELT)) (-3933 (((-85) |#3| $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-416 |#1| |#2| |#3| |#4|) (-1124 |#1| |#2| |#3| |#4|) (-495) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -416)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3627 (($) 17 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3972 (((-330) $) 21 T ELT) (((-179) $) 24 T ELT) (((-350 (-1085 (-484))) $) 18 T ELT) (((-473) $) 53 T ELT)) (-3946 (((-772) $) 51 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (((-179) $) 23 T ELT) (((-330) $) 20 T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 37 T CONST)) (-2666 (($) 8 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT))) -(((-417) (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))) (-933) (-552 (-179)) (-552 (-330)) (-553 (-350 (-1085 (-484)))) (-553 (-473)) (-10 -8 (-15 -3627 ($))))) (T -417)) -((-3627 (*1 *1) (-5 *1 (-417)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3528 (((-1049) $) 12 T ELT)) (-3529 (((-1049) $) 10 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-418) (-13 (-995) (-10 -8 (-15 -3529 ((-1049) $)) (-15 -3528 ((-1049) $))))) (T -418)) -((-3529 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418))))) -((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) 16 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) 13 T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3801 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) 19 T ELT)) (-3800 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3530 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3946 (((-772) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3056 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3957 (((-694) $) 15 T ELT))) -(((-419 |#1| |#2| |#3|) (-1107 |#1| |#2|) (-1013) (-1013) (-1073)) (T -419)) -NIL -((-1935 (((-484) (-484) (-484)) 19 T ELT)) (-1936 (((-85) (-484) (-484) (-484) (-484)) 28 T ELT)) (-3457 (((-1179 (-583 (-484))) (-694) (-694)) 42 T ELT))) -(((-420) (-10 -7 (-15 -1935 ((-484) (-484) (-484))) (-15 -1936 ((-85) (-484) (-484) (-484) (-484))) (-15 -3457 ((-1179 (-583 (-484))) (-694) (-694))))) (T -420)) -((-3457 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1179 (-583 (-484)))) (-5 *1 (-420)))) (-1936 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-420)))) (-1935 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-420))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3083 (((-1085 $) $ (-773 |#1|)) NIL T ELT) (((-1085 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3775 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3756 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1937 (($ $ (-583 (-484))) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1624 (($ $ |#2| (-422 (-3957 |#1|) (-694)) $) NIL T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-330))) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1085 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1085 $) (-773 |#1|)) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-422 (-3957 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2820 (((-422 (-3957 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1625 (($ (-1 (-422 (-3957 |#1|) (-694)) (-422 (-3957 |#1|) (-694))) $) NIL T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3082 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#2| $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-392)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#2| (-821)) ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3768 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3757 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3758 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3948 (((-422 (-3957 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3972 (((-800 (-330)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3817 (((-583 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-422 (-3957 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-421 |#1| |#2|) (-13 (-861 |#2| (-422 (-3957 |#1|) (-694)) (-773 |#1|)) (-10 -8 (-15 -1937 ($ $ (-583 (-484)))))) (-583 (-1090)) (-961)) (T -421)) -((-1937 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-421 *3 *4)) (-14 *3 (-583 (-1090))) (-4 *4 (-961))))) -((-2568 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3707 (($ (-830)) NIL (|has| |#2| (-961)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-2483 (($ $ $) NIL (|has| |#2| (-717)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3136 (((-694)) NIL (|has| |#2| (-320)) ELT)) (-3788 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1013)) ELT)) (-3156 (((-484) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-350 (-484)) $) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) NIL (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3467 (((-3 $ #1#) $) NIL (|has| |#2| (-961)) ELT)) (-2994 (($) NIL (|has| |#2| (-320)) ELT)) (-1576 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ (-484)) 11 T ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-2889 (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2608 (((-583 |#2|) $) NIL T ELT)) (-3245 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-3326 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#2| (-320)) ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1179 $)) NIL (|has| |#2| (-961)) ELT)) (-3242 (((-1073) $) NIL (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#2| (-320)) ELT)) (-3243 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3801 ((|#2| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3836 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1468 (($ (-1179 |#2|)) NIL T ELT)) (-3911 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3758 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1946 (((-694) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-694) (-1 (-85) |#2|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-1179 |#2|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-350 (-484))) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) NIL (|has| |#2| (-1013)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3126 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1265 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#2| (-961)) ELT)) (-2660 (($) NIL (|has| |#2| (-23)) CONST)) (-2666 (($) NIL (|has| |#2| (-961)) CONST)) (-2669 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2685 (((-85) $ $) 17 (|has| |#2| (-756)) ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3839 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) NIL (|has| |#2| (-961)) ELT) (($ $ |#2|) NIL (|has| |#2| (-663)) ELT) (($ |#2| $) NIL (|has| |#2| (-663)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-422 |#1| |#2|) (-196 |#1| |#2|) (-694) (-717)) (T -422)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-1938 (((-583 (-785)) $) 16 T ELT)) (-3542 (((-446) $) 14 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1939 (($ (-446) (-583 (-785))) 12 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 23 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-423) (-13 (-995) (-10 -8 (-15 -1939 ($ (-446) (-583 (-785)))) (-15 -3542 ((-446) $)) (-15 -1938 ((-583 (-785)) $))))) (T -423)) -((-1939 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-785))) (-5 *1 (-423)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-423)))) (-1938 (*1 *2 *1) (-12 (-5 *2 (-583 (-785))) (-5 *1 (-423))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3724 (($) NIL T CONST)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2856 (($ $ $) 48 T ELT)) (-3518 (($ $ $) 47 T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2857 ((|#1| $) 40 T ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 41 T ELT)) (-3609 (($ |#1| $) 18 T ELT)) (-1940 (($ (-583 |#1|)) 19 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) 11 T ELT)) (-1946 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 29 T ELT))) -(((-424 |#1|) (-13 (-881 |#1|) (-10 -8 (-15 -1940 ($ (-583 |#1|))))) (-756)) (T -424)) -((-1940 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-424 *3))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3842 (($ $) 71 T ELT)) (-1637 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1968 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 45 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (((-3 |#4| #1#) $) 117 T ELT)) (-1638 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-484)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3435 (((-2 (|:| -2336 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3946 (((-772) $) 110 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 32 T CONST)) (-3056 (((-85) $ $) 121 T ELT)) (-3837 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 72 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 77 T ELT))) -(((-425 |#1| |#2| |#3| |#4|) (-286 |#1| |#2| |#3| |#4|) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -425)) -NIL -((-1944 (((-484) (-583 (-484))) 53 T ELT)) (-1941 ((|#1| (-583 |#1|)) 94 T ELT)) (-1943 (((-583 |#1|) (-583 |#1|)) 95 T ELT)) (-1942 (((-583 |#1|) (-583 |#1|)) 97 T ELT)) (-3144 ((|#1| (-583 |#1|)) 96 T ELT)) (-2817 (((-583 (-484)) (-583 |#1|)) 56 T ELT))) -(((-426 |#1|) (-10 -7 (-15 -3144 (|#1| (-583 |#1|))) (-15 -1941 (|#1| (-583 |#1|))) (-15 -1942 ((-583 |#1|) (-583 |#1|))) (-15 -1943 ((-583 |#1|) (-583 |#1|))) (-15 -2817 ((-583 (-484)) (-583 |#1|))) (-15 -1944 ((-484) (-583 (-484))))) (-1155 (-484))) (T -426)) -((-1944 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-484)) (-5 *1 (-426 *4)) (-4 *4 (-1155 *2)))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1155 (-484))) (-5 *2 (-583 (-484))) (-5 *1 (-426 *4)))) (-1943 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1155 (-484))) (-5 *1 (-426 *3)))) (-1942 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1155 (-484))) (-5 *1 (-426 *3)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1155 (-484))))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1155 (-484)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-484) $) NIL (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-3156 (((-484) $) NIL T ELT) (((-1090) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-484) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| (-484) (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) NIL T ELT)) (-3445 (((-632 $) $) NIL (|has| (-484) (-1066)) ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3958 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-484) (-1066)) CONST)) (-1945 (($ (-350 (-484))) 9 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-484) (-258)) ELT) (((-350 (-484)) $) NIL T ELT)) (-3130 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3768 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1090)) (-583 (-484))) NIL (|has| (-484) (-455 (-1090) (-484))) ELT) (($ $ (-1090) (-484)) NIL (|has| (-484) (-455 (-1090) (-484))) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3800 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) NIL T ELT)) (-3972 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| (-484) (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-330) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1090)) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL T ELT) (((-917 16) $) 10 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3949 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT))) -(((-427) (-13 (-904 (-484)) (-552 (-350 (-484))) (-552 (-917 16)) (-10 -8 (-15 -3128 ((-350 (-484)) $)) (-15 -1945 ($ (-350 (-484))))))) (T -427)) -((-3128 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-427)))) (-1945 (*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-427))))) -((-2608 (((-583 |#2|) $) 31 T ELT)) (-3245 (((-85) |#2| $) 39 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 26 T ELT)) (-3768 (($ $ (-583 (-249 |#2|))) 13 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL T ELT)) (-1946 (((-694) (-1 (-85) |#2|) $) 30 T ELT) (((-694) |#2| $) 37 T ELT)) (-3946 (((-772) $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3056 (((-85) $ $) 35 T ELT)) (-3957 (((-694) $) 18 T ELT))) -(((-428 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3946 ((-772) |#1|)) (-15 -3768 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3768 (|#1| |#1| |#2| |#2|)) (-15 -3768 (|#1| |#1| (-249 |#2|))) (-15 -3768 (|#1| |#1| (-583 (-249 |#2|)))) (-15 -3245 ((-85) |#2| |#1|)) (-15 -1946 ((-694) |#2| |#1|)) (-15 -2608 ((-583 |#2|) |#1|)) (-15 -1946 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3957 ((-694) |#1|))) (-429 |#2|) (-1129)) (T -428)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3724 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-429 |#1|) (-113) (-1129)) (T -429)) -((-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-429 *3)) (-4 *3 (-1129)))) (-3326 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3996)) (-4 *1 (-429 *3)) (-4 *3 (-1129)))) (-1948 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3995)) (-4 *1 (-429 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-1947 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3995)) (-4 *1 (-429 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-1946 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3995)) (-4 *1 (-429 *4)) (-4 *4 (-1129)) (-5 *2 (-694)))) (-2889 (*1 *2 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129)) (-5 *2 (-583 *3)))) (-2608 (*1 *2 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129)) (-5 *2 (-583 *3)))) (-1946 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-694)))) (-3245 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-85))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |t#1| (-1013)) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3958 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3996)) (-15 -3326 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -3995)) (PROGN (-15 -1948 ((-85) (-1 (-85) |t#1|) $)) (-15 -1947 ((-85) (-1 (-85) |t#1|) $)) (-15 -1946 ((-694) (-1 (-85) |t#1|) $)) (-15 -2889 ((-583 |t#1|) $)) (-15 -2608 ((-583 |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -1946 ((-694) |t#1| $)) (-15 -3245 ((-85) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T)) -((-3946 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) -(((-430 |#1|) (-113) (-1129)) (T -430)) -NIL -(-13 (-552 |t#1|) (-555 |t#1|)) -(((-555 |#1|) . T) ((-552 |#1|) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1949 (($ (-1073)) 8 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 15 T ELT) (((-1073) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 11 T ELT))) -(((-431) (-13 (-1013) (-552 (-1073)) (-10 -8 (-15 -1949 ($ (-1073)))))) (T -431)) -((-1949 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-431))))) -((-3492 (($ $) 15 T ELT)) (-3490 (($ $) 24 T ELT)) (-3494 (($ $) 12 T ELT)) (-3495 (($ $) 10 T ELT)) (-3493 (($ $) 17 T ELT)) (-3491 (($ $) 22 T ELT))) -(((-432 |#1|) (-10 -7 (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|))) (-433)) (T -432)) -NIL -((-3492 (($ $) 11 T ELT)) (-3490 (($ $) 10 T ELT)) (-3494 (($ $) 9 T ELT)) (-3495 (($ $) 8 T ELT)) (-3493 (($ $) 7 T ELT)) (-3491 (($ $) 6 T ELT))) +((-2485 (*1 *1 *1) (-4 *1 (-413))) (-3950 (*1 *1 *1 *1) (-4 *1 (-413))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-485)))) (-3010 (*1 *1 *1 *1) (-4 *1 (-413))) (-2436 (*1 *1 *1 *1) (-4 *1 (-413)))) +(-13 (-664) (-10 -8 (-15 -2485 ($ $)) (-15 -3950 ($ $ $)) (-15 ** ($ $ (-485))) (-6 -3993) (-15 -3010 ($ $ $)) (-15 -2436 ($ $ $)))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3832 (((-1091) $) 18 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3819 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3773 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3778 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-350 (-485))) NIL T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) 29 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 35 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3082 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 30 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-350 (-485))) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) 28 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) 16 T ELT)) (-3949 (((-350 (-485)) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1177 |#2|)) NIL T ELT) (($ (-1161 |#1| |#2| |#3|)) 9 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-350 (-485))) NIL T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3774 ((|#1| $) 21 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-414 |#1| |#2| |#3|) (-13 (-1163 |#1|) (-807 $ (-1177 |#2|)) (-10 -8 (-15 -3947 ($ (-1177 |#2|))) (-15 -3947 ($ (-1161 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3813 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -414)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-414 *3 *4 *5)))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))) +((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 18 (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-72))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3531 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-773) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-415 |#1| |#2| |#3| |#4|) (-1108 |#1| |#2|) (-1014) (-1014) (-1108 |#1| |#2|) |#2|) (T -415)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3682 (((-584 (-2 (|:| -3862 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3683 (((-584 $) (-584 |#4|)) NIL T ELT)) (-3082 (((-584 |#3|) $) NIL T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3711 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2905 (((-85) $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3690 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3157 (($ (-584 |#4|)) NIL T ELT)) (-3800 (((-3 $ #1#) $) 45 T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT)) (-3407 (($ |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3697 (((-2 (|:| -3862 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-2890 (((-584 |#4|) $) 18 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3181 ((|#3| $) 38 T ELT)) (-2609 (((-584 |#4|) $) 19 T ELT)) (-3246 (((-85) |#4| $) 27 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2915 (((-584 |#3|) $) NIL T ELT)) (-2914 (((-85) |#3| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3799 (((-3 |#4| #1#) $) 42 T ELT)) (-3698 (((-584 |#4|) $) NIL T ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3700 (((-85) $ $) NIL T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3802 (((-3 |#4| #1#) $) 40 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3770 (($ $ |#4|) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3769 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 17 T ELT)) (-3566 (($) 14 T ELT)) (-3949 (((-695) $) NIL T ELT)) (-1947 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3401 (($ $) 13 T ELT)) (-3973 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3531 (($ (-584 |#4|)) 22 T ELT)) (-2911 (($ $ |#3|) 49 T ELT)) (-2913 (($ $ |#3|) 51 T ELT)) (-3685 (($ $) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3947 (((-773) $) 35 T ELT) (((-584 |#4|) $) 46 T ELT)) (-3679 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-584 |#3|) $) NIL T ELT)) (-3934 (((-85) |#3| $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-416 |#1| |#2| |#3| |#4|) (-1125 |#1| |#2| |#3| |#4|) (-496) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -416)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3628 (($) 17 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3973 (((-330) $) 21 T ELT) (((-179) $) 24 T ELT) (((-350 (-1086 (-485))) $) 18 T ELT) (((-474) $) 53 T ELT)) (-3947 (((-773) $) 51 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (((-179) $) 23 T ELT) (((-330) $) 20 T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 37 T CONST)) (-2667 (($) 8 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT))) +(((-417) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))) (-934) (-553 (-179)) (-553 (-330)) (-554 (-350 (-1086 (-485)))) (-554 (-474)) (-10 -8 (-15 -3628 ($))))) (T -417)) +((-3628 (*1 *1) (-5 *1 (-417)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3529 (((-1050) $) 12 T ELT)) (-3530 (((-1050) $) 10 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-418) (-13 (-996) (-10 -8 (-15 -3530 ((-1050) $)) (-15 -3529 ((-1050) $))))) (T -418)) +((-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-418)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-418))))) +((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 16 (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) 13 T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 19 T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-72))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3531 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-773) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-695) $) 15 T ELT))) +(((-419 |#1| |#2| |#3|) (-1108 |#1| |#2|) (-1014) (-1014) (-1074)) (T -419)) +NIL +((-1936 (((-485) (-485) (-485)) 19 T ELT)) (-1937 (((-85) (-485) (-485) (-485) (-485)) 28 T ELT)) (-3458 (((-1180 (-584 (-485))) (-695) (-695)) 42 T ELT))) +(((-420) (-10 -7 (-15 -1936 ((-485) (-485) (-485))) (-15 -1937 ((-85) (-485) (-485) (-485) (-485))) (-15 -3458 ((-1180 (-584 (-485))) (-695) (-695))))) (T -420)) +((-3458 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1180 (-584 (-485)))) (-5 *1 (-420)))) (-1937 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-420)))) (-1936 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-420))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3084 (((-1086 $) $ (-774 |#1|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3776 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3757 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1938 (($ $ (-584 (-485))) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-422 (-3958 |#1|) (-695)) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3085 (($ (-1086 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1086 $) (-774 |#1|)) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-422 (-3958 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2821 (((-422 (-3958 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-422 (-3958 |#1|) (-695)) (-422 (-3958 |#1|) (-695))) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3083 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#2| $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3769 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3758 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3759 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3949 (((-422 (-3958 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3973 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2818 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3818 (((-584 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-422 (-3958 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-421 |#1| |#2|) (-13 (-862 |#2| (-422 (-3958 |#1|) (-695)) (-774 |#1|)) (-10 -8 (-15 -1938 ($ $ (-584 (-485)))))) (-584 (-1091)) (-962)) (T -421)) +((-1938 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-421 *3 *4)) (-14 *3 (-584 (-1091))) (-4 *4 (-962))))) +((-2569 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3708 (($ (-831)) NIL (|has| |#2| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-2484 (($ $ $) NIL (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3137 (((-695)) NIL (|has| |#2| (-320)) ELT)) (-3789 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1014)) ELT)) (-3157 (((-485) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) NIL (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#2| (-962)) ELT)) (-2995 (($) NIL (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ (-485)) 11 T ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-2890 (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2609 (((-584 |#2|) $) NIL T ELT)) (-3246 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3327 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) NIL (|has| |#2| (-962)) ELT)) (-3243 (((-1074) $) NIL (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#2| (-320)) ELT)) (-3244 (((-1034) $) NIL (|has| |#2| (-1014)) ELT)) (-3802 ((|#2| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3837 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) NIL T ELT)) (-3912 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1947 (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1180 |#2|) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) NIL (|has| |#2| (-1014)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3127 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#2| (-962)) ELT)) (-2661 (($) NIL (|has| |#2| (-23)) CONST)) (-2667 (($) NIL (|has| |#2| (-962)) CONST)) (-2670 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2686 (((-85) $ $) 17 (|has| |#2| (-757)) ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) NIL (|has| |#2| (-962)) ELT) (($ $ |#2|) NIL (|has| |#2| (-664)) ELT) (($ |#2| $) NIL (|has| |#2| (-664)) ELT) (($ (-485) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-422 |#1| |#2|) (-196 |#1| |#2|) (-695) (-718)) (T -422)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-1939 (((-584 (-786)) $) 16 T ELT)) (-3543 (((-447) $) 14 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1940 (($ (-447) (-584 (-786))) 12 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 23 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-423) (-13 (-996) (-10 -8 (-15 -1940 ($ (-447) (-584 (-786)))) (-15 -3543 ((-447) $)) (-15 -1939 ((-584 (-786)) $))))) (T -423)) +((-1940 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-786))) (-5 *1 (-423)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-423)))) (-1939 (*1 *2 *1) (-12 (-5 *2 (-584 (-786))) (-5 *1 (-423))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3725 (($) NIL T CONST)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2857 (($ $ $) 48 T ELT)) (-3519 (($ $ $) 47 T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2858 ((|#1| $) 40 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 41 T ELT)) (-3610 (($ |#1| $) 18 T ELT)) (-1941 (($ (-584 |#1|)) 19 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 34 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 11 T ELT)) (-1947 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 45 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 29 T ELT))) +(((-424 |#1|) (-13 (-882 |#1|) (-10 -8 (-15 -1941 ($ (-584 |#1|))))) (-757)) (T -424)) +((-1941 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-424 *3))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3843 (($ $) 71 T ELT)) (-1638 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1969 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 45 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (((-3 |#4| #1#) $) 117 T ELT)) (-1639 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-485)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3436 (((-2 (|:| -2337 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3947 (((-773) $) 110 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 32 T CONST)) (-3057 (((-85) $ $) 121 T ELT)) (-3838 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 72 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 77 T ELT))) +(((-425 |#1| |#2| |#3| |#4|) (-286 |#1| |#2| |#3| |#4|) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -425)) +NIL +((-1945 (((-485) (-584 (-485))) 53 T ELT)) (-1942 ((|#1| (-584 |#1|)) 94 T ELT)) (-1944 (((-584 |#1|) (-584 |#1|)) 95 T ELT)) (-1943 (((-584 |#1|) (-584 |#1|)) 97 T ELT)) (-3145 ((|#1| (-584 |#1|)) 96 T ELT)) (-2818 (((-584 (-485)) (-584 |#1|)) 56 T ELT))) +(((-426 |#1|) (-10 -7 (-15 -3145 (|#1| (-584 |#1|))) (-15 -1942 (|#1| (-584 |#1|))) (-15 -1943 ((-584 |#1|) (-584 |#1|))) (-15 -1944 ((-584 |#1|) (-584 |#1|))) (-15 -2818 ((-584 (-485)) (-584 |#1|))) (-15 -1945 ((-485) (-584 (-485))))) (-1156 (-485))) (T -426)) +((-1945 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-485)) (-5 *1 (-426 *4)) (-4 *4 (-1156 *2)))) (-2818 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1156 (-485))) (-5 *2 (-584 (-485))) (-5 *1 (-426 *4)))) (-1944 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3)))) (-1943 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485))))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-485) $) NIL (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-3157 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-485) (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) NIL T ELT)) (-3446 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3959 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-485) (-1067)) CONST)) (-1946 (($ (-350 (-485))) 9 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) NIL T ELT)) (-3131 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3769 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3801 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-485) $) NIL T ELT)) (-3973 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL T ELT) (((-918 16) $) 10 T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3950 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT))) +(((-427) (-13 (-905 (-485)) (-553 (-350 (-485))) (-553 (-918 16)) (-10 -8 (-15 -3129 ((-350 (-485)) $)) (-15 -1946 ($ (-350 (-485))))))) (T -427)) +((-3129 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427)))) (-1946 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427))))) +((-3246 (((-85) |#2| $) 38 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 26 T ELT)) (-3769 (($ $ (-584 (-249 |#2|))) 13 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL T ELT)) (-1947 (((-695) (-1 (-85) |#2|) $) 30 T ELT) (((-695) |#2| $) 36 T ELT)) (-3947 (((-773) $) 44 T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3057 (((-85) $ $) 34 T ELT)) (-3958 (((-695) $) 18 T ELT))) +(((-428 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3947 ((-773) |#1|)) (-15 -3769 (|#1| |#1| (-584 |#2|) (-584 |#2|))) (-15 -3769 (|#1| |#1| |#2| |#2|)) (-15 -3769 (|#1| |#1| (-249 |#2|))) (-15 -3769 (|#1| |#1| (-584 (-249 |#2|)))) (-15 -3246 ((-85) |#2| |#1|)) (-15 -1947 ((-695) |#2| |#1|)) (-15 -1947 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1949 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3958 ((-695) |#1|))) (-429 |#2|) (-1130)) (T -428)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3725 (($) 7 T CONST)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-429 |#1|) (-113) (-1130)) (T -429)) +((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-429 *3)) (-4 *3 (-1130)))) (-3327 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3997)) (-4 *1 (-429 *3)) (-4 *3 (-1130)))) (-1949 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3996)) (-4 *1 (-429 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-1948 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3996)) (-4 *1 (-429 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-1947 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3996)) (-4 *1 (-429 *4)) (-4 *4 (-1130)) (-5 *2 (-695)))) (-2890 (*1 *2 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-429 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3)))) (-2609 (*1 *2 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-429 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3)))) (-1947 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-429 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-695)))) (-3246 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-429 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |t#1| (-1014)) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3997)) (-15 -3327 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -3996)) (PROGN (-15 -1949 ((-85) (-1 (-85) |t#1|) $)) (-15 -1948 ((-85) (-1 (-85) |t#1|) $)) (-15 -1947 ((-695) (-1 (-85) |t#1|) $)) (-15 -2890 ((-584 |t#1|) $)) (-15 -2609 ((-584 |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -1947 ((-695) |t#1| $)) (-15 -3246 ((-85) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) +((-3947 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) +(((-430 |#1|) (-113) (-1130)) (T -430)) +NIL +(-13 (-553 |t#1|) (-556 |t#1|)) +(((-556 |#1|) . T) ((-553 |#1|) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1950 (($ (-1074)) 8 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 15 T ELT) (((-1074) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 11 T ELT))) +(((-431) (-13 (-1014) (-553 (-1074)) (-10 -8 (-15 -1950 ($ (-1074)))))) (T -431)) +((-1950 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-431))))) +((-3493 (($ $) 15 T ELT)) (-3491 (($ $) 24 T ELT)) (-3495 (($ $) 12 T ELT)) (-3496 (($ $) 10 T ELT)) (-3494 (($ $) 17 T ELT)) (-3492 (($ $) 22 T ELT))) +(((-432 |#1|) (-10 -7 (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|))) (-433)) (T -432)) +NIL +((-3493 (($ $) 11 T ELT)) (-3491 (($ $) 10 T ELT)) (-3495 (($ $) 9 T ELT)) (-3496 (($ $) 8 T ELT)) (-3494 (($ $) 7 T ELT)) (-3492 (($ $) 6 T ELT))) (((-433) (-113)) (T -433)) -((-3492 (*1 *1 *1) (-4 *1 (-433))) (-3490 (*1 *1 *1) (-4 *1 (-433))) (-3494 (*1 *1 *1) (-4 *1 (-433))) (-3495 (*1 *1 *1) (-4 *1 (-433))) (-3493 (*1 *1 *1) (-4 *1 (-433))) (-3491 (*1 *1 *1) (-4 *1 (-433)))) -(-13 (-10 -8 (-15 -3491 ($ $)) (-15 -3493 ($ $)) (-15 -3495 ($ $)) (-15 -3494 ($ $)) (-15 -3490 ($ $)) (-15 -3492 ($ $)))) -((-3732 (((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)) 54 T ELT))) -(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 ((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)))) (-312) (-1155 |#1|) (-13 (-312) (-120) (-661 |#1| |#2|)) (-1155 |#3|)) (T -434)) -((-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-4 *7 (-13 (-312) (-120) (-661 *5 *6))) (-5 *2 (-348 *3)) (-5 *1 (-434 *5 *6 *7 *3)) (-4 *3 (-1155 *7))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1215 (((-583 $) (-1085 $) (-1090)) NIL T ELT) (((-583 $) (-1085 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-1216 (($ (-1085 $) (-1090)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3188 (((-85) $) 39 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1950 (((-85) $ $) 72 T ELT)) (-1600 (((-583 (-550 $)) $) 49 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1604 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-3037 (($ $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1217 (((-583 $) (-1085 $) (-1090)) NIL T ELT) (((-583 $) (-1085 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-3183 (($ (-1085 $) (-1090)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3157 (((-3 (-550 $) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT)) (-3156 (((-550 $) $) NIL T ELT) (((-484) $) NIL T ELT) (((-350 (-484)) $) 54 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-350 (-484)))) (|:| |vec| (-1179 (-350 (-484))))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-350 (-484))) (-630 $)) NIL T ELT)) (-3842 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-2573 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1599 (((-583 (-86)) $) NIL T ELT)) (-3595 (((-86) (-86)) NIL T ELT)) (-2410 (((-85) $) 42 T ELT)) (-2673 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-2998 (((-1039 (-484) (-550 $)) $) 37 T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-3132 (((-1085 $) (-1085 $) (-550 $)) 86 T ELT) (((-1085 $) (-1085 $) (-583 (-550 $))) 61 T ELT) (($ $ (-550 $)) 75 T ELT) (($ $ (-583 (-550 $))) 76 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1597 (((-1085 $) (-550 $)) 73 (|has| $ (-961)) ELT)) (-3958 (($ (-1 $ $) (-550 $)) NIL T ELT)) (-1602 (((-3 (-550 $) #1#) $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-350 (-484)))) (|:| |vec| (-1179 (-350 (-484))))) (-1179 $) $) NIL T ELT) (((-630 (-350 (-484))) (-1179 $)) NIL T ELT)) (-1891 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1601 (((-583 (-550 $)) $) NIL T ELT)) (-2235 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2633 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1090)) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-2603 (((-694) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1598 (((-85) $ $) NIL T ELT) (((-85) $ (-1090)) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2674 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-3768 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1090) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1090) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-3800 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1603 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3758 (($ $) 36 T ELT) (($ $ (-694)) NIL T ELT)) (-2997 (((-1039 (-484) (-550 $)) $) 20 T ELT)) (-3185 (($ $) NIL (|has| $ (-961)) ELT)) (-3972 (((-330) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-330)) $) 116 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-550 $)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1039 (-484) (-550 $))) 21 T ELT)) (-3126 (((-694)) NIL T CONST)) (-2590 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2254 (((-85) (-86)) 92 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 10 T CONST)) (-2666 (($) 22 T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3056 (((-85) $ $) 24 T ELT)) (-3949 (($ $ $) 44 T ELT)) (-3837 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-484))) NIL T ELT) (($ $ (-484)) 47 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-350 (-484)) $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT))) -(((-435) (-13 (-254) (-27) (-950 (-484)) (-950 (-350 (-484))) (-580 (-484)) (-933) (-580 (-350 (-484))) (-120) (-553 (-142 (-330))) (-190) (-555 (-1039 (-484) (-550 $))) (-10 -8 (-15 -2998 ((-1039 (-484) (-550 $)) $)) (-15 -2997 ((-1039 (-484) (-550 $)) $)) (-15 -3842 ($ $)) (-15 -1950 ((-85) $ $)) (-15 -3132 ((-1085 $) (-1085 $) (-550 $))) (-15 -3132 ((-1085 $) (-1085 $) (-583 (-550 $)))) (-15 -3132 ($ $ (-550 $))) (-15 -3132 ($ $ (-583 (-550 $))))))) (T -435)) -((-2998 (*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-435)))) (-5 *1 (-435)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-435)))) (-5 *1 (-435)))) (-3842 (*1 *1 *1) (-5 *1 (-435))) (-1950 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-435)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-435))) (-5 *3 (-550 (-435))) (-5 *1 (-435)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-435))) (-5 *3 (-583 (-550 (-435)))) (-5 *1 (-435)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-550 (-435))) (-5 *1 (-435)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-435)))) (-5 *1 (-435))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3788 ((|#1| $ (-484) |#1|) 19 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-484) |#1|) 14 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) 13 T ELT)) (-3419 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) 9 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 16 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 18 T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) NIL T ELT)) (-3802 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-436 |#1| |#2|) (-19 |#1|) (-1129) (-484)) (T -436)) -NIL -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3788 ((|#1| $ (-484) (-484) |#1|) 44 T ELT)) (-1257 (($ $ (-484) |#2|) NIL T ELT)) (-1256 (($ $ (-484) |#3|) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3111 ((|#2| $ (-484)) 53 T ELT)) (-1576 ((|#1| $ (-484) (-484) |#1|) 43 T ELT)) (-3112 ((|#1| $ (-484) (-484)) 38 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3114 (((-694) $) 28 T ELT)) (-3614 (($ (-694) (-694) |#1|) 24 T ELT)) (-3113 (((-694) $) 30 T ELT)) (-3118 (((-484) $) 26 T ELT)) (-3116 (((-484) $) 27 T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3117 (((-484) $) 29 T ELT)) (-3115 (((-484) $) 31 T ELT)) (-3326 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 64 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 70 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 74 T ELT)) (-3242 (((-1073) $) 48 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) 61 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 33 T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-484) (-484)) 41 T ELT) ((|#1| $ (-484) (-484) |#1|) 72 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3400 (($ $) 59 T ELT)) (-3110 ((|#3| $ (-484)) 55 T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-437 |#1| |#2| |#3|) (-57 |#1| |#2| |#3|) (-1129) (-324 |#1|) (-324 |#1|)) (T -437)) -NIL -((-1952 (((-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-694) (-694)) 32 T ELT)) (-1951 (((-583 (-1085 |#1|)) |#1| (-694) (-694) (-694)) 43 T ELT)) (-2077 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-694)) 107 T ELT))) -(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -1951 ((-583 (-1085 |#1|)) |#1| (-694) (-694) (-694))) (-15 -1952 ((-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-694) (-694))) (-15 -2077 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-694)))) (-299) (-1155 |#1|) (-1155 |#2|)) (T -438)) -((-2077 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7))))) (-5 *5 (-694)) (-4 *8 (-1155 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-299)) (-5 *2 (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7)))) (-5 *1 (-438 *6 *7 *8)))) (-1952 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-4 *5 (-299)) (-4 *6 (-1155 *5)) (-5 *2 (-583 (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6))))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6)))) (-4 *7 (-1155 *6)))) (-1951 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-694)) (-4 *3 (-299)) (-4 *5 (-1155 *3)) (-5 *2 (-583 (-1085 *3))) (-5 *1 (-438 *3 *5 *6)) (-4 *6 (-1155 *5))))) -((-1958 (((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))) 70 T ELT)) (-1953 ((|#1| (-630 |#1|) |#1| (-694)) 24 T ELT)) (-1955 (((-694) (-694) (-694)) 34 T ELT)) (-1957 (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 50 T ELT)) (-1956 (((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|) 58 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 55 T ELT)) (-1954 ((|#1| (-630 |#1|) (-630 |#1|) |#1| (-484)) 28 T ELT)) (-3329 ((|#1| (-630 |#1|)) 18 T ELT))) -(((-439 |#1| |#2| |#3|) (-10 -7 (-15 -3329 (|#1| (-630 |#1|))) (-15 -1953 (|#1| (-630 |#1|) |#1| (-694))) (-15 -1954 (|#1| (-630 |#1|) (-630 |#1|) |#1| (-484))) (-15 -1955 ((-694) (-694) (-694))) (-15 -1956 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -1956 ((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|)) (-15 -1957 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -1958 ((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))))) (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $)))) (-1155 |#1|) (-353 |#1| |#2|)) (T -439)) -((-1958 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1957 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1956 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1956 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1955 (*1 *2 *2 *2) (-12 (-5 *2 (-694)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1954 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-630 *2)) (-5 *4 (-484)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *5 (-1155 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-1953 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-630 *2)) (-5 *4 (-694)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *5 (-1155 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *4 (-1155 *2)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-5 *1 (-439 *2 *4 *5)) (-4 *5 (-353 *2 *4))))) -((-1960 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1085 |#4|)) 35 T ELT)) (-1959 (((-1085 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1085 |#4|)) 22 T ELT)) (-1961 (((-3 (-630 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-630 (-1085 |#4|))) 46 T ELT)) (-1962 (((-1085 (-1085 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) -(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1959 (|#2| (-1 |#1| |#4|) (-1085 |#4|))) (-15 -1959 ((-1085 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1960 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1085 |#4|))) (-15 -1961 ((-3 (-630 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-630 (-1085 |#4|)))) (-15 -1962 ((-1085 (-1085 |#4|)) (-1 |#4| |#1|) |#3|))) (-961) (-1155 |#1|) (-1155 |#2|) (-961)) (T -440)) -((-1962 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1155 *5)) (-5 *2 (-1085 (-1085 *7))) (-5 *1 (-440 *5 *6 *4 *7)) (-4 *4 (-1155 *6)))) (-1961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-630 (-1085 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1155 *5)) (-5 *2 (-630 *6)) (-5 *1 (-440 *5 *6 *7 *8)) (-4 *7 (-1155 *6)))) (-1960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1085 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1155 *5)) (-5 *1 (-440 *5 *2 *6 *7)) (-4 *6 (-1155 *2)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1155 *5)) (-5 *2 (-1085 *7)) (-5 *1 (-440 *5 *4 *6 *7)) (-4 *6 (-1155 *4)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1085 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1155 *5)) (-5 *1 (-440 *5 *2 *6 *7)) (-4 *6 (-1155 *2))))) -((-2568 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1963 (((-1185) $) 25 T ELT)) (-3800 (((-1073) $ (-1090)) 30 T ELT)) (-3617 (((-1185) $) 20 T ELT)) (-3946 (((-772) $) 27 T ELT) (($ (-1073)) 26 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 12 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 10 T ELT))) -(((-441) (-13 (-756) (-555 (-1073)) (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $)) (-15 -1963 ((-1185) $))))) (T -441)) -((-3800 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1073)) (-5 *1 (-441)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-441)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-441))))) -((-3741 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3739 ((|#1| |#4|) 10 T ELT)) (-3740 ((|#3| |#4|) 17 T ELT))) -(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 (|#1| |#4|)) (-15 -3740 (|#3| |#4|)) (-15 -3741 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-495) (-904 |#1|) (-324 |#1|) (-324 |#2|)) (T -442)) -((-3741 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *6 (-324 *4)) (-4 *3 (-324 *5)))) (-3740 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-4 *2 (-324 *4)) (-5 *1 (-442 *4 *5 *2 *3)) (-4 *3 (-324 *5)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-442 *2 *4 *5 *3)) (-4 *5 (-324 *2)) (-4 *3 (-324 *4))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1973 (((-85) $ (-583 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3188 (((-85) $) 178 T ELT)) (-1965 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-583 |#3|)) 122 T ELT)) (-1964 (((-1080 (-583 (-857 |#1|)) (-583 (-249 (-857 |#1|)))) (-583 |#4|)) 171 (|has| |#3| (-553 (-1090))) ELT)) (-1972 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2410 (((-85) $) 177 T ELT)) (-1969 (($ $) 132 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3238 (($ $ $) 99 T ELT) (($ (-583 $)) 101 T ELT)) (-1974 (((-85) |#4| $) 130 T ELT)) (-1975 (((-85) $ $) 82 T ELT)) (-1968 (($ (-583 |#4|)) 106 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1967 (($ (-583 |#4|)) 175 T ELT)) (-1966 (((-85) $) 176 T ELT)) (-2251 (($ $) 85 T ELT)) (-2695 (((-583 |#4|) $) 73 T ELT)) (-1971 (((-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|)) NIL T ELT)) (-1976 (((-85) |#4| $) 89 T ELT)) (-3911 (((-484) $ (-583 |#3|)) 134 T ELT) (((-484) $) 135 T ELT)) (-3946 (((-772) $) 174 T ELT) (($ (-583 |#4|)) 102 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1970 (($ (-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3056 (((-85) $ $) 84 T ELT)) (-3839 (($ $ $) 109 T ELT)) (** (($ $ (-694)) 115 T ELT)) (* (($ $ $) 113 T ELT))) -(((-443 |#1| |#2| |#3| |#4|) (-13 (-1013) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-694))) (-15 -3839 ($ $ $)) (-15 -2410 ((-85) $)) (-15 -3188 ((-85) $)) (-15 -1976 ((-85) |#4| $)) (-15 -1975 ((-85) $ $)) (-15 -1974 ((-85) |#4| $)) (-15 -1973 ((-85) $ (-583 |#3|))) (-15 -1973 ((-85) $)) (-15 -3238 ($ $ $)) (-15 -3238 ($ (-583 $))) (-15 -1972 ($ $ $)) (-15 -1972 ($ $ |#4|)) (-15 -2251 ($ $)) (-15 -1971 ((-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -1970 ($ (-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)))) (-15 -3911 ((-484) $ (-583 |#3|))) (-15 -3911 ((-484) $)) (-15 -1969 ($ $)) (-15 -1968 ($ (-583 |#4|))) (-15 -1967 ($ (-583 |#4|))) (-15 -1966 ((-85) $)) (-15 -2695 ((-583 |#4|) $)) (-15 -3946 ($ (-583 |#4|))) (-15 -1965 ($ $ |#4|)) (-15 -1965 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-553 (-1090))) (-15 -1964 ((-1080 (-583 (-857 |#1|)) (-583 (-249 (-857 |#1|)))) (-583 |#4|))) |%noBranch|))) (-312) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -443)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3839 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2410 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3188 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1976 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1975 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1974 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1973 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1973 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3238 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-3238 (*1 *1 *2) (-12 (-5 *2 (-583 (-443 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1972 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1972 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-2251 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1971 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *2 (-2 (|:| |mval| (-630 *4)) (|:| |invmval| (-630 *4)) (|:| |genIdeal| (-443 *4 *5 *6 *7)))) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1970 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-630 *3)) (|:| |invmval| (-630 *3)) (|:| |genIdeal| (-443 *3 *4 *5 *6)))) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3911 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *2 (-484)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-3911 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1969 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))) (-1966 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-2695 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *6)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))) (-1965 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-1965 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *1 (-443 *4 *5 *6 *2)) (-4 *2 (-861 *4 *5 *6)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *6 (-553 (-1090))) (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1080 (-583 (-857 *4)) (-583 (-249 (-857 *4))))) (-5 *1 (-443 *4 *5 *6 *7))))) -((-1977 (((-85) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484))))) 178 T ELT)) (-1978 (((-85) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484))))) 179 T ELT)) (-1979 (((-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484))))) 129 T ELT)) (-3723 (((-85) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484))))) NIL T ELT)) (-1980 (((-583 (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484))))) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484))))) 181 T ELT)) (-1981 (((-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))) (-583 (-773 |#1|))) 197 T ELT))) -(((-444 |#1| |#2|) (-10 -7 (-15 -1977 ((-85) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))))) (-15 -1978 ((-85) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))))) (-15 -3723 ((-85) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))))) (-15 -1979 ((-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))))) (-15 -1980 ((-583 (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484))))) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))))) (-15 -1981 ((-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))) (-583 (-773 |#1|))))) (-583 (-1090)) (-694)) (T -444)) -((-1981 (*1 *2 *2 *3) (-12 (-5 *2 (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))) (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *1 (-444 *4 *5)))) (-1980 (*1 *2 *3) (-12 (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *2 (-583 (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484)))))) (-5 *1 (-444 *4 *5)) (-5 *3 (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))))) (-1979 (*1 *2 *2) (-12 (-5 *2 (-443 (-350 (-484)) (-197 *4 (-694)) (-773 *3) (-206 *3 (-350 (-484))))) (-14 *3 (-583 (-1090))) (-14 *4 (-694)) (-5 *1 (-444 *3 *4)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))) (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))) (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))) (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5))))) -((-3800 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-445 |#1|) (-113) (-72)) (T -445)) -NIL -(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3056 (|f| |x| |x|) |x|)))))) -(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1982 (($) 6 T ELT)) (-3946 (((-772) $) 10 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 8 T ELT))) -(((-446) (-13 (-1013) (-10 -8 (-15 -1982 ($))))) (T -446)) -((-1982 (*1 *1) (-5 *1 (-446)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3774 (((-583 (-453 |#1| |#2|)) $) 10 T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2893 (($ |#1| |#2|) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3972 (($ (-583 (-453 |#1| |#2|))) 15 T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 20 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) 16 T ELT) (($ $ $) 36 T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 25 T ELT))) -(((-447 |#1| |#2|) (-13 (-21) (-449 |#1| |#2|)) (-21) (-759)) (T -447)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 16 T ELT)) (-3774 (((-583 (-453 |#1| |#2|)) $) 13 T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) 39 T ELT)) (-1214 (((-85) $ $) 44 T ELT)) (-2893 (($ |#1| |#2|) 36 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) 41 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3972 (($ (-583 (-453 |#1| |#2|))) 11 T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 12 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3839 (($ $ $) 30 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 35 T ELT))) -(((-448 |#1| |#2|) (-13 (-23) (-449 |#1| |#2|)) (-23) (-759)) (T -448)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3774 (((-583 (-453 |#1| |#2|)) $) 16 T ELT)) (-3959 (($ $) 17 T ELT)) (-2893 (($ |#1| |#2|) 20 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1983 ((|#2| $) 18 T ELT)) (-3174 ((|#1| $) 19 T ELT)) (-3242 (((-1073) $) 15 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-3243 (((-1033) $) 14 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-3972 (($ (-583 (-453 |#1| |#2|))) 22 T ELT)) (-3946 (((-772) $) 13 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) -(((-449 |#1| |#2|) (-113) (-72) (-759)) (T -449)) -((-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)))) (-2893 (*1 *1 *2 *3) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *3 (-759)) (-4 *2 (-72)))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-449 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759)))) (-3959 (*1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)) (-5 *2 (-583 (-453 *3 *4)))))) -(-13 (-72) (-557 (-583 (-453 |t#1| |t#2|))) (-10 -8 (IF (|has| |t#1| (-1013)) (IF (|has| |t#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -3958 ($ (-1 |t#1| |t#1|) $)) (-15 -2893 ($ |t#1| |t#2|)) (-15 -3174 (|t#1| $)) (-15 -1983 (|t#2| $)) (-15 -3959 ($ $)) (-15 -3774 ((-583 (-453 |t#1| |t#2|)) $)))) -(((-72) . T) ((-552 (-772)) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ((-557 (-583 (-453 |#1| |#2|))) . T) ((-13) . T) ((-1013) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3774 (((-583 (-453 |#1| |#2|)) $) 29 T ELT)) (-3959 (($ $) 23 T ELT)) (-2893 (($ |#1| |#2|) 19 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1983 ((|#2| $) 28 T ELT)) (-3174 ((|#1| $) 27 T ELT)) (-3242 (((-1073) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3243 (((-1033) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3972 (($ (-583 (-453 |#1| |#2|))) 30 T ELT)) (-1984 (($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|)) 40 T ELT)) (-3946 (((-772) $) 17 (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-450 |#1| |#2|) (-13 (-449 |#1| |#2|) (-10 -8 (-15 -1984 ($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|))))) (-72) (-759)) (T -450)) -((-1984 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) (-5 *1 (-450 *4 *5)) (-4 *5 (-759))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3774 (((-583 (-453 |#1| |#2|)) $) 10 T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2893 (($ |#1| |#2|) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3972 (($ (-583 (-453 |#1| |#2|))) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 21 T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT))) -(((-451 |#1| |#2|) (-13 (-716) (-449 |#1| |#2|)) (-716) (-759)) (T -451)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3774 (((-583 (-453 |#1| |#2|)) $) NIL T ELT)) (-2483 (($ $ $) 24 T ELT)) (-1312 (((-3 $ "failed") $ $) 20 T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2893 (($ |#1| |#2|) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3972 (($ (-583 (-453 |#1| |#2|))) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT))) -(((-452 |#1| |#2|) (-13 (-717) (-449 |#1| |#2|)) (-717) (-756)) (T -452)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-1985 (($ |#2| |#1|) 9 T ELT)) (-2400 ((|#2| $) 11 T ELT)) (-3946 (((-782 |#2| |#1|) $) 14 T ELT)) (-3677 ((|#1| $) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-453 |#1| |#2|) (-13 (-72) (-552 (-782 |#2| |#1|)) (-10 -8 (-15 -1985 ($ |#2| |#1|)) (-15 -2400 (|#2| $)) (-15 -3677 (|#1| $)))) (-72) (-759)) (T -453)) -((-1985 (*1 *1 *2 *3) (-12 (-5 *1 (-453 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759)))) (-2400 (*1 *2 *1) (-12 (-4 *2 (-759)) (-5 *1 (-453 *3 *2)) (-4 *3 (-72)))) (-3677 (*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-453 *2 *3)) (-4 *3 (-759))))) -((-3768 (($ $ (-583 |#2|) (-583 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) -(((-454 |#1| |#2| |#3|) (-10 -7 (-15 -3768 (|#1| |#1| |#2| |#3|)) (-15 -3768 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) (-455 |#2| |#3|) (-1013) (-1129)) (T -454)) -NIL -((-3768 (($ $ (-583 |#1|) (-583 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) -(((-455 |#1| |#2|) (-113) (-1013) (-1129)) (T -455)) -((-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-455 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1129)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1129))))) -(-13 (-10 -8 (-15 -3768 ($ $ |t#1| |t#2|)) (-15 -3768 ($ $ (-583 |t#1|) (-583 |t#2|))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 17 T ELT)) (-3774 (((-583 (-2 (|:| |gen| |#1|) (|:| -3943 |#2|))) $) 19 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2299 ((|#1| $ (-484)) 24 T ELT)) (-1622 ((|#2| $ (-484)) 22 T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1621 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1620 (($ $ $) 55 (|has| |#2| (-716)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3677 ((|#2| |#1| $) 51 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 11 T CONST)) (-3056 (((-85) $ $) 30 T ELT)) (-3839 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) -(((-456 |#1| |#2| |#3|) (-274 |#1| |#2|) (-1013) (-104) |#2|) (T -456)) -NIL -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-1986 (((-85) (-85)) 32 T ELT)) (-3788 ((|#1| $ (-484) |#1|) 42 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) NIL T ELT)) (-2368 (($ $) 83 (|has| |#1| (-1013)) ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3419 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-1987 (($ $ (-484)) 19 T ELT)) (-1988 (((-694) $) 13 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-694) |#1|) 31 T ELT)) (-2200 (((-484) $) 29 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 28 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3609 (($ $ $ (-484)) 75 T ELT) (($ |#1| $ (-484)) 59 T ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1989 (($ (-583 |#1|)) 43 T ELT)) (-3801 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) 24 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 62 T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) 21 T ELT)) (-3800 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 55 T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1571 (($ $ (-1146 (-484))) 73 T ELT) (($ $ (-484)) 67 T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-484)) 63 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 53 T ELT)) (-3972 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) NIL T ELT)) (-3791 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3802 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3957 (((-694) $) 22 T ELT))) -(((-457 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1989 ($ (-583 |#1|))) (-15 -1988 ((-694) $)) (-15 -1987 ($ $ (-484))) (-15 -1986 ((-85) (-85))))) (-1129) (-484)) (T -457)) -((-1989 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-457 *3 *4)) (-14 *4 (-484)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1129)) (-14 *4 (-484)))) (-1987 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1129)) (-14 *4 *2))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1129)) (-14 *4 (-484))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1991 (((-1049) $) 12 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1990 (((-1049) $) 14 T ELT)) (-3922 (((-1049) $) 10 T ELT)) (-3946 (((-772) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-458) (-13 (-995) (-10 -8 (-15 -3922 ((-1049) $)) (-15 -1991 ((-1049) $)) (-15 -1990 ((-1049) $))))) (T -458)) -((-3922 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-458)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-458)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-458))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-694)) NIL T ELT)) (-3330 (((-517 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-517 |#1|) #1#) $) NIL T ELT)) (-3156 (((-517 |#1|) $) NIL T ELT)) (-1792 (($ (-1179 (-517 |#1|))) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-517 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-517 |#1|) (-320)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1680 (((-85) $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1764 (($ $ (-694)) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-320))) ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-830) $) NIL (|has| (-517 |#1|) (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-517 |#1|) (-320)) ELT)) (-2011 (((-85) $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3132 (((-517 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3445 (((-632 $) $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 (-517 |#1|)) $) NIL T ELT) (((-1085 $) $ (-830)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-2010 (((-830) $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1627 (((-1085 (-517 |#1|)) $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1626 (((-1085 (-517 |#1|)) $) NIL (|has| (-517 |#1|) (-320)) ELT) (((-3 (-1085 (-517 |#1|)) #1#) $ $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1628 (($ $ (-1085 (-517 |#1|))) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-517 |#1|) (-320)) CONST)) (-2400 (($ (-830)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| (-517 |#1|) (-320)) ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1765 (((-694) $) NIL (|has| (-517 |#1|) (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-320))) ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $ (-694)) NIL (|has| (-517 |#1|) (-320)) ELT) (($ $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3948 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3185 (((-1085 (-517 |#1|))) NIL T ELT)) (-1674 (($) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1629 (($) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3224 (((-1179 (-517 |#1|)) $) NIL T ELT) (((-630 (-517 |#1|)) (-1179 $)) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-517 |#1|)) NIL T ELT)) (-2702 (($ $) NIL (|has| (-517 |#1|) (-320)) ELT) (((-632 $) $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-320))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT) (((-1179 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3928 (($ $) NIL (|has| (-517 |#1|) (-320)) ELT) (($ $ (-694)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-2669 (($ $ (-694)) NIL (|has| (-517 |#1|) (-320)) ELT) (($ $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT) (($ $ (-517 |#1|)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-517 |#1|)) NIL T ELT) (($ (-517 |#1|) $) NIL T ELT))) -(((-459 |#1| |#2|) (-280 (-517 |#1|)) (-830) (-830)) (T -459)) -NIL -((-3109 ((|#4| |#4|) 38 T ELT)) (-3108 (((-694) |#4|) 45 T ELT)) (-3107 (((-694) |#4|) 46 T ELT)) (-3106 (((-583 |#3|) |#4|) 57 (|has| |#3| (-6 -3996)) ELT)) (-3590 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1992 ((|#4| |#4|) 61 T ELT)) (-3328 ((|#1| |#4|) 60 T ELT))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3109 (|#4| |#4|)) (-15 -3108 ((-694) |#4|)) (-15 -3107 ((-694) |#4|)) (IF (|has| |#3| (-6 -3996)) (-15 -3106 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -3328 (|#1| |#4|)) (-15 -1992 (|#4| |#4|)) (-15 -3590 ((-3 |#4| "failed") |#4|))) (-312) (-324 |#1|) (-324 |#1|) (-627 |#1| |#2| |#3|)) (T -460)) -((-3590 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-312)) (-5 *1 (-460 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-3106 (*1 *2 *3) (-12 (|has| *6 (-6 -3996)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-583 *6)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-694)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-694)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) -((-3109 ((|#8| |#4|) 20 T ELT)) (-3106 (((-583 |#3|) |#4|) 29 (|has| |#7| (-6 -3996)) ELT)) (-3590 (((-3 |#8| "failed") |#4|) 23 T ELT))) -(((-461 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3109 (|#8| |#4|)) (-15 -3590 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -3996)) (-15 -3106 ((-583 |#3|) |#4|)) |%noBranch|)) (-495) (-324 |#1|) (-324 |#1|) (-627 |#1| |#2| |#3|) (-904 |#1|) (-324 |#5|) (-324 |#5|) (-627 |#5| |#6| |#7|)) (T -461)) -((-3106 (*1 *2 *3) (-12 (|has| *9 (-6 -3996)) (-4 *4 (-495)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-904 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-583 *6)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6)) (-4 *10 (-627 *7 *8 *9)))) (-3590 (*1 *2 *3) (|partial| -12 (-4 *4 (-495)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1993 (((-583 (-1130)) $) 14 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT) (($ (-583 (-1130))) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-462) (-13 (-995) (-10 -8 (-15 -3946 ($ (-583 (-1130)))) (-15 -1993 ((-583 (-1130)) $))))) (T -462)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-462)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-462))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1994 (((-1049) $) 15 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3450 (((-446) $) 12 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 22 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-463) (-13 (-995) (-10 -8 (-15 -3450 ((-446) $)) (-15 -1994 ((-1049) $))))) (T -463)) -((-3450 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-463)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-463))))) -((-2000 (((-632 (-1138)) $) 15 T ELT)) (-1996 (((-632 (-1136)) $) 38 T ELT)) (-1998 (((-632 (-1135)) $) 29 T ELT)) (-2001 (((-632 (-488)) $) 12 T ELT)) (-1997 (((-632 (-486)) $) 42 T ELT)) (-1999 (((-632 (-485)) $) 33 T ELT)) (-1995 (((-694) $ (-102)) 54 T ELT))) -(((-464 |#1|) (-10 -7 (-15 -1995 ((-694) |#1| (-102))) (-15 -1996 ((-632 (-1136)) |#1|)) (-15 -1997 ((-632 (-486)) |#1|)) (-15 -1998 ((-632 (-1135)) |#1|)) (-15 -1999 ((-632 (-485)) |#1|)) (-15 -2000 ((-632 (-1138)) |#1|)) (-15 -2001 ((-632 (-488)) |#1|))) (-465)) (T -464)) -NIL -((-2000 (((-632 (-1138)) $) 12 T ELT)) (-1996 (((-632 (-1136)) $) 8 T ELT)) (-1998 (((-632 (-1135)) $) 10 T ELT)) (-2001 (((-632 (-488)) $) 13 T ELT)) (-1997 (((-632 (-486)) $) 9 T ELT)) (-1999 (((-632 (-485)) $) 11 T ELT)) (-1995 (((-694) $ (-102)) 7 T ELT)) (-2002 (((-632 (-101)) $) 14 T ELT)) (-1700 (($ $) 6 T ELT))) -(((-465) (-113)) (T -465)) -((-2002 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-101))))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-488))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1138))))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-485))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1135))))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-486))))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1136))))) (-1995 (*1 *2 *1 *3) (-12 (-4 *1 (-465)) (-5 *3 (-102)) (-5 *2 (-694))))) -(-13 (-147) (-10 -8 (-15 -2002 ((-632 (-101)) $)) (-15 -2001 ((-632 (-488)) $)) (-15 -2000 ((-632 (-1138)) $)) (-15 -1999 ((-632 (-485)) $)) (-15 -1998 ((-632 (-1135)) $)) (-15 -1997 ((-632 (-486)) $)) (-15 -1996 ((-632 (-1136)) $)) (-15 -1995 ((-694) $ (-102))))) +((-3493 (*1 *1 *1) (-4 *1 (-433))) (-3491 (*1 *1 *1) (-4 *1 (-433))) (-3495 (*1 *1 *1) (-4 *1 (-433))) (-3496 (*1 *1 *1) (-4 *1 (-433))) (-3494 (*1 *1 *1) (-4 *1 (-433))) (-3492 (*1 *1 *1) (-4 *1 (-433)))) +(-13 (-10 -8 (-15 -3492 ($ $)) (-15 -3494 ($ $)) (-15 -3496 ($ $)) (-15 -3495 ($ $)) (-15 -3491 ($ $)) (-15 -3493 ($ $)))) +((-3733 (((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)) 54 T ELT))) +(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)))) (-312) (-1156 |#1|) (-13 (-312) (-120) (-662 |#1| |#2|)) (-1156 |#3|)) (T -434)) +((-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-4 *7 (-13 (-312) (-120) (-662 *5 *6))) (-5 *2 (-348 *3)) (-5 *1 (-434 *5 *6 *7 *3)) (-4 *3 (-1156 *7))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1216 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-1217 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3189 (((-85) $) 39 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1951 (((-85) $ $) 72 T ELT)) (-1601 (((-584 (-551 $)) $) 49 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-3038 (($ $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1218 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-3184 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3158 (((-3 (-551 $) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3157 (((-551 $) $) NIL T ELT) (((-485) $) NIL T ELT) (((-350 (-485)) $) 54 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1180 (-350 (-485))))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-350 (-485))) (-631 $)) NIL T ELT)) (-3843 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2574 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1600 (((-584 (-86)) $) NIL T ELT)) (-3596 (((-86) (-86)) NIL T ELT)) (-2411 (((-85) $) 42 T ELT)) (-2674 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-2999 (((-1040 (-485) (-551 $)) $) 37 T ELT)) (-3012 (($ $ (-485)) NIL T ELT)) (-3133 (((-1086 $) (-1086 $) (-551 $)) 86 T ELT) (((-1086 $) (-1086 $) (-584 (-551 $))) 61 T ELT) (($ $ (-551 $)) 75 T ELT) (($ $ (-584 (-551 $))) 76 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1598 (((-1086 $) (-551 $)) 73 (|has| $ (-962)) ELT)) (-3959 (($ (-1 $ $) (-551 $)) NIL T ELT)) (-1603 (((-3 (-551 $) #1#) $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1180 (-350 (-485))))) (-1180 $) $) NIL T ELT) (((-631 (-350 (-485))) (-1180 $)) NIL T ELT)) (-1892 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1602 (((-584 (-551 $)) $) NIL T ELT)) (-2236 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2634 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-2604 (((-695) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1599 (((-85) $ $) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2675 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3769 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-3801 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3759 (($ $) 36 T ELT) (($ $ (-695)) NIL T ELT)) (-2998 (((-1040 (-485) (-551 $)) $) 20 T ELT)) (-3186 (($ $) NIL (|has| $ (-962)) ELT)) (-3973 (((-330) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-330)) $) 116 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-551 $)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1040 (-485) (-551 $))) 21 T ELT)) (-3127 (((-695)) NIL T CONST)) (-2591 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2255 (((-85) (-86)) 92 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 10 T CONST)) (-2667 (($) 22 T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3057 (((-85) $ $) 24 T ELT)) (-3950 (($ $ $) 44 T ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-485))) NIL T ELT) (($ $ (-485)) 47 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT))) +(((-435) (-13 (-254) (-27) (-951 (-485)) (-951 (-350 (-485))) (-581 (-485)) (-934) (-581 (-350 (-485))) (-120) (-554 (-142 (-330))) (-190) (-556 (-1040 (-485) (-551 $))) (-10 -8 (-15 -2999 ((-1040 (-485) (-551 $)) $)) (-15 -2998 ((-1040 (-485) (-551 $)) $)) (-15 -3843 ($ $)) (-15 -1951 ((-85) $ $)) (-15 -3133 ((-1086 $) (-1086 $) (-551 $))) (-15 -3133 ((-1086 $) (-1086 $) (-584 (-551 $)))) (-15 -3133 ($ $ (-551 $))) (-15 -3133 ($ $ (-584 (-551 $))))))) (T -435)) +((-2999 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435)))) (-3843 (*1 *1 *1) (-5 *1 (-435))) (-1951 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-435)))) (-3133 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-435))) (-5 *3 (-551 (-435))) (-5 *1 (-435)))) (-3133 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-435))) (-5 *3 (-584 (-551 (-435)))) (-5 *1 (-435)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-551 (-435))) (-5 *1 (-435)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-435)))) (-5 *1 (-435))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-757))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 19 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 14 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) 13 T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) 9 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 16 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 18 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) NIL T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-436 |#1| |#2|) (-19 |#1|) (-1130) (-485)) (T -436)) +NIL +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3789 ((|#1| $ (-485) (-485) |#1|) 44 T ELT)) (-1258 (($ $ (-485) |#2|) NIL T ELT)) (-1257 (($ $ (-485) |#3|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3112 ((|#2| $ (-485)) 53 T ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 43 T ELT)) (-3113 ((|#1| $ (-485) (-485)) 38 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3115 (((-695) $) 28 T ELT)) (-3615 (($ (-695) (-695) |#1|) 24 T ELT)) (-3114 (((-695) $) 30 T ELT)) (-3119 (((-485) $) 26 T ELT)) (-3117 (((-485) $) 27 T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3118 (((-485) $) 29 T ELT)) (-3116 (((-485) $) 31 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 64 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 70 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 74 T ELT)) (-3243 (((-1074) $) 48 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) 61 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 33 T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) (-485)) 41 T ELT) ((|#1| $ (-485) (-485) |#1|) 72 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3401 (($ $) 59 T ELT)) (-3111 ((|#3| $ (-485)) 55 T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-437 |#1| |#2| |#3|) (-57 |#1| |#2| |#3|) (-1130) (-324 |#1|) (-324 |#1|)) (T -437)) +NIL +((-1953 (((-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-695) (-695)) 32 T ELT)) (-1952 (((-584 (-1086 |#1|)) |#1| (-695) (-695) (-695)) 43 T ELT)) (-2078 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-584 |#3|) (-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-695)) 107 T ELT))) +(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -1952 ((-584 (-1086 |#1|)) |#1| (-695) (-695) (-695))) (-15 -1953 ((-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-695) (-695))) (-15 -2078 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-584 |#3|) (-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-695)))) (-299) (-1156 |#1|) (-1156 |#2|)) (T -438)) +((-2078 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7))))) (-5 *5 (-695)) (-4 *8 (-1156 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-299)) (-5 *2 (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7)))) (-5 *1 (-438 *6 *7 *8)))) (-1953 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-4 *5 (-299)) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6))))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6)))) (-4 *7 (-1156 *6)))) (-1952 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-695)) (-4 *3 (-299)) (-4 *5 (-1156 *3)) (-5 *2 (-584 (-1086 *3))) (-5 *1 (-438 *3 *5 *6)) (-4 *6 (-1156 *5))))) +((-1959 (((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 70 T ELT)) (-1954 ((|#1| (-631 |#1|) |#1| (-695)) 24 T ELT)) (-1956 (((-695) (-695) (-695)) 34 T ELT)) (-1958 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 50 T ELT)) (-1957 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 58 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 55 T ELT)) (-1955 ((|#1| (-631 |#1|) (-631 |#1|) |#1| (-485)) 28 T ELT)) (-3330 ((|#1| (-631 |#1|)) 18 T ELT))) +(((-439 |#1| |#2| |#3|) (-10 -7 (-15 -3330 (|#1| (-631 |#1|))) (-15 -1954 (|#1| (-631 |#1|) |#1| (-695))) (-15 -1955 (|#1| (-631 |#1|) (-631 |#1|) |#1| (-485))) (-15 -1956 ((-695) (-695) (-695))) (-15 -1957 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1957 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -1958 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1959 ((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))))) (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $)))) (-1156 |#1|) (-353 |#1| |#2|)) (T -439)) +((-1959 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1958 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1957 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1957 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1956 (*1 *2 *2 *2) (-12 (-5 *2 (-695)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1955 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-485)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *5 (-1156 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-1954 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-695)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *5 (-1156 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-3330 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *4 (-1156 *2)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-5 *1 (-439 *2 *4 *5)) (-4 *5 (-353 *2 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 44 T ELT)) (-3322 (($ $ $) 41 T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) $) NIL (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1731 (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| (-85) (-757))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3997)) ELT)) (-2910 (($ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3789 (((-85) $ (-1147 (-485)) (-85)) NIL (|has| $ (-6 -3997)) ELT) (((-85) $ (-485) (-85)) 43 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1014))) ELT)) (-3407 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1014))) ELT)) (-3843 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1014))) ELT)) (-1577 (((-85) $ (-485) (-85)) NIL (|has| $ (-6 -3997)) ELT)) (-3113 (((-85) $ (-485)) NIL T ELT)) (-3420 (((-485) (-85) $ (-485)) NIL (|has| (-85) (-1014)) ELT) (((-485) (-85) $) NIL (|has| (-85) (-1014)) ELT) (((-485) (-1 (-85) (-85)) $) NIL T ELT)) (-2890 (((-584 (-85)) $) NIL (|has| $ (-6 -3996)) ELT)) (-2562 (($ $ $) 39 T ELT)) (-2561 (($ $) NIL T ELT)) (-1301 (($ $ $) NIL T ELT)) (-3615 (($ (-695) (-85)) 27 T ELT)) (-1302 (($ $ $) NIL T ELT)) (-2201 (((-485) $) 8 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL T ELT)) (-3519 (($ $ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2609 (((-584 (-85)) $) NIL T ELT)) (-3246 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL T ELT)) (-3327 (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3959 (($ (-1 (-85) (-85) (-85)) $ $) 36 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ (-85) $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3802 (((-85) $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2200 (($ $ (-85)) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3769 (($ $ (-584 (-85)) (-584 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-584 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-85) (-1014))) ELT)) (-2206 (((-584 (-85)) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 29 T ELT)) (-3801 (($ $ (-1147 (-485))) NIL T ELT) (((-85) $ (-485)) 22 T ELT) (((-85) $ (-485) (-85)) NIL T ELT)) (-2306 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1947 (((-695) (-85) $) NIL (|has| (-85) (-72)) ELT) (((-695) (-1 (-85) (-85)) $) NIL T ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 30 T ELT)) (-3973 (((-474) $) NIL (|has| (-85) (-554 (-474))) ELT)) (-3531 (($ (-584 (-85))) NIL T ELT)) (-3803 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3947 (((-773) $) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2563 (($ $ $) 37 T ELT)) (-2312 (($ $ $) 46 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 31 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 32 T ELT)) (-2313 (($ $ $) 45 T ELT)) (-3958 (((-695) $) 13 T ELT))) +(((-440 |#1|) (-96) (-485)) (T -440)) +NIL +((-1961 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1086 |#4|)) 35 T ELT)) (-1960 (((-1086 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1086 |#4|)) 22 T ELT)) (-1962 (((-3 (-631 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-631 (-1086 |#4|))) 46 T ELT)) (-1963 (((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) +(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1960 (|#2| (-1 |#1| |#4|) (-1086 |#4|))) (-15 -1960 ((-1086 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1961 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1086 |#4|))) (-15 -1962 ((-3 (-631 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-631 (-1086 |#4|)))) (-15 -1963 ((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|))) (-962) (-1156 |#1|) (-1156 |#2|) (-962)) (T -441)) +((-1963 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *6 (-1156 *5)) (-5 *2 (-1086 (-1086 *7))) (-5 *1 (-441 *5 *6 *4 *7)) (-4 *4 (-1156 *6)))) (-1962 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-631 (-1086 *8))) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *6)) (-5 *1 (-441 *5 *6 *7 *8)) (-4 *7 (-1156 *6)))) (-1961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1086 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7)) (-4 *6 (-1156 *2)))) (-1960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *4 (-1156 *5)) (-5 *2 (-1086 *7)) (-5 *1 (-441 *5 *4 *6 *7)) (-4 *6 (-1156 *4)))) (-1960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1086 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7)) (-4 *6 (-1156 *2))))) +((-2569 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1964 (((-1186) $) 25 T ELT)) (-3801 (((-1074) $ (-1091)) 30 T ELT)) (-3618 (((-1186) $) 20 T ELT)) (-3947 (((-773) $) 27 T ELT) (($ (-1074)) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 12 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 10 T ELT))) +(((-442) (-13 (-757) (-556 (-1074)) (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) (-15 -1964 ((-1186) $))))) (T -442)) +((-3801 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1074)) (-5 *1 (-442)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-442)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-442))))) +((-3742 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3740 ((|#1| |#4|) 10 T ELT)) (-3741 ((|#3| |#4|) 17 T ELT))) +(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3740 (|#1| |#4|)) (-15 -3741 (|#3| |#4|)) (-15 -3742 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-496) (-905 |#1|) (-324 |#1|) (-324 |#2|)) (T -443)) +((-3742 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *6 (-324 *4)) (-4 *3 (-324 *5)))) (-3741 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-4 *2 (-324 *4)) (-5 *1 (-443 *4 *5 *2 *3)) (-4 *3 (-324 *5)))) (-3740 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-443 *2 *4 *5 *3)) (-4 *5 (-324 *2)) (-4 *3 (-324 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1974 (((-85) $ (-584 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3189 (((-85) $) 178 T ELT)) (-1966 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-584 |#3|)) 122 T ELT)) (-1965 (((-1081 (-584 (-858 |#1|)) (-584 (-249 (-858 |#1|)))) (-584 |#4|)) 171 (|has| |#3| (-554 (-1091))) ELT)) (-1973 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2411 (((-85) $) 177 T ELT)) (-1970 (($ $) 132 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3239 (($ $ $) 99 T ELT) (($ (-584 $)) 101 T ELT)) (-1975 (((-85) |#4| $) 130 T ELT)) (-1976 (((-85) $ $) 82 T ELT)) (-1969 (($ (-584 |#4|)) 106 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1968 (($ (-584 |#4|)) 175 T ELT)) (-1967 (((-85) $) 176 T ELT)) (-2252 (($ $) 85 T ELT)) (-2696 (((-584 |#4|) $) 73 T ELT)) (-1972 (((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-584 |#3|)) NIL T ELT)) (-1977 (((-85) |#4| $) 89 T ELT)) (-3912 (((-485) $ (-584 |#3|)) 134 T ELT) (((-485) $) 135 T ELT)) (-3947 (((-773) $) 174 T ELT) (($ (-584 |#4|)) 102 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1971 (($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3057 (((-85) $ $) 84 T ELT)) (-3840 (($ $ $) 109 T ELT)) (** (($ $ (-695)) 115 T ELT)) (* (($ $ $) 113 T ELT))) +(((-444 |#1| |#2| |#3| |#4|) (-13 (-1014) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-695))) (-15 -3840 ($ $ $)) (-15 -2411 ((-85) $)) (-15 -3189 ((-85) $)) (-15 -1977 ((-85) |#4| $)) (-15 -1976 ((-85) $ $)) (-15 -1975 ((-85) |#4| $)) (-15 -1974 ((-85) $ (-584 |#3|))) (-15 -1974 ((-85) $)) (-15 -3239 ($ $ $)) (-15 -3239 ($ (-584 $))) (-15 -1973 ($ $ $)) (-15 -1973 ($ $ |#4|)) (-15 -2252 ($ $)) (-15 -1972 ((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-584 |#3|))) (-15 -1971 ($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)))) (-15 -3912 ((-485) $ (-584 |#3|))) (-15 -3912 ((-485) $)) (-15 -1970 ($ $)) (-15 -1969 ($ (-584 |#4|))) (-15 -1968 ($ (-584 |#4|))) (-15 -1967 ((-85) $)) (-15 -2696 ((-584 |#4|) $)) (-15 -3947 ($ (-584 |#4|))) (-15 -1966 ($ $ |#4|)) (-15 -1966 ($ $ |#4| (-584 |#3|))) (IF (|has| |#3| (-554 (-1091))) (-15 -1965 ((-1081 (-584 (-858 |#1|)) (-584 (-249 (-858 |#1|)))) (-584 |#4|))) |%noBranch|))) (-312) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -444)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2411 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3189 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1977 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1976 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1975 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1974 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1974 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3239 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-3239 (*1 *1 *2) (-12 (-5 *2 (-584 (-444 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1973 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1973 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-2252 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1972 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *2 (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4)) (|:| |genIdeal| (-444 *4 *5 *6 *7)))) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1971 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3)) (|:| |genIdeal| (-444 *3 *4 *5 *6)))) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *2 (-485)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-3912 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1970 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1967 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-2696 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *6)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1966 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-1966 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *1 (-444 *4 *5 *6 *2)) (-4 *2 (-862 *4 *5 *6)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *6 (-554 (-1091))) (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1081 (-584 (-858 *4)) (-584 (-249 (-858 *4))))) (-5 *1 (-444 *4 *5 *6 *7))))) +((-1978 (((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 178 T ELT)) (-1979 (((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 179 T ELT)) (-1980 (((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 129 T ELT)) (-3724 (((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) NIL T ELT)) (-1981 (((-584 (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 181 T ELT)) (-1982 (((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-584 (-774 |#1|))) 197 T ELT))) +(((-445 |#1| |#2|) (-10 -7 (-15 -1978 ((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1979 ((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -3724 ((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1980 ((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1981 ((-584 (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1982 ((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-584 (-774 |#1|))))) (-584 (-1091)) (-695)) (T -445)) +((-1982 (*1 *2 *2 *3) (-12 (-5 *2 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *1 (-445 *4 *5)))) (-1981 (*1 *2 *3) (-12 (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-584 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))) (-5 *1 (-445 *4 *5)) (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-444 (-350 (-485)) (-197 *4 (-695)) (-774 *3) (-206 *3 (-350 (-485))))) (-14 *3 (-584 (-1091))) (-14 *4 (-695)) (-5 *1 (-445 *3 *4)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5))))) +((-3801 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-446 |#1|) (-113) (-72)) (T -446)) +NIL +(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3057 (|f| |x| |x|) |x|)))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1983 (($) 6 T ELT)) (-3947 (((-773) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 8 T ELT))) +(((-447) (-13 (-1014) (-10 -8 (-15 -1983 ($))))) (T -447)) +((-1983 (*1 *1) (-5 *1 (-447)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3775 (((-584 (-454 |#1| |#2|)) $) 10 T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2894 (($ |#1| |#2|) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3973 (($ (-584 (-454 |#1| |#2|))) 15 T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 20 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) 16 T ELT) (($ $ $) 36 T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 25 T ELT))) +(((-448 |#1| |#2|) (-13 (-21) (-450 |#1| |#2|)) (-21) (-760)) (T -448)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 16 T ELT)) (-3775 (((-584 (-454 |#1| |#2|)) $) 13 T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) 39 T ELT)) (-1215 (((-85) $ $) 44 T ELT)) (-2894 (($ |#1| |#2|) 36 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) 41 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3973 (($ (-584 (-454 |#1| |#2|))) 11 T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 12 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) 30 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 35 T ELT))) +(((-449 |#1| |#2|) (-13 (-23) (-450 |#1| |#2|)) (-23) (-760)) (T -449)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3775 (((-584 (-454 |#1| |#2|)) $) 16 T ELT)) (-3960 (($ $) 17 T ELT)) (-2894 (($ |#1| |#2|) 20 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1984 ((|#2| $) 18 T ELT)) (-3175 ((|#1| $) 19 T ELT)) (-3243 (((-1074) $) 15 (-12 (|has| |#2| (-1014)) (|has| |#1| (-1014))) ELT)) (-3244 (((-1034) $) 14 (-12 (|has| |#2| (-1014)) (|has| |#1| (-1014))) ELT)) (-3973 (($ (-584 (-454 |#1| |#2|))) 22 T ELT)) (-3947 (((-773) $) 13 (-12 (|has| |#2| (-1014)) (|has| |#1| (-1014))) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) +(((-450 |#1| |#2|) (-113) (-72) (-760)) (T -450)) +((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)))) (-2894 (*1 *1 *2 *3) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *3 (-760)) (-4 *2 (-72)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)) (-5 *2 (-584 (-454 *3 *4)))))) +(-13 (-72) (-558 (-584 (-454 |t#1| |t#2|))) (-10 -8 (IF (|has| |t#1| (-1014)) (IF (|has| |t#2| (-1014)) (-6 (-1014)) |%noBranch|) |%noBranch|) (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (-15 -2894 ($ |t#1| |t#2|)) (-15 -3175 (|t#1| $)) (-15 -1984 (|t#2| $)) (-15 -3960 ($ $)) (-15 -3775 ((-584 (-454 |t#1| |t#2|)) $)))) +(((-72) . T) ((-553 (-773)) -12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ((-558 (-584 (-454 |#1| |#2|))) . T) ((-13) . T) ((-1014) -12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3775 (((-584 (-454 |#1| |#2|)) $) 29 T ELT)) (-3960 (($ $) 23 T ELT)) (-2894 (($ |#1| |#2|) 19 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1984 ((|#2| $) 28 T ELT)) (-3175 ((|#1| $) 27 T ELT)) (-3243 (((-1074) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3244 (((-1034) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3973 (($ (-584 (-454 |#1| |#2|))) 30 T ELT)) (-1985 (($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|)) 40 T ELT)) (-3947 (((-773) $) 17 (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-451 |#1| |#2|) (-13 (-450 |#1| |#2|) (-10 -8 (-15 -1985 ($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|))))) (-72) (-760)) (T -451)) +((-1985 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) (-5 *1 (-451 *4 *5)) (-4 *5 (-760))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3775 (((-584 (-454 |#1| |#2|)) $) 10 T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2894 (($ |#1| |#2|) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3973 (($ (-584 (-454 |#1| |#2|))) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 21 T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT))) +(((-452 |#1| |#2|) (-13 (-717) (-450 |#1| |#2|)) (-717) (-760)) (T -452)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3775 (((-584 (-454 |#1| |#2|)) $) NIL T ELT)) (-2484 (($ $ $) 24 T ELT)) (-1313 (((-3 $ "failed") $ $) 20 T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2894 (($ |#1| |#2|) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3973 (($ (-584 (-454 |#1| |#2|))) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT))) +(((-453 |#1| |#2|) (-13 (-718) (-450 |#1| |#2|)) (-718) (-757)) (T -453)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-1986 (($ |#2| |#1|) 9 T ELT)) (-2401 ((|#2| $) 11 T ELT)) (-3947 (((-783 |#2| |#1|) $) 14 T ELT)) (-3678 ((|#1| $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-454 |#1| |#2|) (-13 (-72) (-553 (-783 |#2| |#1|)) (-10 -8 (-15 -1986 ($ |#2| |#1|)) (-15 -2401 (|#2| $)) (-15 -3678 (|#1| $)))) (-72) (-760)) (T -454)) +((-1986 (*1 *1 *2 *3) (-12 (-5 *1 (-454 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))) (-2401 (*1 *2 *1) (-12 (-4 *2 (-760)) (-5 *1 (-454 *3 *2)) (-4 *3 (-72)))) (-3678 (*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-454 *2 *3)) (-4 *3 (-760))))) +((-3769 (($ $ (-584 |#2|) (-584 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) +(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -3769 (|#1| |#1| |#2| |#3|)) (-15 -3769 (|#1| |#1| (-584 |#2|) (-584 |#3|)))) (-456 |#2| |#3|) (-1014) (-1130)) (T -455)) +NIL +((-3769 (($ $ (-584 |#1|) (-584 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) +(((-456 |#1| |#2|) (-113) (-1014) (-1130)) (T -456)) +((-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *5)) (-4 *1 (-456 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1130)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1130))))) +(-13 (-10 -8 (-15 -3769 ($ $ |t#1| |t#2|)) (-15 -3769 ($ $ (-584 |t#1|) (-584 |t#2|))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 17 T ELT)) (-3775 (((-584 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $) 19 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2300 ((|#1| $ (-485)) 24 T ELT)) (-1623 ((|#2| $ (-485)) 22 T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1621 (($ $ $) 55 (|has| |#2| (-717)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3678 ((|#2| |#1| $) 51 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 11 T CONST)) (-3057 (((-85) $ $) 30 T ELT)) (-3840 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) +(((-457 |#1| |#2| |#3|) (-274 |#1| |#2|) (-1014) (-104) |#2|) (T -457)) +NIL +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-757))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-1987 (((-85) (-85)) 32 T ELT)) (-3789 ((|#1| $ (-485) |#1|) 42 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) NIL T ELT)) (-2369 (($ $) 83 (|has| |#1| (-1014)) ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-3406 (($ |#1| $) NIL (|has| |#1| (-1014)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT)) (-1988 (($ $ (-485)) 19 T ELT)) (-1989 (((-695) $) 13 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-695) |#1|) 31 T ELT)) (-2201 (((-485) $) 29 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 28 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3610 (($ $ $ (-485)) 75 T ELT) (($ |#1| $ (-485)) 59 T ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1990 (($ (-584 |#1|)) 43 T ELT)) (-3802 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) 24 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 62 T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 21 T ELT)) (-3801 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 55 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) 73 T ELT) (($ $ (-485)) 67 T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1732 (($ $ $ (-485)) 63 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 53 T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) NIL T ELT)) (-3792 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3958 (((-695) $) 22 T ELT))) +(((-458 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1990 ($ (-584 |#1|))) (-15 -1989 ((-695) $)) (-15 -1988 ($ $ (-485))) (-15 -1987 ((-85) (-85))))) (-1130) (-485)) (T -458)) +((-1990 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-458 *3 *4)) (-14 *4 (-485)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485)))) (-1988 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 *2))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1992 (((-1050) $) 12 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1991 (((-1050) $) 14 T ELT)) (-3923 (((-1050) $) 10 T ELT)) (-3947 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-459) (-13 (-996) (-10 -8 (-15 -3923 ((-1050) $)) (-15 -1992 ((-1050) $)) (-15 -1991 ((-1050) $))))) (T -459)) +((-3923 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-695)) NIL T ELT)) (-3331 (((-518 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-518 |#1|) #1#) $) NIL T ELT)) (-3157 (((-518 |#1|) $) NIL T ELT)) (-1793 (($ (-1180 (-518 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1765 (($ $ (-695)) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-831) $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3133 (((-518 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3446 (((-633 $) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 (-518 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1628 (((-1086 (-518 |#1|)) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1627 (((-1086 (-518 |#1|)) $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-3 (-1086 (-518 |#1|)) #1#) $ $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1629 (($ $ (-1086 (-518 |#1|))) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-518 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1766 (((-695) $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-695)) NIL (|has| (-518 |#1|) (-320)) ELT) (($ $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3949 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3186 (((-1086 (-518 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3225 (((-1180 (-518 |#1|)) $) NIL T ELT) (((-631 (-518 |#1|)) (-1180 $)) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-518 |#1|)) NIL T ELT)) (-2703 (($ $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| (-518 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2670 (($ $ (-695)) NIL (|has| (-518 |#1|) (-320)) ELT) (($ $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ (-518 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-518 |#1|)) NIL T ELT) (($ (-518 |#1|) $) NIL T ELT))) +(((-460 |#1| |#2|) (-280 (-518 |#1|)) (-831) (-831)) (T -460)) +NIL +((-3110 ((|#4| |#4|) 38 T ELT)) (-3109 (((-695) |#4|) 45 T ELT)) (-3108 (((-695) |#4|) 46 T ELT)) (-3107 (((-584 |#3|) |#4|) 57 (|has| |#3| (-6 -3997)) ELT)) (-3591 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1993 ((|#4| |#4|) 61 T ELT)) (-3329 ((|#1| |#4|) 60 T ELT))) +(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3110 (|#4| |#4|)) (-15 -3109 ((-695) |#4|)) (-15 -3108 ((-695) |#4|)) (IF (|has| |#3| (-6 -3997)) (-15 -3107 ((-584 |#3|) |#4|)) |%noBranch|) (-15 -3329 (|#1| |#4|)) (-15 -1993 (|#4| |#4|)) (-15 -3591 ((-3 |#4| "failed") |#4|))) (-312) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -461)) +((-3591 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-1993 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-312)) (-5 *1 (-461 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) (-3107 (*1 *2 *3) (-12 (|has| *6 (-6 -3997)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-584 *6)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3110 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) +((-3110 ((|#8| |#4|) 20 T ELT)) (-3107 (((-584 |#3|) |#4|) 29 (|has| |#7| (-6 -3997)) ELT)) (-3591 (((-3 |#8| "failed") |#4|) 23 T ELT))) +(((-462 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3110 (|#8| |#4|)) (-15 -3591 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -3997)) (-15 -3107 ((-584 |#3|) |#4|)) |%noBranch|)) (-496) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|) (-905 |#1|) (-324 |#5|) (-324 |#5|) (-628 |#5| |#6| |#7|)) (T -462)) +((-3107 (*1 *2 *3) (-12 (|has| *9 (-6 -3997)) (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-584 *6)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-628 *4 *5 *6)) (-4 *10 (-628 *7 *8 *9)))) (-3591 (*1 *2 *3) (|partial| -12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1994 (((-584 (-1131)) $) 14 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) (($ (-584 (-1131))) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-463) (-13 (-996) (-10 -8 (-15 -3947 ($ (-584 (-1131)))) (-15 -1994 ((-584 (-1131)) $))))) (T -463)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-463)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-463))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1995 (((-1050) $) 15 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3451 (((-447) $) 12 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 22 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-464) (-13 (-996) (-10 -8 (-15 -3451 ((-447) $)) (-15 -1995 ((-1050) $))))) (T -464)) +((-3451 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-464)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-464))))) +((-2001 (((-633 (-1139)) $) 15 T ELT)) (-1997 (((-633 (-1137)) $) 38 T ELT)) (-1999 (((-633 (-1136)) $) 29 T ELT)) (-2002 (((-633 (-489)) $) 12 T ELT)) (-1998 (((-633 (-487)) $) 42 T ELT)) (-2000 (((-633 (-486)) $) 33 T ELT)) (-1996 (((-695) $ (-102)) 54 T ELT))) +(((-465 |#1|) (-10 -7 (-15 -1996 ((-695) |#1| (-102))) (-15 -1997 ((-633 (-1137)) |#1|)) (-15 -1998 ((-633 (-487)) |#1|)) (-15 -1999 ((-633 (-1136)) |#1|)) (-15 -2000 ((-633 (-486)) |#1|)) (-15 -2001 ((-633 (-1139)) |#1|)) (-15 -2002 ((-633 (-489)) |#1|))) (-466)) (T -465)) +NIL +((-2001 (((-633 (-1139)) $) 12 T ELT)) (-1997 (((-633 (-1137)) $) 8 T ELT)) (-1999 (((-633 (-1136)) $) 10 T ELT)) (-2002 (((-633 (-489)) $) 13 T ELT)) (-1998 (((-633 (-487)) $) 9 T ELT)) (-2000 (((-633 (-486)) $) 11 T ELT)) (-1996 (((-695) $ (-102)) 7 T ELT)) (-2003 (((-633 (-101)) $) 14 T ELT)) (-1701 (($ $) 6 T ELT))) +(((-466) (-113)) (T -466)) +((-2003 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-101))))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-489))))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1139))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-486))))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1136))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-487))))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1137))))) (-1996 (*1 *2 *1 *3) (-12 (-4 *1 (-466)) (-5 *3 (-102)) (-5 *2 (-695))))) +(-13 (-147) (-10 -8 (-15 -2003 ((-633 (-101)) $)) (-15 -2002 ((-633 (-489)) $)) (-15 -2001 ((-633 (-1139)) $)) (-15 -2000 ((-633 (-486)) $)) (-15 -1999 ((-633 (-1136)) $)) (-15 -1998 ((-633 (-487)) $)) (-15 -1997 ((-633 (-1137)) $)) (-15 -1996 ((-695) $ (-102))))) (((-147) . T)) -((-2005 (((-1085 |#1|) (-694)) 114 T ELT)) (-3330 (((-1179 |#1|) (-1179 |#1|) (-830)) 107 T ELT)) (-2003 (((-1185) (-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033))))) |#1|) 122 T ELT)) (-2007 (((-1179 |#1|) (-1179 |#1|) (-694)) 53 T ELT)) (-2994 (((-1179 |#1|) (-830)) 109 T ELT)) (-2009 (((-1179 |#1|) (-1179 |#1|) (-484)) 30 T ELT)) (-2004 (((-1085 |#1|) (-1179 |#1|)) 115 T ELT)) (-2013 (((-1179 |#1|) (-830)) 136 T ELT)) (-2011 (((-85) (-1179 |#1|)) 119 T ELT)) (-3132 (((-1179 |#1|) (-1179 |#1|) (-830)) 99 T ELT)) (-2014 (((-1085 |#1|) (-1179 |#1|)) 130 T ELT)) (-2010 (((-830) (-1179 |#1|)) 95 T ELT)) (-2484 (((-1179 |#1|) (-1179 |#1|)) 38 T ELT)) (-2400 (((-1179 |#1|) (-830) (-830)) 139 T ELT)) (-2008 (((-1179 |#1|) (-1179 |#1|) (-1033) (-1033)) 29 T ELT)) (-2006 (((-1179 |#1|) (-1179 |#1|) (-694) (-1033)) 54 T ELT)) (-2012 (((-1179 (-1179 |#1|)) (-830)) 135 T ELT)) (-3949 (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 120 T ELT)) (** (((-1179 |#1|) (-1179 |#1|) (-484)) 67 T ELT)) (* (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 31 T ELT))) -(((-466 |#1|) (-10 -7 (-15 -2003 ((-1185) (-1179 (-583 (-2 (|:| -3402 |#1|) (|:| -2400 (-1033))))) |#1|)) (-15 -2994 ((-1179 |#1|) (-830))) (-15 -2400 ((-1179 |#1|) (-830) (-830))) (-15 -2004 ((-1085 |#1|) (-1179 |#1|))) (-15 -2005 ((-1085 |#1|) (-694))) (-15 -2006 ((-1179 |#1|) (-1179 |#1|) (-694) (-1033))) (-15 -2007 ((-1179 |#1|) (-1179 |#1|) (-694))) (-15 -2008 ((-1179 |#1|) (-1179 |#1|) (-1033) (-1033))) (-15 -2009 ((-1179 |#1|) (-1179 |#1|) (-484))) (-15 ** ((-1179 |#1|) (-1179 |#1|) (-484))) (-15 * ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3949 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3132 ((-1179 |#1|) (-1179 |#1|) (-830))) (-15 -3330 ((-1179 |#1|) (-1179 |#1|) (-830))) (-15 -2484 ((-1179 |#1|) (-1179 |#1|))) (-15 -2010 ((-830) (-1179 |#1|))) (-15 -2011 ((-85) (-1179 |#1|))) (-15 -2012 ((-1179 (-1179 |#1|)) (-830))) (-15 -2013 ((-1179 |#1|) (-830))) (-15 -2014 ((-1085 |#1|) (-1179 |#1|)))) (-299)) (T -466)) -((-2014 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-1085 *4)) (-5 *1 (-466 *4)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1179 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1179 (-1179 *4))) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-466 *4)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-830)) (-5 *1 (-466 *4)))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) (-3330 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-3949 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2009 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2008 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1033)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2007 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2006 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1179 *5)) (-5 *3 (-694)) (-5 *4 (-1033)) (-4 *5 (-299)) (-5 *1 (-466 *5)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1085 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-1085 *4)) (-5 *1 (-466 *4)))) (-2400 (*1 *2 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1179 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2994 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1179 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2003 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 (-583 (-2 (|:| -3402 *4) (|:| -2400 (-1033)))))) (-4 *4 (-299)) (-5 *2 (-1185)) (-5 *1 (-466 *4))))) -((-2000 (((-632 (-1138)) $) NIL T ELT)) (-1996 (((-632 (-1136)) $) NIL T ELT)) (-1998 (((-632 (-1135)) $) NIL T ELT)) (-2001 (((-632 (-488)) $) NIL T ELT)) (-1997 (((-632 (-486)) $) NIL T ELT)) (-1999 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-694) $ (-102)) NIL T ELT)) (-2002 (((-632 (-101)) $) 26 T ELT)) (-2015 (((-1033) $ (-1033)) 31 T ELT)) (-3419 (((-1033) $) 30 T ELT)) (-2558 (((-85) $) 20 T ELT)) (-2017 (($ (-338)) 14 T ELT) (($ (-1073)) 16 T ELT)) (-2016 (((-85) $) 27 T ELT)) (-3946 (((-772) $) 34 T ELT)) (-1700 (($ $) 28 T ELT))) -(((-467) (-13 (-465) (-552 (-772)) (-10 -8 (-15 -2017 ($ (-338))) (-15 -2017 ($ (-1073))) (-15 -2016 ((-85) $)) (-15 -2558 ((-85) $)) (-15 -3419 ((-1033) $)) (-15 -2015 ((-1033) $ (-1033)))))) (T -467)) -((-2017 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-467)))) (-2017 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-467)))) (-2016 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))) (-3419 (*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-467)))) (-2015 (*1 *2 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-467))))) -((-2019 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2018 (((-1 |#1| |#1|)) 10 T ELT))) -(((-468 |#1|) (-10 -7 (-15 -2018 ((-1 |#1| |#1|))) (-15 -2019 ((-1 |#1| |#1|) |#1|))) (-13 (-663) (-25))) (T -468)) -((-2019 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25))))) (-2018 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3774 (((-583 (-453 (-694) |#1|)) $) NIL T ELT)) (-2483 (($ $ $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2893 (($ (-694) |#1|) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3958 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-1983 ((|#1| $) NIL T ELT)) (-3174 (((-694) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3972 (($ (-583 (-453 (-694) |#1|))) NIL T ELT)) (-3946 (((-772) $) 28 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT))) -(((-469 |#1|) (-13 (-717) (-449 (-694) |#1|)) (-756)) (T -469)) -NIL -((-2021 (((-583 |#2|) (-1085 |#1|) |#3|) 98 T ELT)) (-2022 (((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#2|))))) (-630 |#1|) |#3| (-1 (-348 (-1085 |#1|)) (-1085 |#1|))) 114 T ELT)) (-2020 (((-1085 |#1|) (-630 |#1|)) 110 T ELT))) -(((-470 |#1| |#2| |#3|) (-10 -7 (-15 -2020 ((-1085 |#1|) (-630 |#1|))) (-15 -2021 ((-583 |#2|) (-1085 |#1|) |#3|)) (-15 -2022 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#2|))))) (-630 |#1|) |#3| (-1 (-348 (-1085 |#1|)) (-1085 |#1|))))) (-312) (-312) (-13 (-312) (-755))) (T -470)) -((-2022 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *6)) (-5 *5 (-1 (-348 (-1085 *6)) (-1085 *6))) (-4 *6 (-312)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 *7)))))) (-5 *1 (-470 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-755))))) (-2021 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *5)) (-4 *5 (-312)) (-5 *2 (-583 *6)) (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-312)) (-5 *2 (-1085 *4)) (-5 *1 (-470 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-755)))))) -((-2555 (((-632 (-1138)) $ (-1138)) NIL T ELT)) (-2556 (((-632 (-488)) $ (-488)) NIL T ELT)) (-2554 (((-694) $ (-102)) 39 T ELT)) (-2557 (((-632 (-101)) $ (-101)) 40 T ELT)) (-2000 (((-632 (-1138)) $) NIL T ELT)) (-1996 (((-632 (-1136)) $) NIL T ELT)) (-1998 (((-632 (-1135)) $) NIL T ELT)) (-2001 (((-632 (-488)) $) NIL T ELT)) (-1997 (((-632 (-486)) $) NIL T ELT)) (-1999 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-694) $ (-102)) 35 T ELT)) (-2002 (((-632 (-101)) $) 37 T ELT)) (-2439 (((-85) $) 27 T ELT)) (-2440 (((-632 $) (-515) (-865)) 18 T ELT) (((-632 $) (-431) (-865)) 24 T ELT)) (-3946 (((-772) $) 48 T ELT)) (-1700 (($ $) 42 T ELT))) -(((-471) (-13 (-691 (-515)) (-552 (-772)) (-10 -8 (-15 -2440 ((-632 $) (-431) (-865)))))) (T -471)) -((-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-431)) (-5 *4 (-865)) (-5 *2 (-632 (-471))) (-5 *1 (-471))))) -((-2527 (((-750 (-484))) 12 T ELT)) (-2526 (((-750 (-484))) 14 T ELT)) (-2514 (((-743 (-484))) 9 T ELT))) -(((-472) (-10 -7 (-15 -2514 ((-743 (-484)))) (-15 -2527 ((-750 (-484)))) (-15 -2526 ((-750 (-484)))))) (T -472)) -((-2526 (*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472)))) (-2527 (*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472)))) (-2514 (*1 *2) (-12 (-5 *2 (-743 (-484))) (-5 *1 (-472))))) -((-2568 (((-85) $ $) NIL T ELT)) (-2026 (((-1073) $) 55 T ELT)) (-3260 (((-85) $) 51 T ELT)) (-3256 (((-1090) $) 52 T ELT)) (-3261 (((-85) $) 49 T ELT)) (-3535 (((-1073) $) 50 T ELT)) (-2025 (($ (-1073)) 56 T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2028 (($ $ (-583 (-1090))) 21 T ELT)) (-2031 (((-51) $) 23 T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3255 (((-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2383 (($ $ (-583 (-1090)) (-1090)) 73 T ELT)) (-3258 (((-85) $) NIL T ELT)) (-3254 (((-179) $) NIL T ELT)) (-2027 (($ $) 44 T ELT)) (-3253 (((-772) $) NIL T ELT)) (-3266 (((-85) $ $) NIL T ELT)) (-3800 (($ $ (-484)) NIL T ELT) (($ $ (-583 (-484))) NIL T ELT)) (-3257 (((-583 $) $) 30 T ELT)) (-2024 (((-1090) (-583 $)) 57 T ELT)) (-3972 (($ (-1073)) NIL T ELT) (($ (-1090)) 19 T ELT) (($ (-484)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-772)) NIL T ELT) (($ (-583 $)) 65 T ELT) (((-1015) $) 12 T ELT) (($ (-1015)) 13 T ELT)) (-2023 (((-1090) (-1090) (-583 $)) 60 T ELT)) (-3946 (((-772) $) 54 T ELT)) (-3251 (($ $) 59 T ELT)) (-3252 (($ $) 58 T ELT)) (-2029 (($ $ (-583 $)) 66 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3264 (((-85) $) 29 T ELT)) (-2660 (($) 9 T CONST)) (-2666 (($) 11 T CONST)) (-3056 (((-85) $ $) 74 T ELT)) (-3949 (($ $ $) 82 T ELT)) (-3839 (($ $ $) 75 T ELT)) (** (($ $ (-694)) 81 T ELT) (($ $ (-484)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3957 (((-484) $) NIL T ELT))) -(((-473) (-13 (-1016 (-1073) (-1090) (-484) (-179) (-772)) (-553 (-1015)) (-10 -8 (-15 -2031 ((-51) $)) (-15 -3972 ($ (-1015))) (-15 -2029 ($ $ (-583 $))) (-15 -2383 ($ $ (-583 (-1090)) (-1090))) (-15 -2028 ($ $ (-583 (-1090)))) (-15 -3839 ($ $ $)) (-15 * ($ $ $)) (-15 -3949 ($ $ $)) (-15 ** ($ $ (-694))) (-15 ** ($ $ (-484))) (-15 -2660 ($) -3952) (-15 -2666 ($) -3952) (-15 -2027 ($ $)) (-15 -2026 ((-1073) $)) (-15 -2025 ($ (-1073))) (-15 -2024 ((-1090) (-583 $))) (-15 -2023 ((-1090) (-1090) (-583 $)))))) (T -473)) -((-2031 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-473)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-473)))) (-2029 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-473))) (-5 *1 (-473)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-1090)) (-5 *1 (-473)))) (-2028 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-473)))) (-3839 (*1 *1 *1 *1) (-5 *1 (-473))) (* (*1 *1 *1 *1) (-5 *1 (-473))) (-3949 (*1 *1 *1 *1) (-5 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-473)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-473)))) (-2660 (*1 *1) (-5 *1 (-473))) (-2666 (*1 *1) (-5 *1 (-473))) (-2027 (*1 *1 *1) (-5 *1 (-473))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-473)))) (-2025 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-473)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-583 (-473))) (-5 *2 (-1090)) (-5 *1 (-473)))) (-2023 (*1 *2 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-583 (-473))) (-5 *1 (-473))))) -((-2030 (((-473) (-1090)) 15 T ELT)) (-2031 ((|#1| (-473)) 20 T ELT))) -(((-474 |#1|) (-10 -7 (-15 -2030 ((-473) (-1090))) (-15 -2031 (|#1| (-473)))) (-1129)) (T -474)) -((-2031 (*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *1 (-474 *2)) (-4 *2 (-1129)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-473)) (-5 *1 (-474 *4)) (-4 *4 (-1129))))) -((-3453 ((|#2| |#2|) 17 T ELT)) (-3451 ((|#2| |#2|) 13 T ELT)) (-3454 ((|#2| |#2| (-484) (-484)) 20 T ELT)) (-3452 ((|#2| |#2|) 15 T ELT))) -(((-475 |#1| |#2|) (-10 -7 (-15 -3451 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -3454 (|#2| |#2| (-484) (-484)))) (-13 (-495) (-120)) (-1172 |#1|)) (T -475)) -((-3454 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-475 *4 *2)) (-4 *2 (-1172 *4)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1172 *3)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1172 *3)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1172 *3))))) -((-2034 (((-583 (-249 (-857 |#2|))) (-583 |#2|) (-583 (-1090))) 32 T ELT)) (-2032 (((-583 |#2|) (-857 |#1|) |#3|) 54 T ELT) (((-583 |#2|) (-1085 |#1|) |#3|) 53 T ELT)) (-2033 (((-583 (-583 |#2|)) (-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1090)) |#3|) 106 T ELT))) -(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -2032 ((-583 |#2|) (-1085 |#1|) |#3|)) (-15 -2032 ((-583 |#2|) (-857 |#1|) |#3|)) (-15 -2033 ((-583 (-583 |#2|)) (-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1090)) |#3|)) (-15 -2034 ((-583 (-249 (-857 |#2|))) (-583 |#2|) (-583 (-1090))))) (-392) (-312) (-13 (-312) (-755))) (T -476)) -((-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1090))) (-4 *6 (-312)) (-5 *2 (-583 (-249 (-857 *6)))) (-5 *1 (-476 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-13 (-312) (-755))))) (-2033 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1090))) (-4 *6 (-392)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-476 *6 *7 *5)) (-4 *7 (-312)) (-4 *5 (-13 (-312) (-755))))) (-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-4 *5 (-392)) (-5 *2 (-583 *6)) (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))) (-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *5)) (-4 *5 (-392)) (-5 *2 (-583 *6)) (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755)))))) -((-2037 ((|#2| |#2| |#1|) 17 T ELT)) (-2035 ((|#2| (-583 |#2|)) 30 T ELT)) (-2036 ((|#2| (-583 |#2|)) 51 T ELT))) -(((-477 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2035 (|#2| (-583 |#2|))) (-15 -2036 (|#2| (-583 |#2|))) (-15 -2037 (|#2| |#2| |#1|))) (-258) (-1155 |#1|) |#1| (-1 |#1| |#1| (-694))) (T -477)) -((-2037 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-694))) (-5 *1 (-477 *3 *2 *4 *5)) (-4 *2 (-1155 *3)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-477 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694))))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-477 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694)))))) -((-3732 (((-348 (-1085 |#4|)) (-1085 |#4|) (-1 (-348 (-1085 |#3|)) (-1085 |#3|))) 90 T ELT) (((-348 |#4|) |#4| (-1 (-348 (-1085 |#3|)) (-1085 |#3|))) 213 T ELT))) -(((-478 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 ((-348 |#4|) |#4| (-1 (-348 (-1085 |#3|)) (-1085 |#3|)))) (-15 -3732 ((-348 (-1085 |#4|)) (-1085 |#4|) (-1 (-348 (-1085 |#3|)) (-1085 |#3|))))) (-756) (-717) (-13 (-258) (-120)) (-861 |#3| |#2| |#1|)) (T -478)) -((-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1085 *7)) (-1085 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-861 *7 *6 *5)) (-5 *2 (-348 (-1085 *8))) (-5 *1 (-478 *5 *6 *7 *8)) (-5 *3 (-1085 *8)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1085 *7)) (-1085 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-348 *3)) (-5 *1 (-478 *5 *6 *7 *3)) (-4 *3 (-861 *7 *6 *5))))) -((-3453 ((|#4| |#4|) 74 T ELT)) (-3451 ((|#4| |#4|) 70 T ELT)) (-3454 ((|#4| |#4| (-484) (-484)) 76 T ELT)) (-3452 ((|#4| |#4|) 72 T ELT))) -(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3451 (|#4| |#4|)) (-15 -3452 (|#4| |#4|)) (-15 -3453 (|#4| |#4|)) (-15 -3454 (|#4| |#4| (-484) (-484)))) (-13 (-312) (-320) (-553 (-484))) (-1155 |#1|) (-661 |#1| |#2|) (-1172 |#3|)) (T -479)) -((-3454 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-320) (-553 *3))) (-4 *5 (-1155 *4)) (-4 *6 (-661 *4 *5)) (-5 *1 (-479 *4 *5 *6 *2)) (-4 *2 (-1172 *6)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-4 *4 (-1155 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-4 *4 (-1155 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-4 *4 (-1155 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))) -((-3453 ((|#2| |#2|) 27 T ELT)) (-3451 ((|#2| |#2|) 23 T ELT)) (-3454 ((|#2| |#2| (-484) (-484)) 29 T ELT)) (-3452 ((|#2| |#2|) 25 T ELT))) -(((-480 |#1| |#2|) (-10 -7 (-15 -3451 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -3454 (|#2| |#2| (-484) (-484)))) (-13 (-312) (-320) (-553 (-484))) (-1172 |#1|)) (T -480)) -((-3454 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-320) (-553 *3))) (-5 *1 (-480 *4 *2)) (-4 *2 (-1172 *4)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1172 *3)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1172 *3)))) (-3451 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1172 *3))))) -((-2038 (((-3 (-484) #1="failed") |#2| |#1| (-1 (-3 (-484) #1#) |#1|)) 18 T ELT) (((-3 (-484) #1#) |#2| |#1| (-484) (-1 (-3 (-484) #1#) |#1|)) 14 T ELT) (((-3 (-484) #1#) |#2| (-484) (-1 (-3 (-484) #1#) |#1|)) 30 T ELT))) -(((-481 |#1| |#2|) (-10 -7 (-15 -2038 ((-3 (-484) #1="failed") |#2| (-484) (-1 (-3 (-484) #1#) |#1|))) (-15 -2038 ((-3 (-484) #1#) |#2| |#1| (-484) (-1 (-3 (-484) #1#) |#1|))) (-15 -2038 ((-3 (-484) #1#) |#2| |#1| (-1 (-3 (-484) #1#) |#1|)))) (-961) (-1155 |#1|)) (T -481)) -((-2038 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-484) #1="failed") *4)) (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-481 *4 *3)) (-4 *3 (-1155 *4)))) (-2038 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-481 *4 *3)) (-4 *3 (-1155 *4)))) (-2038 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-484) #1#) *5)) (-4 *5 (-961)) (-5 *2 (-484)) (-5 *1 (-481 *5 *3)) (-4 *3 (-1155 *5))))) -((-2047 (($ $ $) 87 T ELT)) (-3971 (((-348 $) $) 50 T ELT)) (-3157 (((-3 (-484) #1="failed") $) 62 T ELT)) (-3156 (((-484) $) 40 T ELT)) (-3024 (((-3 (-350 (-484)) #1#) $) 80 T ELT)) (-3023 (((-85) $) 24 T ELT)) (-3022 (((-350 (-484)) $) 78 T ELT)) (-3723 (((-85) $) 53 T ELT)) (-2040 (($ $ $ $) 94 T ELT)) (-1369 (($ $ $) 60 T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 75 T ELT)) (-3445 (((-632 $) $) 70 T ELT)) (-2044 (($ $) 22 T ELT)) (-2039 (($ $ $) 92 T ELT)) (-3446 (($) 63 T CONST)) (-1367 (($ $) 56 T ELT)) (-3732 (((-348 $) $) 48 T ELT)) (-2674 (((-85) $) 15 T ELT)) (-1607 (((-694) $) 30 T ELT)) (-3758 (($ $) 11 T ELT) (($ $ (-694)) NIL T ELT)) (-3400 (($ $) 16 T ELT)) (-3972 (((-484) $) NIL T ELT) (((-473) $) 39 T ELT) (((-800 (-484)) $) 43 T ELT) (((-330) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3126 (((-694)) 9 T CONST)) (-2049 (((-85) $ $) 19 T ELT)) (-3101 (($ $ $) 58 T ELT))) -(((-482 |#1|) (-10 -7 (-15 -2039 (|#1| |#1| |#1|)) (-15 -2040 (|#1| |#1| |#1| |#1|)) (-15 -2044 (|#1| |#1|)) (-15 -3400 (|#1| |#1|)) (-15 -3024 ((-3 (-350 (-484)) #1="failed") |#1|)) (-15 -3022 ((-350 (-484)) |#1|)) (-15 -3023 ((-85) |#1|)) (-15 -2047 (|#1| |#1| |#1|)) (-15 -2049 ((-85) |#1| |#1|)) (-15 -2674 ((-85) |#1|)) (-15 -3446 (|#1|) -3952) (-15 -3445 ((-632 |#1|) |#1|)) (-15 -3972 ((-179) |#1|)) (-15 -3972 ((-330) |#1|)) (-15 -1369 (|#1| |#1| |#1|)) (-15 -1367 (|#1| |#1|)) (-15 -3101 (|#1| |#1| |#1|)) (-15 -2796 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -3972 ((-800 (-484)) |#1|)) (-15 -3972 ((-473) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3972 ((-484) |#1|)) (-15 -3758 (|#1| |#1| (-694))) (-15 -3758 (|#1| |#1|)) (-15 -1607 ((-694) |#1|)) (-15 -3732 ((-348 |#1|) |#1|)) (-15 -3971 ((-348 |#1|) |#1|)) (-15 -3723 ((-85) |#1|)) (-15 -3126 ((-694)) -3952)) (-483)) (T -482)) -((-3126 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-482 *3)) (-4 *3 (-483))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-2047 (($ $ $) 102 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2042 (($ $ $ $) 91 T ELT)) (-3775 (($ $) 66 T ELT)) (-3971 (((-348 $) $) 67 T ELT)) (-1608 (((-85) $ $) 145 T ELT)) (-3623 (((-484) $) 134 T ELT)) (-2441 (($ $ $) 105 T ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 (-484) "failed") $) 126 T ELT)) (-3156 (((-484) $) 127 T ELT)) (-2564 (($ $ $) 149 T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 124 T ELT) (((-630 (-484)) (-630 $)) 123 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3024 (((-3 (-350 (-484)) "failed") $) 99 T ELT)) (-3023 (((-85) $) 101 T ELT)) (-3022 (((-350 (-484)) $) 100 T ELT)) (-2994 (($) 98 T ELT) (($ $) 97 T ELT)) (-2563 (($ $ $) 148 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 143 T ELT)) (-3723 (((-85) $) 68 T ELT)) (-2040 (($ $ $ $) 89 T ELT)) (-2048 (($ $ $) 103 T ELT)) (-3186 (((-85) $) 136 T ELT)) (-1369 (($ $ $) 114 T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 117 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2673 (((-85) $) 109 T ELT)) (-3445 (((-632 $) $) 111 T ELT)) (-3187 (((-85) $) 135 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 152 T ELT)) (-2041 (($ $ $ $) 90 T ELT)) (-2531 (($ $ $) 142 T ELT)) (-2857 (($ $ $) 141 T ELT)) (-2044 (($ $) 93 T ELT)) (-3833 (($ $) 106 T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 122 T ELT) (((-630 (-484)) (-1179 $)) 121 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2039 (($ $ $) 88 T ELT)) (-3446 (($) 110 T CONST)) (-2046 (($ $) 95 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1367 (($ $) 115 T ELT)) (-3732 (((-348 $) $) 65 T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 151 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 150 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 144 T ELT)) (-2674 (((-85) $) 108 T ELT)) (-1607 (((-694) $) 146 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 147 T ELT)) (-3758 (($ $) 132 T ELT) (($ $ (-694)) 130 T ELT)) (-2045 (($ $) 94 T ELT)) (-3400 (($ $) 96 T ELT)) (-3972 (((-484) $) 128 T ELT) (((-473) $) 119 T ELT) (((-800 (-484)) $) 118 T ELT) (((-330) $) 113 T ELT) (((-179) $) 112 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-484)) 125 T ELT)) (-3126 (((-694)) 40 T CONST)) (-2049 (((-85) $ $) 104 T ELT)) (-3101 (($ $ $) 116 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2694 (($) 107 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2043 (($ $ $ $) 92 T ELT)) (-3383 (($ $) 133 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $) 131 T ELT) (($ $ (-694)) 129 T ELT)) (-2566 (((-85) $ $) 140 T ELT)) (-2567 (((-85) $ $) 138 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 139 T ELT)) (-2685 (((-85) $ $) 137 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-484) $) 120 T ELT))) -(((-483) (-113)) (T -483)) -((-2673 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2674 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2694 (*1 *1) (-4 *1 (-483))) (-3833 (*1 *1 *1) (-4 *1 (-483))) (-2441 (*1 *1 *1 *1) (-4 *1 (-483))) (-2049 (*1 *2 *1 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2048 (*1 *1 *1 *1) (-4 *1 (-483))) (-2047 (*1 *1 *1 *1) (-4 *1 (-483))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-350 (-484))))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *1 (-483)) (-5 *2 (-350 (-484))))) (-2994 (*1 *1) (-4 *1 (-483))) (-2994 (*1 *1 *1) (-4 *1 (-483))) (-3400 (*1 *1 *1) (-4 *1 (-483))) (-2046 (*1 *1 *1) (-4 *1 (-483))) (-2045 (*1 *1 *1) (-4 *1 (-483))) (-2044 (*1 *1 *1) (-4 *1 (-483))) (-2043 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2042 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2041 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2040 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2039 (*1 *1 *1 *1) (-4 *1 (-483)))) -(-13 (-1134) (-258) (-740) (-190) (-553 (-484)) (-950 (-484)) (-580 (-484)) (-553 (-473)) (-553 (-800 (-484))) (-796 (-484)) (-116) (-933) (-120) (-1066) (-10 -8 (-15 -2673 ((-85) $)) (-15 -2674 ((-85) $)) (-6 -3994) (-15 -2694 ($)) (-15 -3833 ($ $)) (-15 -2441 ($ $ $)) (-15 -2049 ((-85) $ $)) (-15 -2048 ($ $ $)) (-15 -2047 ($ $ $)) (-15 -3023 ((-85) $)) (-15 -3022 ((-350 (-484)) $)) (-15 -3024 ((-3 (-350 (-484)) "failed") $)) (-15 -2994 ($)) (-15 -2994 ($ $)) (-15 -3400 ($ $)) (-15 -2046 ($ $)) (-15 -2045 ($ $)) (-15 -2044 ($ $)) (-15 -2043 ($ $ $ $)) (-15 -2042 ($ $ $ $)) (-15 -2041 ($ $ $ $)) (-15 -2040 ($ $ $ $)) (-15 -2039 ($ $ $)) (-6 -3993))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-116) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-330)) . T) ((-553 (-473)) . T) ((-553 (-484)) . T) ((-553 (-800 (-484))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-484)) . T) ((-590 $) . T) ((-582 $) . T) ((-580 (-484)) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-740) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-484)) . T) ((-832) . T) ((-933) . T) ((-950 (-484)) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) . T) ((-1129) . T) ((-1134) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 8 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 77 T ELT)) (-2063 (($ $) 78 T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2047 (($ $ $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2042 (($ $ $ $) 31 T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-484) $) NIL T ELT)) (-2441 (($ $ $) 71 T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL T ELT)) (-2564 (($ $ $) 45 T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 53 T ELT) (((-630 (-484)) (-630 $)) 49 T ELT)) (-3467 (((-3 $ #1#) $) 74 T ELT)) (-3024 (((-3 (-350 (-484)) #1#) $) NIL T ELT)) (-3023 (((-85) $) NIL T ELT)) (-3022 (((-350 (-484)) $) NIL T ELT)) (-2994 (($) 55 T ELT) (($ $) 56 T ELT)) (-2563 (($ $ $) 70 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-2040 (($ $ $ $) NIL T ELT)) (-2048 (($ $ $) 46 T ELT)) (-3186 (((-85) $) 22 T ELT)) (-1369 (($ $ $) NIL T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL T ELT)) (-1214 (((-85) $ $) 110 T ELT)) (-2410 (((-85) $) 9 T ELT)) (-2673 (((-85) $) 64 T ELT)) (-3445 (((-632 $) $) NIL T ELT)) (-3187 (((-85) $) 21 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2041 (($ $ $ $) 32 T ELT)) (-2531 (($ $ $) 67 T ELT)) (-2857 (($ $ $) 66 T ELT)) (-2044 (($ $) NIL T ELT)) (-3833 (($ $) 29 T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) 44 T ELT)) (-2039 (($ $ $) NIL T ELT)) (-3446 (($) NIL T CONST)) (-2046 (($ $) 15 T ELT)) (-3243 (((-1033) $) 19 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 109 T ELT)) (-3144 (($ $ $) 75 T ELT) (($ (-583 $)) NIL T ELT)) (-1367 (($ $) NIL T ELT)) (-3732 (((-348 $) $) 95 T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) 93 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2674 (((-85) $) 65 T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 69 T ELT)) (-3758 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2045 (($ $) 17 T ELT)) (-3400 (($ $) 13 T ELT)) (-3972 (((-484) $) 28 T ELT) (((-473) $) 41 T ELT) (((-800 (-484)) $) NIL T ELT) (((-330) $) 35 T ELT) (((-179) $) 38 T ELT)) (-3946 (((-772) $) 26 T ELT) (($ (-484)) 27 T ELT) (($ $) NIL T ELT) (($ (-484)) 27 T ELT)) (-3126 (((-694)) NIL T CONST)) (-2049 (((-85) $ $) NIL T ELT)) (-3101 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2694 (($) 12 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) 112 T ELT)) (-2043 (($ $ $ $) 30 T ELT)) (-3383 (($ $) 54 T ELT)) (-2660 (($) 10 T CONST)) (-2666 (($) 11 T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2566 (((-85) $ $) 59 T ELT)) (-2567 (((-85) $ $) 57 T ELT)) (-3056 (((-85) $ $) 7 T ELT)) (-2684 (((-85) $ $) 58 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-3837 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3839 (($ $ $) 14 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 63 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-484) $) 61 T ELT))) -(((-484) (-13 (-483) (-10 -7 (-6 -3982) (-6 -3987) (-6 -3983)))) (T -484)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) -(((-485) (-13 (-752) (-10 -8 (-15 -3724 ($) -3952)))) (T -485)) -((-3724 (*1 *1) (-5 *1 (-485)))) -((-484) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) -(((-486) (-13 (-752) (-10 -8 (-15 -3724 ($) -3952)))) (T -486)) -((-3724 (*1 *1) (-5 *1 (-486)))) -((-484) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) -(((-487) (-13 (-752) (-10 -8 (-15 -3724 ($) -3952)))) (T -487)) -((-3724 (*1 *1) (-5 *1 (-487)))) -((-484) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) -(((-488) (-13 (-752) (-10 -8 (-15 -3724 ($) -3952)))) (T -488)) -((-3724 (*1 *1) (-5 *1 (-488)))) -((-484) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3801 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3530 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3946 (((-772) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-489 |#1| |#2| |#3|) (-1107 |#1| |#2|) (-1013) (-1013) (-1107 |#1| |#2|)) (T -489)) -NIL -((-2050 (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-1 (-1085 |#2|) (-1085 |#2|))) 50 T ELT))) -(((-490 |#1| |#2|) (-10 -7 (-15 -2050 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-1 (-1085 |#2|) (-1085 |#2|))))) (-495) (-13 (-27) (-364 |#1|))) (T -490)) -((-2050 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-1 (-1085 *3) (-1085 *3))) (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-495)) (-5 *2 (-519 *3)) (-5 *1 (-490 *6 *3))))) -((-2052 (((-519 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2053 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2051 (((-519 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) -(((-491 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2051 ((-519 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2052 ((-519 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2053 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-495) (-950 (-484))) (-13 (-27) (-364 |#1|)) (-1155 |#2|) (-1155 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -491)) -((-2053 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *7 (-1155 (-350 *6))) (-5 *1 (-491 *4 *5 *6 *7 *2)) (-4 *2 (-291 *5 *6 *7)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1155 (-350 *7))) (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))) (-2051 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1155 (-350 *7))) (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) -((-2056 (((-85) (-484) (-484)) 12 T ELT)) (-2054 (((-484) (-484)) 7 T ELT)) (-2055 (((-484) (-484) (-484)) 10 T ELT))) -(((-492) (-10 -7 (-15 -2054 ((-484) (-484))) (-15 -2055 ((-484) (-484) (-484))) (-15 -2056 ((-85) (-484) (-484))))) (T -492)) -((-2056 (*1 *2 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-492)))) (-2055 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2604 ((|#1| $) 77 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3492 (($ $) 107 T ELT)) (-3639 (($ $) 90 T ELT)) (-2483 ((|#1| $) 78 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3037 (($ $) 89 T ELT)) (-3490 (($ $) 106 T ELT)) (-3638 (($ $) 91 T ELT)) (-3494 (($ $) 105 T ELT)) (-3637 (($ $) 92 T ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 (-484) "failed") $) 85 T ELT)) (-3156 (((-484) $) 86 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2059 (($ |#1| |#1|) 82 T ELT)) (-3186 (((-85) $) 76 T ELT)) (-3627 (($) 117 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 88 T ELT)) (-3187 (((-85) $) 75 T ELT)) (-2531 (($ $ $) 118 T ELT)) (-2857 (($ $ $) 119 T ELT)) (-3942 (($ $) 114 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2060 (($ |#1| |#1|) 83 T ELT) (($ |#1|) 81 T ELT) (($ (-350 (-484))) 80 T ELT)) (-2058 ((|#1| $) 79 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-3943 (($ $) 115 T ELT)) (-3495 (($ $) 104 T ELT)) (-3636 (($ $) 93 T ELT)) (-3493 (($ $) 103 T ELT)) (-3635 (($ $) 94 T ELT)) (-3491 (($ $) 102 T ELT)) (-3634 (($ $) 95 T ELT)) (-2057 (((-85) $ |#1|) 74 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-484)) 84 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3498 (($ $) 113 T ELT)) (-3486 (($ $) 101 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3496 (($ $) 112 T ELT)) (-3484 (($ $) 100 T ELT)) (-3500 (($ $) 111 T ELT)) (-3488 (($ $) 99 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 110 T ELT)) (-3489 (($ $) 98 T ELT)) (-3499 (($ $) 109 T ELT)) (-3487 (($ $) 97 T ELT)) (-3497 (($ $) 108 T ELT)) (-3485 (($ $) 96 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 120 T ELT)) (-2567 (((-85) $ $) 122 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 121 T ELT)) (-2685 (((-85) $ $) 123 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ $) 116 T ELT) (($ $ (-350 (-484))) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-493 |#1|) (-113) (-13 (-347) (-1115))) (T -493)) -((-2060 (*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))) (-2059 (*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))) (-2060 (*1 *1 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))) (-2060 (*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115))))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))) (-2483 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85)))) (-2057 (*1 *2 *1 *3) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85))))) -(-13 (-392) (-756) (-1115) (-915) (-950 (-484)) (-10 -8 (-6 -3770) (-15 -2060 ($ |t#1| |t#1|)) (-15 -2059 ($ |t#1| |t#1|)) (-15 -2060 ($ |t#1|)) (-15 -2060 ($ (-350 (-484)))) (-15 -2058 (|t#1| $)) (-15 -2483 (|t#1| $)) (-15 -2604 (|t#1| $)) (-15 -3186 ((-85) $)) (-15 -3187 ((-85) $)) (-15 -2057 ((-85) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-239) . T) ((-246) . T) ((-392) . T) ((-433) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-756) . T) ((-759) . T) ((-915) . T) ((-950 (-484)) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1115) . T) ((-1118) . T) ((-1129) . T)) -((-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 9 T ELT)) (-2063 (($ $) 11 T ELT)) (-2061 (((-85) $) 20 T ELT)) (-3467 (((-3 $ "failed") $) 16 T ELT)) (-2062 (((-85) $ $) 22 T ELT))) -(((-494 |#1|) (-10 -7 (-15 -2061 ((-85) |#1|)) (-15 -2062 ((-85) |#1| |#1|)) (-15 -2063 (|#1| |#1|)) (-15 -2064 ((-2 (|:| -1772 |#1|) (|:| -3982 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3467 ((-3 |#1| "failed") |#1|))) (-495)) (T -494)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-495) (-113)) (T -495)) -((-3466 (*1 *1 *1 *1) (|partial| -4 *1 (-495))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1772 *1) (|:| -3982 *1) (|:| |associate| *1))) (-4 *1 (-495)))) (-2063 (*1 *1 *1) (-4 *1 (-495))) (-2062 (*1 *2 *1 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85)))) (-2061 (*1 *2 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85))))) -(-13 (-146) (-38 $) (-246) (-10 -8 (-15 -3466 ((-3 $ "failed") $ $)) (-15 -2064 ((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $)) (-15 -2063 ($ $)) (-15 -2062 ((-85) $ $)) (-15 -2061 ((-85) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2066 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1090) (-583 |#2|)) 38 T ELT)) (-2068 (((-519 |#2|) |#2| (-1090)) 63 T ELT)) (-2067 (((-3 |#2| #1#) |#2| (-1090)) 156 T ELT)) (-2069 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1090) (-550 |#2|) (-583 (-550 |#2|))) 159 T ELT)) (-2065 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1090) |#2|) 41 T ELT))) -(((-496 |#1| |#2|) (-10 -7 (-15 -2065 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1090) |#2|)) (-15 -2066 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1090) (-583 |#2|))) (-15 -2067 ((-3 |#2| #1#) |#2| (-1090))) (-15 -2068 ((-519 |#2|) |#2| (-1090))) (-15 -2069 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1090) (-550 |#2|) (-583 (-550 |#2|))))) (-13 (-392) (-120) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|))) (T -496)) -((-2069 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1090)) (-5 *6 (-583 (-550 *3))) (-5 *5 (-550 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *7 *3)))) (-2068 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-496 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-2067 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-496 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-2066 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-496 *6 *3)))) (-2065 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))) -((-3971 (((-348 |#1|) |#1|) 17 T ELT)) (-3732 (((-348 |#1|) |#1|) 32 T ELT)) (-2071 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2070 (((-348 |#1|) |#1|) 59 T ELT))) -(((-497 |#1|) (-10 -7 (-15 -3732 ((-348 |#1|) |#1|)) (-15 -3971 ((-348 |#1|) |#1|)) (-15 -2070 ((-348 |#1|) |#1|)) (-15 -2071 ((-3 |#1| "failed") |#1|))) (-483)) (T -497)) -((-2071 (*1 *2 *2) (|partial| -12 (-5 *1 (-497 *2)) (-4 *2 (-483)))) (-2070 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) (-3971 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483))))) -((-3083 (((-1085 (-350 (-1085 |#2|))) |#2| (-550 |#2|) (-550 |#2|) (-1085 |#2|)) 35 T ELT)) (-2074 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) (-550 |#2|) |#2| (-350 (-1085 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) |#2| (-1085 |#2|)) 115 T ELT)) (-2072 (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-350 (-1085 |#2|))) 85 T ELT) (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) |#2| (-1085 |#2|)) 55 T ELT)) (-2073 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| (-550 |#2|) |#2| (-350 (-1085 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| |#2| (-1085 |#2|)) 114 T ELT)) (-2075 (((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090)) (-550 |#2|) |#2| (-350 (-1085 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090)) |#2| (-1085 |#2|)) 116 T ELT)) (-2076 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-350 (-1085 |#2|))) 133 (|has| |#3| (-600 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) |#2| (-1085 |#2|)) 132 (|has| |#3| (-600 |#2|)) ELT)) (-3084 ((|#2| (-1085 (-350 (-1085 |#2|))) (-550 |#2|) |#2|) 53 T ELT)) (-3079 (((-1085 (-350 (-1085 |#2|))) (-1085 |#2|) (-550 |#2|)) 34 T ELT))) -(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2072 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) |#2| (-1085 |#2|))) (-15 -2072 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-350 (-1085 |#2|)))) (-15 -2073 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-550 |#2|) (-550 |#2|) |#2| |#2| (-1085 |#2|))) (-15 -2073 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| (-550 |#2|) |#2| (-350 (-1085 |#2|)))) (-15 -2074 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) |#2| (-1085 |#2|))) (-15 -2074 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) (-550 |#2|) |#2| (-350 (-1085 |#2|)))) (-15 -2075 ((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090)) |#2| (-1085 |#2|))) (-15 -2075 ((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090)) (-550 |#2|) |#2| (-350 (-1085 |#2|)))) (-15 -3083 ((-1085 (-350 (-1085 |#2|))) |#2| (-550 |#2|) (-550 |#2|) (-1085 |#2|))) (-15 -3084 (|#2| (-1085 (-350 (-1085 |#2|))) (-550 |#2|) |#2|)) (-15 -3079 ((-1085 (-350 (-1085 |#2|))) (-1085 |#2|) (-550 |#2|))) (IF (|has| |#3| (-600 |#2|)) (PROGN (-15 -2076 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) |#2| (-1085 |#2|))) (-15 -2076 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-350 (-1085 |#2|))))) |%noBranch|)) (-13 (-392) (-950 (-484)) (-120) (-580 (-484))) (-13 (-364 |#1|) (-27) (-1115)) (-1013)) (T -498)) -((-2076 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-350 (-1085 *4))) (-4 *4 (-13 (-364 *7) (-27) (-1115))) (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))) (-2076 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-1085 *4)) (-4 *4 (-13 (-364 *7) (-27) (-1115))) (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *4 (-550 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1115))) (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-1085 (-350 (-1085 *6)))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-1085 *6)) (-4 *7 (-1013)))) (-3084 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1085 (-350 (-1085 *2)))) (-5 *4 (-550 *2)) (-4 *2 (-13 (-364 *5) (-27) (-1115))) (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-498 *5 *2 *6)) (-4 *6 (-1013)))) (-3083 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-1085 (-350 (-1085 *3)))) (-5 *1 (-498 *6 *3 *7)) (-5 *5 (-1085 *3)) (-4 *7 (-1013)))) (-2075 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1090))) (-5 *5 (-350 (-1085 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))) (-2075 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1090))) (-5 *5 (-1085 *2)) (-4 *2 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))) (-2074 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-350 (-1085 *3))) (-4 *3 (-13 (-364 *7) (-27) (-1115))) (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))) (-2074 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1085 *3)) (-4 *3 (-13 (-364 *7) (-27) (-1115))) (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))) (-2073 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-350 (-1085 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2073 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-1085 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2072 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-350 (-1085 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2072 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-1085 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013))))) -((-2086 (((-484) (-484) (-694)) 87 T ELT)) (-2085 (((-484) (-484)) 85 T ELT)) (-2084 (((-484) (-484)) 82 T ELT)) (-2083 (((-484) (-484)) 89 T ELT)) (-2805 (((-484) (-484) (-484)) 67 T ELT)) (-2082 (((-484) (-484) (-484)) 64 T ELT)) (-2081 (((-350 (-484)) (-484)) 29 T ELT)) (-2080 (((-484) (-484)) 34 T ELT)) (-2079 (((-484) (-484)) 76 T ELT)) (-2802 (((-484) (-484)) 47 T ELT)) (-2078 (((-583 (-484)) (-484)) 81 T ELT)) (-2077 (((-484) (-484) (-484) (-484) (-484)) 60 T ELT)) (-2798 (((-350 (-484)) (-484)) 56 T ELT))) -(((-499) (-10 -7 (-15 -2798 ((-350 (-484)) (-484))) (-15 -2077 ((-484) (-484) (-484) (-484) (-484))) (-15 -2078 ((-583 (-484)) (-484))) (-15 -2802 ((-484) (-484))) (-15 -2079 ((-484) (-484))) (-15 -2080 ((-484) (-484))) (-15 -2081 ((-350 (-484)) (-484))) (-15 -2082 ((-484) (-484) (-484))) (-15 -2805 ((-484) (-484) (-484))) (-15 -2083 ((-484) (-484))) (-15 -2084 ((-484) (-484))) (-15 -2085 ((-484) (-484))) (-15 -2086 ((-484) (-484) (-694))))) (T -499)) -((-2086 (*1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-694)) (-5 *1 (-499)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2083 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2805 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2082 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2081 (*1 *2 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2802 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2078 (*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))) (-2077 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2798 (*1 *2 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-499)) (-5 *3 (-484))))) -((-2087 (((-2 (|:| |answer| |#4|) (|:| -2135 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) -(((-500 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2087 ((-2 (|:| |answer| |#4|) (|:| -2135 |#4|)) |#4| (-1 |#2| |#2|)))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -500)) -((-2087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-4 *7 (-1155 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2135 *3))) (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7))))) -((-2087 (((-2 (|:| |answer| (-350 |#2|)) (|:| -2135 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 18 T ELT))) -(((-501 |#1| |#2|) (-10 -7 (-15 -2087 ((-2 (|:| |answer| (-350 |#2|)) (|:| -2135 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1155 |#1|)) (T -501)) -((-2087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| (-350 *6)) (|:| -2135 (-350 *6)) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-501 *5 *6)) (-5 *3 (-350 *6))))) -((-2090 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|)) 195 T ELT)) (-2088 (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|)) 97 T ELT)) (-2089 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2|) 191 T ELT)) (-2091 (((-3 |#2| #1#) |#2| |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090))) 200 T ELT)) (-2092 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-1090)) 209 (|has| |#3| (-600 |#2|)) ELT))) -(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -2088 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|))) (-15 -2089 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-550 |#2|) (-550 |#2|) |#2|)) (-15 -2090 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|))) (-15 -2091 ((-3 |#2| #1#) |#2| |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090)))) (IF (|has| |#3| (-600 |#2|)) (-15 -2092 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-1090))) |%noBranch|)) (-13 (-392) (-950 (-484)) (-120) (-580 (-484))) (-13 (-364 |#1|) (-27) (-1115)) (-1013)) (T -502)) -((-2092 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-1090)) (-4 *4 (-13 (-364 *7) (-27) (-1115))) (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))) (-2091 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1090))) (-4 *2 (-13 (-364 *5) (-27) (-1115))) (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-502 *5 *2 *6)) (-4 *6 (-1013)))) (-2090 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1013)))) (-2089 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1115))) (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013)))) (-2088 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1115))) (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013))))) -((-2093 (((-2 (|:| -2338 |#2|) (|:| |nconst| |#2|)) |#2| (-1090)) 64 T ELT)) (-2095 (((-3 |#2| #1="failed") |#2| (-1090) (-750 |#2|) (-750 |#2|)) 174 (-12 (|has| |#2| (-1053)) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-796 (-484)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1090)) 145 (-12 (|has| |#2| (-569)) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-796 (-484)))) ELT)) (-2094 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1090)) 156 (-12 (|has| |#2| (-569)) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-796 (-484)))) ELT))) -(((-503 |#1| |#2|) (-10 -7 (-15 -2093 ((-2 (|:| -2338 |#2|) (|:| |nconst| |#2|)) |#2| (-1090))) (IF (|has| |#1| (-553 (-800 (-484)))) (IF (|has| |#1| (-796 (-484))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2094 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1090))) (-15 -2095 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1090)))) |%noBranch|) (IF (|has| |#2| (-1053)) (-15 -2095 ((-3 |#2| #1#) |#2| (-1090) (-750 |#2|) (-750 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-950 (-484)) (-392) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|))) (T -503)) -((-2095 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1090)) (-5 *4 (-750 *2)) (-4 *2 (-1053)) (-4 *2 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-553 (-800 (-484)))) (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484)))) (-5 *1 (-503 *5 *2)))) (-2095 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-553 (-800 (-484)))) (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-2094 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-553 (-800 (-484)))) (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-2093 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484)))) (-5 *2 (-2 (|:| -2338 *3) (|:| |nconst| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))) -((-2098 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1="failed") (-350 |#2|) (-583 (-350 |#2|))) 41 T ELT)) (-3812 (((-519 (-350 |#2|)) (-350 |#2|)) 28 T ELT)) (-2096 (((-3 (-350 |#2|) #1#) (-350 |#2|)) 17 T ELT)) (-2097 (((-3 (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|)) 48 T ELT))) -(((-504 |#1| |#2|) (-10 -7 (-15 -3812 ((-519 (-350 |#2|)) (-350 |#2|))) (-15 -2096 ((-3 (-350 |#2|) #1="failed") (-350 |#2|))) (-15 -2097 ((-3 (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|))) (-15 -2098 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-583 (-350 |#2|))))) (-13 (-312) (-120) (-950 (-484))) (-1155 |#1|)) (T -504)) -((-2098 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-504 *5 *6)))) (-2097 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -2136 (-350 *5)) (|:| |coeff| (-350 *5)))) (-5 *1 (-504 *4 *5)) (-5 *3 (-350 *5)))) (-2096 (*1 *2 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-312) (-120) (-950 (-484)))) (-5 *1 (-504 *3 *4)))) (-3812 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4)) (-5 *2 (-519 (-350 *5))) (-5 *1 (-504 *4 *5)) (-5 *3 (-350 *5))))) -((-2099 (((-3 (-484) "failed") |#1|) 14 T ELT)) (-3259 (((-85) |#1|) 13 T ELT)) (-3255 (((-484) |#1|) 9 T ELT))) -(((-505 |#1|) (-10 -7 (-15 -3255 ((-484) |#1|)) (-15 -3259 ((-85) |#1|)) (-15 -2099 ((-3 (-484) "failed") |#1|))) (-950 (-484))) (T -505)) -((-2099 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2)))) (-3259 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-505 *3)) (-4 *3 (-950 (-484))))) (-3255 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2))))) -((-2102 (((-3 (-2 (|:| |mainpart| (-350 (-857 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 (-857 |#1|))) (|:| |logand| (-350 (-857 |#1|))))))) #1="failed") (-350 (-857 |#1|)) (-1090) (-583 (-350 (-857 |#1|)))) 48 T ELT)) (-2100 (((-519 (-350 (-857 |#1|))) (-350 (-857 |#1|)) (-1090)) 28 T ELT)) (-2101 (((-3 (-350 (-857 |#1|)) #1#) (-350 (-857 |#1|)) (-1090)) 23 T ELT)) (-2103 (((-3 (-2 (|:| -2136 (-350 (-857 |#1|))) (|:| |coeff| (-350 (-857 |#1|)))) #1#) (-350 (-857 |#1|)) (-1090) (-350 (-857 |#1|))) 35 T ELT))) -(((-506 |#1|) (-10 -7 (-15 -2100 ((-519 (-350 (-857 |#1|))) (-350 (-857 |#1|)) (-1090))) (-15 -2101 ((-3 (-350 (-857 |#1|)) #1="failed") (-350 (-857 |#1|)) (-1090))) (-15 -2102 ((-3 (-2 (|:| |mainpart| (-350 (-857 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 (-857 |#1|))) (|:| |logand| (-350 (-857 |#1|))))))) #1#) (-350 (-857 |#1|)) (-1090) (-583 (-350 (-857 |#1|))))) (-15 -2103 ((-3 (-2 (|:| -2136 (-350 (-857 |#1|))) (|:| |coeff| (-350 (-857 |#1|)))) #1#) (-350 (-857 |#1|)) (-1090) (-350 (-857 |#1|))))) (-13 (-495) (-950 (-484)) (-120))) (T -506)) -((-2103 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)) (-120))) (-5 *2 (-2 (|:| -2136 (-350 (-857 *5))) (|:| |coeff| (-350 (-857 *5))))) (-5 *1 (-506 *5)) (-5 *3 (-350 (-857 *5))))) (-2102 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-583 (-350 (-857 *6)))) (-5 *3 (-350 (-857 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-506 *6)))) (-2101 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-350 (-857 *4))) (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)) (-120))) (-5 *1 (-506 *4)))) (-2100 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)) (-120))) (-5 *2 (-519 (-350 (-857 *5)))) (-5 *1 (-506 *5)) (-5 *3 (-350 (-857 *5)))))) -((-2568 (((-85) $ $) 77 T ELT)) (-3188 (((-85) $) 49 T ELT)) (-2604 ((|#1| $) 39 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) 81 T ELT)) (-3492 (($ $) 142 T ELT)) (-3639 (($ $) 120 T ELT)) (-2483 ((|#1| $) 37 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $) NIL T ELT)) (-3490 (($ $) 144 T ELT)) (-3638 (($ $) 116 T ELT)) (-3494 (($ $) 146 T ELT)) (-3637 (($ $) 124 T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) 95 T ELT)) (-3156 (((-484) $) 97 T ELT)) (-3467 (((-3 $ #1#) $) 80 T ELT)) (-2059 (($ |#1| |#1|) 35 T ELT)) (-3186 (((-85) $) 44 T ELT)) (-3627 (($) 106 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 56 T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-3187 (((-85) $) 46 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3942 (($ $) 108 T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2060 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-350 (-484))) 94 T ELT)) (-2058 ((|#1| $) 36 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) 83 T ELT) (($ (-583 $)) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) 82 T ELT)) (-3943 (($ $) 110 T ELT)) (-3495 (($ $) 150 T ELT)) (-3636 (($ $) 122 T ELT)) (-3493 (($ $) 152 T ELT)) (-3635 (($ $) 126 T ELT)) (-3491 (($ $) 148 T ELT)) (-3634 (($ $) 118 T ELT)) (-2057 (((-85) $ |#1|) 42 T ELT)) (-3946 (((-772) $) 102 T ELT) (($ (-484)) 85 T ELT) (($ $) NIL T ELT) (($ (-484)) 85 T ELT)) (-3126 (((-694)) 104 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 164 T ELT)) (-3486 (($ $) 132 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3496 (($ $) 162 T ELT)) (-3484 (($ $) 128 T ELT)) (-3500 (($ $) 160 T ELT)) (-3488 (($ $) 140 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 158 T ELT)) (-3489 (($ $) 138 T ELT)) (-3499 (($ $) 156 T ELT)) (-3487 (($ $) 134 T ELT)) (-3497 (($ $) 154 T ELT)) (-3485 (($ $) 130 T ELT)) (-2660 (($) 30 T CONST)) (-2666 (($) 10 T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 50 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 48 T ELT)) (-3837 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3839 (($ $ $) 53 T ELT)) (** (($ $ (-830)) 73 T ELT) (($ $ (-694)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-350 (-484))) 166 T ELT)) (* (($ (-830) $) 67 T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 62 T ELT))) -(((-507 |#1|) (-493 |#1|) (-13 (-347) (-1115))) (T -507)) -NIL -((-2704 (((-3 (-583 (-1085 (-484))) "failed") (-583 (-1085 (-484))) (-1085 (-484))) 27 T ELT))) -(((-508) (-10 -7 (-15 -2704 ((-3 (-583 (-1085 (-484))) "failed") (-583 (-1085 (-484))) (-1085 (-484)))))) (T -508)) -((-2704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1085 (-484)))) (-5 *3 (-1085 (-484))) (-5 *1 (-508))))) -((-2104 (((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-1090)) 19 T ELT)) (-2107 (((-583 (-550 |#2|)) (-583 |#2|) (-1090)) 23 T ELT)) (-3234 (((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-583 (-550 |#2|))) 11 T ELT)) (-2108 ((|#2| |#2| (-1090)) 59 (|has| |#1| (-495)) ELT)) (-2109 ((|#2| |#2| (-1090)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-392))) ELT)) (-2106 (((-550 |#2|) (-550 |#2|) (-583 (-550 |#2|)) (-1090)) 25 T ELT)) (-2105 (((-550 |#2|) (-583 (-550 |#2|))) 24 T ELT)) (-2110 (((-519 |#2|) |#2| (-1090) (-1 (-519 |#2|) |#2| (-1090)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-569)) (|has| |#2| (-950 (-1090))) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-392)) (|has| |#1| (-796 (-484)))) ELT))) -(((-509 |#1| |#2|) (-10 -7 (-15 -2104 ((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-1090))) (-15 -2105 ((-550 |#2|) (-583 (-550 |#2|)))) (-15 -2106 ((-550 |#2|) (-550 |#2|) (-583 (-550 |#2|)) (-1090))) (-15 -3234 ((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-583 (-550 |#2|)))) (-15 -2107 ((-583 (-550 |#2|)) (-583 |#2|) (-1090))) (IF (|has| |#1| (-495)) (-15 -2108 (|#2| |#2| (-1090))) |%noBranch|) (IF (|has| |#1| (-392)) (IF (|has| |#2| (-239)) (PROGN (-15 -2109 (|#2| |#2| (-1090))) (IF (|has| |#1| (-553 (-800 (-484)))) (IF (|has| |#1| (-796 (-484))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-950 (-1090))) (-15 -2110 ((-519 |#2|) |#2| (-1090) (-1 (-519 |#2|) |#2| (-1090)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1013) (-364 |#1|)) (T -509)) -((-2110 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-519 *3) *3 (-1090))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1090))) (-4 *3 (-239)) (-4 *3 (-569)) (-4 *3 (-950 *4)) (-4 *3 (-364 *7)) (-5 *4 (-1090)) (-4 *7 (-553 (-800 (-484)))) (-4 *7 (-392)) (-4 *7 (-796 (-484))) (-4 *7 (-1013)) (-5 *2 (-519 *3)) (-5 *1 (-509 *7 *3)))) (-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-392)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) (-4 *2 (-239)) (-4 *2 (-364 *4)))) (-2108 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) (-4 *2 (-364 *4)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1090)) (-4 *6 (-364 *5)) (-4 *5 (-1013)) (-5 *2 (-583 (-550 *6))) (-5 *1 (-509 *5 *6)))) (-3234 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-550 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1013)) (-5 *1 (-509 *3 *4)))) (-2106 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-550 *6))) (-5 *4 (-1090)) (-5 *2 (-550 *6)) (-4 *6 (-364 *5)) (-4 *5 (-1013)) (-5 *1 (-509 *5 *6)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-583 (-550 *5))) (-4 *4 (-1013)) (-5 *2 (-550 *5)) (-5 *1 (-509 *4 *5)) (-4 *5 (-364 *4)))) (-2104 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-550 *5))) (-5 *3 (-1090)) (-4 *5 (-364 *4)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *5))))) -((-2113 (((-2 (|:| |answer| (-519 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) #1="failed") (-484) |#1| |#1|)) 199 T ELT)) (-2116 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-583 (-350 |#2|))) 174 T ELT)) (-2119 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-583 (-350 |#2|))) 171 T ELT)) (-2120 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2111 (((-2 (|:| |answer| (-519 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2118 (((-3 (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|)) 202 T ELT)) (-2114 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|)) 205 T ELT)) (-2122 (((-2 (|:| |ir| (-519 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2123 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2117 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-583 (-350 |#2|))) 178 T ELT)) (-2121 (((-3 (-562 |#1| |#2|) #1#) (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|)) 166 T ELT)) (-2112 (((-2 (|:| |answer| (-519 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|)) 189 T ELT)) (-2115 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-350 |#2|)) 210 T ELT))) -(((-510 |#1| |#2|) (-10 -7 (-15 -2111 ((-2 (|:| |answer| (-519 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2112 ((-2 (|:| |answer| (-519 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|))) (-15 -2113 ((-2 (|:| |answer| (-519 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) #1#) (-484) |#1| |#1|))) (-15 -2114 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|))) (-15 -2115 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-350 |#2|))) (-15 -2116 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-583 (-350 |#2|)))) (-15 -2117 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-583 (-350 |#2|)))) (-15 -2118 ((-3 (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|))) (-15 -2119 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-583 (-350 |#2|)))) (-15 -2120 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2121 ((-3 (-562 |#1| |#2|) #1#) (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3137 |#1|) (|:| |sol?| (-85))) (-484) |#1|))) (-15 -2122 ((-2 (|:| |ir| (-519 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|))) (-15 -2123 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-312) (-1155 |#1|)) (T -510)) -((-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-510 *5 *3)))) (-2122 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |ir| (-519 (-350 *6))) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-510 *5 *6)) (-5 *3 (-350 *6)))) (-2121 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-562 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3137 *4) (|:| |sol?| (-85))) (-484) *4)) (-4 *4 (-312)) (-4 *5 (-1155 *4)) (-5 *1 (-510 *4 *5)))) (-2120 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-312)) (-5 *1 (-510 *4 *2)) (-4 *2 (-1155 *4)))) (-2119 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-350 *7))) (-4 *7 (-1155 *6)) (-5 *3 (-350 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *7)))) (-2118 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -2136 (-350 *6)) (|:| |coeff| (-350 *6)))) (-5 *1 (-510 *5 *6)) (-5 *3 (-350 *6)))) (-2117 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3137 *7) (|:| |sol?| (-85))) (-484) *7)) (-5 *6 (-583 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1155 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-510 *7 *8)))) (-2116 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2136 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-583 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1155 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-510 *7 *8)))) (-2115 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3137 *6) (|:| |sol?| (-85))) (-484) *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2136 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7)))) (-2114 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2136 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-484) *6 *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7)))) (-2112 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3137 *6) (|:| |sol?| (-85))) (-484) *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7)))) (-2111 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7))))) -((-2124 (((-3 |#2| "failed") |#2| (-1090) (-1090)) 10 T ELT))) -(((-511 |#1| |#2|) (-10 -7 (-15 -2124 ((-3 |#2| "failed") |#2| (-1090) (-1090)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-871) (-1053) (-29 |#1|))) (T -511)) -((-2124 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-511 *4 *2)) (-4 *2 (-13 (-1115) (-871) (-1053) (-29 *4)))))) -((-2555 (((-632 (-1138)) $ (-1138)) 27 T ELT)) (-2556 (((-632 (-488)) $ (-488)) 26 T ELT)) (-2554 (((-694) $ (-102)) 28 T ELT)) (-2557 (((-632 (-101)) $ (-101)) 25 T ELT)) (-2000 (((-632 (-1138)) $) 12 T ELT)) (-1996 (((-632 (-1136)) $) 8 T ELT)) (-1998 (((-632 (-1135)) $) 10 T ELT)) (-2001 (((-632 (-488)) $) 13 T ELT)) (-1997 (((-632 (-486)) $) 9 T ELT)) (-1999 (((-632 (-485)) $) 11 T ELT)) (-1995 (((-694) $ (-102)) 7 T ELT)) (-2002 (((-632 (-101)) $) 14 T ELT)) (-1700 (($ $) 6 T ELT))) -(((-512) (-113)) (T -512)) -NIL -(-13 (-465) (-770)) -(((-147) . T) ((-465) . T) ((-770) . T)) -((-2555 (((-632 (-1138)) $ (-1138)) NIL T ELT)) (-2556 (((-632 (-488)) $ (-488)) NIL T ELT)) (-2554 (((-694) $ (-102)) NIL T ELT)) (-2557 (((-632 (-101)) $ (-101)) NIL T ELT)) (-2000 (((-632 (-1138)) $) NIL T ELT)) (-1996 (((-632 (-1136)) $) NIL T ELT)) (-1998 (((-632 (-1135)) $) NIL T ELT)) (-2001 (((-632 (-488)) $) NIL T ELT)) (-1997 (((-632 (-486)) $) NIL T ELT)) (-1999 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-694) $ (-102)) NIL T ELT)) (-2002 (((-632 (-101)) $) NIL T ELT)) (-2558 (((-85) $) NIL T ELT)) (-2125 (($ (-338)) 14 T ELT) (($ (-1073)) 16 T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1700 (($ $) NIL T ELT))) -(((-513) (-13 (-512) (-552 (-772)) (-10 -8 (-15 -2125 ($ (-338))) (-15 -2125 ($ (-1073))) (-15 -2558 ((-85) $))))) (T -513)) -((-2125 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-513)))) (-2125 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-513)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-513))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3460 (($) 7 T CONST)) (-3242 (((-1073) $) NIL T ELT)) (-2128 (($) 6 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 15 T ELT)) (-2126 (($) 9 T CONST)) (-2127 (($) 8 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 11 T ELT))) -(((-514) (-13 (-1013) (-10 -8 (-15 -2128 ($) -3952) (-15 -3460 ($) -3952) (-15 -2127 ($) -3952) (-15 -2126 ($) -3952)))) (T -514)) -((-2128 (*1 *1) (-5 *1 (-514))) (-3460 (*1 *1) (-5 *1 (-514))) (-2127 (*1 *1) (-5 *1 (-514))) (-2126 (*1 *1) (-5 *1 (-514)))) -((-2568 (((-85) $ $) NIL T ELT)) (-2129 (((-632 $) (-431)) 23 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2131 (($ (-1073)) 16 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 33 T ELT)) (-2130 (((-166 4 (-101)) $) 24 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 26 T ELT))) -(((-515) (-13 (-1013) (-10 -8 (-15 -2131 ($ (-1073))) (-15 -2130 ((-166 4 (-101)) $)) (-15 -2129 ((-632 $) (-431)))))) (T -515)) -((-2131 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-515)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-515)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-431)) (-5 *2 (-632 (-515))) (-5 *1 (-515))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $ (-484)) 73 T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2611 (($ (-1085 (-484)) (-484)) 79 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 64 T ELT)) (-2612 (($ $) 43 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3772 (((-694) $) 16 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2614 (((-484)) 37 T ELT)) (-2613 (((-484) $) 41 T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3769 (($ $ (-484)) 24 T ELT)) (-3466 (((-3 $ #1#) $ $) 70 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) 17 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 71 T ELT)) (-2615 (((-1069 (-484)) $) 19 T ELT)) (-2891 (($ $) 26 T ELT)) (-3946 (((-772) $) 100 T ELT) (($ (-484)) 59 T ELT) (($ $) NIL T ELT)) (-3126 (((-694)) 15 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3770 (((-484) $ (-484)) 46 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 44 T CONST)) (-2666 (($) 21 T CONST)) (-3056 (((-85) $ $) 51 T ELT)) (-3837 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3839 (($ $ $) 57 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 60 T ELT) (($ $ $) 61 T ELT))) -(((-516 |#1| |#2|) (-779 |#1|) (-484) (-85)) (T -516)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 30 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-694)) NIL T ELT)) (-3330 (($ $ (-830)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 59 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 $ #1#) $) 95 T ELT)) (-3156 (($ $) 94 T ELT)) (-1792 (($ (-1179 $)) 93 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 47 T ELT)) (-2994 (($) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) 61 T ELT)) (-1680 (((-85) $) NIL T ELT)) (-1764 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) 49 (|has| $ (-320)) ELT)) (-2011 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3132 (($ $ (-830)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3445 (((-632 $) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 $) $ (-830)) NIL (|has| $ (-320)) ELT) (((-1085 $) $) 104 T ELT)) (-2010 (((-830) $) 67 T ELT)) (-1627 (((-1085 $) $) NIL (|has| $ (-320)) ELT)) (-1626 (((-3 (-1085 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1085 $) $) NIL (|has| $ (-320)) ELT)) (-1628 (($ $ (-1085 $)) NIL (|has| $ (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL T CONST)) (-2400 (($ (-830)) 60 T ELT)) (-3931 (((-85) $) 87 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) 28 (|has| $ (-320)) ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) 54 T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-830)) 86 T ELT) (((-743 (-830))) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1765 (((-3 (-694) #1#) $ $) NIL T ELT) (((-694) $) NIL T ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3948 (((-830) $) 85 T ELT) (((-743 (-830)) $) NIL T ELT)) (-3185 (((-1085 $)) 102 T ELT)) (-1674 (($) 66 T ELT)) (-1629 (($) 50 (|has| $ (-320)) ELT)) (-3224 (((-630 $) (-1179 $)) NIL T ELT) (((-1179 $) $) 91 T ELT)) (-3972 (((-484) $) 42 T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) 45 T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT)) (-2702 (((-632 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3126 (((-694)) 51 T CONST)) (-1265 (((-85) $ $) 107 T ELT)) (-2012 (((-1179 $) (-830)) 97 T ELT) (((-1179 $)) 96 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2660 (($) 31 T CONST)) (-2666 (($) 27 T CONST)) (-3928 (($ $ (-694)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 34 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT))) -(((-517 |#1|) (-13 (-299) (-280 $) (-553 (-484))) (-830)) (T -517)) -NIL -((-2132 (((-1185) (-1073)) 10 T ELT))) -(((-518) (-10 -7 (-15 -2132 ((-1185) (-1073))))) (T -518)) -((-2132 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-518))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 77 T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-2136 ((|#1| $) 30 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2134 (((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2137 (($ |#1| (-583 (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2135 (((-583 (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) $) 31 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2832 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1090)) 49 (|has| |#1| (-950 (-1090))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2133 (((-85) $) 35 T ELT)) (-3758 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1090)) 90 (|has| |#1| (-809 (-1090))) ELT)) (-3946 (((-772) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 18 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 86 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 16 T ELT) (($ (-350 (-484)) $) 41 T ELT) (($ $ (-350 (-484))) NIL T ELT))) -(((-519 |#1|) (-13 (-654 (-350 (-484))) (-950 |#1|) (-10 -8 (-15 -2137 ($ |#1| (-583 (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2136 (|#1| $)) (-15 -2135 ((-583 (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) $)) (-15 -2134 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2133 ((-85) $)) (-15 -2832 ($ |#1| |#1|)) (-15 -3758 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-809 (-1090))) (-15 -3758 (|#1| $ (-1090))) |%noBranch|) (IF (|has| |#1| (-950 (-1090))) (-15 -2832 ($ |#1| (-1090))) |%noBranch|))) (-312)) (T -519)) -((-2137 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 *2)) (|:| |logand| (-1085 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) (-5 *1 (-519 *2)))) (-2136 (*1 *2 *1) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 *3)) (|:| |logand| (-1085 *3))))) (-5 *1 (-519 *3)) (-4 *3 (-312)))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-519 *3)) (-4 *3 (-312)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-519 *3)) (-4 *3 (-312)))) (-2832 (*1 *1 *2 *2) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312)))) (-3758 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-519 *2)) (-4 *2 (-312)))) (-3758 (*1 *2 *1 *3) (-12 (-4 *2 (-312)) (-4 *2 (-809 *3)) (-5 *1 (-519 *2)) (-5 *3 (-1090)))) (-2832 (*1 *1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *1 (-519 *2)) (-4 *2 (-950 *3)) (-4 *2 (-312))))) -((-3958 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-519 |#2|) (-1 |#2| |#1|) (-519 |#1|)) 30 T ELT))) -(((-520 |#1| |#2|) (-10 -7 (-15 -3958 ((-519 |#2|) (-1 |#2| |#1|) (-519 |#1|))) (-15 -3958 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3958 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3958 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-312) (-312)) (T -520)) -((-3958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-520 *5 *6)))) (-3958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-520 *5 *2)))) (-3958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2136 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| -2136 *6) (|:| |coeff| *6))) (-5 *1 (-520 *5 *6)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-519 *5)) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-519 *6)) (-5 *1 (-520 *5 *6))))) -((-3418 (((-519 |#2|) (-519 |#2|)) 42 T ELT)) (-3963 (((-583 |#2|) (-519 |#2|)) 44 T ELT)) (-2148 ((|#2| (-519 |#2|)) 50 T ELT))) -(((-521 |#1| |#2|) (-10 -7 (-15 -3418 ((-519 |#2|) (-519 |#2|))) (-15 -3963 ((-583 |#2|) (-519 |#2|))) (-15 -2148 (|#2| (-519 |#2|)))) (-13 (-392) (-950 (-484)) (-580 (-484))) (-13 (-29 |#1|) (-1115))) (T -521)) -((-2148 (*1 *2 *3) (-12 (-5 *3 (-519 *2)) (-4 *2 (-13 (-29 *4) (-1115))) (-5 *1 (-521 *4 *2)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-519 *5)) (-4 *5 (-13 (-29 *4) (-1115))) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 *5)) (-5 *1 (-521 *4 *5)))) (-3418 (*1 *2 *2) (-12 (-5 *2 (-519 *4)) (-4 *4 (-13 (-29 *3) (-1115))) (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-521 *3 *4))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2140 (($ (-446) (-532)) 14 T ELT)) (-2138 (($ (-446) (-532) $) 16 T ELT)) (-2139 (($ (-446) (-532)) 15 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-1095)) 7 T ELT) (((-1095) $) 6 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-522) (-13 (-1013) (-430 (-1095)) (-10 -8 (-15 -2140 ($ (-446) (-532))) (-15 -2139 ($ (-446) (-532))) (-15 -2138 ($ (-446) (-532) $))))) (T -522)) -((-2140 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))) (-2139 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))) (-2138 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522))))) -((-2144 (((-85) |#1|) 16 T ELT)) (-2145 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2142 (((-2 (|:| -2694 |#1|) (|:| -2401 (-694))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-694)) 18 T ELT)) (-2141 (((-85) |#1| (-694)) 19 T ELT)) (-2146 ((|#1| |#1|) 41 T ELT)) (-2143 ((|#1| |#1| (-694)) 44 T ELT))) -(((-523 |#1|) (-10 -7 (-15 -2141 ((-85) |#1| (-694))) (-15 -2142 ((-3 |#1| #1="failed") |#1| (-694))) (-15 -2142 ((-2 (|:| -2694 |#1|) (|:| -2401 (-694))) |#1|)) (-15 -2143 (|#1| |#1| (-694))) (-15 -2144 ((-85) |#1|)) (-15 -2145 ((-3 |#1| #1#) |#1|)) (-15 -2146 (|#1| |#1|))) (-483)) (T -523)) -((-2146 (*1 *2 *2) (-12 (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2145 (*1 *2 *2) (|partial| -12 (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2144 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483)))) (-2143 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2142 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2694 *3) (|:| -2401 (-694)))) (-5 *1 (-523 *3)) (-4 *3 (-483)))) (-2142 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2141 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483))))) -((-2147 (((-1085 |#1|) (-830)) 44 T ELT))) -(((-524 |#1|) (-10 -7 (-15 -2147 ((-1085 |#1|) (-830)))) (-299)) (T -524)) -((-2147 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-524 *4)) (-4 *4 (-299))))) -((-3418 (((-519 (-350 (-857 |#1|))) (-519 (-350 (-857 |#1|)))) 27 T ELT)) (-3812 (((-3 (-265 |#1|) (-583 (-265 |#1|))) (-350 (-857 |#1|)) (-1090)) 33 (|has| |#1| (-120)) ELT)) (-3963 (((-583 (-265 |#1|)) (-519 (-350 (-857 |#1|)))) 19 T ELT)) (-2149 (((-265 |#1|) (-350 (-857 |#1|)) (-1090)) 31 (|has| |#1| (-120)) ELT)) (-2148 (((-265 |#1|) (-519 (-350 (-857 |#1|)))) 21 T ELT))) -(((-525 |#1|) (-10 -7 (-15 -3418 ((-519 (-350 (-857 |#1|))) (-519 (-350 (-857 |#1|))))) (-15 -3963 ((-583 (-265 |#1|)) (-519 (-350 (-857 |#1|))))) (-15 -2148 ((-265 |#1|) (-519 (-350 (-857 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3812 ((-3 (-265 |#1|) (-583 (-265 |#1|))) (-350 (-857 |#1|)) (-1090))) (-15 -2149 ((-265 |#1|) (-350 (-857 |#1|)) (-1090)))) |%noBranch|)) (-13 (-392) (-950 (-484)) (-580 (-484)))) (T -525)) -((-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-120)) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *5)) (-5 *1 (-525 *5)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-120)) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (-265 *5) (-583 (-265 *5)))) (-5 *1 (-525 *5)))) (-2148 (*1 *2 *3) (-12 (-5 *3 (-519 (-350 (-857 *4)))) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *4)) (-5 *1 (-525 *4)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-519 (-350 (-857 *4)))) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 (-265 *4))) (-5 *1 (-525 *4)))) (-3418 (*1 *2 *2) (-12 (-5 *2 (-519 (-350 (-857 *3)))) (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-525 *3))))) -((-2151 (((-583 (-630 (-484))) (-583 (-830)) (-583 (-813 (-484)))) 80 T ELT) (((-583 (-630 (-484))) (-583 (-830))) 81 T ELT) (((-630 (-484)) (-583 (-830)) (-813 (-484))) 74 T ELT)) (-2150 (((-694) (-583 (-830))) 71 T ELT))) -(((-526) (-10 -7 (-15 -2150 ((-694) (-583 (-830)))) (-15 -2151 ((-630 (-484)) (-583 (-830)) (-813 (-484)))) (-15 -2151 ((-583 (-630 (-484))) (-583 (-830)))) (-15 -2151 ((-583 (-630 (-484))) (-583 (-830)) (-583 (-813 (-484))))))) (T -526)) -((-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-813 (-484)))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526)))) (-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-813 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-526)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-694)) (-5 *1 (-526))))) -((-3213 (((-583 |#5|) |#5| (-85)) 97 T ELT)) (-2152 (((-85) |#5| (-583 |#5|)) 34 T ELT))) -(((-527 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3213 ((-583 |#5|) |#5| (-85))) (-15 -2152 ((-85) |#5| (-583 |#5|)))) (-13 (-258) (-120)) (-717) (-756) (-977 |#1| |#2| |#3|) (-1020 |#1| |#2| |#3| |#4|)) (T -527)) -((-2152 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1020 *5 *6 *7 *8)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-527 *5 *6 *7 *8 *3)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-527 *5 *6 *7 *8 *3)) (-4 *3 (-1020 *5 *6 *7 *8))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3528 (((-1049) $) 12 T ELT)) (-3529 (((-1049) $) 10 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-528) (-13 (-995) (-10 -8 (-15 -3529 ((-1049) $)) (-15 -3528 ((-1049) $))))) (T -528)) -((-3529 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-528)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-528))))) -((-3532 (((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2| (-1001 |#4|)) 32 T ELT))) -(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3532 ((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2| (-1001 |#4|))) (-15 -3532 ((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2|))) (-717) (-756) (-495) (-861 |#3| |#1| |#2|)) (T -529)) -((-3532 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) (-3532 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1001 *3)) (-4 *3 (-861 *7 *6 *4)) (-4 *6 (-717)) (-4 *4 (-756)) (-4 *7 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *6 *4 *7 *3))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 71 T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3831 (((-1090) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3771 (($ $ (-484)) 58 T ELT) (($ $ (-484) (-484)) 59 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 65 T ELT)) (-2183 (($ $) 109 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2181 (((-772) (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) (-939 (-750 (-484))) (-1090) |#1| (-350 (-484))) 232 T ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 36 T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2892 (((-85) $) NIL T ELT)) (-3772 (((-484) $) 63 T ELT) (((-484) $ (-484)) 64 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3777 (($ $ (-830)) 83 T ELT)) (-3815 (($ (-1 |#1| (-484)) $) 80 T ELT)) (-3937 (((-85) $) 26 T ELT)) (-2893 (($ |#1| (-484)) 22 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2187 (($ (-939 (-750 (-484))) (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 13 T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3812 (($ $) 120 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2184 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2182 (($ $ $) 116 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2185 (((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 15 T ELT)) (-2186 (((-939 (-750 (-484))) $) 14 T ELT)) (-3769 (($ $ (-484)) 47 T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT)) (-3800 ((|#1| $ (-484)) 62 T ELT) (($ $ $) NIL (|has| (-484) (-1025)) ELT)) (-3758 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3948 (((-484) $) NIL T ELT)) (-2891 (($ $) 48 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) 29 T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3677 ((|#1| $ (-484)) 61 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 39 T CONST)) (-3773 ((|#1| $) NIL T ELT)) (-2162 (($ $) 192 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2174 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2164 (($ $) 189 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2176 (($ $) 164 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2160 (($ $) 194 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2172 (($ $) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2179 (($ $ (-350 (-484))) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2180 (($ $ |#1|) 128 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2177 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2178 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2159 (($ $) 195 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2171 (($ $) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2161 (($ $) 193 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2173 (($ $) 169 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2163 (($ $) 190 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2175 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2156 (($ $) 200 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2168 (($ $) 180 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2158 (($ $) 197 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2170 (($ $) 176 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2154 (($ $) 204 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2166 (($ $) 184 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2153 (($ $) 206 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2165 (($ $) 186 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2155 (($ $) 202 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2167 (($ $) 182 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2157 (($ $) 199 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2169 (($ $) 178 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3770 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 30 T CONST)) (-2666 (($) 40 T CONST)) (-2669 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3056 (((-85) $ $) 73 T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3839 (($ $ $) 88 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 111 T ELT)) (* (($ (-830) $) 98 T ELT) (($ (-694) $) 96 T ELT) (($ (-484) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-530 |#1|) (-13 (-1158 |#1| (-484)) (-10 -8 (-15 -2187 ($ (-939 (-750 (-484))) (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))))) (-15 -2186 ((-939 (-750 (-484))) $)) (-15 -2185 ((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $)) (-15 -3818 ($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))))) (-15 -3937 ((-85) $)) (-15 -3815 ($ (-1 |#1| (-484)) $)) (-15 -2184 ((-3 $ "failed") $ $ (-85))) (-15 -2183 ($ $)) (-15 -2182 ($ $ $)) (-15 -2181 ((-772) (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) (-939 (-750 (-484))) (-1090) |#1| (-350 (-484)))) (IF (|has| |#1| (-38 (-350 (-484)))) (PROGN (-15 -3812 ($ $)) (-15 -2180 ($ $ |#1|)) (-15 -2179 ($ $ (-350 (-484)))) (-15 -2178 ($ $)) (-15 -2177 ($ $)) (-15 -2176 ($ $)) (-15 -2175 ($ $)) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $))) |%noBranch|))) (-961)) (T -530)) -((-3937 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-2187 (*1 *1 *2 *3) (-12 (-5 *2 (-939 (-750 (-484)))) (-5 *3 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-530 *4)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-939 (-750 (-484)))) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-3818 (*1 *1 *2) (-12 (-5 *2 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-530 *3)))) (-3815 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-530 *3)))) (-2184 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-2183 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961)))) (-2182 (*1 *1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961)))) (-2181 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *6)))) (-5 *4 (-939 (-750 (-484)))) (-5 *5 (-1090)) (-5 *7 (-350 (-484))) (-4 *6 (-961)) (-5 *2 (-772)) (-5 *1 (-530 *6)))) (-3812 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2180 (*1 *1 *1 *2) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2179 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-530 *3)) (-4 *3 (-38 *2)) (-4 *3 (-961)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 62 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3818 (($ (-1069 |#1|)) 9 T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ #1#) $) 44 T ELT)) (-2892 (((-85) $) 56 T ELT)) (-3772 (((-694) $) 61 T ELT) (((-694) $ (-694)) 60 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) 46 (|has| |#1| (-495)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3817 (((-1069 |#1|) $) 25 T ELT)) (-3126 (((-694)) 55 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 10 T CONST)) (-2666 (($) 14 T CONST)) (-3056 (((-85) $ $) 24 T ELT)) (-3837 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3839 (($ $ $) 27 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 53 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-484)) 38 T ELT))) -(((-531 |#1|) (-13 (-961) (-82 |#1| |#1|) (-10 -8 (-15 -3817 ((-1069 |#1|) $)) (-15 -3818 ($ (-1069 |#1|))) (-15 -2892 ((-85) $)) (-15 -3772 ((-694) $)) (-15 -3772 ((-694) $ (-694))) (-15 * ($ $ (-484))) (IF (|has| |#1| (-495)) (-6 (-495)) |%noBranch|))) (-961)) (T -531)) -((-3817 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (-3818 (*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-531 *3)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (-3772 (*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-531 *3)) (-4 *3 (-961))))) -((-2568 (((-85) $ $) NIL T ELT)) (-2190 (($) 8 T CONST)) (-2191 (($) 7 T CONST)) (-2188 (($ $ (-583 $)) 16 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2192 (($) 6 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-1095)) 15 T ELT) (((-1095) $) 10 T ELT)) (-2189 (($) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-532) (-13 (-1013) (-430 (-1095)) (-10 -8 (-15 -2192 ($) -3952) (-15 -2191 ($) -3952) (-15 -2190 ($) -3952) (-15 -2189 ($) -3952) (-15 -2188 ($ $ (-583 $)))))) (T -532)) -((-2192 (*1 *1) (-5 *1 (-532))) (-2191 (*1 *1) (-5 *1 (-532))) (-2190 (*1 *1) (-5 *1 (-532))) (-2189 (*1 *1) (-5 *1 (-532))) (-2188 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-532))) (-5 *1 (-532))))) -((-3958 (((-536 |#2|) (-1 |#2| |#1|) (-536 |#1|)) 15 T ELT))) -(((-533 |#1| |#2|) (-13 (-1129) (-10 -7 (-15 -3958 ((-536 |#2|) (-1 |#2| |#1|) (-536 |#1|))))) (-1129) (-1129)) (T -533)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-536 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-536 *6)) (-5 *1 (-533 *5 *6))))) -((-3958 (((-1069 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-1069 |#2|)) 20 T ELT) (((-1069 |#3|) (-1 |#3| |#1| |#2|) (-1069 |#1|) (-536 |#2|)) 19 T ELT) (((-536 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-536 |#2|)) 18 T ELT))) -(((-534 |#1| |#2| |#3|) (-10 -7 (-15 -3958 ((-536 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-536 |#2|))) (-15 -3958 ((-1069 |#3|) (-1 |#3| |#1| |#2|) (-1069 |#1|) (-536 |#2|))) (-15 -3958 ((-1069 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-1069 |#2|)))) (-1129) (-1129) (-1129)) (T -534)) -((-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-1069 *7)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8)) (-5 *1 (-534 *6 *7 *8)))) (-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1069 *6)) (-5 *5 (-536 *7)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8)) (-5 *1 (-534 *6 *7 *8)))) (-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-536 *7)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-536 *8)) (-5 *1 (-534 *6 *7 *8))))) -((-2197 ((|#3| |#3| (-583 (-550 |#3|)) (-583 (-1090))) 57 T ELT)) (-2196 (((-142 |#2|) |#3|) 122 T ELT)) (-2193 ((|#3| (-142 |#2|)) 46 T ELT)) (-2194 ((|#2| |#3|) 21 T ELT)) (-2195 ((|#3| |#2|) 35 T ELT))) -(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -2193 (|#3| (-142 |#2|))) (-15 -2194 (|#2| |#3|)) (-15 -2195 (|#3| |#2|)) (-15 -2196 ((-142 |#2|) |#3|)) (-15 -2197 (|#3| |#3| (-583 (-550 |#3|)) (-583 (-1090))))) (-495) (-13 (-364 |#1|) (-915) (-1115)) (-13 (-364 (-142 |#1|)) (-915) (-1115))) (T -535)) -((-2197 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-583 (-1090))) (-4 *2 (-13 (-364 (-142 *5)) (-915) (-1115))) (-4 *5 (-495)) (-5 *1 (-535 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-915) (-1115))))) (-2196 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-142 *5)) (-5 *1 (-535 *4 *5 *3)) (-4 *5 (-13 (-364 *4) (-915) (-1115))) (-4 *3 (-13 (-364 (-142 *4)) (-915) (-1115))))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *2 (-13 (-364 (-142 *4)) (-915) (-1115))) (-5 *1 (-535 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-915) (-1115))))) (-2194 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *2 (-13 (-364 *4) (-915) (-1115))) (-5 *1 (-535 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-915) (-1115))))) (-2193 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-915) (-1115))) (-4 *4 (-495)) (-4 *2 (-13 (-364 (-142 *4)) (-915) (-1115))) (-5 *1 (-535 *4 *5 *2))))) -((-3710 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3457 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3456 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3455 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3530 (((-1069 |#1|) $) 20 T ELT)) (-3946 (((-772) $) 25 T ELT))) -(((-536 |#1|) (-13 (-552 (-772)) (-10 -8 (-15 -3958 ($ (-1 |#1| |#1|) $)) (-15 -3456 ($ (-1 (-85) |#1|) $)) (-15 -3455 ($ (-1 (-85) |#1|) $)) (-15 -3710 ($ (-1 (-85) |#1|) $)) (-15 -3457 ($ (-1 |#1| |#1|) |#1|)) (-15 -3530 ((-1069 |#1|) $)))) (-1129)) (T -536)) -((-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3)))) (-3456 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3)))) (-3455 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3)))) (-3710 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3)))) (-3457 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-536 *3)) (-4 *3 (-1129))))) -((-2198 (((-1185) $ |#2| |#2|) 35 T ELT)) (-2200 ((|#2| $) 23 T ELT)) (-2201 ((|#2| $) 21 T ELT)) (-3326 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3958 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3801 ((|#3| $) 26 T ELT)) (-2199 (($ $ |#3|) 33 T ELT)) (-2202 (((-85) |#3| $) 17 T ELT)) (-2205 (((-583 |#3|) $) 15 T ELT)) (-3800 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) -(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -2198 ((-1185) |#1| |#2| |#2|)) (-15 -2199 (|#1| |#1| |#3|)) (-15 -3801 (|#3| |#1|)) (-15 -2200 (|#2| |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -2202 ((-85) |#3| |#1|)) (-15 -2205 ((-583 |#3|) |#1|)) (-15 -3800 (|#3| |#1| |#2|)) (-15 -3800 (|#3| |#1| |#2| |#3|)) (-15 -3326 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3958 (|#1| (-1 |#3| |#3|) |#1|))) (-538 |#2| |#3|) (-1013) (-1129)) (T -537)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-2198 (((-1185) $ |#1| |#1|) 44 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -3996)) ELT)) (-3724 (($) 7 T CONST)) (-1576 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ |#1|) 55 T ELT)) (-2889 (((-583 |#2|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2200 ((|#1| $) 47 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#2|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#2| $) 27 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT)) (-2201 ((|#1| $) 48 (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3242 (((-1073) $) 22 (|has| |#2| (-1013)) ELT)) (-2203 (((-583 |#1|) $) 50 T ELT)) (-2204 (((-85) |#1| $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#2| (-1013)) ELT)) (-3801 ((|#2| $) 46 (|has| |#1| (-756)) ELT)) (-2199 (($ $ |#2|) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#2|))) 26 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-1946 (((-694) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#2| $) 28 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-772) $) 17 (|has| |#2| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-538 |#1| |#2|) (-113) (-1013) (-1129)) (T -538)) -((-2205 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1129)) (-5 *2 (-583 *4)))) (-2204 (*1 *2 *3 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-2203 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1129)) (-5 *2 (-583 *3)))) (-2202 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-538 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1129)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1013)) (-4 *2 (-756)))) (-2200 (*1 *2 *1) (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1013)) (-4 *2 (-756)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-756)) (-4 *2 (-1129)))) (-2199 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-538 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1129)))) (-2198 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1129)) (-5 *2 (-1185))))) -(-13 (-429 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2205 ((-583 |t#2|) $)) (-15 -2204 ((-85) |t#1| $)) (-15 -2203 ((-583 |t#1|) $)) (IF (|has| |t#2| (-1013)) (IF (|has| $ (-6 -3995)) (-15 -2202 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-15 -2201 (|t#1| $)) (-15 -2200 (|t#1| $)) (-15 -3801 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3996)) (PROGN (-15 -2199 ($ $ |t#2|)) (-15 -2198 ((-1185) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| |#2| (-1013)) (|has| |#2| (-552 (-772)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-429 |#2|) . T) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-1013) |has| |#2| (-1013)) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT) (((-1130) $) 15 T ELT) (($ (-583 (-1130))) 14 T ELT)) (-2206 (((-583 (-1130)) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-539) (-13 (-995) (-552 (-1130)) (-10 -8 (-15 -3946 ($ (-583 (-1130)))) (-15 -2206 ((-583 (-1130)) $))))) (T -539)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-539)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-539))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1772 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-3223 (((-1179 (-630 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 (-630 |#1|)) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 (((-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3724 (($) NIL T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1703 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1788 (((-630 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1786 (((-630 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2404 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1900 (((-1085 (-857 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1705 (((-1085 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1790 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1723 (((-1085 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1792 (($ (-1179 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1179 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3467 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-3108 (((-830)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1708 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1789 (((-630 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1787 (((-630 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1904 (((-1085 (-857 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1085 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1791 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1085 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3800 ((|#1| $ (-484)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3224 (((-630 |#1|) (-1179 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) (-1179 $) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1179 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3972 (($ (-1179 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1892 (((-583 (-857 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-583 (-857 |#1|)) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2435 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3946 (((-772) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1707 (((-583 (-1179 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2545 (($ (-630 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2434 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2660 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 24 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-540 |#1| |#2|) (-13 (-683 |#1|) (-552 |#2|) (-10 -8 (-15 -3946 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-683 |#1|)) (T -540)) -((-3946 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-540 *3 *2)) (-4 *2 (-683 *3))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-541) (-13 (-1013) (-430 (-101)))) (T -541)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2208 (($) 10 T CONST)) (-2230 (($) 8 T CONST)) (-2207 (($) 11 T CONST)) (-2226 (($) 9 T CONST)) (-2223 (($) 12 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT))) -(((-542) (-13 (-1013) (-604) (-10 -8 (-15 -2230 ($) -3952) (-15 -2226 ($) -3952) (-15 -2208 ($) -3952) (-15 -2207 ($) -3952) (-15 -2223 ($) -3952)))) (T -542)) -((-2230 (*1 *1) (-5 *1 (-542))) (-2226 (*1 *1) (-5 *1 (-542))) (-2208 (*1 *1) (-5 *1 (-542))) (-2207 (*1 *1) (-5 *1 (-542))) (-2223 (*1 *1) (-5 *1 (-542)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2219 (($) 11 T CONST)) (-2213 (($) 17 T CONST)) (-2209 (($) 21 T CONST)) (-2211 (($) 19 T CONST)) (-2216 (($) 14 T CONST)) (-2210 (($) 20 T CONST)) (-2218 (($) 12 T CONST)) (-2217 (($) 13 T CONST)) (-2212 (($) 18 T CONST)) (-2215 (($) 15 T CONST)) (-2214 (($) 16 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-543) (-13 (-1013) (-552 (-101)) (-10 -8 (-15 -2219 ($) -3952) (-15 -2218 ($) -3952) (-15 -2217 ($) -3952) (-15 -2216 ($) -3952) (-15 -2215 ($) -3952) (-15 -2214 ($) -3952) (-15 -2213 ($) -3952) (-15 -2212 ($) -3952) (-15 -2211 ($) -3952) (-15 -2210 ($) -3952) (-15 -2209 ($) -3952)))) (T -543)) -((-2219 (*1 *1) (-5 *1 (-543))) (-2218 (*1 *1) (-5 *1 (-543))) (-2217 (*1 *1) (-5 *1 (-543))) (-2216 (*1 *1) (-5 *1 (-543))) (-2215 (*1 *1) (-5 *1 (-543))) (-2214 (*1 *1) (-5 *1 (-543))) (-2213 (*1 *1) (-5 *1 (-543))) (-2212 (*1 *1) (-5 *1 (-543))) (-2211 (*1 *1) (-5 *1 (-543))) (-2210 (*1 *1) (-5 *1 (-543))) (-2209 (*1 *1) (-5 *1 (-543)))) -((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2221 (($) 13 T CONST)) (-2220 (($) 14 T CONST)) (-2227 (($) 11 T CONST)) (-2230 (($) 8 T CONST)) (-2228 (($) 10 T CONST)) (-2229 (($) 9 T CONST)) (-2226 (($) 12 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT))) -(((-544) (-13 (-1013) (-604) (-10 -8 (-15 -2230 ($) -3952) (-15 -2229 ($) -3952) (-15 -2228 ($) -3952) (-15 -2227 ($) -3952) (-15 -2226 ($) -3952) (-15 -2221 ($) -3952) (-15 -2220 ($) -3952)))) (T -544)) -((-2230 (*1 *1) (-5 *1 (-544))) (-2229 (*1 *1) (-5 *1 (-544))) (-2228 (*1 *1) (-5 *1 (-544))) (-2227 (*1 *1) (-5 *1 (-544))) (-2226 (*1 *1) (-5 *1 (-544))) (-2221 (*1 *1) (-5 *1 (-544))) (-2220 (*1 *1) (-5 *1 (-544)))) -((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2225 (($) 13 T CONST)) (-2222 (($) 16 T CONST)) (-2227 (($) 11 T CONST)) (-2230 (($) 8 T CONST)) (-2228 (($) 10 T CONST)) (-2229 (($) 9 T CONST)) (-2224 (($) 14 T CONST)) (-2226 (($) 12 T CONST)) (-2223 (($) 15 T CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT))) -(((-545) (-13 (-1013) (-604) (-10 -8 (-15 -2230 ($) -3952) (-15 -2229 ($) -3952) (-15 -2228 ($) -3952) (-15 -2227 ($) -3952) (-15 -2226 ($) -3952) (-15 -2225 ($) -3952) (-15 -2224 ($) -3952) (-15 -2223 ($) -3952) (-15 -2222 ($) -3952)))) (T -545)) -((-2230 (*1 *1) (-5 *1 (-545))) (-2229 (*1 *1) (-5 *1 (-545))) (-2228 (*1 *1) (-5 *1 (-545))) (-2227 (*1 *1) (-5 *1 (-545))) (-2226 (*1 *1) (-5 *1 (-545))) (-2225 (*1 *1) (-5 *1 (-545))) (-2224 (*1 *1) (-5 *1 (-545))) (-2223 (*1 *1) (-5 *1 (-545))) (-2222 (*1 *1) (-5 *1 (-545)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 19 T ELT) (($ (-541)) 12 T ELT) (((-541) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-546) (-13 (-1013) (-430 (-541)) (-430 (-101)))) (T -546)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-1697 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) 40 T ELT)) (-3599 (($ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2198 (((-1185) $ (-1073) (-1073)) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ (-1073) |#1|) 50 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2231 (((-3 |#1| #1="failed") (-1073) $) 53 T ELT)) (-3724 (($) NIL T CONST)) (-1701 (($ $ (-1073)) 25 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT)) (-3405 (((-3 |#1| #1#) (-1073) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3406 (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT)) (-3842 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT)) (-1698 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1576 ((|#1| $ (-1073) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-1073)) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2271 (($ $) 55 T ELT)) (-1702 (($ (-338)) 23 T ELT) (($ (-338) (-1073)) 22 T ELT)) (-3542 (((-338) $) 41 T ELT)) (-2200 (((-1073) $) NIL (|has| (-1073) (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT) (((-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72)) ELT)) (-2201 (((-1073) $) NIL (|has| (-1073) (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2232 (((-583 (-1073)) $) 46 T ELT)) (-2233 (((-85) (-1073) $) NIL T ELT)) (-1699 (((-1073) $) 42 T ELT)) (-1274 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2203 (((-583 (-1073)) $) NIL T ELT)) (-2204 (((-85) (-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3801 ((|#1| $) NIL (|has| (-1073) (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) 44 T ELT)) (-3800 ((|#1| $ (-1073) |#1|) NIL T ELT) ((|#1| $ (-1073)) 49 T ELT)) (-1466 (($ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT) (((-694) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-553 (-473))) ELT)) (-3530 (($ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-3946 (((-772) $) 21 T ELT)) (-1700 (($ $) 26 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1276 (($ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3056 (((-85) $ $) 20 T ELT)) (-3957 (((-694) $) 48 T ELT))) -(((-547 |#1|) (-13 (-314 (-338) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) (-1107 (-1073) |#1|) (-10 -8 (-15 -2271 ($ $)))) (-1013)) (T -547)) -((-2271 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-1013))))) -((-3245 (((-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) $) 16 T ELT) (((-85) |#3| $) NIL T ELT)) (-2232 (((-583 |#2|) $) 20 T ELT)) (-2233 (((-85) |#2| $) 12 T ELT)) (-3800 ((|#3| $ |#2|) 21 T ELT) ((|#3| $ |#2| |#3|) 22 T ELT))) -(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -2232 ((-583 |#2|) |#1|)) (-15 -2233 ((-85) |#2| |#1|)) (-15 -3245 ((-85) |#3| |#1|)) (-15 -3800 (|#3| |#1| |#2| |#3|)) (-15 -3800 (|#3| |#1| |#2|)) (-15 -3245 ((-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) |#1|))) (-549 |#2| |#3|) (-1013) (-1013)) (T -548)) -NIL -((-2568 (((-85) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2198 (((-1185) $ |#1| |#1|) 98 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) 86 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3995)) ELT)) (-2231 (((-3 |#2| "failed") |#1| $) 68 T ELT)) (-3724 (($) 7 T CONST)) (-1353 (($ $) 62 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3995)) ELT) (((-3 |#2| "failed") |#1| $) 69 T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3995))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) 85 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ |#1|) 87 T ELT)) (-2889 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) 77 (|has| $ (-6 -3995)) ELT)) (-2200 ((|#1| $) 95 (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) 78 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3995))) ELT) (((-85) |#2| $) 80 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT)) (-2201 ((|#1| $) 94 (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 34 T ELT) (($ (-1 |#2| |#2|) $) 73 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 72 T ELT)) (-3242 (((-1073) $) 22 (OR (|has| |#2| (-1013)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2232 (((-583 |#1|) $) 70 T ELT)) (-2233 (((-85) |#1| $) 71 T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2203 (((-583 |#1|) $) 92 T ELT)) (-2204 (((-85) |#1| $) 91 T ELT)) (-3243 (((-1033) $) 21 (OR (|has| |#2| (-1013)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3801 ((|#2| $) 96 (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2199 (($ $ |#2|) 97 (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) 75 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 84 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 83 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 82 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) 81 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#2| $) 93 (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) 90 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#2| $ |#1|) 89 T ELT) ((|#2| $ |#1| |#2|) 88 T ELT)) (-1466 (($) 53 T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1946 (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3995))) ELT) (((-694) |#2| $) 79 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT) (((-694) (-1 (-85) |#2|) $) 76 (|has| $ (-6 -3995)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 63 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3530 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3946 (((-772) $) 17 (OR (|has| |#2| (-552 (-772))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ELT)) (-1265 (((-85) $ $) 20 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) 74 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-549 |#1| |#2|) (-113) (-1013) (-1013)) (T -549)) -((-2233 (*1 *2 *3 *1) (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-85)))) (-2232 (*1 *2 *1) (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-583 *3)))) (-3405 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-2231 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) -(-13 (-183 (-2 (|:| -3860 |t#1|) (|:| |entry| |t#2|))) (-538 |t#1| |t#2|) (-10 -8 (-15 -2233 ((-85) |t#1| $)) (-15 -2232 ((-583 |t#1|) $)) (-15 -3405 ((-3 |t#2| "failed") |t#1| $)) (-15 -2231 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-76 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-1013)) (|has| |#2| (-552 (-772)))) ((-124 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-473)) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ((-183 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-429 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-538 |#1| |#2|) . T) ((-455 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-1013) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ((-1035 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-2234 (((-3 (-1090) "failed") $) 46 T ELT)) (-1313 (((-1185) $ (-694)) 22 T ELT)) (-3419 (((-694) $) 20 T ELT)) (-3595 (((-86) $) 9 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2235 (($ (-86) (-583 |#1|) (-694)) 32 T ELT) (($ (-1090)) 33 T ELT)) (-2633 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1090)) 13 T ELT)) (-2603 (((-694) $) 17 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3972 (((-800 (-484)) $) 99 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) 106 (|has| |#1| (-553 (-800 (-330)))) ELT) (((-473) $) 92 (|has| |#1| (-553 (-473))) ELT)) (-3946 (((-772) $) 74 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2236 (((-583 |#1|) $) 19 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 51 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 53 T ELT))) -(((-550 |#1|) (-13 (-105) (-756) (-794 |#1|) (-10 -8 (-15 -3595 ((-86) $)) (-15 -2236 ((-583 |#1|) $)) (-15 -2603 ((-694) $)) (-15 -2235 ($ (-86) (-583 |#1|) (-694))) (-15 -2235 ($ (-1090))) (-15 -2234 ((-3 (-1090) "failed") $)) (-15 -2633 ((-85) $ (-86))) (-15 -2633 ((-85) $ (-1090))) (IF (|has| |#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|))) (-1013)) (T -550)) -((-3595 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2235 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-1013)) (-5 *1 (-550 *5)))) (-2235 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2234 (*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2633 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013)))) (-2633 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013))))) -((-2237 (((-550 |#2|) |#1|) 17 T ELT)) (-2238 (((-3 |#1| "failed") (-550 |#2|)) 21 T ELT))) -(((-551 |#1| |#2|) (-10 -7 (-15 -2237 ((-550 |#2|) |#1|)) (-15 -2238 ((-3 |#1| "failed") (-550 |#2|)))) (-1013) (-1013)) (T -551)) -((-2238 (*1 *2 *3) (|partial| -12 (-5 *3 (-550 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-5 *1 (-551 *2 *4)))) (-2237 (*1 *2 *3) (-12 (-5 *2 (-550 *4)) (-5 *1 (-551 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) -((-3946 ((|#1| $) 6 T ELT))) -(((-552 |#1|) (-113) (-1129)) (T -552)) -((-3946 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1129))))) -(-13 (-10 -8 (-15 -3946 (|t#1| $)))) -((-3972 ((|#1| $) 6 T ELT))) -(((-553 |#1|) (-113) (-1129)) (T -553)) -((-3972 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1129))))) -(-13 (-10 -8 (-15 -3972 (|t#1| $)))) -((-2239 (((-3 (-1085 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)) 15 T ELT) (((-3 (-1085 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 16 T ELT))) -(((-554 |#1| |#2|) (-10 -7 (-15 -2239 ((-3 (-1085 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|))) (-15 -2239 ((-3 (-1085 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)))) (-13 (-120) (-27) (-950 (-484)) (-950 (-350 (-484)))) (-1155 |#1|)) (T -554)) -((-2239 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-120) (-27) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-1085 (-350 *6))) (-5 *1 (-554 *5 *6)) (-5 *3 (-350 *6)))) (-2239 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-950 (-484)) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) (-5 *2 (-1085 (-350 *5))) (-5 *1 (-554 *4 *5)) (-5 *3 (-350 *5))))) -((-3946 (($ |#1|) 6 T ELT))) -(((-555 |#1|) (-113) (-1129)) (T -555)) -((-3946 (*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1129))))) -(-13 (-10 -8 (-15 -3946 ($ |t#1|)))) -((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-2240 (($) 11 T CONST)) (-2855 (($) 13 T CONST)) (-3136 (((-694)) 36 T ELT)) (-2994 (($) NIL T ELT)) (-2561 (($ $ $) 25 T ELT)) (-2560 (($ $) 23 T ELT)) (-2010 (((-830) $) 43 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 42 T ELT)) (-2853 (($ $ $) 26 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2854 (($) 9 T CONST)) (-2852 (($ $ $) 27 T ELT)) (-3946 (((-772) $) 34 T ELT)) (-3566 (((-85) $ (|[\|\|]| -2854)) 20 T ELT) (((-85) $ (|[\|\|]| -2240)) 22 T ELT) (((-85) $ (|[\|\|]| -2855)) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2562 (($ $ $) 24 T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3056 (((-85) $ $) 16 T ELT)) (-2312 (($ $ $) NIL T ELT))) -(((-556) (-13 (-880) (-320) (-10 -8 (-15 -2240 ($) -3952) (-15 -3566 ((-85) $ (|[\|\|]| -2854))) (-15 -3566 ((-85) $ (|[\|\|]| -2240))) (-15 -3566 ((-85) $ (|[\|\|]| -2855)))))) (T -556)) -((-2240 (*1 *1) (-5 *1 (-556))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2854)) (-5 *2 (-85)) (-5 *1 (-556)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2240)) (-5 *2 (-85)) (-5 *1 (-556)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2855)) (-5 *2 (-85)) (-5 *1 (-556))))) -((-3972 (($ |#1|) 6 T ELT))) -(((-557 |#1|) (-113) (-1129)) (T -557)) -((-3972 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1129))))) -(-13 (-10 -8 (-15 -3972 ($ |t#1|)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3623 (((-484) $) NIL (|has| |#1| (-755)) ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2998 ((|#1| $) 13 T ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2997 ((|#3| $) 15 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3126 (((-694)) 20 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) 12 T CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3949 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-558 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (-15 -3949 ($ $ |#3|)) (-15 -3949 ($ |#1| |#3|)) (-15 -2998 (|#1| $)) (-15 -2997 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-663) |#2|)) (T -558)) -((-3949 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-3949 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-558 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2997 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4))))) -((-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-559 |#1| |#2|) (-10 -7 (-15 -3946 (|#1| |#2|)) (-15 -3946 (|#1| (-484))) (-15 -3946 ((-772) |#1|))) (-560 |#2|) (-961)) (T -559)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 49 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#1| $) 50 T ELT))) -(((-560 |#1|) (-113) (-961)) (T -560)) -((-3946 (*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-961))))) -(-13 (-961) (-590 |t#1|) (-10 -8 (-15 -3946 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2241 ((|#2| |#2| (-1090) (-1090)) 16 T ELT))) -(((-561 |#1| |#2|) (-10 -7 (-15 -2241 (|#2| |#2| (-1090) (-1090)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-871) (-29 |#1|))) (T -561)) -((-2241 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1115) (-871) (-29 *4)))))) -((-2568 (((-85) $ $) 64 T ELT)) (-3188 (((-85) $) 58 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2242 ((|#1| $) 55 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3751 (((-2 (|:| -1762 $) (|:| -1761 (-350 |#2|))) (-350 |#2|)) 111 (|has| |#1| (-312)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) 27 T ELT)) (-3467 (((-3 $ #1#) $) 88 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3772 (((-484) $) 22 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) 40 T ELT)) (-2893 (($ |#1| (-484)) 24 T ELT)) (-3174 ((|#1| $) 57 T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 101 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ #1#) $ $) 93 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-694) $) 115 (|has| |#1| (-312)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 114 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3948 (((-484) $) 38 T ELT)) (-3972 (((-350 |#2|) $) 47 T ELT)) (-3946 (((-772) $) 69 T ELT) (($ (-484)) 35 T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3677 ((|#1| $ (-484)) 72 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 32 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 9 T CONST)) (-2666 (($) 14 T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3056 (((-85) $ $) 21 T ELT)) (-3837 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 90 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 49 T ELT))) -(((-562 |#1| |#2|) (-13 (-184 |#2|) (-495) (-553 (-350 |#2|)) (-355 |#1|) (-950 |#2|) (-10 -8 (-15 -3937 ((-85) $)) (-15 -3948 ((-484) $)) (-15 -3772 ((-484) $)) (-15 -3959 ($ $)) (-15 -3174 (|#1| $)) (-15 -2242 (|#1| $)) (-15 -3677 (|#1| $ (-484))) (-15 -2893 ($ |#1| (-484))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-258)) (-15 -3751 ((-2 (|:| -1762 $) (|:| -1761 (-350 |#2|))) (-350 |#2|)))) |%noBranch|))) (-495) (-1155 |#1|)) (T -562)) -((-3937 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-85)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1155 *3)))) (-3948 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1155 *3)))) (-3772 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1155 *3)))) (-3959 (*1 *1 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1155 *2)))) (-3174 (*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1155 *2)))) (-2242 (*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1155 *2)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1155 *2)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1155 *2)))) (-3751 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-495)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -1762 (-562 *4 *5)) (|:| -1761 (-350 *5)))) (-5 *1 (-562 *4 *5)) (-5 *3 (-350 *5))))) -((-3682 (((-583 |#6|) (-583 |#4|) (-85)) 54 T ELT)) (-2243 ((|#6| |#6|) 48 T ELT))) -(((-563 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2243 (|#6| |#6|)) (-15 -3682 ((-583 |#6|) (-583 |#4|) (-85)))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|) (-1020 |#1| |#2| |#3| |#4|)) (T -563)) -((-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *10)) (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *10 (-1020 *5 *6 *7 *8)))) (-2243 (*1 *2 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *2 (-1020 *3 *4 *5 *6))))) -((-2244 (((-85) |#3| (-694) (-583 |#3|)) 30 T ELT)) (-2245 (((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1085 |#3|)))) "failed") |#3| (-583 (-1085 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1779 (-583 (-2 (|:| |irr| |#4|) (|:| -2395 (-484)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)) 68 T ELT))) -(((-564 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2244 ((-85) |#3| (-694) (-583 |#3|))) (-15 -2245 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1085 |#3|)))) "failed") |#3| (-583 (-1085 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1779 (-583 (-2 (|:| |irr| |#4|) (|:| -2395 (-484)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) (-756) (-717) (-258) (-861 |#3| |#2| |#1|)) (T -564)) -((-2245 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1779 (-583 (-2 (|:| |irr| *10) (|:| -2395 (-484))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-756)) (-4 *3 (-258)) (-4 *10 (-861 *3 *9 *8)) (-4 *9 (-717)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1085 *3))))) (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-583 (-1085 *3))))) (-2244 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-694)) (-5 *5 (-583 *3)) (-4 *3 (-258)) (-4 *6 (-756)) (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-564 *6 *7 *3 *8)) (-4 *8 (-861 *3 *7 *6))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3528 (((-1049) $) 12 T ELT)) (-3529 (((-1049) $) 10 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-565) (-13 (-995) (-10 -8 (-15 -3529 ((-1049) $)) (-15 -3528 ((-1049) $))))) (T -565)) -((-3529 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-565)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-565))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3934 (((-583 |#1|) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3936 (($ $) 77 T ELT)) (-3942 (((-606 |#1| |#2|) $) 60 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 81 T ELT)) (-2246 (((-583 (-249 |#2|)) $ $) 42 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3943 (($ (-606 |#1| |#2|)) 56 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3946 (((-772) $) 66 T ELT) (((-1195 |#1| |#2|) $) NIL T ELT) (((-1200 |#1| |#2|) $) 74 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2666 (($) 61 T CONST)) (-2247 (((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2248 (((-583 (-606 |#1| |#2|)) (-583 |#1|)) 73 T ELT)) (-2665 (((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3056 (((-85) $ $) 62 T ELT)) (-3949 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 52 T ELT))) -(((-566 |#1| |#2| |#3|) (-13 (-413) (-10 -8 (-15 -3943 ($ (-606 |#1| |#2|))) (-15 -3942 ((-606 |#1| |#2|) $)) (-15 -2665 ((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $)) (-15 -3946 ((-1195 |#1| |#2|) $)) (-15 -3946 ((-1200 |#1| |#2|) $)) (-15 -3936 ($ $)) (-15 -3934 ((-583 |#1|) $)) (-15 -2248 ((-583 (-606 |#1| |#2|)) (-583 |#1|))) (-15 -2247 ((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $)) (-15 -2246 ((-583 (-249 |#2|)) $ $)))) (-756) (-13 (-146) (-654 (-350 (-484)))) (-830)) (T -566)) -((-3943 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-5 *1 (-566 *3 *4 *5)) (-14 *5 (-830)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-803 *3)) (|:| |c| *4)))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1200 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) (-3936 (*1 *1 *1) (-12 (-5 *1 (-566 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-13 (-146) (-654 (-350 (-484))))) (-14 *4 (-830)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-606 *4 *5))) (-5 *1 (-566 *4 *5 *6)) (-4 *5 (-13 (-146) (-654 (-350 (-484))))) (-14 *6 (-830)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-614 *3)) (|:| |c| *4)))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) (-2246 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-249 *4))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830))))) -((-3682 (((-583 (-1060 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)) 103 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85)) 77 T ELT)) (-2249 (((-85) (-583 (-703 |#1| (-773 |#2|)))) 26 T ELT)) (-2253 (((-583 (-1060 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)) 102 T ELT)) (-2252 (((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85)) 76 T ELT)) (-2251 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|)))) 30 T ELT)) (-2250 (((-3 (-583 (-703 |#1| (-773 |#2|))) "failed") (-583 (-703 |#1| (-773 |#2|)))) 29 T ELT))) -(((-567 |#1| |#2|) (-10 -7 (-15 -2249 ((-85) (-583 (-703 |#1| (-773 |#2|))))) (-15 -2250 ((-3 (-583 (-703 |#1| (-773 |#2|))) "failed") (-583 (-703 |#1| (-773 |#2|))))) (-15 -2251 ((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))))) (-15 -2252 ((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -2253 ((-583 (-1060 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -3682 ((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -3682 ((-583 (-1060 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)))) (-392) (-583 (-1090))) (T -567)) -((-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-1060 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) (-5 *1 (-567 *5 *6)))) (-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-1060 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) (-5 *1 (-567 *5 *6)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-392)) (-14 *4 (-583 (-1090))) (-5 *1 (-567 *3 *4)))) (-2250 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-392)) (-14 *4 (-583 (-1090))) (-5 *1 (-567 *3 *4)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-583 (-703 *4 (-773 *5)))) (-4 *4 (-392)) (-14 *5 (-583 (-1090))) (-5 *2 (-85)) (-5 *1 (-567 *4 *5))))) -((-3595 (((-86) (-86)) 88 T ELT)) (-2257 ((|#2| |#2|) 28 T ELT)) (-2832 ((|#2| |#2| (-1004 |#2|)) 84 T ELT) ((|#2| |#2| (-1090)) 50 T ELT)) (-2255 ((|#2| |#2|) 27 T ELT)) (-2256 ((|#2| |#2|) 29 T ELT)) (-2254 (((-85) (-86)) 33 T ELT)) (-2259 ((|#2| |#2|) 24 T ELT)) (-2260 ((|#2| |#2|) 26 T ELT)) (-2258 ((|#2| |#2|) 25 T ELT))) -(((-568 |#1| |#2|) (-10 -7 (-15 -2254 ((-85) (-86))) (-15 -3595 ((-86) (-86))) (-15 -2260 (|#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -2832 (|#2| |#2| (-1090))) (-15 -2832 (|#2| |#2| (-1004 |#2|)))) (-495) (-13 (-364 |#1|) (-915) (-1115))) (T -568)) -((-2832 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-364 *4) (-915) (-1115))) (-4 *4 (-495)) (-5 *1 (-568 *4 *2)))) (-2832 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-568 *4 *2)) (-4 *2 (-13 (-364 *4) (-915) (-1115))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-364 *3) (-915) (-1115))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-364 *3) (-915) (-1115))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-364 *3) (-915) (-1115))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-364 *3) (-915) (-1115))))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-364 *3) (-915) (-1115))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-364 *3) (-915) (-1115))))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-568 *3 *4)) (-4 *4 (-13 (-364 *3) (-915) (-1115))))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-568 *4 *5)) (-4 *5 (-13 (-364 *4) (-915) (-1115)))))) -((-3492 (($ $) 38 T ELT)) (-3639 (($ $) 21 T ELT)) (-3490 (($ $) 37 T ELT)) (-3638 (($ $) 22 T ELT)) (-3494 (($ $) 36 T ELT)) (-3637 (($ $) 23 T ELT)) (-3627 (($) 48 T ELT)) (-3942 (($ $) 45 T ELT)) (-2257 (($ $) 17 T ELT)) (-2832 (($ $ (-1004 $)) 7 T ELT) (($ $ (-1090)) 6 T ELT)) (-3943 (($ $) 46 T ELT)) (-2255 (($ $) 15 T ELT)) (-2256 (($ $) 16 T ELT)) (-3495 (($ $) 35 T ELT)) (-3636 (($ $) 24 T ELT)) (-3493 (($ $) 34 T ELT)) (-3635 (($ $) 25 T ELT)) (-3491 (($ $) 33 T ELT)) (-3634 (($ $) 26 T ELT)) (-3498 (($ $) 44 T ELT)) (-3486 (($ $) 32 T ELT)) (-3496 (($ $) 43 T ELT)) (-3484 (($ $) 31 T ELT)) (-3500 (($ $) 42 T ELT)) (-3488 (($ $) 30 T ELT)) (-3501 (($ $) 41 T ELT)) (-3489 (($ $) 29 T ELT)) (-3499 (($ $) 40 T ELT)) (-3487 (($ $) 28 T ELT)) (-3497 (($ $) 39 T ELT)) (-3485 (($ $) 27 T ELT)) (-2259 (($ $) 19 T ELT)) (-2260 (($ $) 20 T ELT)) (-2258 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) -(((-569) (-113)) (T -569)) -((-2260 (*1 *1 *1) (-4 *1 (-569))) (-2259 (*1 *1 *1) (-4 *1 (-569))) (-2258 (*1 *1 *1) (-4 *1 (-569))) (-2257 (*1 *1 *1) (-4 *1 (-569))) (-2256 (*1 *1 *1) (-4 *1 (-569))) (-2255 (*1 *1 *1) (-4 *1 (-569)))) -(-13 (-871) (-1115) (-10 -8 (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $)) (-15 -2255 ($ $)))) -(((-35) . T) ((-66) . T) ((-239) . T) ((-433) . T) ((-871) . T) ((-1115) . T) ((-1118) . T)) -((-2270 (((-421 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2263 (((-583 (-206 |#1| |#2|)) (-583 (-421 |#1| |#2|))) 90 T ELT)) (-2264 (((-421 |#1| |#2|) (-583 (-421 |#1| |#2|)) (-773 |#1|)) 92 T ELT) (((-421 |#1| |#2|) (-583 (-421 |#1| |#2|)) (-583 (-421 |#1| |#2|)) (-773 |#1|)) 91 T ELT)) (-2261 (((-2 (|:| |gblist| (-583 (-206 |#1| |#2|))) (|:| |gvlist| (-583 (-484)))) (-583 (-421 |#1| |#2|))) 136 T ELT)) (-2268 (((-583 (-421 |#1| |#2|)) (-773 |#1|) (-583 (-421 |#1| |#2|)) (-583 (-421 |#1| |#2|))) 105 T ELT)) (-2262 (((-2 (|:| |glbase| (-583 (-206 |#1| |#2|))) (|:| |glval| (-583 (-484)))) (-583 (-206 |#1| |#2|))) 147 T ELT)) (-2266 (((-1179 |#2|) (-421 |#1| |#2|) (-583 (-421 |#1| |#2|))) 70 T ELT)) (-2265 (((-583 (-421 |#1| |#2|)) (-583 (-421 |#1| |#2|))) 47 T ELT)) (-2269 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|))) 61 T ELT)) (-2267 (((-206 |#1| |#2|) (-583 |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|))) 113 T ELT))) -(((-570 |#1| |#2|) (-10 -7 (-15 -2261 ((-2 (|:| |gblist| (-583 (-206 |#1| |#2|))) (|:| |gvlist| (-583 (-484)))) (-583 (-421 |#1| |#2|)))) (-15 -2262 ((-2 (|:| |glbase| (-583 (-206 |#1| |#2|))) (|:| |glval| (-583 (-484)))) (-583 (-206 |#1| |#2|)))) (-15 -2263 ((-583 (-206 |#1| |#2|)) (-583 (-421 |#1| |#2|)))) (-15 -2264 ((-421 |#1| |#2|) (-583 (-421 |#1| |#2|)) (-583 (-421 |#1| |#2|)) (-773 |#1|))) (-15 -2264 ((-421 |#1| |#2|) (-583 (-421 |#1| |#2|)) (-773 |#1|))) (-15 -2265 ((-583 (-421 |#1| |#2|)) (-583 (-421 |#1| |#2|)))) (-15 -2266 ((-1179 |#2|) (-421 |#1| |#2|) (-583 (-421 |#1| |#2|)))) (-15 -2267 ((-206 |#1| |#2|) (-583 |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|)))) (-15 -2268 ((-583 (-421 |#1| |#2|)) (-773 |#1|) (-583 (-421 |#1| |#2|)) (-583 (-421 |#1| |#2|)))) (-15 -2269 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|)))) (-15 -2270 ((-421 |#1| |#2|) (-206 |#1| |#2|)))) (-583 (-1090)) (-392)) (T -570)) -((-2270 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *2 (-421 *4 *5)) (-5 *1 (-570 *4 *5)))) (-2269 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *1 (-570 *4 *5)))) (-2268 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-421 *4 *5))) (-5 *3 (-773 *4)) (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *1 (-570 *4 *5)))) (-2267 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-206 *5 *6))) (-4 *6 (-392)) (-5 *2 (-206 *5 *6)) (-14 *5 (-583 (-1090))) (-5 *1 (-570 *5 *6)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-421 *5 *6))) (-5 *3 (-421 *5 *6)) (-14 *5 (-583 (-1090))) (-4 *6 (-392)) (-5 *2 (-1179 *6)) (-5 *1 (-570 *5 *6)))) (-2265 (*1 *2 *2) (-12 (-5 *2 (-583 (-421 *3 *4))) (-14 *3 (-583 (-1090))) (-4 *4 (-392)) (-5 *1 (-570 *3 *4)))) (-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-421 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1090))) (-5 *2 (-421 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-392)))) (-2264 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-421 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1090))) (-5 *2 (-421 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-392)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-583 (-421 *4 *5))) (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *2 (-583 (-206 *4 *5))) (-5 *1 (-570 *4 *5)))) (-2262 (*1 *2 *3) (-12 (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *2 (-2 (|:| |glbase| (-583 (-206 *4 *5))) (|:| |glval| (-583 (-484))))) (-5 *1 (-570 *4 *5)) (-5 *3 (-583 (-206 *4 *5))))) (-2261 (*1 *2 *3) (-12 (-5 *3 (-583 (-421 *4 *5))) (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *2 (-2 (|:| |gblist| (-583 (-206 *4 *5))) (|:| |gvlist| (-583 (-484))))) (-5 *1 (-570 *4 *5))))) -((-2568 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL T ELT)) (-2198 (((-1185) $ (-1073) (-1073)) NIL (|has| $ (-6 -3996)) ELT)) (-3788 (((-51) $ (-1073) (-51)) NIL (|has| $ (-6 -3996)) ELT) (((-51) $ (-1090) (-51)) 16 T ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2231 (((-3 (-51) #1="failed") (-1073) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1013))) ELT)) (-3405 (($ (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 (-51) #1#) (-1073) $) NIL T ELT)) (-3406 (($ (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $ (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (((-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $ (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 (((-51) $ (-1073) (-51)) NIL (|has| $ (-6 -3996)) ELT)) (-3112 (((-51) $ (-1073)) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-51)) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2271 (($ $) NIL T ELT)) (-2200 (((-1073) $) NIL (|has| (-1073) (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-51)) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-72))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-51) (-72))) ELT) (((-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-72)) ELT)) (-2201 (((-1073) $) NIL (|has| (-1073) (-756)) ELT)) (-3326 (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2272 (($ (-338)) 8 T ELT)) (-3242 (((-1073) $) NIL (OR (|has| (-51) (-1013)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1013))) ELT)) (-2232 (((-583 (-1073)) $) NIL T ELT)) (-2233 (((-85) (-1073) $) NIL T ELT)) (-1274 (((-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL T ELT)) (-2203 (((-583 (-1073)) $) NIL T ELT)) (-2204 (((-85) (-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-51) (-1013)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1013))) ELT)) (-3801 (((-51) $) NIL (|has| (-1073) (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2199 (($ $ (-51)) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-249 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-583 (-249 (-51)))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-51) (-1013))) ELT)) (-2205 (((-583 (-51)) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 (((-51) $ (-1073)) NIL T ELT) (((-51) $ (-1073) (-51)) NIL T ELT) (((-51) $ (-1090)) 14 T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL T ELT)) (-1946 (((-694) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-72))) ELT) (((-694) (-51) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-51) (-72))) ELT) (((-694) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-553 (-473))) ELT)) (-3530 (($ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL T ELT)) (-3946 (((-772) $) NIL (OR (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-552 (-772))) (|has| (-51) (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (-72))) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-571) (-13 (-1107 (-1073) (-51)) (-241 (-1090) (-51)) (-10 -8 (-15 -2272 ($ (-338))) (-15 -2271 ($ $)) (-15 -3788 ((-51) $ (-1090) (-51)))))) (T -571)) -((-2272 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-571)))) (-2271 (*1 *1 *1) (-5 *1 (-571))) (-3788 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1090)) (-5 *1 (-571))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1772 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-3223 (((-1179 (-630 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 (-630 |#1|)) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 (((-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3724 (($) NIL T CONST)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1703 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1788 (((-630 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1786 (((-630 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2404 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1900 (((-1085 (-857 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1705 (((-1085 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1790 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1723 (((-1085 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1792 (($ (-1179 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1179 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3467 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-3108 (((-830)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1708 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1789 (((-630 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1787 (((-630 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1904 (((-1085 (-857 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1085 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1791 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1085 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3800 ((|#1| $ (-484)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3224 (((-630 |#1|) (-1179 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) (-1179 $) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1179 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3972 (($ (-1179 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1892 (((-583 (-857 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-583 (-857 |#1|)) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2435 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3946 (((-772) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1707 (((-583 (-1179 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2545 (($ (-630 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2434 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2660 (($) 18 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 19 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-572 |#1| |#2|) (-13 (-683 |#1|) (-552 |#2|) (-10 -8 (-15 -3946 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-683 |#1|)) (T -572)) -((-3946 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-572 *3 *2)) (-4 *2 (-683 *3))))) -((-3949 (($ $ |#2|) 10 T ELT))) -(((-573 |#1| |#2|) (-10 -7 (-15 -3949 (|#1| |#1| |#2|))) (-574 |#2|) (-146)) (T -573)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3530 (($ $ $) 40 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 39 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-574 |#1|) (-113) (-146)) (T -574)) -((-3530 (*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)))) (-3949 (*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) -(-13 (-654 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3530 ($ $ $)) (IF (|has| |t#1| (-312)) (-15 -3949 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-2274 (((-3 (-750 |#2|) #1="failed") |#2| (-249 |#2|) (-1073)) 105 T ELT) (((-3 (-750 |#2|) (-2 (|:| |leftHandLimit| (-3 (-750 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-750 |#2|) #1#))) #1#) |#2| (-249 (-750 |#2|))) 130 T ELT)) (-2273 (((-3 (-743 |#2|) #1#) |#2| (-249 (-743 |#2|))) 135 T ELT))) -(((-575 |#1| |#2|) (-10 -7 (-15 -2274 ((-3 (-750 |#2|) (-2 (|:| |leftHandLimit| (-3 (-750 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-750 |#2|) #1#))) #1#) |#2| (-249 (-750 |#2|)))) (-15 -2273 ((-3 (-743 |#2|) #1#) |#2| (-249 (-743 |#2|)))) (-15 -2274 ((-3 (-750 |#2|) #1#) |#2| (-249 |#2|) (-1073)))) (-13 (-392) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|))) (T -575)) -((-2274 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1073)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-750 *3)) (-5 *1 (-575 *6 *3)))) (-2273 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-249 (-743 *3))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-743 *3)) (-5 *1 (-575 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-750 *3))) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (-750 *3) (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-750 *3) #1#))) "failed")) (-5 *1 (-575 *5 *3))))) -((-2274 (((-3 (-750 (-350 (-857 |#1|))) #1="failed") (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|))) (-1073)) 86 T ELT) (((-3 (-750 (-350 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1#))) #1#) (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|)))) 20 T ELT) (((-3 (-750 (-350 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1#))) #1#) (-350 (-857 |#1|)) (-249 (-750 (-857 |#1|)))) 35 T ELT)) (-2273 (((-743 (-350 (-857 |#1|))) (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|)))) 23 T ELT) (((-743 (-350 (-857 |#1|))) (-350 (-857 |#1|)) (-249 (-743 (-857 |#1|)))) 43 T ELT))) -(((-576 |#1|) (-10 -7 (-15 -2274 ((-3 (-750 (-350 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1#))) #1#) (-350 (-857 |#1|)) (-249 (-750 (-857 |#1|))))) (-15 -2274 ((-3 (-750 (-350 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1#))) #1#) (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|))))) (-15 -2273 ((-743 (-350 (-857 |#1|))) (-350 (-857 |#1|)) (-249 (-743 (-857 |#1|))))) (-15 -2273 ((-743 (-350 (-857 |#1|))) (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|))))) (-15 -2274 ((-3 (-750 (-350 (-857 |#1|))) #1#) (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|))) (-1073)))) (-392)) (T -576)) -((-2274 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 (-350 (-857 *6)))) (-5 *5 (-1073)) (-5 *3 (-350 (-857 *6))) (-4 *6 (-392)) (-5 *2 (-750 *3)) (-5 *1 (-576 *6)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-857 *5)))) (-5 *3 (-350 (-857 *5))) (-4 *5 (-392)) (-5 *2 (-743 *3)) (-5 *1 (-576 *5)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-743 (-857 *5)))) (-4 *5 (-392)) (-5 *2 (-743 (-350 (-857 *5)))) (-5 *1 (-576 *5)) (-5 *3 (-350 (-857 *5))))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-857 *5)))) (-5 *3 (-350 (-857 *5))) (-4 *5 (-392)) (-5 *2 (-3 (-750 *3) (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-750 *3) #1#))) #2="failed")) (-5 *1 (-576 *5)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-750 (-857 *5)))) (-4 *5 (-392)) (-5 *2 (-3 (-750 (-350 (-857 *5))) (-2 (|:| |leftHandLimit| (-3 (-750 (-350 (-857 *5))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-350 (-857 *5))) #1#))) #2#)) (-5 *1 (-576 *5)) (-5 *3 (-350 (-857 *5)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 11 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2851 (($ (-168 |#1|)) 12 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-773 |#1|)) 7 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) -(((-577 |#1|) (-13 (-752) (-555 (-773 |#1|)) (-10 -8 (-15 -2851 ($ (-168 |#1|))))) (-583 (-1090))) (T -577)) -((-2851 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-583 (-1090))) (-5 *1 (-577 *3))))) -((-2277 (((-3 (-1179 (-350 |#1|)) #1="failed") (-1179 |#2|) |#2|) 64 (-2560 (|has| |#1| (-312))) ELT) (((-3 (-1179 |#1|) #1#) (-1179 |#2|) |#2|) 49 (|has| |#1| (-312)) ELT)) (-2275 (((-85) (-1179 |#2|)) 33 T ELT)) (-2276 (((-3 (-1179 |#1|) #1#) (-1179 |#2|)) 40 T ELT))) -(((-578 |#1| |#2|) (-10 -7 (-15 -2275 ((-85) (-1179 |#2|))) (-15 -2276 ((-3 (-1179 |#1|) #1="failed") (-1179 |#2|))) (IF (|has| |#1| (-312)) (-15 -2277 ((-3 (-1179 |#1|) #1#) (-1179 |#2|) |#2|)) (-15 -2277 ((-3 (-1179 (-350 |#1|)) #1#) (-1179 |#2|) |#2|)))) (-495) (-13 (-961) (-580 |#1|))) (T -578)) -((-2277 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 *5))) (-2560 (-4 *5 (-312))) (-4 *5 (-495)) (-5 *2 (-1179 (-350 *5))) (-5 *1 (-578 *5 *4)))) (-2277 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 *5))) (-4 *5 (-312)) (-4 *5 (-495)) (-5 *2 (-1179 *5)) (-5 *1 (-578 *5 *4)))) (-2276 (*1 *2 *3) (|partial| -12 (-5 *3 (-1179 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-495)) (-5 *2 (-1179 *4)) (-5 *1 (-578 *4 *5)))) (-2275 (*1 *2 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-578 *4 *5))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3774 (((-583 (-453 |#1| (-577 |#2|))) $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2893 (($ |#1| (-577 |#2|)) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2278 (($ (-583 |#1|)) 25 T ELT)) (-1983 (((-577 |#2|) $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3911 (((-107)) 16 T ELT)) (-3224 (((-1179 |#1|) $) 44 T ELT)) (-3972 (($ (-583 (-453 |#1| (-577 |#2|)))) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-577 |#2|)) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 20 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 17 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-579 |#1| |#2|) (-13 (-1187 |#1|) (-555 (-577 |#2|)) (-449 |#1| (-577 |#2|)) (-10 -8 (-15 -2278 ($ (-583 |#1|))) (-15 -3224 ((-1179 |#1|) $)))) (-312) (-583 (-1090))) (T -579)) -((-2278 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-579 *3 *4)) (-14 *4 (-583 (-1090))))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-579 *3 *4)) (-4 *3 (-312)) (-14 *4 (-583 (-1090)))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-2279 (((-630 |#1|) (-630 $)) 36 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 35 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2280 (((-630 |#1|) (-1179 $)) 38 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 37 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT))) -(((-580 |#1|) (-113) (-961)) (T -580)) -((-2280 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))) (-2280 (*1 *2 *3 *1) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |mat| (-630 *4)) (|:| |vec| (-1179 *4)))))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *1)) (-5 *4 (-1179 *1)) (-4 *1 (-580 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1179 *5))))))) -(-13 (-590 |t#1|) (-10 -8 (-15 -2280 ((-630 |t#1|) (-1179 $))) (-15 -2280 ((-2 (|:| |mat| (-630 |t#1|)) (|:| |vec| (-1179 |t#1|))) (-1179 $) $)) (-15 -2279 ((-630 |t#1|) (-630 $))) (-15 -2279 ((-2 (|:| |mat| (-630 |t#1|)) (|:| |vec| (-1179 |t#1|))) (-630 $) (-1179 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1214 (((-85) $ $) NIL T ELT)) (-2281 (($ (-583 |#1|)) 23 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#1| $ (-579 |#1| |#2|)) 46 T ELT)) (-3911 (((-107)) 13 T ELT)) (-3224 (((-1179 |#1|) $) 42 T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 18 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 14 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-581 |#1| |#2|) (-13 (-1187 |#1|) (-241 (-579 |#1| |#2|) |#1|) (-10 -8 (-15 -2281 ($ (-583 |#1|))) (-15 -3224 ((-1179 |#1|) $)))) (-312) (-583 (-1090))) (T -581)) -((-2281 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-581 *3 *4)) (-14 *4 (-583 (-1090))))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-312)) (-14 *4 (-583 (-1090)))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) -(((-582 |#1|) (-113) (-1025)) (T -582)) -NIL -(-13 (-588 |t#1|) (-963 |t#1|)) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 |#1|) . T) ((-963 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) NIL T ELT)) (-3795 ((|#1| $) NIL T ELT)) (-3797 (($ $) NIL T ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-484)) 68 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) $) NIL (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1730 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-756))) ELT) (($ (-1 (-85) |#1| |#1|) $) 65 (|has| $ (-6 -3996)) ELT)) (-2909 (($ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3442 (((-85) $ (-694)) NIL T ELT)) (-3025 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 26 (|has| $ (-6 -3996)) ELT)) (-3786 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3789 ((|#1| $ |#1|) 24 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -3996)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -3996)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3996)) ELT)) (-2284 (($ $ $) 74 (|has| |#1| (-1013)) ELT)) (-2283 (($ $ $) 75 (|has| |#1| (-1013)) ELT)) (-2282 (($ $ $) 79 (|has| |#1| (-1013)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3796 ((|#1| $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2297 (($ $) 31 (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) 32 T ELT)) (-3799 (($ $) 21 T ELT) (($ $ (-694)) 35 T ELT)) (-2368 (($ $) 63 (|has| |#1| (-1013)) ELT)) (-1353 (($ $) 73 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3406 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3443 (((-85) $) NIL T ELT)) (-3419 (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) (-1 (-85) |#1|) $) NIL T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2286 (((-85) $) 9 T ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-2287 (($) 7 T CONST)) (-3614 (($ (-694) |#1|) NIL T ELT)) (-3719 (((-85) $ (-694)) NIL T ELT)) (-2200 (((-484) $) 34 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 66 T ELT)) (-3518 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) 61 (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3534 (($ |#1|) NIL T ELT)) (-3716 (((-85) $ (-694)) NIL T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3527 (((-85) $) NIL T ELT)) (-3242 (((-1073) $) 59 (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3609 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) 16 T ELT) (($ $ (-694)) NIL T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3444 (((-85) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 15 T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3403 (((-85) $) 20 T ELT)) (-3565 (($) 19 T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT) ((|#1| $ (-484)) 78 T ELT) ((|#1| $ (-484) |#1|) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-1571 (($ $ (-1146 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2305 (($ $ (-1146 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-3633 (((-85) $) NIL T ELT)) (-3792 (($ $) NIL T ELT)) (-3790 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-3793 (((-694) $) NIL T ELT)) (-3794 (($ $) 40 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 36 T ELT)) (-3972 (((-473) $) 87 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 29 T ELT)) (-3461 (($ |#1| $) 10 T ELT)) (-3791 (($ $ $) 62 T ELT) (($ $ |#1|) NIL T ELT)) (-3802 (($ $ $) 72 T ELT) (($ |#1| $) 14 T ELT) (($ (-583 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3946 (((-772) $) 51 (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2285 (($ $ $) 11 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 55 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3957 (((-694) $) 13 T ELT))) -(((-583 |#1|) (-13 (-608 |#1|) (-10 -8 (-15 -2287 ($) -3952) (-15 -2286 ((-85) $)) (-15 -3461 ($ |#1| $)) (-15 -2285 ($ $ $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -2284 ($ $ $)) (-15 -2283 ($ $ $)) (-15 -2282 ($ $ $))) |%noBranch|))) (-1129)) (T -583)) -((-2287 (*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1129)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-583 *3)) (-4 *3 (-1129)))) (-3461 (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1129)))) (-2285 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1129)))) (-2284 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1129)))) (-2283 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1129)))) (-2282 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1129))))) -((-3841 (((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 16 T ELT)) (-3842 ((|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 18 T ELT)) (-3958 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 13 T ELT))) -(((-584 |#1| |#2|) (-10 -7 (-15 -3841 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3842 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3958 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1129) (-1129)) (T -584)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-583 *6)) (-5 *1 (-584 *5 *6)))) (-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-584 *5 *2)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-5 *2 (-583 *5)) (-5 *1 (-584 *6 *5))))) -((-3422 ((|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|) 17 T ELT) ((|#2| (-583 |#1|) (-583 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|)) 12 T ELT))) -(((-585 |#1| |#2|) (-10 -7 (-15 -3422 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -3422 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -3422 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -3422 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -3422 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -3422 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) (-1013) (-1129)) (T -585)) -((-3422 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1013)) (-4 *2 (-1129)) (-5 *1 (-585 *5 *2)))) (-3422 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013)) (-4 *6 (-1129)) (-5 *1 (-585 *5 *6)))) (-3422 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1129)) (-5 *1 (-585 *5 *2)))) (-3422 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1013)) (-4 *5 (-1129)) (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5)))) (-3422 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1129)) (-5 *1 (-585 *5 *2)))) (-3422 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013)) (-4 *6 (-1129)) (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6))))) -((-3958 (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 21 T ELT))) -(((-586 |#1| |#2| |#3|) (-10 -7 (-15 -3958 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) (-1129) (-1129) (-1129)) (T -586)) -((-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-583 *8)) (-5 *1 (-586 *6 *7 *8))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 11 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-587 |#1|) (-13 (-995) (-552 |#1|)) (-1013)) (T -587)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) -(((-588 |#1|) (-113) (-1025)) (T -588)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1025))))) -(-13 (-1013) (-10 -8 (-15 * ($ |t#1| $)))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2288 (($ |#1| |#1| $) 45 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2368 (($ $) 47 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) 58 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2889 (((-583 |#1|) $) 9 (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 49 T ELT)) (-3609 (($ |#1| $) 30 T ELT) (($ |#1| $ (-694)) 44 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1275 ((|#1| $) 52 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 23 T ELT)) (-3565 (($) 29 T ELT)) (-2289 (((-85) $) 56 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1946 (-694)))) $) 69 T ELT)) (-1466 (($) 26 T ELT) (($ (-583 |#1|)) 19 T ELT)) (-1946 (((-694) |#1| $) 65 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) 20 T ELT)) (-3972 (((-473) $) 36 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) NIL T ELT)) (-3946 (((-772) $) 14 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 24 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 17 T ELT))) -(((-589 |#1|) (-13 (-634 |#1|) (-318 |#1|) (-10 -8 (-15 -2289 ((-85) $)) (-15 -2288 ($ |#1| |#1| $)))) (-1013)) (T -589)) -((-2289 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-589 *3)) (-4 *3 (-1013)))) (-2288 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1013))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT))) -(((-590 |#1|) (-113) (-970)) (T -590)) -NIL -(-13 (-21) (-588 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694) $) 17 T ELT)) (-2295 (($ $ |#1|) 68 T ELT)) (-2297 (($ $) 39 T ELT)) (-2298 (($ $) 37 T ELT)) (-3157 (((-3 |#1| "failed") $) 60 T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-2293 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3533 (((-772) $ (-1 (-772) (-772) (-772)) (-1 (-772) (-772) (-772)) (-484)) 55 T ELT)) (-2299 ((|#1| $ (-484)) 35 T ELT)) (-2300 ((|#2| $ (-484)) 34 T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2291 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2296 (($) 13 T ELT)) (-2302 (($ |#1| |#2|) 24 T ELT)) (-2301 (($ (-583 (-2 (|:| |gen| |#1|) (|:| -3943 |#2|)))) 25 T ELT)) (-2303 (((-583 (-2 (|:| |gen| |#1|) (|:| -3943 |#2|))) $) 14 T ELT)) (-2294 (($ |#1| $) 69 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2292 (((-85) $ $) 74 T ELT)) (-3946 (((-772) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 27 T ELT))) -(((-591 |#1| |#2| |#3|) (-13 (-1013) (-950 |#1|) (-10 -8 (-15 -3533 ((-772) $ (-1 (-772) (-772) (-772)) (-1 (-772) (-772) (-772)) (-484))) (-15 -2303 ((-583 (-2 (|:| |gen| |#1|) (|:| -3943 |#2|))) $)) (-15 -2302 ($ |#1| |#2|)) (-15 -2301 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -3943 |#2|))))) (-15 -2300 (|#2| $ (-484))) (-15 -2299 (|#1| $ (-484))) (-15 -2298 ($ $)) (-15 -2297 ($ $)) (-15 -3136 ((-694) $)) (-15 -2296 ($)) (-15 -2295 ($ $ |#1|)) (-15 -2294 ($ |#1| $)) (-15 -2293 ($ |#1| |#2| $)) (-15 -2293 ($ $ $)) (-15 -2292 ((-85) $ $)) (-15 -2291 ($ (-1 |#2| |#2|) $)) (-15 -2290 ($ (-1 |#1| |#1|) $)))) (-1013) (-23) |#2|) (T -591)) -((-3533 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-772) (-772) (-772))) (-5 *4 (-484)) (-5 *2 (-772)) (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6))) (-2303 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3943 *4)))) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2302 (*1 *1 *2 *3) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2301 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3943 *4)))) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5)) (-4 *4 (-1013)) (-14 *5 *2))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-1013)) (-5 *1 (-591 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2298 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2297 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2296 (*1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2295 (*1 *1 *1 *2) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *1 *2 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2292 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-591 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -((-2201 (((-484) $) 30 T ELT)) (-2304 (($ |#2| $ (-484)) 26 T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) 12 T ELT)) (-2204 (((-85) (-484) $) 17 T ELT)) (-3802 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT))) -(((-592 |#1| |#2|) (-10 -7 (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -3802 (|#1| (-583 |#1|))) (-15 -3802 (|#1| |#1| |#1|)) (-15 -3802 (|#1| |#2| |#1|)) (-15 -3802 (|#1| |#1| |#2|)) (-15 -2201 ((-484) |#1|)) (-15 -2203 ((-583 (-484)) |#1|)) (-15 -2204 ((-85) (-484) |#1|))) (-593 |#2|) (-1129)) (T -592)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) 44 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-1353 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1146 (-484))) 75 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1146 (-484))) 67 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 76 T ELT)) (-3802 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-593 |#1|) (-113) (-1129)) (T -593)) -((-3614 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) (-3802 (*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1129)))) (-3802 (*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1129)))) (-3802 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1129)))) (-3802 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) (-3958 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) (-2305 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) (-2305 (*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-484))) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) (-2304 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-593 *2)) (-4 *2 (-1129)))) (-2304 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) (-3788 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1146 (-484))) (|has| *1 (-6 -3996)) (-4 *1 (-593 *2)) (-4 *2 (-1129))))) -(-13 (-538 (-484) |t#1|) (-124 |t#1|) (-241 (-1146 (-484)) $) (-10 -8 (-15 -3614 ($ (-694) |t#1|)) (-15 -3802 ($ $ |t#1|)) (-15 -3802 ($ |t#1| $)) (-15 -3802 ($ $ $)) (-15 -3802 ($ (-583 $))) (-15 -3958 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2305 ($ $ (-484))) (-15 -2305 ($ $ (-1146 (-484)))) (-15 -2304 ($ |t#1| $ (-484))) (-15 -2304 ($ $ $ (-484))) (IF (|has| $ (-6 -3996)) (-15 -3788 (|t#1| $ (-1146 (-484)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 15 T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3623 (((-484) $) NIL (|has| |#1| (-714)) ELT)) (-3724 (($) NIL T CONST)) (-3186 (((-85) $) NIL (|has| |#1| (-714)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2998 ((|#1| $) 23 T ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-714)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-714)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-714)) ELT)) (-3242 (((-1073) $) 48 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2997 ((|#3| $) 24 T ELT)) (-3946 (((-772) $) 43 T ELT)) (-1265 (((-85) $ $) 22 T ELT)) (-3383 (($ $) NIL (|has| |#1| (-714)) ELT)) (-2660 (($) 10 T CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-3056 (((-85) $ $) 20 T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-2685 (((-85) $ $) 26 (|has| |#1| (-714)) ELT)) (-3949 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3837 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 29 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) -(((-594 |#1| |#2| |#3|) (-13 (-654 |#2|) (-10 -8 (IF (|has| |#1| (-714)) (-6 (-714)) |%noBranch|) (-15 -3949 ($ $ |#3|)) (-15 -3949 ($ |#1| |#3|)) (-15 -2998 (|#1| $)) (-15 -2997 (|#3| $)))) (-654 |#2|) (-146) (|SubsetCategory| (-663) |#2|)) (T -594)) -((-3949 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-3949 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-594 *2 *4 *3)) (-4 *2 (-654 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-654 *3)) (-5 *1 (-594 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2997 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4))))) -((-3573 (((-3 |#2| #1="failed") |#3| |#2| (-1090) |#2| (-583 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) #1#) |#3| |#2| (-1090)) 44 T ELT))) -(((-595 |#1| |#2| |#3|) (-10 -7 (-15 -3573 ((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) #1="failed") |#3| |#2| (-1090))) (-15 -3573 ((-3 |#2| #1#) |#3| |#2| (-1090) |#2| (-583 |#2|)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1115) (-871)) (-600 |#2|)) (T -595)) -((-3573 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1115) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-600 *2)))) (-3573 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1090)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-4 *4 (-13 (-29 *6) (-1115) (-871))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4)))) (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-600 *4))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2306 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) 28 (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) 31 (|has| |#1| (-312)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) NIL T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3800 ((|#1| $ |#1|) 24 T ELT)) (-2310 (($ $ $) 33 (|has| |#1| (-312)) ELT)) (-3948 (((-694) $) NIL T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3946 (((-772) $) 20 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3817 (((-583 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2545 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2520 (($ $) NIL T ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 8 T CONST)) (-2669 (($) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-596 |#1| |#2|) (-600 |#1|) (-961) (-1 |#1| |#1|)) (T -596)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2306 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) NIL (|has| |#1| (-312)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) NIL T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3800 ((|#1| $ |#1|) NIL T ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3948 (((-694) $) NIL T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3817 (((-583 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2545 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2520 (($ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-597 |#1|) (-600 |#1|) (-190)) (T -597)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2306 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) NIL (|has| |#1| (-312)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) NIL T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3800 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3948 (((-694) $) NIL T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3817 (((-583 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2545 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2520 (($ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-598 |#1| |#2|) (-13 (-600 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-590 |#1|) (-10 -8 (-15 -3758 ($ $))))) (T -598)) -NIL -((-2306 (($ $) 29 T ELT)) (-2520 (($ $) 27 T ELT)) (-2669 (($) 13 T ELT))) -(((-599 |#1| |#2|) (-10 -7 (-15 -2306 (|#1| |#1|)) (-15 -2520 (|#1| |#1|)) (-15 -2669 (|#1|))) (-600 |#2|) (-961)) (T -599)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2306 (($ $) 96 (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) 98 (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) 97 (|has| |#1| (-312)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-2536 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ #1="failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #2="failed") $) 88 (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #2#) $) 85 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #2#) $) 82 T ELT)) (-3156 (((-484) $) 87 (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) 84 (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 83 T ELT)) (-3959 (($ $) 77 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3503 (($ $) 68 (|has| |#1| (-392)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2893 (($ |#1| (-694)) 75 T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 70 (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 71 (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) 79 T ELT)) (-2542 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) 64 (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) 78 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3466 (((-3 $ #1#) $ |#1|) 72 (|has| |#1| (-495)) ELT)) (-3800 ((|#1| $ |#1|) 101 T ELT)) (-2310 (($ $ $) 95 (|has| |#1| (-312)) ELT)) (-3948 (((-694) $) 80 T ELT)) (-2817 ((|#1| $) 69 (|has| |#1| (-392)) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 86 (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) 81 T ELT)) (-3817 (((-583 |#1|) $) 74 T ELT)) (-3677 ((|#1| $ (-694)) 76 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2545 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2520 (($ $) 99 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($) 100 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) -(((-600 |#1|) (-113) (-961)) (T -600)) -((-2669 (*1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) (-2520 (*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) (-2308 (*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-600 *3)) (-4 *3 (-961)) (-4 *3 (-312)))) (-2306 (*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2310 (*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) -(-13 (-761 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2669 ($)) (-15 -2520 ($ $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -2308 ($ $ $)) (-15 -2309 ($ $ (-694))) (-15 -2306 ($ $)) (-15 -2310 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-241 |#1| |#1|) . T) ((-355 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-761 |#1|) . T)) -((-2307 (((-583 (-597 (-350 |#2|))) (-597 (-350 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3732 (((-583 (-597 (-350 |#2|))) (-597 (-350 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-583 (-597 (-350 |#2|))) (-597 (-350 |#2|)) (-1 (-583 |#1|) |#2|)) 19 T ELT))) -(((-601 |#1| |#2|) (-10 -7 (-15 -3732 ((-583 (-597 (-350 |#2|))) (-597 (-350 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3732 ((-583 (-597 (-350 |#2|))) (-597 (-350 |#2|)))) (-15 -2307 ((-583 (-597 (-350 |#2|))) (-597 (-350 |#2|))))) |%noBranch|)) (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))) (-1155 |#1|)) (T -601)) -((-2307 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) (-5 *2 (-583 (-597 (-350 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-597 (-350 *5))))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) (-5 *2 (-583 (-597 (-350 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-597 (-350 *5))))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-5 *2 (-583 (-597 (-350 *6)))) (-5 *1 (-601 *5 *6)) (-5 *3 (-597 (-350 *6)))))) -((-2308 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2309 ((|#2| |#2| (-694) (-1 |#1| |#1|)) 45 T ELT)) (-2310 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) -(((-602 |#1| |#2|) (-10 -7 (-15 -2308 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2309 (|#2| |#2| (-694) (-1 |#1| |#1|))) (-15 -2310 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-312) (-600 |#1|)) (T -602)) -((-2310 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2)) (-4 *2 (-600 *4)))) (-2309 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-602 *5 *2)) (-4 *2 (-600 *5)))) (-2308 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2)) (-4 *2 (-600 *4))))) -((-2311 (($ $ $) 9 T ELT))) -(((-603 |#1|) (-10 -7 (-15 -2311 (|#1| |#1| |#1|))) (-604)) (T -603)) -NIL -((-2313 (($ $) 8 T ELT)) (-2311 (($ $ $) 6 T ELT)) (-2312 (($ $ $) 7 T ELT))) -(((-604) (-113)) (T -604)) -((-2313 (*1 *1 *1) (-4 *1 (-604))) (-2312 (*1 *1 *1 *1) (-4 *1 (-604))) (-2311 (*1 *1 *1 *1) (-4 *1 (-604)))) -(-13 (-1129) (-10 -8 (-15 -2313 ($ $)) (-15 -2312 ($ $ $)) (-15 -2311 ($ $ $)))) -(((-13) . T) ((-1129) . T)) -((-2314 (((-3 (-583 (-1085 |#1|)) "failed") (-583 (-1085 |#1|)) (-1085 |#1|)) 33 T ELT))) -(((-605 |#1|) (-10 -7 (-15 -2314 ((-3 (-583 (-1085 |#1|)) "failed") (-583 (-1085 |#1|)) (-1085 |#1|)))) (-821)) (T -605)) -((-2314 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1085 *4))) (-5 *3 (-1085 *4)) (-4 *4 (-821)) (-5 *1 (-605 *4))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3934 (((-583 |#1|) $) 85 T ELT)) (-3947 (($ $ (-694)) 95 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3939 (((-1204 |#1| |#2|) (-1204 |#1| |#2|) $) 50 T ELT)) (-3157 (((-3 (-614 |#1|) #1#) $) NIL T ELT)) (-3156 (((-614 |#1|) $) NIL T ELT)) (-3959 (($ $) 94 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-3938 (($ (-614 |#1|) |#2|) 70 T ELT)) (-3936 (($ $) 90 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3940 (((-1204 |#1| |#2|) (-1204 |#1| |#2|) $) 49 T ELT)) (-1749 (((-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2894 (((-614 |#1|) $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3768 (($ $ |#1| $) 32 T ELT) (($ $ (-583 |#1|) (-583 $)) 34 T ELT)) (-3948 (((-694) $) 92 T ELT)) (-3530 (($ $ $) 20 T ELT) (($ (-614 |#1|) (-614 |#1|)) 79 T ELT) (($ (-614 |#1|) $) 77 T ELT) (($ $ (-614 |#1|)) 78 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1195 |#1| |#2|) $) 60 T ELT) (((-1204 |#1| |#2|) $) 43 T ELT) (($ (-614 |#1|)) 27 T ELT)) (-3817 (((-583 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-614 |#1|)) NIL T ELT)) (-3954 ((|#2| (-1204 |#1| |#2|) $) 45 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 23 T CONST)) (-2665 (((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3945 (((-3 $ #1#) (-1195 |#1| |#2|)) 62 T ELT)) (-1733 (($ (-614 |#1|)) 14 T ELT)) (-3056 (((-85) $ $) 46 T ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 31 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-614 |#1|)) NIL T ELT))) -(((-606 |#1| |#2|) (-13 (-326 |#1| |#2|) (-335 |#2| (-614 |#1|)) (-10 -8 (-15 -3945 ((-3 $ "failed") (-1195 |#1| |#2|))) (-15 -3530 ($ (-614 |#1|) (-614 |#1|))) (-15 -3530 ($ (-614 |#1|) $)) (-15 -3530 ($ $ (-614 |#1|))))) (-756) (-146)) (T -606)) -((-3945 (*1 *1 *2) (|partial| -12 (-5 *2 (-1195 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *1 (-606 *3 *4)))) (-3530 (*1 *1 *2 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) (-3530 (*1 *1 *2 *1) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) (-3530 (*1 *1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146))))) -((-1732 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1730 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1570 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2297 (($ $) 65 T ELT)) (-2368 (($ $) 74 T ELT)) (-3405 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3842 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3419 (((-484) |#2| $ (-484)) 71 T ELT) (((-484) |#2| $) NIL T ELT) (((-484) (-1 (-85) |#2|) $) 54 T ELT)) (-3614 (($ (-694) |#2|) 63 T ELT)) (-2856 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3518 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3534 (($ |#2|) 15 T ELT)) (-3609 (($ $ $ (-484)) 42 T ELT) (($ |#2| $ (-484)) 40 T ELT)) (-1354 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1571 (($ $ (-1146 (-484))) 51 T ELT) (($ $ (-484)) 44 T ELT)) (-1731 (($ $ $ (-484)) 70 T ELT)) (-3400 (($ $) 68 T ELT)) (-2685 (((-85) $ $) 76 T ELT))) -(((-607 |#1| |#2|) (-10 -7 (-15 -3534 (|#1| |#2|)) (-15 -1571 (|#1| |#1| (-484))) (-15 -1571 (|#1| |#1| (-1146 (-484)))) (-15 -3405 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3609 (|#1| |#2| |#1| (-484))) (-15 -3609 (|#1| |#1| |#1| (-484))) (-15 -2856 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1570 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3405 (|#1| |#2| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2856 (|#1| |#1| |#1|)) (-15 -3518 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1732 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3419 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -3419 ((-484) |#2| |#1|)) (-15 -3419 ((-484) |#2| |#1| (-484))) (-15 -3518 (|#1| |#1| |#1|)) (-15 -1732 ((-85) |#1|)) (-15 -1731 (|#1| |#1| |#1| (-484))) (-15 -2297 (|#1| |#1|)) (-15 -1730 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1730 (|#1| |#1|)) (-15 -2685 ((-85) |#1| |#1|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3842 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1354 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3614 (|#1| (-694) |#2|)) (-15 -3958 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3958 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3400 (|#1| |#1|))) (-608 |#2|) (-1129)) (T -607)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3795 ((|#1| $) 71 T ELT)) (-3797 (($ $) 73 T ELT)) (-2198 (((-1185) $ (-484) (-484)) 107 (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-484)) 58 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) $) 155 (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 149 T ELT)) (-1730 (($ $) 159 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1| |#1|) $) 158 (|has| $ (-6 -3996)) ELT)) (-2909 (($ $) 154 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) 148 T ELT)) (-3442 (((-85) $ (-694)) 90 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 62 (|has| $ (-6 -3996)) ELT)) (-3786 ((|#1| $ |#1|) 60 (|has| $ (-6 -3996)) ELT)) (-3789 ((|#1| $ |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3996)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3996)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3996)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 127 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-484) |#1|) 96 (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 142 T ELT)) (-3710 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3995)) ELT)) (-3796 ((|#1| $) 72 T ELT)) (-3724 (($) 7 T CONST)) (-2297 (($ $) 157 (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) 147 T ELT)) (-3799 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-2368 (($ $) 144 (|has| |#1| (-1013)) ELT)) (-1353 (($ $) 109 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ |#1| $) 143 (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) 138 T ELT)) (-3406 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3995)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-1576 ((|#1| $ (-484) |#1|) 95 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) 97 T ELT)) (-3443 (((-85) $) 93 T ELT)) (-3419 (((-484) |#1| $ (-484)) 152 (|has| |#1| (-1013)) ELT) (((-484) |#1| $) 151 (|has| |#1| (-1013)) ELT) (((-484) (-1 (-85) |#1|) $) 150 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-3614 (($ (-694) |#1|) 119 T ELT)) (-3719 (((-85) $ (-694)) 91 T ELT)) (-2200 (((-484) $) 105 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 165 (|has| |#1| (-756)) ELT)) (-2856 (($ $ $) 145 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 141 T ELT)) (-3518 (($ $ $) 153 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 146 T ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 104 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 164 (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3534 (($ |#1|) 135 T ELT)) (-3716 (((-85) $ (-694)) 92 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-3609 (($ $ $ (-484)) 140 T ELT) (($ |#1| $ (-484)) 139 T ELT)) (-2304 (($ $ $ (-484)) 126 T ELT) (($ |#1| $ (-484)) 125 T ELT)) (-2203 (((-583 (-484)) $) 102 T ELT)) (-2204 (((-85) (-484) $) 101 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2199 (($ $ |#1|) 106 (|has| $ (-6 -3996)) ELT)) (-3444 (((-85) $) 94 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 100 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1146 (-484))) 118 T ELT) ((|#1| $ (-484)) 99 T ELT) ((|#1| $ (-484) |#1|) 98 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-1571 (($ $ (-1146 (-484))) 137 T ELT) (($ $ (-484)) 136 T ELT)) (-2305 (($ $ (-1146 (-484))) 124 T ELT) (($ $ (-484)) 123 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-3792 (($ $) 68 T ELT)) (-3790 (($ $) 65 (|has| $ (-6 -3996)) ELT)) (-3793 (((-694) $) 69 T ELT)) (-3794 (($ $) 70 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 T ELT) (((-694) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-484)) 156 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 108 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 117 T ELT)) (-3791 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3802 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-583 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2566 (((-85) $ $) 163 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 161 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) 162 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 160 (|has| |#1| (-756)) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-608 |#1|) (-113) (-1129)) (T -608)) -((-3534 (*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1129))))) -(-13 (-1064 |t#1|) (-324 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3534 ($ |t#1|)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-237 |#1|) . T) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-923 |#1|) . T) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1035 |#1|) . T) ((-1064 |#1|) . T) ((-1129) . T) ((-1168 |#1|) . T)) -((-3573 (((-583 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2012 (-583 |#3|)))) |#4| (-583 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2012 (-583 |#3|))) |#4| |#3|) 60 T ELT)) (-3108 (((-694) |#4| |#3|) 18 T ELT)) (-3340 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2315 (((-85) |#4| |#3|) 14 T ELT))) -(((-609 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3573 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2012 (-583 |#3|))) |#4| |#3|)) (-15 -3573 ((-583 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2012 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -3340 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2315 ((-85) |#4| |#3|)) (-15 -3108 ((-694) |#4| |#3|))) (-312) (-13 (-324 |#1|) (-10 -7 (-6 -3996))) (-13 (-324 |#1|) (-10 -7 (-6 -3996))) (-627 |#1| |#2| |#3|)) (T -609)) -((-3108 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-5 *2 (-694)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-2315 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-5 *2 (-85)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-3340 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-10 -7 (-6 -3996)))) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996)))) (-5 *1 (-609 *4 *5 *2 *3)) (-4 *3 (-627 *4 *5 *2)))) (-3573 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-4 *7 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2012 (-583 *7))))) (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-627 *5 *6 *7)))) (-3573 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))) -((-3573 (((-583 (-2 (|:| |particular| (-3 (-1179 |#1|) #1="failed")) (|:| -2012 (-583 (-1179 |#1|))))) (-583 (-583 |#1|)) (-583 (-1179 |#1|))) 22 T ELT) (((-583 (-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2012 (-583 (-1179 |#1|))))) (-630 |#1|) (-583 (-1179 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2012 (-583 (-1179 |#1|)))) (-583 (-583 |#1|)) (-1179 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2012 (-583 (-1179 |#1|)))) (-630 |#1|) (-1179 |#1|)) 14 T ELT)) (-3108 (((-694) (-630 |#1|) (-1179 |#1|)) 30 T ELT)) (-3340 (((-3 (-1179 |#1|) #1#) (-630 |#1|) (-1179 |#1|)) 24 T ELT)) (-2315 (((-85) (-630 |#1|) (-1179 |#1|)) 27 T ELT))) -(((-610 |#1|) (-10 -7 (-15 -3573 ((-2 (|:| |particular| (-3 (-1179 |#1|) #1="failed")) (|:| -2012 (-583 (-1179 |#1|)))) (-630 |#1|) (-1179 |#1|))) (-15 -3573 ((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2012 (-583 (-1179 |#1|)))) (-583 (-583 |#1|)) (-1179 |#1|))) (-15 -3573 ((-583 (-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2012 (-583 (-1179 |#1|))))) (-630 |#1|) (-583 (-1179 |#1|)))) (-15 -3573 ((-583 (-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2012 (-583 (-1179 |#1|))))) (-583 (-583 |#1|)) (-583 (-1179 |#1|)))) (-15 -3340 ((-3 (-1179 |#1|) #1#) (-630 |#1|) (-1179 |#1|))) (-15 -2315 ((-85) (-630 |#1|) (-1179 |#1|))) (-15 -3108 ((-694) (-630 |#1|) (-1179 |#1|)))) (-312)) (T -610)) -((-3108 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-5 *2 (-694)) (-5 *1 (-610 *5)))) (-2315 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-5 *2 (-85)) (-5 *1 (-610 *5)))) (-3340 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1179 *4)) (-5 *3 (-630 *4)) (-4 *4 (-312)) (-5 *1 (-610 *4)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1179 *5) #1="failed")) (|:| -2012 (-583 (-1179 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-583 (-1179 *5))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-4 *5 (-312)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1179 *5) #1#)) (|:| -2012 (-583 (-1179 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-583 (-1179 *5))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 *5) #1#)) (|:| -2012 (-583 (-1179 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1179 *5)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 *5) #1#)) (|:| -2012 (-583 (-1179 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1179 *5))))) -((-2316 (((-2 (|:| |particular| (-3 (-1179 (-350 |#4|)) "failed")) (|:| -2012 (-583 (-1179 (-350 |#4|))))) (-583 |#4|) (-583 |#3|)) 51 T ELT))) -(((-611 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2316 ((-2 (|:| |particular| (-3 (-1179 (-350 |#4|)) "failed")) (|:| -2012 (-583 (-1179 (-350 |#4|))))) (-583 |#4|) (-583 |#3|)))) (-495) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -611)) -((-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 (-350 *8)) "failed")) (|:| -2012 (-583 (-1179 (-350 *8)))))) (-5 *1 (-611 *5 *6 *7 *8))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1772 (((-3 $ #1="failed")) NIL (|has| |#2| (-495)) ELT)) (-3330 ((|#2| $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-3223 (((-1179 (-630 |#2|))) NIL T ELT) (((-1179 (-630 |#2|)) (-1179 $)) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-1729 (((-1179 $)) 41 T ELT)) (-3333 (($ |#2|) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3109 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3111 (((-197 |#1| |#2|) $ (-484)) NIL T ELT)) (-1906 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#2| (-495)) ELT)) (-1703 (((-3 $ #1#)) NIL (|has| |#2| (-495)) ELT)) (-1788 (((-630 |#2|)) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-1727 ((|#2| $) NIL T ELT)) (-1786 (((-630 |#2|) $) NIL T ELT) (((-630 |#2|) $ (-1179 $)) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| |#2| (-495)) ELT)) (-1900 (((-1085 (-857 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1725 ((|#2| $) NIL T ELT)) (-1705 (((-1085 |#2|) $) NIL (|has| |#2| (-495)) ELT)) (-1790 ((|#2|) NIL T ELT) ((|#2| (-1179 $)) NIL T ELT)) (-1723 (((-1085 |#2|) $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-1792 (($ (-1179 |#2|)) NIL T ELT) (($ (-1179 |#2|) (-1179 $)) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3108 (((-694) $) NIL (|has| |#2| (-495)) ELT) (((-830)) 42 T ELT)) (-3112 ((|#2| $ (-484) (-484)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-2433 (($ $ (-830)) NIL T ELT)) (-2889 (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3107 (((-694) $) NIL (|has| |#2| (-495)) ELT)) (-3106 (((-583 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-495)) ELT)) (-3114 (((-694) $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-3113 (((-694) $) NIL T ELT)) (-3327 ((|#2| $) NIL (|has| |#2| (-6 (-3997 #2="*"))) ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-2608 (((-583 |#2|) $) NIL T ELT)) (-3245 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-3123 (($ (-583 (-583 |#2|))) NIL T ELT)) (-3326 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3594 (((-583 (-583 |#2|)) $) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#2| (-495)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#2| (-495)) ELT)) (-1789 (((-630 |#2|)) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-1728 ((|#2| $) NIL T ELT)) (-1787 (((-630 |#2|) $) NIL T ELT) (((-630 |#2|) $ (-1179 $)) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#2| (-495)) ELT)) (-1904 (((-1085 (-857 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1726 ((|#2| $) NIL T ELT)) (-1706 (((-1085 |#2|) $) NIL (|has| |#2| (-495)) ELT)) (-1791 ((|#2|) NIL T ELT) ((|#2| (-1179 $)) NIL T ELT)) (-1724 (((-1085 |#2|) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-3590 (((-3 $ #1#) $) NIL (|has| |#2| (-312)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) ((|#2| $ (-484) (-484)) 27 T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3758 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3329 ((|#2| $) NIL T ELT)) (-3332 (($ (-583 |#2|)) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3331 (((-197 |#1| |#2|) $) NIL T ELT)) (-3328 ((|#2| $) NIL (|has| |#2| (-6 (-3997 #2#))) ELT)) (-1946 (((-694) (-1 (-85) |#2|) $) NIL T ELT) (((-694) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3400 (($ $) NIL T ELT)) (-3224 (((-630 |#2|) (-1179 $)) NIL T ELT) (((-1179 |#2|) $) NIL T ELT) (((-630 |#2|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#2|) $ (-1179 $)) 30 T ELT)) (-3972 (($ (-1179 |#2|)) NIL T ELT) (((-1179 |#2|) $) NIL T ELT)) (-1892 (((-583 (-857 |#2|))) NIL T ELT) (((-583 (-857 |#2|)) (-1179 $)) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-3110 (((-197 |#1| |#2|) $ (-484)) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (($ |#2|) NIL T ELT) (((-630 |#2|) $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) 40 T ELT)) (-1707 (((-583 (-1179 |#2|))) NIL (|has| |#2| (-495)) ELT)) (-2436 (($ $ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-2545 (($ (-630 |#2|) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-2434 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#2| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-612 |#1| |#2|) (-13 (-1037 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-552 (-630 |#2|)) (-361 |#2|)) (-830) (-146)) (T -612)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3248 (((-583 (-1049)) $) 12 T ELT)) (-3946 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-613) (-13 (-995) (-10 -8 (-15 -3248 ((-583 (-1049)) $))))) (T -613)) -((-3248 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-613))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3934 (((-583 |#1|) $) NIL T ELT)) (-3137 (($ $) 62 T ELT)) (-2664 (((-85) $) NIL T ELT)) (-3157 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-2319 (((-3 $ #1#) (-739 |#1|)) 28 T ELT)) (-2321 (((-85) (-739 |#1|)) 18 T ELT)) (-2320 (($ (-739 |#1|)) 29 T ELT)) (-2511 (((-85) $ $) 36 T ELT)) (-3833 (((-830) $) 43 T ELT)) (-3138 (($ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3732 (((-583 $) (-739 |#1|)) 20 T ELT)) (-3946 (((-772) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-739 |#1|) $) 47 T ELT) (((-618 |#1|) $) 52 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2318 (((-58 (-583 $)) (-583 |#1|) (-830)) 67 T ELT)) (-2317 (((-583 $) (-583 |#1|) (-830)) 70 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 63 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 46 T ELT))) -(((-614 |#1|) (-13 (-756) (-950 |#1|) (-10 -8 (-15 -2664 ((-85) $)) (-15 -3138 ($ $)) (-15 -3137 ($ $)) (-15 -3833 ((-830) $)) (-15 -2511 ((-85) $ $)) (-15 -3946 ((-739 |#1|) $)) (-15 -3946 ((-618 |#1|) $)) (-15 -3732 ((-583 $) (-739 |#1|))) (-15 -2321 ((-85) (-739 |#1|))) (-15 -2320 ($ (-739 |#1|))) (-15 -2319 ((-3 $ "failed") (-739 |#1|))) (-15 -3934 ((-583 |#1|) $)) (-15 -2318 ((-58 (-583 $)) (-583 |#1|) (-830))) (-15 -2317 ((-583 $) (-583 |#1|) (-830))))) (-756)) (T -614)) -((-2664 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3138 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-2511 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-614 *4))) (-5 *1 (-614 *4)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-85)) (-5 *1 (-614 *4)))) (-2320 (*1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))) (-2319 (*1 *1 *2) (|partial| -12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-58 (-583 (-614 *5)))) (-5 *1 (-614 *5)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-583 (-614 *5))) (-5 *1 (-614 *5))))) -((-3402 ((|#2| $) 100 T ELT)) (-3797 (($ $) 121 T ELT)) (-3442 (((-85) $ (-694)) 35 T ELT)) (-3799 (($ $) 109 T ELT) (($ $ (-694)) 112 T ELT)) (-3443 (((-85) $) 122 T ELT)) (-3031 (((-583 $) $) 96 T ELT)) (-3027 (((-85) $ $) 92 T ELT)) (-3719 (((-85) $ (-694)) 33 T ELT)) (-2200 (((-484) $) 66 T ELT)) (-2201 (((-484) $) 65 T ELT)) (-3716 (((-85) $ (-694)) 31 T ELT)) (-3527 (((-85) $) 98 T ELT)) (-3798 ((|#2| $) 113 T ELT) (($ $ (-694)) 117 T ELT)) (-2304 (($ $ $ (-484)) 83 T ELT) (($ |#2| $ (-484)) 82 T ELT)) (-2203 (((-583 (-484)) $) 64 T ELT)) (-2204 (((-85) (-484) $) 59 T ELT)) (-3801 ((|#2| $) NIL T ELT) (($ $ (-694)) 108 T ELT)) (-3769 (($ $ (-484)) 125 T ELT)) (-3444 (((-85) $) 124 T ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 42 T ELT)) (-2205 (((-583 |#2|) $) 46 T ELT)) (-3800 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1146 (-484))) 79 T ELT) ((|#2| $ (-484)) 57 T ELT) ((|#2| $ (-484) |#2|) 58 T ELT)) (-3029 (((-484) $ $) 91 T ELT)) (-2305 (($ $ (-1146 (-484))) 78 T ELT) (($ $ (-484)) 72 T ELT)) (-3633 (((-85) $) 87 T ELT)) (-3792 (($ $) 105 T ELT)) (-3793 (((-694) $) 104 T ELT)) (-3794 (($ $) 103 T ELT)) (-3530 (($ (-583 |#2|)) 53 T ELT)) (-2891 (($ $) 126 T ELT)) (-3522 (((-583 $) $) 90 T ELT)) (-3028 (((-85) $ $) 89 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 41 T ELT)) (-3056 (((-85) $ $) 20 T ELT)) (-3957 (((-694) $) 39 T ELT))) -(((-615 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -2891 (|#1| |#1|)) (-15 -3769 (|#1| |#1| (-484))) (-15 -3442 ((-85) |#1| (-694))) (-15 -3719 ((-85) |#1| (-694))) (-15 -3716 ((-85) |#1| (-694))) (-15 -3443 ((-85) |#1|)) (-15 -3444 ((-85) |#1|)) (-15 -3800 (|#2| |#1| (-484) |#2|)) (-15 -3800 (|#2| |#1| (-484))) (-15 -2205 ((-583 |#2|) |#1|)) (-15 -2204 ((-85) (-484) |#1|)) (-15 -2203 ((-583 (-484)) |#1|)) (-15 -2201 ((-484) |#1|)) (-15 -2200 ((-484) |#1|)) (-15 -3530 (|#1| (-583 |#2|))) (-15 -3800 (|#1| |#1| (-1146 (-484)))) (-15 -2305 (|#1| |#1| (-484))) (-15 -2305 (|#1| |#1| (-1146 (-484)))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -3792 (|#1| |#1|)) (-15 -3793 ((-694) |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3798 (|#1| |#1| (-694))) (-15 -3800 (|#2| |#1| "last")) (-15 -3798 (|#2| |#1|)) (-15 -3799 (|#1| |#1| (-694))) (-15 -3800 (|#1| |#1| "rest")) (-15 -3799 (|#1| |#1|)) (-15 -3801 (|#1| |#1| (-694))) (-15 -3800 (|#2| |#1| "first")) (-15 -3801 (|#2| |#1|)) (-15 -3027 ((-85) |#1| |#1|)) (-15 -3028 ((-85) |#1| |#1|)) (-15 -3029 ((-484) |#1| |#1|)) (-15 -3633 ((-85) |#1|)) (-15 -3800 (|#2| |#1| "value")) (-15 -3402 (|#2| |#1|)) (-15 -3527 ((-85) |#1|)) (-15 -3031 ((-583 |#1|) |#1|)) (-15 -3522 ((-583 |#1|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3957 ((-694) |#1|))) (-616 |#2|) (-1129)) (T -615)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3795 ((|#1| $) 71 T ELT)) (-3797 (($ $) 73 T ELT)) (-2198 (((-1185) $ (-484) (-484)) 107 (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-484)) 58 (|has| $ (-6 -3996)) ELT)) (-3442 (((-85) $ (-694)) 90 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 62 (|has| $ (-6 -3996)) ELT)) (-3786 ((|#1| $ |#1|) 60 (|has| $ (-6 -3996)) ELT)) (-3789 ((|#1| $ |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3996)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3996)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3996)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 127 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-484) |#1|) 96 (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 112 T ELT)) (-3796 ((|#1| $) 72 T ELT)) (-3724 (($) 7 T CONST)) (-2323 (($ $) 135 T ELT)) (-3799 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-1353 (($ $) 109 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#1| $) 110 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 113 T ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-1576 ((|#1| $ (-484) |#1|) 95 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) 97 T ELT)) (-3443 (((-85) $) 93 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2322 (((-694) $) 134 T ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-3614 (($ (-694) |#1|) 119 T ELT)) (-3719 (((-85) $ (-694)) 91 T ELT)) (-2200 (((-484) $) 105 (|has| (-484) (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-2201 (((-484) $) 104 (|has| (-484) (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3716 (((-85) $ (-694)) 92 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-2325 (($ $) 137 T ELT)) (-2326 (((-85) $) 138 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-2304 (($ $ $ (-484)) 126 T ELT) (($ |#1| $ (-484)) 125 T ELT)) (-2203 (((-583 (-484)) $) 102 T ELT)) (-2204 (((-85) (-484) $) 101 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2324 ((|#1| $) 136 T ELT)) (-3801 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2199 (($ $ |#1|) 106 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-484)) 133 T ELT)) (-3444 (((-85) $) 94 T ELT)) (-2327 (((-85) $) 139 T ELT)) (-2328 (((-85) $) 140 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 100 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1146 (-484))) 118 T ELT) ((|#1| $ (-484)) 99 T ELT) ((|#1| $ (-484) |#1|) 98 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-2305 (($ $ (-1146 (-484))) 124 T ELT) (($ $ (-484)) 123 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-3792 (($ $) 68 T ELT)) (-3790 (($ $) 65 (|has| $ (-6 -3996)) ELT)) (-3793 (((-694) $) 69 T ELT)) (-3794 (($ $) 70 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 108 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 117 T ELT)) (-3791 (($ $ $) 67 (|has| $ (-6 -3996)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3996)) ELT)) (-3802 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-583 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-2891 (($ $) 132 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-616 |#1|) (-113) (-1129)) (T -616)) -((-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1129)))) (-3710 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1129)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129)))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129)))) (-2323 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129)))) (-2322 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-616 *3)) (-4 *3 (-1129)))) (-2891 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129))))) -(-13 (-1064 |t#1|) (-10 -8 (-15 -3406 ($ (-1 (-85) |t#1|) $)) (-15 -3710 ($ (-1 (-85) |t#1|) $)) (-15 -2328 ((-85) $)) (-15 -2327 ((-85) $)) (-15 -2326 ((-85) $)) (-15 -2325 ($ $)) (-15 -2324 (|t#1| $)) (-15 -2323 ($ $)) (-15 -2322 ((-694) $)) (-15 -3769 ($ $ (-484))) (-15 -2891 ($ $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1064 |#1|) . T) ((-1129) . T) ((-1168 |#1|) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3178 (((-423) $) 15 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 24 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3233 (((-1049) $) 17 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-617) (-13 (-995) (-10 -8 (-15 -3178 ((-423) $)) (-15 -3233 ((-1049) $))))) (T -617)) -((-3178 (*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-617)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-617))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3934 (((-583 |#1|) $) 15 T ELT)) (-3137 (($ $) 19 T ELT)) (-2664 (((-85) $) 20 T ELT)) (-3157 (((-3 |#1| "failed") $) 23 T ELT)) (-3156 ((|#1| $) 21 T ELT)) (-3799 (($ $) 37 T ELT)) (-3936 (($ $) 25 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-2511 (((-85) $ $) 46 T ELT)) (-3833 (((-830) $) 40 T ELT)) (-3138 (($ $) 18 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3801 ((|#1| $) 36 T ELT)) (-3946 (((-772) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-739 |#1|) $) 28 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 13 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) -(((-618 |#1|) (-13 (-756) (-950 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3946 ((-739 |#1|) $)) (-15 -3801 (|#1| $)) (-15 -3138 ($ $)) (-15 -3833 ((-830) $)) (-15 -2511 ((-85) $ $)) (-15 -3936 ($ $)) (-15 -3799 ($ $)) (-15 -2664 ((-85) $)) (-15 -3137 ($ $)) (-15 -3934 ((-583 |#1|) $)))) (-756)) (T -618)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3801 (*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3138 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-2511 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3936 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3799 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756))))) -((-2337 ((|#1| (-1 |#1| (-694) |#1|) (-694) |#1|) 11 T ELT)) (-2329 ((|#1| (-1 |#1| |#1|) (-694) |#1|) 9 T ELT))) -(((-619 |#1|) (-10 -7 (-15 -2329 (|#1| (-1 |#1| |#1|) (-694) |#1|)) (-15 -2337 (|#1| (-1 |#1| (-694) |#1|) (-694) |#1|))) (-1013)) (T -619)) -((-2337 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-694) *2)) (-5 *4 (-694)) (-4 *2 (-1013)) (-5 *1 (-619 *2)))) (-2329 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-694)) (-4 *2 (-1013)) (-5 *1 (-619 *2))))) -((-2331 ((|#2| |#1| |#2|) 9 T ELT)) (-2330 ((|#1| |#1| |#2|) 8 T ELT))) -(((-620 |#1| |#2|) (-10 -7 (-15 -2330 (|#1| |#1| |#2|)) (-15 -2331 (|#2| |#1| |#2|))) (-1013) (-1013)) (T -620)) -((-2331 (*1 *2 *3 *2) (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-2330 (*1 *2 *2 *3) (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) -((-2332 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) -(((-621 |#1| |#2| |#3|) (-10 -7 (-15 -2332 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1013) (-1013) (-1013)) (T -621)) -((-2332 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)) (-5 *1 (-621 *5 *6 *2))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3318 (((-1130) $) 22 T ELT)) (-3317 (((-583 (-1130)) $) 20 T ELT)) (-2333 (($ (-583 (-1130)) (-1130)) 15 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 30 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT) (((-1130) $) 23 T ELT) (($ (-1028)) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-622) (-13 (-995) (-552 (-1130)) (-10 -8 (-15 -3946 ($ (-1028))) (-15 -2333 ($ (-583 (-1130)) (-1130))) (-15 -3317 ((-583 (-1130)) $)) (-15 -3318 ((-1130) $))))) (T -622)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-622)))) (-2333 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1130))) (-5 *3 (-1130)) (-5 *1 (-622)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-622)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-622))))) -((-2337 (((-1 |#1| (-694) |#1|) (-1 |#1| (-694) |#1|)) 26 T ELT)) (-2334 (((-1 |#1|) |#1|) 8 T ELT)) (-2336 ((|#1| |#1|) 19 T ELT)) (-2335 (((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-484)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3946 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-694)) 23 T ELT))) -(((-623 |#1|) (-10 -7 (-15 -2334 ((-1 |#1|) |#1|)) (-15 -3946 ((-1 |#1|) |#1|)) (-15 -2335 (|#1| (-1 |#1| |#1|))) (-15 -2335 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-484))) (-15 -2336 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-694))) (-15 -2337 ((-1 |#1| (-694) |#1|) (-1 |#1| (-694) |#1|)))) (-1013)) (T -623)) -((-2337 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-694) *3)) (-4 *3 (-1013)) (-5 *1 (-623 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *4 (-1013)) (-5 *1 (-623 *4)))) (-2336 (*1 *2 *2) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1013)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-484)) (-5 *2 (-583 *5)) (-5 *1 (-623 *5)) (-4 *5 (-1013)))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-623 *2)) (-4 *2 (-1013)))) (-3946 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013)))) (-2334 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013))))) -((-2340 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2339 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3952 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2338 (((-1 |#2| |#1|) |#2|) 11 T ELT))) -(((-624 |#1| |#2|) (-10 -7 (-15 -2338 ((-1 |#2| |#1|) |#2|)) (-15 -2339 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3952 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2340 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1013) (-1013)) (T -624)) -((-2340 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5)) (-4 *4 (-1013)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5)) (-5 *1 (-624 *4 *5)))) (-2338 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-624 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1013))))) -((-2345 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2341 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2342 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2343 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2344 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) -(((-625 |#1| |#2| |#3|) (-10 -7 (-15 -2341 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2342 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2343 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2344 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2345 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1013) (-1013) (-1013)) (T -625)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-1 *7 *5)) (-5 *1 (-625 *5 *6 *7)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-625 *4 *5 *6)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-625 *4 *5 *6)) (-4 *4 (-1013)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-1013)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *4 *5 *6)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *5 *4 *6))))) -((-3838 (($ (-694) (-694)) 42 T ELT)) (-2350 (($ $ $) 73 T ELT)) (-3414 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3120 (((-85) $) 36 T ELT)) (-2349 (($ $ (-484) (-484)) 84 T ELT)) (-2348 (($ $ (-484) (-484)) 85 T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) 90 T ELT)) (-2352 (($ $) 71 T ELT)) (-3122 (((-85) $) 15 T ELT)) (-2346 (($ $ (-484) (-484) $) 91 T ELT)) (-3788 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) 89 T ELT)) (-3333 (($ (-694) |#2|) 55 T ELT)) (-3123 (($ (-583 (-583 |#2|))) 51 T ELT) (($ (-694) (-694) (-1 |#2| (-484) (-484))) 53 T ELT)) (-3594 (((-583 (-583 |#2|)) $) 80 T ELT)) (-2351 (($ $ $) 72 T ELT)) (-3466 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3800 ((|#2| $ (-484) (-484)) NIL T ELT) ((|#2| $ (-484) (-484) |#2|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484))) 88 T ELT)) (-3332 (($ (-583 |#2|)) 56 T ELT) (($ (-583 $)) 58 T ELT)) (-3121 (((-85) $) 28 T ELT)) (-3946 (($ |#4|) 63 T ELT) (((-772) $) NIL T ELT)) (-3119 (((-85) $) 38 T ELT)) (-3949 (($ $ |#2|) 124 T ELT)) (-3837 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3839 (($ $ $) 93 T ELT)) (** (($ $ (-694)) 111 T ELT) (($ $ (-484)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-484) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) -(((-626 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3946 ((-772) |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3949 (|#1| |#1| |#2|)) (-15 -3466 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -2346 (|#1| |#1| (-484) (-484) |#1|)) (-15 -2347 (|#1| |#1| (-484) (-484) (-484) (-484))) (-15 -2348 (|#1| |#1| (-484) (-484))) (-15 -2349 (|#1| |#1| (-484) (-484))) (-15 -3788 (|#1| |#1| (-583 (-484)) (-583 (-484)) |#1|)) (-15 -3800 (|#1| |#1| (-583 (-484)) (-583 (-484)))) (-15 -3594 ((-583 (-583 |#2|)) |#1|)) (-15 -2350 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -3414 (|#1| |#1|)) (-15 -3414 (|#1| |#3|)) (-15 -3946 (|#1| |#4|)) (-15 -3332 (|#1| (-583 |#1|))) (-15 -3332 (|#1| (-583 |#2|))) (-15 -3333 (|#1| (-694) |#2|)) (-15 -3123 (|#1| (-694) (-694) (-1 |#2| (-484) (-484)))) (-15 -3123 (|#1| (-583 (-583 |#2|)))) (-15 -3838 (|#1| (-694) (-694))) (-15 -3119 ((-85) |#1|)) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3788 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3800 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3800 (|#2| |#1| (-484) (-484)))) (-627 |#2| |#3| |#4|) (-961) (-324 |#2|) (-324 |#2|)) (T -626)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3838 (($ (-694) (-694)) 103 T ELT)) (-2350 (($ $ $) 92 T ELT)) (-3414 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3120 (((-85) $) 105 T ELT)) (-2349 (($ $ (-484) (-484)) 88 T ELT)) (-2348 (($ $ (-484) (-484)) 87 T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) 86 T ELT)) (-2352 (($ $) 94 T ELT)) (-3122 (((-85) $) 107 T ELT)) (-2346 (($ $ (-484) (-484) $) 85 T ELT)) (-3788 ((|#1| $ (-484) (-484) |#1|) 48 T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) 89 T ELT)) (-1257 (($ $ (-484) |#2|) 46 T ELT)) (-1256 (($ $ (-484) |#3|) 45 T ELT)) (-3333 (($ (-694) |#1|) 100 T ELT)) (-3724 (($) 7 T CONST)) (-3109 (($ $) 72 (|has| |#1| (-258)) ELT)) (-3111 ((|#2| $ (-484)) 50 T ELT)) (-3108 (((-694) $) 71 (|has| |#1| (-495)) ELT)) (-1576 ((|#1| $ (-484) (-484) |#1|) 47 T ELT)) (-3112 ((|#1| $ (-484) (-484)) 52 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3107 (((-694) $) 70 (|has| |#1| (-495)) ELT)) (-3106 (((-583 |#3|) $) 69 (|has| |#1| (-495)) ELT)) (-3114 (((-694) $) 55 T ELT)) (-3614 (($ (-694) (-694) |#1|) 61 T ELT)) (-3113 (((-694) $) 54 T ELT)) (-3327 ((|#1| $) 67 (|has| |#1| (-6 (-3997 #1="*"))) ELT)) (-3118 (((-484) $) 59 T ELT)) (-3116 (((-484) $) 57 T ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3117 (((-484) $) 58 T ELT)) (-3115 (((-484) $) 56 T ELT)) (-3123 (($ (-583 (-583 |#1|))) 102 T ELT) (($ (-694) (-694) (-1 |#1| (-484) (-484))) 101 T ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3594 (((-583 (-583 |#1|)) $) 91 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-3590 (((-3 $ "failed") $) 66 (|has| |#1| (-312)) ELT)) (-2351 (($ $ $) 93 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) 60 T ELT)) (-3466 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-495)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-484) (-484)) 53 T ELT) ((|#1| $ (-484) (-484) |#1|) 51 T ELT) (($ $ (-583 (-484)) (-583 (-484))) 90 T ELT)) (-3332 (($ (-583 |#1|)) 99 T ELT) (($ (-583 $)) 98 T ELT)) (-3121 (((-85) $) 106 T ELT)) (-3328 ((|#1| $) 68 (|has| |#1| (-6 (-3997 #1#))) ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 T ELT) (((-694) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-3400 (($ $) 10 T ELT)) (-3110 ((|#3| $ (-484)) 49 T ELT)) (-3946 (($ |#3|) 97 T ELT) (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3119 (((-85) $) 104 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3949 (($ $ |#1|) 73 (|has| |#1| (-312)) ELT)) (-3837 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3839 (($ $ $) 84 T ELT)) (** (($ $ (-694)) 75 T ELT) (($ $ (-484)) 65 (|has| |#1| (-312)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-484) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-627 |#1| |#2| |#3|) (-113) (-961) (-324 |t#1|) (-324 |t#1|)) (T -627)) -((-3122 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3838 (*1 *1 *2 *2) (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3123 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3123 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-1 *4 (-484) (-484))) (-4 *4 (-961)) (-4 *1 (-627 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-3333 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3332 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3332 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3946 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (-3414 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (-3414 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2352 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2351 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2350 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-583 (-583 *3))))) (-3800 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3788 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2349 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2348 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2347 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2346 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3839 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3837 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3837 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3466 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-495)))) (-3949 (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (-3109 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-258)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-495)) (-5 *2 (-694)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-495)) (-5 *2 (-694)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-495)) (-5 *2 (-583 *5)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-3997 #1="*"))) (-4 *2 (-961)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-3997 #1#))) (-4 *2 (-961)))) (-3590 (*1 *1 *1) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-312))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3119 ((-85) $)) (-15 -3838 ($ (-694) (-694))) (-15 -3123 ($ (-583 (-583 |t#1|)))) (-15 -3123 ($ (-694) (-694) (-1 |t#1| (-484) (-484)))) (-15 -3333 ($ (-694) |t#1|)) (-15 -3332 ($ (-583 |t#1|))) (-15 -3332 ($ (-583 $))) (-15 -3946 ($ |t#3|)) (-15 -3414 ($ |t#2|)) (-15 -3414 ($ $)) (-15 -2352 ($ $)) (-15 -2351 ($ $ $)) (-15 -2350 ($ $ $)) (-15 -3594 ((-583 (-583 |t#1|)) $)) (-15 -3800 ($ $ (-583 (-484)) (-583 (-484)))) (-15 -3788 ($ $ (-583 (-484)) (-583 (-484)) $)) (-15 -2349 ($ $ (-484) (-484))) (-15 -2348 ($ $ (-484) (-484))) (-15 -2347 ($ $ (-484) (-484) (-484) (-484))) (-15 -2346 ($ $ (-484) (-484) $)) (-15 -3839 ($ $ $)) (-15 -3837 ($ $ $)) (-15 -3837 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-484) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-694))) (IF (|has| |t#1| (-495)) (-15 -3466 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -3949 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-258)) (-15 -3109 ($ $)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3108 ((-694) $)) (-15 -3107 ((-694) $)) (-15 -3106 ((-583 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3997 "*"))) (PROGN (-15 -3328 (|t#1| $)) (-15 -3327 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -3590 ((-3 $ "failed") $)) (-15 ** ($ $ (-484)))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-57 |#1| |#2| |#3|) . T) ((-1129) . T)) -((-3842 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3958 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) -(((-628 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3958 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3958 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3842 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-961) (-324 |#1|) (-324 |#1|) (-627 |#1| |#2| |#3|) (-961) (-324 |#5|) (-324 |#5|) (-627 |#5| |#6| |#7|)) (T -628)) -((-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *8 (-324 *2)) (-4 *9 (-324 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-627 *5 *6 *7)) (-4 *10 (-627 *2 *8 *9)))) (-3958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8))))) -((-3109 ((|#4| |#4|) 90 (|has| |#1| (-258)) ELT)) (-3108 (((-694) |#4|) 92 (|has| |#1| (-495)) ELT)) (-3107 (((-694) |#4|) 94 (|has| |#1| (-495)) ELT)) (-3106 (((-583 |#3|) |#4|) 101 (|has| |#1| (-495)) ELT)) (-2380 (((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|) 124 (|has| |#1| (-258)) ELT)) (-3327 ((|#1| |#4|) 52 T ELT)) (-2357 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-495)) ELT)) (-3590 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-312)) ELT)) (-2356 ((|#4| |#4|) 76 (|has| |#1| (-495)) ELT)) (-2354 ((|#4| |#4| |#1| (-484) (-484)) 60 T ELT)) (-2353 ((|#4| |#4| (-484) (-484)) 55 T ELT)) (-2355 ((|#4| |#4| |#1| (-484) (-484)) 65 T ELT)) (-3328 ((|#1| |#4|) 96 T ELT)) (-2520 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-495)) ELT))) -(((-629 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3328 (|#1| |#4|)) (-15 -3327 (|#1| |#4|)) (-15 -2353 (|#4| |#4| (-484) (-484))) (-15 -2354 (|#4| |#4| |#1| (-484) (-484))) (-15 -2355 (|#4| |#4| |#1| (-484) (-484))) (IF (|has| |#1| (-495)) (PROGN (-15 -3108 ((-694) |#4|)) (-15 -3107 ((-694) |#4|)) (-15 -3106 ((-583 |#3|) |#4|)) (-15 -2356 (|#4| |#4|)) (-15 -2357 ((-3 |#4| #1="failed") |#4|)) (-15 -2520 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-258)) (PROGN (-15 -3109 (|#4| |#4|)) (-15 -2380 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3590 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-324 |#1|) (-324 |#1|) (-627 |#1| |#2| |#3|)) (T -629)) -((-3590 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2380 (*1 *2 *3 *3) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-629 *3 *4 *5 *6)) (-4 *6 (-627 *3 *4 *5)))) (-3109 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2520 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-2357 (*1 *2 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-583 *6)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-2355 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-2354 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-2353 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *1 (-629 *4 *5 *6 *2)) (-4 *2 (-627 *4 *5 *6)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3838 (($ (-694) (-694)) 63 T ELT)) (-2350 (($ $ $) NIL T ELT)) (-3414 (($ (-1179 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-2349 (($ $ (-484) (-484)) 21 T ELT)) (-2348 (($ $ (-484) (-484)) NIL T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) NIL T ELT)) (-2352 (($ $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2346 (($ $ (-484) (-484) $) NIL T ELT)) (-3788 ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) NIL T ELT)) (-1257 (($ $ (-484) (-1179 |#1|)) NIL T ELT)) (-1256 (($ $ (-484) (-1179 |#1|)) NIL T ELT)) (-3333 (($ (-694) |#1|) 37 T ELT)) (-3724 (($) NIL T CONST)) (-3109 (($ $) 46 (|has| |#1| (-258)) ELT)) (-3111 (((-1179 |#1|) $ (-484)) NIL T ELT)) (-3108 (((-694) $) 48 (|has| |#1| (-495)) ELT)) (-1576 ((|#1| $ (-484) (-484) |#1|) 68 T ELT)) (-3112 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3107 (((-694) $) 50 (|has| |#1| (-495)) ELT)) (-3106 (((-583 (-1179 |#1|)) $) 53 (|has| |#1| (-495)) ELT)) (-3114 (((-694) $) 31 T ELT)) (-3614 (($ (-694) (-694) |#1|) 27 T ELT)) (-3113 (((-694) $) 32 T ELT)) (-3327 ((|#1| $) 44 (|has| |#1| (-6 (-3997 #1="*"))) ELT)) (-3118 (((-484) $) 9 T ELT)) (-3116 (((-484) $) 10 T ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3117 (((-484) $) 13 T ELT)) (-3115 (((-484) $) 64 T ELT)) (-3123 (($ (-583 (-583 |#1|))) NIL T ELT) (($ (-694) (-694) (-1 |#1| (-484) (-484))) NIL T ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3594 (((-583 (-583 |#1|)) $) 75 T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3590 (((-3 $ #2="failed") $) 57 (|has| |#1| (-312)) ELT)) (-2351 (($ $ $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) NIL T ELT)) (-3466 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484))) NIL T ELT)) (-3332 (($ (-583 |#1|)) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ (-1179 |#1|)) 69 T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3328 ((|#1| $) 42 (|has| |#1| (-6 (-3997 #1#))) ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) 79 (|has| |#1| (-553 (-473))) ELT)) (-3110 (((-1179 |#1|) $ (-484)) NIL T ELT)) (-3946 (($ (-1179 |#1|)) NIL T ELT) (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-694)) 38 T ELT) (($ $ (-484)) 61 (|has| |#1| (-312)) ELT)) (* (($ $ $) 23 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-484) $) NIL T ELT) (((-1179 |#1|) $ (-1179 |#1|)) NIL T ELT) (((-1179 |#1|) (-1179 |#1|) $) NIL T ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-630 |#1|) (-13 (-627 |#1| (-1179 |#1|) (-1179 |#1|)) (-10 -8 (-15 -3332 ($ (-1179 |#1|))) (IF (|has| |#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3590 ((-3 $ "failed") $)) |%noBranch|))) (-961)) (T -630)) -((-3590 (*1 *1 *1) (|partial| -12 (-5 *1 (-630 *2)) (-4 *2 (-312)) (-4 *2 (-961)))) (-3332 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-961)) (-5 *1 (-630 *3))))) -((-2363 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 37 T ELT)) (-2362 (((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|) 32 T ELT)) (-2364 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-694)) 43 T ELT)) (-2359 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 25 T ELT)) (-2360 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 29 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 27 T ELT)) (-2361 (((-630 |#1|) (-630 |#1|) |#1| (-630 |#1|)) 31 T ELT)) (-2358 (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 23 T ELT)) (** (((-630 |#1|) (-630 |#1|) (-694)) 46 T ELT))) -(((-631 |#1|) (-10 -7 (-15 -2358 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2359 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2360 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2360 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2361 ((-630 |#1|) (-630 |#1|) |#1| (-630 |#1|))) (-15 -2362 ((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|)) (-15 -2363 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2364 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-694))) (-15 ** ((-630 |#1|) (-630 |#1|) (-694)))) (-961)) (T -631)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))) (-2364 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))) (-2363 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2362 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2361 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2360 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2360 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2359 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2358 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) -((-3157 (((-3 |#1| "failed") $) 18 T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-2365 (($) 7 T CONST)) (-2366 (($ |#1|) 8 T ELT)) (-3946 (($ |#1|) 16 T ELT) (((-772) $) 23 T ELT)) (-3566 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2365)) 11 T ELT)) (-3572 ((|#1| $) 15 T ELT))) -(((-632 |#1|) (-13 (-1175) (-950 |#1|) (-552 (-772)) (-10 -8 (-15 -2366 ($ |#1|)) (-15 -3566 ((-85) $ (|[\|\|]| |#1|))) (-15 -3566 ((-85) $ (|[\|\|]| -2365))) (-15 -3572 (|#1| $)) (-15 -2365 ($) -3952))) (-552 (-772))) (T -632)) -((-2366 (*1 *1 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-552 (-772))) (-5 *2 (-85)) (-5 *1 (-632 *4)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2365)) (-5 *2 (-85)) (-5 *1 (-632 *4)) (-4 *4 (-552 (-772))))) (-3572 (*1 *2 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))) (-2365 (*1 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772)))))) -((-3741 (((-2 (|:| |num| (-630 |#1|)) (|:| |den| |#1|)) (-630 |#2|)) 20 T ELT)) (-3739 ((|#1| (-630 |#2|)) 9 T ELT)) (-3740 (((-630 |#1|) (-630 |#2|)) 18 T ELT))) -(((-633 |#1| |#2|) (-10 -7 (-15 -3739 (|#1| (-630 |#2|))) (-15 -3740 ((-630 |#1|) (-630 |#2|))) (-15 -3741 ((-2 (|:| |num| (-630 |#1|)) (|:| |den| |#1|)) (-630 |#2|)))) (-495) (-904 |#1|)) (T -633)) -((-3741 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |num| (-630 *4)) (|:| |den| *4))) (-5 *1 (-633 *4 *5)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495)) (-5 *2 (-630 *4)) (-5 *1 (-633 *4 *5)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-633 *2 *4))))) -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2368 (($ $) 66 T ELT)) (-1353 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ |#1| $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3995)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT) (($ |#1| $ (-694)) 67 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1946 (-694)))) $) 65 T ELT)) (-1466 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 54 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-634 |#1|) (-113) (-1013)) (T -634)) -((-3609 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-634 *2)) (-4 *2 (-1013)))) (-2368 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1013)))) (-2367 (*1 *2 *1) (-12 (-4 *1 (-634 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-2 (|:| |entry| *3) (|:| -1946 (-694)))))))) -(-13 (-193 |t#1|) (-10 -8 (-15 -3609 ($ |t#1| $ (-694))) (-15 -2368 ($ $)) (-15 -2367 ((-583 (-2 (|:| |entry| |t#1|) (|:| -1946 (-694)))) $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T)) -((-2371 (((-583 |#1|) (-583 (-2 (|:| -3732 |#1|) (|:| -3948 (-484)))) (-484)) 66 T ELT)) (-2369 ((|#1| |#1| (-484)) 63 T ELT)) (-3144 ((|#1| |#1| |#1| (-484)) 46 T ELT)) (-3732 (((-583 |#1|) |#1| (-484)) 49 T ELT)) (-2372 ((|#1| |#1| (-484) |#1| (-484)) 40 T ELT)) (-2370 (((-583 (-2 (|:| -3732 |#1|) (|:| -3948 (-484)))) |#1| (-484)) 62 T ELT))) -(((-635 |#1|) (-10 -7 (-15 -3144 (|#1| |#1| |#1| (-484))) (-15 -2369 (|#1| |#1| (-484))) (-15 -3732 ((-583 |#1|) |#1| (-484))) (-15 -2370 ((-583 (-2 (|:| -3732 |#1|) (|:| -3948 (-484)))) |#1| (-484))) (-15 -2371 ((-583 |#1|) (-583 (-2 (|:| -3732 |#1|) (|:| -3948 (-484)))) (-484))) (-15 -2372 (|#1| |#1| (-484) |#1| (-484)))) (-1155 (-484))) (T -635)) -((-2372 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1155 *3)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3732 *5) (|:| -3948 (-484))))) (-5 *4 (-484)) (-4 *5 (-1155 *4)) (-5 *2 (-583 *5)) (-5 *1 (-635 *5)))) (-2370 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-583 (-2 (|:| -3732 *3) (|:| -3948 *4)))) (-5 *1 (-635 *3)) (-4 *3 (-1155 *4)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-583 *3)) (-5 *1 (-635 *3)) (-4 *3 (-1155 *4)))) (-2369 (*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1155 *3)))) (-3144 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1155 *3))))) -((-2376 (((-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2373 (((-1047 (-179)) (-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 53 T ELT) (((-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 55 T ELT) (((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 57 T ELT)) (-2375 (((-1047 (-179)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-583 (-221))) NIL T ELT)) (-2374 (((-1047 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 58 T ELT))) -(((-636) (-10 -7 (-15 -2373 ((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2373 ((-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2373 ((-1047 (-179)) (-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2374 ((-1047 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2375 ((-1047 (-179)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2376 ((-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -636)) -((-2376 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *1 (-636)))) (-2375 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-636)))) (-2374 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-636)))) (-2373 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179))) (-5 *5 (-583 (-221))) (-5 *1 (-636)))) (-2373 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-636)))) (-2373 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-636))))) -((-3732 (((-348 (-1085 |#4|)) (-1085 |#4|)) 87 T ELT) (((-348 |#4|) |#4|) 270 T ELT))) -(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 ((-348 |#4|) |#4|)) (-15 -3732 ((-348 (-1085 |#4|)) (-1085 |#4|)))) (-756) (-717) (-299) (-861 |#3| |#2| |#1|)) (T -637)) -((-3732 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))) -((-2379 (((-630 |#1|) (-630 |#1|) |#1| |#1|) 85 T ELT)) (-3109 (((-630 |#1|) (-630 |#1|) |#1|) 66 T ELT)) (-2378 (((-630 |#1|) (-630 |#1|) |#1|) 86 T ELT)) (-2377 (((-630 |#1|) (-630 |#1|)) 67 T ELT)) (-2380 (((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|) 84 T ELT))) -(((-638 |#1|) (-10 -7 (-15 -2377 ((-630 |#1|) (-630 |#1|))) (-15 -3109 ((-630 |#1|) (-630 |#1|) |#1|)) (-15 -2378 ((-630 |#1|) (-630 |#1|) |#1|)) (-15 -2379 ((-630 |#1|) (-630 |#1|) |#1| |#1|)) (-15 -2380 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|))) (-258)) (T -638)) -((-2380 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-638 *3)) (-4 *3 (-258)))) (-2379 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))) (-2378 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))) (-3109 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))) (-2377 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3))))) -((-2386 (((-1 |#4| |#2| |#3|) |#1| (-1090) (-1090)) 19 T ELT)) (-2381 (((-1 |#4| |#2| |#3|) (-1090)) 12 T ELT))) -(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2381 ((-1 |#4| |#2| |#3|) (-1090))) (-15 -2386 ((-1 |#4| |#2| |#3|) |#1| (-1090) (-1090)))) (-553 (-473)) (-1129) (-1129) (-1129)) (T -639)) -((-2386 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7)) (-4 *3 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *7 (-1129)))) (-2381 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7)) (-4 *4 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *7 (-1129))))) -((-2382 (((-1 (-179) (-179) (-179)) |#1| (-1090) (-1090)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1090)) 48 T ELT))) -(((-640 |#1|) (-10 -7 (-15 -2382 ((-1 (-179) (-179)) |#1| (-1090))) (-15 -2382 ((-1 (-179) (-179) (-179)) |#1| (-1090) (-1090)))) (-553 (-473))) (T -640)) -((-2382 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-640 *3)) (-4 *3 (-553 (-473))))) (-2382 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-640 *3)) (-4 *3 (-553 (-473)))))) -((-2383 (((-1090) |#1| (-1090) (-583 (-1090))) 10 T ELT) (((-1090) |#1| (-1090) (-1090) (-1090)) 13 T ELT) (((-1090) |#1| (-1090) (-1090)) 12 T ELT) (((-1090) |#1| (-1090)) 11 T ELT))) -(((-641 |#1|) (-10 -7 (-15 -2383 ((-1090) |#1| (-1090))) (-15 -2383 ((-1090) |#1| (-1090) (-1090))) (-15 -2383 ((-1090) |#1| (-1090) (-1090) (-1090))) (-15 -2383 ((-1090) |#1| (-1090) (-583 (-1090))))) (-553 (-473))) (T -641)) -((-2383 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1090))) (-5 *2 (-1090)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) (-2383 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) (-2383 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) (-2383 (*1 *2 *3 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473)))))) -((-2384 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) -(((-642 |#1| |#2|) (-10 -7 (-15 -2384 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1129) (-1129)) (T -642)) -((-2384 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-642 *3 *4)) (-4 *3 (-1129)) (-4 *4 (-1129))))) -((-2385 (((-1 |#3| |#2|) (-1090)) 11 T ELT)) (-2386 (((-1 |#3| |#2|) |#1| (-1090)) 21 T ELT))) -(((-643 |#1| |#2| |#3|) (-10 -7 (-15 -2385 ((-1 |#3| |#2|) (-1090))) (-15 -2386 ((-1 |#3| |#2|) |#1| (-1090)))) (-553 (-473)) (-1129) (-1129)) (T -643)) -((-2386 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *3 *5 *6)) (-4 *3 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *4 *5 *6)) (-4 *4 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129))))) -((-2389 (((-3 (-583 (-1085 |#4|)) #1="failed") (-1085 |#4|) (-583 |#2|) (-583 (-1085 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| |#4|)))) (-583 (-694)) (-1179 (-583 (-1085 |#3|))) |#3|) 92 T ELT)) (-2388 (((-3 (-583 (-1085 |#4|)) #1#) (-1085 |#4|) (-583 |#2|) (-583 (-1085 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-694)) |#3|) 110 T ELT)) (-2387 (((-3 (-583 (-1085 |#4|)) #1#) (-1085 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-694)) (-583 (-1085 |#4|)) (-1179 (-583 (-1085 |#3|))) |#3|) 48 T ELT))) -(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2387 ((-3 (-583 (-1085 |#4|)) #1="failed") (-1085 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-694)) (-583 (-1085 |#4|)) (-1179 (-583 (-1085 |#3|))) |#3|)) (-15 -2388 ((-3 (-583 (-1085 |#4|)) #1#) (-1085 |#4|) (-583 |#2|) (-583 (-1085 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-694)) |#3|)) (-15 -2389 ((-3 (-583 (-1085 |#4|)) #1#) (-1085 |#4|) (-583 |#2|) (-583 (-1085 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| |#4|)))) (-583 (-694)) (-1179 (-583 (-1085 |#3|))) |#3|))) (-717) (-756) (-258) (-861 |#3| |#1| |#2|)) (T -644)) -((-2389 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1085 *13))) (-5 *3 (-1085 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-694))) (-5 *9 (-1179 (-583 (-1085 *10)))) (-4 *12 (-756)) (-4 *10 (-258)) (-4 *13 (-861 *10 *11 *12)) (-4 *11 (-717)) (-5 *1 (-644 *11 *12 *10 *13)))) (-2388 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1085 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-694))) (-4 *11 (-756)) (-4 *9 (-258)) (-4 *12 (-861 *9 *10 *11)) (-4 *10 (-717)) (-5 *2 (-583 (-1085 *12))) (-5 *1 (-644 *10 *11 *9 *12)) (-5 *3 (-1085 *12)))) (-2387 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1085 *11))) (-5 *3 (-1085 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-694))) (-5 *7 (-1179 (-583 (-1085 *8)))) (-4 *10 (-756)) (-4 *8 (-258)) (-4 *11 (-861 *8 *9 *10)) (-4 *9 (-717)) (-5 *1 (-644 *9 *10 *8 *11))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3959 (($ $) 56 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2893 (($ |#1| (-694)) 54 T ELT)) (-2820 (((-694) $) 58 T ELT)) (-3174 ((|#1| $) 57 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3948 (((-694) $) 59 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 53 (|has| |#1| (-146)) ELT)) (-3677 ((|#1| $ (-694)) 55 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 61 T ELT) (($ |#1| $) 60 T ELT))) -(((-645 |#1|) (-113) (-961)) (T -645)) -((-3948 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-3959 (*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961))))) -(-13 (-961) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3948 ((-694) $)) (-15 -2820 ((-694) $)) (-15 -3174 (|t#1| $)) (-15 -3959 ($ $)) (-15 -3677 (|t#1| $ (-694))) (-15 -2893 ($ |t#1| (-694))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-3958 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) -(((-646 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3958 (|#6| (-1 |#4| |#1|) |#3|))) (-495) (-1155 |#1|) (-1155 (-350 |#2|)) (-495) (-1155 |#4|) (-1155 (-350 |#5|))) (T -646)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-495)) (-4 *7 (-495)) (-4 *6 (-1155 *5)) (-4 *2 (-1155 (-350 *8))) (-5 *1 (-646 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1155 (-350 *6))) (-4 *8 (-1155 *7))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2390 (((-1073) (-772)) 36 T ELT)) (-3617 (((-1185) (-1073)) 29 T ELT)) (-2392 (((-1073) (-772)) 26 T ELT)) (-2391 (((-1073) (-772)) 27 T ELT)) (-3946 (((-772) $) NIL T ELT) (((-1073) (-772)) 25 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-647) (-13 (-1013) (-10 -7 (-15 -3946 ((-1073) (-772))) (-15 -2392 ((-1073) (-772))) (-15 -2391 ((-1073) (-772))) (-15 -2390 ((-1073) (-772))) (-15 -3617 ((-1185) (-1073)))))) (T -647)) -((-3946 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-647))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2564 (($ $ $) NIL T ELT)) (-3842 (($ |#1| |#2|) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2614 ((|#2| $) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2402 (((-3 $ #1#) $ $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT))) -(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-312) (-10 -8 (-15 -2614 (|#2| $)) (-15 -3946 (|#1| $)) (-15 -3842 ($ |#1| |#2|)) (-15 -2402 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -648)) -((-2614 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3946 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3842 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2402 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 37 T ELT)) (-3767 (((-1179 |#1|) $ (-694)) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3765 (($ (-1085 |#1|)) NIL T ELT)) (-3083 (((-1085 $) $ (-994)) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3755 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3136 (((-694)) 55 (|has| |#1| (-320)) ELT)) (-3761 (($ $ (-694)) NIL T ELT)) (-3760 (($ $ (-694)) NIL T ELT)) (-2399 ((|#2| |#2|) 51 T ELT)) (-3751 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-994) $) NIL T ELT)) (-3756 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) 72 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3842 (($ |#2|) 49 T ELT)) (-3467 (((-3 $ #1#) $) 98 T ELT)) (-2994 (($) 59 (|has| |#1| (-320)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ $) NIL T ELT)) (-3753 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3752 (((-2 (|:| -3954 |#1|) (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-994)) NIL (|has| |#1| (-392)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-2395 (((-869 $)) 89 T ELT)) (-1624 (($ $ |#1| (-694) $) NIL T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-994) (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3772 (((-694) $ $) NIL (|has| |#1| (-495)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3445 (((-632 $) $) NIL (|has| |#1| (-1066)) ELT)) (-3084 (($ (-1085 |#1|) (-994)) NIL T ELT) (($ (-1085 $) (-994)) NIL T ELT)) (-3777 (($ $ (-694)) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) 86 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2614 ((|#2|) 52 T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1625 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3766 (((-1085 |#1|) $) NIL T ELT)) (-3082 (((-3 (-994) #1#) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-320)) ELT)) (-3079 ((|#2| $) 48 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) 35 T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3812 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3446 (($) NIL (|has| |#1| (-1066)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2393 (($ $) 88 (|has| |#1| (-299)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-495)) ELT)) (-3764 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 99 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3948 (((-694) $) 39 T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3972 (((-800 (-330)) $) NIL (-12 (|has| (-994) (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-994)) NIL (|has| |#1| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-2394 (((-869 $)) 43 T ELT)) (-3754 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-495)) ELT)) (-3946 (((-772) $) 69 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-994)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3817 (((-583 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-694)) 71 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 26 T CONST)) (-2398 (((-1179 |#1|) $) 84 T ELT)) (-2397 (($ (-1179 |#1|)) 58 T ELT)) (-2666 (($) 9 T CONST)) (-2669 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-2396 (((-1179 |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) 77 T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 40 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 93 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT))) -(((-649 |#1| |#2|) (-13 (-1155 |#1|) (-555 |#2|) (-10 -8 (-15 -2399 (|#2| |#2|)) (-15 -2614 (|#2|)) (-15 -3842 ($ |#2|)) (-15 -3079 (|#2| $)) (-15 -2398 ((-1179 |#1|) $)) (-15 -2397 ($ (-1179 |#1|))) (-15 -2396 ((-1179 |#1|) $)) (-15 -2395 ((-869 $))) (-15 -2394 ((-869 $))) (IF (|has| |#1| (-299)) (-15 -2393 ($ $)) |%noBranch|) (IF (|has| |#1| (-320)) (-6 (-320)) |%noBranch|))) (-961) (-1155 |#1|)) (T -649)) -((-2399 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1155 *3)))) (-2614 (*1 *2) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) (-3842 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1155 *3)))) (-3079 (*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) (-2398 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1179 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1155 *3)))) (-2397 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-961)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1155 *3)))) (-2396 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1179 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1155 *3)))) (-2395 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1155 *3)))) (-2394 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1155 *3)))) (-2393 (*1 *1 *1) (-12 (-4 *2 (-299)) (-4 *2 (-961)) (-5 *1 (-649 *2 *3)) (-4 *3 (-1155 *2))))) -((-2568 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 ((|#1| $) 13 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2401 ((|#2| $) 12 T ELT)) (-3530 (($ |#1| |#2|) 16 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) 15 T ELT) (((-2 (|:| -2400 |#1|) (|:| -2401 |#2|)) $) 14 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 11 T ELT))) -(((-650 |#1| |#2| |#3|) (-13 (-756) (-430 (-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) (-10 -8 (-15 -2401 (|#2| $)) (-15 -2400 (|#1| $)) (-15 -3530 ($ |#1| |#2|)))) (-756) (-1013) (-1 (-85) (-2 (|:| -2400 |#1|) (|:| -2401 |#2|)) (-2 (|:| -2400 |#1|) (|:| -2401 |#2|)))) (T -650)) -((-2401 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-756)) (-14 *4 (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *2)) (-2 (|:| -2400 *3) (|:| -2401 *2)))))) (-2400 (*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1013)) (-14 *4 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3)) (-2 (|:| -2400 *2) (|:| -2401 *3)))))) (-3530 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-1013)) (-14 *4 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3)) (-2 (|:| -2400 *2) (|:| -2401 *3))))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 66 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3467 (((-3 $ #1#) $) 102 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2516 ((|#2| (-86) |#2|) 93 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2515 (($ |#1| (-310 (-86))) 14 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2517 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2518 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3800 ((|#2| $ |#2|) 33 T ELT)) (-2519 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3946 (((-772) $) 73 T ELT) (($ (-484)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 37 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2520 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 9 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 83 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ (-86) (-484)) NIL T ELT) (($ $ (-484)) 64 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT))) -(((-651 |#1| |#2|) (-13 (-961) (-950 |#1|) (-950 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2520 ($ $)) (-15 -2520 ($ $ $)) (-15 -2519 (|#1| |#1|))) |%noBranch|) (-15 -2518 ($ $ (-1 |#2| |#2|))) (-15 -2517 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-484))) (-15 ** ($ $ (-484))) (-15 -2516 (|#2| (-86) |#2|)) (-15 -2515 ($ |#1| (-310 (-86)))))) (-961) (-590 |#1|)) (T -651)) -((-2520 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2519 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-651 *4 *5)) (-4 *5 (-590 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)) (-4 *4 (-590 *3)))) (-2516 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-961)) (-5 *1 (-651 *4 *2)) (-4 *2 (-590 *4)))) (-2515 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-4 *2 (-961)) (-5 *1 (-651 *2 *4)) (-4 *4 (-590 *2))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 33 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3842 (($ |#1| |#2|) 25 T ELT)) (-3467 (((-3 $ #1#) $) 51 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 35 T ELT)) (-2614 ((|#2| $) 12 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 52 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2402 (((-3 $ #1#) $ $) 50 T ELT)) (-3946 (((-772) $) 24 T ELT) (($ (-484)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3126 (((-694)) 28 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 16 T CONST)) (-2666 (($) 30 T CONST)) (-3056 (((-85) $ $) 41 T ELT)) (-3837 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3839 (($ $ $) 43 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 21 T ELT) (($ $ $) 20 T ELT))) -(((-652 |#1| |#2| |#3| |#4| |#5|) (-13 (-961) (-10 -8 (-15 -2614 (|#2| $)) (-15 -3946 (|#1| $)) (-15 -3842 ($ |#1| |#2|)) (-15 -2402 ((-3 $ #1="failed") $ $)) (-15 -3467 ((-3 $ #1#) $)) (-15 -2484 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -652)) -((-3467 (*1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2614 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3946 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3842 (*1 *1 *2 *3) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2402 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2484 (*1 *1 *1) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) -(((-653 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-654 |#2|) (-146)) (T -653)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-654 |#1|) (-113) (-146)) (T -654)) -NIL -(-13 (-82 |t#1| |t#1|) (-582 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-2441 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3847 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2403 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 16 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3768 ((|#1| $ |#1|) 24 T ELT) (((-743 |#1|) $ (-743 |#1|)) 32 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-3946 (((-772) $) 39 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2666 (($) 9 T CONST)) (-3056 (((-85) $ $) 48 T ELT)) (-3949 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 14 T ELT))) -(((-655 |#1|) (-13 (-413) (-10 -8 (-15 -2403 ($ |#1| |#1| |#1| |#1|)) (-15 -2441 ($ |#1|)) (-15 -3847 ($ |#1|)) (-15 -3467 ($)) (-15 -2441 ($ $ |#1|)) (-15 -3847 ($ $ |#1|)) (-15 -3467 ($ $)) (-15 -3768 (|#1| $ |#1|)) (-15 -3768 ((-743 |#1|) $ (-743 |#1|))))) (-312)) (T -655)) -((-2403 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-2441 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3847 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3467 (*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-2441 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3847 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3467 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3768 (*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3768 (*1 *2 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *3 (-312)) (-5 *1 (-655 *3))))) -((-2407 (($ $ (-830)) 19 T ELT)) (-2406 (($ $ (-830)) 20 T ELT)) (** (($ $ (-830)) 10 T ELT))) -(((-656 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-830))) (-15 -2406 (|#1| |#1| (-830))) (-15 -2407 (|#1| |#1| (-830)))) (-657)) (T -656)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-2407 (($ $ (-830)) 19 T ELT)) (-2406 (($ $ (-830)) 18 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT)) (* (($ $ $) 20 T ELT))) -(((-657) (-113)) (T -657)) -((* (*1 *1 *1 *1) (-4 *1 (-657))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) (-2406 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830))))) -(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 -2407 ($ $ (-830))) (-15 -2406 ($ $ (-830))) (-15 ** ($ $ (-830))))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-2407 (($ $ (-830)) NIL T ELT) (($ $ (-694)) 18 T ELT)) (-2410 (((-85) $) 10 T ELT)) (-2406 (($ $ (-830)) NIL T ELT) (($ $ (-694)) 19 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 16 T ELT))) -(((-658 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-694))) (-15 -2406 (|#1| |#1| (-694))) (-15 -2407 (|#1| |#1| (-694))) (-15 -2410 ((-85) |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 -2406 (|#1| |#1| (-830))) (-15 -2407 (|#1| |#1| (-830)))) (-659)) (T -658)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-2404 (((-3 $ "failed") $) 22 T ELT)) (-2407 (($ $ (-830)) 19 T ELT) (($ $ (-694)) 27 T ELT)) (-3467 (((-3 $ "failed") $) 24 T ELT)) (-2410 (((-85) $) 28 T ELT)) (-2405 (((-3 $ "failed") $) 23 T ELT)) (-2406 (($ $ (-830)) 18 T ELT) (($ $ (-694)) 26 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2666 (($) 29 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 25 T ELT)) (* (($ $ $) 20 T ELT))) -(((-659) (-113)) (T -659)) -((-2666 (*1 *1) (-4 *1 (-659))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-85)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (-2406 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (-3467 (*1 *1 *1) (|partial| -4 *1 (-659))) (-2405 (*1 *1 *1) (|partial| -4 *1 (-659))) (-2404 (*1 *1 *1) (|partial| -4 *1 (-659)))) -(-13 (-657) (-10 -8 (-15 -2666 ($) -3952) (-15 -2410 ((-85) $)) (-15 -2407 ($ $ (-694))) (-15 -2406 ($ $ (-694))) (-15 ** ($ $ (-694))) (-15 -3467 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $)) (-15 -2404 ((-3 $ "failed") $)))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-657) . T) ((-1013) . T) ((-1129) . T)) -((-3136 (((-694)) 39 T ELT)) (-3157 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3156 (((-484) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3842 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) 49 T ELT)) (-3467 (((-3 $ #1#) $) 69 T ELT)) (-2994 (($) 43 T ELT)) (-3132 ((|#2| $) 21 T ELT)) (-2409 (($) 18 T ELT)) (-3758 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2408 (((-630 |#2|) (-1179 $) (-1 |#2| |#2|)) 64 T ELT)) (-3972 (((-1179 |#2|) $) NIL T ELT) (($ (-1179 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2449 ((|#3| $) 36 T ELT)) (-2012 (((-1179 $)) 33 T ELT))) -(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-694))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3758 (|#1| |#1| (-583 (-1090)))) (-15 -3758 (|#1| |#1| (-1090) (-694))) (-15 -3758 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -2994 (|#1|)) (-15 -3136 ((-694))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2408 ((-630 |#2|) (-1179 |#1|) (-1 |#2| |#2|))) (-15 -3842 ((-3 |#1| #1="failed") (-350 |#3|))) (-15 -3972 (|#1| |#3|)) (-15 -3842 (|#1| |#3|)) (-15 -2409 (|#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3156 ((-350 (-484)) |#1|)) (-15 -3157 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3972 (|#3| |#1|)) (-15 -3972 (|#1| (-1179 |#2|))) (-15 -3972 ((-1179 |#2|) |#1|)) (-15 -2012 ((-1179 |#1|))) (-15 -2449 (|#3| |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1|))) (-661 |#2| |#3|) (-146) (-1155 |#2|)) (T -660)) -((-3136 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-694)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-661 *4 *5))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 114 (|has| |#1| (-312)) ELT)) (-2063 (($ $) 115 (|has| |#1| (-312)) ELT)) (-2061 (((-85) $) 117 (|has| |#1| (-312)) ELT)) (-1782 (((-630 |#1|) (-1179 $)) 61 T ELT) (((-630 |#1|)) 77 T ELT)) (-3330 ((|#1| $) 67 T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 167 (|has| |#1| (-299)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 134 (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) 135 (|has| |#1| (-312)) ELT)) (-1608 (((-85) $ $) 125 (|has| |#1| (-312)) ELT)) (-3136 (((-694)) 108 (|has| |#1| (-320)) ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 194 (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 192 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3156 (((-484) $) 193 (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) 191 (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 190 T ELT)) (-1792 (($ (-1179 |#1|) (-1179 $)) 63 T ELT) (($ (-1179 |#1|)) 80 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2564 (($ $ $) 129 (|has| |#1| (-312)) ELT)) (-1781 (((-630 |#1|) $ (-1179 $)) 68 T ELT) (((-630 |#1|) $) 75 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 186 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 185 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 184 T ELT) (((-630 |#1|) (-630 $)) 183 T ELT)) (-3842 (($ |#2|) 178 T ELT) (((-3 $ "failed") (-350 |#2|)) 175 (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3108 (((-830)) 69 T ELT)) (-2994 (($) 111 (|has| |#1| (-320)) ELT)) (-2563 (($ $ $) 128 (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 123 (|has| |#1| (-312)) ELT)) (-2833 (($) 169 (|has| |#1| (-299)) ELT)) (-1680 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1764 (($ $ (-694)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3723 (((-85) $) 136 (|has| |#1| (-312)) ELT)) (-3772 (((-830) $) 172 (|has| |#1| (-299)) ELT) (((-743 (-830)) $) 158 (|has| |#1| (-299)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3132 ((|#1| $) 66 T ELT)) (-3445 (((-632 $) $) 162 (|has| |#1| (-299)) ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 132 (|has| |#1| (-312)) ELT)) (-2014 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-2010 (((-830) $) 110 (|has| |#1| (-320)) ELT)) (-3079 ((|#2| $) 176 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 188 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 187 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 182 T ELT) (((-630 |#1|) (-1179 $)) 181 T ELT)) (-1891 (($ (-583 $)) 121 (|has| |#1| (-312)) ELT) (($ $ $) 120 (|has| |#1| (-312)) ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3446 (($) 163 (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) 109 (|has| |#1| (-320)) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2409 (($) 180 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 122 (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) 119 (|has| |#1| (-312)) ELT) (($ $ $) 118 (|has| |#1| (-312)) ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) 166 (|has| |#1| (-299)) ELT)) (-3732 (((-348 $) $) 133 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 130 (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ "failed") $ $) 113 (|has| |#1| (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 124 (|has| |#1| (-312)) ELT)) (-1607 (((-694) $) 126 (|has| |#1| (-312)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 127 (|has| |#1| (-312)) ELT)) (-3757 ((|#1| (-1179 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1765 (((-694) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-694) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3758 (($ $ (-694)) 156 (OR (-2562 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 154 (OR (-2562 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 150 (-2562 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1090) (-694)) 149 (-2562 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1090))) 148 (-2562 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1090)) 146 (-2562 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 145 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) 144 (|has| |#1| (-312)) ELT)) (-2408 (((-630 |#1|) (-1179 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3185 ((|#2|) 179 T ELT)) (-1674 (($) 168 (|has| |#1| (-299)) ELT)) (-3224 (((-1179 |#1|) $ (-1179 $)) 65 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) 64 T ELT) (((-1179 |#1|) $) 82 T ELT) (((-630 |#1|) (-1179 $)) 81 T ELT)) (-3972 (((-1179 |#1|) $) 79 T ELT) (($ (-1179 |#1|)) 78 T ELT) ((|#2| $) 195 T ELT) (($ |#2|) 177 T ELT)) (-2703 (((-3 (-1179 $) "failed") (-630 $)) 165 (|has| |#1| (-299)) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ $) 112 (|has| |#1| (-312)) ELT) (($ (-350 (-484))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2702 (($ $) 164 (|has| |#1| (-299)) ELT) (((-632 $) $) 58 (|has| |#1| (-118)) ELT)) (-2449 ((|#2| $) 60 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2012 (((-1179 $)) 83 T ELT)) (-2062 (((-85) $ $) 116 (|has| |#1| (-312)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-694)) 157 (OR (-2562 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 155 (OR (-2562 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 153 (-2562 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1090) (-694)) 152 (-2562 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1090))) 151 (-2562 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1090)) 147 (-2562 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) 142 (|has| |#1| (-312)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-484)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-484))) 139 (|has| |#1| (-312)) ELT))) -(((-661 |#1| |#2|) (-113) (-146) (-1155 |t#1|)) (T -661)) -((-2409 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1155 *2)))) (-3185 (*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3)))) (-3842 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1155 *3)))) (-3972 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1155 *3)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3)))) (-3842 (*1 *1 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-312)) (-4 *3 (-146)) (-4 *1 (-661 *3 *4)))) (-2408 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-4 *1 (-661 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1155 *5)) (-5 *2 (-630 *5))))) -(-13 (-353 |t#1| |t#2|) (-146) (-553 |t#2|) (-355 |t#1|) (-329 |t#1|) (-10 -8 (-15 -2409 ($)) (-15 -3185 (|t#2|)) (-15 -3842 ($ |t#2|)) (-15 -3972 ($ |t#2|)) (-15 -3079 (|t#2| $)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-312)) (-6 (-184 |t#1|)) (-15 -3842 ((-3 $ "failed") (-350 |t#2|))) (-15 -2408 ((-630 |t#1|) (-1179 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) . T) ((-553 |#2|) . T) ((-186 $) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-184 |#1|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-189) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-225 |#1|) |has| |#1| (-312)) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-246) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| |#2|) . T) ((-353 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-495) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-582 |#1|) . T) ((-582 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-654 |#1|) . T) ((-654 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090))))) ((-809 (-1090)) -12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) ((-811 (-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090))))) ((-832) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) |has| |#1| (-299)) ((-1129) . T) ((-1134) OR (|has| |#1| (-299)) (|has| |#1| (-312)))) -((-3724 (($) 11 T CONST)) (-3467 (((-3 $ "failed") $) 14 T ELT)) (-2410 (((-85) $) 10 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 20 T ELT))) -(((-662 |#1|) (-10 -7 (-15 -3467 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 -2410 ((-85) |#1|)) (-15 -3724 (|#1|) -3952) (-15 ** (|#1| |#1| (-830)))) (-663)) (T -662)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 20 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT)) (* (($ $ $) 18 T ELT))) -(((-663) (-113)) (T -663)) -((-2666 (*1 *1) (-4 *1 (-663))) (-3724 (*1 *1) (-4 *1 (-663))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-694)))) (-3467 (*1 *1 *1) (|partial| -4 *1 (-663)))) -(-13 (-1025) (-10 -8 (-15 -2666 ($) -3952) (-15 -3724 ($) -3952) (-15 -2410 ((-85) $)) (-15 ** ($ $ (-694))) (-15 -3467 ((-3 $ "failed") $)))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1025) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-2412 ((|#1| $) 16 T ELT)) (-2411 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3946 (((-772) $) NIL T ELT) (((-1022 |#1|) $) 17 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-664 |#1|) (-13 (-665 |#1|) (-1013) (-552 (-1022 |#1|)) (-10 -8 (-15 -2411 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -664)) -((-2411 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-664 *3))))) -((-2412 ((|#1| $) 8 T ELT)) (-3800 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-665 |#1|) (-113) (-72)) (T -665)) -((-2412 (*1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-72))))) -(-13 (-1023 |t#1|) (-10 -8 (-15 -2412 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3056 (|f| |x| (-2412 |f|)) |x|) (|exit| 1 (-3056 (|f| (-2412 |f|) |x|) |x|)))))))) -(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1023 |#1|) . T) ((-1129) . T)) -((-2413 (((-2 (|:| -3089 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3418 (((-2 (|:| -3089 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2414 ((|#2| (-350 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3435 (((-2 (|:| |poly| |#2|) (|:| -3089 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)) 48 T ELT))) -(((-666 |#1| |#2|) (-10 -7 (-15 -3418 ((-2 (|:| -3089 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2413 ((-2 (|:| -3089 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2414 (|#2| (-350 |#2|) (-1 |#2| |#2|))) (-15 -3435 ((-2 (|:| |poly| |#2|) (|:| -3089 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1155 |#1|)) (T -666)) -((-3435 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3089 (-350 *6)) (|:| |special| (-350 *6)))) (-5 *1 (-666 *5 *6)) (-5 *3 (-350 *6)))) (-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-666 *5 *2)) (-4 *5 (-312)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3089 (-348 *3)) (|:| |special| (-348 *3)))) (-5 *1 (-666 *5 *3)))) (-3418 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3089 *3) (|:| |special| *3))) (-5 *1 (-666 *5 *3))))) -((-2415 ((|#7| (-583 |#5|) |#6|) NIL T ELT)) (-3958 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) -(((-667 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3958 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2415 (|#7| (-583 |#5|) |#6|))) (-756) (-717) (-717) (-961) (-961) (-861 |#4| |#2| |#1|) (-861 |#5| |#3| |#1|)) (T -667)) -((-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-961)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5))))) -((-3958 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) -(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3958 (|#7| (-1 |#2| |#1|) |#6|))) (-756) (-756) (-717) (-717) (-961) (-861 |#5| |#3| |#1|) (-861 |#5| |#4| |#2|)) (T -668)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-756)) (-4 *6 (-756)) (-4 *7 (-717)) (-4 *9 (-961)) (-4 *2 (-861 *9 *8 *6)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-717)) (-4 *4 (-861 *9 *7 *5))))) -((-3732 (((-348 |#4|) |#4|) 42 T ELT))) -(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 ((-348 |#4|) |#4|))) (-717) (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090))))) (-258) (-861 (-857 |#3|) |#1| |#2|)) (T -669)) -((-3732 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090)))))) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-669 *4 *5 *6 *3)) (-4 *3 (-861 (-857 *6) *4 *5))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3083 (((-1085 $) $ (-773 |#1|)) NIL T ELT) (((-1085 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3775 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3756 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3959 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1624 (($ $ |#2| (-469 (-773 |#1|)) $) NIL T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-330))) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1085 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1085 $) (-773 |#1|)) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-469 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2820 (((-469 (-773 |#1|)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1625 (($ (-1 (-469 (-773 |#1|)) (-469 (-773 |#1|))) $) NIL T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3082 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#2| $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-392)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#2| (-821)) ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3768 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3757 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3758 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3948 (((-469 (-773 |#1|)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3972 (((-800 (-330)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-495)) ELT) (($ (-350 (-484))) NIL (OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ELT)) (-3817 (((-583 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-469 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-670 |#1| |#2|) (-861 |#2| (-469 (-773 |#1|)) (-773 |#1|)) (-583 (-1090)) (-961)) (T -670)) -NIL -((-2416 (((-2 (|:| -2483 (-857 |#3|)) (|:| -2058 (-857 |#3|))) |#4|) 14 T ELT)) (-2986 ((|#4| |#4| |#2|) 33 T ELT)) (-2419 ((|#4| (-350 (-857 |#3|)) |#2|) 62 T ELT)) (-2418 ((|#4| (-1085 (-857 |#3|)) |#2|) 74 T ELT)) (-2417 ((|#4| (-1085 |#4|) |#2|) 49 T ELT)) (-2985 ((|#4| |#4| |#2|) 52 T ELT)) (-3732 (((-348 |#4|) |#4|) 40 T ELT))) -(((-671 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2416 ((-2 (|:| -2483 (-857 |#3|)) (|:| -2058 (-857 |#3|))) |#4|)) (-15 -2985 (|#4| |#4| |#2|)) (-15 -2417 (|#4| (-1085 |#4|) |#2|)) (-15 -2986 (|#4| |#4| |#2|)) (-15 -2418 (|#4| (-1085 (-857 |#3|)) |#2|)) (-15 -2419 (|#4| (-350 (-857 |#3|)) |#2|)) (-15 -3732 ((-348 |#4|) |#4|))) (-717) (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $)))) (-495) (-861 (-350 (-857 |#3|)) |#1| |#2|)) (T -671)) -((-3732 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $))))) (-4 *6 (-495)) (-5 *2 (-348 *3)) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-350 (-857 *6)) *4 *5)))) (-2419 (*1 *2 *3 *4) (-12 (-4 *6 (-495)) (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-5 *3 (-350 (-857 *6))) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $))))))) (-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 (-857 *6))) (-4 *6 (-495)) (-4 *2 (-861 (-350 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $))))))) (-2986 (*1 *2 *2 *3) (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $))))) (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2)) (-4 *2 (-861 (-350 (-857 *5)) *4 *3)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-861 (-350 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $))))) (-4 *6 (-495)))) (-2985 (*1 *2 *2 *3) (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $))))) (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2)) (-4 *2 (-861 (-350 (-857 *5)) *4 *3)))) (-2416 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $))))) (-4 *6 (-495)) (-5 *2 (-2 (|:| -2483 (-857 *6)) (|:| -2058 (-857 *6)))) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-350 (-857 *6)) *4 *5))))) -((-3732 (((-348 |#4|) |#4|) 54 T ELT))) -(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 ((-348 |#4|) |#4|))) (-717) (-756) (-13 (-258) (-120)) (-861 (-350 |#3|) |#1| |#2|)) (T -672)) -((-3732 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-861 (-350 *6) *4 *5))))) -((-3958 (((-674 |#2| |#3|) (-1 |#2| |#1|) (-674 |#1| |#3|)) 18 T ELT))) -(((-673 |#1| |#2| |#3|) (-10 -7 (-15 -3958 ((-674 |#2| |#3|) (-1 |#2| |#1|) (-674 |#1| |#3|)))) (-961) (-961) (-663)) (T -673)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-674 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-663)) (-5 *2 (-674 *6 *7)) (-5 *1 (-673 *5 *6 *7))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 36 T ELT)) (-3774 (((-583 (-2 (|:| -3954 |#1|) (|:| -3938 |#2|))) $) 37 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694)) 22 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3156 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3959 (($ $) 99 (|has| |#2| (-756)) ELT)) (-3467 (((-3 $ #1#) $) 83 T ELT)) (-2994 (($) 48 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 70 T ELT)) (-2821 (((-583 $) $) 52 T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| |#2|) 17 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2010 (((-830) $) 43 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-2894 ((|#2| $) 98 (|has| |#2| (-756)) ELT)) (-3174 ((|#1| $) 97 (|has| |#2| (-756)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 35 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 96 T ELT) (($ (-484)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-583 (-2 (|:| -3954 |#1|) (|:| -3938 |#2|)))) 11 T ELT)) (-3817 (((-583 |#1|) $) 54 T ELT)) (-3677 ((|#1| $ |#2|) 114 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 12 T CONST)) (-2666 (($) 44 T CONST)) (-3056 (((-85) $ $) 104 T ELT)) (-3837 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 33 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-674 |#1| |#2|) (-13 (-961) (-950 |#2|) (-950 |#1|) (-10 -8 (-15 -2893 ($ |#1| |#2|)) (-15 -3677 (|#1| $ |#2|)) (-15 -3946 ($ (-583 (-2 (|:| -3954 |#1|) (|:| -3938 |#2|))))) (-15 -3774 ((-583 (-2 (|:| -3954 |#1|) (|:| -3938 |#2|))) $)) (-15 -3958 ($ (-1 |#1| |#1|) $)) (-15 -3937 ((-85) $)) (-15 -3817 ((-583 |#1|) $)) (-15 -2821 ((-583 $) $)) (-15 -2420 ((-694) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-756)) (PROGN (-15 -2894 (|#2| $)) (-15 -3174 (|#1| $)) (-15 -3959 ($ $))) |%noBranch|))) (-961) (-663)) (T -674)) -((-2893 (*1 *1 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-961)) (-4 *3 (-663)))) (-3677 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-663)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3954 *3) (|:| -3938 *4)))) (-4 *3 (-961)) (-4 *4 (-663)) (-5 *1 (-674 *3 *4)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3954 *3) (|:| -3938 *4)))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-674 *3 *4)) (-4 *4 (-663)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-583 (-674 *3 *4))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2894 (*1 *2 *1) (-12 (-4 *2 (-663)) (-4 *2 (-756)) (-5 *1 (-674 *3 *2)) (-4 *3 (-961)))) (-3174 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *3 (-663)))) (-3959 (*1 *1 *1) (-12 (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *2 (-961)) (-4 *3 (-663))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3234 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3236 (($ $ $) 99 T ELT)) (-3235 (((-85) $ $) 107 T ELT)) (-3239 (($ (-583 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2368 (($ $) 88 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) 71 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3995)) ELT) (($ |#1| $ (-484)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-484)) 81 T ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (($ |#1| $ (-484)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-484)) 84 T ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2889 (((-583 |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3241 (((-85) $ $) 106 T ELT)) (-2421 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-583 |#1|)) 23 T ELT)) (-2608 (((-583 |#1|) $) 38 T ELT)) (-3245 (((-85) |#1| $) 66 (|has| |#1| (-72)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 91 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3238 (($ $ $) 97 T ELT)) (-1274 ((|#1| $) 63 T ELT)) (-3609 (($ |#1| $) 64 T ELT) (($ |#1| $ (-694)) 89 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1275 ((|#1| $) 62 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 57 T ELT)) (-3565 (($) 14 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1946 (-694)))) $) 56 T ELT)) (-3237 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1466 (($) 16 T ELT) (($ (-583 |#1|)) 25 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) 69 (|has| |#1| (-72)) ELT)) (-3400 (($ $) 82 T ELT)) (-3972 (((-473) $) 36 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 22 T ELT)) (-3946 (((-772) $) 50 T ELT)) (-3240 (($ (-583 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1276 (($ (-583 |#1|)) 24 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) 103 T ELT)) (-3957 (((-694) $) 68 T ELT))) -(((-675 |#1|) (-13 (-676 |#1|) (-318 |#1|) (-1035 |#1|) (-10 -8 (-15 -2421 ($)) (-15 -2421 ($ |#1|)) (-15 -2421 ($ (-583 |#1|))) (-15 -2608 ((-583 |#1|) $)) (-15 -3406 ($ |#1| $ (-484))) (-15 -3406 ($ (-1 (-85) |#1|) $ (-484))) (-15 -3405 ($ |#1| $ (-484))) (-15 -3405 ($ (-1 (-85) |#1|) $ (-484))))) (-1013)) (T -675)) -((-2608 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1013)))) (-2421 (*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-2421 (*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-2421 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-675 *3)))) (-3406 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-3406 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4)))) (-3405 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-3405 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4))))) -((-2568 (((-85) $ $) 19 T ELT)) (-3234 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3236 (($ $ $) 77 T ELT)) (-3235 (((-85) $ $) 78 T ELT)) (-3239 (($ (-583 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2368 (($ $) 66 T ELT)) (-1353 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ |#1| $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3995)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3241 (((-85) $ $) 69 T ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1073) $) 22 T ELT)) (-3238 (($ $ $) 74 T ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT) (($ |#1| $ (-694)) 67 T ELT)) (-3243 (((-1033) $) 21 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1946 (-694)))) $) 65 T ELT)) (-3237 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1466 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 54 T ELT)) (-3946 (((-772) $) 17 T ELT)) (-3240 (($ (-583 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1265 (((-85) $ $) 20 T ELT)) (-1276 (($ (-583 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 T ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-676 |#1|) (-113) (-1013)) (T -676)) -NIL -(-13 (-634 |t#1|) (-1011 |t#1|)) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-634 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1035 |#1|) . T) ((-1129) . T)) -((-2422 (((-1185) (-1073)) 8 T ELT))) -(((-677) (-10 -7 (-15 -2422 ((-1185) (-1073))))) (T -677)) -((-2422 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-677))))) -((-2423 (((-583 |#1|) (-583 |#1|) (-583 |#1|)) 15 T ELT))) -(((-678 |#1|) (-10 -7 (-15 -2423 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) (-756)) (T -678)) -((-2423 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-678 *3))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 |#2|) $) 159 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 152 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 151 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 149 (|has| |#1| (-495)) ELT)) (-3492 (($ $) 108 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 91 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3037 (($ $) 90 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) 107 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 92 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) 106 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 93 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) 23 T CONST)) (-3959 (($ $) 143 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3814 (((-857 |#1|) $ (-694)) 121 T ELT) (((-857 |#1|) $ (-694) (-694)) 120 T ELT)) (-2892 (((-85) $) 160 T ELT)) (-3627 (($) 118 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3772 (((-694) $ |#2|) 123 T ELT) (((-694) $ |#2| (-694)) 122 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 89 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3937 (((-85) $) 141 T ELT)) (-2893 (($ $ (-583 |#2|) (-583 (-469 |#2|))) 158 T ELT) (($ $ |#2| (-469 |#2|)) 157 T ELT) (($ |#1| (-469 |#2|)) 142 T ELT) (($ $ |#2| (-694)) 125 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 124 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 140 T ELT)) (-3942 (($ $) 115 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2894 (($ $) 138 T ELT)) (-3174 ((|#1| $) 137 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3812 (($ $ |#2|) 119 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3769 (($ $ (-694)) 126 T ELT)) (-3466 (((-3 $ "failed") $ $) 153 (|has| |#1| (-495)) ELT)) (-3943 (($ $) 116 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (($ $ |#2| $) 134 T ELT) (($ $ (-583 |#2|) (-583 $)) 133 T ELT) (($ $ (-583 (-249 $))) 132 T ELT) (($ $ (-249 $)) 131 T ELT) (($ $ $ $) 130 T ELT) (($ $ (-583 $) (-583 $)) 129 T ELT)) (-3758 (($ $ (-583 |#2|) (-583 (-694))) 52 T ELT) (($ $ |#2| (-694)) 51 T ELT) (($ $ (-583 |#2|)) 50 T ELT) (($ $ |#2|) 48 T ELT)) (-3948 (((-469 |#2|) $) 139 T ELT)) (-3495 (($ $) 105 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 94 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) 104 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 95 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) 103 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) 96 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2891 (($ $) 161 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 156 (|has| |#1| (-146)) ELT) (($ $) 154 (|has| |#1| (-495)) ELT) (($ (-350 (-484))) 146 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3677 ((|#1| $ (-469 |#2|)) 144 T ELT) (($ $ |#2| (-694)) 128 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 127 T ELT)) (-2702 (((-632 $) $) 155 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3498 (($ $) 114 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 102 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) 150 (|has| |#1| (-495)) ELT)) (-3496 (($ $) 113 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) 101 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 112 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 100 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 111 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 99 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) 110 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 98 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) 109 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 97 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 |#2|) (-583 (-694))) 55 T ELT) (($ $ |#2| (-694)) 54 T ELT) (($ $ (-583 |#2|)) 53 T ELT) (($ $ |#2|) 49 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 145 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ $) 117 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 88 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 148 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 136 T ELT) (($ $ |#1|) 135 T ELT))) -(((-679 |#1| |#2|) (-113) (-961) (-756)) (T -679)) -((-3677 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) (-3677 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-679 *3 *4)) (-4 *3 (-961)) (-4 *4 (-756)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3772 (*1 *2 *1 *3) (-12 (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3772 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-694)) (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)))) (-3814 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) (-5 *2 (-857 *4)))) (-3814 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) (-5 *2 (-857 *4)))) (-3812 (*1 *1 *1 *2) (-12 (-4 *1 (-679 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756)) (-4 *3 (-38 (-350 (-484))))))) -(-13 (-809 |t#2|) (-886 |t#1| (-469 |t#2|) |t#2|) (-455 |t#2| $) (-260 $) (-10 -8 (-15 -3677 ($ $ |t#2| (-694))) (-15 -3677 ($ $ (-583 |t#2|) (-583 (-694)))) (-15 -3769 ($ $ (-694))) (-15 -2893 ($ $ |t#2| (-694))) (-15 -2893 ($ $ (-583 |t#2|) (-583 (-694)))) (-15 -3772 ((-694) $ |t#2|)) (-15 -3772 ((-694) $ |t#2| (-694))) (-15 -3814 ((-857 |t#1|) $ (-694))) (-15 -3814 ((-857 |t#1|) $ (-694) (-694))) (IF (|has| |t#1| (-38 (-350 (-484)))) (PROGN (-15 -3812 ($ $ |t#2|)) (-6 (-915)) (-6 (-1115))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-469 |#2|)) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-35) |has| |#1| (-38 (-350 (-484)))) ((-66) |has| |#1| (-38 (-350 (-484)))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-350 (-484)))) ((-246) |has| |#1| (-495)) ((-260 $) . T) ((-433) |has| |#1| (-38 (-350 (-484)))) ((-455 |#2| $) . T) ((-455 $ $) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-806 $ |#2|) . T) ((-809 |#2|) . T) ((-811 |#2|) . T) ((-886 |#1| (-469 |#2|) |#2|) . T) ((-915) |has| |#1| (-38 (-350 (-484)))) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1115) |has| |#1| (-38 (-350 (-484)))) ((-1118) |has| |#1| (-38 (-350 (-484)))) ((-1129) . T)) -((-3732 (((-348 (-1085 |#4|)) (-1085 |#4|)) 30 T ELT) (((-348 |#4|) |#4|) 26 T ELT))) -(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 ((-348 |#4|) |#4|)) (-15 -3732 ((-348 (-1085 |#4|)) (-1085 |#4|)))) (-756) (-717) (-13 (-258) (-120)) (-861 |#3| |#2| |#1|)) (T -680)) -((-3732 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))) -((-2426 (((-348 |#4|) |#4| |#2|) 142 T ELT)) (-2424 (((-348 |#4|) |#4|) NIL T ELT)) (-3971 (((-348 (-1085 |#4|)) (-1085 |#4|)) 129 T ELT) (((-348 |#4|) |#4|) 52 T ELT)) (-2428 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3732 (-1085 |#4|)) (|:| -2401 (-484)))))) (-1085 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 81 T ELT)) (-2432 (((-1085 |#3|) (-1085 |#3|) (-484)) 169 T ELT)) (-2431 (((-583 (-694)) (-1085 |#4|) (-583 |#2|) (-694)) 75 T ELT)) (-3079 (((-3 (-583 (-1085 |#4|)) "failed") (-1085 |#4|) (-1085 |#3|) (-1085 |#3|) |#4| (-583 |#2|) (-583 (-694)) (-583 |#3|)) 79 T ELT)) (-2429 (((-2 (|:| |upol| (-1085 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2401 (-484))))) (|:| |ctpol| |#3|)) (-1085 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 27 T ELT)) (-2427 (((-2 (|:| -2004 (-1085 |#4|)) (|:| |polval| (-1085 |#3|))) (-1085 |#4|) (-1085 |#3|) (-484)) 72 T ELT)) (-2425 (((-484) (-583 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2401 (-484))))) 165 T ELT)) (-2430 ((|#4| (-484) (-348 |#4|)) 73 T ELT)) (-3357 (((-85) (-583 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2401 (-484)))) (-583 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2401 (-484))))) NIL T ELT))) -(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3971 ((-348 |#4|) |#4|)) (-15 -3971 ((-348 (-1085 |#4|)) (-1085 |#4|))) (-15 -2424 ((-348 |#4|) |#4|)) (-15 -2425 ((-484) (-583 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2401 (-484)))))) (-15 -2426 ((-348 |#4|) |#4| |#2|)) (-15 -2427 ((-2 (|:| -2004 (-1085 |#4|)) (|:| |polval| (-1085 |#3|))) (-1085 |#4|) (-1085 |#3|) (-484))) (-15 -2428 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3732 (-1085 |#4|)) (|:| -2401 (-484)))))) (-1085 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2429 ((-2 (|:| |upol| (-1085 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2401 (-484))))) (|:| |ctpol| |#3|)) (-1085 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2430 (|#4| (-484) (-348 |#4|))) (-15 -3357 ((-85) (-583 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2401 (-484)))) (-583 (-2 (|:| -3732 (-1085 |#3|)) (|:| -2401 (-484)))))) (-15 -3079 ((-3 (-583 (-1085 |#4|)) "failed") (-1085 |#4|) (-1085 |#3|) (-1085 |#3|) |#4| (-583 |#2|) (-583 (-694)) (-583 |#3|))) (-15 -2431 ((-583 (-694)) (-1085 |#4|) (-583 |#2|) (-694))) (-15 -2432 ((-1085 |#3|) (-1085 |#3|) (-484)))) (-717) (-756) (-258) (-861 |#3| |#1| |#2|)) (T -681)) -((-2432 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 *6)) (-5 *3 (-484)) (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2431 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1085 *9)) (-5 *4 (-583 *7)) (-4 *7 (-756)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-4 *8 (-258)) (-5 *2 (-583 (-694))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *5 (-694)))) (-3079 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1085 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-694))) (-5 *8 (-583 *11)) (-4 *10 (-756)) (-4 *11 (-258)) (-4 *9 (-717)) (-4 *5 (-861 *11 *9 *10)) (-5 *2 (-583 (-1085 *5))) (-5 *1 (-681 *9 *10 *11 *5)) (-5 *3 (-1085 *5)))) (-3357 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3732 (-1085 *6)) (|:| -2401 (-484))))) (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2430 (*1 *2 *3 *4) (-12 (-5 *3 (-484)) (-5 *4 (-348 *2)) (-4 *2 (-861 *7 *5 *6)) (-5 *1 (-681 *5 *6 *7 *2)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-258)))) (-2429 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1085 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-258)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-2 (|:| |upol| (-1085 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3732 (-1085 *8)) (|:| -2401 (-484))))) (|:| |ctpol| *8))) (-5 *1 (-681 *6 *7 *8 *9)))) (-2428 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-258)) (-4 *6 (-717)) (-4 *9 (-861 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3732 (-1085 *9)) (|:| -2401 (-484))))))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1085 *9)))) (-2427 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-484)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-258)) (-4 *9 (-861 *8 *6 *7)) (-5 *2 (-2 (|:| -2004 (-1085 *9)) (|:| |polval| (-1085 *8)))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1085 *9)) (-5 *4 (-1085 *8)))) (-2426 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-681 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) (-2425 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3732 (-1085 *6)) (|:| -2401 (-484))))) (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2424 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5)))) (-3971 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-3971 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5))))) -((-2433 (($ $ (-830)) 17 T ELT))) -(((-682 |#1| |#2|) (-10 -7 (-15 -2433 (|#1| |#1| (-830)))) (-683 |#2|) (-146)) (T -682)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-2407 (($ $ (-830)) 37 T ELT)) (-2433 (($ $ (-830)) 44 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2435 (($ $ $) 34 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2436 (($ $ $ $) 35 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) -(((-683 |#1|) (-113) (-146)) (T -683)) -((-2433 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-683 *3)) (-4 *3 (-146))))) -(-13 (-685) (-654 |t#1|) (-10 -8 (-15 -2433 ($ $ (-830))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-2435 (($ $ $) 10 T ELT)) (-2436 (($ $ $ $) 9 T ELT)) (-2434 (($ $ $) 12 T ELT))) -(((-684 |#1|) (-10 -7 (-15 -2434 (|#1| |#1| |#1|)) (-15 -2435 (|#1| |#1| |#1|)) (-15 -2436 (|#1| |#1| |#1| |#1|))) (-685)) (T -684)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-2407 (($ $ (-830)) 37 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2435 (($ $ $) 34 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2436 (($ $ $ $) 35 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT))) -(((-685) (-113)) (T -685)) -((-2436 (*1 *1 *1 *1 *1) (-4 *1 (-685))) (-2435 (*1 *1 *1 *1) (-4 *1 (-685))) (-2434 (*1 *1 *1 *1) (-4 *1 (-685)))) -(-13 (-21) (-657) (-10 -8 (-15 -2436 ($ $ $ $)) (-15 -2435 ($ $ $)) (-15 -2434 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-657) . T) ((-1013) . T) ((-1129) . T)) -((-3946 (((-772) $) NIL T ELT) (($ (-484)) 10 T ELT))) -(((-686 |#1|) (-10 -7 (-15 -3946 (|#1| (-484))) (-15 -3946 ((-772) |#1|))) (-687)) (T -686)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-2404 (((-3 $ #1="failed") $) 49 T ELT)) (-2407 (($ $ (-830)) 37 T ELT) (($ $ (-694)) 44 T ELT)) (-3467 (((-3 $ #1#) $) 47 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 43 T ELT)) (-2405 (((-3 $ #1#) $) 48 T ELT)) (-2406 (($ $ (-830)) 38 T ELT) (($ $ (-694)) 45 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2435 (($ $ $) 34 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 40 T ELT)) (-3126 (((-694)) 41 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2436 (($ $ $ $) 35 T ELT)) (-2434 (($ $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 42 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT) (($ $ (-694)) 46 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT))) -(((-687) (-113)) (T -687)) -((-3126 (*1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-694)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-687))))) -(-13 (-685) (-659) (-10 -8 (-15 -3126 ((-694)) -3952) (-15 -3946 ($ (-484))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-657) . T) ((-659) . T) ((-685) . T) ((-1013) . T) ((-1129) . T)) -((-2438 (((-583 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 (-142 |#1|)))))) (-630 (-142 (-350 (-484)))) |#1|) 33 T ELT)) (-2437 (((-583 (-142 |#1|)) (-630 (-142 (-350 (-484)))) |#1|) 23 T ELT)) (-2449 (((-857 (-142 (-350 (-484)))) (-630 (-142 (-350 (-484)))) (-1090)) 20 T ELT) (((-857 (-142 (-350 (-484)))) (-630 (-142 (-350 (-484))))) 19 T ELT))) -(((-688 |#1|) (-10 -7 (-15 -2449 ((-857 (-142 (-350 (-484)))) (-630 (-142 (-350 (-484)))))) (-15 -2449 ((-857 (-142 (-350 (-484)))) (-630 (-142 (-350 (-484)))) (-1090))) (-15 -2437 ((-583 (-142 |#1|)) (-630 (-142 (-350 (-484)))) |#1|)) (-15 -2438 ((-583 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 (-142 |#1|)))))) (-630 (-142 (-350 (-484)))) |#1|))) (-13 (-312) (-755))) (T -688)) -((-2438 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-350 (-484))))) (-5 *2 (-583 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 (-142 *4))))))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))) (-2437 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-350 (-484))))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-350 (-484))))) (-5 *4 (-1090)) (-5 *2 (-857 (-142 (-350 (-484))))) (-5 *1 (-688 *5)) (-4 *5 (-13 (-312) (-755))))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-630 (-142 (-350 (-484))))) (-5 *2 (-857 (-142 (-350 (-484))))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755)))))) -((-2616 (((-148 (-484)) |#1|) 27 T ELT))) -(((-689 |#1|) (-10 -7 (-15 -2616 ((-148 (-484)) |#1|))) (-347)) (T -689)) -((-2616 (*1 *2 *3) (-12 (-5 *2 (-148 (-484))) (-5 *1 (-689 *3)) (-4 *3 (-347))))) -((-2542 ((|#1| |#1| |#1|) 28 T ELT)) (-2543 ((|#1| |#1| |#1|) 27 T ELT)) (-2532 ((|#1| |#1| |#1|) 38 T ELT)) (-2540 ((|#1| |#1| |#1|) 33 T ELT)) (-2541 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2548 (((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|) 26 T ELT))) -(((-690 |#1| |#2|) (-10 -7 (-15 -2548 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2541 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|))) (-645 |#2|) (-312)) (T -690)) -((-2532 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2540 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2541 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2542 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2543 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2548 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-690 *3 *4)) (-4 *3 (-645 *4))))) -((-2555 (((-632 (-1138)) $ (-1138)) 27 T ELT)) (-2556 (((-632 (-488)) $ (-488)) 26 T ELT)) (-2554 (((-694) $ (-102)) 28 T ELT)) (-2557 (((-632 (-101)) $ (-101)) 25 T ELT)) (-2000 (((-632 (-1138)) $) 12 T ELT)) (-1996 (((-632 (-1136)) $) 8 T ELT)) (-1998 (((-632 (-1135)) $) 10 T ELT)) (-2001 (((-632 (-488)) $) 13 T ELT)) (-1997 (((-632 (-486)) $) 9 T ELT)) (-1999 (((-632 (-485)) $) 11 T ELT)) (-1995 (((-694) $ (-102)) 7 T ELT)) (-2002 (((-632 (-101)) $) 14 T ELT)) (-2439 (((-85) $) 32 T ELT)) (-2440 (((-632 $) |#1| (-865)) 33 T ELT)) (-1700 (($ $) 6 T ELT))) -(((-691 |#1|) (-113) (-1013)) (T -691)) -((-2440 (*1 *2 *3 *4) (-12 (-5 *4 (-865)) (-4 *3 (-1013)) (-5 *2 (-632 *1)) (-4 *1 (-691 *3)))) (-2439 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) -(-13 (-512) (-10 -8 (-15 -2440 ((-632 $) |t#1| (-865))) (-15 -2439 ((-85) $)))) -(((-147) . T) ((-465) . T) ((-512) . T) ((-770) . T)) -((-3919 (((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484)))) (-484)) 72 T ELT)) (-3918 (((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484))))) 70 T ELT)) (-3757 (((-484)) 86 T ELT))) -(((-692 |#1| |#2|) (-10 -7 (-15 -3757 ((-484))) (-15 -3918 ((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484)))))) (-15 -3919 ((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484)))) (-484)))) (-1155 (-484)) (-353 (-484) |#1|)) (T -692)) -((-3919 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-1155 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-692 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3918 (*1 *2) (-12 (-4 *3 (-1155 (-484))) (-5 *2 (-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484))))) (-5 *1 (-692 *3 *4)) (-4 *4 (-353 (-484) *3)))) (-3757 (*1 *2) (-12 (-4 *3 (-1155 *2)) (-5 *2 (-484)) (-5 *1 (-692 *3 *4)) (-4 *4 (-353 *2 *3))))) -((-2508 (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|))) 19 T ELT) (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1090))) 18 T ELT)) (-3573 (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|))) 21 T ELT) (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1090))) 20 T ELT))) -(((-693 |#1|) (-10 -7 (-15 -2508 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1090)))) (-15 -2508 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3573 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1090)))) (-15 -3573 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|))))) (-495)) (T -693)) -((-3573 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *4)))))) (-5 *1 (-693 *4)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1090))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-693 *5)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *4)))))) (-5 *1 (-693 *4)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1090))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-693 *5))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2483 (($ $ $) 10 T ELT)) (-1312 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2441 (($ $ (-484)) 11 T ELT)) (-3724 (($) NIL T CONST)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($ $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3144 (($ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 6 T CONST)) (-2666 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-694) (-13 (-717) (-663) (-10 -8 (-15 -2563 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -3144 ($ $ $)) (-15 -2879 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -3466 ((-3 $ "failed") $ $)) (-15 -2441 ($ $ (-484))) (-15 -2994 ($ $)) (-6 (-3997 "*"))))) (T -694)) -((-2563 (*1 *1 *1 *1) (-5 *1 (-694))) (-2564 (*1 *1 *1 *1) (-5 *1 (-694))) (-3144 (*1 *1 *1 *1) (-5 *1 (-694))) (-2879 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1972 (-694)) (|:| -2902 (-694)))) (-5 *1 (-694)))) (-3466 (*1 *1 *1 *1) (|partial| -5 *1 (-694))) (-2441 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-694)))) (-2994 (*1 *1 *1) (-5 *1 (-694)))) -((-484) (|%not| (|%ilt| |#1| 0))) -((-3573 (((-3 |#2| "failed") |#2| |#2| (-86) (-1090)) 37 T ELT))) -(((-695 |#1| |#2|) (-10 -7 (-15 -3573 ((-3 |#2| "failed") |#2| |#2| (-86) (-1090)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1115) (-871))) (T -695)) -((-3573 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-695 *5 *2)) (-4 *2 (-13 (-29 *5) (-1115) (-871)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 7 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 9 T ELT))) -(((-696) (-1013)) (T -696)) -NIL -((-3946 (((-696) |#1|) 8 T ELT))) -(((-697 |#1|) (-10 -7 (-15 -3946 ((-696) |#1|))) (-1129)) (T -697)) -((-3946 (*1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-697 *3)) (-4 *3 (-1129))))) -((-3132 ((|#2| |#4|) 35 T ELT))) -(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3132 (|#2| |#4|))) (-392) (-1155 |#1|) (-661 |#1| |#2|) (-1155 |#3|)) (T -698)) -((-3132 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-698 *4 *2 *5 *3)) (-4 *3 (-1155 *5))))) -((-3467 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2444 (((-1185) (-1073) (-1073) |#4| |#5|) 33 T ELT)) (-2442 ((|#4| |#4| |#5|) 74 T ELT)) (-2443 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|) 79 T ELT)) (-2445 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|) 16 T ELT))) -(((-699 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3467 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2442 (|#4| |#4| |#5|)) (-15 -2443 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|)) (-15 -2444 ((-1185) (-1073) (-1073) |#4| |#5|)) (-15 -2445 ((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -699)) -((-2445 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2444 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1073)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *4 (-977 *6 *7 *8)) (-5 *2 (-1185)) (-5 *1 (-699 *6 *7 *8 *4 *5)) (-4 *5 (-983 *6 *7 *8 *4)))) (-2443 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2442 (*1 *2 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *2 (-977 *4 *5 *6)) (-5 *1 (-699 *4 *5 *6 *2 *3)) (-4 *3 (-983 *4 *5 *6 *2)))) (-3467 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -((-3157 (((-3 (-1085 (-1085 |#1|)) "failed") |#4|) 53 T ELT)) (-2446 (((-583 |#4|) |#4|) 22 T ELT)) (-3928 ((|#4| |#4|) 17 T ELT))) -(((-700 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2446 ((-583 |#4|) |#4|)) (-15 -3157 ((-3 (-1085 (-1085 |#1|)) "failed") |#4|)) (-15 -3928 (|#4| |#4|))) (-299) (-280 |#1|) (-1155 |#2|) (-1155 |#3|) (-830)) (T -700)) -((-3928 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1155 *4)) (-5 *1 (-700 *3 *4 *5 *2 *6)) (-4 *2 (-1155 *5)) (-14 *6 (-830)))) (-3157 (*1 *2 *3) (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1155 *5)) (-5 *2 (-1085 (-1085 *4))) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6)) (-14 *7 (-830)))) (-2446 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1155 *5)) (-5 *2 (-583 *3)) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6)) (-14 *7 (-830))))) -((-2447 (((-2 (|:| |deter| (-583 (-1085 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1085 |#5|) (-583 |#1|) (-583 |#5|)) 72 T ELT)) (-2448 (((-583 (-694)) |#1|) 20 T ELT))) -(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2447 ((-2 (|:| |deter| (-583 (-1085 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1085 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -2448 ((-583 (-694)) |#1|))) (-1155 |#4|) (-717) (-756) (-258) (-861 |#4| |#2| |#3|)) (T -701)) -((-2448 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-583 (-694))) (-5 *1 (-701 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *6)) (-4 *7 (-861 *6 *4 *5)))) (-2447 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1155 *9)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-258)) (-4 *10 (-861 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1085 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-701 *6 *7 *8 *9 *10)) (-5 *3 (-1085 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10))))) -((-2451 (((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#1|))))) (-630 (-350 (-484))) |#1|) 31 T ELT)) (-2450 (((-583 |#1|) (-630 (-350 (-484))) |#1|) 21 T ELT)) (-2449 (((-857 (-350 (-484))) (-630 (-350 (-484))) (-1090)) 18 T ELT) (((-857 (-350 (-484))) (-630 (-350 (-484)))) 17 T ELT))) -(((-702 |#1|) (-10 -7 (-15 -2449 ((-857 (-350 (-484))) (-630 (-350 (-484))))) (-15 -2449 ((-857 (-350 (-484))) (-630 (-350 (-484))) (-1090))) (-15 -2450 ((-583 |#1|) (-630 (-350 (-484))) |#1|)) (-15 -2451 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#1|))))) (-630 (-350 (-484))) |#1|))) (-13 (-312) (-755))) (T -702)) -((-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-350 (-484)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 *4)))))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755))))) (-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-350 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755))))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-350 (-484)))) (-5 *4 (-1090)) (-5 *2 (-857 (-350 (-484)))) (-5 *1 (-702 *5)) (-4 *5 (-13 (-312) (-755))))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-630 (-350 (-484)))) (-5 *2 (-857 (-350 (-484)))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 36 T ELT)) (-3081 (((-583 |#2|) $) NIL T ELT)) (-3083 (((-1085 $) $ |#2|) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 |#2|)) NIL T ELT)) (-3797 (($ $) 30 T ELT)) (-3166 (((-85) $ $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3755 (($ $ $) 110 (|has| |#1| (-495)) ELT)) (-3148 (((-583 $) $ $) 123 (|has| |#1| (-495)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-857 (-350 (-484)))) NIL (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090)))) ELT) (((-3 $ #1#) (-857 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1090))) (-2560 (|has| |#1| (-38 (-350 (-484)))))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090))))) ELT) (((-3 $ #1#) (-857 |#1|)) NIL (OR (-12 (|has| |#2| (-553 (-1090))) (-2560 (|has| |#1| (-38 (-350 (-484))))) (-2560 (|has| |#1| (-38 (-484))))) (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1090))) (-2560 (|has| |#1| (-38 (-350 (-484))))) (-2560 (|has| |#1| (-483)))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090))) (-2560 (|has| |#1| (-904 (-484)))))) ELT) (((-3 (-1039 |#1| |#2|) #1#) $) 21 T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) ((|#2| $) NIL T ELT) (($ (-857 (-350 (-484)))) NIL (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090)))) ELT) (($ (-857 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1090))) (-2560 (|has| |#1| (-38 (-350 (-484)))))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090))))) ELT) (($ (-857 |#1|)) NIL (OR (-12 (|has| |#2| (-553 (-1090))) (-2560 (|has| |#1| (-38 (-350 (-484))))) (-2560 (|has| |#1| (-38 (-484))))) (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1090))) (-2560 (|has| |#1| (-38 (-350 (-484))))) (-2560 (|has| |#1| (-483)))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090))) (-2560 (|has| |#1| (-904 (-484)))))) ELT) (((-1039 |#1| |#2|) $) NIL T ELT)) (-3756 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-495)) ELT)) (-3959 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3694 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3172 (((-85) $) NIL T ELT)) (-3752 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 81 T ELT)) (-3143 (($ $) 136 (|has| |#1| (-392)) ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-3154 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3155 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3165 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3164 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1624 (($ $ |#1| (-469 |#2|) $) NIL T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| |#1| (-796 (-330))) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 57 T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3695 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3145 (($ $ $ $ $) 107 (|has| |#1| (-495)) ELT)) (-3180 ((|#2| $) 22 T ELT)) (-3084 (($ (-1085 |#1|) |#2|) NIL T ELT) (($ (-1085 $) |#2|) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 38 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3159 (($ $ $) 63 T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#2|) NIL T ELT)) (-3173 (((-85) $) NIL T ELT)) (-2820 (((-469 |#2|) $) NIL T ELT) (((-694) $ |#2|) NIL T ELT) (((-583 (-694)) $ (-583 |#2|)) NIL T ELT)) (-3179 (((-694) $) 23 T ELT)) (-1625 (($ (-1 (-469 |#2|) (-469 |#2|)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3082 (((-3 |#2| #1#) $) NIL T ELT)) (-3140 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3141 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3168 (((-583 $) $) NIL T ELT)) (-3171 (($ $) 39 T ELT)) (-3142 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3169 (((-583 $) $) 43 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-3170 (($ $) 41 T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3158 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3481 (-694))) $ $) 96 T ELT)) (-3160 (((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $) 78 T ELT) (((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $ |#2|) NIL T ELT)) (-3161 (((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $) NIL T ELT) (((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $ |#2|) NIL T ELT)) (-3163 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3162 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3190 (($ $ $) 125 (|has| |#1| (-495)) ELT)) (-3176 (((-583 $) $) 32 T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3691 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3686 (($ $ $) NIL T ELT)) (-3446 (($ $) 24 T ELT)) (-3699 (((-85) $ $) NIL T ELT)) (-3692 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3687 (($ $ $) NIL T ELT)) (-3178 (($ $) 26 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3149 (((-2 (|:| -3144 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-495)) ELT)) (-3150 (((-2 (|:| -3144 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-495)) ELT)) (-1797 (((-85) $) 56 T ELT)) (-1796 ((|#1| $) 58 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3144 ((|#1| |#1| $) 133 (|has| |#1| (-392)) ELT) (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-3151 (((-2 (|:| -3144 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-495)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-495)) ELT)) (-3152 (($ $ |#1|) 129 (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3153 (($ $ |#1|) 128 (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-583 |#2|) (-583 $)) NIL T ELT)) (-3757 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3948 (((-469 |#2|) $) NIL T ELT) (((-694) $ |#2|) 45 T ELT) (((-583 (-694)) $ (-583 |#2|)) NIL T ELT)) (-3177 (($ $) NIL T ELT)) (-3175 (($ $) 35 T ELT)) (-3972 (((-800 (-330)) $) NIL (-12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT) (($ (-857 (-350 (-484)))) NIL (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090)))) ELT) (($ (-857 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1090))) (-2560 (|has| |#1| (-38 (-350 (-484)))))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090))))) ELT) (($ (-857 |#1|)) NIL (|has| |#2| (-553 (-1090))) ELT) (((-1073) $) NIL (-12 (|has| |#1| (-950 (-484))) (|has| |#2| (-553 (-1090)))) ELT) (((-857 |#1|) $) NIL (|has| |#2| (-553 (-1090))) ELT)) (-2817 ((|#1| $) 132 (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-857 |#1|) $) NIL (|has| |#2| (-553 (-1090))) ELT) (((-1039 |#1| |#2|) $) 18 T ELT) (($ (-1039 |#1| |#2|)) 19 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3817 (((-583 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 47 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 13 T CONST)) (-3167 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2666 (($) 37 T CONST)) (-3146 (($ $ $ $ (-694)) 105 (|has| |#1| (-495)) ELT)) (-3147 (($ $ $ (-694)) 104 (|has| |#1| (-495)) ELT)) (-2669 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3839 (($ $ $) 85 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 70 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) -(((-703 |#1| |#2|) (-13 (-977 |#1| (-469 |#2|) |#2|) (-552 (-1039 |#1| |#2|)) (-950 (-1039 |#1| |#2|))) (-961) (-756)) (T -703)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 12 T ELT)) (-3767 (((-1179 |#1|) $ (-694)) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3765 (($ (-1085 |#1|)) NIL T ELT)) (-3083 (((-1085 $) $ (-994)) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2455 (((-583 $) $ $) 54 (|has| |#1| (-495)) ELT)) (-3755 (($ $ $) 50 (|has| |#1| (-495)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-694)) NIL T ELT)) (-3760 (($ $ (-694)) NIL T ELT)) (-3751 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT) (((-3 (-1085 |#1|) #1#) $) 10 T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-994) $) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-3756 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ $) NIL T ELT)) (-3753 (($ $ $) 87 (|has| |#1| (-495)) ELT)) (-3752 (((-2 (|:| -3954 |#1|) (|:| -1972 $) (|:| -2902 $)) $ $) 86 (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-994)) NIL (|has| |#1| (-392)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-694) $) NIL T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-994) (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3772 (((-694) $ $) NIL (|has| |#1| (-495)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3445 (((-632 $) $) NIL (|has| |#1| (-1066)) ELT)) (-3084 (($ (-1085 |#1|) (-994)) NIL T ELT) (($ (-1085 $) (-994)) NIL T ELT)) (-3777 (($ $ (-694)) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3159 (($ $ $) 27 T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1625 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3766 (((-1085 |#1|) $) NIL T ELT)) (-3082 (((-3 (-994) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3158 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3481 (-694))) $ $) 37 T ELT)) (-2457 (($ $ $) 41 T ELT)) (-2456 (($ $ $) 47 T ELT)) (-3160 (((-2 (|:| -3954 |#1|) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $) 46 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3190 (($ $ $) 56 (|has| |#1| (-495)) ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3812 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3446 (($) NIL (|has| |#1| (-1066)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-3149 (((-2 (|:| -3144 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-495)) ELT)) (-3150 (((-2 (|:| -3144 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-495)) ELT)) (-2452 (((-2 (|:| -3756 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-495)) ELT)) (-2453 (((-2 (|:| -3756 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-495)) ELT)) (-1797 (((-85) $) 13 T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3738 (($ $ (-694) |#1| $) 26 T ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-3151 (((-2 (|:| -3144 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-495)) ELT)) (-2454 (((-2 (|:| -3756 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-495)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-495)) ELT)) (-3764 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3948 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3972 (((-800 (-330)) $) NIL (-12 (|has| (-994) (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-994)) NIL (|has| |#1| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3754 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-495)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-994)) NIL T ELT) (((-1085 |#1|) $) 7 T ELT) (($ (-1085 |#1|)) 8 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3817 (((-583 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 28 T CONST)) (-2666 (($) 32 T CONST)) (-2669 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) -(((-704 |#1|) (-13 (-1155 |#1|) (-552 (-1085 |#1|)) (-950 (-1085 |#1|)) (-10 -8 (-15 -3738 ($ $ (-694) |#1| $)) (-15 -3159 ($ $ $)) (-15 -3158 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3481 (-694))) $ $)) (-15 -2457 ($ $ $)) (-15 -3160 ((-2 (|:| -3954 |#1|) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -2456 ($ $ $)) (IF (|has| |#1| (-495)) (PROGN (-15 -2455 ((-583 $) $ $)) (-15 -3190 ($ $ $)) (-15 -3151 ((-2 (|:| -3144 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3150 ((-2 (|:| -3144 $) (|:| |coef1| $)) $ $)) (-15 -3149 ((-2 (|:| -3144 $) (|:| |coef2| $)) $ $)) (-15 -2454 ((-2 (|:| -3756 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2453 ((-2 (|:| -3756 |#1|) (|:| |coef1| $)) $ $)) (-15 -2452 ((-2 (|:| -3756 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-961)) (T -704)) -((-3738 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-3159 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-3158 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-704 *3)) (|:| |polden| *3) (|:| -3481 (-694)))) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-2457 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-3160 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3954 *3) (|:| |gap| (-694)) (|:| -1972 (-704 *3)) (|:| -2902 (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-2456 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-2455 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-704 *3))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-3190 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-495)) (-4 *2 (-961)))) (-3151 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3144 (-704 *3)) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-3150 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3144 (-704 *3)) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-3149 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3144 (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-2454 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3756 *3) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-2453 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3756 *3) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-2452 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3756 *3) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961))))) -((-3958 (((-704 |#2|) (-1 |#2| |#1|) (-704 |#1|)) 13 T ELT))) -(((-705 |#1| |#2|) (-10 -7 (-15 -3958 ((-704 |#2|) (-1 |#2| |#1|) (-704 |#1|)))) (-961) (-961)) (T -705)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-704 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-704 *6)) (-5 *1 (-705 *5 *6))))) -((-2459 ((|#1| (-694) |#1|) 33 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2801 ((|#1| (-694) |#1|) 23 T ELT)) (-2458 ((|#1| (-694) |#1|) 35 (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-706 |#1|) (-10 -7 (-15 -2801 (|#1| (-694) |#1|)) (IF (|has| |#1| (-38 (-350 (-484)))) (PROGN (-15 -2458 (|#1| (-694) |#1|)) (-15 -2459 (|#1| (-694) |#1|))) |%noBranch|)) (-146)) (T -706)) -((-2459 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-146)))) (-2458 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-146)))) (-2801 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-146))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3681 (((-583 (-2 (|:| -3861 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) 91 T ELT)) (-3682 (((-583 $) (-583 |#4|)) 92 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT)) (-3081 (((-583 |#3|) $) 38 T ELT)) (-2908 (((-85) $) 31 T ELT)) (-2899 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3688 ((|#4| |#4| $) 98 T ELT)) (-3775 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 134 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3710 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3724 (($) 54 T CONST)) (-2904 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-3689 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3156 (($ (-583 |#4|)) 40 T ELT)) (-3799 (((-3 $ #1#) $) 88 T ELT)) (-3685 ((|#4| |#4| $) 95 T ELT)) (-1353 (($ $) 70 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#4| $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3995)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3683 ((|#4| |#4| $) 93 T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3696 (((-2 (|:| -3861 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) 111 T ELT)) (-3197 (((-85) |#4| $) 144 T ELT)) (-3195 (((-85) |#4| $) 141 T ELT)) (-3198 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2889 (((-583 |#4|) $) 57 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3180 ((|#3| $) 39 T ELT)) (-2608 (((-583 |#4|) $) 47 T ELT)) (-3245 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-3326 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2914 (((-583 |#3|) $) 37 T ELT)) (-2913 (((-85) |#3| $) 36 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) 136 T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 135 T ELT)) (-3798 (((-3 |#4| #1#) $) 89 T ELT)) (-3192 (((-583 $) |#4| $) 137 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) 140 T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3238 (((-583 $) |#4| $) 133 T ELT) (((-583 $) (-583 |#4|) $) 132 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 131 T ELT) (((-583 $) |#4| (-583 $)) 130 T ELT)) (-3440 (($ |#4| $) 125 T ELT) (($ (-583 |#4|) $) 124 T ELT)) (-3697 (((-583 |#4|) $) 113 T ELT)) (-3691 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3686 ((|#4| |#4| $) 96 T ELT)) (-3699 (((-85) $ $) 116 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3687 ((|#4| |#4| $) 97 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3801 (((-3 |#4| #1#) $) 90 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3679 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3769 (($ $ |#4|) 83 T ELT) (((-583 $) |#4| $) 123 T ELT) (((-583 $) |#4| (-583 $)) 122 T ELT) (((-583 $) (-583 |#4|) $) 121 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 120 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3768 (($ $ (-583 |#4|) (-583 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) 50 T ELT)) (-3403 (((-85) $) 53 T ELT)) (-3565 (($) 52 T ELT)) (-3948 (((-694) $) 112 T ELT)) (-1946 (((-694) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3400 (($ $) 51 T ELT)) (-3972 (((-473) $) 71 (|has| |#4| (-553 (-473))) ELT)) (-3530 (($ (-583 |#4|)) 62 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-2912 (($ $ |#3|) 35 T ELT)) (-3684 (($ $) 94 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3946 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-3678 (((-694) $) 82 (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 104 T ELT)) (-3189 (((-583 $) |#4| $) 129 T ELT) (((-583 $) |#4| (-583 $)) 128 T ELT) (((-583 $) (-583 |#4|) $) 127 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 126 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3680 (((-583 |#3|) $) 87 T ELT)) (-3196 (((-85) |#4| $) 143 T ELT)) (-3933 (((-85) |#3| $) 86 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3957 (((-694) $) 43 T ELT))) -(((-707 |#1| |#2| |#3| |#4|) (-113) (-392) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -707)) -NIL -(-13 (-983 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1124 |#1| |#2| |#3| |#4|) . T) ((-1129) . T)) -((-2462 (((-3 (-330) #1="failed") (-265 |#1|) (-830)) 60 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-330) #1#) (-265 |#1|)) 52 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-330) #1#) (-350 (-857 |#1|)) (-830)) 39 (|has| |#1| (-495)) ELT) (((-3 (-330) #1#) (-350 (-857 |#1|))) 35 (|has| |#1| (-495)) ELT) (((-3 (-330) #1#) (-857 |#1|) (-830)) 30 (|has| |#1| (-961)) ELT) (((-3 (-330) #1#) (-857 |#1|)) 24 (|has| |#1| (-961)) ELT)) (-2460 (((-330) (-265 |#1|) (-830)) 92 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-330) (-265 |#1|)) 87 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-330) (-350 (-857 |#1|)) (-830)) 84 (|has| |#1| (-495)) ELT) (((-330) (-350 (-857 |#1|))) 81 (|has| |#1| (-495)) ELT) (((-330) (-857 |#1|) (-830)) 80 (|has| |#1| (-961)) ELT) (((-330) (-857 |#1|)) 77 (|has| |#1| (-961)) ELT) (((-330) |#1| (-830)) 73 T ELT) (((-330) |#1|) 22 T ELT)) (-2463 (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-830)) 68 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|))) 58 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|) (-830)) 61 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|)) 59 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-330)) #1#) (-350 (-857 (-142 |#1|))) (-830)) 44 (|has| |#1| (-495)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-857 (-142 |#1|)))) 43 (|has| |#1| (-495)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-857 |#1|)) (-830)) 38 (|has| |#1| (-495)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-857 |#1|))) 37 (|has| |#1| (-495)) ELT) (((-3 (-142 (-330)) #1#) (-857 |#1|) (-830)) 28 (|has| |#1| (-961)) ELT) (((-3 (-142 (-330)) #1#) (-857 |#1|)) 26 (|has| |#1| (-961)) ELT) (((-3 (-142 (-330)) #1#) (-857 (-142 |#1|)) (-830)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-330)) #1#) (-857 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2461 (((-142 (-330)) (-265 (-142 |#1|)) (-830)) 95 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-330)) (-265 (-142 |#1|))) 94 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-330)) (-265 |#1|) (-830)) 93 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-330)) (-265 |#1|)) 91 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-330)) (-350 (-857 (-142 |#1|))) (-830)) 86 (|has| |#1| (-495)) ELT) (((-142 (-330)) (-350 (-857 (-142 |#1|)))) 85 (|has| |#1| (-495)) ELT) (((-142 (-330)) (-350 (-857 |#1|)) (-830)) 83 (|has| |#1| (-495)) ELT) (((-142 (-330)) (-350 (-857 |#1|))) 82 (|has| |#1| (-495)) ELT) (((-142 (-330)) (-857 |#1|) (-830)) 79 (|has| |#1| (-961)) ELT) (((-142 (-330)) (-857 |#1|)) 78 (|has| |#1| (-961)) ELT) (((-142 (-330)) (-857 (-142 |#1|)) (-830)) 75 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-857 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|) (-830)) 17 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-330)) |#1| (-830)) 27 T ELT) (((-142 (-330)) |#1|) 25 T ELT))) -(((-708 |#1|) (-10 -7 (-15 -2460 ((-330) |#1|)) (-15 -2460 ((-330) |#1| (-830))) (-15 -2461 ((-142 (-330)) |#1|)) (-15 -2461 ((-142 (-330)) |#1| (-830))) (IF (|has| |#1| (-146)) (PROGN (-15 -2461 ((-142 (-330)) (-142 |#1|))) (-15 -2461 ((-142 (-330)) (-142 |#1|) (-830))) (-15 -2461 ((-142 (-330)) (-857 (-142 |#1|)))) (-15 -2461 ((-142 (-330)) (-857 (-142 |#1|)) (-830)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -2460 ((-330) (-857 |#1|))) (-15 -2460 ((-330) (-857 |#1|) (-830))) (-15 -2461 ((-142 (-330)) (-857 |#1|))) (-15 -2461 ((-142 (-330)) (-857 |#1|) (-830)))) |%noBranch|) (IF (|has| |#1| (-495)) (PROGN (-15 -2460 ((-330) (-350 (-857 |#1|)))) (-15 -2460 ((-330) (-350 (-857 |#1|)) (-830))) (-15 -2461 ((-142 (-330)) (-350 (-857 |#1|)))) (-15 -2461 ((-142 (-330)) (-350 (-857 |#1|)) (-830))) (-15 -2461 ((-142 (-330)) (-350 (-857 (-142 |#1|))))) (-15 -2461 ((-142 (-330)) (-350 (-857 (-142 |#1|))) (-830))) (IF (|has| |#1| (-756)) (PROGN (-15 -2460 ((-330) (-265 |#1|))) (-15 -2460 ((-330) (-265 |#1|) (-830))) (-15 -2461 ((-142 (-330)) (-265 |#1|))) (-15 -2461 ((-142 (-330)) (-265 |#1|) (-830))) (-15 -2461 ((-142 (-330)) (-265 (-142 |#1|)))) (-15 -2461 ((-142 (-330)) (-265 (-142 |#1|)) (-830)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2463 ((-3 (-142 (-330)) #1="failed") (-857 (-142 |#1|)))) (-15 -2463 ((-3 (-142 (-330)) #1#) (-857 (-142 |#1|)) (-830)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -2462 ((-3 (-330) #1#) (-857 |#1|))) (-15 -2462 ((-3 (-330) #1#) (-857 |#1|) (-830))) (-15 -2463 ((-3 (-142 (-330)) #1#) (-857 |#1|))) (-15 -2463 ((-3 (-142 (-330)) #1#) (-857 |#1|) (-830)))) |%noBranch|) (IF (|has| |#1| (-495)) (PROGN (-15 -2462 ((-3 (-330) #1#) (-350 (-857 |#1|)))) (-15 -2462 ((-3 (-330) #1#) (-350 (-857 |#1|)) (-830))) (-15 -2463 ((-3 (-142 (-330)) #1#) (-350 (-857 |#1|)))) (-15 -2463 ((-3 (-142 (-330)) #1#) (-350 (-857 |#1|)) (-830))) (-15 -2463 ((-3 (-142 (-330)) #1#) (-350 (-857 (-142 |#1|))))) (-15 -2463 ((-3 (-142 (-330)) #1#) (-350 (-857 (-142 |#1|))) (-830))) (IF (|has| |#1| (-756)) (PROGN (-15 -2462 ((-3 (-330) #1#) (-265 |#1|))) (-15 -2462 ((-3 (-330) #1#) (-265 |#1|) (-830))) (-15 -2463 ((-3 (-142 (-330)) #1#) (-265 |#1|))) (-15 -2463 ((-3 (-142 (-330)) #1#) (-265 |#1|) (-830))) (-15 -2463 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)))) (-15 -2463 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-830)))) |%noBranch|)) |%noBranch|)) (-553 (-330))) (T -708)) -((-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-857 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-350 (-857 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-142 (-330))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-330))))) (-2461 (*1 *2 *3) (-12 (-5 *2 (-142 (-330))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-330))))) (-2460 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-330)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2)))) (-2460 (*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2))))) -((-2467 (((-830) (-1073)) 90 T ELT)) (-2469 (((-3 (-330) "failed") (-1073)) 36 T ELT)) (-2468 (((-330) (-1073)) 34 T ELT)) (-2465 (((-830) (-1073)) 64 T ELT)) (-2466 (((-1073) (-830)) 74 T ELT)) (-2464 (((-1073) (-830)) 63 T ELT))) -(((-709) (-10 -7 (-15 -2464 ((-1073) (-830))) (-15 -2465 ((-830) (-1073))) (-15 -2466 ((-1073) (-830))) (-15 -2467 ((-830) (-1073))) (-15 -2468 ((-330) (-1073))) (-15 -2469 ((-3 (-330) "failed") (-1073))))) (T -709)) -((-2469 (*1 *2 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-330)) (-5 *1 (-709)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-330)) (-5 *1 (-709)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-830)) (-5 *1 (-709)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1073)) (-5 *1 (-709)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-830)) (-5 *1 (-709)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1073)) (-5 *1 (-709))))) -((-2472 (((-1185) (-1179 (-330)) (-484) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))) (-330) (-1179 (-330)) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330))) 54 T ELT) (((-1185) (-1179 (-330)) (-484) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))) (-330) (-1179 (-330)) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330))) 51 T ELT)) (-2473 (((-1185) (-1179 (-330)) (-484) (-330) (-330) (-484) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330))) 61 T ELT)) (-2471 (((-1185) (-1179 (-330)) (-484) (-330) (-330) (-330) (-330) (-484) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330))) 49 T ELT)) (-2470 (((-1185) (-1179 (-330)) (-484) (-330) (-330) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330))) 63 T ELT) (((-1185) (-1179 (-330)) (-484) (-330) (-330) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330))) 62 T ELT))) -(((-710) (-10 -7 (-15 -2470 ((-1185) (-1179 (-330)) (-484) (-330) (-330) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)))) (-15 -2470 ((-1185) (-1179 (-330)) (-484) (-330) (-330) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)))) (-15 -2471 ((-1185) (-1179 (-330)) (-484) (-330) (-330) (-330) (-330) (-484) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)))) (-15 -2472 ((-1185) (-1179 (-330)) (-484) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))) (-330) (-1179 (-330)) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)))) (-15 -2472 ((-1185) (-1179 (-330)) (-484) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))) (-330) (-1179 (-330)) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)))) (-15 -2473 ((-1185) (-1179 (-330)) (-484) (-330) (-330) (-484) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)))))) (T -710)) -((-2473 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))) (-2472 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-484)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330)))) (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))) (-2472 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-484)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330)))) (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))) (-2471 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))) (-2470 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))) (-2470 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710))))) -((-2482 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484)) 65 T ELT)) (-2479 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484)) 40 T ELT)) (-2481 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484)) 64 T ELT)) (-2478 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484)) 38 T ELT)) (-2480 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484)) 63 T ELT)) (-2477 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484)) 24 T ELT)) (-2476 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484) (-484)) 41 T ELT)) (-2475 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484) (-484)) 39 T ELT)) (-2474 (((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484) (-484)) 37 T ELT))) -(((-711) (-10 -7 (-15 -2474 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484) (-484))) (-15 -2475 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484) (-484))) (-15 -2476 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484) (-484))) (-15 -2477 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484))) (-15 -2478 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484))) (-15 -2479 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484))) (-15 -2480 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484))) (-15 -2481 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484))) (-15 -2482 ((-2 (|:| -3402 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484))))) (T -711)) -((-2482 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2481 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2479 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2475 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2474 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484))))) -((-3705 (((-1125 |#1|) |#1| (-179) (-484)) 69 T ELT))) -(((-712 |#1|) (-10 -7 (-15 -3705 ((-1125 |#1|) |#1| (-179) (-484)))) (-887)) (T -712)) -((-3705 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-484)) (-5 *2 (-1125 *3)) (-5 *1 (-712 *3)) (-4 *3 (-887))))) -((-3623 (((-484) $) 17 T ELT)) (-3187 (((-85) $) 10 T ELT)) (-3383 (($ $) 19 T ELT))) -(((-713 |#1|) (-10 -7 (-15 -3383 (|#1| |#1|)) (-15 -3623 ((-484) |#1|)) (-15 -3187 ((-85) |#1|))) (-714)) (T -713)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-1312 (((-3 $ "failed") $ $) 35 T ELT)) (-3623 (((-484) $) 38 T ELT)) (-3724 (($) 30 T CONST)) (-3186 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-3187 (((-85) $) 39 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3383 (($ $) 37 T ELT)) (-2660 (($) 29 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3837 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3839 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ (-484) $) 40 T ELT))) -(((-714) (-113)) (T -714)) -((-3187 (*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-85)))) (-3623 (*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-484)))) (-3383 (*1 *1 *1) (-4 *1 (-714)))) -(-13 (-721) (-21) (-10 -8 (-15 -3187 ((-85) $)) (-15 -3623 ((-484) $)) (-15 -3383 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1129) . T)) -((-3186 (((-85) $) 10 T ELT))) -(((-715 |#1|) (-10 -7 (-15 -3186 ((-85) |#1|))) (-716)) (T -715)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-3724 (($) 30 T CONST)) (-3186 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 29 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3839 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT))) -(((-716) (-113)) (T -716)) -((-3186 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85))))) -(-13 (-718) (-23) (-10 -8 (-15 -3186 ((-85) $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-2483 (($ $ $) 36 T ELT)) (-1312 (((-3 $ "failed") $ $) 35 T ELT)) (-3724 (($) 30 T CONST)) (-3186 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 29 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3839 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT))) +((-2006 (((-1086 |#1|) (-695)) 114 T ELT)) (-3331 (((-1180 |#1|) (-1180 |#1|) (-831)) 107 T ELT)) (-2004 (((-1186) (-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034))))) |#1|) 122 T ELT)) (-2008 (((-1180 |#1|) (-1180 |#1|) (-695)) 53 T ELT)) (-2995 (((-1180 |#1|) (-831)) 109 T ELT)) (-2010 (((-1180 |#1|) (-1180 |#1|) (-485)) 30 T ELT)) (-2005 (((-1086 |#1|) (-1180 |#1|)) 115 T ELT)) (-2014 (((-1180 |#1|) (-831)) 136 T ELT)) (-2012 (((-85) (-1180 |#1|)) 119 T ELT)) (-3133 (((-1180 |#1|) (-1180 |#1|) (-831)) 99 T ELT)) (-2015 (((-1086 |#1|) (-1180 |#1|)) 130 T ELT)) (-2011 (((-831) (-1180 |#1|)) 95 T ELT)) (-2485 (((-1180 |#1|) (-1180 |#1|)) 38 T ELT)) (-2401 (((-1180 |#1|) (-831) (-831)) 139 T ELT)) (-2009 (((-1180 |#1|) (-1180 |#1|) (-1034) (-1034)) 29 T ELT)) (-2007 (((-1180 |#1|) (-1180 |#1|) (-695) (-1034)) 54 T ELT)) (-2013 (((-1180 (-1180 |#1|)) (-831)) 135 T ELT)) (-3950 (((-1180 |#1|) (-1180 |#1|) (-1180 |#1|)) 120 T ELT)) (** (((-1180 |#1|) (-1180 |#1|) (-485)) 67 T ELT)) (* (((-1180 |#1|) (-1180 |#1|) (-1180 |#1|)) 31 T ELT))) +(((-467 |#1|) (-10 -7 (-15 -2004 ((-1186) (-1180 (-584 (-2 (|:| -3403 |#1|) (|:| -2401 (-1034))))) |#1|)) (-15 -2995 ((-1180 |#1|) (-831))) (-15 -2401 ((-1180 |#1|) (-831) (-831))) (-15 -2005 ((-1086 |#1|) (-1180 |#1|))) (-15 -2006 ((-1086 |#1|) (-695))) (-15 -2007 ((-1180 |#1|) (-1180 |#1|) (-695) (-1034))) (-15 -2008 ((-1180 |#1|) (-1180 |#1|) (-695))) (-15 -2009 ((-1180 |#1|) (-1180 |#1|) (-1034) (-1034))) (-15 -2010 ((-1180 |#1|) (-1180 |#1|) (-485))) (-15 ** ((-1180 |#1|) (-1180 |#1|) (-485))) (-15 * ((-1180 |#1|) (-1180 |#1|) (-1180 |#1|))) (-15 -3950 ((-1180 |#1|) (-1180 |#1|) (-1180 |#1|))) (-15 -3133 ((-1180 |#1|) (-1180 |#1|) (-831))) (-15 -3331 ((-1180 |#1|) (-1180 |#1|) (-831))) (-15 -2485 ((-1180 |#1|) (-1180 |#1|))) (-15 -2011 ((-831) (-1180 |#1|))) (-15 -2012 ((-85) (-1180 |#1|))) (-15 -2013 ((-1180 (-1180 |#1|)) (-831))) (-15 -2014 ((-1180 |#1|) (-831))) (-15 -2015 ((-1086 |#1|) (-1180 |#1|)))) (-299)) (T -467)) +((-2015 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 *4))) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-467 *4)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-831)) (-5 *1 (-467 *4)))) (-2485 (*1 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) (-3331 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-3133 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-3950 (*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2010 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2009 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1034)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2008 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2007 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1180 *5)) (-5 *3 (-695)) (-5 *4 (-1034)) (-4 *5 (-299)) (-5 *1 (-467 *5)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)))) (-2401 (*1 *2 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3403 *4) (|:| -2401 (-1034)))))) (-4 *4 (-299)) (-5 *2 (-1186)) (-5 *1 (-467 *4))))) +((-2001 (((-633 (-1139)) $) NIL T ELT)) (-1997 (((-633 (-1137)) $) NIL T ELT)) (-1999 (((-633 (-1136)) $) NIL T ELT)) (-2002 (((-633 (-489)) $) NIL T ELT)) (-1998 (((-633 (-487)) $) NIL T ELT)) (-2000 (((-633 (-486)) $) NIL T ELT)) (-1996 (((-695) $ (-102)) NIL T ELT)) (-2003 (((-633 (-101)) $) 26 T ELT)) (-2016 (((-1034) $ (-1034)) 31 T ELT)) (-3420 (((-1034) $) 30 T ELT)) (-2559 (((-85) $) 20 T ELT)) (-2018 (($ (-338)) 14 T ELT) (($ (-1074)) 16 T ELT)) (-2017 (((-85) $) 27 T ELT)) (-3947 (((-773) $) 34 T ELT)) (-1701 (($ $) 28 T ELT))) +(((-468) (-13 (-466) (-553 (-773)) (-10 -8 (-15 -2018 ($ (-338))) (-15 -2018 ($ (-1074))) (-15 -2017 ((-85) $)) (-15 -2559 ((-85) $)) (-15 -3420 ((-1034) $)) (-15 -2016 ((-1034) $ (-1034)))))) (T -468)) +((-2018 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-468)))) (-2018 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-468)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468)))) (-3420 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-468)))) (-2016 (*1 *2 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-468))))) +((-2020 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2019 (((-1 |#1| |#1|)) 10 T ELT))) +(((-469 |#1|) (-10 -7 (-15 -2019 ((-1 |#1| |#1|))) (-15 -2020 ((-1 |#1| |#1|) |#1|))) (-13 (-664) (-25))) (T -469)) +((-2020 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25))))) (-2019 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3775 (((-584 (-454 (-695) |#1|)) $) NIL T ELT)) (-2484 (($ $ $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2894 (($ (-695) |#1|) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3959 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-1984 ((|#1| $) NIL T ELT)) (-3175 (((-695) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3973 (($ (-584 (-454 (-695) |#1|))) NIL T ELT)) (-3947 (((-773) $) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT))) +(((-470 |#1|) (-13 (-718) (-450 (-695) |#1|)) (-757)) (T -470)) +NIL +((-2022 (((-584 |#2|) (-1086 |#1|) |#3|) 98 T ELT)) (-2023 (((-584 (-2 (|:| |outval| |#2|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-348 (-1086 |#1|)) (-1086 |#1|))) 114 T ELT)) (-2021 (((-1086 |#1|) (-631 |#1|)) 110 T ELT))) +(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -2021 ((-1086 |#1|) (-631 |#1|))) (-15 -2022 ((-584 |#2|) (-1086 |#1|) |#3|)) (-15 -2023 ((-584 (-2 (|:| |outval| |#2|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-348 (-1086 |#1|)) (-1086 |#1|))))) (-312) (-312) (-13 (-312) (-756))) (T -471)) +((-2023 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *6)) (-5 *5 (-1 (-348 (-1086 *6)) (-1086 *6))) (-4 *6 (-312)) (-5 *2 (-584 (-2 (|:| |outval| *7) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 *7)))))) (-5 *1 (-471 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-756))))) (-2022 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *5)) (-4 *5 (-312)) (-5 *2 (-584 *6)) (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-312)) (-5 *2 (-1086 *4)) (-5 *1 (-471 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-756)))))) +((-2556 (((-633 (-1139)) $ (-1139)) NIL T ELT)) (-2557 (((-633 (-489)) $ (-489)) NIL T ELT)) (-2555 (((-695) $ (-102)) 39 T ELT)) (-2558 (((-633 (-101)) $ (-101)) 40 T ELT)) (-2001 (((-633 (-1139)) $) NIL T ELT)) (-1997 (((-633 (-1137)) $) NIL T ELT)) (-1999 (((-633 (-1136)) $) NIL T ELT)) (-2002 (((-633 (-489)) $) NIL T ELT)) (-1998 (((-633 (-487)) $) NIL T ELT)) (-2000 (((-633 (-486)) $) NIL T ELT)) (-1996 (((-695) $ (-102)) 35 T ELT)) (-2003 (((-633 (-101)) $) 37 T ELT)) (-2440 (((-85) $) 27 T ELT)) (-2441 (((-633 $) (-516) (-866)) 18 T ELT) (((-633 $) (-431) (-866)) 24 T ELT)) (-3947 (((-773) $) 48 T ELT)) (-1701 (($ $) 42 T ELT))) +(((-472) (-13 (-692 (-516)) (-553 (-773)) (-10 -8 (-15 -2441 ((-633 $) (-431) (-866)))))) (T -472)) +((-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-431)) (-5 *4 (-866)) (-5 *2 (-633 (-472))) (-5 *1 (-472))))) +((-2528 (((-751 (-485))) 12 T ELT)) (-2527 (((-751 (-485))) 14 T ELT)) (-2515 (((-744 (-485))) 9 T ELT))) +(((-473) (-10 -7 (-15 -2515 ((-744 (-485)))) (-15 -2528 ((-751 (-485)))) (-15 -2527 ((-751 (-485)))))) (T -473)) +((-2527 (*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473)))) (-2528 (*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473)))) (-2515 (*1 *2) (-12 (-5 *2 (-744 (-485))) (-5 *1 (-473))))) +((-2569 (((-85) $ $) NIL T ELT)) (-2027 (((-1074) $) 55 T ELT)) (-3261 (((-85) $) 51 T ELT)) (-3257 (((-1091) $) 52 T ELT)) (-3262 (((-85) $) 49 T ELT)) (-3536 (((-1074) $) 50 T ELT)) (-2026 (($ (-1074)) 56 T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3266 (((-85) $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2029 (($ $ (-584 (-1091))) 21 T ELT)) (-2032 (((-51) $) 23 T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3256 (((-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2384 (($ $ (-584 (-1091)) (-1091)) 73 T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3255 (((-179) $) NIL T ELT)) (-2028 (($ $) 44 T ELT)) (-3254 (((-773) $) NIL T ELT)) (-3267 (((-85) $ $) NIL T ELT)) (-3801 (($ $ (-485)) NIL T ELT) (($ $ (-584 (-485))) NIL T ELT)) (-3258 (((-584 $) $) 30 T ELT)) (-2025 (((-1091) (-584 $)) 57 T ELT)) (-3973 (($ (-1074)) NIL T ELT) (($ (-1091)) 19 T ELT) (($ (-485)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-773)) NIL T ELT) (($ (-584 $)) 65 T ELT) (((-1016) $) 12 T ELT) (($ (-1016)) 13 T ELT)) (-2024 (((-1091) (-1091) (-584 $)) 60 T ELT)) (-3947 (((-773) $) 54 T ELT)) (-3252 (($ $) 59 T ELT)) (-3253 (($ $) 58 T ELT)) (-2030 (($ $ (-584 $)) 66 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3265 (((-85) $) 29 T ELT)) (-2661 (($) 9 T CONST)) (-2667 (($) 11 T CONST)) (-3057 (((-85) $ $) 74 T ELT)) (-3950 (($ $ $) 82 T ELT)) (-3840 (($ $ $) 75 T ELT)) (** (($ $ (-695)) 81 T ELT) (($ $ (-485)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3958 (((-485) $) NIL T ELT))) +(((-474) (-13 (-1017 (-1074) (-1091) (-485) (-179) (-773)) (-554 (-1016)) (-10 -8 (-15 -2032 ((-51) $)) (-15 -3973 ($ (-1016))) (-15 -2030 ($ $ (-584 $))) (-15 -2384 ($ $ (-584 (-1091)) (-1091))) (-15 -2029 ($ $ (-584 (-1091)))) (-15 -3840 ($ $ $)) (-15 * ($ $ $)) (-15 -3950 ($ $ $)) (-15 ** ($ $ (-695))) (-15 ** ($ $ (-485))) (-15 -2661 ($) -3953) (-15 -2667 ($) -3953) (-15 -2028 ($ $)) (-15 -2027 ((-1074) $)) (-15 -2026 ($ (-1074))) (-15 -2025 ((-1091) (-584 $))) (-15 -2024 ((-1091) (-1091) (-584 $)))))) (T -474)) +((-2032 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-474)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-474)))) (-2030 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-474))) (-5 *1 (-474)))) (-2384 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-1091)) (-5 *1 (-474)))) (-2029 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-474)))) (-3840 (*1 *1 *1 *1) (-5 *1 (-474))) (* (*1 *1 *1 *1) (-5 *1 (-474))) (-3950 (*1 *1 *1 *1) (-5 *1 (-474))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-474)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-474)))) (-2661 (*1 *1) (-5 *1 (-474))) (-2667 (*1 *1) (-5 *1 (-474))) (-2028 (*1 *1 *1) (-5 *1 (-474))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-474)))) (-2026 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-474)))) (-2025 (*1 *2 *3) (-12 (-5 *3 (-584 (-474))) (-5 *2 (-1091)) (-5 *1 (-474)))) (-2024 (*1 *2 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-584 (-474))) (-5 *1 (-474))))) +((-2031 (((-474) (-1091)) 15 T ELT)) (-2032 ((|#1| (-474)) 20 T ELT))) +(((-475 |#1|) (-10 -7 (-15 -2031 ((-474) (-1091))) (-15 -2032 (|#1| (-474)))) (-1130)) (T -475)) +((-2032 (*1 *2 *3) (-12 (-5 *3 (-474)) (-5 *1 (-475 *2)) (-4 *2 (-1130)))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-474)) (-5 *1 (-475 *4)) (-4 *4 (-1130))))) +((-3454 ((|#2| |#2|) 17 T ELT)) (-3452 ((|#2| |#2|) 13 T ELT)) (-3455 ((|#2| |#2| (-485) (-485)) 20 T ELT)) (-3453 ((|#2| |#2|) 15 T ELT))) +(((-476 |#1| |#2|) (-10 -7 (-15 -3452 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -3454 (|#2| |#2|)) (-15 -3455 (|#2| |#2| (-485) (-485)))) (-13 (-496) (-120)) (-1173 |#1|)) (T -476)) +((-3455 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-476 *4 *2)) (-4 *2 (-1173 *4)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3))))) +((-2035 (((-584 (-249 (-858 |#2|))) (-584 |#2|) (-584 (-1091))) 32 T ELT)) (-2033 (((-584 |#2|) (-858 |#1|) |#3|) 54 T ELT) (((-584 |#2|) (-1086 |#1|) |#3|) 53 T ELT)) (-2034 (((-584 (-584 |#2|)) (-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091)) |#3|) 106 T ELT))) +(((-477 |#1| |#2| |#3|) (-10 -7 (-15 -2033 ((-584 |#2|) (-1086 |#1|) |#3|)) (-15 -2033 ((-584 |#2|) (-858 |#1|) |#3|)) (-15 -2034 ((-584 (-584 |#2|)) (-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091)) |#3|)) (-15 -2035 ((-584 (-249 (-858 |#2|))) (-584 |#2|) (-584 (-1091))))) (-392) (-312) (-13 (-312) (-756))) (T -477)) +((-2035 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1091))) (-4 *6 (-312)) (-5 *2 (-584 (-249 (-858 *6)))) (-5 *1 (-477 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-13 (-312) (-756))))) (-2034 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-477 *6 *7 *5)) (-4 *7 (-312)) (-4 *5 (-13 (-312) (-756))))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6)) (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6)) (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756)))))) +((-2038 ((|#2| |#2| |#1|) 17 T ELT)) (-2036 ((|#2| (-584 |#2|)) 30 T ELT)) (-2037 ((|#2| (-584 |#2|)) 51 T ELT))) +(((-478 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2036 (|#2| (-584 |#2|))) (-15 -2037 (|#2| (-584 |#2|))) (-15 -2038 (|#2| |#2| |#1|))) (-258) (-1156 |#1|) |#1| (-1 |#1| |#1| (-695))) (T -478)) +((-2038 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-695))) (-5 *1 (-478 *3 *2 *4 *5)) (-4 *2 (-1156 *3)))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695))))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695)))))) +((-3733 (((-348 (-1086 |#4|)) (-1086 |#4|) (-1 (-348 (-1086 |#3|)) (-1086 |#3|))) 90 T ELT) (((-348 |#4|) |#4| (-1 (-348 (-1086 |#3|)) (-1086 |#3|))) 213 T ELT))) +(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-348 |#4|) |#4| (-1 (-348 (-1086 |#3|)) (-1086 |#3|)))) (-15 -3733 ((-348 (-1086 |#4|)) (-1086 |#4|) (-1 (-348 (-1086 |#3|)) (-1086 |#3|))))) (-757) (-718) (-13 (-258) (-120)) (-862 |#3| |#2| |#1|)) (T -479)) +((-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-862 *7 *6 *5)) (-5 *2 (-348 (-1086 *8))) (-5 *1 (-479 *5 *6 *7 *8)) (-5 *3 (-1086 *8)))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3)) (-5 *1 (-479 *5 *6 *7 *3)) (-4 *3 (-862 *7 *6 *5))))) +((-3454 ((|#4| |#4|) 74 T ELT)) (-3452 ((|#4| |#4|) 70 T ELT)) (-3455 ((|#4| |#4| (-485) (-485)) 76 T ELT)) (-3453 ((|#4| |#4|) 72 T ELT))) +(((-480 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3452 (|#4| |#4|)) (-15 -3453 (|#4| |#4|)) (-15 -3454 (|#4| |#4|)) (-15 -3455 (|#4| |#4| (-485) (-485)))) (-13 (-312) (-320) (-554 (-485))) (-1156 |#1|) (-662 |#1| |#2|) (-1173 |#3|)) (T -480)) +((-3455 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3))) (-4 *5 (-1156 *4)) (-4 *6 (-662 *4 *5)) (-5 *1 (-480 *4 *5 *6 *2)) (-4 *2 (-1173 *6)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5))))) +((-3454 ((|#2| |#2|) 27 T ELT)) (-3452 ((|#2| |#2|) 23 T ELT)) (-3455 ((|#2| |#2| (-485) (-485)) 29 T ELT)) (-3453 ((|#2| |#2|) 25 T ELT))) +(((-481 |#1| |#2|) (-10 -7 (-15 -3452 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -3454 (|#2| |#2|)) (-15 -3455 (|#2| |#2| (-485) (-485)))) (-13 (-312) (-320) (-554 (-485))) (-1173 |#1|)) (T -481)) +((-3455 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3))) (-5 *1 (-481 *4 *2)) (-4 *2 (-1173 *4)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1173 *3)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1173 *3)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1173 *3))))) +((-2039 (((-3 (-485) #1="failed") |#2| |#1| (-1 (-3 (-485) #1#) |#1|)) 18 T ELT) (((-3 (-485) #1#) |#2| |#1| (-485) (-1 (-3 (-485) #1#) |#1|)) 14 T ELT) (((-3 (-485) #1#) |#2| (-485) (-1 (-3 (-485) #1#) |#1|)) 30 T ELT))) +(((-482 |#1| |#2|) (-10 -7 (-15 -2039 ((-3 (-485) #1="failed") |#2| (-485) (-1 (-3 (-485) #1#) |#1|))) (-15 -2039 ((-3 (-485) #1#) |#2| |#1| (-485) (-1 (-3 (-485) #1#) |#1|))) (-15 -2039 ((-3 (-485) #1#) |#2| |#1| (-1 (-3 (-485) #1#) |#1|)))) (-962) (-1156 |#1|)) (T -482)) +((-2039 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-485) #1="failed") *4)) (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4)))) (-2039 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4)))) (-2039 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-485) #1#) *5)) (-4 *5 (-962)) (-5 *2 (-485)) (-5 *1 (-482 *5 *3)) (-4 *3 (-1156 *5))))) +((-2048 (($ $ $) 87 T ELT)) (-3972 (((-348 $) $) 50 T ELT)) (-3158 (((-3 (-485) #1="failed") $) 62 T ELT)) (-3157 (((-485) $) 40 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) 80 T ELT)) (-3024 (((-85) $) 24 T ELT)) (-3023 (((-350 (-485)) $) 78 T ELT)) (-3724 (((-85) $) 53 T ELT)) (-2041 (($ $ $ $) 94 T ELT)) (-1370 (($ $ $) 60 T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 75 T ELT)) (-3446 (((-633 $) $) 70 T ELT)) (-2045 (($ $) 22 T ELT)) (-2040 (($ $ $) 92 T ELT)) (-3447 (($) 63 T CONST)) (-1368 (($ $) 56 T ELT)) (-3733 (((-348 $) $) 48 T ELT)) (-2675 (((-85) $) 15 T ELT)) (-1608 (((-695) $) 30 T ELT)) (-3759 (($ $) 11 T ELT) (($ $ (-695)) NIL T ELT)) (-3401 (($ $) 16 T ELT)) (-3973 (((-485) $) NIL T ELT) (((-474) $) 39 T ELT) (((-801 (-485)) $) 43 T ELT) (((-330) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3127 (((-695)) 9 T CONST)) (-2050 (((-85) $ $) 19 T ELT)) (-3102 (($ $ $) 58 T ELT))) +(((-483 |#1|) (-10 -7 (-15 -2040 (|#1| |#1| |#1|)) (-15 -2041 (|#1| |#1| |#1| |#1|)) (-15 -2045 (|#1| |#1|)) (-15 -3401 (|#1| |#1|)) (-15 -3025 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3023 ((-350 (-485)) |#1|)) (-15 -3024 ((-85) |#1|)) (-15 -2048 (|#1| |#1| |#1|)) (-15 -2050 ((-85) |#1| |#1|)) (-15 -2675 ((-85) |#1|)) (-15 -3447 (|#1|) -3953) (-15 -3446 ((-633 |#1|) |#1|)) (-15 -3973 ((-179) |#1|)) (-15 -3973 ((-330) |#1|)) (-15 -1370 (|#1| |#1| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -3102 (|#1| |#1| |#1|)) (-15 -2797 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -3973 ((-801 (-485)) |#1|)) (-15 -3973 ((-474) |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3973 ((-485) |#1|)) (-15 -3759 (|#1| |#1| (-695))) (-15 -3759 (|#1| |#1|)) (-15 -1608 ((-695) |#1|)) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3972 ((-348 |#1|) |#1|)) (-15 -3724 ((-85) |#1|)) (-15 -3127 ((-695)) -3953)) (-484)) (T -483)) +((-3127 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-483 *3)) (-4 *3 (-484))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-2048 (($ $ $) 102 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2043 (($ $ $ $) 91 T ELT)) (-3776 (($ $) 66 T ELT)) (-3972 (((-348 $) $) 67 T ELT)) (-1609 (((-85) $ $) 145 T ELT)) (-3624 (((-485) $) 134 T ELT)) (-2442 (($ $ $) 105 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-485) "failed") $) 126 T ELT)) (-3157 (((-485) $) 127 T ELT)) (-2565 (($ $ $) 149 T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 124 T ELT) (((-631 (-485)) (-631 $)) 123 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3025 (((-3 (-350 (-485)) "failed") $) 99 T ELT)) (-3024 (((-85) $) 101 T ELT)) (-3023 (((-350 (-485)) $) 100 T ELT)) (-2995 (($) 98 T ELT) (($ $) 97 T ELT)) (-2564 (($ $ $) 148 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 143 T ELT)) (-3724 (((-85) $) 68 T ELT)) (-2041 (($ $ $ $) 89 T ELT)) (-2049 (($ $ $) 103 T ELT)) (-3187 (((-85) $) 136 T ELT)) (-1370 (($ $ $) 114 T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 117 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2674 (((-85) $) 109 T ELT)) (-3446 (((-633 $) $) 111 T ELT)) (-3188 (((-85) $) 135 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 152 T ELT)) (-2042 (($ $ $ $) 90 T ELT)) (-2532 (($ $ $) 142 T ELT)) (-2858 (($ $ $) 141 T ELT)) (-2045 (($ $) 93 T ELT)) (-3834 (($ $) 106 T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 122 T ELT) (((-631 (-485)) (-1180 $)) 121 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2040 (($ $ $) 88 T ELT)) (-3447 (($) 110 T CONST)) (-2047 (($ $) 95 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1368 (($ $) 115 T ELT)) (-3733 (((-348 $) $) 65 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 151 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 150 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 144 T ELT)) (-2675 (((-85) $) 108 T ELT)) (-1608 (((-695) $) 146 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 147 T ELT)) (-3759 (($ $) 132 T ELT) (($ $ (-695)) 130 T ELT)) (-2046 (($ $) 94 T ELT)) (-3401 (($ $) 96 T ELT)) (-3973 (((-485) $) 128 T ELT) (((-474) $) 119 T ELT) (((-801 (-485)) $) 118 T ELT) (((-330) $) 113 T ELT) (((-179) $) 112 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-485)) 125 T ELT)) (-3127 (((-695)) 40 T CONST)) (-2050 (((-85) $ $) 104 T ELT)) (-3102 (($ $ $) 116 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2695 (($) 107 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2044 (($ $ $ $) 92 T ELT)) (-3384 (($ $) 133 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $) 131 T ELT) (($ $ (-695)) 129 T ELT)) (-2567 (((-85) $ $) 140 T ELT)) (-2568 (((-85) $ $) 138 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 139 T ELT)) (-2686 (((-85) $ $) 137 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-485) $) 120 T ELT))) +(((-484) (-113)) (T -484)) +((-2674 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-2695 (*1 *1) (-4 *1 (-484))) (-3834 (*1 *1 *1) (-4 *1 (-484))) (-2442 (*1 *1 *1 *1) (-4 *1 (-484))) (-2050 (*1 *2 *1 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-2049 (*1 *1 *1 *1) (-4 *1 (-484))) (-2048 (*1 *1 *1 *1) (-4 *1 (-484))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-350 (-485))))) (-3025 (*1 *2 *1) (|partial| -12 (-4 *1 (-484)) (-5 *2 (-350 (-485))))) (-2995 (*1 *1) (-4 *1 (-484))) (-2995 (*1 *1 *1) (-4 *1 (-484))) (-3401 (*1 *1 *1) (-4 *1 (-484))) (-2047 (*1 *1 *1) (-4 *1 (-484))) (-2046 (*1 *1 *1) (-4 *1 (-484))) (-2045 (*1 *1 *1) (-4 *1 (-484))) (-2044 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2043 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2042 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2041 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2040 (*1 *1 *1 *1) (-4 *1 (-484)))) +(-13 (-1135) (-258) (-741) (-190) (-554 (-485)) (-951 (-485)) (-581 (-485)) (-554 (-474)) (-554 (-801 (-485))) (-797 (-485)) (-116) (-934) (-120) (-1067) (-10 -8 (-15 -2674 ((-85) $)) (-15 -2675 ((-85) $)) (-6 -3995) (-15 -2695 ($)) (-15 -3834 ($ $)) (-15 -2442 ($ $ $)) (-15 -2050 ((-85) $ $)) (-15 -2049 ($ $ $)) (-15 -2048 ($ $ $)) (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-485)) $)) (-15 -3025 ((-3 (-350 (-485)) "failed") $)) (-15 -2995 ($)) (-15 -2995 ($ $)) (-15 -3401 ($ $)) (-15 -2047 ($ $)) (-15 -2046 ($ $)) (-15 -2045 ($ $)) (-15 -2044 ($ $ $ $)) (-15 -2043 ($ $ $ $)) (-15 -2042 ($ $ $ $)) (-15 -2041 ($ $ $ $)) (-15 -2040 ($ $ $)) (-6 -3994))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-116) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-330)) . T) ((-554 (-474)) . T) ((-554 (-485)) . T) ((-554 (-801 (-485))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-485)) . T) ((-591 $) . T) ((-583 $) . T) ((-581 (-485)) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-741) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-485)) . T) ((-833) . T) ((-934) . T) ((-951 (-485)) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) . T) ((-1130) . T) ((-1135) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 8 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 77 T ELT)) (-2064 (($ $) 78 T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2043 (($ $ $ $) 31 T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL T ELT)) (-2442 (($ $ $) 71 T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL T ELT)) (-2565 (($ $ $) 45 T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 53 T ELT) (((-631 (-485)) (-631 $)) 49 T ELT)) (-3468 (((-3 $ #1#) $) 74 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3024 (((-85) $) NIL T ELT)) (-3023 (((-350 (-485)) $) NIL T ELT)) (-2995 (($) 55 T ELT) (($ $) 56 T ELT)) (-2564 (($ $ $) 70 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2049 (($ $ $) 46 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1370 (($ $ $) NIL T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL T ELT)) (-1215 (((-85) $ $) 110 T ELT)) (-2411 (((-85) $) 9 T ELT)) (-2674 (((-85) $) 64 T ELT)) (-3446 (((-633 $) $) NIL T ELT)) (-3188 (((-85) $) 21 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2042 (($ $ $ $) 32 T ELT)) (-2532 (($ $ $) 67 T ELT)) (-2858 (($ $ $) 66 T ELT)) (-2045 (($ $) NIL T ELT)) (-3834 (($ $) 29 T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) 44 T ELT)) (-2040 (($ $ $) NIL T ELT)) (-3447 (($) NIL T CONST)) (-2047 (($ $) 15 T ELT)) (-3244 (((-1034) $) 19 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 109 T ELT)) (-3145 (($ $ $) 75 T ELT) (($ (-584 $)) NIL T ELT)) (-1368 (($ $) NIL T ELT)) (-3733 (((-348 $) $) 95 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) 93 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2675 (((-85) $) 65 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 69 T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2046 (($ $) 17 T ELT)) (-3401 (($ $) 13 T ELT)) (-3973 (((-485) $) 28 T ELT) (((-474) $) 41 T ELT) (((-801 (-485)) $) NIL T ELT) (((-330) $) 35 T ELT) (((-179) $) 38 T ELT)) (-3947 (((-773) $) 26 T ELT) (($ (-485)) 27 T ELT) (($ $) NIL T ELT) (($ (-485)) 27 T ELT)) (-3127 (((-695)) NIL T CONST)) (-2050 (((-85) $ $) NIL T ELT)) (-3102 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2695 (($) 12 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) 112 T ELT)) (-2044 (($ $ $ $) 30 T ELT)) (-3384 (($ $) 54 T ELT)) (-2661 (($) 10 T CONST)) (-2667 (($) 11 T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2567 (((-85) $ $) 59 T ELT)) (-2568 (((-85) $ $) 57 T ELT)) (-3057 (((-85) $ $) 7 T ELT)) (-2685 (((-85) $ $) 58 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-3838 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3840 (($ $ $) 14 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 63 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-485) $) 61 T ELT))) +(((-485) (-13 (-484) (-10 -7 (-6 -3983) (-6 -3988) (-6 -3984)))) (T -485)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT))) +(((-486) (-13 (-753) (-10 -8 (-15 -3725 ($) -3953)))) (T -486)) +((-3725 (*1 *1) (-5 *1 (-486)))) +((-485) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT))) +(((-487) (-13 (-753) (-10 -8 (-15 -3725 ($) -3953)))) (T -487)) +((-3725 (*1 *1) (-5 *1 (-487)))) +((-485) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT))) +(((-488) (-13 (-753) (-10 -8 (-15 -3725 ($) -3953)))) (T -488)) +((-3725 (*1 *1) (-5 *1 (-488)))) +((-485) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT))) +(((-489) (-13 (-753) (-10 -8 (-15 -3725 ($) -3953)))) (T -489)) +((-3725 (*1 *1) (-5 *1 (-489)))) +((-485) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-72))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3531 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-773) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-490 |#1| |#2| |#3|) (-1108 |#1| |#2|) (-1014) (-1014) (-1108 |#1| |#2|)) (T -490)) +NIL +((-2051 (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-1 (-1086 |#2|) (-1086 |#2|))) 50 T ELT))) +(((-491 |#1| |#2|) (-10 -7 (-15 -2051 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-1 (-1086 |#2|) (-1086 |#2|))))) (-496) (-13 (-27) (-364 |#1|))) (T -491)) +((-2051 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-1 (-1086 *3) (-1086 *3))) (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-496)) (-5 *2 (-520 *3)) (-5 *1 (-491 *6 *3))))) +((-2053 (((-520 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2054 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2052 (((-520 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) +(((-492 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2052 ((-520 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2053 ((-520 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2054 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-496) (-951 (-485))) (-13 (-27) (-364 |#1|)) (-1156 |#2|) (-1156 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -492)) +((-2054 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *7 (-1156 (-350 *6))) (-5 *1 (-492 *4 *5 *6 *7 *2)) (-4 *2 (-291 *5 *6 *7)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1156 (-350 *7))) (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1156 (-350 *7))) (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) +((-2057 (((-85) (-485) (-485)) 12 T ELT)) (-2055 (((-485) (-485)) 7 T ELT)) (-2056 (((-485) (-485) (-485)) 10 T ELT))) +(((-493) (-10 -7 (-15 -2055 ((-485) (-485))) (-15 -2056 ((-485) (-485) (-485))) (-15 -2057 ((-85) (-485) (-485))))) (T -493)) +((-2057 (*1 *2 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-493)))) (-2056 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493)))) (-2055 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2605 ((|#1| $) 77 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3493 (($ $) 107 T ELT)) (-3640 (($ $) 90 T ELT)) (-2484 ((|#1| $) 78 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3038 (($ $) 89 T ELT)) (-3491 (($ $) 106 T ELT)) (-3639 (($ $) 91 T ELT)) (-3495 (($ $) 105 T ELT)) (-3638 (($ $) 92 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-485) "failed") $) 85 T ELT)) (-3157 (((-485) $) 86 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2060 (($ |#1| |#1|) 82 T ELT)) (-3187 (((-85) $) 76 T ELT)) (-3628 (($) 117 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 88 T ELT)) (-3188 (((-85) $) 75 T ELT)) (-2532 (($ $ $) 118 T ELT)) (-2858 (($ $ $) 119 T ELT)) (-3943 (($ $) 114 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2061 (($ |#1| |#1|) 83 T ELT) (($ |#1|) 81 T ELT) (($ (-350 (-485))) 80 T ELT)) (-2059 ((|#1| $) 79 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-3944 (($ $) 115 T ELT)) (-3496 (($ $) 104 T ELT)) (-3637 (($ $) 93 T ELT)) (-3494 (($ $) 103 T ELT)) (-3636 (($ $) 94 T ELT)) (-3492 (($ $) 102 T ELT)) (-3635 (($ $) 95 T ELT)) (-2058 (((-85) $ |#1|) 74 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-485)) 84 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 113 T ELT)) (-3487 (($ $) 101 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3497 (($ $) 112 T ELT)) (-3485 (($ $) 100 T ELT)) (-3501 (($ $) 111 T ELT)) (-3489 (($ $) 99 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 110 T ELT)) (-3490 (($ $) 98 T ELT)) (-3500 (($ $) 109 T ELT)) (-3488 (($ $) 97 T ELT)) (-3498 (($ $) 108 T ELT)) (-3486 (($ $) 96 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 120 T ELT)) (-2568 (((-85) $ $) 122 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 121 T ELT)) (-2686 (((-85) $ $) 123 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ $) 116 T ELT) (($ $ (-350 (-485))) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-494 |#1|) (-113) (-13 (-347) (-1116))) (T -494)) +((-2061 (*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-2060 (*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-2061 (*1 *1 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-2061 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))))) (-2059 (*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85)))) (-2058 (*1 *2 *1 *3) (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85))))) +(-13 (-392) (-757) (-1116) (-916) (-951 (-485)) (-10 -8 (-6 -3771) (-15 -2061 ($ |t#1| |t#1|)) (-15 -2060 ($ |t#1| |t#1|)) (-15 -2061 ($ |t#1|)) (-15 -2061 ($ (-350 (-485)))) (-15 -2059 (|t#1| $)) (-15 -2484 (|t#1| $)) (-15 -2605 (|t#1| $)) (-15 -3187 ((-85) $)) (-15 -3188 ((-85) $)) (-15 -2058 ((-85) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-239) . T) ((-246) . T) ((-392) . T) ((-433) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-757) . T) ((-760) . T) ((-916) . T) ((-951 (-485)) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) . T) ((-1119) . T) ((-1130) . T)) +((-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 9 T ELT)) (-2064 (($ $) 11 T ELT)) (-2062 (((-85) $) 20 T ELT)) (-3468 (((-3 $ "failed") $) 16 T ELT)) (-2063 (((-85) $ $) 22 T ELT))) +(((-495 |#1|) (-10 -7 (-15 -2062 ((-85) |#1|)) (-15 -2063 ((-85) |#1| |#1|)) (-15 -2064 (|#1| |#1|)) (-15 -2065 ((-2 (|:| -1773 |#1|) (|:| -3983 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3468 ((-3 |#1| "failed") |#1|))) (-496)) (T -495)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-496) (-113)) (T -496)) +((-3467 (*1 *1 *1 *1) (|partial| -4 *1 (-496))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1773 *1) (|:| -3983 *1) (|:| |associate| *1))) (-4 *1 (-496)))) (-2064 (*1 *1 *1) (-4 *1 (-496))) (-2063 (*1 *2 *1 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85)))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85))))) +(-13 (-146) (-38 $) (-246) (-10 -8 (-15 -3467 ((-3 $ "failed") $ $)) (-15 -2065 ((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $)) (-15 -2064 ($ $)) (-15 -2063 ((-85) $ $)) (-15 -2062 ((-85) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2067 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1091) (-584 |#2|)) 38 T ELT)) (-2069 (((-520 |#2|) |#2| (-1091)) 63 T ELT)) (-2068 (((-3 |#2| #1#) |#2| (-1091)) 156 T ELT)) (-2070 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1091) (-551 |#2|) (-584 (-551 |#2|))) 159 T ELT)) (-2066 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1091) |#2|) 41 T ELT))) +(((-497 |#1| |#2|) (-10 -7 (-15 -2066 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1091) |#2|)) (-15 -2067 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1091) (-584 |#2|))) (-15 -2068 ((-3 |#2| #1#) |#2| (-1091))) (-15 -2069 ((-520 |#2|) |#2| (-1091))) (-15 -2070 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1091) (-551 |#2|) (-584 (-551 |#2|))))) (-13 (-392) (-120) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -497)) +((-2070 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1091)) (-5 *6 (-584 (-551 *3))) (-5 *5 (-551 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *7 *3)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-497 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-2068 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-497 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-2067 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-497 *6 *3)))) (-2066 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))))) +((-3972 (((-348 |#1|) |#1|) 17 T ELT)) (-3733 (((-348 |#1|) |#1|) 32 T ELT)) (-2072 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2071 (((-348 |#1|) |#1|) 59 T ELT))) +(((-498 |#1|) (-10 -7 (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3972 ((-348 |#1|) |#1|)) (-15 -2071 ((-348 |#1|) |#1|)) (-15 -2072 ((-3 |#1| "failed") |#1|))) (-484)) (T -498)) +((-2072 (*1 *2 *2) (|partial| -12 (-5 *1 (-498 *2)) (-4 *2 (-484)))) (-2071 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) (-3972 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484))))) +((-3084 (((-1086 (-350 (-1086 |#2|))) |#2| (-551 |#2|) (-551 |#2|) (-1086 |#2|)) 35 T ELT)) (-2075 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) |#2| (-1086 |#2|)) 115 T ELT)) (-2073 (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|))) 85 T ELT) (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|)) 55 T ELT)) (-2074 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| (-551 |#2|) |#2| (-350 (-1086 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| |#2| (-1086 |#2|)) 114 T ELT)) (-2076 (((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) (-551 |#2|) |#2| (-350 (-1086 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) |#2| (-1086 |#2|)) 116 T ELT)) (-2077 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|))) 133 (|has| |#3| (-601 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|)) 132 (|has| |#3| (-601 |#2|)) ELT)) (-3085 ((|#2| (-1086 (-350 (-1086 |#2|))) (-551 |#2|) |#2|) 53 T ELT)) (-3080 (((-1086 (-350 (-1086 |#2|))) (-1086 |#2|) (-551 |#2|)) 34 T ELT))) +(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -2073 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|))) (-15 -2073 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|)))) (-15 -2074 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-551 |#2|) (-551 |#2|) |#2| |#2| (-1086 |#2|))) (-15 -2074 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| (-551 |#2|) |#2| (-350 (-1086 |#2|)))) (-15 -2075 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) |#2| (-1086 |#2|))) (-15 -2075 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|)))) (-15 -2076 ((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) |#2| (-1086 |#2|))) (-15 -2076 ((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) (-551 |#2|) |#2| (-350 (-1086 |#2|)))) (-15 -3084 ((-1086 (-350 (-1086 |#2|))) |#2| (-551 |#2|) (-551 |#2|) (-1086 |#2|))) (-15 -3085 (|#2| (-1086 (-350 (-1086 |#2|))) (-551 |#2|) |#2|)) (-15 -3080 ((-1086 (-350 (-1086 |#2|))) (-1086 |#2|) (-551 |#2|))) (IF (|has| |#3| (-601 |#2|)) (PROGN (-15 -2077 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|))) (-15 -2077 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|))))) |%noBranch|)) (-13 (-392) (-951 (-485)) (-120) (-581 (-485))) (-13 (-364 |#1|) (-27) (-1116)) (-1014)) (T -499)) +((-2077 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-350 (-1086 *4))) (-4 *4 (-13 (-364 *7) (-27) (-1116))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) (-2077 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-1086 *4)) (-4 *4 (-13 (-364 *7) (-27) (-1116))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *4 (-551 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1116))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-1086 (-350 (-1086 *6)))) (-5 *1 (-499 *5 *6 *7)) (-5 *3 (-1086 *6)) (-4 *7 (-1014)))) (-3085 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1086 (-350 (-1086 *2)))) (-5 *4 (-551 *2)) (-4 *2 (-13 (-364 *5) (-27) (-1116))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-499 *5 *2 *6)) (-4 *6 (-1014)))) (-3084 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-1086 (-350 (-1086 *3)))) (-5 *1 (-499 *6 *3 *7)) (-5 *5 (-1086 *3)) (-4 *7 (-1014)))) (-2076 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1091))) (-5 *5 (-350 (-1086 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014)))) (-2076 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1091))) (-5 *5 (-1086 *2)) (-4 *2 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014)))) (-2075 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-350 (-1086 *3))) (-4 *3 (-13 (-364 *7) (-27) (-1116))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014)))) (-2075 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-1086 *3)) (-4 *3 (-13 (-364 *7) (-27) (-1116))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014)))) (-2074 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1086 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) (-2074 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) (-2073 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1086 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) (-2073 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014))))) +((-2087 (((-485) (-485) (-695)) 87 T ELT)) (-2086 (((-485) (-485)) 85 T ELT)) (-2085 (((-485) (-485)) 82 T ELT)) (-2084 (((-485) (-485)) 89 T ELT)) (-2806 (((-485) (-485) (-485)) 67 T ELT)) (-2083 (((-485) (-485) (-485)) 64 T ELT)) (-2082 (((-350 (-485)) (-485)) 29 T ELT)) (-2081 (((-485) (-485)) 34 T ELT)) (-2080 (((-485) (-485)) 76 T ELT)) (-2803 (((-485) (-485)) 47 T ELT)) (-2079 (((-584 (-485)) (-485)) 81 T ELT)) (-2078 (((-485) (-485) (-485) (-485) (-485)) 60 T ELT)) (-2799 (((-350 (-485)) (-485)) 56 T ELT))) +(((-500) (-10 -7 (-15 -2799 ((-350 (-485)) (-485))) (-15 -2078 ((-485) (-485) (-485) (-485) (-485))) (-15 -2079 ((-584 (-485)) (-485))) (-15 -2803 ((-485) (-485))) (-15 -2080 ((-485) (-485))) (-15 -2081 ((-485) (-485))) (-15 -2082 ((-350 (-485)) (-485))) (-15 -2083 ((-485) (-485) (-485))) (-15 -2806 ((-485) (-485) (-485))) (-15 -2084 ((-485) (-485))) (-15 -2085 ((-485) (-485))) (-15 -2086 ((-485) (-485))) (-15 -2087 ((-485) (-485) (-695))))) (T -500)) +((-2087 (*1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-695)) (-5 *1 (-500)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2806 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2083 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2082 (*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2803 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2079 (*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))) (-2078 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485))))) +((-2088 (((-2 (|:| |answer| |#4|) (|:| -2136 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) +(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2088 ((-2 (|:| |answer| |#4|) (|:| -2136 |#4|)) |#4| (-1 |#2| |#2|)))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -501)) +((-2088 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-4 *7 (-1156 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2136 *3))) (-5 *1 (-501 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7))))) +((-2088 (((-2 (|:| |answer| (-350 |#2|)) (|:| -2136 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 18 T ELT))) +(((-502 |#1| |#2|) (-10 -7 (-15 -2088 ((-2 (|:| |answer| (-350 |#2|)) (|:| -2136 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1156 |#1|)) (T -502)) +((-2088 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| (-350 *6)) (|:| -2136 (-350 *6)) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-502 *5 *6)) (-5 *3 (-350 *6))))) +((-2091 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|)) 195 T ELT)) (-2089 (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|)) 97 T ELT)) (-2090 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2|) 191 T ELT)) (-2092 (((-3 |#2| #1#) |#2| |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091))) 200 T ELT)) (-2093 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-1091)) 209 (|has| |#3| (-601 |#2|)) ELT))) +(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -2089 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|))) (-15 -2090 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-551 |#2|) (-551 |#2|) |#2|)) (-15 -2091 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|))) (-15 -2092 ((-3 |#2| #1#) |#2| |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)))) (IF (|has| |#3| (-601 |#2|)) (-15 -2093 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-1091))) |%noBranch|)) (-13 (-392) (-951 (-485)) (-120) (-581 (-485))) (-13 (-364 |#1|) (-27) (-1116)) (-1014)) (T -503)) +((-2093 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-1091)) (-4 *4 (-13 (-364 *7) (-27) (-1116))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-503 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) (-2092 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1091))) (-4 *2 (-13 (-364 *5) (-27) (-1116))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-503 *5 *2 *6)) (-4 *6 (-1014)))) (-2091 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-503 *6 *3 *7)) (-4 *7 (-1014)))) (-2090 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1116))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1014)))) (-2089 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1116))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1014))))) +((-2094 (((-2 (|:| -2339 |#2|) (|:| |nconst| |#2|)) |#2| (-1091)) 64 T ELT)) (-2096 (((-3 |#2| #1="failed") |#2| (-1091) (-751 |#2|) (-751 |#2|)) 174 (-12 (|has| |#2| (-1054)) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-797 (-485)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1091)) 145 (-12 (|has| |#2| (-570)) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-797 (-485)))) ELT)) (-2095 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1091)) 156 (-12 (|has| |#2| (-570)) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-797 (-485)))) ELT))) +(((-504 |#1| |#2|) (-10 -7 (-15 -2094 ((-2 (|:| -2339 |#2|) (|:| |nconst| |#2|)) |#2| (-1091))) (IF (|has| |#1| (-554 (-801 (-485)))) (IF (|has| |#1| (-797 (-485))) (PROGN (IF (|has| |#2| (-570)) (PROGN (-15 -2095 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1091))) (-15 -2096 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1091)))) |%noBranch|) (IF (|has| |#2| (-1054)) (-15 -2096 ((-3 |#2| #1#) |#2| (-1091) (-751 |#2|) (-751 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-951 (-485)) (-392) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -504)) +((-2096 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1091)) (-5 *4 (-751 *2)) (-4 *2 (-1054)) (-4 *2 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-554 (-801 (-485)))) (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *1 (-504 *5 *2)))) (-2096 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485)))) (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-2095 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485)))) (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-2094 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *2 (-2 (|:| -2339 *3) (|:| |nconst| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))))) +((-2099 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1="failed") (-350 |#2|) (-584 (-350 |#2|))) 41 T ELT)) (-3813 (((-520 (-350 |#2|)) (-350 |#2|)) 28 T ELT)) (-2097 (((-3 (-350 |#2|) #1#) (-350 |#2|)) 17 T ELT)) (-2098 (((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|)) 48 T ELT))) +(((-505 |#1| |#2|) (-10 -7 (-15 -3813 ((-520 (-350 |#2|)) (-350 |#2|))) (-15 -2097 ((-3 (-350 |#2|) #1="failed") (-350 |#2|))) (-15 -2098 ((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|))) (-15 -2099 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-584 (-350 |#2|))))) (-13 (-312) (-120) (-951 (-485))) (-1156 |#1|)) (T -505)) +((-2099 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-584 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-505 *5 *6)))) (-2098 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -2137 (-350 *5)) (|:| |coeff| (-350 *5)))) (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5)))) (-2097 (*1 *2 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120) (-951 (-485)))) (-5 *1 (-505 *3 *4)))) (-3813 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-520 (-350 *5))) (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5))))) +((-2100 (((-3 (-485) "failed") |#1|) 14 T ELT)) (-3260 (((-85) |#1|) 13 T ELT)) (-3256 (((-485) |#1|) 9 T ELT))) +(((-506 |#1|) (-10 -7 (-15 -3256 ((-485) |#1|)) (-15 -3260 ((-85) |#1|)) (-15 -2100 ((-3 (-485) "failed") |#1|))) (-951 (-485))) (T -506)) +((-2100 (*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2)))) (-3260 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-506 *3)) (-4 *3 (-951 (-485))))) (-3256 (*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2))))) +((-2103 (((-3 (-2 (|:| |mainpart| (-350 (-858 |#1|))) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 (-858 |#1|))) (|:| |logand| (-350 (-858 |#1|))))))) #1="failed") (-350 (-858 |#1|)) (-1091) (-584 (-350 (-858 |#1|)))) 48 T ELT)) (-2101 (((-520 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-1091)) 28 T ELT)) (-2102 (((-3 (-350 (-858 |#1|)) #1#) (-350 (-858 |#1|)) (-1091)) 23 T ELT)) (-2104 (((-3 (-2 (|:| -2137 (-350 (-858 |#1|))) (|:| |coeff| (-350 (-858 |#1|)))) #1#) (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|))) 35 T ELT))) +(((-507 |#1|) (-10 -7 (-15 -2101 ((-520 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-1091))) (-15 -2102 ((-3 (-350 (-858 |#1|)) #1="failed") (-350 (-858 |#1|)) (-1091))) (-15 -2103 ((-3 (-2 (|:| |mainpart| (-350 (-858 |#1|))) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 (-858 |#1|))) (|:| |logand| (-350 (-858 |#1|))))))) #1#) (-350 (-858 |#1|)) (-1091) (-584 (-350 (-858 |#1|))))) (-15 -2104 ((-3 (-2 (|:| -2137 (-350 (-858 |#1|))) (|:| |coeff| (-350 (-858 |#1|)))) #1#) (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|))))) (-13 (-496) (-951 (-485)) (-120))) (T -507)) +((-2104 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-120))) (-5 *2 (-2 (|:| -2137 (-350 (-858 *5))) (|:| |coeff| (-350 (-858 *5))))) (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5))))) (-2103 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 (-350 (-858 *6)))) (-5 *3 (-350 (-858 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-507 *6)))) (-2102 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-120))) (-5 *1 (-507 *4)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-120))) (-5 *2 (-520 (-350 (-858 *5)))) (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5)))))) +((-2569 (((-85) $ $) 77 T ELT)) (-3189 (((-85) $) 49 T ELT)) (-2605 ((|#1| $) 39 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) 81 T ELT)) (-3493 (($ $) 142 T ELT)) (-3640 (($ $) 120 T ELT)) (-2484 ((|#1| $) 37 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $) NIL T ELT)) (-3491 (($ $) 144 T ELT)) (-3639 (($ $) 116 T ELT)) (-3495 (($ $) 146 T ELT)) (-3638 (($ $) 124 T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) 95 T ELT)) (-3157 (((-485) $) 97 T ELT)) (-3468 (((-3 $ #1#) $) 80 T ELT)) (-2060 (($ |#1| |#1|) 35 T ELT)) (-3187 (((-85) $) 44 T ELT)) (-3628 (($) 106 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 56 T ELT)) (-3012 (($ $ (-485)) NIL T ELT)) (-3188 (((-85) $) 46 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3943 (($ $) 108 T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2061 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-350 (-485))) 94 T ELT)) (-2059 ((|#1| $) 36 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) 83 T ELT) (($ (-584 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) 82 T ELT)) (-3944 (($ $) 110 T ELT)) (-3496 (($ $) 150 T ELT)) (-3637 (($ $) 122 T ELT)) (-3494 (($ $) 152 T ELT)) (-3636 (($ $) 126 T ELT)) (-3492 (($ $) 148 T ELT)) (-3635 (($ $) 118 T ELT)) (-2058 (((-85) $ |#1|) 42 T ELT)) (-3947 (((-773) $) 102 T ELT) (($ (-485)) 85 T ELT) (($ $) NIL T ELT) (($ (-485)) 85 T ELT)) (-3127 (((-695)) 104 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 164 T ELT)) (-3487 (($ $) 132 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 162 T ELT)) (-3485 (($ $) 128 T ELT)) (-3501 (($ $) 160 T ELT)) (-3489 (($ $) 140 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 158 T ELT)) (-3490 (($ $) 138 T ELT)) (-3500 (($ $) 156 T ELT)) (-3488 (($ $) 134 T ELT)) (-3498 (($ $) 154 T ELT)) (-3486 (($ $) 130 T ELT)) (-2661 (($) 30 T CONST)) (-2667 (($) 10 T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 50 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 48 T ELT)) (-3838 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3840 (($ $ $) 53 T ELT)) (** (($ $ (-831)) 73 T ELT) (($ $ (-695)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-350 (-485))) 166 T ELT)) (* (($ (-831) $) 67 T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 62 T ELT))) +(((-508 |#1|) (-494 |#1|) (-13 (-347) (-1116))) (T -508)) +NIL +((-2705 (((-3 (-584 (-1086 (-485))) "failed") (-584 (-1086 (-485))) (-1086 (-485))) 27 T ELT))) +(((-509) (-10 -7 (-15 -2705 ((-3 (-584 (-1086 (-485))) "failed") (-584 (-1086 (-485))) (-1086 (-485)))))) (T -509)) +((-2705 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 (-485)))) (-5 *3 (-1086 (-485))) (-5 *1 (-509))))) +((-2105 (((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-1091)) 19 T ELT)) (-2108 (((-584 (-551 |#2|)) (-584 |#2|) (-1091)) 23 T ELT)) (-3235 (((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-584 (-551 |#2|))) 11 T ELT)) (-2109 ((|#2| |#2| (-1091)) 59 (|has| |#1| (-496)) ELT)) (-2110 ((|#2| |#2| (-1091)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-392))) ELT)) (-2107 (((-551 |#2|) (-551 |#2|) (-584 (-551 |#2|)) (-1091)) 25 T ELT)) (-2106 (((-551 |#2|) (-584 (-551 |#2|))) 24 T ELT)) (-2111 (((-520 |#2|) |#2| (-1091) (-1 (-520 |#2|) |#2| (-1091)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-570)) (|has| |#2| (-951 (-1091))) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-392)) (|has| |#1| (-797 (-485)))) ELT))) +(((-510 |#1| |#2|) (-10 -7 (-15 -2105 ((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-1091))) (-15 -2106 ((-551 |#2|) (-584 (-551 |#2|)))) (-15 -2107 ((-551 |#2|) (-551 |#2|) (-584 (-551 |#2|)) (-1091))) (-15 -3235 ((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-584 (-551 |#2|)))) (-15 -2108 ((-584 (-551 |#2|)) (-584 |#2|) (-1091))) (IF (|has| |#1| (-496)) (-15 -2109 (|#2| |#2| (-1091))) |%noBranch|) (IF (|has| |#1| (-392)) (IF (|has| |#2| (-239)) (PROGN (-15 -2110 (|#2| |#2| (-1091))) (IF (|has| |#1| (-554 (-801 (-485)))) (IF (|has| |#1| (-797 (-485))) (IF (|has| |#2| (-570)) (IF (|has| |#2| (-951 (-1091))) (-15 -2111 ((-520 |#2|) |#2| (-1091) (-1 (-520 |#2|) |#2| (-1091)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1014) (-364 |#1|)) (T -510)) +((-2111 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-520 *3) *3 (-1091))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1091))) (-4 *3 (-239)) (-4 *3 (-570)) (-4 *3 (-951 *4)) (-4 *3 (-364 *7)) (-5 *4 (-1091)) (-4 *7 (-554 (-801 (-485)))) (-4 *7 (-392)) (-4 *7 (-797 (-485))) (-4 *7 (-1014)) (-5 *2 (-520 *3)) (-5 *1 (-510 *7 *3)))) (-2110 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-392)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2)) (-4 *2 (-239)) (-4 *2 (-364 *4)))) (-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2)) (-4 *2 (-364 *4)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-1091)) (-4 *6 (-364 *5)) (-4 *5 (-1014)) (-5 *2 (-584 (-551 *6))) (-5 *1 (-510 *5 *6)))) (-3235 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-551 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1014)) (-5 *1 (-510 *3 *4)))) (-2107 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-551 *6))) (-5 *4 (-1091)) (-5 *2 (-551 *6)) (-4 *6 (-364 *5)) (-4 *5 (-1014)) (-5 *1 (-510 *5 *6)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-584 (-551 *5))) (-4 *4 (-1014)) (-5 *2 (-551 *5)) (-5 *1 (-510 *4 *5)) (-4 *5 (-364 *4)))) (-2105 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-551 *5))) (-5 *3 (-1091)) (-4 *5 (-364 *4)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *5))))) +((-2114 (((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-584 |#1|) #1="failed") (-485) |#1| |#1|)) 199 T ELT)) (-2117 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-584 (-350 |#2|))) 174 T ELT)) (-2120 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-584 (-350 |#2|))) 171 T ELT)) (-2121 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2112 (((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2119 (((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|)) 202 T ELT)) (-2115 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|)) 205 T ELT)) (-2123 (((-2 (|:| |ir| (-520 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2124 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2118 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-584 (-350 |#2|))) 178 T ELT)) (-2122 (((-3 (-563 |#1| |#2|) #1#) (-563 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|)) 166 T ELT)) (-2113 (((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|)) 189 T ELT)) (-2116 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-350 |#2|)) 210 T ELT))) +(((-511 |#1| |#2|) (-10 -7 (-15 -2112 ((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2113 ((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|))) (-15 -2114 ((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-584 |#1|) #1#) (-485) |#1| |#1|))) (-15 -2115 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|))) (-15 -2116 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-350 |#2|))) (-15 -2117 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-584 (-350 |#2|)))) (-15 -2118 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-584 (-350 |#2|)))) (-15 -2119 ((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|))) (-15 -2120 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-584 (-350 |#2|)))) (-15 -2121 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2122 ((-3 (-563 |#1| |#2|) #1#) (-563 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-485) |#1|))) (-15 -2123 ((-2 (|:| |ir| (-520 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|))) (-15 -2124 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-312) (-1156 |#1|)) (T -511)) +((-2124 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-511 *5 *3)))) (-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |ir| (-520 (-350 *6))) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6)))) (-2122 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-563 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3138 *4) (|:| |sol?| (-85))) (-485) *4)) (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *1 (-511 *4 *5)))) (-2121 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-312)) (-5 *1 (-511 *4 *2)) (-4 *2 (-1156 *4)))) (-2120 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-584 (-350 *7))) (-4 *7 (-1156 *6)) (-5 *3 (-350 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-511 *6 *7)))) (-2119 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -2137 (-350 *6)) (|:| |coeff| (-350 *6)))) (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6)))) (-2118 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3138 *7) (|:| |sol?| (-85))) (-485) *7)) (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-511 *7 *8)))) (-2117 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2137 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-511 *7 *8)))) (-2116 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3138 *6) (|:| |sol?| (-85))) (-485) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2115 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2114 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-584 *6) "failed") (-485) *6 *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3138 *6) (|:| |sol?| (-85))) (-485) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2112 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7))))) +((-2125 (((-3 |#2| "failed") |#2| (-1091) (-1091)) 10 T ELT))) +(((-512 |#1| |#2|) (-10 -7 (-15 -2125 ((-3 |#2| "failed") |#2| (-1091) (-1091)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-872) (-1054) (-29 |#1|))) (T -512)) +((-2125 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-512 *4 *2)) (-4 *2 (-13 (-1116) (-872) (-1054) (-29 *4)))))) +((-2556 (((-633 (-1139)) $ (-1139)) 27 T ELT)) (-2557 (((-633 (-489)) $ (-489)) 26 T ELT)) (-2555 (((-695) $ (-102)) 28 T ELT)) (-2558 (((-633 (-101)) $ (-101)) 25 T ELT)) (-2001 (((-633 (-1139)) $) 12 T ELT)) (-1997 (((-633 (-1137)) $) 8 T ELT)) (-1999 (((-633 (-1136)) $) 10 T ELT)) (-2002 (((-633 (-489)) $) 13 T ELT)) (-1998 (((-633 (-487)) $) 9 T ELT)) (-2000 (((-633 (-486)) $) 11 T ELT)) (-1996 (((-695) $ (-102)) 7 T ELT)) (-2003 (((-633 (-101)) $) 14 T ELT)) (-1701 (($ $) 6 T ELT))) +(((-513) (-113)) (T -513)) +NIL +(-13 (-466) (-771)) +(((-147) . T) ((-466) . T) ((-771) . T)) +((-2556 (((-633 (-1139)) $ (-1139)) NIL T ELT)) (-2557 (((-633 (-489)) $ (-489)) NIL T ELT)) (-2555 (((-695) $ (-102)) NIL T ELT)) (-2558 (((-633 (-101)) $ (-101)) NIL T ELT)) (-2001 (((-633 (-1139)) $) NIL T ELT)) (-1997 (((-633 (-1137)) $) NIL T ELT)) (-1999 (((-633 (-1136)) $) NIL T ELT)) (-2002 (((-633 (-489)) $) NIL T ELT)) (-1998 (((-633 (-487)) $) NIL T ELT)) (-2000 (((-633 (-486)) $) NIL T ELT)) (-1996 (((-695) $ (-102)) NIL T ELT)) (-2003 (((-633 (-101)) $) NIL T ELT)) (-2559 (((-85) $) NIL T ELT)) (-2126 (($ (-338)) 14 T ELT) (($ (-1074)) 16 T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1701 (($ $) NIL T ELT))) +(((-514) (-13 (-513) (-553 (-773)) (-10 -8 (-15 -2126 ($ (-338))) (-15 -2126 ($ (-1074))) (-15 -2559 ((-85) $))))) (T -514)) +((-2126 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-514)))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-514)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-514))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3461 (($) 7 T CONST)) (-3243 (((-1074) $) NIL T ELT)) (-2129 (($) 6 T CONST)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 15 T ELT)) (-2127 (($) 9 T CONST)) (-2128 (($) 8 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 11 T ELT))) +(((-515) (-13 (-1014) (-10 -8 (-15 -2129 ($) -3953) (-15 -3461 ($) -3953) (-15 -2128 ($) -3953) (-15 -2127 ($) -3953)))) (T -515)) +((-2129 (*1 *1) (-5 *1 (-515))) (-3461 (*1 *1) (-5 *1 (-515))) (-2128 (*1 *1) (-5 *1 (-515))) (-2127 (*1 *1) (-5 *1 (-515)))) +((-2569 (((-85) $ $) NIL T ELT)) (-2130 (((-633 $) (-431)) 23 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2132 (($ (-1074)) 16 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 33 T ELT)) (-2131 (((-166 4 (-101)) $) 24 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 26 T ELT))) +(((-516) (-13 (-1014) (-10 -8 (-15 -2132 ($ (-1074))) (-15 -2131 ((-166 4 (-101)) $)) (-15 -2130 ((-633 $) (-431)))))) (T -516)) +((-2132 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-516)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-516)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-431)) (-5 *2 (-633 (-516))) (-5 *1 (-516))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $ (-485)) 73 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2612 (($ (-1086 (-485)) (-485)) 79 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 64 T ELT)) (-2613 (($ $) 43 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3773 (((-695) $) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2615 (((-485)) 37 T ELT)) (-2614 (((-485) $) 41 T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3770 (($ $ (-485)) 24 T ELT)) (-3467 (((-3 $ #1#) $ $) 70 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) 17 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 71 T ELT)) (-2616 (((-1070 (-485)) $) 19 T ELT)) (-2892 (($ $) 26 T ELT)) (-3947 (((-773) $) 100 T ELT) (($ (-485)) 59 T ELT) (($ $) NIL T ELT)) (-3127 (((-695)) 15 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3771 (((-485) $ (-485)) 46 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 44 T CONST)) (-2667 (($) 21 T CONST)) (-3057 (((-85) $ $) 51 T ELT)) (-3838 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3840 (($ $ $) 57 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 60 T ELT) (($ $ $) 61 T ELT))) +(((-517 |#1| |#2|) (-780 |#1|) (-485) (-85)) (T -517)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 30 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-695)) NIL T ELT)) (-3331 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 59 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 $ #1#) $) 95 T ELT)) (-3157 (($ $) 94 T ELT)) (-1793 (($ (-1180 $)) 93 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 47 T ELT)) (-2995 (($) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) 61 T ELT)) (-1681 (((-85) $) NIL T ELT)) (-1765 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) 49 (|has| $ (-320)) ELT)) (-2012 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3133 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3446 (((-633 $) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 $) $ (-831)) NIL (|has| $ (-320)) ELT) (((-1086 $) $) 104 T ELT)) (-2011 (((-831) $) 67 T ELT)) (-1628 (((-1086 $) $) NIL (|has| $ (-320)) ELT)) (-1627 (((-3 (-1086 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1086 $) $) NIL (|has| $ (-320)) ELT)) (-1629 (($ $ (-1086 $)) NIL (|has| $ (-320)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL T CONST)) (-2401 (($ (-831)) 60 T ELT)) (-3932 (((-85) $) 87 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) 28 (|has| $ (-320)) ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) 54 T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-831)) 86 T ELT) (((-744 (-831))) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1766 (((-3 (-695) #1#) $ $) NIL T ELT) (((-695) $) NIL T ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3949 (((-831) $) 85 T ELT) (((-744 (-831)) $) NIL T ELT)) (-3186 (((-1086 $)) 102 T ELT)) (-1675 (($) 66 T ELT)) (-1630 (($) 50 (|has| $ (-320)) ELT)) (-3225 (((-631 $) (-1180 $)) NIL T ELT) (((-1180 $) $) 91 T ELT)) (-3973 (((-485) $) 42 T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) 45 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT)) (-2703 (((-633 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3127 (((-695)) 51 T CONST)) (-1266 (((-85) $ $) 107 T ELT)) (-2013 (((-1180 $) (-831)) 97 T ELT) (((-1180 $)) 96 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) 31 T CONST)) (-2667 (($) 27 T CONST)) (-3929 (($ $ (-695)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 34 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT))) +(((-518 |#1|) (-13 (-299) (-280 $) (-554 (-485))) (-831)) (T -518)) +NIL +((-2133 (((-1186) (-1074)) 10 T ELT))) +(((-519) (-10 -7 (-15 -2133 ((-1186) (-1074))))) (T -519)) +((-2133 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-519))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 77 T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-2137 ((|#1| $) 30 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2135 (((-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2138 (($ |#1| (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2136 (((-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $) 31 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2833 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1091)) 49 (|has| |#1| (-951 (-1091))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2134 (((-85) $) 35 T ELT)) (-3759 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1091)) 90 (|has| |#1| (-810 (-1091))) ELT)) (-3947 (((-773) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 18 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 86 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 16 T ELT) (($ (-350 (-485)) $) 41 T ELT) (($ $ (-350 (-485))) NIL T ELT))) +(((-520 |#1|) (-13 (-655 (-350 (-485))) (-951 |#1|) (-10 -8 (-15 -2138 ($ |#1| (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2137 (|#1| $)) (-15 -2136 ((-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $)) (-15 -2135 ((-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2134 ((-85) $)) (-15 -2833 ($ |#1| |#1|)) (-15 -3759 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-810 (-1091))) (-15 -3759 (|#1| $ (-1091))) |%noBranch|) (IF (|has| |#1| (-951 (-1091))) (-15 -2833 ($ |#1| (-1091))) |%noBranch|))) (-312)) (T -520)) +((-2138 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 *2)) (|:| |logand| (-1086 *2))))) (-5 *4 (-584 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) (-5 *1 (-520 *2)))) (-2137 (*1 *2 *1) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 *3)) (|:| |logand| (-1086 *3))))) (-5 *1 (-520 *3)) (-4 *3 (-312)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-520 *3)) (-4 *3 (-312)))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-520 *3)) (-4 *3 (-312)))) (-2833 (*1 *1 *2 *2) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312)))) (-3759 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-520 *2)) (-4 *2 (-312)))) (-3759 (*1 *2 *1 *3) (-12 (-4 *2 (-312)) (-4 *2 (-810 *3)) (-5 *1 (-520 *2)) (-5 *3 (-1091)))) (-2833 (*1 *1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *1 (-520 *2)) (-4 *2 (-951 *3)) (-4 *2 (-312))))) +((-3959 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-520 |#2|) (-1 |#2| |#1|) (-520 |#1|)) 30 T ELT))) +(((-521 |#1| |#2|) (-10 -7 (-15 -3959 ((-520 |#2|) (-1 |#2| |#1|) (-520 |#1|))) (-15 -3959 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3959 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3959 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-312) (-312)) (T -521)) +((-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-521 *5 *6)))) (-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-521 *5 *2)))) (-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2137 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| -2137 *6) (|:| |coeff| *6))) (-5 *1 (-521 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-520 *5)) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-520 *6)) (-5 *1 (-521 *5 *6))))) +((-3419 (((-520 |#2|) (-520 |#2|)) 42 T ELT)) (-3964 (((-584 |#2|) (-520 |#2|)) 44 T ELT)) (-2149 ((|#2| (-520 |#2|)) 50 T ELT))) +(((-522 |#1| |#2|) (-10 -7 (-15 -3419 ((-520 |#2|) (-520 |#2|))) (-15 -3964 ((-584 |#2|) (-520 |#2|))) (-15 -2149 (|#2| (-520 |#2|)))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-29 |#1|) (-1116))) (T -522)) +((-2149 (*1 *2 *3) (-12 (-5 *3 (-520 *2)) (-4 *2 (-13 (-29 *4) (-1116))) (-5 *1 (-522 *4 *2)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-520 *5)) (-4 *5 (-13 (-29 *4) (-1116))) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 *5)) (-5 *1 (-522 *4 *5)))) (-3419 (*1 *2 *2) (-12 (-5 *2 (-520 *4)) (-4 *4 (-13 (-29 *3) (-1116))) (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-522 *3 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2141 (($ (-447) (-533)) 14 T ELT)) (-2139 (($ (-447) (-533) $) 16 T ELT)) (-2140 (($ (-447) (-533)) 15 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-1096)) 7 T ELT) (((-1096) $) 6 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-523) (-13 (-1014) (-430 (-1096)) (-10 -8 (-15 -2141 ($ (-447) (-533))) (-15 -2140 ($ (-447) (-533))) (-15 -2139 ($ (-447) (-533) $))))) (T -523)) +((-2141 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))) (-2140 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))) (-2139 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523))))) +((-2145 (((-85) |#1|) 16 T ELT)) (-2146 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2143 (((-2 (|:| -2695 |#1|) (|:| -2402 (-695))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-695)) 18 T ELT)) (-2142 (((-85) |#1| (-695)) 19 T ELT)) (-2147 ((|#1| |#1|) 41 T ELT)) (-2144 ((|#1| |#1| (-695)) 44 T ELT))) +(((-524 |#1|) (-10 -7 (-15 -2142 ((-85) |#1| (-695))) (-15 -2143 ((-3 |#1| #1="failed") |#1| (-695))) (-15 -2143 ((-2 (|:| -2695 |#1|) (|:| -2402 (-695))) |#1|)) (-15 -2144 (|#1| |#1| (-695))) (-15 -2145 ((-85) |#1|)) (-15 -2146 ((-3 |#1| #1#) |#1|)) (-15 -2147 (|#1| |#1|))) (-484)) (T -524)) +((-2147 (*1 *2 *2) (-12 (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2146 (*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2145 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484)))) (-2144 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2143 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2695 *3) (|:| -2402 (-695)))) (-5 *1 (-524 *3)) (-4 *3 (-484)))) (-2143 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2142 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484))))) +((-2148 (((-1086 |#1|) (-831)) 44 T ELT))) +(((-525 |#1|) (-10 -7 (-15 -2148 ((-1086 |#1|) (-831)))) (-299)) (T -525)) +((-2148 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-525 *4)) (-4 *4 (-299))))) +((-3419 (((-520 (-350 (-858 |#1|))) (-520 (-350 (-858 |#1|)))) 27 T ELT)) (-3813 (((-3 (-265 |#1|) (-584 (-265 |#1|))) (-350 (-858 |#1|)) (-1091)) 33 (|has| |#1| (-120)) ELT)) (-3964 (((-584 (-265 |#1|)) (-520 (-350 (-858 |#1|)))) 19 T ELT)) (-2150 (((-265 |#1|) (-350 (-858 |#1|)) (-1091)) 31 (|has| |#1| (-120)) ELT)) (-2149 (((-265 |#1|) (-520 (-350 (-858 |#1|)))) 21 T ELT))) +(((-526 |#1|) (-10 -7 (-15 -3419 ((-520 (-350 (-858 |#1|))) (-520 (-350 (-858 |#1|))))) (-15 -3964 ((-584 (-265 |#1|)) (-520 (-350 (-858 |#1|))))) (-15 -2149 ((-265 |#1|) (-520 (-350 (-858 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3813 ((-3 (-265 |#1|) (-584 (-265 |#1|))) (-350 (-858 |#1|)) (-1091))) (-15 -2150 ((-265 |#1|) (-350 (-858 |#1|)) (-1091)))) |%noBranch|)) (-13 (-392) (-951 (-485)) (-581 (-485)))) (T -526)) +((-2150 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-120)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *5)) (-5 *1 (-526 *5)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-120)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (-265 *5) (-584 (-265 *5)))) (-5 *1 (-526 *5)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-520 (-350 (-858 *4)))) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *4)) (-5 *1 (-526 *4)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-520 (-350 (-858 *4)))) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 (-265 *4))) (-5 *1 (-526 *4)))) (-3419 (*1 *2 *2) (-12 (-5 *2 (-520 (-350 (-858 *3)))) (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-526 *3))))) +((-2152 (((-584 (-631 (-485))) (-584 (-831)) (-584 (-814 (-485)))) 80 T ELT) (((-584 (-631 (-485))) (-584 (-831))) 81 T ELT) (((-631 (-485)) (-584 (-831)) (-814 (-485))) 74 T ELT)) (-2151 (((-695) (-584 (-831))) 71 T ELT))) +(((-527) (-10 -7 (-15 -2151 ((-695) (-584 (-831)))) (-15 -2152 ((-631 (-485)) (-584 (-831)) (-814 (-485)))) (-15 -2152 ((-584 (-631 (-485))) (-584 (-831)))) (-15 -2152 ((-584 (-631 (-485))) (-584 (-831)) (-584 (-814 (-485))))))) (T -527)) +((-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-814 (-485)))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-814 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-527)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-695)) (-5 *1 (-527))))) +((-3214 (((-584 |#5|) |#5| (-85)) 97 T ELT)) (-2153 (((-85) |#5| (-584 |#5|)) 34 T ELT))) +(((-528 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3214 ((-584 |#5|) |#5| (-85))) (-15 -2153 ((-85) |#5| (-584 |#5|)))) (-13 (-258) (-120)) (-718) (-757) (-978 |#1| |#2| |#3|) (-1021 |#1| |#2| |#3| |#4|)) (T -528)) +((-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1021 *5 *6 *7 *8)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-528 *5 *6 *7 *8 *3)))) (-3214 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-584 *3)) (-5 *1 (-528 *5 *6 *7 *8 *3)) (-4 *3 (-1021 *5 *6 *7 *8))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3529 (((-1050) $) 12 T ELT)) (-3530 (((-1050) $) 10 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-529) (-13 (-996) (-10 -8 (-15 -3530 ((-1050) $)) (-15 -3529 ((-1050) $))))) (T -529)) +((-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529))))) +((-3533 (((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2| (-1002 |#4|)) 32 T ELT))) +(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3533 ((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2| (-1002 |#4|))) (-15 -3533 ((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2|))) (-718) (-757) (-496) (-862 |#3| |#1| |#2|)) (T -530)) +((-3533 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) (-3533 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1002 *3)) (-4 *3 (-862 *7 *6 *4)) (-4 *6 (-718)) (-4 *4 (-757)) (-4 *7 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *6 *4 *7 *3))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 71 T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3832 (((-1091) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-485)) 58 T ELT) (($ $ (-485) (-485)) 59 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 65 T ELT)) (-2184 (($ $) 109 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2182 (((-773) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) (-940 (-751 (-485))) (-1091) |#1| (-350 (-485))) 232 T ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 36 T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2893 (((-85) $) NIL T ELT)) (-3773 (((-485) $) 63 T ELT) (((-485) $ (-485)) 64 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3778 (($ $ (-831)) 83 T ELT)) (-3816 (($ (-1 |#1| (-485)) $) 80 T ELT)) (-3938 (((-85) $) 26 T ELT)) (-2894 (($ |#1| (-485)) 22 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2188 (($ (-940 (-751 (-485))) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 13 T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3813 (($ $) 120 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2185 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2183 (($ $ $) 116 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2186 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 15 T ELT)) (-2187 (((-940 (-751 (-485))) $) 14 T ELT)) (-3770 (($ $ (-485)) 47 T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT)) (-3801 ((|#1| $ (-485)) 62 T ELT) (($ $ $) NIL (|has| (-485) (-1026)) ELT)) (-3759 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3949 (((-485) $) NIL T ELT)) (-2892 (($ $) 48 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) 29 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3678 ((|#1| $ (-485)) 61 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 39 T CONST)) (-3774 ((|#1| $) NIL T ELT)) (-2163 (($ $) 192 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2175 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2165 (($ $) 189 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2177 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2161 (($ $) 194 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2173 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2180 (($ $ (-350 (-485))) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2181 (($ $ |#1|) 128 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2178 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2179 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2160 (($ $) 195 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2172 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2162 (($ $) 193 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2174 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2164 (($ $) 190 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2176 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2157 (($ $) 200 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2169 (($ $) 180 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2159 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2171 (($ $) 176 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2155 (($ $) 204 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2167 (($ $) 184 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2154 (($ $) 206 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2166 (($ $) 186 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2156 (($ $) 202 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2168 (($ $) 182 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2158 (($ $) 199 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2170 (($ $) 178 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3771 ((|#1| $ (-485)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 30 T CONST)) (-2667 (($) 40 T CONST)) (-2670 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3057 (((-85) $ $) 73 T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3840 (($ $ $) 88 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 111 T ELT)) (* (($ (-831) $) 98 T ELT) (($ (-695) $) 96 T ELT) (($ (-485) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-531 |#1|) (-13 (-1159 |#1| (-485)) (-10 -8 (-15 -2188 ($ (-940 (-751 (-485))) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))))) (-15 -2187 ((-940 (-751 (-485))) $)) (-15 -2186 ((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $)) (-15 -3819 ($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))))) (-15 -3938 ((-85) $)) (-15 -3816 ($ (-1 |#1| (-485)) $)) (-15 -2185 ((-3 $ "failed") $ $ (-85))) (-15 -2184 ($ $)) (-15 -2183 ($ $ $)) (-15 -2182 ((-773) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) (-940 (-751 (-485))) (-1091) |#1| (-350 (-485)))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3813 ($ $)) (-15 -2181 ($ $ |#1|)) (-15 -2180 ($ $ (-350 (-485)))) (-15 -2179 ($ $)) (-15 -2178 ($ $)) (-15 -2177 ($ $)) (-15 -2176 ($ $)) (-15 -2175 ($ $)) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $))) |%noBranch|))) (-962)) (T -531)) +((-3938 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-2188 (*1 *1 *2 *3) (-12 (-5 *2 (-940 (-751 (-485)))) (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *4)))) (-4 *4 (-962)) (-5 *1 (-531 *4)))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-940 (-751 (-485)))) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962)) (-5 *1 (-531 *3)))) (-3816 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-531 *3)))) (-2185 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-2184 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962)))) (-2183 (*1 *1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962)))) (-2182 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *6)))) (-5 *4 (-940 (-751 (-485)))) (-5 *5 (-1091)) (-5 *7 (-350 (-485))) (-4 *6 (-962)) (-5 *2 (-773)) (-5 *1 (-531 *6)))) (-3813 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2181 (*1 *1 *1 *2) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2180 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-531 *3)) (-4 *3 (-38 *2)) (-4 *3 (-962)))) (-2179 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 62 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3819 (($ (-1070 |#1|)) 9 T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) 44 T ELT)) (-2893 (((-85) $) 56 T ELT)) (-3773 (((-695) $) 61 T ELT) (((-695) $ (-695)) 60 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) 46 (|has| |#1| (-496)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-1070 |#1|) $) 25 T ELT)) (-3127 (((-695)) 55 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 10 T CONST)) (-2667 (($) 14 T CONST)) (-3057 (((-85) $ $) 24 T ELT)) (-3838 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3840 (($ $ $) 27 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 53 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-485)) 38 T ELT))) +(((-532 |#1|) (-13 (-962) (-82 |#1| |#1|) (-10 -8 (-15 -3818 ((-1070 |#1|) $)) (-15 -3819 ($ (-1070 |#1|))) (-15 -2893 ((-85) $)) (-15 -3773 ((-695) $)) (-15 -3773 ((-695) $ (-695))) (-15 * ($ $ (-485))) (IF (|has| |#1| (-496)) (-6 (-496)) |%noBranch|))) (-962)) (T -532)) +((-3818 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-532 *3)))) (-2893 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (-3773 (*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-532 *3)) (-4 *3 (-962))))) +((-2569 (((-85) $ $) NIL T ELT)) (-2191 (($) 8 T CONST)) (-2192 (($) 7 T CONST)) (-2189 (($ $ (-584 $)) 16 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2193 (($) 6 T CONST)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-1096)) 15 T ELT) (((-1096) $) 10 T ELT)) (-2190 (($) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-533) (-13 (-1014) (-430 (-1096)) (-10 -8 (-15 -2193 ($) -3953) (-15 -2192 ($) -3953) (-15 -2191 ($) -3953) (-15 -2190 ($) -3953) (-15 -2189 ($ $ (-584 $)))))) (T -533)) +((-2193 (*1 *1) (-5 *1 (-533))) (-2192 (*1 *1) (-5 *1 (-533))) (-2191 (*1 *1) (-5 *1 (-533))) (-2190 (*1 *1) (-5 *1 (-533))) (-2189 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-533))) (-5 *1 (-533))))) +((-3959 (((-537 |#2|) (-1 |#2| |#1|) (-537 |#1|)) 15 T ELT))) +(((-534 |#1| |#2|) (-13 (-1130) (-10 -7 (-15 -3959 ((-537 |#2|) (-1 |#2| |#1|) (-537 |#1|))))) (-1130) (-1130)) (T -534)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-537 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-537 *6)) (-5 *1 (-534 *5 *6))))) +((-3959 (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-1070 |#2|)) 20 T ELT) (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-537 |#2|)) 19 T ELT) (((-537 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-537 |#2|)) 18 T ELT))) +(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-537 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-537 |#2|))) (-15 -3959 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-537 |#2|))) (-15 -3959 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-1070 |#2|)))) (-1130) (-1130) (-1130)) (T -535)) +((-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-1070 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) (-5 *1 (-535 *6 *7 *8)))) (-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-537 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) (-5 *1 (-535 *6 *7 *8)))) (-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-537 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-537 *8)) (-5 *1 (-535 *6 *7 *8))))) +((-2198 ((|#3| |#3| (-584 (-551 |#3|)) (-584 (-1091))) 57 T ELT)) (-2197 (((-142 |#2|) |#3|) 122 T ELT)) (-2194 ((|#3| (-142 |#2|)) 46 T ELT)) (-2195 ((|#2| |#3|) 21 T ELT)) (-2196 ((|#3| |#2|) 35 T ELT))) +(((-536 |#1| |#2| |#3|) (-10 -7 (-15 -2194 (|#3| (-142 |#2|))) (-15 -2195 (|#2| |#3|)) (-15 -2196 (|#3| |#2|)) (-15 -2197 ((-142 |#2|) |#3|)) (-15 -2198 (|#3| |#3| (-584 (-551 |#3|)) (-584 (-1091))))) (-496) (-13 (-364 |#1|) (-916) (-1116)) (-13 (-364 (-142 |#1|)) (-916) (-1116))) (T -536)) +((-2198 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-584 (-1091))) (-4 *2 (-13 (-364 (-142 *5)) (-916) (-1116))) (-4 *5 (-496)) (-5 *1 (-536 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-916) (-1116))))) (-2197 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-142 *5)) (-5 *1 (-536 *4 *5 *3)) (-4 *5 (-13 (-364 *4) (-916) (-1116))) (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1116))))) (-2196 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1116))) (-5 *1 (-536 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-916) (-1116))))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 *4) (-916) (-1116))) (-5 *1 (-536 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1116))))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-916) (-1116))) (-4 *4 (-496)) (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1116))) (-5 *1 (-536 *4 *5 *2))))) +((-3711 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3458 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3457 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3456 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3531 (((-1070 |#1|) $) 20 T ELT)) (-3947 (((-773) $) 25 T ELT))) +(((-537 |#1|) (-13 (-553 (-773)) (-10 -8 (-15 -3959 ($ (-1 |#1| |#1|) $)) (-15 -3457 ($ (-1 (-85) |#1|) $)) (-15 -3456 ($ (-1 (-85) |#1|) $)) (-15 -3711 ($ (-1 (-85) |#1|) $)) (-15 -3458 ($ (-1 |#1| |#1|) |#1|)) (-15 -3531 ((-1070 |#1|) $)))) (-1130)) (T -537)) +((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3456 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3711 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3458 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-537 *3)) (-4 *3 (-1130))))) +((-2199 (((-1186) $ |#2| |#2|) 35 T ELT)) (-2201 ((|#2| $) 23 T ELT)) (-2202 ((|#2| $) 21 T ELT)) (-3327 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3959 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3802 ((|#3| $) 26 T ELT)) (-2200 (($ $ |#3|) 33 T ELT)) (-2203 (((-85) |#3| $) 17 T ELT)) (-2206 (((-584 |#3|) $) 15 T ELT)) (-3801 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) +(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -2199 ((-1186) |#1| |#2| |#2|)) (-15 -2200 (|#1| |#1| |#3|)) (-15 -3802 (|#3| |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2203 ((-85) |#3| |#1|)) (-15 -2206 ((-584 |#3|) |#1|)) (-15 -3801 (|#3| |#1| |#2|)) (-15 -3801 (|#3| |#1| |#2| |#3|)) (-15 -3327 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3959 (|#1| (-1 |#3| |#3|) |#1|))) (-539 |#2| |#3|) (-1014) (-1130)) (T -538)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-2199 (((-1186) $ |#1| |#1|) 44 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -3997)) ELT)) (-3725 (($) 7 T CONST)) (-1577 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) 55 T ELT)) (-2890 (((-584 |#2|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2201 ((|#1| $) 47 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#2|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#2| $) 27 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3996))) ELT)) (-2202 ((|#1| $) 48 (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3243 (((-1074) $) 22 (|has| |#2| (-1014)) ELT)) (-2204 (((-584 |#1|) $) 50 T ELT)) (-2205 (((-85) |#1| $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| |#2| (-1014)) ELT)) (-3802 ((|#2| $) 46 (|has| |#1| (-757)) ELT)) (-2200 (($ $ |#2|) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#2|))) 26 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 25 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-1947 (((-695) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#2| $) 28 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-773) $) 17 (|has| |#2| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-539 |#1| |#2|) (-113) (-1014) (-1130)) (T -539)) +((-2206 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-584 *4)))) (-2205 (*1 *2 *3 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-2204 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-584 *3)))) (-2203 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-539 *4 *3)) (-4 *4 (-1014)) (-4 *3 (-1130)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1014)) (-4 *2 (-757)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1014)) (-4 *2 (-757)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *2)) (-4 *3 (-1014)) (-4 *3 (-757)) (-4 *2 (-1130)))) (-2200 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-539 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) (-2199 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-1186))))) +(-13 (-429 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2206 ((-584 |t#2|) $)) (-15 -2205 ((-85) |t#1| $)) (-15 -2204 ((-584 |t#1|) $)) (IF (|has| |t#2| (-1014)) (IF (|has| $ (-6 -3996)) (-15 -2203 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-15 -2202 (|t#1| $)) (-15 -2201 (|t#1| $)) (-15 -3802 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3997)) (PROGN (-15 -2200 ($ $ |t#2|)) (-15 -2199 ((-1186) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-429 |#2|) . T) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-1014) |has| |#2| (-1014)) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) (((-1131) $) 15 T ELT) (($ (-584 (-1131))) 14 T ELT)) (-2207 (((-584 (-1131)) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-540) (-13 (-996) (-553 (-1131)) (-10 -8 (-15 -3947 ($ (-584 (-1131)))) (-15 -2207 ((-584 (-1131)) $))))) (T -540)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-540)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-540))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1773 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3224 (((-1180 (-631 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 (-631 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1730 (((-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1789 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1787 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1901 (((-1086 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1791 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1793 (($ (-1180 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1180 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3468 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-3109 (((-831)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2434 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1705 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1790 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1788 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1905 (((-1086 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1792 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1725 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3801 ((|#1| $ (-485)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3225 (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1180 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3973 (($ (-1180 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1893 (((-584 (-858 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-584 (-858 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2436 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3947 (((-773) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1708 (((-584 (-1180 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2546 (($ (-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2435 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2661 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 24 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-541 |#1| |#2|) (-13 (-684 |#1|) (-553 |#2|) (-10 -8 (-15 -3947 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-684 |#1|)) (T -541)) +((-3947 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-541 *3 *2)) (-4 *2 (-684 *3))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-542) (-13 (-1014) (-430 (-101)))) (T -542)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2209 (($) 10 T CONST)) (-2231 (($) 8 T CONST)) (-2208 (($) 11 T CONST)) (-2227 (($) 9 T CONST)) (-2224 (($) 12 T CONST)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT))) +(((-543) (-13 (-1014) (-605) (-10 -8 (-15 -2231 ($) -3953) (-15 -2227 ($) -3953) (-15 -2209 ($) -3953) (-15 -2208 ($) -3953) (-15 -2224 ($) -3953)))) (T -543)) +((-2231 (*1 *1) (-5 *1 (-543))) (-2227 (*1 *1) (-5 *1 (-543))) (-2209 (*1 *1) (-5 *1 (-543))) (-2208 (*1 *1) (-5 *1 (-543))) (-2224 (*1 *1) (-5 *1 (-543)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2220 (($) 11 T CONST)) (-2214 (($) 17 T CONST)) (-2210 (($) 21 T CONST)) (-2212 (($) 19 T CONST)) (-2217 (($) 14 T CONST)) (-2211 (($) 20 T CONST)) (-2219 (($) 12 T CONST)) (-2218 (($) 13 T CONST)) (-2213 (($) 18 T CONST)) (-2216 (($) 15 T CONST)) (-2215 (($) 16 T CONST)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-544) (-13 (-1014) (-553 (-101)) (-10 -8 (-15 -2220 ($) -3953) (-15 -2219 ($) -3953) (-15 -2218 ($) -3953) (-15 -2217 ($) -3953) (-15 -2216 ($) -3953) (-15 -2215 ($) -3953) (-15 -2214 ($) -3953) (-15 -2213 ($) -3953) (-15 -2212 ($) -3953) (-15 -2211 ($) -3953) (-15 -2210 ($) -3953)))) (T -544)) +((-2220 (*1 *1) (-5 *1 (-544))) (-2219 (*1 *1) (-5 *1 (-544))) (-2218 (*1 *1) (-5 *1 (-544))) (-2217 (*1 *1) (-5 *1 (-544))) (-2216 (*1 *1) (-5 *1 (-544))) (-2215 (*1 *1) (-5 *1 (-544))) (-2214 (*1 *1) (-5 *1 (-544))) (-2213 (*1 *1) (-5 *1 (-544))) (-2212 (*1 *1) (-5 *1 (-544))) (-2211 (*1 *1) (-5 *1 (-544))) (-2210 (*1 *1) (-5 *1 (-544)))) +((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2222 (($) 13 T CONST)) (-2221 (($) 14 T CONST)) (-2228 (($) 11 T CONST)) (-2231 (($) 8 T CONST)) (-2229 (($) 10 T CONST)) (-2230 (($) 9 T CONST)) (-2227 (($) 12 T CONST)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT))) +(((-545) (-13 (-1014) (-605) (-10 -8 (-15 -2231 ($) -3953) (-15 -2230 ($) -3953) (-15 -2229 ($) -3953) (-15 -2228 ($) -3953) (-15 -2227 ($) -3953) (-15 -2222 ($) -3953) (-15 -2221 ($) -3953)))) (T -545)) +((-2231 (*1 *1) (-5 *1 (-545))) (-2230 (*1 *1) (-5 *1 (-545))) (-2229 (*1 *1) (-5 *1 (-545))) (-2228 (*1 *1) (-5 *1 (-545))) (-2227 (*1 *1) (-5 *1 (-545))) (-2222 (*1 *1) (-5 *1 (-545))) (-2221 (*1 *1) (-5 *1 (-545)))) +((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2226 (($) 13 T CONST)) (-2223 (($) 16 T CONST)) (-2228 (($) 11 T CONST)) (-2231 (($) 8 T CONST)) (-2229 (($) 10 T CONST)) (-2230 (($) 9 T CONST)) (-2225 (($) 14 T CONST)) (-2227 (($) 12 T CONST)) (-2224 (($) 15 T CONST)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT))) +(((-546) (-13 (-1014) (-605) (-10 -8 (-15 -2231 ($) -3953) (-15 -2230 ($) -3953) (-15 -2229 ($) -3953) (-15 -2228 ($) -3953) (-15 -2227 ($) -3953) (-15 -2226 ($) -3953) (-15 -2225 ($) -3953) (-15 -2224 ($) -3953) (-15 -2223 ($) -3953)))) (T -546)) +((-2231 (*1 *1) (-5 *1 (-546))) (-2230 (*1 *1) (-5 *1 (-546))) (-2229 (*1 *1) (-5 *1 (-546))) (-2228 (*1 *1) (-5 *1 (-546))) (-2227 (*1 *1) (-5 *1 (-546))) (-2226 (*1 *1) (-5 *1 (-546))) (-2225 (*1 *1) (-5 *1 (-546))) (-2224 (*1 *1) (-5 *1 (-546))) (-2223 (*1 *1) (-5 *1 (-546)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 19 T ELT) (($ (-542)) 12 T ELT) (((-542) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-547) (-13 (-1014) (-430 (-542)) (-430 (-101)))) (T -547)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-1698 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) 40 T ELT)) (-3600 (($ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2199 (((-1186) $ (-1074) (-1074)) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ (-1074) |#1|) 50 (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2232 (((-3 |#1| #1="failed") (-1074) $) 53 T ELT)) (-3725 (($) NIL T CONST)) (-1702 (($ $ (-1074)) 25 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT)) (-3406 (((-3 |#1| #1#) (-1074) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3407 (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT)) (-3843 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT)) (-1699 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1577 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-1074)) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2272 (($ $) 55 T ELT)) (-1703 (($ (-338)) 23 T ELT) (($ (-338) (-1074)) 22 T ELT)) (-3543 (((-338) $) 41 T ELT)) (-2201 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-72))) ELT) (((-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-72)) ELT)) (-2202 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2233 (((-584 (-1074)) $) 46 T ELT)) (-2234 (((-85) (-1074) $) NIL T ELT)) (-1700 (((-1074) $) 42 T ELT)) (-1275 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2204 (((-584 (-1074)) $) NIL T ELT)) (-2205 (((-85) (-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3802 ((|#1| $) NIL (|has| (-1074) (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 44 T ELT)) (-3801 ((|#1| $ (-1074) |#1|) NIL T ELT) ((|#1| $ (-1074)) 49 T ELT)) (-1467 (($ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-72))) ELT) (((-695) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-554 (-474))) ELT)) (-3531 (($ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-3947 (((-773) $) 21 T ELT)) (-1701 (($ $) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3057 (((-85) $ $) 20 T ELT)) (-3958 (((-695) $) 48 T ELT))) +(((-548 |#1|) (-13 (-314 (-338) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) (-1108 (-1074) |#1|) (-10 -8 (-15 -2272 ($ $)))) (-1014)) (T -548)) +((-2272 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-1014))))) +((-3246 (((-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) 16 T ELT) (((-85) |#3| $) NIL T ELT)) (-2233 (((-584 |#2|) $) 20 T ELT)) (-2234 (((-85) |#2| $) 12 T ELT)) (-3801 ((|#3| $ |#2|) 21 T ELT) ((|#3| $ |#2| |#3|) 22 T ELT))) +(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -2233 ((-584 |#2|) |#1|)) (-15 -2234 ((-85) |#2| |#1|)) (-15 -3246 ((-85) |#3| |#1|)) (-15 -3801 (|#3| |#1| |#2| |#3|)) (-15 -3801 (|#3| |#1| |#2|)) (-15 -3246 ((-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|))) (-550 |#2| |#3|) (-1014) (-1014)) (T -549)) +NIL +((-2569 (((-85) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2199 (((-1186) $ |#1| |#1|) 98 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 86 (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3996)) ELT)) (-2232 (((-3 |#2| "failed") |#1| $) 68 T ELT)) (-3725 (($) 7 T CONST)) (-1354 (($ $) 62 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3996)) ELT) (((-3 |#2| "failed") |#1| $) 69 T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3996))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) 85 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) 87 T ELT)) (-2890 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) 77 (|has| $ (-6 -3996)) ELT)) (-2201 ((|#1| $) 95 (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) 78 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3996))) ELT) (((-85) |#2| $) 80 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3996))) ELT)) (-2202 ((|#1| $) 94 (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 34 T ELT) (($ (-1 |#2| |#2|) $) 73 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 72 T ELT)) (-3243 (((-1074) $) 22 (OR (|has| |#2| (-1014)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-2233 (((-584 |#1|) $) 70 T ELT)) (-2234 (((-85) |#1| $) 71 T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2204 (((-584 |#1|) $) 92 T ELT)) (-2205 (((-85) |#1| $) 91 T ELT)) (-3244 (((-1034) $) 21 (OR (|has| |#2| (-1014)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3802 ((|#2| $) 96 (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2200 (($ $ |#2|) 97 (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) 75 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 84 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 83 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 82 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) 81 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#2| $) 93 (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) 90 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#2| $ |#1|) 89 T ELT) ((|#2| $ |#1| |#2|) 88 T ELT)) (-1467 (($) 53 T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3996))) ELT) (((-695) |#2| $) 79 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3996))) ELT) (((-695) (-1 (-85) |#2|) $) 76 (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3531 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3947 (((-773) $) 17 (OR (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-1266 (((-85) $ $) 20 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) 74 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-550 |#1| |#2|) (-113) (-1014) (-1014)) (T -550)) +((-2234 (*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-85)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-584 *3)))) (-3406 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-2232 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) +(-13 (-183 (-2 (|:| -3861 |t#1|) (|:| |entry| |t#2|))) (-539 |t#1| |t#2|) (-10 -8 (-15 -2234 ((-85) |t#1| $)) (-15 -2233 ((-584 |t#1|) $)) (-15 -3406 ((-3 |t#2| "failed") |t#1| $)) (-15 -2232 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-474)) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ((-183 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-429 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-539 |#1| |#2|) . T) ((-456 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-1014) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ((-1036 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-2235 (((-3 (-1091) "failed") $) 46 T ELT)) (-1314 (((-1186) $ (-695)) 22 T ELT)) (-3420 (((-695) $) 20 T ELT)) (-3596 (((-86) $) 9 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2236 (($ (-86) (-584 |#1|) (-695)) 32 T ELT) (($ (-1091)) 33 T ELT)) (-2634 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1091)) 13 T ELT)) (-2604 (((-695) $) 17 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3973 (((-801 (-485)) $) 99 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 106 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-474) $) 92 (|has| |#1| (-554 (-474))) ELT)) (-3947 (((-773) $) 74 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2237 (((-584 |#1|) $) 19 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 51 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 53 T ELT))) +(((-551 |#1|) (-13 (-105) (-757) (-795 |#1|) (-10 -8 (-15 -3596 ((-86) $)) (-15 -2237 ((-584 |#1|) $)) (-15 -2604 ((-695) $)) (-15 -2236 ($ (-86) (-584 |#1|) (-695))) (-15 -2236 ($ (-1091))) (-15 -2235 ((-3 (-1091) "failed") $)) (-15 -2634 ((-85) $ (-86))) (-15 -2634 ((-85) $ (-1091))) (IF (|has| |#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|))) (-1014)) (T -551)) +((-3596 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2236 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-1014)) (-5 *1 (-551 *5)))) (-2236 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2235 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014)))) (-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014))))) +((-2238 (((-551 |#2|) |#1|) 17 T ELT)) (-2239 (((-3 |#1| "failed") (-551 |#2|)) 21 T ELT))) +(((-552 |#1| |#2|) (-10 -7 (-15 -2238 ((-551 |#2|) |#1|)) (-15 -2239 ((-3 |#1| "failed") (-551 |#2|)))) (-1014) (-1014)) (T -552)) +((-2239 (*1 *2 *3) (|partial| -12 (-5 *3 (-551 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) (-5 *1 (-552 *2 *4)))) (-2238 (*1 *2 *3) (-12 (-5 *2 (-551 *4)) (-5 *1 (-552 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) +((-3947 ((|#1| $) 6 T ELT))) +(((-553 |#1|) (-113) (-1130)) (T -553)) +((-3947 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1130))))) +(-13 (-10 -8 (-15 -3947 (|t#1| $)))) +((-3973 ((|#1| $) 6 T ELT))) +(((-554 |#1|) (-113) (-1130)) (T -554)) +((-3973 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1130))))) +(-13 (-10 -8 (-15 -3973 (|t#1| $)))) +((-2240 (((-3 (-1086 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)) 15 T ELT) (((-3 (-1086 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 16 T ELT))) +(((-555 |#1| |#2|) (-10 -7 (-15 -2240 ((-3 (-1086 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|))) (-15 -2240 ((-3 (-1086 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)))) (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485)))) (-1156 |#1|)) (T -555)) +((-2240 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-1086 (-350 *6))) (-5 *1 (-555 *5 *6)) (-5 *3 (-350 *6)))) (-2240 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-1086 (-350 *5))) (-5 *1 (-555 *4 *5)) (-5 *3 (-350 *5))))) +((-3947 (($ |#1|) 6 T ELT))) +(((-556 |#1|) (-113) (-1130)) (T -556)) +((-3947 (*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1130))))) +(-13 (-10 -8 (-15 -3947 ($ |t#1|)))) +((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-2241 (($) 11 T CONST)) (-2856 (($) 13 T CONST)) (-3137 (((-695)) 36 T ELT)) (-2995 (($) NIL T ELT)) (-2562 (($ $ $) 25 T ELT)) (-2561 (($ $) 23 T ELT)) (-2011 (((-831) $) 43 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 42 T ELT)) (-2854 (($ $ $) 26 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2855 (($) 9 T CONST)) (-2853 (($ $ $) 27 T ELT)) (-3947 (((-773) $) 34 T ELT)) (-3567 (((-85) $ (|[\|\|]| -2855)) 20 T ELT) (((-85) $ (|[\|\|]| -2241)) 22 T ELT) (((-85) $ (|[\|\|]| -2856)) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2563 (($ $ $) 24 T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3057 (((-85) $ $) 16 T ELT)) (-2313 (($ $ $) NIL T ELT))) +(((-557) (-13 (-881) (-320) (-10 -8 (-15 -2241 ($) -3953) (-15 -3567 ((-85) $ (|[\|\|]| -2855))) (-15 -3567 ((-85) $ (|[\|\|]| -2241))) (-15 -3567 ((-85) $ (|[\|\|]| -2856)))))) (T -557)) +((-2241 (*1 *1) (-5 *1 (-557))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2855)) (-5 *2 (-85)) (-5 *1 (-557)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2241)) (-5 *2 (-85)) (-5 *1 (-557)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2856)) (-5 *2 (-85)) (-5 *1 (-557))))) +((-3973 (($ |#1|) 6 T ELT))) +(((-558 |#1|) (-113) (-1130)) (T -558)) +((-3973 (*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1130))))) +(-13 (-10 -8 (-15 -3973 ($ |t#1|)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| |#1| (-756)) ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2999 ((|#1| $) 13 T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2998 ((|#3| $) 15 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3127 (((-695)) 20 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) 12 T CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3950 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-559 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (-15 -3950 ($ $ |#3|)) (-15 -3950 ($ |#1| |#3|)) (-15 -2999 (|#1| $)) (-15 -2998 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-664) |#2|)) (T -559)) +((-3950 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-3950 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-559 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-559 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2998 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4))))) +((-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-560 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| |#2|)) (-15 -3947 (|#1| (-485))) (-15 -3947 ((-773) |#1|))) (-561 |#2|) (-962)) (T -560)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 49 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#1| $) 50 T ELT))) +(((-561 |#1|) (-113) (-962)) (T -561)) +((-3947 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-962))))) +(-13 (-962) (-591 |t#1|) (-10 -8 (-15 -3947 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2242 ((|#2| |#2| (-1091) (-1091)) 16 T ELT))) +(((-562 |#1| |#2|) (-10 -7 (-15 -2242 (|#2| |#2| (-1091) (-1091)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-872) (-29 |#1|))) (T -562)) +((-2242 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-1116) (-872) (-29 *4)))))) +((-2569 (((-85) $ $) 64 T ELT)) (-3189 (((-85) $) 58 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2243 ((|#1| $) 55 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3752 (((-2 (|:| -1763 $) (|:| -1762 (-350 |#2|))) (-350 |#2|)) 111 (|has| |#1| (-312)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) 27 T ELT)) (-3468 (((-3 $ #1#) $) 88 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3773 (((-485) $) 22 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) 40 T ELT)) (-2894 (($ |#1| (-485)) 24 T ELT)) (-3175 ((|#1| $) 57 T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 101 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $ $) 93 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-695) $) 115 (|has| |#1| (-312)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 114 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3949 (((-485) $) 38 T ELT)) (-3973 (((-350 |#2|) $) 47 T ELT)) (-3947 (((-773) $) 69 T ELT) (($ (-485)) 35 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3678 ((|#1| $ (-485)) 72 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 32 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 9 T CONST)) (-2667 (($) 14 T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3057 (((-85) $ $) 21 T ELT)) (-3838 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 90 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 29 T ELT) (($ $ $) 49 T ELT))) +(((-563 |#1| |#2|) (-13 (-184 |#2|) (-496) (-554 (-350 |#2|)) (-355 |#1|) (-951 |#2|) (-10 -8 (-15 -3938 ((-85) $)) (-15 -3949 ((-485) $)) (-15 -3773 ((-485) $)) (-15 -3960 ($ $)) (-15 -3175 (|#1| $)) (-15 -2243 (|#1| $)) (-15 -3678 (|#1| $ (-485))) (-15 -2894 ($ |#1| (-485))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-258)) (-15 -3752 ((-2 (|:| -1763 $) (|:| -1762 (-350 |#2|))) (-350 |#2|)))) |%noBranch|))) (-496) (-1156 |#1|)) (T -563)) +((-3938 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-85)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) (-3949 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) (-3773 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) (-3960 (*1 *1 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) (-3175 (*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) (-2243 (*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) (-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-496)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -1763 (-563 *4 *5)) (|:| -1762 (-350 *5)))) (-5 *1 (-563 *4 *5)) (-5 *3 (-350 *5))))) +((-3683 (((-584 |#6|) (-584 |#4|) (-85)) 54 T ELT)) (-2244 ((|#6| |#6|) 48 T ELT))) +(((-564 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2244 (|#6| |#6|)) (-15 -3683 ((-584 |#6|) (-584 |#4|) (-85)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|) (-1021 |#1| |#2| |#3| |#4|)) (T -564)) +((-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *10)) (-5 *1 (-564 *5 *6 *7 *8 *9 *10)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *10 (-1021 *5 *6 *7 *8)))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-564 *3 *4 *5 *6 *7 *2)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *2 (-1021 *3 *4 *5 *6))))) +((-2245 (((-85) |#3| (-695) (-584 |#3|)) 30 T ELT)) (-2246 (((-3 (-2 (|:| |polfac| (-584 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-584 (-1086 |#3|)))) "failed") |#3| (-584 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1780 (-584 (-2 (|:| |irr| |#4|) (|:| -2396 (-485)))))) (-584 |#3|) (-584 |#1|) (-584 |#3|)) 68 T ELT))) +(((-565 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2245 ((-85) |#3| (-695) (-584 |#3|))) (-15 -2246 ((-3 (-2 (|:| |polfac| (-584 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-584 (-1086 |#3|)))) "failed") |#3| (-584 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1780 (-584 (-2 (|:| |irr| |#4|) (|:| -2396 (-485)))))) (-584 |#3|) (-584 |#1|) (-584 |#3|)))) (-757) (-718) (-258) (-862 |#3| |#2| |#1|)) (T -565)) +((-2246 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1780 (-584 (-2 (|:| |irr| *10) (|:| -2396 (-485))))))) (-5 *6 (-584 *3)) (-5 *7 (-584 *8)) (-4 *8 (-757)) (-4 *3 (-258)) (-4 *10 (-862 *3 *9 *8)) (-4 *9 (-718)) (-5 *2 (-2 (|:| |polfac| (-584 *10)) (|:| |correct| *3) (|:| |corrfact| (-584 (-1086 *3))))) (-5 *1 (-565 *8 *9 *3 *10)) (-5 *4 (-584 (-1086 *3))))) (-2245 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-695)) (-5 *5 (-584 *3)) (-4 *3 (-258)) (-4 *6 (-757)) (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-565 *6 *7 *3 *8)) (-4 *8 (-862 *3 *7 *6))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3529 (((-1050) $) 12 T ELT)) (-3530 (((-1050) $) 10 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-566) (-13 (-996) (-10 -8 (-15 -3530 ((-1050) $)) (-15 -3529 ((-1050) $))))) (T -566)) +((-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-566)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-566))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3935 (((-584 |#1|) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3937 (($ $) 77 T ELT)) (-3943 (((-607 |#1| |#2|) $) 60 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 81 T ELT)) (-2247 (((-584 (-249 |#2|)) $ $) 42 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3944 (($ (-607 |#1| |#2|)) 56 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3947 (((-773) $) 66 T ELT) (((-1196 |#1| |#2|) $) NIL T ELT) (((-1201 |#1| |#2|) $) 74 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2667 (($) 61 T CONST)) (-2248 (((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2249 (((-584 (-607 |#1| |#2|)) (-584 |#1|)) 73 T ELT)) (-2666 (((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3057 (((-85) $ $) 62 T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 52 T ELT))) +(((-567 |#1| |#2| |#3|) (-13 (-413) (-10 -8 (-15 -3944 ($ (-607 |#1| |#2|))) (-15 -3943 ((-607 |#1| |#2|) $)) (-15 -2666 ((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $)) (-15 -3947 ((-1196 |#1| |#2|) $)) (-15 -3947 ((-1201 |#1| |#2|) $)) (-15 -3937 ($ $)) (-15 -3935 ((-584 |#1|) $)) (-15 -2249 ((-584 (-607 |#1| |#2|)) (-584 |#1|))) (-15 -2248 ((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $)) (-15 -2247 ((-584 (-249 |#2|)) $ $)))) (-757) (-13 (-146) (-655 (-350 (-485)))) (-831)) (T -567)) +((-3944 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-831)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-804 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1201 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-13 (-146) (-655 (-350 (-485))))) (-14 *4 (-831)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-607 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-146) (-655 (-350 (-485))))) (-14 *6 (-831)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-615 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-2247 (*1 *2 *1 *1) (-12 (-5 *2 (-584 (-249 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))) +((-3683 (((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)) 103 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85)) 77 T ELT)) (-2250 (((-85) (-584 (-704 |#1| (-774 |#2|)))) 26 T ELT)) (-2254 (((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)) 102 T ELT)) (-2253 (((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85)) 76 T ELT)) (-2252 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|)))) 30 T ELT)) (-2251 (((-3 (-584 (-704 |#1| (-774 |#2|))) "failed") (-584 (-704 |#1| (-774 |#2|)))) 29 T ELT))) +(((-568 |#1| |#2|) (-10 -7 (-15 -2250 ((-85) (-584 (-704 |#1| (-774 |#2|))))) (-15 -2251 ((-3 (-584 (-704 |#1| (-774 |#2|))) "failed") (-584 (-704 |#1| (-774 |#2|))))) (-15 -2252 ((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))))) (-15 -2253 ((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -2254 ((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -3683 ((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -3683 ((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)))) (-392) (-584 (-1091))) (T -568)) +((-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) (-5 *1 (-568 *5 *6)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) (-5 *1 (-568 *5 *6)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2252 (*1 *2 *2) (-12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392)) (-14 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4)))) (-2251 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392)) (-14 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-584 (-704 *4 (-774 *5)))) (-4 *4 (-392)) (-14 *5 (-584 (-1091))) (-5 *2 (-85)) (-5 *1 (-568 *4 *5))))) +((-3596 (((-86) (-86)) 88 T ELT)) (-2258 ((|#2| |#2|) 28 T ELT)) (-2833 ((|#2| |#2| (-1005 |#2|)) 84 T ELT) ((|#2| |#2| (-1091)) 50 T ELT)) (-2256 ((|#2| |#2|) 27 T ELT)) (-2257 ((|#2| |#2|) 29 T ELT)) (-2255 (((-85) (-86)) 33 T ELT)) (-2260 ((|#2| |#2|) 24 T ELT)) (-2261 ((|#2| |#2|) 26 T ELT)) (-2259 ((|#2| |#2|) 25 T ELT))) +(((-569 |#1| |#2|) (-10 -7 (-15 -2255 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 -2261 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2833 (|#2| |#2| (-1091))) (-15 -2833 (|#2| |#2| (-1005 |#2|)))) (-496) (-13 (-364 |#1|) (-916) (-1116))) (T -569)) +((-2833 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-916) (-1116))) (-4 *4 (-496)) (-5 *1 (-569 *4 *2)))) (-2833 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-364 *4) (-916) (-1116))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-569 *3 *4)) (-4 *4 (-13 (-364 *3) (-916) (-1116))))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-569 *4 *5)) (-4 *5 (-13 (-364 *4) (-916) (-1116)))))) +((-3493 (($ $) 38 T ELT)) (-3640 (($ $) 21 T ELT)) (-3491 (($ $) 37 T ELT)) (-3639 (($ $) 22 T ELT)) (-3495 (($ $) 36 T ELT)) (-3638 (($ $) 23 T ELT)) (-3628 (($) 48 T ELT)) (-3943 (($ $) 45 T ELT)) (-2258 (($ $) 17 T ELT)) (-2833 (($ $ (-1005 $)) 7 T ELT) (($ $ (-1091)) 6 T ELT)) (-3944 (($ $) 46 T ELT)) (-2256 (($ $) 15 T ELT)) (-2257 (($ $) 16 T ELT)) (-3496 (($ $) 35 T ELT)) (-3637 (($ $) 24 T ELT)) (-3494 (($ $) 34 T ELT)) (-3636 (($ $) 25 T ELT)) (-3492 (($ $) 33 T ELT)) (-3635 (($ $) 26 T ELT)) (-3499 (($ $) 44 T ELT)) (-3487 (($ $) 32 T ELT)) (-3497 (($ $) 43 T ELT)) (-3485 (($ $) 31 T ELT)) (-3501 (($ $) 42 T ELT)) (-3489 (($ $) 30 T ELT)) (-3502 (($ $) 41 T ELT)) (-3490 (($ $) 29 T ELT)) (-3500 (($ $) 40 T ELT)) (-3488 (($ $) 28 T ELT)) (-3498 (($ $) 39 T ELT)) (-3486 (($ $) 27 T ELT)) (-2260 (($ $) 19 T ELT)) (-2261 (($ $) 20 T ELT)) (-2259 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) +(((-570) (-113)) (T -570)) +((-2261 (*1 *1 *1) (-4 *1 (-570))) (-2260 (*1 *1 *1) (-4 *1 (-570))) (-2259 (*1 *1 *1) (-4 *1 (-570))) (-2258 (*1 *1 *1) (-4 *1 (-570))) (-2257 (*1 *1 *1) (-4 *1 (-570))) (-2256 (*1 *1 *1) (-4 *1 (-570)))) +(-13 (-872) (-1116) (-10 -8 (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $)))) +(((-35) . T) ((-66) . T) ((-239) . T) ((-433) . T) ((-872) . T) ((-1116) . T) ((-1119) . T)) +((-2271 (((-421 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2264 (((-584 (-206 |#1| |#2|)) (-584 (-421 |#1| |#2|))) 90 T ELT)) (-2265 (((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-774 |#1|)) 92 T ELT) (((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)) (-774 |#1|)) 91 T ELT)) (-2262 (((-2 (|:| |gblist| (-584 (-206 |#1| |#2|))) (|:| |gvlist| (-584 (-485)))) (-584 (-421 |#1| |#2|))) 136 T ELT)) (-2269 (((-584 (-421 |#1| |#2|)) (-774 |#1|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|))) 105 T ELT)) (-2263 (((-2 (|:| |glbase| (-584 (-206 |#1| |#2|))) (|:| |glval| (-584 (-485)))) (-584 (-206 |#1| |#2|))) 147 T ELT)) (-2267 (((-1180 |#2|) (-421 |#1| |#2|) (-584 (-421 |#1| |#2|))) 70 T ELT)) (-2266 (((-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|))) 47 T ELT)) (-2270 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|))) 61 T ELT)) (-2268 (((-206 |#1| |#2|) (-584 |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|))) 113 T ELT))) +(((-571 |#1| |#2|) (-10 -7 (-15 -2262 ((-2 (|:| |gblist| (-584 (-206 |#1| |#2|))) (|:| |gvlist| (-584 (-485)))) (-584 (-421 |#1| |#2|)))) (-15 -2263 ((-2 (|:| |glbase| (-584 (-206 |#1| |#2|))) (|:| |glval| (-584 (-485)))) (-584 (-206 |#1| |#2|)))) (-15 -2264 ((-584 (-206 |#1| |#2|)) (-584 (-421 |#1| |#2|)))) (-15 -2265 ((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)) (-774 |#1|))) (-15 -2265 ((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-774 |#1|))) (-15 -2266 ((-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)))) (-15 -2267 ((-1180 |#2|) (-421 |#1| |#2|) (-584 (-421 |#1| |#2|)))) (-15 -2268 ((-206 |#1| |#2|) (-584 |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|)))) (-15 -2269 ((-584 (-421 |#1| |#2|)) (-774 |#1|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)))) (-15 -2270 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|)))) (-15 -2271 ((-421 |#1| |#2|) (-206 |#1| |#2|)))) (-584 (-1091)) (-392)) (T -571)) +((-2271 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-421 *4 *5)) (-5 *1 (-571 *4 *5)))) (-2270 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))) (-2269 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-774 *4)) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))) (-2268 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-206 *5 *6))) (-4 *6 (-392)) (-5 *2 (-206 *5 *6)) (-14 *5 (-584 (-1091))) (-5 *1 (-571 *5 *6)))) (-2267 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-421 *5 *6))) (-5 *3 (-421 *5 *6)) (-14 *5 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-1180 *6)) (-5 *1 (-571 *5 *6)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-584 (-421 *3 *4))) (-14 *3 (-584 (-1091))) (-4 *4 (-392)) (-5 *1 (-571 *3 *4)))) (-2265 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1091))) (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392)))) (-2265 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1091))) (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-584 (-206 *4 *5))) (-5 *1 (-571 *4 *5)))) (-2263 (*1 *2 *3) (-12 (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-2 (|:| |glbase| (-584 (-206 *4 *5))) (|:| |glval| (-584 (-485))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-584 (-206 *4 *5))))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-2 (|:| |gblist| (-584 (-206 *4 *5))) (|:| |gvlist| (-584 (-485))))) (-5 *1 (-571 *4 *5))))) +((-2569 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-2199 (((-1186) $ (-1074) (-1074)) NIL (|has| $ (-6 -3997)) ELT)) (-3789 (((-51) $ (-1074) (-51)) NIL (|has| $ (-6 -3997)) ELT) (((-51) $ (-1091) (-51)) 16 T ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2232 (((-3 (-51) #1="failed") (-1074) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1014))) ELT)) (-3406 (($ (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 (-51) #1#) (-1074) $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $ (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (((-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $ (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 (((-51) $ (-1074) (-51)) NIL (|has| $ (-6 -3997)) ELT)) (-3113 (((-51) $ (-1074)) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-51)) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2272 (($ $) NIL T ELT)) (-2201 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-51)) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-72))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-51) (-72))) ELT) (((-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-72)) ELT)) (-2202 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2273 (($ (-338)) 8 T ELT)) (-3243 (((-1074) $) NIL (OR (|has| (-51) (-1014)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1014))) ELT)) (-2233 (((-584 (-1074)) $) NIL T ELT)) (-2234 (((-85) (-1074) $) NIL T ELT)) (-1275 (((-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL T ELT)) (-2204 (((-584 (-1074)) $) NIL T ELT)) (-2205 (((-85) (-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-51) (-1014)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1014))) ELT)) (-3802 (((-51) $) NIL (|has| (-1074) (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2200 (($ $ (-51)) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-584 (-51)) (-584 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-249 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-584 (-249 (-51)))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-51) (-1014))) ELT)) (-2206 (((-584 (-51)) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 (((-51) $ (-1074)) NIL T ELT) (((-51) $ (-1074) (-51)) NIL T ELT) (((-51) $ (-1091)) 14 T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-72))) ELT) (((-695) (-51) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-51) (-72))) ELT) (((-695) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-554 (-474))) ELT)) (-3531 (($ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-3947 (((-773) $) NIL (OR (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-553 (-773))) (|has| (-51) (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (-72))) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-572) (-13 (-1108 (-1074) (-51)) (-241 (-1091) (-51)) (-10 -8 (-15 -2273 ($ (-338))) (-15 -2272 ($ $)) (-15 -3789 ((-51) $ (-1091) (-51)))))) (T -572)) +((-2273 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-572)))) (-2272 (*1 *1 *1) (-5 *1 (-572))) (-3789 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1091)) (-5 *1 (-572))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1773 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3224 (((-1180 (-631 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 (-631 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1730 (((-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1789 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1787 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1901 (((-1086 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1791 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1793 (($ (-1180 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1180 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3468 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-3109 (((-831)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2434 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1705 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1790 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1788 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1905 (((-1086 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1792 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1725 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3801 ((|#1| $ (-485)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3225 (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1180 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3973 (($ (-1180 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1893 (((-584 (-858 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-584 (-858 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2436 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3947 (((-773) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1708 (((-584 (-1180 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2546 (($ (-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2435 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2661 (($) 18 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 19 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-573 |#1| |#2|) (-13 (-684 |#1|) (-553 |#2|) (-10 -8 (-15 -3947 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-684 |#1|)) (T -573)) +((-3947 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-573 *3 *2)) (-4 *2 (-684 *3))))) +((-3950 (($ $ |#2|) 10 T ELT))) +(((-574 |#1| |#2|) (-10 -7 (-15 -3950 (|#1| |#1| |#2|))) (-575 |#2|) (-146)) (T -574)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3531 (($ $ $) 40 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 39 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-575 |#1|) (-113) (-146)) (T -575)) +((-3531 (*1 *1 *1 *1) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)))) (-3950 (*1 *1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) +(-13 (-655 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3531 ($ $ $)) (IF (|has| |t#1| (-312)) (-15 -3950 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-2275 (((-3 (-751 |#2|) #1="failed") |#2| (-249 |#2|) (-1074)) 105 T ELT) (((-3 (-751 |#2|) (-2 (|:| |leftHandLimit| (-3 (-751 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-751 |#2|) #1#))) #1#) |#2| (-249 (-751 |#2|))) 130 T ELT)) (-2274 (((-3 (-744 |#2|) #1#) |#2| (-249 (-744 |#2|))) 135 T ELT))) +(((-576 |#1| |#2|) (-10 -7 (-15 -2275 ((-3 (-751 |#2|) (-2 (|:| |leftHandLimit| (-3 (-751 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-751 |#2|) #1#))) #1#) |#2| (-249 (-751 |#2|)))) (-15 -2274 ((-3 (-744 |#2|) #1#) |#2| (-249 (-744 |#2|)))) (-15 -2275 ((-3 (-751 |#2|) #1#) |#2| (-249 |#2|) (-1074)))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -576)) +((-2275 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1074)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-751 *3)) (-5 *1 (-576 *6 *3)))) (-2274 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-249 (-744 *3))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-744 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-751 *3))) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (-751 *3) (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-751 *3) #1#))) "failed")) (-5 *1 (-576 *5 *3))))) +((-2275 (((-3 (-751 (-350 (-858 |#1|))) #1="failed") (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))) (-1074)) 86 T ELT) (((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|)))) 20 T ELT) (((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-751 (-858 |#1|)))) 35 T ELT)) (-2274 (((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|)))) 23 T ELT) (((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-744 (-858 |#1|)))) 43 T ELT))) +(((-577 |#1|) (-10 -7 (-15 -2275 ((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-751 (-858 |#1|))))) (-15 -2275 ((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))))) (-15 -2274 ((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-744 (-858 |#1|))))) (-15 -2274 ((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))))) (-15 -2275 ((-3 (-751 (-350 (-858 |#1|))) #1#) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))) (-1074)))) (-392)) (T -577)) +((-2275 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 (-350 (-858 *6)))) (-5 *5 (-1074)) (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-751 *3)) (-5 *1 (-577 *6)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392)) (-5 *2 (-744 *3)) (-5 *1 (-577 *5)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-744 (-858 *5)))) (-4 *5 (-392)) (-5 *2 (-744 (-350 (-858 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5))))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392)) (-5 *2 (-3 (-751 *3) (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-751 *3) #1#))) #2="failed")) (-5 *1 (-577 *5)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-751 (-858 *5)))) (-4 *5 (-392)) (-5 *2 (-3 (-751 (-350 (-858 *5))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 *5))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 *5))) #1#))) #2#)) (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 11 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2852 (($ (-168 |#1|)) 12 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-774 |#1|)) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT))) +(((-578 |#1|) (-13 (-753) (-556 (-774 |#1|)) (-10 -8 (-15 -2852 ($ (-168 |#1|))))) (-584 (-1091))) (T -578)) +((-2852 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-584 (-1091))) (-5 *1 (-578 *3))))) +((-2278 (((-3 (-1180 (-350 |#1|)) #1="failed") (-1180 |#2|) |#2|) 64 (-2561 (|has| |#1| (-312))) ELT) (((-3 (-1180 |#1|) #1#) (-1180 |#2|) |#2|) 49 (|has| |#1| (-312)) ELT)) (-2276 (((-85) (-1180 |#2|)) 33 T ELT)) (-2277 (((-3 (-1180 |#1|) #1#) (-1180 |#2|)) 40 T ELT))) +(((-579 |#1| |#2|) (-10 -7 (-15 -2276 ((-85) (-1180 |#2|))) (-15 -2277 ((-3 (-1180 |#1|) #1="failed") (-1180 |#2|))) (IF (|has| |#1| (-312)) (-15 -2278 ((-3 (-1180 |#1|) #1#) (-1180 |#2|) |#2|)) (-15 -2278 ((-3 (-1180 (-350 |#1|)) #1#) (-1180 |#2|) |#2|)))) (-496) (-13 (-962) (-581 |#1|))) (T -579)) +((-2278 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 *5))) (-2561 (-4 *5 (-312))) (-4 *5 (-496)) (-5 *2 (-1180 (-350 *5))) (-5 *1 (-579 *5 *4)))) (-2278 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 *5))) (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 (-1180 *5)) (-5 *1 (-579 *5 *4)))) (-2277 (*1 *2 *3) (|partial| -12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-496)) (-5 *2 (-1180 *4)) (-5 *1 (-579 *4 *5)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-579 *4 *5))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3775 (((-584 (-454 |#1| (-578 |#2|))) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2894 (($ |#1| (-578 |#2|)) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2279 (($ (-584 |#1|)) 25 T ELT)) (-1984 (((-578 |#2|) $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3912 (((-107)) 16 T ELT)) (-3225 (((-1180 |#1|) $) 44 T ELT)) (-3973 (($ (-584 (-454 |#1| (-578 |#2|)))) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-578 |#2|)) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 20 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 17 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-580 |#1| |#2|) (-13 (-1188 |#1|) (-556 (-578 |#2|)) (-450 |#1| (-578 |#2|)) (-10 -8 (-15 -2279 ($ (-584 |#1|))) (-15 -3225 ((-1180 |#1|) $)))) (-312) (-584 (-1091))) (T -580)) +((-2279 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-580 *3 *4)) (-14 *4 (-584 (-1091))))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-1180 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-312)) (-14 *4 (-584 (-1091)))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2280 (((-631 |#1|) (-631 $)) 36 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 35 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2281 (((-631 |#1|) (-1180 $)) 38 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 37 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT))) +(((-581 |#1|) (-113) (-962)) (T -581)) +((-2281 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))) (-2281 (*1 *2 *3 *1) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-2 (|:| |mat| (-631 *4)) (|:| |vec| (-1180 *4)))))) (-2280 (*1 *2 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))) (-2280 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *1)) (-5 *4 (-1180 *1)) (-4 *1 (-581 *5)) (-4 *5 (-962)) (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 *5))))))) +(-13 (-591 |t#1|) (-10 -8 (-15 -2281 ((-631 |t#1|) (-1180 $))) (-15 -2281 ((-2 (|:| |mat| (-631 |t#1|)) (|:| |vec| (-1180 |t#1|))) (-1180 $) $)) (-15 -2280 ((-631 |t#1|) (-631 $))) (-15 -2280 ((-2 (|:| |mat| (-631 |t#1|)) (|:| |vec| (-1180 |t#1|))) (-631 $) (-1180 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1215 (((-85) $ $) NIL T ELT)) (-2282 (($ (-584 |#1|)) 23 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 ((|#1| $ (-580 |#1| |#2|)) 46 T ELT)) (-3912 (((-107)) 13 T ELT)) (-3225 (((-1180 |#1|) $) 42 T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 18 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 14 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-582 |#1| |#2|) (-13 (-1188 |#1|) (-241 (-580 |#1| |#2|) |#1|) (-10 -8 (-15 -2282 ($ (-584 |#1|))) (-15 -3225 ((-1180 |#1|) $)))) (-312) (-584 (-1091))) (T -582)) +((-2282 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-582 *3 *4)) (-14 *4 (-584 (-1091))))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-1180 *3)) (-5 *1 (-582 *3 *4)) (-4 *3 (-312)) (-14 *4 (-584 (-1091)))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) +(((-583 |#1|) (-113) (-1026)) (T -583)) +NIL +(-13 (-589 |t#1|) (-964 |t#1|)) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 |#1|) . T) ((-964 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) NIL T ELT)) (-3796 ((|#1| $) NIL T ELT)) (-3798 (($ $) NIL T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) 68 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) $) NIL (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1731 (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-757))) ELT) (($ (-1 (-85) |#1| |#1|) $) 65 (|has| $ (-6 -3997)) ELT)) (-2910 (($ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3443 (((-85) $ (-695)) NIL T ELT)) (-3026 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 26 (|has| $ (-6 -3997)) ELT)) (-3787 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3790 ((|#1| $ |#1|) 24 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -3997)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -3997)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3997)) ELT)) (-2285 (($ $ $) 74 (|has| |#1| (-1014)) ELT)) (-2284 (($ $ $) 75 (|has| |#1| (-1014)) ELT)) (-2283 (($ $ $) 79 (|has| |#1| (-1014)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3797 ((|#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2298 (($ $) 31 (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) 32 T ELT)) (-3800 (($ $) 21 T ELT) (($ $ (-695)) 35 T ELT)) (-2369 (($ $) 63 (|has| |#1| (-1014)) ELT)) (-1354 (($ $) 73 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-3406 (($ |#1| $) NIL (|has| |#1| (-1014)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3407 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3444 (((-85) $) NIL T ELT)) (-3420 (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) (-1 (-85) |#1|) $) NIL T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2287 (((-85) $) 9 T ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-2288 (($) 7 T CONST)) (-3615 (($ (-695) |#1|) NIL T ELT)) (-3720 (((-85) $ (-695)) NIL T ELT)) (-2201 (((-485) $) 34 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 66 T ELT)) (-3519 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) 61 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3535 (($ |#1|) NIL T ELT)) (-3717 (((-85) $ (-695)) NIL T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-3243 (((-1074) $) 59 (|has| |#1| (-1014)) ELT)) (-3799 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3610 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) 16 T ELT) (($ $ (-695)) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3445 (((-85) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 15 T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3404 (((-85) $) 20 T ELT)) (-3566 (($) 19 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) ((|#1| $ (-485)) 78 T ELT) ((|#1| $ (-485) |#1|) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2306 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-3791 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-3794 (((-695) $) NIL T ELT)) (-3795 (($ $) 40 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 36 T ELT)) (-3973 (((-474) $) 87 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 29 T ELT)) (-3462 (($ |#1| $) 10 T ELT)) (-3792 (($ $ $) 62 T ELT) (($ $ |#1|) NIL T ELT)) (-3803 (($ $ $) 72 T ELT) (($ |#1| $) 14 T ELT) (($ (-584 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3947 (((-773) $) 51 (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2286 (($ $ $) 11 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 55 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3958 (((-695) $) 13 T ELT))) +(((-584 |#1|) (-13 (-609 |#1|) (-10 -8 (-15 -2288 ($) -3953) (-15 -2287 ((-85) $)) (-15 -3462 ($ |#1| $)) (-15 -2286 ($ $ $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -2285 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -2283 ($ $ $))) |%noBranch|))) (-1130)) (T -584)) +((-2288 (*1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130)))) (-2287 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-584 *3)) (-4 *3 (-1130)))) (-3462 (*1 *1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130)))) (-2286 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130)))) (-2285 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))) (-2284 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))) (-2283 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130))))) +((-3842 (((-584 |#2|) (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|) 16 T ELT)) (-3843 ((|#2| (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|) 18 T ELT)) (-3959 (((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)) 13 T ELT))) +(((-585 |#1| |#2|) (-10 -7 (-15 -3842 ((-584 |#2|) (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|)) (-15 -3843 (|#2| (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|)) (-15 -3959 ((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)))) (-1130) (-1130)) (T -585)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-584 *6)) (-5 *1 (-585 *5 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-585 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-584 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-584 *5)) (-5 *1 (-585 *6 *5))))) +((-3423 ((|#2| (-584 |#1|) (-584 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-584 |#1|) (-584 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) |#2|) 17 T ELT) ((|#2| (-584 |#1|) (-584 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|)) 12 T ELT))) +(((-586 |#1| |#2|) (-10 -7 (-15 -3423 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|))) (-15 -3423 (|#2| (-584 |#1|) (-584 |#2|) |#1|)) (-15 -3423 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) |#2|)) (-15 -3423 (|#2| (-584 |#1|) (-584 |#2|) |#1| |#2|)) (-15 -3423 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) (-1 |#2| |#1|))) (-15 -3423 (|#2| (-584 |#1|) (-584 |#2|) |#1| (-1 |#2| |#1|)))) (-1014) (-1130)) (T -586)) +((-3423 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1014)) (-4 *2 (-1130)) (-5 *1 (-586 *5 *2)))) (-3423 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *1 (-586 *5 *6)))) (-3423 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130)) (-5 *1 (-586 *5 *2)))) (-3423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 *5)) (-4 *6 (-1014)) (-4 *5 (-1130)) (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) (-3423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130)) (-5 *1 (-586 *5 *2)))) (-3423 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6))))) +((-3959 (((-584 |#3|) (-1 |#3| |#1| |#2|) (-584 |#1|) (-584 |#2|)) 21 T ELT))) +(((-587 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-584 |#3|) (-1 |#3| |#1| |#2|) (-584 |#1|) (-584 |#2|)))) (-1130) (-1130) (-1130)) (T -587)) +((-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-584 *6)) (-5 *5 (-584 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-584 *8)) (-5 *1 (-587 *6 *7 *8))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 11 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-588 |#1|) (-13 (-996) (-553 |#1|)) (-1014)) (T -588)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) +(((-589 |#1|) (-113) (-1026)) (T -589)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1026))))) +(-13 (-1014) (-10 -8 (-15 * ($ |t#1| $)))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2289 (($ |#1| |#1| $) 45 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2369 (($ $) 47 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-3406 (($ |#1| $) 58 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2890 (((-584 |#1|) $) 9 (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 49 T ELT)) (-3610 (($ |#1| $) 30 T ELT) (($ |#1| $ (-695)) 44 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1276 ((|#1| $) 52 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 23 T ELT)) (-3566 (($) 29 T ELT)) (-2290 (((-85) $) 56 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1947 (-695)))) $) 69 T ELT)) (-1467 (($) 26 T ELT) (($ (-584 |#1|)) 19 T ELT)) (-1947 (((-695) |#1| $) 65 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) 20 T ELT)) (-3973 (((-474) $) 36 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) NIL T ELT)) (-3947 (((-773) $) 14 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 24 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 17 T ELT))) +(((-590 |#1|) (-13 (-635 |#1|) (-318 |#1|) (-10 -8 (-15 -2290 ((-85) $)) (-15 -2289 ($ |#1| |#1| $)))) (-1014)) (T -590)) +((-2290 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-590 *3)) (-4 *3 (-1014)))) (-2289 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1014))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT))) +(((-591 |#1|) (-113) (-971)) (T -591)) +NIL +(-13 (-21) (-589 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695) $) 17 T ELT)) (-2296 (($ $ |#1|) 68 T ELT)) (-2298 (($ $) 39 T ELT)) (-2299 (($ $) 37 T ELT)) (-3158 (((-3 |#1| "failed") $) 60 T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-2294 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3534 (((-773) $ (-1 (-773) (-773) (-773)) (-1 (-773) (-773) (-773)) (-485)) 55 T ELT)) (-2300 ((|#1| $ (-485)) 35 T ELT)) (-2301 ((|#2| $ (-485)) 34 T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2292 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2297 (($) 13 T ELT)) (-2303 (($ |#1| |#2|) 24 T ELT)) (-2302 (($ (-584 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|)))) 25 T ELT)) (-2304 (((-584 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $) 14 T ELT)) (-2295 (($ |#1| $) 69 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2293 (((-85) $ $) 74 T ELT)) (-3947 (((-773) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 27 T ELT))) +(((-592 |#1| |#2| |#3|) (-13 (-1014) (-951 |#1|) (-10 -8 (-15 -3534 ((-773) $ (-1 (-773) (-773) (-773)) (-1 (-773) (-773) (-773)) (-485))) (-15 -2304 ((-584 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $)) (-15 -2303 ($ |#1| |#2|)) (-15 -2302 ($ (-584 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))))) (-15 -2301 (|#2| $ (-485))) (-15 -2300 (|#1| $ (-485))) (-15 -2299 ($ $)) (-15 -2298 ($ $)) (-15 -3137 ((-695) $)) (-15 -2297 ($)) (-15 -2296 ($ $ |#1|)) (-15 -2295 ($ |#1| $)) (-15 -2294 ($ |#1| |#2| $)) (-15 -2294 ($ $ $)) (-15 -2293 ((-85) $ $)) (-15 -2292 ($ (-1 |#2| |#2|) $)) (-15 -2291 ($ (-1 |#1| |#1|) $)))) (-1014) (-23) |#2|) (T -592)) +((-3534 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-773) (-773) (-773))) (-5 *4 (-485)) (-5 *2 (-773)) (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1014)) (-4 *6 (-23)) (-14 *7 *6))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3944 *4)))) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-2303 (*1 *1 *2 *3) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2302 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3944 *4)))) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1014)) (-14 *5 *2))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *2 (-1014)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2299 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2298 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-2297 (*1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2296 (*1 *1 *1 *2) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2295 (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +((-2202 (((-485) $) 30 T ELT)) (-2305 (($ |#2| $ (-485)) 26 T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) 12 T ELT)) (-2205 (((-85) (-485) $) 17 T ELT)) (-3803 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT))) +(((-593 |#1| |#2|) (-10 -7 (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -3803 (|#1| (-584 |#1|))) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3803 (|#1| |#1| |#2|)) (-15 -2202 ((-485) |#1|)) (-15 -2204 ((-584 (-485)) |#1|)) (-15 -2205 ((-85) (-485) |#1|))) (-594 |#2|) (-1130)) (T -593)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-1354 (($ $) 84 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#1| $) 83 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) 55 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-695) |#1|) 74 T ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) 46 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2200 (($ $ |#1|) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-2306 (($ $ (-485)) 68 T ELT) (($ $ (-1147 (-485))) 67 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 85 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 76 T ELT)) (-3803 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-594 |#1|) (-113) (-1130)) (T -594)) +((-3615 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-3803 (*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-3803 (*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-3803 (*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-3803 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-3959 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-2306 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-2306 (*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-2305 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-2305 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-3789 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1147 (-485))) (|has| *1 (-6 -3997)) (-4 *1 (-594 *2)) (-4 *2 (-1130))))) +(-13 (-539 (-485) |t#1|) (-124 |t#1|) (-241 (-1147 (-485)) $) (-10 -8 (-15 -3615 ($ (-695) |t#1|)) (-15 -3803 ($ $ |t#1|)) (-15 -3803 ($ |t#1| $)) (-15 -3803 ($ $ $)) (-15 -3803 ($ (-584 $))) (-15 -3959 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2306 ($ $ (-485))) (-15 -2306 ($ $ (-1147 (-485)))) (-15 -2305 ($ |t#1| $ (-485))) (-15 -2305 ($ $ $ (-485))) (IF (|has| $ (-6 -3997)) (-15 -3789 (|t#1| $ (-1147 (-485)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 15 T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| |#1| (-715)) ELT)) (-3725 (($) NIL T CONST)) (-3187 (((-85) $) NIL (|has| |#1| (-715)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2999 ((|#1| $) 23 T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-715)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-715)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-715)) ELT)) (-3243 (((-1074) $) 48 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2998 ((|#3| $) 24 T ELT)) (-3947 (((-773) $) 43 T ELT)) (-1266 (((-85) $ $) 22 T ELT)) (-3384 (($ $) NIL (|has| |#1| (-715)) ELT)) (-2661 (($) 10 T CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-3057 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-2686 (((-85) $ $) 26 (|has| |#1| (-715)) ELT)) (-3950 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3838 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 29 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) +(((-595 |#1| |#2| |#3|) (-13 (-655 |#2|) (-10 -8 (IF (|has| |#1| (-715)) (-6 (-715)) |%noBranch|) (-15 -3950 ($ $ |#3|)) (-15 -3950 ($ |#1| |#3|)) (-15 -2999 (|#1| $)) (-15 -2998 (|#3| $)))) (-655 |#2|) (-146) (|SubsetCategory| (-664) |#2|)) (T -595)) +((-3950 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-3950 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-595 *2 *4 *3)) (-4 *2 (-655 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-655 *3)) (-5 *1 (-595 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2998 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4))))) +((-3574 (((-3 |#2| #1="failed") |#3| |#2| (-1091) |#2| (-584 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) #1#) |#3| |#2| (-1091)) 44 T ELT))) +(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -3574 ((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) #1="failed") |#3| |#2| (-1091))) (-15 -3574 ((-3 |#2| #1#) |#3| |#2| (-1091) |#2| (-584 |#2|)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-872)) (-601 |#2|)) (T -596)) +((-3574 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-596 *6 *2 *3)) (-4 *3 (-601 *2)))) (-3574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-4 *4 (-13 (-29 *6) (-1116) (-872))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4)))) (-5 *1 (-596 *6 *4 *3)) (-4 *3 (-601 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2307 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) 28 (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) 31 (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) NIL T ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2547 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3801 ((|#1| $ |#1|) 24 T ELT)) (-2311 (($ $ $) 33 (|has| |#1| (-312)) ELT)) (-3949 (((-695) $) NIL T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3947 (((-773) $) 20 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3818 (((-584 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-695)) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2546 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2521 (($ $) NIL T ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 8 T CONST)) (-2670 (($) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-597 |#1| |#2|) (-601 |#1|) (-962) (-1 |#1| |#1|)) (T -597)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2307 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) NIL (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) NIL T ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2547 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3801 ((|#1| $ |#1|) NIL T ELT)) (-2311 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3949 (((-695) $) NIL T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3818 (((-584 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-695)) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2546 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2521 (($ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-598 |#1|) (-601 |#1|) (-190)) (T -598)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2307 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) NIL (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) NIL T ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2547 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3801 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2311 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3949 (((-695) $) NIL T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3818 (((-584 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-695)) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2546 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2521 (($ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-599 |#1| |#2|) (-13 (-601 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-591 |#1|) (-10 -8 (-15 -3759 ($ $))))) (T -599)) +NIL +((-2307 (($ $) 29 T ELT)) (-2521 (($ $) 27 T ELT)) (-2670 (($) 13 T ELT))) +(((-600 |#1| |#2|) (-10 -7 (-15 -2307 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2670 (|#1|))) (-601 |#2|) (-962)) (T -600)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2307 (($ $) 96 (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) 98 (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) 97 (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2537 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ #1="failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-485) #2="failed") $) 88 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #2#) $) 85 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #2#) $) 82 T ELT)) (-3157 (((-485) $) 87 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 84 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 83 T ELT)) (-3960 (($ $) 77 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3504 (($ $) 68 (|has| |#1| (-392)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2894 (($ |#1| (-695)) 75 T ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2547 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 71 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) 79 T ELT)) (-2543 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) 64 (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) 78 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3467 (((-3 $ #1#) $ |#1|) 72 (|has| |#1| (-496)) ELT)) (-3801 ((|#1| $ |#1|) 101 T ELT)) (-2311 (($ $ $) 95 (|has| |#1| (-312)) ELT)) (-3949 (((-695) $) 80 T ELT)) (-2818 ((|#1| $) 69 (|has| |#1| (-392)) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 86 (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 81 T ELT)) (-3818 (((-584 |#1|) $) 74 T ELT)) (-3678 ((|#1| $ (-695)) 76 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2546 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2521 (($ $) 99 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($) 100 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) +(((-601 |#1|) (-113) (-962)) (T -601)) +((-2670 (*1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) (-2309 (*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2310 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-601 *3)) (-4 *3 (-962)) (-4 *3 (-312)))) (-2307 (*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2311 (*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) +(-13 (-762 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2670 ($)) (-15 -2521 ($ $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -2309 ($ $ $)) (-15 -2310 ($ $ (-695))) (-15 -2307 ($ $)) (-15 -2311 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-241 |#1| |#1|) . T) ((-355 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-762 |#1|) . T)) +((-2308 (((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3733 (((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 19 T ELT))) +(((-602 |#1| |#2|) (-10 -7 (-15 -3733 ((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3733 ((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|)))) (-15 -2308 ((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|))))) |%noBranch|)) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1156 |#1|)) (T -602)) +((-2308 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-350 *5))))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-350 *5))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-598 (-350 *6)))) (-5 *1 (-602 *5 *6)) (-5 *3 (-598 (-350 *6)))))) +((-2309 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2310 ((|#2| |#2| (-695) (-1 |#1| |#1|)) 45 T ELT)) (-2311 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) +(((-603 |#1| |#2|) (-10 -7 (-15 -2309 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2310 (|#2| |#2| (-695) (-1 |#1| |#1|))) (-15 -2311 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-312) (-601 |#1|)) (T -603)) +((-2311 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2)) (-4 *2 (-601 *4)))) (-2310 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-603 *5 *2)) (-4 *2 (-601 *5)))) (-2309 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2)) (-4 *2 (-601 *4))))) +((-2312 (($ $ $) 9 T ELT))) +(((-604 |#1|) (-10 -7 (-15 -2312 (|#1| |#1| |#1|))) (-605)) (T -604)) +NIL +((-2314 (($ $) 8 T ELT)) (-2312 (($ $ $) 6 T ELT)) (-2313 (($ $ $) 7 T ELT))) +(((-605) (-113)) (T -605)) +((-2314 (*1 *1 *1) (-4 *1 (-605))) (-2313 (*1 *1 *1 *1) (-4 *1 (-605))) (-2312 (*1 *1 *1 *1) (-4 *1 (-605)))) +(-13 (-1130) (-10 -8 (-15 -2314 ($ $)) (-15 -2313 ($ $ $)) (-15 -2312 ($ $ $)))) +(((-13) . T) ((-1130) . T)) +((-2315 (((-3 (-584 (-1086 |#1|)) "failed") (-584 (-1086 |#1|)) (-1086 |#1|)) 33 T ELT))) +(((-606 |#1|) (-10 -7 (-15 -2315 ((-3 (-584 (-1086 |#1|)) "failed") (-584 (-1086 |#1|)) (-1086 |#1|)))) (-822)) (T -606)) +((-2315 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 *4))) (-5 *3 (-1086 *4)) (-4 *4 (-822)) (-5 *1 (-606 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3935 (((-584 |#1|) $) 85 T ELT)) (-3948 (($ $ (-695)) 95 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3940 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 50 T ELT)) (-3158 (((-3 (-615 |#1|) #1#) $) NIL T ELT)) (-3157 (((-615 |#1|) $) NIL T ELT)) (-3960 (($ $) 94 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ (-615 |#1|) |#2|) 70 T ELT)) (-3937 (($ $) 90 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3941 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 49 T ELT)) (-1750 (((-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2895 (((-615 |#1|) $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3769 (($ $ |#1| $) 32 T ELT) (($ $ (-584 |#1|) (-584 $)) 34 T ELT)) (-3949 (((-695) $) 92 T ELT)) (-3531 (($ $ $) 20 T ELT) (($ (-615 |#1|) (-615 |#1|)) 79 T ELT) (($ (-615 |#1|) $) 77 T ELT) (($ $ (-615 |#1|)) 78 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1196 |#1| |#2|) $) 60 T ELT) (((-1205 |#1| |#2|) $) 43 T ELT) (($ (-615 |#1|)) 27 T ELT)) (-3818 (((-584 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-615 |#1|)) NIL T ELT)) (-3955 ((|#2| (-1205 |#1| |#2|) $) 45 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 23 T CONST)) (-2666 (((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3946 (((-3 $ #1#) (-1196 |#1| |#2|)) 62 T ELT)) (-1734 (($ (-615 |#1|)) 14 T ELT)) (-3057 (((-85) $ $) 46 T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 31 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-615 |#1|)) NIL T ELT))) +(((-607 |#1| |#2|) (-13 (-326 |#1| |#2|) (-335 |#2| (-615 |#1|)) (-10 -8 (-15 -3946 ((-3 $ "failed") (-1196 |#1| |#2|))) (-15 -3531 ($ (-615 |#1|) (-615 |#1|))) (-15 -3531 ($ (-615 |#1|) $)) (-15 -3531 ($ $ (-615 |#1|))))) (-757) (-146)) (T -607)) +((-3946 (*1 *1 *2) (|partial| -12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *1 (-607 *3 *4)))) (-3531 (*1 *1 *2 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) (-3531 (*1 *1 *2 *1) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) (-3531 (*1 *1 *1 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146))))) +((-1733 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1731 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1571 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2298 (($ $) 65 T ELT)) (-2369 (($ $) 74 T ELT)) (-3406 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3843 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3420 (((-485) |#2| $ (-485)) 71 T ELT) (((-485) |#2| $) NIL T ELT) (((-485) (-1 (-85) |#2|) $) 54 T ELT)) (-3615 (($ (-695) |#2|) 63 T ELT)) (-2857 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3519 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3535 (($ |#2|) 15 T ELT)) (-3610 (($ $ $ (-485)) 42 T ELT) (($ |#2| $ (-485)) 40 T ELT)) (-1355 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1572 (($ $ (-1147 (-485))) 51 T ELT) (($ $ (-485)) 44 T ELT)) (-1732 (($ $ $ (-485)) 70 T ELT)) (-3401 (($ $) 68 T ELT)) (-2686 (((-85) $ $) 76 T ELT))) +(((-608 |#1| |#2|) (-10 -7 (-15 -3535 (|#1| |#2|)) (-15 -1572 (|#1| |#1| (-485))) (-15 -1572 (|#1| |#1| (-1147 (-485)))) (-15 -3406 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3610 (|#1| |#2| |#1| (-485))) (-15 -3610 (|#1| |#1| |#1| (-485))) (-15 -2857 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1571 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3406 (|#1| |#2| |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -3519 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3420 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -3420 ((-485) |#2| |#1|)) (-15 -3420 ((-485) |#2| |#1| (-485))) (-15 -3519 (|#1| |#1| |#1|)) (-15 -1733 ((-85) |#1|)) (-15 -1732 (|#1| |#1| |#1| (-485))) (-15 -2298 (|#1| |#1|)) (-15 -1731 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1731 (|#1| |#1|)) (-15 -2686 ((-85) |#1| |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1355 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3615 (|#1| (-695) |#2|)) (-15 -3959 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3401 (|#1| |#1|))) (-609 |#2|) (-1130)) (T -608)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3796 ((|#1| $) 71 T ELT)) (-3798 (($ $) 73 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 107 (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) 58 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) $) 155 (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 149 T ELT)) (-1731 (($ $) 159 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3997))) ELT) (($ (-1 (-85) |#1| |#1|) $) 158 (|has| $ (-6 -3997)) ELT)) (-2910 (($ $) 154 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) 148 T ELT)) (-3443 (((-85) $ (-695)) 90 T ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 62 (|has| $ (-6 -3997)) ELT)) (-3787 ((|#1| $ |#1|) 60 (|has| $ (-6 -3997)) ELT)) (-3790 ((|#1| $ |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3997)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3997)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3997)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 127 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-485) |#1|) 96 (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 142 T ELT)) (-3711 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3996)) ELT)) (-3797 ((|#1| $) 72 T ELT)) (-3725 (($) 7 T CONST)) (-2298 (($ $) 157 (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) 147 T ELT)) (-3800 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-2369 (($ $) 144 (|has| |#1| (-1014)) ELT)) (-1354 (($ $) 109 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ |#1| $) 143 (|has| |#1| (-1014)) ELT) (($ (-1 (-85) |#1|) $) 138 T ELT)) (-3407 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3996)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-1577 ((|#1| $ (-485) |#1|) 95 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) 97 T ELT)) (-3444 (((-85) $) 93 T ELT)) (-3420 (((-485) |#1| $ (-485)) 152 (|has| |#1| (-1014)) ELT) (((-485) |#1| $) 151 (|has| |#1| (-1014)) ELT) (((-485) (-1 (-85) |#1|) $) 150 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-3615 (($ (-695) |#1|) 119 T ELT)) (-3720 (((-85) $ (-695)) 91 T ELT)) (-2201 (((-485) $) 105 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 165 (|has| |#1| (-757)) ELT)) (-2857 (($ $ $) 145 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 141 T ELT)) (-3519 (($ $ $) 153 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 146 T ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 104 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 164 (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3535 (($ |#1|) 135 T ELT)) (-3717 (((-85) $ (-695)) 92 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3799 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-3610 (($ $ $ (-485)) 140 T ELT) (($ |#1| $ (-485)) 139 T ELT)) (-2305 (($ $ $ (-485)) 126 T ELT) (($ |#1| $ (-485)) 125 T ELT)) (-2204 (((-584 (-485)) $) 102 T ELT)) (-2205 (((-85) (-485) $) 101 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2200 (($ $ |#1|) 106 (|has| $ (-6 -3997)) ELT)) (-3445 (((-85) $) 94 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 100 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1147 (-485))) 118 T ELT) ((|#1| $ (-485)) 99 T ELT) ((|#1| $ (-485) |#1|) 98 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-1572 (($ $ (-1147 (-485))) 137 T ELT) (($ $ (-485)) 136 T ELT)) (-2306 (($ $ (-1147 (-485))) 124 T ELT) (($ $ (-485)) 123 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-3793 (($ $) 68 T ELT)) (-3791 (($ $) 65 (|has| $ (-6 -3997)) ELT)) (-3794 (((-695) $) 69 T ELT)) (-3795 (($ $) 70 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 T ELT) (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-1732 (($ $ $ (-485)) 156 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 108 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 117 T ELT)) (-3792 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3803 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-584 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2567 (((-85) $ $) 163 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 161 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) 162 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 160 (|has| |#1| (-757)) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-609 |#1|) (-113) (-1130)) (T -609)) +((-3535 (*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1130))))) +(-13 (-1065 |t#1|) (-324 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3535 ($ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-237 |#1|) . T) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-924 |#1|) . T) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1065 |#1|) . T) ((-1130) . T) ((-1169 |#1|) . T)) +((-3574 (((-584 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2013 (-584 |#3|)))) |#4| (-584 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2013 (-584 |#3|))) |#4| |#3|) 60 T ELT)) (-3109 (((-695) |#4| |#3|) 18 T ELT)) (-3341 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2316 (((-85) |#4| |#3|) 14 T ELT))) +(((-610 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3574 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2013 (-584 |#3|))) |#4| |#3|)) (-15 -3574 ((-584 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2013 (-584 |#3|)))) |#4| (-584 |#3|))) (-15 -3341 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2316 ((-85) |#4| |#3|)) (-15 -3109 ((-695) |#4| |#3|))) (-312) (-13 (-324 |#1|) (-10 -7 (-6 -3997))) (-13 (-324 |#1|) (-10 -7 (-6 -3997))) (-628 |#1| |#2| |#3|)) (T -610)) +((-3109 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3997)))) (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3997)))) (-5 *2 (-695)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-2316 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3997)))) (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3997)))) (-5 *2 (-85)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-3341 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-10 -7 (-6 -3997)))) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3997)))) (-5 *1 (-610 *4 *5 *2 *3)) (-4 *3 (-628 *4 *5 *2)))) (-3574 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3997)))) (-4 *7 (-13 (-324 *5) (-10 -7 (-6 -3997)))) (-5 *2 (-584 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2013 (-584 *7))))) (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-584 *7)) (-4 *3 (-628 *5 *6 *7)))) (-3574 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3997)))) (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3997)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))) +((-3574 (((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1="failed")) (|:| -2013 (-584 (-1180 |#1|))))) (-584 (-584 |#1|)) (-584 (-1180 |#1|))) 22 T ELT) (((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|))))) (-631 |#1|) (-584 (-1180 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|)))) (-584 (-584 |#1|)) (-1180 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|)) 14 T ELT)) (-3109 (((-695) (-631 |#1|) (-1180 |#1|)) 30 T ELT)) (-3341 (((-3 (-1180 |#1|) #1#) (-631 |#1|) (-1180 |#1|)) 24 T ELT)) (-2316 (((-85) (-631 |#1|) (-1180 |#1|)) 27 T ELT))) +(((-611 |#1|) (-10 -7 (-15 -3574 ((-2 (|:| |particular| (-3 (-1180 |#1|) #1="failed")) (|:| -2013 (-584 (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|))) (-15 -3574 ((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|)))) (-584 (-584 |#1|)) (-1180 |#1|))) (-15 -3574 ((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|))))) (-631 |#1|) (-584 (-1180 |#1|)))) (-15 -3574 ((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|))))) (-584 (-584 |#1|)) (-584 (-1180 |#1|)))) (-15 -3341 ((-3 (-1180 |#1|) #1#) (-631 |#1|) (-1180 |#1|))) (-15 -2316 ((-85) (-631 |#1|) (-1180 |#1|))) (-15 -3109 ((-695) (-631 |#1|) (-1180 |#1|)))) (-312)) (T -611)) +((-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-695)) (-5 *1 (-611 *5)))) (-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-85)) (-5 *1 (-611 *5)))) (-3341 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1180 *4)) (-5 *3 (-631 *4)) (-4 *4 (-312)) (-5 *1 (-611 *4)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312)) (-5 *2 (-584 (-2 (|:| |particular| (-3 (-1180 *5) #1="failed")) (|:| -2013 (-584 (-1180 *5)))))) (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-4 *5 (-312)) (-5 *2 (-584 (-2 (|:| |particular| (-3 (-1180 *5) #1#)) (|:| -2013 (-584 (-1180 *5)))))) (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 *5) #1#)) (|:| -2013 (-584 (-1180 *5))))) (-5 *1 (-611 *5)) (-5 *4 (-1180 *5)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 *5) #1#)) (|:| -2013 (-584 (-1180 *5))))) (-5 *1 (-611 *5)) (-5 *4 (-1180 *5))))) +((-2317 (((-2 (|:| |particular| (-3 (-1180 (-350 |#4|)) "failed")) (|:| -2013 (-584 (-1180 (-350 |#4|))))) (-584 |#4|) (-584 |#3|)) 51 T ELT))) +(((-612 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2317 ((-2 (|:| |particular| (-3 (-1180 (-350 |#4|)) "failed")) (|:| -2013 (-584 (-1180 (-350 |#4|))))) (-584 |#4|) (-584 |#3|)))) (-496) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -612)) +((-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *7)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 (-350 *8)) "failed")) (|:| -2013 (-584 (-1180 (-350 *8)))))) (-5 *1 (-612 *5 *6 *7 *8))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1773 (((-3 $ #1="failed")) NIL (|has| |#2| (-496)) ELT)) (-3331 ((|#2| $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3224 (((-1180 (-631 |#2|))) NIL T ELT) (((-1180 (-631 |#2|)) (-1180 $)) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-1730 (((-1180 $)) 41 T ELT)) (-3334 (($ |#2|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3110 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3112 (((-197 |#1| |#2|) $ (-485)) NIL T ELT)) (-1907 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#2| (-496)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#2| (-496)) ELT)) (-1789 (((-631 |#2|)) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-1728 ((|#2| $) NIL T ELT)) (-1787 (((-631 |#2|) $) NIL T ELT) (((-631 |#2|) $ (-1180 $)) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#2| (-496)) ELT)) (-1901 (((-1086 (-858 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1726 ((|#2| $) NIL T ELT)) (-1706 (((-1086 |#2|) $) NIL (|has| |#2| (-496)) ELT)) (-1791 ((|#2|) NIL T ELT) ((|#2| (-1180 $)) NIL T ELT)) (-1724 (((-1086 |#2|) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-1793 (($ (-1180 |#2|)) NIL T ELT) (($ (-1180 |#2|) (-1180 $)) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3109 (((-695) $) NIL (|has| |#2| (-496)) ELT) (((-831)) 42 T ELT)) (-3113 ((|#2| $ (-485) (-485)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2434 (($ $ (-831)) NIL T ELT)) (-2890 (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3108 (((-695) $) NIL (|has| |#2| (-496)) ELT)) (-3107 (((-584 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-496)) ELT)) (-3115 (((-695) $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-3114 (((-695) $) NIL T ELT)) (-3328 ((|#2| $) NIL (|has| |#2| (-6 (-3998 #2="*"))) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-2609 (((-584 |#2|) $) NIL T ELT)) (-3246 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3118 (((-485) $) NIL T ELT)) (-3116 (((-485) $) NIL T ELT)) (-3124 (($ (-584 (-584 |#2|))) NIL T ELT)) (-3327 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3595 (((-584 (-584 |#2|)) $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-1908 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#2| (-496)) ELT)) (-1705 (((-3 $ #1#)) NIL (|has| |#2| (-496)) ELT)) (-1790 (((-631 |#2|)) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-1729 ((|#2| $) NIL T ELT)) (-1788 (((-631 |#2|) $) NIL T ELT) (((-631 |#2|) $ (-1180 $)) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#2| (-496)) ELT)) (-1905 (((-1086 (-858 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1727 ((|#2| $) NIL T ELT)) (-1707 (((-1086 |#2|) $) NIL (|has| |#2| (-496)) ELT)) (-1792 ((|#2|) NIL T ELT) ((|#2| (-1180 $)) NIL T ELT)) (-1725 (((-1086 |#2|) $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3591 (((-3 $ #1#) $) NIL (|has| |#2| (-312)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) ((|#2| $ (-485) (-485)) 27 T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3330 ((|#2| $) NIL T ELT)) (-3333 (($ (-584 |#2|)) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3332 (((-197 |#1| |#2|) $) NIL T ELT)) (-3329 ((|#2| $) NIL (|has| |#2| (-6 (-3998 #2#))) ELT)) (-1947 (((-695) (-1 (-85) |#2|) $) NIL T ELT) (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3225 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $ (-1180 $)) 30 T ELT)) (-3973 (($ (-1180 |#2|)) NIL T ELT) (((-1180 |#2|) $) NIL T ELT)) (-1893 (((-584 (-858 |#2|))) NIL T ELT) (((-584 (-858 |#2|)) (-1180 $)) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL T ELT)) (-3111 (((-197 |#1| |#2|) $ (-485)) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) NIL T ELT) (((-631 |#2|) $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 40 T ELT)) (-1708 (((-584 (-1180 |#2|))) NIL (|has| |#2| (-496)) ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-2546 (($ (-631 |#2|) $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#2| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-613 |#1| |#2|) (-13 (-1038 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-553 (-631 |#2|)) (-361 |#2|)) (-831) (-146)) (T -613)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3249 (((-584 (-1050)) $) 12 T ELT)) (-3947 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-614) (-13 (-996) (-10 -8 (-15 -3249 ((-584 (-1050)) $))))) (T -614)) +((-3249 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-614))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3935 (((-584 |#1|) $) NIL T ELT)) (-3138 (($ $) 62 T ELT)) (-2665 (((-85) $) NIL T ELT)) (-3158 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-2320 (((-3 $ #1#) (-740 |#1|)) 28 T ELT)) (-2322 (((-85) (-740 |#1|)) 18 T ELT)) (-2321 (($ (-740 |#1|)) 29 T ELT)) (-2512 (((-85) $ $) 36 T ELT)) (-3834 (((-831) $) 43 T ELT)) (-3139 (($ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3733 (((-584 $) (-740 |#1|)) 20 T ELT)) (-3947 (((-773) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-740 |#1|) $) 47 T ELT) (((-619 |#1|) $) 52 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2319 (((-58 (-584 $)) (-584 |#1|) (-831)) 67 T ELT)) (-2318 (((-584 $) (-584 |#1|) (-831)) 70 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 63 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 46 T ELT))) +(((-615 |#1|) (-13 (-757) (-951 |#1|) (-10 -8 (-15 -2665 ((-85) $)) (-15 -3139 ($ $)) (-15 -3138 ($ $)) (-15 -3834 ((-831) $)) (-15 -2512 ((-85) $ $)) (-15 -3947 ((-740 |#1|) $)) (-15 -3947 ((-619 |#1|) $)) (-15 -3733 ((-584 $) (-740 |#1|))) (-15 -2322 ((-85) (-740 |#1|))) (-15 -2321 ($ (-740 |#1|))) (-15 -2320 ((-3 $ "failed") (-740 |#1|))) (-15 -3935 ((-584 |#1|) $)) (-15 -2319 ((-58 (-584 $)) (-584 |#1|) (-831))) (-15 -2318 ((-584 $) (-584 |#1|) (-831))))) (-757)) (T -615)) +((-2665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3139 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) (-3138 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-2512 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-615 *4))) (-5 *1 (-615 *4)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-85)) (-5 *1 (-615 *4)))) (-2321 (*1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))) (-2320 (*1 *1 *2) (|partial| -12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-58 (-584 (-615 *5)))) (-5 *1 (-615 *5)))) (-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-584 (-615 *5))) (-5 *1 (-615 *5))))) +((-3403 ((|#2| $) 100 T ELT)) (-3798 (($ $) 121 T ELT)) (-3443 (((-85) $ (-695)) 35 T ELT)) (-3800 (($ $) 109 T ELT) (($ $ (-695)) 112 T ELT)) (-3444 (((-85) $) 122 T ELT)) (-3032 (((-584 $) $) 96 T ELT)) (-3028 (((-85) $ $) 92 T ELT)) (-3720 (((-85) $ (-695)) 33 T ELT)) (-2201 (((-485) $) 66 T ELT)) (-2202 (((-485) $) 65 T ELT)) (-3717 (((-85) $ (-695)) 31 T ELT)) (-3528 (((-85) $) 98 T ELT)) (-3799 ((|#2| $) 113 T ELT) (($ $ (-695)) 117 T ELT)) (-2305 (($ $ $ (-485)) 83 T ELT) (($ |#2| $ (-485)) 82 T ELT)) (-2204 (((-584 (-485)) $) 64 T ELT)) (-2205 (((-85) (-485) $) 59 T ELT)) (-3802 ((|#2| $) NIL T ELT) (($ $ (-695)) 108 T ELT)) (-3770 (($ $ (-485)) 125 T ELT)) (-3445 (((-85) $) 124 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 42 T ELT)) (-2206 (((-584 |#2|) $) 46 T ELT)) (-3801 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1147 (-485))) 79 T ELT) ((|#2| $ (-485)) 57 T ELT) ((|#2| $ (-485) |#2|) 58 T ELT)) (-3030 (((-485) $ $) 91 T ELT)) (-2306 (($ $ (-1147 (-485))) 78 T ELT) (($ $ (-485)) 72 T ELT)) (-3634 (((-85) $) 87 T ELT)) (-3793 (($ $) 105 T ELT)) (-3794 (((-695) $) 104 T ELT)) (-3795 (($ $) 103 T ELT)) (-3531 (($ (-584 |#2|)) 53 T ELT)) (-2892 (($ $) 126 T ELT)) (-3523 (((-584 $) $) 90 T ELT)) (-3029 (((-85) $ $) 89 T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 41 T ELT)) (-3057 (((-85) $ $) 20 T ELT)) (-3958 (((-695) $) 39 T ELT))) +(((-616 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -2892 (|#1| |#1|)) (-15 -3770 (|#1| |#1| (-485))) (-15 -3443 ((-85) |#1| (-695))) (-15 -3720 ((-85) |#1| (-695))) (-15 -3717 ((-85) |#1| (-695))) (-15 -3444 ((-85) |#1|)) (-15 -3445 ((-85) |#1|)) (-15 -3801 (|#2| |#1| (-485) |#2|)) (-15 -3801 (|#2| |#1| (-485))) (-15 -2206 ((-584 |#2|) |#1|)) (-15 -2205 ((-85) (-485) |#1|)) (-15 -2204 ((-584 (-485)) |#1|)) (-15 -2202 ((-485) |#1|)) (-15 -2201 ((-485) |#1|)) (-15 -3531 (|#1| (-584 |#2|))) (-15 -3801 (|#1| |#1| (-1147 (-485)))) (-15 -2306 (|#1| |#1| (-485))) (-15 -2306 (|#1| |#1| (-1147 (-485)))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -3793 (|#1| |#1|)) (-15 -3794 ((-695) |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3799 (|#1| |#1| (-695))) (-15 -3801 (|#2| |#1| "last")) (-15 -3799 (|#2| |#1|)) (-15 -3800 (|#1| |#1| (-695))) (-15 -3801 (|#1| |#1| "rest")) (-15 -3800 (|#1| |#1|)) (-15 -3802 (|#1| |#1| (-695))) (-15 -3801 (|#2| |#1| "first")) (-15 -3802 (|#2| |#1|)) (-15 -3028 ((-85) |#1| |#1|)) (-15 -3029 ((-85) |#1| |#1|)) (-15 -3030 ((-485) |#1| |#1|)) (-15 -3634 ((-85) |#1|)) (-15 -3801 (|#2| |#1| "value")) (-15 -3403 (|#2| |#1|)) (-15 -3528 ((-85) |#1|)) (-15 -3032 ((-584 |#1|) |#1|)) (-15 -3523 ((-584 |#1|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1949 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3958 ((-695) |#1|))) (-617 |#2|) (-1130)) (T -616)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3796 ((|#1| $) 71 T ELT)) (-3798 (($ $) 73 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 107 (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) 58 (|has| $ (-6 -3997)) ELT)) (-3443 (((-85) $ (-695)) 90 T ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 62 (|has| $ (-6 -3997)) ELT)) (-3787 ((|#1| $ |#1|) 60 (|has| $ (-6 -3997)) ELT)) (-3790 ((|#1| $ |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3997)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3997)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3997)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 127 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-485) |#1|) 96 (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 112 T ELT)) (-3797 ((|#1| $) 72 T ELT)) (-3725 (($) 7 T CONST)) (-2324 (($ $) 135 T ELT)) (-3800 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-1354 (($ $) 109 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#1| $) 110 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 113 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-1577 ((|#1| $ (-485) |#1|) 95 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) 97 T ELT)) (-3444 (((-85) $) 93 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2323 (((-695) $) 134 T ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-3615 (($ (-695) |#1|) 119 T ELT)) (-3720 (((-85) $ (-695)) 91 T ELT)) (-2201 (((-485) $) 105 (|has| (-485) (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-2202 (((-485) $) 104 (|has| (-485) (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3717 (((-85) $ (-695)) 92 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-2326 (($ $) 137 T ELT)) (-2327 (((-85) $) 138 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3799 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-2305 (($ $ $ (-485)) 126 T ELT) (($ |#1| $ (-485)) 125 T ELT)) (-2204 (((-584 (-485)) $) 102 T ELT)) (-2205 (((-85) (-485) $) 101 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-2325 ((|#1| $) 136 T ELT)) (-3802 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2200 (($ $ |#1|) 106 (|has| $ (-6 -3997)) ELT)) (-3770 (($ $ (-485)) 133 T ELT)) (-3445 (((-85) $) 94 T ELT)) (-2328 (((-85) $) 139 T ELT)) (-2329 (((-85) $) 140 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 100 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1147 (-485))) 118 T ELT) ((|#1| $ (-485)) 99 T ELT) ((|#1| $ (-485) |#1|) 98 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-2306 (($ $ (-1147 (-485))) 124 T ELT) (($ $ (-485)) 123 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-3793 (($ $) 68 T ELT)) (-3791 (($ $) 65 (|has| $ (-6 -3997)) ELT)) (-3794 (((-695) $) 69 T ELT)) (-3795 (($ $) 70 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 108 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 117 T ELT)) (-3792 (($ $ $) 67 (|has| $ (-6 -3997)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3997)) ELT)) (-3803 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-584 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-2892 (($ $) 132 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-617 |#1|) (-113) (-1130)) (T -617)) +((-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) (-3711 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-2326 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130)))) (-2324 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) (-2892 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130))))) +(-13 (-1065 |t#1|) (-10 -8 (-15 -3407 ($ (-1 (-85) |t#1|) $)) (-15 -3711 ($ (-1 (-85) |t#1|) $)) (-15 -2329 ((-85) $)) (-15 -2328 ((-85) $)) (-15 -2327 ((-85) $)) (-15 -2326 ($ $)) (-15 -2325 (|t#1| $)) (-15 -2324 ($ $)) (-15 -2323 ((-695) $)) (-15 -3770 ($ $ (-485))) (-15 -2892 ($ $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1065 |#1|) . T) ((-1130) . T) ((-1169 |#1|) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3179 (((-423) $) 15 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 24 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3234 (((-1050) $) 17 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-618) (-13 (-996) (-10 -8 (-15 -3179 ((-423) $)) (-15 -3234 ((-1050) $))))) (T -618)) +((-3179 (*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-618)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-618))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3935 (((-584 |#1|) $) 15 T ELT)) (-3138 (($ $) 19 T ELT)) (-2665 (((-85) $) 20 T ELT)) (-3158 (((-3 |#1| "failed") $) 23 T ELT)) (-3157 ((|#1| $) 21 T ELT)) (-3800 (($ $) 37 T ELT)) (-3937 (($ $) 25 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-2512 (((-85) $ $) 46 T ELT)) (-3834 (((-831) $) 40 T ELT)) (-3139 (($ $) 18 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3802 ((|#1| $) 36 T ELT)) (-3947 (((-773) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-740 |#1|) $) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 13 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) +(((-619 |#1|) (-13 (-757) (-951 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3947 ((-740 |#1|) $)) (-15 -3802 (|#1| $)) (-15 -3139 ($ $)) (-15 -3834 ((-831) $)) (-15 -2512 ((-85) $ $)) (-15 -3937 ($ $)) (-15 -3800 ($ $)) (-15 -2665 ((-85) $)) (-15 -3138 ($ $)) (-15 -3935 ((-584 |#1|) $)))) (-757)) (T -619)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3802 (*1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3139 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-2512 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3800 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3138 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757))))) +((-2338 ((|#1| (-1 |#1| (-695) |#1|) (-695) |#1|) 11 T ELT)) (-2330 ((|#1| (-1 |#1| |#1|) (-695) |#1|) 9 T ELT))) +(((-620 |#1|) (-10 -7 (-15 -2330 (|#1| (-1 |#1| |#1|) (-695) |#1|)) (-15 -2338 (|#1| (-1 |#1| (-695) |#1|) (-695) |#1|))) (-1014)) (T -620)) +((-2338 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-695) *2)) (-5 *4 (-695)) (-4 *2 (-1014)) (-5 *1 (-620 *2)))) (-2330 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-695)) (-4 *2 (-1014)) (-5 *1 (-620 *2))))) +((-2332 ((|#2| |#1| |#2|) 9 T ELT)) (-2331 ((|#1| |#1| |#2|) 8 T ELT))) +(((-621 |#1| |#2|) (-10 -7 (-15 -2331 (|#1| |#1| |#2|)) (-15 -2332 (|#2| |#1| |#2|))) (-1014) (-1014)) (T -621)) +((-2332 (*1 *2 *3 *2) (-12 (-5 *1 (-621 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-2331 (*1 *2 *2 *3) (-12 (-5 *1 (-621 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) +((-2333 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) +(((-622 |#1| |#2| |#3|) (-10 -7 (-15 -2333 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1014) (-1014) (-1014)) (T -622)) +((-2333 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)) (-5 *1 (-622 *5 *6 *2))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3319 (((-1131) $) 22 T ELT)) (-3318 (((-584 (-1131)) $) 20 T ELT)) (-2334 (($ (-584 (-1131)) (-1131)) 15 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 30 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) (((-1131) $) 23 T ELT) (($ (-1029)) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-623) (-13 (-996) (-553 (-1131)) (-10 -8 (-15 -3947 ($ (-1029))) (-15 -2334 ($ (-584 (-1131)) (-1131))) (-15 -3318 ((-584 (-1131)) $)) (-15 -3319 ((-1131) $))))) (T -623)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-623)))) (-2334 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1131))) (-5 *3 (-1131)) (-5 *1 (-623)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-623)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-623))))) +((-2338 (((-1 |#1| (-695) |#1|) (-1 |#1| (-695) |#1|)) 26 T ELT)) (-2335 (((-1 |#1|) |#1|) 8 T ELT)) (-2337 ((|#1| |#1|) 19 T ELT)) (-2336 (((-584 |#1|) (-1 (-584 |#1|) (-584 |#1|)) (-485)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3947 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-695)) 23 T ELT))) +(((-624 |#1|) (-10 -7 (-15 -2335 ((-1 |#1|) |#1|)) (-15 -3947 ((-1 |#1|) |#1|)) (-15 -2336 (|#1| (-1 |#1| |#1|))) (-15 -2336 ((-584 |#1|) (-1 (-584 |#1|) (-584 |#1|)) (-485))) (-15 -2337 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-695))) (-15 -2338 ((-1 |#1| (-695) |#1|) (-1 |#1| (-695) |#1|)))) (-1014)) (T -624)) +((-2338 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-695) *3)) (-4 *3 (-1014)) (-5 *1 (-624 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *4 (-1014)) (-5 *1 (-624 *4)))) (-2337 (*1 *2 *2) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1014)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-584 *5) (-584 *5))) (-5 *4 (-485)) (-5 *2 (-584 *5)) (-5 *1 (-624 *5)) (-4 *5 (-1014)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1014)))) (-3947 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014)))) (-2335 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014))))) +((-2341 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2340 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3953 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2339 (((-1 |#2| |#1|) |#2|) 11 T ELT))) +(((-625 |#1| |#2|) (-10 -7 (-15 -2339 ((-1 |#2| |#1|) |#2|)) (-15 -2340 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3953 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2341 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1014) (-1014)) (T -625)) +((-2341 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)) (-4 *4 (-1014)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5)) (-5 *1 (-625 *4 *5)))) (-2339 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1014)) (-4 *3 (-1014))))) +((-2346 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2342 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2343 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2344 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2345 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) +(((-626 |#1| |#2| |#3|) (-10 -7 (-15 -2342 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2343 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2344 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2345 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2346 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1014) (-1014) (-1014)) (T -626)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-1 *7 *5)) (-5 *1 (-626 *5 *6 *7)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1014)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1014)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1014)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6))))) +((-3839 (($ (-695) (-695)) 42 T ELT)) (-2351 (($ $ $) 73 T ELT)) (-3415 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3121 (((-85) $) 36 T ELT)) (-2350 (($ $ (-485) (-485)) 84 T ELT)) (-2349 (($ $ (-485) (-485)) 85 T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) 90 T ELT)) (-2353 (($ $) 71 T ELT)) (-3123 (((-85) $) 15 T ELT)) (-2347 (($ $ (-485) (-485) $) 91 T ELT)) (-3789 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) 89 T ELT)) (-3334 (($ (-695) |#2|) 55 T ELT)) (-3124 (($ (-584 (-584 |#2|))) 51 T ELT) (($ (-695) (-695) (-1 |#2| (-485) (-485))) 53 T ELT)) (-3595 (((-584 (-584 |#2|)) $) 80 T ELT)) (-2352 (($ $ $) 72 T ELT)) (-3467 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3801 ((|#2| $ (-485) (-485)) NIL T ELT) ((|#2| $ (-485) (-485) |#2|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485))) 88 T ELT)) (-3333 (($ (-584 |#2|)) 56 T ELT) (($ (-584 $)) 58 T ELT)) (-3122 (((-85) $) 28 T ELT)) (-3947 (($ |#4|) 63 T ELT) (((-773) $) NIL T ELT)) (-3120 (((-85) $) 38 T ELT)) (-3950 (($ $ |#2|) 124 T ELT)) (-3838 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3840 (($ $ $) 93 T ELT)) (** (($ $ (-695)) 111 T ELT) (($ $ (-485)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-485) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) +(((-627 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3947 ((-773) |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3950 (|#1| |#1| |#2|)) (-15 -3467 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -2347 (|#1| |#1| (-485) (-485) |#1|)) (-15 -2348 (|#1| |#1| (-485) (-485) (-485) (-485))) (-15 -2349 (|#1| |#1| (-485) (-485))) (-15 -2350 (|#1| |#1| (-485) (-485))) (-15 -3789 (|#1| |#1| (-584 (-485)) (-584 (-485)) |#1|)) (-15 -3801 (|#1| |#1| (-584 (-485)) (-584 (-485)))) (-15 -3595 ((-584 (-584 |#2|)) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2352 (|#1| |#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -3415 (|#1| |#1|)) (-15 -3415 (|#1| |#3|)) (-15 -3947 (|#1| |#4|)) (-15 -3333 (|#1| (-584 |#1|))) (-15 -3333 (|#1| (-584 |#2|))) (-15 -3334 (|#1| (-695) |#2|)) (-15 -3124 (|#1| (-695) (-695) (-1 |#2| (-485) (-485)))) (-15 -3124 (|#1| (-584 (-584 |#2|)))) (-15 -3839 (|#1| (-695) (-695))) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|)) (-15 -3789 (|#2| |#1| (-485) (-485) |#2|)) (-15 -3801 (|#2| |#1| (-485) (-485) |#2|)) (-15 -3801 (|#2| |#1| (-485) (-485)))) (-628 |#2| |#3| |#4|) (-962) (-324 |#2|) (-324 |#2|)) (T -627)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3839 (($ (-695) (-695)) 104 T ELT)) (-2351 (($ $ $) 93 T ELT)) (-3415 (($ |#2|) 97 T ELT) (($ $) 96 T ELT)) (-3121 (((-85) $) 106 T ELT)) (-2350 (($ $ (-485) (-485)) 89 T ELT)) (-2349 (($ $ (-485) (-485)) 88 T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) 87 T ELT)) (-2353 (($ $) 95 T ELT)) (-3123 (((-85) $) 108 T ELT)) (-2347 (($ $ (-485) (-485) $) 86 T ELT)) (-3789 ((|#1| $ (-485) (-485) |#1|) 49 T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) 90 T ELT)) (-1258 (($ $ (-485) |#2|) 47 T ELT)) (-1257 (($ $ (-485) |#3|) 46 T ELT)) (-3334 (($ (-695) |#1|) 101 T ELT)) (-3725 (($) 7 T CONST)) (-3110 (($ $) 73 (|has| |#1| (-258)) ELT)) (-3112 ((|#2| $ (-485)) 51 T ELT)) (-3109 (((-695) $) 72 (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 48 T ELT)) (-3113 ((|#1| $ (-485) (-485)) 53 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3108 (((-695) $) 71 (|has| |#1| (-496)) ELT)) (-3107 (((-584 |#3|) $) 70 (|has| |#1| (-496)) ELT)) (-3115 (((-695) $) 56 T ELT)) (-3615 (($ (-695) (-695) |#1|) 62 T ELT)) (-3114 (((-695) $) 55 T ELT)) (-3328 ((|#1| $) 68 (|has| |#1| (-6 (-3998 #1="*"))) ELT)) (-3119 (((-485) $) 60 T ELT)) (-3117 (((-485) $) 58 T ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3118 (((-485) $) 59 T ELT)) (-3116 (((-485) $) 57 T ELT)) (-3124 (($ (-584 (-584 |#1|))) 103 T ELT) (($ (-695) (-695) (-1 |#1| (-485) (-485))) 102 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 45 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 44 T ELT)) (-3595 (((-584 (-584 |#1|)) $) 92 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3591 (((-3 $ "failed") $) 67 (|has| |#1| (-312)) ELT)) (-2352 (($ $ $) 94 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) 61 T ELT)) (-3467 (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) (-485)) 54 T ELT) ((|#1| $ (-485) (-485) |#1|) 52 T ELT) (($ $ (-584 (-485)) (-584 (-485))) 91 T ELT)) (-3333 (($ (-584 |#1|)) 100 T ELT) (($ (-584 $)) 99 T ELT)) (-3122 (((-85) $) 107 T ELT)) (-3329 ((|#1| $) 69 (|has| |#1| (-6 (-3998 #1#))) ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 T ELT) (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-3401 (($ $) 10 T ELT)) (-3111 ((|#3| $ (-485)) 50 T ELT)) (-3947 (($ |#3|) 98 T ELT) (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3120 (((-85) $) 105 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3950 (($ $ |#1|) 74 (|has| |#1| (-312)) ELT)) (-3838 (($ $ $) 84 T ELT) (($ $) 83 T ELT)) (-3840 (($ $ $) 85 T ELT)) (** (($ $ (-695)) 76 T ELT) (($ $ (-485)) 66 (|has| |#1| (-312)) ELT)) (* (($ $ $) 82 T ELT) (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ (-485) $) 79 T ELT) ((|#3| $ |#3|) 78 T ELT) ((|#2| |#2| $) 77 T ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-628 |#1| |#2| |#3|) (-113) (-962) (-324 |t#1|) (-324 |t#1|)) (T -628)) +((-3123 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3839 (*1 *1 *2 *2) (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3124 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-1 *4 (-485) (-485))) (-4 *4 (-962)) (-4 *1 (-628 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-3334 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3947 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *2)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (-3415 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *2 *4)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (-3415 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2353 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2352 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2351 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-584 (-584 *3))))) (-3801 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3789 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2350 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2349 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2348 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2347 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3838 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-628 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-628 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3467 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-496)))) (-3950 (*1 *1 *1 *2) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (-3110 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-258)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-584 *5)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-3998 #1="*"))) (-4 *2 (-962)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-3998 #1#))) (-4 *2 (-962)))) (-3591 (*1 *1 *1) (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-312))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3839 ($ (-695) (-695))) (-15 -3124 ($ (-584 (-584 |t#1|)))) (-15 -3124 ($ (-695) (-695) (-1 |t#1| (-485) (-485)))) (-15 -3334 ($ (-695) |t#1|)) (-15 -3333 ($ (-584 |t#1|))) (-15 -3333 ($ (-584 $))) (-15 -3947 ($ |t#3|)) (-15 -3415 ($ |t#2|)) (-15 -3415 ($ $)) (-15 -2353 ($ $)) (-15 -2352 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -3595 ((-584 (-584 |t#1|)) $)) (-15 -3801 ($ $ (-584 (-485)) (-584 (-485)))) (-15 -3789 ($ $ (-584 (-485)) (-584 (-485)) $)) (-15 -2350 ($ $ (-485) (-485))) (-15 -2349 ($ $ (-485) (-485))) (-15 -2348 ($ $ (-485) (-485) (-485) (-485))) (-15 -2347 ($ $ (-485) (-485) $)) (-15 -3840 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -3838 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-485) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-695))) (IF (|has| |t#1| (-496)) (-15 -3467 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -3950 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-258)) (-15 -3110 ($ $)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-15 -3109 ((-695) $)) (-15 -3108 ((-695) $)) (-15 -3107 ((-584 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3998 "*"))) (PROGN (-15 -3329 (|t#1| $)) (-15 -3328 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -3591 ((-3 $ "failed") $)) (-15 ** ($ $ (-485)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-57 |#1| |#2| |#3|) . T) ((-1130) . T)) +((-3843 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3959 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) +(((-629 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3959 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3959 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3843 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-962) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|) (-962) (-324 |#5|) (-324 |#5|) (-628 |#5| |#6| |#7|)) (T -629)) +((-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *8 (-324 *2)) (-4 *9 (-324 *2)) (-5 *1 (-629 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-628 *5 *6 *7)) (-4 *10 (-628 *2 *8 *9)))) (-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10)) (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10)) (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8))))) +((-3110 ((|#4| |#4|) 90 (|has| |#1| (-258)) ELT)) (-3109 (((-695) |#4|) 92 (|has| |#1| (-496)) ELT)) (-3108 (((-695) |#4|) 94 (|has| |#1| (-496)) ELT)) (-3107 (((-584 |#3|) |#4|) 101 (|has| |#1| (-496)) ELT)) (-2381 (((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|) 124 (|has| |#1| (-258)) ELT)) (-3328 ((|#1| |#4|) 52 T ELT)) (-2358 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-496)) ELT)) (-3591 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-312)) ELT)) (-2357 ((|#4| |#4|) 76 (|has| |#1| (-496)) ELT)) (-2355 ((|#4| |#4| |#1| (-485) (-485)) 60 T ELT)) (-2354 ((|#4| |#4| (-485) (-485)) 55 T ELT)) (-2356 ((|#4| |#4| |#1| (-485) (-485)) 65 T ELT)) (-3329 ((|#1| |#4|) 96 T ELT)) (-2521 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-496)) ELT))) +(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3329 (|#1| |#4|)) (-15 -3328 (|#1| |#4|)) (-15 -2354 (|#4| |#4| (-485) (-485))) (-15 -2355 (|#4| |#4| |#1| (-485) (-485))) (-15 -2356 (|#4| |#4| |#1| (-485) (-485))) (IF (|has| |#1| (-496)) (PROGN (-15 -3109 ((-695) |#4|)) (-15 -3108 ((-695) |#4|)) (-15 -3107 ((-584 |#3|) |#4|)) (-15 -2357 (|#4| |#4|)) (-15 -2358 ((-3 |#4| #1="failed") |#4|)) (-15 -2521 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-258)) (PROGN (-15 -3110 (|#4| |#4|)) (-15 -2381 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3591 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -630)) +((-3591 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2381 (*1 *2 *3 *3) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-630 *3 *4 *5 *6)) (-4 *6 (-628 *3 *4 *5)))) (-3110 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2521 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-2358 (*1 *2 *2) (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-584 *6)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-2356 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))) (-2355 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))) (-2354 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *1 (-630 *4 *5 *6 *2)) (-4 *2 (-628 *4 *5 *6)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3839 (($ (-695) (-695)) 63 T ELT)) (-2351 (($ $ $) NIL T ELT)) (-3415 (($ (-1180 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-2350 (($ $ (-485) (-485)) 21 T ELT)) (-2349 (($ $ (-485) (-485)) NIL T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) NIL T ELT)) (-2353 (($ $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-2347 (($ $ (-485) (-485) $) NIL T ELT)) (-3789 ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) NIL T ELT)) (-1258 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-1257 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-3334 (($ (-695) |#1|) 37 T ELT)) (-3725 (($) NIL T CONST)) (-3110 (($ $) 46 (|has| |#1| (-258)) ELT)) (-3112 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-3109 (((-695) $) 48 (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 68 T ELT)) (-3113 ((|#1| $ (-485) (-485)) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3108 (((-695) $) 50 (|has| |#1| (-496)) ELT)) (-3107 (((-584 (-1180 |#1|)) $) 53 (|has| |#1| (-496)) ELT)) (-3115 (((-695) $) 31 T ELT)) (-3615 (($ (-695) (-695) |#1|) 27 T ELT)) (-3114 (((-695) $) 32 T ELT)) (-3328 ((|#1| $) 44 (|has| |#1| (-6 (-3998 #1="*"))) ELT)) (-3119 (((-485) $) 9 T ELT)) (-3117 (((-485) $) 10 T ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3118 (((-485) $) 13 T ELT)) (-3116 (((-485) $) 64 T ELT)) (-3124 (($ (-584 (-584 |#1|))) NIL T ELT) (($ (-695) (-695) (-1 |#1| (-485) (-485))) NIL T ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3595 (((-584 (-584 |#1|)) $) 75 T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3591 (((-3 $ #2="failed") $) 57 (|has| |#1| (-312)) ELT)) (-2352 (($ $ $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) NIL T ELT)) (-3467 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485))) NIL T ELT)) (-3333 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ (-1180 |#1|)) 69 T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3329 ((|#1| $) 42 (|has| |#1| (-6 (-3998 #1#))) ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) 79 (|has| |#1| (-554 (-474))) ELT)) (-3111 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-3947 (($ (-1180 |#1|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-695)) 38 T ELT) (($ $ (-485)) 61 (|has| |#1| (-312)) ELT)) (* (($ $ $) 23 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-485) $) NIL T ELT) (((-1180 |#1|) $ (-1180 |#1|)) NIL T ELT) (((-1180 |#1|) (-1180 |#1|) $) NIL T ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-631 |#1|) (-13 (-628 |#1| (-1180 |#1|) (-1180 |#1|)) (-10 -8 (-15 -3333 ($ (-1180 |#1|))) (IF (|has| |#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3591 ((-3 $ "failed") $)) |%noBranch|))) (-962)) (T -631)) +((-3591 (*1 *1 *1) (|partial| -12 (-5 *1 (-631 *2)) (-4 *2 (-312)) (-4 *2 (-962)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-631 *3))))) +((-2364 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 37 T ELT)) (-2363 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 32 T ELT)) (-2365 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-695)) 43 T ELT)) (-2360 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 25 T ELT)) (-2361 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 29 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 27 T ELT)) (-2362 (((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|)) 31 T ELT)) (-2359 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 23 T ELT)) (** (((-631 |#1|) (-631 |#1|) (-695)) 46 T ELT))) +(((-632 |#1|) (-10 -7 (-15 -2359 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2360 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2361 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2361 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2362 ((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|))) (-15 -2363 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -2364 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2365 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-695))) (-15 ** ((-631 |#1|) (-631 |#1|) (-695)))) (-962)) (T -632)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) (-2365 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) (-2364 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2363 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2362 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2361 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2361 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2360 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2359 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) +((-3158 (((-3 |#1| "failed") $) 18 T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-2366 (($) 7 T CONST)) (-2367 (($ |#1|) 8 T ELT)) (-3947 (($ |#1|) 16 T ELT) (((-773) $) 23 T ELT)) (-3567 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2366)) 11 T ELT)) (-3573 ((|#1| $) 15 T ELT))) +(((-633 |#1|) (-13 (-1176) (-951 |#1|) (-553 (-773)) (-10 -8 (-15 -2367 ($ |#1|)) (-15 -3567 ((-85) $ (|[\|\|]| |#1|))) (-15 -3567 ((-85) $ (|[\|\|]| -2366))) (-15 -3573 (|#1| $)) (-15 -2366 ($) -3953))) (-553 (-773))) (T -633)) +((-2367 (*1 *1 *2) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-553 (-773))) (-5 *2 (-85)) (-5 *1 (-633 *4)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2366)) (-5 *2 (-85)) (-5 *1 (-633 *4)) (-4 *4 (-553 (-773))))) (-3573 (*1 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) (-2366 (*1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773)))))) +((-3742 (((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)) 20 T ELT)) (-3740 ((|#1| (-631 |#2|)) 9 T ELT)) (-3741 (((-631 |#1|) (-631 |#2|)) 18 T ELT))) +(((-634 |#1| |#2|) (-10 -7 (-15 -3740 (|#1| (-631 |#2|))) (-15 -3741 ((-631 |#1|) (-631 |#2|))) (-15 -3742 ((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)))) (-496) (-905 |#1|)) (T -634)) +((-3742 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) (-5 *1 (-634 *4 *5)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) (-5 *2 (-631 *4)) (-5 *1 (-634 *4 *5)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-634 *2 *4))))) +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2369 (($ $) 66 T ELT)) (-1354 (($ $) 62 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ |#1| $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) 61 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3996)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT) (($ |#1| $ (-695)) 67 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1947 (-695)))) $) 65 T ELT)) (-1467 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 54 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-635 |#1|) (-113) (-1014)) (T -635)) +((-3610 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-635 *2)) (-4 *2 (-1014)))) (-2369 (*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1014)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-2 (|:| |entry| *3) (|:| -1947 (-695)))))))) +(-13 (-193 |t#1|) (-10 -8 (-15 -3610 ($ |t#1| $ (-695))) (-15 -2369 ($ $)) (-15 -2368 ((-584 (-2 (|:| |entry| |t#1|) (|:| -1947 (-695)))) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) +((-2372 (((-584 |#1|) (-584 (-2 (|:| -3733 |#1|) (|:| -3949 (-485)))) (-485)) 66 T ELT)) (-2370 ((|#1| |#1| (-485)) 63 T ELT)) (-3145 ((|#1| |#1| |#1| (-485)) 46 T ELT)) (-3733 (((-584 |#1|) |#1| (-485)) 49 T ELT)) (-2373 ((|#1| |#1| (-485) |#1| (-485)) 40 T ELT)) (-2371 (((-584 (-2 (|:| -3733 |#1|) (|:| -3949 (-485)))) |#1| (-485)) 62 T ELT))) +(((-636 |#1|) (-10 -7 (-15 -3145 (|#1| |#1| |#1| (-485))) (-15 -2370 (|#1| |#1| (-485))) (-15 -3733 ((-584 |#1|) |#1| (-485))) (-15 -2371 ((-584 (-2 (|:| -3733 |#1|) (|:| -3949 (-485)))) |#1| (-485))) (-15 -2372 ((-584 |#1|) (-584 (-2 (|:| -3733 |#1|) (|:| -3949 (-485)))) (-485))) (-15 -2373 (|#1| |#1| (-485) |#1| (-485)))) (-1156 (-485))) (T -636)) +((-2373 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))) (-2372 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| -3733 *5) (|:| -3949 (-485))))) (-5 *4 (-485)) (-4 *5 (-1156 *4)) (-5 *2 (-584 *5)) (-5 *1 (-636 *5)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-5 *2 (-584 (-2 (|:| -3733 *3) (|:| -3949 *4)))) (-5 *1 (-636 *3)) (-4 *3 (-1156 *4)))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-5 *2 (-584 *3)) (-5 *1 (-636 *3)) (-4 *3 (-1156 *4)))) (-2370 (*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))) (-3145 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3))))) +((-2377 (((-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2374 (((-1048 (-179)) (-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 53 T ELT) (((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 55 T ELT) (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 57 T ELT)) (-2376 (((-1048 (-179)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-584 (-221))) NIL T ELT)) (-2375 (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 58 T ELT))) +(((-637) (-10 -7 (-15 -2374 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2374 ((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2374 ((-1048 (-179)) (-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2375 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2376 ((-1048 (-179)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2377 ((-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -637)) +((-2377 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *1 (-637)))) (-2376 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637)))) (-2375 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637)))) (-2374 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-179))) (-5 *5 (-584 (-221))) (-5 *1 (-637)))) (-2374 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-179))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637)))) (-2374 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637))))) +((-3733 (((-348 (-1086 |#4|)) (-1086 |#4|)) 87 T ELT) (((-348 |#4|) |#4|) 270 T ELT))) +(((-638 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-348 |#4|) |#4|)) (-15 -3733 ((-348 (-1086 |#4|)) (-1086 |#4|)))) (-757) (-718) (-299) (-862 |#3| |#2| |#1|)) (T -638)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-638 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))) +((-2380 (((-631 |#1|) (-631 |#1|) |#1| |#1|) 85 T ELT)) (-3110 (((-631 |#1|) (-631 |#1|) |#1|) 66 T ELT)) (-2379 (((-631 |#1|) (-631 |#1|) |#1|) 86 T ELT)) (-2378 (((-631 |#1|) (-631 |#1|)) 67 T ELT)) (-2381 (((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|) 84 T ELT))) +(((-639 |#1|) (-10 -7 (-15 -2378 ((-631 |#1|) (-631 |#1|))) (-15 -3110 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -2379 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -2380 ((-631 |#1|) (-631 |#1|) |#1| |#1|)) (-15 -2381 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|))) (-258)) (T -639)) +((-2381 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-639 *3)) (-4 *3 (-258)))) (-2380 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))) (-2379 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))) (-3110 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))) (-2378 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3))))) +((-2387 (((-1 |#4| |#2| |#3|) |#1| (-1091) (-1091)) 19 T ELT)) (-2382 (((-1 |#4| |#2| |#3|) (-1091)) 12 T ELT))) +(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2382 ((-1 |#4| |#2| |#3|) (-1091))) (-15 -2387 ((-1 |#4| |#2| |#3|) |#1| (-1091) (-1091)))) (-554 (-474)) (-1130) (-1130) (-1130)) (T -640)) +((-2387 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7)) (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7)) (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130))))) +((-2383 (((-1 (-179) (-179) (-179)) |#1| (-1091) (-1091)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1091)) 48 T ELT))) +(((-641 |#1|) (-10 -7 (-15 -2383 ((-1 (-179) (-179)) |#1| (-1091))) (-15 -2383 ((-1 (-179) (-179) (-179)) |#1| (-1091) (-1091)))) (-554 (-474))) (T -641)) +((-2383 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-641 *3)) (-4 *3 (-554 (-474))))) (-2383 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-641 *3)) (-4 *3 (-554 (-474)))))) +((-2384 (((-1091) |#1| (-1091) (-584 (-1091))) 10 T ELT) (((-1091) |#1| (-1091) (-1091) (-1091)) 13 T ELT) (((-1091) |#1| (-1091) (-1091)) 12 T ELT) (((-1091) |#1| (-1091)) 11 T ELT))) +(((-642 |#1|) (-10 -7 (-15 -2384 ((-1091) |#1| (-1091))) (-15 -2384 ((-1091) |#1| (-1091) (-1091))) (-15 -2384 ((-1091) |#1| (-1091) (-1091) (-1091))) (-15 -2384 ((-1091) |#1| (-1091) (-584 (-1091))))) (-554 (-474))) (T -642)) +((-2384 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-584 (-1091))) (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) (-2384 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) (-2384 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) (-2384 (*1 *2 *3 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474)))))) +((-2385 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) +(((-643 |#1| |#2|) (-10 -7 (-15 -2385 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1130) (-1130)) (T -643)) +((-2385 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130))))) +((-2386 (((-1 |#3| |#2|) (-1091)) 11 T ELT)) (-2387 (((-1 |#3| |#2|) |#1| (-1091)) 21 T ELT))) +(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -2386 ((-1 |#3| |#2|) (-1091))) (-15 -2387 ((-1 |#3| |#2|) |#1| (-1091)))) (-554 (-474)) (-1130) (-1130)) (T -644)) +((-2387 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6)) (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130))))) +((-2390 (((-3 (-584 (-1086 |#4|)) #1="failed") (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#4|)) (-584 |#3|) (-584 |#4|) (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| |#4|)))) (-584 (-695)) (-1180 (-584 (-1086 |#3|))) |#3|) 92 T ELT)) (-2389 (((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#3|)) (-584 |#3|) (-584 |#4|) (-584 (-695)) |#3|) 110 T ELT)) (-2388 (((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 |#3|) (-584 (-695)) (-584 (-1086 |#4|)) (-1180 (-584 (-1086 |#3|))) |#3|) 48 T ELT))) +(((-645 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2388 ((-3 (-584 (-1086 |#4|)) #1="failed") (-1086 |#4|) (-584 |#2|) (-584 |#3|) (-584 (-695)) (-584 (-1086 |#4|)) (-1180 (-584 (-1086 |#3|))) |#3|)) (-15 -2389 ((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#3|)) (-584 |#3|) (-584 |#4|) (-584 (-695)) |#3|)) (-15 -2390 ((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#4|)) (-584 |#3|) (-584 |#4|) (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| |#4|)))) (-584 (-695)) (-1180 (-584 (-1086 |#3|))) |#3|))) (-718) (-757) (-258) (-862 |#3| |#1| |#2|)) (T -645)) +((-2390 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-584 (-1086 *13))) (-5 *3 (-1086 *13)) (-5 *4 (-584 *12)) (-5 *5 (-584 *10)) (-5 *6 (-584 *13)) (-5 *7 (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| *13))))) (-5 *8 (-584 (-695))) (-5 *9 (-1180 (-584 (-1086 *10)))) (-4 *12 (-757)) (-4 *10 (-258)) (-4 *13 (-862 *10 *11 *12)) (-4 *11 (-718)) (-5 *1 (-645 *11 *12 *10 *13)))) (-2389 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-584 *11)) (-5 *5 (-584 (-1086 *9))) (-5 *6 (-584 *9)) (-5 *7 (-584 *12)) (-5 *8 (-584 (-695))) (-4 *11 (-757)) (-4 *9 (-258)) (-4 *12 (-862 *9 *10 *11)) (-4 *10 (-718)) (-5 *2 (-584 (-1086 *12))) (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1086 *12)))) (-2388 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-584 (-1086 *11))) (-5 *3 (-1086 *11)) (-5 *4 (-584 *10)) (-5 *5 (-584 *8)) (-5 *6 (-584 (-695))) (-5 *7 (-1180 (-584 (-1086 *8)))) (-4 *10 (-757)) (-4 *8 (-258)) (-4 *11 (-862 *8 *9 *10)) (-4 *9 (-718)) (-5 *1 (-645 *9 *10 *8 *11))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 56 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2894 (($ |#1| (-695)) 54 T ELT)) (-2821 (((-695) $) 58 T ELT)) (-3175 ((|#1| $) 57 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3949 (((-695) $) 59 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 53 (|has| |#1| (-146)) ELT)) (-3678 ((|#1| $ (-695)) 55 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 61 T ELT) (($ |#1| $) 60 T ELT))) +(((-646 |#1|) (-113) (-962)) (T -646)) +((-3949 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962))))) +(-13 (-962) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3949 ((-695) $)) (-15 -2821 ((-695) $)) (-15 -3175 (|t#1| $)) (-15 -3960 ($ $)) (-15 -3678 (|t#1| $ (-695))) (-15 -2894 ($ |t#1| (-695))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-3959 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) +(((-647 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3959 (|#6| (-1 |#4| |#1|) |#3|))) (-496) (-1156 |#1|) (-1156 (-350 |#2|)) (-496) (-1156 |#4|) (-1156 (-350 |#5|))) (T -647)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-496)) (-4 *7 (-496)) (-4 *6 (-1156 *5)) (-4 *2 (-1156 (-350 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1156 (-350 *6))) (-4 *8 (-1156 *7))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2391 (((-1074) (-773)) 36 T ELT)) (-3618 (((-1186) (-1074)) 29 T ELT)) (-2393 (((-1074) (-773)) 26 T ELT)) (-2392 (((-1074) (-773)) 27 T ELT)) (-3947 (((-773) $) NIL T ELT) (((-1074) (-773)) 25 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-648) (-13 (-1014) (-10 -7 (-15 -3947 ((-1074) (-773))) (-15 -2393 ((-1074) (-773))) (-15 -2392 ((-1074) (-773))) (-15 -2391 ((-1074) (-773))) (-15 -3618 ((-1186) (-1074)))))) (T -648)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-3618 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-648))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) NIL T ELT)) (-3843 (($ |#1| |#2|) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2615 ((|#2| $) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2403 (((-3 $ #1#) $ $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT))) +(((-649 |#1| |#2| |#3| |#4| |#5|) (-13 (-312) (-10 -8 (-15 -2615 (|#2| $)) (-15 -3947 (|#1| $)) (-15 -3843 ($ |#1| |#2|)) (-15 -2403 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -649)) +((-2615 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3947 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3843 (*1 *1 *2 *3) (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2403 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 37 T ELT)) (-3768 (((-1180 |#1|) $ (-695)) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3766 (($ (-1086 |#1|)) NIL T ELT)) (-3084 (((-1086 $) $ (-995)) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3756 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3137 (((-695)) 55 (|has| |#1| (-320)) ELT)) (-3762 (($ $ (-695)) NIL T ELT)) (-3761 (($ $ (-695)) NIL T ELT)) (-2400 ((|#2| |#2|) 51 T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-995) $) NIL T ELT)) (-3757 (($ $ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) 72 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3843 (($ |#2|) 49 T ELT)) (-3468 (((-3 $ #1#) $) 98 T ELT)) (-2995 (($) 59 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ $) NIL T ELT)) (-3754 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3753 (((-2 (|:| -3955 |#1|) (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-2396 (((-870 $)) 89 T ELT)) (-1625 (($ $ |#1| (-695) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3773 (((-695) $ $) NIL (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3446 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3085 (($ (-1086 |#1|) (-995)) NIL T ELT) (($ (-1086 $) (-995)) NIL T ELT)) (-3778 (($ $ (-695)) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) 86 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2615 ((|#2|) 52 T ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3767 (((-1086 |#1|) $) NIL T ELT)) (-3083 (((-3 (-995) #1#) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3080 ((|#2| $) 48 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) 35 T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ (-695)) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3813 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3447 (($) NIL (|has| |#1| (-1067)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2394 (($ $) 88 (|has| |#1| (-299)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#1|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#1|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-496)) ELT)) (-3765 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 99 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3949 (((-695) $) 39 T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3973 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-2395 (((-870 $)) 43 T ELT)) (-3755 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-496)) ELT)) (-3947 (((-773) $) 69 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-995)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-584 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-695)) 71 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 26 T CONST)) (-2399 (((-1180 |#1|) $) 84 T ELT)) (-2398 (($ (-1180 |#1|)) 58 T ELT)) (-2667 (($) 9 T CONST)) (-2670 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-2397 (((-1180 |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 77 T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 40 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 93 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT))) +(((-650 |#1| |#2|) (-13 (-1156 |#1|) (-556 |#2|) (-10 -8 (-15 -2400 (|#2| |#2|)) (-15 -2615 (|#2|)) (-15 -3843 ($ |#2|)) (-15 -3080 (|#2| $)) (-15 -2399 ((-1180 |#1|) $)) (-15 -2398 ($ (-1180 |#1|))) (-15 -2397 ((-1180 |#1|) $)) (-15 -2396 ((-870 $))) (-15 -2395 ((-870 $))) (IF (|has| |#1| (-299)) (-15 -2394 ($ $)) |%noBranch|) (IF (|has| |#1| (-320)) (-6 (-320)) |%noBranch|))) (-962) (-1156 |#1|)) (T -650)) +((-2400 (*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3)))) (-2615 (*1 *2) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) (-3843 (*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3)))) (-3080 (*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) (-2399 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2397 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2396 (*1 *2) (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2395 (*1 *2) (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2394 (*1 *1 *1) (-12 (-4 *2 (-299)) (-4 *2 (-962)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1156 *2))))) +((-2569 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 ((|#1| $) 13 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2402 ((|#2| $) 12 T ELT)) (-3531 (($ |#1| |#2|) 16 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) 15 T ELT) (((-2 (|:| -2401 |#1|) (|:| -2402 |#2|)) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 11 T ELT))) +(((-651 |#1| |#2| |#3|) (-13 (-757) (-430 (-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) (-10 -8 (-15 -2402 (|#2| $)) (-15 -2401 (|#1| $)) (-15 -3531 ($ |#1| |#2|)))) (-757) (-1014) (-1 (-85) (-2 (|:| -2401 |#1|) (|:| -2402 |#2|)) (-2 (|:| -2401 |#1|) (|:| -2402 |#2|)))) (T -651)) +((-2402 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-757)) (-14 *4 (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *2)) (-2 (|:| -2401 *3) (|:| -2402 *2)))))) (-2401 (*1 *2 *1) (-12 (-4 *2 (-757)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1014)) (-14 *4 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3)) (-2 (|:| -2401 *2) (|:| -2402 *3)))))) (-3531 (*1 *1 *2 *3) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-1014)) (-14 *4 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3)) (-2 (|:| -2401 *2) (|:| -2402 *3))))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 66 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3468 (((-3 $ #1#) $) 102 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2517 ((|#2| (-86) |#2|) 93 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2516 (($ |#1| (-310 (-86))) 14 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2518 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2519 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3801 ((|#2| $ |#2|) 33 T ELT)) (-2520 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3947 (((-773) $) 73 T ELT) (($ (-485)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 37 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2521 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 9 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 83 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ (-86) (-485)) NIL T ELT) (($ $ (-485)) 64 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT))) +(((-652 |#1| |#2|) (-13 (-962) (-951 |#1|) (-951 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2521 ($ $)) (-15 -2521 ($ $ $)) (-15 -2520 (|#1| |#1|))) |%noBranch|) (-15 -2519 ($ $ (-1 |#2| |#2|))) (-15 -2518 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-485))) (-15 ** ($ $ (-485))) (-15 -2517 (|#2| (-86) |#2|)) (-15 -2516 ($ |#1| (-310 (-86)))))) (-962) (-591 |#1|)) (T -652)) +((-2521 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2521 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2520 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-652 *4 *5)) (-4 *5 (-591 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)) (-4 *4 (-591 *3)))) (-2517 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-962)) (-5 *1 (-652 *4 *2)) (-4 *2 (-591 *4)))) (-2516 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-4 *2 (-962)) (-5 *1 (-652 *2 *4)) (-4 *4 (-591 *2))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 33 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3843 (($ |#1| |#2|) 25 T ELT)) (-3468 (((-3 $ #1#) $) 51 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 35 T ELT)) (-2615 ((|#2| $) 12 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 52 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2403 (((-3 $ #1#) $ $) 50 T ELT)) (-3947 (((-773) $) 24 T ELT) (($ (-485)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3127 (((-695)) 28 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 16 T CONST)) (-2667 (($) 30 T CONST)) (-3057 (((-85) $ $) 41 T ELT)) (-3838 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3840 (($ $ $) 43 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 21 T ELT) (($ $ $) 20 T ELT))) +(((-653 |#1| |#2| |#3| |#4| |#5|) (-13 (-962) (-10 -8 (-15 -2615 (|#2| $)) (-15 -3947 (|#1| $)) (-15 -3843 ($ |#1| |#2|)) (-15 -2403 ((-3 $ #1="failed") $ $)) (-15 -3468 ((-3 $ #1#) $)) (-15 -2485 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -653)) +((-3468 (*1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2615 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3947 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3843 (*1 *1 *2 *3) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2403 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2485 (*1 *1 *1) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) +(((-654 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-655 |#2|) (-146)) (T -654)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-655 |#1|) (-113) (-146)) (T -655)) +NIL +(-13 (-82 |t#1| |t#1|) (-583 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-2442 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3848 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2404 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 16 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3769 ((|#1| $ |#1|) 24 T ELT) (((-744 |#1|) $ (-744 |#1|)) 32 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3947 (((-773) $) 39 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2667 (($) 9 T CONST)) (-3057 (((-85) $ $) 48 T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 14 T ELT))) +(((-656 |#1|) (-13 (-413) (-10 -8 (-15 -2404 ($ |#1| |#1| |#1| |#1|)) (-15 -2442 ($ |#1|)) (-15 -3848 ($ |#1|)) (-15 -3468 ($)) (-15 -2442 ($ $ |#1|)) (-15 -3848 ($ $ |#1|)) (-15 -3468 ($ $)) (-15 -3769 (|#1| $ |#1|)) (-15 -3769 ((-744 |#1|) $ (-744 |#1|))))) (-312)) (T -656)) +((-2404 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-2442 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3848 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3468 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-2442 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3848 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3468 (*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3769 (*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3769 (*1 *2 *1 *2) (-12 (-5 *2 (-744 *3)) (-4 *3 (-312)) (-5 *1 (-656 *3))))) +((-2408 (($ $ (-831)) 19 T ELT)) (-2407 (($ $ (-831)) 20 T ELT)) (** (($ $ (-831)) 10 T ELT))) +(((-657 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-831))) (-15 -2407 (|#1| |#1| (-831))) (-15 -2408 (|#1| |#1| (-831)))) (-658)) (T -657)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-2408 (($ $ (-831)) 19 T ELT)) (-2407 (($ $ (-831)) 18 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT)) (* (($ $ $) 20 T ELT))) +(((-658) (-113)) (T -658)) +((* (*1 *1 *1 *1) (-4 *1 (-658))) (-2408 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831))))) +(-13 (-1014) (-10 -8 (-15 * ($ $ $)) (-15 -2408 ($ $ (-831))) (-15 -2407 ($ $ (-831))) (-15 ** ($ $ (-831))))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-2408 (($ $ (-831)) NIL T ELT) (($ $ (-695)) 18 T ELT)) (-2411 (((-85) $) 10 T ELT)) (-2407 (($ $ (-831)) NIL T ELT) (($ $ (-695)) 19 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 16 T ELT))) +(((-659 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-695))) (-15 -2407 (|#1| |#1| (-695))) (-15 -2408 (|#1| |#1| (-695))) (-15 -2411 ((-85) |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 -2407 (|#1| |#1| (-831))) (-15 -2408 (|#1| |#1| (-831)))) (-660)) (T -659)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-2405 (((-3 $ "failed") $) 22 T ELT)) (-2408 (($ $ (-831)) 19 T ELT) (($ $ (-695)) 27 T ELT)) (-3468 (((-3 $ "failed") $) 24 T ELT)) (-2411 (((-85) $) 28 T ELT)) (-2406 (((-3 $ "failed") $) 23 T ELT)) (-2407 (($ $ (-831)) 18 T ELT) (($ $ (-695)) 26 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2667 (($) 29 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 25 T ELT)) (* (($ $ $) 20 T ELT))) +(((-660) (-113)) (T -660)) +((-2667 (*1 *1) (-4 *1 (-660))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-85)))) (-2408 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (-3468 (*1 *1 *1) (|partial| -4 *1 (-660))) (-2406 (*1 *1 *1) (|partial| -4 *1 (-660))) (-2405 (*1 *1 *1) (|partial| -4 *1 (-660)))) +(-13 (-658) (-10 -8 (-15 -2667 ($) -3953) (-15 -2411 ((-85) $)) (-15 -2408 ($ $ (-695))) (-15 -2407 ($ $ (-695))) (-15 ** ($ $ (-695))) (-15 -3468 ((-3 $ "failed") $)) (-15 -2406 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $)))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-658) . T) ((-1014) . T) ((-1130) . T)) +((-3137 (((-695)) 39 T ELT)) (-3158 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3157 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3843 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) 49 T ELT)) (-3468 (((-3 $ #1#) $) 69 T ELT)) (-2995 (($) 43 T ELT)) (-3133 ((|#2| $) 21 T ELT)) (-2410 (($) 18 T ELT)) (-3759 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2409 (((-631 |#2|) (-1180 $) (-1 |#2| |#2|)) 64 T ELT)) (-3973 (((-1180 |#2|) $) NIL T ELT) (($ (-1180 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2450 ((|#3| $) 36 T ELT)) (-2013 (((-1180 $)) 33 T ELT))) +(((-661 |#1| |#2| |#3|) (-10 -7 (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-695))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3759 (|#1| |#1| (-584 (-1091)))) (-15 -3759 (|#1| |#1| (-1091) (-695))) (-15 -3759 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -2995 (|#1|)) (-15 -3137 ((-695))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2409 ((-631 |#2|) (-1180 |#1|) (-1 |#2| |#2|))) (-15 -3843 ((-3 |#1| #1="failed") (-350 |#3|))) (-15 -3973 (|#1| |#3|)) (-15 -3843 (|#1| |#3|)) (-15 -2410 (|#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3973 (|#3| |#1|)) (-15 -3973 (|#1| (-1180 |#2|))) (-15 -3973 ((-1180 |#2|) |#1|)) (-15 -2013 ((-1180 |#1|))) (-15 -2450 (|#3| |#1|)) (-15 -3133 (|#2| |#1|)) (-15 -3468 ((-3 |#1| #1#) |#1|))) (-662 |#2| |#3|) (-146) (-1156 |#2|)) (T -661)) +((-3137 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-695)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-662 *4 *5))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 114 (|has| |#1| (-312)) ELT)) (-2064 (($ $) 115 (|has| |#1| (-312)) ELT)) (-2062 (((-85) $) 117 (|has| |#1| (-312)) ELT)) (-1783 (((-631 |#1|) (-1180 $)) 61 T ELT) (((-631 |#1|)) 77 T ELT)) (-3331 ((|#1| $) 67 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 167 (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 134 (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) 135 (|has| |#1| (-312)) ELT)) (-1609 (((-85) $ $) 125 (|has| |#1| (-312)) ELT)) (-3137 (((-695)) 108 (|has| |#1| (-320)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-485) #1="failed") $) 194 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 192 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3157 (((-485) $) 193 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 191 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 190 T ELT)) (-1793 (($ (-1180 |#1|) (-1180 $)) 63 T ELT) (($ (-1180 |#1|)) 80 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2565 (($ $ $) 129 (|has| |#1| (-312)) ELT)) (-1782 (((-631 |#1|) $ (-1180 $)) 68 T ELT) (((-631 |#1|) $) 75 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 186 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 185 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 184 T ELT) (((-631 |#1|) (-631 $)) 183 T ELT)) (-3843 (($ |#2|) 178 T ELT) (((-3 $ "failed") (-350 |#2|)) 175 (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3109 (((-831)) 69 T ELT)) (-2995 (($) 111 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) 128 (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 123 (|has| |#1| (-312)) ELT)) (-2834 (($) 169 (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1765 (($ $ (-695)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3724 (((-85) $) 136 (|has| |#1| (-312)) ELT)) (-3773 (((-831) $) 172 (|has| |#1| (-299)) ELT) (((-744 (-831)) $) 158 (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3133 ((|#1| $) 66 T ELT)) (-3446 (((-633 $) $) 162 (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 132 (|has| |#1| (-312)) ELT)) (-2015 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-2011 (((-831) $) 110 (|has| |#1| (-320)) ELT)) (-3080 ((|#2| $) 176 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 188 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 187 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 182 T ELT) (((-631 |#1|) (-1180 $)) 181 T ELT)) (-1892 (($ (-584 $)) 121 (|has| |#1| (-312)) ELT) (($ $ $) 120 (|has| |#1| (-312)) ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3447 (($) 163 (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) 109 (|has| |#1| (-320)) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2410 (($) 180 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 122 (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) 119 (|has| |#1| (-312)) ELT) (($ $ $) 118 (|has| |#1| (-312)) ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) 166 (|has| |#1| (-299)) ELT)) (-3733 (((-348 $) $) 133 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 130 (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ "failed") $ $) 113 (|has| |#1| (-312)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 124 (|has| |#1| (-312)) ELT)) (-1608 (((-695) $) 126 (|has| |#1| (-312)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 127 (|has| |#1| (-312)) ELT)) (-3758 ((|#1| (-1180 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1766 (((-695) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-695) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3759 (($ $ (-695)) 156 (OR (-2563 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 154 (OR (-2563 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 150 (-2563 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091) (-695)) 149 (-2563 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1091))) 148 (-2563 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091)) 146 (-2563 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 145 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) 144 (|has| |#1| (-312)) ELT)) (-2409 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3186 ((|#2|) 179 T ELT)) (-1675 (($) 168 (|has| |#1| (-299)) ELT)) (-3225 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 |#1|) $) 82 T ELT) (((-631 |#1|) (-1180 $)) 81 T ELT)) (-3973 (((-1180 |#1|) $) 79 T ELT) (($ (-1180 |#1|)) 78 T ELT) ((|#2| $) 195 T ELT) (($ |#2|) 177 T ELT)) (-2704 (((-3 (-1180 $) "failed") (-631 $)) 165 (|has| |#1| (-299)) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ $) 112 (|has| |#1| (-312)) ELT) (($ (-350 (-485))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2703 (($ $) 164 (|has| |#1| (-299)) ELT) (((-633 $) $) 58 (|has| |#1| (-118)) ELT)) (-2450 ((|#2| $) 60 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 83 T ELT)) (-2063 (((-85) $ $) 116 (|has| |#1| (-312)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-695)) 157 (OR (-2563 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 155 (OR (-2563 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 153 (-2563 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091) (-695)) 152 (-2563 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1091))) 151 (-2563 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091)) 147 (-2563 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) 142 (|has| |#1| (-312)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-485)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) 139 (|has| |#1| (-312)) ELT))) +(((-662 |#1| |#2|) (-113) (-146) (-1156 |t#1|)) (T -662)) +((-2410 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1156 *2)))) (-3186 (*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) (-3843 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3)))) (-3973 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) (-3843 (*1 *1 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-312)) (-4 *3 (-146)) (-4 *1 (-662 *3 *4)))) (-2409 (*1 *2 *3 *4) (-12 (-5 *3 (-1180 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-4 *1 (-662 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *5))))) +(-13 (-353 |t#1| |t#2|) (-146) (-554 |t#2|) (-355 |t#1|) (-329 |t#1|) (-10 -8 (-15 -2410 ($)) (-15 -3186 (|t#2|)) (-15 -3843 ($ |t#2|)) (-15 -3973 ($ |t#2|)) (-15 -3080 (|t#2| $)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-312)) (-6 (-184 |t#1|)) (-15 -3843 ((-3 $ "failed") (-350 |t#2|))) (-15 -2409 ((-631 |t#1|) (-1180 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) . T) ((-554 |#2|) . T) ((-186 $) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-184 |#1|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-189) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-225 |#1|) |has| |#1| (-312)) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-246) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| |#2|) . T) ((-353 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-496) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-583 |#1|) . T) ((-583 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-655 |#1|) . T) ((-655 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))))) ((-810 (-1091)) -12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) ((-812 (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))))) ((-833) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-299)) ((-1130) . T) ((-1135) OR (|has| |#1| (-299)) (|has| |#1| (-312)))) +((-3725 (($) 11 T CONST)) (-3468 (((-3 $ "failed") $) 14 T ELT)) (-2411 (((-85) $) 10 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 20 T ELT))) +(((-663 |#1|) (-10 -7 (-15 -3468 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 -2411 ((-85) |#1|)) (-15 -3725 (|#1|) -3953) (-15 ** (|#1| |#1| (-831)))) (-664)) (T -663)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 20 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2667 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT)) (* (($ $ $) 18 T ELT))) +(((-664) (-113)) (T -664)) +((-2667 (*1 *1) (-4 *1 (-664))) (-3725 (*1 *1) (-4 *1 (-664))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-695)))) (-3468 (*1 *1 *1) (|partial| -4 *1 (-664)))) +(-13 (-1026) (-10 -8 (-15 -2667 ($) -3953) (-15 -3725 ($) -3953) (-15 -2411 ((-85) $)) (-15 ** ($ $ (-695))) (-15 -3468 ((-3 $ "failed") $)))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-2413 ((|#1| $) 16 T ELT)) (-2412 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3947 (((-773) $) NIL T ELT) (((-1023 |#1|) $) 17 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-665 |#1|) (-13 (-666 |#1|) (-1014) (-553 (-1023 |#1|)) (-10 -8 (-15 -2412 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -665)) +((-2412 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-665 *3))))) +((-2413 ((|#1| $) 8 T ELT)) (-3801 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-666 |#1|) (-113) (-72)) (T -666)) +((-2413 (*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-72))))) +(-13 (-1024 |t#1|) (-10 -8 (-15 -2413 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3057 (|f| |x| (-2413 |f|)) |x|) (|exit| 1 (-3057 (|f| (-2413 |f|) |x|) |x|)))))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1024 |#1|) . T) ((-1130) . T)) +((-2414 (((-2 (|:| -3090 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3419 (((-2 (|:| -3090 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2415 ((|#2| (-350 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3436 (((-2 (|:| |poly| |#2|) (|:| -3090 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)) 48 T ELT))) +(((-667 |#1| |#2|) (-10 -7 (-15 -3419 ((-2 (|:| -3090 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2414 ((-2 (|:| -3090 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2415 (|#2| (-350 |#2|) (-1 |#2| |#2|))) (-15 -3436 ((-2 (|:| |poly| |#2|) (|:| -3090 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1156 |#1|)) (T -667)) +((-3436 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3090 (-350 *6)) (|:| |special| (-350 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-350 *6)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-667 *5 *2)) (-4 *5 (-312)))) (-2414 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3090 (-348 *3)) (|:| |special| (-348 *3)))) (-5 *1 (-667 *5 *3)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3090 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3))))) +((-2416 ((|#7| (-584 |#5|) |#6|) NIL T ELT)) (-3959 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) +(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3959 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2416 (|#7| (-584 |#5|) |#6|))) (-757) (-718) (-718) (-962) (-962) (-862 |#4| |#2| |#1|) (-862 |#5| |#3| |#1|)) (T -668)) +((-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *9)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-962)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5))))) +((-3959 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) +(((-669 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3959 (|#7| (-1 |#2| |#1|) |#6|))) (-757) (-757) (-718) (-718) (-962) (-862 |#5| |#3| |#1|) (-862 |#5| |#4| |#2|)) (T -669)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-757)) (-4 *6 (-757)) (-4 *7 (-718)) (-4 *9 (-962)) (-4 *2 (-862 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-718)) (-4 *4 (-862 *9 *7 *5))))) +((-3733 (((-348 |#4|) |#4|) 42 T ELT))) +(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-348 |#4|) |#4|))) (-718) (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091))))) (-258) (-862 (-858 |#3|) |#1| |#2|)) (T -670)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091)))))) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-862 (-858 *6) *4 *5))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3084 (((-1086 $) $ (-774 |#1|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3776 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3757 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3960 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-470 (-774 |#1|)) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3085 (($ (-1086 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1086 $) (-774 |#1|)) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-470 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2821 (((-470 (-774 |#1|)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-470 (-774 |#1|)) (-470 (-774 |#1|))) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3083 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#2| $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3769 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3758 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3759 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3949 (((-470 (-774 |#1|)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3973 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2818 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-496)) ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT)) (-3818 (((-584 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-470 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-671 |#1| |#2|) (-862 |#2| (-470 (-774 |#1|)) (-774 |#1|)) (-584 (-1091)) (-962)) (T -671)) +NIL +((-2417 (((-2 (|:| -2484 (-858 |#3|)) (|:| -2059 (-858 |#3|))) |#4|) 14 T ELT)) (-2987 ((|#4| |#4| |#2|) 33 T ELT)) (-2420 ((|#4| (-350 (-858 |#3|)) |#2|) 62 T ELT)) (-2419 ((|#4| (-1086 (-858 |#3|)) |#2|) 74 T ELT)) (-2418 ((|#4| (-1086 |#4|) |#2|) 49 T ELT)) (-2986 ((|#4| |#4| |#2|) 52 T ELT)) (-3733 (((-348 |#4|) |#4|) 40 T ELT))) +(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2417 ((-2 (|:| -2484 (-858 |#3|)) (|:| -2059 (-858 |#3|))) |#4|)) (-15 -2986 (|#4| |#4| |#2|)) (-15 -2418 (|#4| (-1086 |#4|) |#2|)) (-15 -2987 (|#4| |#4| |#2|)) (-15 -2419 (|#4| (-1086 (-858 |#3|)) |#2|)) (-15 -2420 (|#4| (-350 (-858 |#3|)) |#2|)) (-15 -3733 ((-348 |#4|) |#4|))) (-718) (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $)))) (-496) (-862 (-350 (-858 |#3|)) |#1| |#2|)) (T -672)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $))))) (-4 *6 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-350 (-858 *6)) *4 *5)))) (-2420 (*1 *2 *3 *4) (-12 (-4 *6 (-496)) (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-5 *3 (-350 (-858 *6))) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $))))))) (-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 (-858 *6))) (-4 *6 (-496)) (-4 *2 (-862 (-350 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $))))))) (-2987 (*1 *2 *2 *3) (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $))))) (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-862 (-350 (-858 *5)) *4 *3)))) (-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-862 (-350 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $))))) (-4 *6 (-496)))) (-2986 (*1 *2 *2 *3) (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $))))) (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-862 (-350 (-858 *5)) *4 *3)))) (-2417 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $))))) (-4 *6 (-496)) (-5 *2 (-2 (|:| -2484 (-858 *6)) (|:| -2059 (-858 *6)))) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-350 (-858 *6)) *4 *5))))) +((-3733 (((-348 |#4|) |#4|) 54 T ELT))) +(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-348 |#4|) |#4|))) (-718) (-757) (-13 (-258) (-120)) (-862 (-350 |#3|) |#1| |#2|)) (T -673)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-862 (-350 *6) *4 *5))))) +((-3959 (((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)) 18 T ELT))) +(((-674 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)))) (-962) (-962) (-664)) (T -674)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *7 (-664)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 36 T ELT)) (-3775 (((-584 (-2 (|:| -3955 |#1|) (|:| -3939 |#2|))) $) 37 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695)) 22 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3157 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) 99 (|has| |#2| (-757)) ELT)) (-3468 (((-3 $ #1#) $) 83 T ELT)) (-2995 (($) 48 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 70 T ELT)) (-2822 (((-584 $) $) 52 T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| |#2|) 17 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2011 (((-831) $) 43 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-2895 ((|#2| $) 98 (|has| |#2| (-757)) ELT)) (-3175 ((|#1| $) 97 (|has| |#2| (-757)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 35 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 96 T ELT) (($ (-485)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-584 (-2 (|:| -3955 |#1|) (|:| -3939 |#2|)))) 11 T ELT)) (-3818 (((-584 |#1|) $) 54 T ELT)) (-3678 ((|#1| $ |#2|) 114 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 12 T CONST)) (-2667 (($) 44 T CONST)) (-3057 (((-85) $ $) 104 T ELT)) (-3838 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 33 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-675 |#1| |#2|) (-13 (-962) (-951 |#2|) (-951 |#1|) (-10 -8 (-15 -2894 ($ |#1| |#2|)) (-15 -3678 (|#1| $ |#2|)) (-15 -3947 ($ (-584 (-2 (|:| -3955 |#1|) (|:| -3939 |#2|))))) (-15 -3775 ((-584 (-2 (|:| -3955 |#1|) (|:| -3939 |#2|))) $)) (-15 -3959 ($ (-1 |#1| |#1|) $)) (-15 -3938 ((-85) $)) (-15 -3818 ((-584 |#1|) $)) (-15 -2822 ((-584 $) $)) (-15 -2421 ((-695) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-757)) (PROGN (-15 -2895 (|#2| $)) (-15 -3175 (|#1| $)) (-15 -3960 ($ $))) |%noBranch|))) (-962) (-664)) (T -675)) +((-2894 (*1 *1 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-962)) (-4 *3 (-664)))) (-3678 (*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-664)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3955 *3) (|:| -3939 *4)))) (-4 *3 (-962)) (-4 *4 (-664)) (-5 *1 (-675 *3 *4)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3955 *3) (|:| -3939 *4)))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-675 *3 *4)) (-4 *4 (-664)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-584 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2895 (*1 *2 *1) (-12 (-4 *2 (-664)) (-4 *2 (-757)) (-5 *1 (-675 *3 *2)) (-4 *3 (-962)))) (-3175 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *3 (-664)))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *2 (-962)) (-4 *3 (-664))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3235 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3237 (($ $ $) 99 T ELT)) (-3236 (((-85) $ $) 107 T ELT)) (-3240 (($ (-584 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2369 (($ $) 88 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-3406 (($ |#1| $) 71 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3996)) ELT) (($ |#1| $ (-485)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-485)) 81 T ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ |#1| $ (-485)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-485)) 84 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2890 (((-584 |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3242 (((-85) $ $) 106 T ELT)) (-2422 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-584 |#1|)) 23 T ELT)) (-2609 (((-584 |#1|) $) 38 T ELT)) (-3246 (((-85) |#1| $) 66 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 91 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3239 (($ $ $) 97 T ELT)) (-1275 ((|#1| $) 63 T ELT)) (-3610 (($ |#1| $) 64 T ELT) (($ |#1| $ (-695)) 89 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1276 ((|#1| $) 62 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 57 T ELT)) (-3566 (($) 14 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1947 (-695)))) $) 56 T ELT)) (-3238 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1467 (($) 16 T ELT) (($ (-584 |#1|)) 25 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) 69 (|has| |#1| (-72)) ELT)) (-3401 (($ $) 82 T ELT)) (-3973 (((-474) $) 36 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 22 T ELT)) (-3947 (((-773) $) 50 T ELT)) (-3241 (($ (-584 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-584 |#1|)) 24 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 103 T ELT)) (-3958 (((-695) $) 68 T ELT))) +(((-676 |#1|) (-13 (-677 |#1|) (-318 |#1|) (-1036 |#1|) (-10 -8 (-15 -2422 ($)) (-15 -2422 ($ |#1|)) (-15 -2422 ($ (-584 |#1|))) (-15 -2609 ((-584 |#1|) $)) (-15 -3407 ($ |#1| $ (-485))) (-15 -3407 ($ (-1 (-85) |#1|) $ (-485))) (-15 -3406 ($ |#1| $ (-485))) (-15 -3406 ($ (-1 (-85) |#1|) $ (-485))))) (-1014)) (T -676)) +((-2609 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1014)))) (-2422 (*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-2422 (*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-676 *3)))) (-3407 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-3407 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4)))) (-3406 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-3406 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4))))) +((-2569 (((-85) $ $) 19 T ELT)) (-3235 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3237 (($ $ $) 77 T ELT)) (-3236 (((-85) $ $) 78 T ELT)) (-3240 (($ (-584 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2369 (($ $) 66 T ELT)) (-1354 (($ $) 62 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ |#1| $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) 61 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3996)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3242 (((-85) $ $) 69 T ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1074) $) 22 T ELT)) (-3239 (($ $ $) 74 T ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT) (($ |#1| $ (-695)) 67 T ELT)) (-3244 (((-1034) $) 21 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1947 (-695)))) $) 65 T ELT)) (-3238 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1467 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 54 T ELT)) (-3947 (((-773) $) 17 T ELT)) (-3241 (($ (-584 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1266 (((-85) $ $) 20 T ELT)) (-1277 (($ (-584 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 T ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-677 |#1|) (-113) (-1014)) (T -677)) +NIL +(-13 (-635 |t#1|) (-1012 |t#1|)) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-635 |#1|) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1036 |#1|) . T) ((-1130) . T)) +((-2423 (((-1186) (-1074)) 8 T ELT))) +(((-678) (-10 -7 (-15 -2423 ((-1186) (-1074))))) (T -678)) +((-2423 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-678))))) +((-2424 (((-584 |#1|) (-584 |#1|) (-584 |#1|)) 15 T ELT))) +(((-679 |#1|) (-10 -7 (-15 -2424 ((-584 |#1|) (-584 |#1|) (-584 |#1|)))) (-757)) (T -679)) +((-2424 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-679 *3))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 |#2|) $) 159 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 152 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 151 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 149 (|has| |#1| (-496)) ELT)) (-3493 (($ $) 108 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 91 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3038 (($ $) 90 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 107 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 92 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 106 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 93 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 143 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3815 (((-858 |#1|) $ (-695)) 121 T ELT) (((-858 |#1|) $ (-695) (-695)) 120 T ELT)) (-2893 (((-85) $) 160 T ELT)) (-3628 (($) 118 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3773 (((-695) $ |#2|) 123 T ELT) (((-695) $ |#2| (-695)) 122 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 89 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3938 (((-85) $) 141 T ELT)) (-2894 (($ $ (-584 |#2|) (-584 (-470 |#2|))) 158 T ELT) (($ $ |#2| (-470 |#2|)) 157 T ELT) (($ |#1| (-470 |#2|)) 142 T ELT) (($ $ |#2| (-695)) 125 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 124 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 140 T ELT)) (-3943 (($ $) 115 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) 138 T ELT)) (-3175 ((|#1| $) 137 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3813 (($ $ |#2|) 119 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3770 (($ $ (-695)) 126 T ELT)) (-3467 (((-3 $ "failed") $ $) 153 (|has| |#1| (-496)) ELT)) (-3944 (($ $) 116 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (($ $ |#2| $) 134 T ELT) (($ $ (-584 |#2|) (-584 $)) 133 T ELT) (($ $ (-584 (-249 $))) 132 T ELT) (($ $ (-249 $)) 131 T ELT) (($ $ $ $) 130 T ELT) (($ $ (-584 $) (-584 $)) 129 T ELT)) (-3759 (($ $ (-584 |#2|) (-584 (-695))) 52 T ELT) (($ $ |#2| (-695)) 51 T ELT) (($ $ (-584 |#2|)) 50 T ELT) (($ $ |#2|) 48 T ELT)) (-3949 (((-470 |#2|) $) 139 T ELT)) (-3496 (($ $) 105 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 94 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) 104 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 95 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 103 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 96 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 161 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 156 (|has| |#1| (-146)) ELT) (($ $) 154 (|has| |#1| (-496)) ELT) (($ (-350 (-485))) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3678 ((|#1| $ (-470 |#2|)) 144 T ELT) (($ $ |#2| (-695)) 128 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 127 T ELT)) (-2703 (((-633 $) $) 155 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 114 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 102 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 150 (|has| |#1| (-496)) ELT)) (-3497 (($ $) 113 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 101 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 112 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 100 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 111 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 99 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 110 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 98 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) 109 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 97 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-584 |#2|) (-584 (-695))) 55 T ELT) (($ $ |#2| (-695)) 54 T ELT) (($ $ (-584 |#2|)) 53 T ELT) (($ $ |#2|) 49 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 145 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ $) 117 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 88 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 148 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 136 T ELT) (($ $ |#1|) 135 T ELT))) +(((-680 |#1| |#2|) (-113) (-962) (-757)) (T -680)) +((-3678 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) (-3678 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-680 *3 *4)) (-4 *3 (-962)) (-4 *4 (-757)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3773 (*1 *2 *1 *3) (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3773 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-695)) (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)))) (-3815 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) (-5 *2 (-858 *4)))) (-3815 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) (-5 *2 (-858 *4)))) (-3813 (*1 *1 *1 *2) (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)) (-4 *3 (-38 (-350 (-485))))))) +(-13 (-810 |t#2|) (-887 |t#1| (-470 |t#2|) |t#2|) (-456 |t#2| $) (-260 $) (-10 -8 (-15 -3678 ($ $ |t#2| (-695))) (-15 -3678 ($ $ (-584 |t#2|) (-584 (-695)))) (-15 -3770 ($ $ (-695))) (-15 -2894 ($ $ |t#2| (-695))) (-15 -2894 ($ $ (-584 |t#2|) (-584 (-695)))) (-15 -3773 ((-695) $ |t#2|)) (-15 -3773 ((-695) $ |t#2| (-695))) (-15 -3815 ((-858 |t#1|) $ (-695))) (-15 -3815 ((-858 |t#1|) $ (-695) (-695))) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3813 ($ $ |t#2|)) (-6 (-916)) (-6 (-1116))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-470 |#2|)) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-246) |has| |#1| (-496)) ((-260 $) . T) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-456 |#2| $) . T) ((-456 $ $) . T) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-807 $ |#2|) . T) ((-810 |#2|) . T) ((-812 |#2|) . T) ((-887 |#1| (-470 |#2|) |#2|) . T) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T)) +((-3733 (((-348 (-1086 |#4|)) (-1086 |#4|)) 30 T ELT) (((-348 |#4|) |#4|) 26 T ELT))) +(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-348 |#4|) |#4|)) (-15 -3733 ((-348 (-1086 |#4|)) (-1086 |#4|)))) (-757) (-718) (-13 (-258) (-120)) (-862 |#3| |#2| |#1|)) (T -681)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))) +((-2427 (((-348 |#4|) |#4| |#2|) 142 T ELT)) (-2425 (((-348 |#4|) |#4|) NIL T ELT)) (-3972 (((-348 (-1086 |#4|)) (-1086 |#4|)) 129 T ELT) (((-348 |#4|) |#4|) 52 T ELT)) (-2429 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-584 (-2 (|:| -3733 (-1086 |#4|)) (|:| -2402 (-485)))))) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|))) 81 T ELT)) (-2433 (((-1086 |#3|) (-1086 |#3|) (-485)) 169 T ELT)) (-2432 (((-584 (-695)) (-1086 |#4|) (-584 |#2|) (-695)) 75 T ELT)) (-3080 (((-3 (-584 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-584 |#2|) (-584 (-695)) (-584 |#3|)) 79 T ELT)) (-2430 (((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-584 |#3|)) (|:| |Lfact| (-584 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2402 (-485))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|))) 27 T ELT)) (-2428 (((-2 (|:| -2005 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-485)) 72 T ELT)) (-2426 (((-485) (-584 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2402 (-485))))) 165 T ELT)) (-2431 ((|#4| (-485) (-348 |#4|)) 73 T ELT)) (-3358 (((-85) (-584 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2402 (-485)))) (-584 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2402 (-485))))) NIL T ELT))) +(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 ((-348 |#4|) |#4|)) (-15 -3972 ((-348 (-1086 |#4|)) (-1086 |#4|))) (-15 -2425 ((-348 |#4|) |#4|)) (-15 -2426 ((-485) (-584 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2402 (-485)))))) (-15 -2427 ((-348 |#4|) |#4| |#2|)) (-15 -2428 ((-2 (|:| -2005 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-485))) (-15 -2429 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-584 (-2 (|:| -3733 (-1086 |#4|)) (|:| -2402 (-485)))))) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|)))) (-15 -2430 ((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-584 |#3|)) (|:| |Lfact| (-584 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2402 (-485))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|)))) (-15 -2431 (|#4| (-485) (-348 |#4|))) (-15 -3358 ((-85) (-584 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2402 (-485)))) (-584 (-2 (|:| -3733 (-1086 |#3|)) (|:| -2402 (-485)))))) (-15 -3080 ((-3 (-584 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-584 |#2|) (-584 (-695)) (-584 |#3|))) (-15 -2432 ((-584 (-695)) (-1086 |#4|) (-584 |#2|) (-695))) (-15 -2433 ((-1086 |#3|) (-1086 |#3|) (-485)))) (-718) (-757) (-258) (-862 |#3| |#1| |#2|)) (T -682)) +((-2433 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 *6)) (-5 *3 (-485)) (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2432 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-4 *7 (-757)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-4 *8 (-258)) (-5 *2 (-584 (-695))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-695)))) (-3080 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1086 *11)) (-5 *6 (-584 *10)) (-5 *7 (-584 (-695))) (-5 *8 (-584 *11)) (-4 *10 (-757)) (-4 *11 (-258)) (-4 *9 (-718)) (-4 *5 (-862 *11 *9 *10)) (-5 *2 (-584 (-1086 *5))) (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1086 *5)))) (-3358 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-2 (|:| -3733 (-1086 *6)) (|:| -2402 (-485))))) (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2431 (*1 *2 *3 *4) (-12 (-5 *3 (-485)) (-5 *4 (-348 *2)) (-4 *2 (-862 *7 *5 *6)) (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-258)))) (-2430 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-258)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-2 (|:| |upol| (-1086 *8)) (|:| |Lval| (-584 *8)) (|:| |Lfact| (-584 (-2 (|:| -3733 (-1086 *8)) (|:| -2402 (-485))))) (|:| |ctpol| *8))) (-5 *1 (-682 *6 *7 *8 *9)))) (-2429 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-258)) (-4 *6 (-718)) (-4 *9 (-862 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-584 (-2 (|:| -3733 (-1086 *9)) (|:| -2402 (-485))))))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9)))) (-2428 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-485)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-258)) (-4 *9 (-862 *8 *6 *7)) (-5 *2 (-2 (|:| -2005 (-1086 *9)) (|:| |polval| (-1086 *8)))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9)) (-5 *4 (-1086 *8)))) (-2427 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3733 (-1086 *6)) (|:| -2402 (-485))))) (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2425 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))) (-3972 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3972 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5))))) +((-2434 (($ $ (-831)) 17 T ELT))) +(((-683 |#1| |#2|) (-10 -7 (-15 -2434 (|#1| |#1| (-831)))) (-684 |#2|) (-146)) (T -683)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2408 (($ $ (-831)) 37 T ELT)) (-2434 (($ $ (-831)) 44 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2436 (($ $ $) 34 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2437 (($ $ $ $) 35 T ELT)) (-2435 (($ $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT))) +(((-684 |#1|) (-113) (-146)) (T -684)) +((-2434 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-684 *3)) (-4 *3 (-146))))) +(-13 (-686) (-655 |t#1|) (-10 -8 (-15 -2434 ($ $ (-831))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-2436 (($ $ $) 10 T ELT)) (-2437 (($ $ $ $) 9 T ELT)) (-2435 (($ $ $) 12 T ELT))) +(((-685 |#1|) (-10 -7 (-15 -2435 (|#1| |#1| |#1|)) (-15 -2436 (|#1| |#1| |#1|)) (-15 -2437 (|#1| |#1| |#1| |#1|))) (-686)) (T -685)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2408 (($ $ (-831)) 37 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2436 (($ $ $) 34 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2437 (($ $ $ $) 35 T ELT)) (-2435 (($ $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT))) +(((-686) (-113)) (T -686)) +((-2437 (*1 *1 *1 *1 *1) (-4 *1 (-686))) (-2436 (*1 *1 *1 *1) (-4 *1 (-686))) (-2435 (*1 *1 *1 *1) (-4 *1 (-686)))) +(-13 (-21) (-658) (-10 -8 (-15 -2437 ($ $ $ $)) (-15 -2436 ($ $ $)) (-15 -2435 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-658) . T) ((-1014) . T) ((-1130) . T)) +((-3947 (((-773) $) NIL T ELT) (($ (-485)) 10 T ELT))) +(((-687 |#1|) (-10 -7 (-15 -3947 (|#1| (-485))) (-15 -3947 ((-773) |#1|))) (-688)) (T -687)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2405 (((-3 $ #1="failed") $) 49 T ELT)) (-2408 (($ $ (-831)) 37 T ELT) (($ $ (-695)) 44 T ELT)) (-3468 (((-3 $ #1#) $) 47 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 43 T ELT)) (-2406 (((-3 $ #1#) $) 48 T ELT)) (-2407 (($ $ (-831)) 38 T ELT) (($ $ (-695)) 45 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2436 (($ $ $) 34 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 40 T ELT)) (-3127 (((-695)) 41 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2437 (($ $ $ $) 35 T ELT)) (-2435 (($ $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 42 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT) (($ $ (-695)) 46 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT))) +(((-688) (-113)) (T -688)) +((-3127 (*1 *2) (-12 (-4 *1 (-688)) (-5 *2 (-695)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-688))))) +(-13 (-686) (-660) (-10 -8 (-15 -3127 ((-695)) -3953) (-15 -3947 ($ (-485))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-658) . T) ((-660) . T) ((-686) . T) ((-1014) . T) ((-1130) . T)) +((-2439 (((-584 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 (-142 |#1|)))))) (-631 (-142 (-350 (-485)))) |#1|) 33 T ELT)) (-2438 (((-584 (-142 |#1|)) (-631 (-142 (-350 (-485)))) |#1|) 23 T ELT)) (-2450 (((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485)))) (-1091)) 20 T ELT) (((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485))))) 19 T ELT))) +(((-689 |#1|) (-10 -7 (-15 -2450 ((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485)))))) (-15 -2450 ((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485)))) (-1091))) (-15 -2438 ((-584 (-142 |#1|)) (-631 (-142 (-350 (-485)))) |#1|)) (-15 -2439 ((-584 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 (-142 |#1|)))))) (-631 (-142 (-350 (-485)))) |#1|))) (-13 (-312) (-756))) (T -689)) +((-2439 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-584 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 (-142 *4))))))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))) (-2438 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))) (-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *4 (-1091)) (-5 *2 (-858 (-142 (-350 (-485))))) (-5 *1 (-689 *5)) (-4 *5 (-13 (-312) (-756))))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-858 (-142 (-350 (-485))))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756)))))) +((-2617 (((-148 (-485)) |#1|) 27 T ELT))) +(((-690 |#1|) (-10 -7 (-15 -2617 ((-148 (-485)) |#1|))) (-347)) (T -690)) +((-2617 (*1 *2 *3) (-12 (-5 *2 (-148 (-485))) (-5 *1 (-690 *3)) (-4 *3 (-347))))) +((-2543 ((|#1| |#1| |#1|) 28 T ELT)) (-2544 ((|#1| |#1| |#1|) 27 T ELT)) (-2533 ((|#1| |#1| |#1|) 38 T ELT)) (-2541 ((|#1| |#1| |#1|) 33 T ELT)) (-2542 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2549 (((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|) 26 T ELT))) +(((-691 |#1| |#2|) (-10 -7 (-15 -2549 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2542 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2533 (|#1| |#1| |#1|))) (-646 |#2|) (-312)) (T -691)) +((-2533 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2541 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2542 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2543 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2544 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2549 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-691 *3 *4)) (-4 *3 (-646 *4))))) +((-2556 (((-633 (-1139)) $ (-1139)) 27 T ELT)) (-2557 (((-633 (-489)) $ (-489)) 26 T ELT)) (-2555 (((-695) $ (-102)) 28 T ELT)) (-2558 (((-633 (-101)) $ (-101)) 25 T ELT)) (-2001 (((-633 (-1139)) $) 12 T ELT)) (-1997 (((-633 (-1137)) $) 8 T ELT)) (-1999 (((-633 (-1136)) $) 10 T ELT)) (-2002 (((-633 (-489)) $) 13 T ELT)) (-1998 (((-633 (-487)) $) 9 T ELT)) (-2000 (((-633 (-486)) $) 11 T ELT)) (-1996 (((-695) $ (-102)) 7 T ELT)) (-2003 (((-633 (-101)) $) 14 T ELT)) (-2440 (((-85) $) 32 T ELT)) (-2441 (((-633 $) |#1| (-866)) 33 T ELT)) (-1701 (($ $) 6 T ELT))) +(((-692 |#1|) (-113) (-1014)) (T -692)) +((-2441 (*1 *2 *3 *4) (-12 (-5 *4 (-866)) (-4 *3 (-1014)) (-5 *2 (-633 *1)) (-4 *1 (-692 *3)))) (-2440 (*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))) +(-13 (-513) (-10 -8 (-15 -2441 ((-633 $) |t#1| (-866))) (-15 -2440 ((-85) $)))) +(((-147) . T) ((-466) . T) ((-513) . T) ((-771) . T)) +((-3920 (((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485)))) (-485)) 72 T ELT)) (-3919 (((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485))))) 70 T ELT)) (-3758 (((-485)) 86 T ELT))) +(((-693 |#1| |#2|) (-10 -7 (-15 -3758 ((-485))) (-15 -3919 ((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485)))))) (-15 -3920 ((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485)))) (-485)))) (-1156 (-485)) (-353 (-485) |#1|)) (T -693)) +((-3920 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-1156 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-693 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3919 (*1 *2) (-12 (-4 *3 (-1156 (-485))) (-5 *2 (-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485))))) (-5 *1 (-693 *3 *4)) (-4 *4 (-353 (-485) *3)))) (-3758 (*1 *2) (-12 (-4 *3 (-1156 *2)) (-5 *2 (-485)) (-5 *1 (-693 *3 *4)) (-4 *4 (-353 *2 *3))))) +((-2509 (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|))) 19 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091))) 18 T ELT)) (-3574 (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|))) 21 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091))) 20 T ELT))) +(((-694 |#1|) (-10 -7 (-15 -2509 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091)))) (-15 -2509 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3574 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091)))) (-15 -3574 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|))))) (-496)) (T -694)) +((-3574 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2484 (($ $ $) 10 T ELT)) (-1313 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2442 (($ $ (-485)) 11 T ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3145 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 6 T CONST)) (-2667 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-695) (-13 (-718) (-664) (-10 -8 (-15 -2564 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -3145 ($ $ $)) (-15 -2880 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -3467 ((-3 $ "failed") $ $)) (-15 -2442 ($ $ (-485))) (-15 -2995 ($ $)) (-6 (-3998 "*"))))) (T -695)) +((-2564 (*1 *1 *1 *1) (-5 *1 (-695))) (-2565 (*1 *1 *1 *1) (-5 *1 (-695))) (-3145 (*1 *1 *1 *1) (-5 *1 (-695))) (-2880 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1973 (-695)) (|:| -2903 (-695)))) (-5 *1 (-695)))) (-3467 (*1 *1 *1 *1) (|partial| -5 *1 (-695))) (-2442 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-695)))) (-2995 (*1 *1 *1) (-5 *1 (-695)))) +((-485) (|%not| (|%ilt| |#1| 0))) +((-3574 (((-3 |#2| "failed") |#2| |#2| (-86) (-1091)) 37 T ELT))) +(((-696 |#1| |#2|) (-10 -7 (-15 -3574 ((-3 |#2| "failed") |#2| |#2| (-86) (-1091)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-872))) (T -696)) +((-3574 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-696 *5 *2)) (-4 *2 (-13 (-29 *5) (-1116) (-872)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 9 T ELT))) +(((-697) (-1014)) (T -697)) +NIL +((-3947 (((-697) |#1|) 8 T ELT))) +(((-698 |#1|) (-10 -7 (-15 -3947 ((-697) |#1|))) (-1130)) (T -698)) +((-3947 (*1 *2 *3) (-12 (-5 *2 (-697)) (-5 *1 (-698 *3)) (-4 *3 (-1130))))) +((-3133 ((|#2| |#4|) 35 T ELT))) +(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3133 (|#2| |#4|))) (-392) (-1156 |#1|) (-662 |#1| |#2|) (-1156 |#3|)) (T -699)) +((-3133 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-699 *4 *2 *5 *3)) (-4 *3 (-1156 *5))))) +((-3468 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2445 (((-1186) (-1074) (-1074) |#4| |#5|) 33 T ELT)) (-2443 ((|#4| |#4| |#5|) 74 T ELT)) (-2444 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 79 T ELT)) (-2446 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 16 T ELT))) +(((-700 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3468 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2443 (|#4| |#4| |#5|)) (-15 -2444 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -2445 ((-1186) (-1074) (-1074) |#4| |#5|)) (-15 -2446 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -700)) +((-2446 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-2445 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1074)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *4 (-978 *6 *7 *8)) (-5 *2 (-1186)) (-5 *1 (-700 *6 *7 *8 *4 *5)) (-4 *5 (-984 *6 *7 *8 *4)))) (-2444 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-2443 (*1 *2 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *2 (-978 *4 *5 *6)) (-5 *1 (-700 *4 *5 *6 *2 *3)) (-4 *3 (-984 *4 *5 *6 *2)))) (-3468 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) +((-3158 (((-3 (-1086 (-1086 |#1|)) "failed") |#4|) 53 T ELT)) (-2447 (((-584 |#4|) |#4|) 22 T ELT)) (-3929 ((|#4| |#4|) 17 T ELT))) +(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2447 ((-584 |#4|) |#4|)) (-15 -3158 ((-3 (-1086 (-1086 |#1|)) "failed") |#4|)) (-15 -3929 (|#4| |#4|))) (-299) (-280 |#1|) (-1156 |#2|) (-1156 |#3|) (-831)) (T -701)) +((-3929 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1156 *4)) (-5 *1 (-701 *3 *4 *5 *2 *6)) (-4 *2 (-1156 *5)) (-14 *6 (-831)))) (-3158 (*1 *2 *3) (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5)) (-5 *2 (-1086 (-1086 *4))) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) (-14 *7 (-831)))) (-2447 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5)) (-5 *2 (-584 *3)) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) (-14 *7 (-831))))) +((-2448 (((-2 (|:| |deter| (-584 (-1086 |#5|))) (|:| |dterm| (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-584 |#1|)) (|:| |nlead| (-584 |#5|))) (-1086 |#5|) (-584 |#1|) (-584 |#5|)) 72 T ELT)) (-2449 (((-584 (-695)) |#1|) 20 T ELT))) +(((-702 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2448 ((-2 (|:| |deter| (-584 (-1086 |#5|))) (|:| |dterm| (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-584 |#1|)) (|:| |nlead| (-584 |#5|))) (-1086 |#5|) (-584 |#1|) (-584 |#5|))) (-15 -2449 ((-584 (-695)) |#1|))) (-1156 |#4|) (-718) (-757) (-258) (-862 |#4| |#2| |#3|)) (T -702)) +((-2449 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-584 (-695))) (-5 *1 (-702 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *6)) (-4 *7 (-862 *6 *4 *5)))) (-2448 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1156 *9)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-258)) (-4 *10 (-862 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-584 (-1086 *10))) (|:| |dterm| (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| *10))))) (|:| |nfacts| (-584 *6)) (|:| |nlead| (-584 *10)))) (-5 *1 (-702 *6 *7 *8 *9 *10)) (-5 *3 (-1086 *10)) (-5 *4 (-584 *6)) (-5 *5 (-584 *10))))) +((-2452 (((-584 (-2 (|:| |outval| |#1|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#1|))))) (-631 (-350 (-485))) |#1|) 31 T ELT)) (-2451 (((-584 |#1|) (-631 (-350 (-485))) |#1|) 21 T ELT)) (-2450 (((-858 (-350 (-485))) (-631 (-350 (-485))) (-1091)) 18 T ELT) (((-858 (-350 (-485))) (-631 (-350 (-485)))) 17 T ELT))) +(((-703 |#1|) (-10 -7 (-15 -2450 ((-858 (-350 (-485))) (-631 (-350 (-485))))) (-15 -2450 ((-858 (-350 (-485))) (-631 (-350 (-485))) (-1091))) (-15 -2451 ((-584 |#1|) (-631 (-350 (-485))) |#1|)) (-15 -2452 ((-584 (-2 (|:| |outval| |#1|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#1|))))) (-631 (-350 (-485))) |#1|))) (-13 (-312) (-756))) (T -703)) +((-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-584 (-2 (|:| |outval| *4) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 *4)))))) (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756))))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756))))) (-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *4 (-1091)) (-5 *2 (-858 (-350 (-485)))) (-5 *1 (-703 *5)) (-4 *5 (-13 (-312) (-756))))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-858 (-350 (-485)))) (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 36 T ELT)) (-3082 (((-584 |#2|) $) NIL T ELT)) (-3084 (((-1086 $) $ |#2|) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 |#2|)) NIL T ELT)) (-3798 (($ $) 30 T ELT)) (-3167 (((-85) $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3756 (($ $ $) 110 (|has| |#1| (-496)) ELT)) (-3149 (((-584 $) $ $) 123 (|has| |#1| (-496)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-858 (-350 (-485)))) NIL (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091)))) ELT) (((-3 $ #1#) (-858 (-485))) NIL (OR (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1091))) (-2561 (|has| |#1| (-38 (-350 (-485)))))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091))))) ELT) (((-3 $ #1#) (-858 |#1|)) NIL (OR (-12 (|has| |#2| (-554 (-1091))) (-2561 (|has| |#1| (-38 (-350 (-485))))) (-2561 (|has| |#1| (-38 (-485))))) (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1091))) (-2561 (|has| |#1| (-38 (-350 (-485))))) (-2561 (|has| |#1| (-484)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091))) (-2561 (|has| |#1| (-905 (-485)))))) ELT) (((-3 (-1040 |#1| |#2|) #1#) $) 21 T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) ((|#2| $) NIL T ELT) (($ (-858 (-350 (-485)))) NIL (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091)))) ELT) (($ (-858 (-485))) NIL (OR (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1091))) (-2561 (|has| |#1| (-38 (-350 (-485)))))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091))))) ELT) (($ (-858 |#1|)) NIL (OR (-12 (|has| |#2| (-554 (-1091))) (-2561 (|has| |#1| (-38 (-350 (-485))))) (-2561 (|has| |#1| (-38 (-485))))) (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1091))) (-2561 (|has| |#1| (-38 (-350 (-485))))) (-2561 (|has| |#1| (-484)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091))) (-2561 (|has| |#1| (-905 (-485)))))) ELT) (((-1040 |#1| |#2|) $) NIL T ELT)) (-3757 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-496)) ELT)) (-3960 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3695 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3173 (((-85) $) NIL T ELT)) (-3753 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 81 T ELT)) (-3144 (($ $) 136 (|has| |#1| (-392)) ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-3155 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3156 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3166 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3165 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1625 (($ $ |#1| (-470 |#2|) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 57 T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3696 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3146 (($ $ $ $ $) 107 (|has| |#1| (-496)) ELT)) (-3181 ((|#2| $) 22 T ELT)) (-3085 (($ (-1086 |#1|) |#2|) NIL T ELT) (($ (-1086 $) |#2|) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 38 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3160 (($ $ $) 63 T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |#2|) NIL T ELT)) (-3174 (((-85) $) NIL T ELT)) (-2821 (((-470 |#2|) $) NIL T ELT) (((-695) $ |#2|) NIL T ELT) (((-584 (-695)) $ (-584 |#2|)) NIL T ELT)) (-3180 (((-695) $) 23 T ELT)) (-1626 (($ (-1 (-470 |#2|) (-470 |#2|)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3083 (((-3 |#2| #1#) $) NIL T ELT)) (-3141 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3142 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3169 (((-584 $) $) NIL T ELT)) (-3172 (($ $) 39 T ELT)) (-3143 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3170 (((-584 $) $) 43 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3171 (($ $) 41 T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3159 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3482 (-695))) $ $) 96 T ELT)) (-3161 (((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $) 78 T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $ |#2|) NIL T ELT)) (-3162 (((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $) NIL T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $ |#2|) NIL T ELT)) (-3164 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3163 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3191 (($ $ $) 125 (|has| |#1| (-496)) ELT)) (-3177 (((-584 $) $) 32 T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3692 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3687 (($ $ $) NIL T ELT)) (-3447 (($ $) 24 T ELT)) (-3700 (((-85) $ $) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3688 (($ $ $) NIL T ELT)) (-3179 (($ $) 26 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3150 (((-2 (|:| -3145 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-496)) ELT)) (-3151 (((-2 (|:| -3145 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-496)) ELT)) (-1798 (((-85) $) 56 T ELT)) (-1797 ((|#1| $) 58 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 ((|#1| |#1| $) 133 (|has| |#1| (-392)) ELT) (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3152 (((-2 (|:| -3145 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-496)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-496)) ELT)) (-3153 (($ $ |#1|) 129 (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3154 (($ $ |#1|) 128 (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-584 |#2|) (-584 $)) NIL T ELT)) (-3758 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3949 (((-470 |#2|) $) NIL T ELT) (((-695) $ |#2|) 45 T ELT) (((-584 (-695)) $ (-584 |#2|)) NIL T ELT)) (-3178 (($ $) NIL T ELT)) (-3176 (($ $) 35 T ELT)) (-3973 (((-801 (-330)) $) NIL (-12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT) (($ (-858 (-350 (-485)))) NIL (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091)))) ELT) (($ (-858 (-485))) NIL (OR (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1091))) (-2561 (|has| |#1| (-38 (-350 (-485)))))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091))))) ELT) (($ (-858 |#1|)) NIL (|has| |#2| (-554 (-1091))) ELT) (((-1074) $) NIL (-12 (|has| |#1| (-951 (-485))) (|has| |#2| (-554 (-1091)))) ELT) (((-858 |#1|) $) NIL (|has| |#2| (-554 (-1091))) ELT)) (-2818 ((|#1| $) 132 (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-858 |#1|) $) NIL (|has| |#2| (-554 (-1091))) ELT) (((-1040 |#1| |#2|) $) 18 T ELT) (($ (-1040 |#1| |#2|)) 19 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-584 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 47 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 13 T CONST)) (-3168 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2667 (($) 37 T CONST)) (-3147 (($ $ $ $ (-695)) 105 (|has| |#1| (-496)) ELT)) (-3148 (($ $ $ (-695)) 104 (|has| |#1| (-496)) ELT)) (-2670 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3840 (($ $ $) 85 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 70 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) +(((-704 |#1| |#2|) (-13 (-978 |#1| (-470 |#2|) |#2|) (-553 (-1040 |#1| |#2|)) (-951 (-1040 |#1| |#2|))) (-962) (-757)) (T -704)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 12 T ELT)) (-3768 (((-1180 |#1|) $ (-695)) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3766 (($ (-1086 |#1|)) NIL T ELT)) (-3084 (((-1086 $) $ (-995)) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2456 (((-584 $) $ $) 54 (|has| |#1| (-496)) ELT)) (-3756 (($ $ $) 50 (|has| |#1| (-496)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3762 (($ $ (-695)) NIL T ELT)) (-3761 (($ $ (-695)) NIL T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT) (((-3 (-1086 |#1|) #1#) $) 10 T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-995) $) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-3757 (($ $ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ $) NIL T ELT)) (-3754 (($ $ $) 87 (|has| |#1| (-496)) ELT)) (-3753 (((-2 (|:| -3955 |#1|) (|:| -1973 $) (|:| -2903 $)) $ $) 86 (|has| |#1| (-496)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-695) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3773 (((-695) $ $) NIL (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3446 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3085 (($ (-1086 |#1|) (-995)) NIL T ELT) (($ (-1086 $) (-995)) NIL T ELT)) (-3778 (($ $ (-695)) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3160 (($ $ $) 27 T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3767 (((-1086 |#1|) $) NIL T ELT)) (-3083 (((-3 (-995) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3159 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3482 (-695))) $ $) 37 T ELT)) (-2458 (($ $ $) 41 T ELT)) (-2457 (($ $ $) 47 T ELT)) (-3161 (((-2 (|:| -3955 |#1|) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $) 46 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3191 (($ $ $) 56 (|has| |#1| (-496)) ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ (-695)) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3813 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3447 (($) NIL (|has| |#1| (-1067)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-3150 (((-2 (|:| -3145 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-496)) ELT)) (-3151 (((-2 (|:| -3145 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-496)) ELT)) (-2453 (((-2 (|:| -3757 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2454 (((-2 (|:| -3757 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-496)) ELT)) (-1798 (((-85) $) 13 T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3739 (($ $ (-695) |#1| $) 26 T ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3152 (((-2 (|:| -3145 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-496)) ELT)) (-2455 (((-2 (|:| -3757 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-496)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#1|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#1|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-496)) ELT)) (-3765 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3949 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3973 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3755 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-496)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-995)) NIL T ELT) (((-1086 |#1|) $) 7 T ELT) (($ (-1086 |#1|)) 8 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-584 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 28 T CONST)) (-2667 (($) 32 T CONST)) (-2670 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) +(((-705 |#1|) (-13 (-1156 |#1|) (-553 (-1086 |#1|)) (-951 (-1086 |#1|)) (-10 -8 (-15 -3739 ($ $ (-695) |#1| $)) (-15 -3160 ($ $ $)) (-15 -3159 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3482 (-695))) $ $)) (-15 -2458 ($ $ $)) (-15 -3161 ((-2 (|:| -3955 |#1|) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -2457 ($ $ $)) (IF (|has| |#1| (-496)) (PROGN (-15 -2456 ((-584 $) $ $)) (-15 -3191 ($ $ $)) (-15 -3152 ((-2 (|:| -3145 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3151 ((-2 (|:| -3145 $) (|:| |coef1| $)) $ $)) (-15 -3150 ((-2 (|:| -3145 $) (|:| |coef2| $)) $ $)) (-15 -2455 ((-2 (|:| -3757 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2454 ((-2 (|:| -3757 |#1|) (|:| |coef1| $)) $ $)) (-15 -2453 ((-2 (|:| -3757 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-962)) (T -705)) +((-3739 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-3160 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-3159 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-705 *3)) (|:| |polden| *3) (|:| -3482 (-695)))) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-2458 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-3161 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3955 *3) (|:| |gap| (-695)) (|:| -1973 (-705 *3)) (|:| -2903 (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-2457 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-2456 (*1 *2 *1 *1) (-12 (-5 *2 (-584 (-705 *3))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-3191 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-496)) (-4 *2 (-962)))) (-3152 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3145 (-705 *3)) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-3151 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3145 (-705 *3)) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-3150 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3145 (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-2455 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3757 *3) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-2454 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3757 *3) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-2453 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3757 *3) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962))))) +((-3959 (((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)) 13 T ELT))) +(((-706 |#1| |#2|) (-10 -7 (-15 -3959 ((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)))) (-962) (-962)) (T -706)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-705 *6)) (-5 *1 (-706 *5 *6))))) +((-2460 ((|#1| (-695) |#1|) 33 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2802 ((|#1| (-695) |#1|) 23 T ELT)) (-2459 ((|#1| (-695) |#1|) 35 (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-707 |#1|) (-10 -7 (-15 -2802 (|#1| (-695) |#1|)) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -2459 (|#1| (-695) |#1|)) (-15 -2460 (|#1| (-695) |#1|))) |%noBranch|)) (-146)) (T -707)) +((-2460 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-146)))) (-2459 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-146)))) (-2802 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-146))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3682 (((-584 (-2 (|:| -3862 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3683 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3082 (((-584 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3689 ((|#4| |#4| $) 98 T ELT)) (-3776 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 134 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3725 (($) 54 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3690 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3157 (($ (-584 |#4|)) 40 T ELT)) (-3800 (((-3 $ #1#) $) 88 T ELT)) (-3686 ((|#4| |#4| $) 95 T ELT)) (-1354 (($ $) 70 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#4| $) 69 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3996)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3684 ((|#4| |#4| $) 93 T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3697 (((-2 (|:| -3862 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 111 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT)) (-3196 (((-85) |#4| $) 141 T ELT)) (-3199 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2890 (((-584 |#4|) $) 57 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-584 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2915 (((-584 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3192 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3191 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 135 T ELT)) (-3799 (((-3 |#4| #1#) $) 89 T ELT)) (-3193 (((-584 $) |#4| $) 137 T ELT)) (-3195 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3194 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3239 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3441 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3698 (((-584 |#4|) $) 113 T ELT)) (-3692 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3687 ((|#4| |#4| $) 96 T ELT)) (-3700 (((-85) $ $) 116 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3688 ((|#4| |#4| $) 97 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3802 (((-3 |#4| #1#) $) 90 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3770 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3769 (($ $ (-584 |#4|) (-584 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 50 T ELT)) (-3404 (((-85) $) 53 T ELT)) (-3566 (($) 52 T ELT)) (-3949 (((-695) $) 112 T ELT)) (-1947 (((-695) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3401 (($ $) 51 T ELT)) (-3973 (((-474) $) 71 (|has| |#4| (-554 (-474))) ELT)) (-3531 (($ (-584 |#4|)) 62 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-3685 (($ $) 94 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3947 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3679 (((-695) $) 82 (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 104 T ELT)) (-3190 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3681 (((-584 |#3|) $) 87 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3934 (((-85) |#3| $) 86 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3958 (((-695) $) 43 T ELT))) +(((-708 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -708)) +NIL +(-13 (-984 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T)) +((-2463 (((-3 (-330) #1="failed") (-265 |#1|) (-831)) 60 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-330) #1#) (-265 |#1|)) 52 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-330) #1#) (-350 (-858 |#1|)) (-831)) 39 (|has| |#1| (-496)) ELT) (((-3 (-330) #1#) (-350 (-858 |#1|))) 35 (|has| |#1| (-496)) ELT) (((-3 (-330) #1#) (-858 |#1|) (-831)) 30 (|has| |#1| (-962)) ELT) (((-3 (-330) #1#) (-858 |#1|)) 24 (|has| |#1| (-962)) ELT)) (-2461 (((-330) (-265 |#1|) (-831)) 92 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-330) (-265 |#1|)) 87 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-330) (-350 (-858 |#1|)) (-831)) 84 (|has| |#1| (-496)) ELT) (((-330) (-350 (-858 |#1|))) 81 (|has| |#1| (-496)) ELT) (((-330) (-858 |#1|) (-831)) 80 (|has| |#1| (-962)) ELT) (((-330) (-858 |#1|)) 77 (|has| |#1| (-962)) ELT) (((-330) |#1| (-831)) 73 T ELT) (((-330) |#1|) 22 T ELT)) (-2464 (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-831)) 68 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|))) 58 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|) (-831)) 61 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|)) 59 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|))) (-831)) 44 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|)))) 43 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 |#1|)) (-831)) 38 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 |#1|))) 37 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-858 |#1|) (-831)) 28 (|has| |#1| (-962)) ELT) (((-3 (-142 (-330)) #1#) (-858 |#1|)) 26 (|has| |#1| (-962)) ELT) (((-3 (-142 (-330)) #1#) (-858 (-142 |#1|)) (-831)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-330)) #1#) (-858 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2462 (((-142 (-330)) (-265 (-142 |#1|)) (-831)) 95 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-265 (-142 |#1|))) 94 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-265 |#1|) (-831)) 93 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-265 |#1|)) 91 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-350 (-858 (-142 |#1|))) (-831)) 86 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-350 (-858 (-142 |#1|)))) 85 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-350 (-858 |#1|)) (-831)) 83 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-350 (-858 |#1|))) 82 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-858 |#1|) (-831)) 79 (|has| |#1| (-962)) ELT) (((-142 (-330)) (-858 |#1|)) 78 (|has| |#1| (-962)) ELT) (((-142 (-330)) (-858 (-142 |#1|)) (-831)) 75 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-858 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|) (-831)) 17 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-330)) |#1| (-831)) 27 T ELT) (((-142 (-330)) |#1|) 25 T ELT))) +(((-709 |#1|) (-10 -7 (-15 -2461 ((-330) |#1|)) (-15 -2461 ((-330) |#1| (-831))) (-15 -2462 ((-142 (-330)) |#1|)) (-15 -2462 ((-142 (-330)) |#1| (-831))) (IF (|has| |#1| (-146)) (PROGN (-15 -2462 ((-142 (-330)) (-142 |#1|))) (-15 -2462 ((-142 (-330)) (-142 |#1|) (-831))) (-15 -2462 ((-142 (-330)) (-858 (-142 |#1|)))) (-15 -2462 ((-142 (-330)) (-858 (-142 |#1|)) (-831)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -2461 ((-330) (-858 |#1|))) (-15 -2461 ((-330) (-858 |#1|) (-831))) (-15 -2462 ((-142 (-330)) (-858 |#1|))) (-15 -2462 ((-142 (-330)) (-858 |#1|) (-831)))) |%noBranch|) (IF (|has| |#1| (-496)) (PROGN (-15 -2461 ((-330) (-350 (-858 |#1|)))) (-15 -2461 ((-330) (-350 (-858 |#1|)) (-831))) (-15 -2462 ((-142 (-330)) (-350 (-858 |#1|)))) (-15 -2462 ((-142 (-330)) (-350 (-858 |#1|)) (-831))) (-15 -2462 ((-142 (-330)) (-350 (-858 (-142 |#1|))))) (-15 -2462 ((-142 (-330)) (-350 (-858 (-142 |#1|))) (-831))) (IF (|has| |#1| (-757)) (PROGN (-15 -2461 ((-330) (-265 |#1|))) (-15 -2461 ((-330) (-265 |#1|) (-831))) (-15 -2462 ((-142 (-330)) (-265 |#1|))) (-15 -2462 ((-142 (-330)) (-265 |#1|) (-831))) (-15 -2462 ((-142 (-330)) (-265 (-142 |#1|)))) (-15 -2462 ((-142 (-330)) (-265 (-142 |#1|)) (-831)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2464 ((-3 (-142 (-330)) #1="failed") (-858 (-142 |#1|)))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-858 (-142 |#1|)) (-831)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -2463 ((-3 (-330) #1#) (-858 |#1|))) (-15 -2463 ((-3 (-330) #1#) (-858 |#1|) (-831))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-858 |#1|))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-858 |#1|) (-831)))) |%noBranch|) (IF (|has| |#1| (-496)) (PROGN (-15 -2463 ((-3 (-330) #1#) (-350 (-858 |#1|)))) (-15 -2463 ((-3 (-330) #1#) (-350 (-858 |#1|)) (-831))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-350 (-858 |#1|)))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-350 (-858 |#1|)) (-831))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|))))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|))) (-831))) (IF (|has| |#1| (-757)) (PROGN (-15 -2463 ((-3 (-330) #1#) (-265 |#1|))) (-15 -2463 ((-3 (-330) #1#) (-265 |#1|) (-831))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-265 |#1|))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-265 |#1|) (-831))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-831)))) |%noBranch|)) |%noBranch|)) (-554 (-330))) (T -709)) +((-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-142 (-330))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-330))))) (-2462 (*1 *2 *3) (-12 (-5 *2 (-142 (-330))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-330))))) (-2461 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))) (-2461 (*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2))))) +((-2468 (((-831) (-1074)) 90 T ELT)) (-2470 (((-3 (-330) "failed") (-1074)) 36 T ELT)) (-2469 (((-330) (-1074)) 34 T ELT)) (-2466 (((-831) (-1074)) 64 T ELT)) (-2467 (((-1074) (-831)) 74 T ELT)) (-2465 (((-1074) (-831)) 63 T ELT))) +(((-710) (-10 -7 (-15 -2465 ((-1074) (-831))) (-15 -2466 ((-831) (-1074))) (-15 -2467 ((-1074) (-831))) (-15 -2468 ((-831) (-1074))) (-15 -2469 ((-330) (-1074))) (-15 -2470 ((-3 (-330) "failed") (-1074))))) (T -710)) +((-2470 (*1 *2 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-330)) (-5 *1 (-710)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-330)) (-5 *1 (-710)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710))))) +((-2473 (((-1186) (-1180 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1180 (-330)) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330))) 54 T ELT) (((-1186) (-1180 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1180 (-330)) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330))) 51 T ELT)) (-2474 (((-1186) (-1180 (-330)) (-485) (-330) (-330) (-485) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330))) 61 T ELT)) (-2472 (((-1186) (-1180 (-330)) (-485) (-330) (-330) (-330) (-330) (-485) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330))) 49 T ELT)) (-2471 (((-1186) (-1180 (-330)) (-485) (-330) (-330) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330))) 63 T ELT) (((-1186) (-1180 (-330)) (-485) (-330) (-330) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330))) 62 T ELT))) +(((-711) (-10 -7 (-15 -2471 ((-1186) (-1180 (-330)) (-485) (-330) (-330) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)))) (-15 -2471 ((-1186) (-1180 (-330)) (-485) (-330) (-330) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)))) (-15 -2472 ((-1186) (-1180 (-330)) (-485) (-330) (-330) (-330) (-330) (-485) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)))) (-15 -2473 ((-1186) (-1180 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1180 (-330)) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)))) (-15 -2473 ((-1186) (-1180 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1180 (-330)) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)))) (-15 -2474 ((-1186) (-1180 (-330)) (-485) (-330) (-330) (-485) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)))))) (T -711)) +((-2474 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2473 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-485)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330)))) (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2473 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-485)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330)))) (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2472 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2471 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2471 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711))))) +((-2483 (((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 65 T ELT)) (-2480 (((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 40 T ELT)) (-2482 (((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 64 T ELT)) (-2479 (((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 38 T ELT)) (-2481 (((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 63 T ELT)) (-2478 (((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 24 T ELT)) (-2477 (((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485)) 41 T ELT)) (-2476 (((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485)) 39 T ELT)) (-2475 (((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485)) 37 T ELT))) +(((-712) (-10 -7 (-15 -2475 ((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485))) (-15 -2476 ((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485))) (-15 -2477 ((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485))) (-15 -2478 ((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2479 ((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2480 ((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2481 ((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2482 ((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2483 ((-2 (|:| -3403 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))))) (T -712)) +((-2483 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2482 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2481 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2479 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2475 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485))))) +((-3706 (((-1126 |#1|) |#1| (-179) (-485)) 69 T ELT))) +(((-713 |#1|) (-10 -7 (-15 -3706 ((-1126 |#1|) |#1| (-179) (-485)))) (-888)) (T -713)) +((-3706 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-485)) (-5 *2 (-1126 *3)) (-5 *1 (-713 *3)) (-4 *3 (-888))))) +((-3624 (((-485) $) 17 T ELT)) (-3188 (((-85) $) 10 T ELT)) (-3384 (($ $) 19 T ELT))) +(((-714 |#1|) (-10 -7 (-15 -3384 (|#1| |#1|)) (-15 -3624 ((-485) |#1|)) (-15 -3188 ((-85) |#1|))) (-715)) (T -714)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3624 (((-485) $) 38 T ELT)) (-3725 (($) 30 T CONST)) (-3187 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-3188 (((-85) $) 39 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3384 (($ $) 37 T ELT)) (-2661 (($) 29 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3840 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ (-485) $) 40 T ELT))) +(((-715) (-113)) (T -715)) +((-3188 (*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-85)))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-485)))) (-3384 (*1 *1 *1) (-4 *1 (-715)))) +(-13 (-722) (-21) (-10 -8 (-15 -3188 ((-85) $)) (-15 -3624 ((-485) $)) (-15 -3384 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T)) +((-3187 (((-85) $) 10 T ELT))) +(((-716 |#1|) (-10 -7 (-15 -3187 ((-85) |#1|))) (-717)) (T -716)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-3725 (($) 30 T CONST)) (-3187 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 29 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT))) (((-717) (-113)) (T -717)) -((-2483 (*1 *1 *1 *1) (-4 *1 (-717)))) -(-13 (-721) (-10 -8 (-15 -2483 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 7 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3839 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT))) +((-3187 (*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-85))))) +(-13 (-719) (-23) (-10 -8 (-15 -3187 ((-85) $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-2484 (($ $ $) 36 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3725 (($) 30 T CONST)) (-3187 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 29 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT))) (((-718) (-113)) (T -718)) -NIL -(-13 (-756) (-25)) -(((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1129) . T)) -((-3188 (((-85) $) 42 T ELT)) (-3157 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3156 (((-484) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3024 (((-3 (-350 (-484)) #1#) $) 78 T ELT)) (-3023 (((-85) $) 72 T ELT)) (-3022 (((-350 (-484)) $) 76 T ELT)) (-3132 ((|#2| $) 26 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2484 (($ $) 58 T ELT)) (-3972 (((-473) $) 67 T ELT)) (-3009 (($ $) 21 T ELT)) (-3946 (((-772) $) 53 T ELT) (($ (-484)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-350 (-484))) NIL T ELT)) (-3126 (((-694)) 10 T CONST)) (-3383 ((|#2| $) 71 T ELT)) (-3056 (((-85) $ $) 30 T ELT)) (-2685 (((-85) $ $) 69 T ELT)) (-3837 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 31 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) -(((-719 |#1| |#2|) (-10 -7 (-15 -2685 ((-85) |#1| |#1|)) (-15 -3972 ((-473) |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -3024 ((-3 (-350 (-484)) #1="failed") |#1|)) (-15 -3022 ((-350 (-484)) |#1|)) (-15 -3023 ((-85) |#1|)) (-15 -3383 (|#2| |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -3958 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3156 ((-350 (-484)) |#1|)) (-15 -3157 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3946 (|#1| (-350 (-484)))) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3126 ((-694)) -3952) (-15 -3946 (|#1| (-484))) (-15 * (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3188 ((-85) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3946 ((-772) |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-720 |#2|) (-146)) (T -719)) -((-3126 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-719 *3 *4)) (-4 *3 (-720 *4))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3136 (((-694)) 67 (|has| |#1| (-320)) ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 109 (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 106 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 103 T ELT)) (-3156 (((-484) $) 108 (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) 105 (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 104 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3643 ((|#1| $) 93 T ELT)) (-3024 (((-3 (-350 (-484)) "failed") $) 80 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 82 (|has| |#1| (-483)) ELT)) (-3022 (((-350 (-484)) $) 81 (|has| |#1| (-483)) ELT)) (-2994 (($) 70 (|has| |#1| (-320)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2489 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 84 T ELT)) (-3132 ((|#1| $) 85 T ELT)) (-2531 (($ $ $) 71 (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) 72 (|has| |#1| (-756)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 95 T ELT)) (-2010 (((-830) $) 69 (|has| |#1| (-320)) ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 79 (|has| |#1| (-312)) ELT)) (-2400 (($ (-830)) 68 (|has| |#1| (-320)) ELT)) (-2486 ((|#1| $) 90 T ELT)) (-2487 ((|#1| $) 91 T ELT)) (-2488 ((|#1| $) 92 T ELT)) (-3006 ((|#1| $) 86 T ELT)) (-3007 ((|#1| $) 87 T ELT)) (-3008 ((|#1| $) 88 T ELT)) (-2485 ((|#1| $) 89 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3768 (($ $ (-583 |#1|) (-583 |#1|)) 101 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 100 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 98 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) 97 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) 96 (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-3800 (($ $ |#1|) 102 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3972 (((-473) $) 77 (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) 94 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-484))) 107 (|has| |#1| (-950 (-350 (-484)))) ELT)) (-2702 (((-632 $) $) 78 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3383 ((|#1| $) 83 (|has| |#1| (-973)) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 73 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 75 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 74 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 76 (|has| |#1| (-756)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) -(((-720 |#1|) (-113) (-146)) (T -720)) -((-3009 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2489 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484))))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484))))) (-2484 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) -(-13 (-38 |t#1|) (-355 |t#1|) (-288 |t#1|) (-10 -8 (-15 -3009 ($ $)) (-15 -3643 (|t#1| $)) (-15 -2488 (|t#1| $)) (-15 -2487 (|t#1| $)) (-15 -2486 (|t#1| $)) (-15 -2485 (|t#1| $)) (-15 -3008 (|t#1| $)) (-15 -3007 (|t#1| $)) (-15 -3006 (|t#1| $)) (-15 -3132 (|t#1| $)) (-15 -2489 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3383 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-350 (-484)) $)) (-15 -3024 ((-3 (-350 (-484)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -2484 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-320) |has| |#1| (-320)) ((-288 |#1|) . T) ((-355 |#1|) . T) ((-455 (-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-1312 (((-3 $ "failed") $ $) 35 T ELT)) (-3724 (($) 30 T CONST)) (-3186 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 29 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3839 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT))) -(((-721) (-113)) (T -721)) -NIL -(-13 (-716) (-104)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-716) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-909 |#1|) #1#) $) 35 T ELT) (((-3 (-484) #1#) $) NIL (OR (|has| (-909 |#1|) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (OR (|has| (-909 |#1|) (-950 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3156 ((|#1| $) NIL T ELT) (((-909 |#1|) $) 33 T ELT) (((-484) $) NIL (OR (|has| (-909 |#1|) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT) (((-350 (-484)) $) NIL (OR (|has| (-909 |#1|) (-950 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3643 ((|#1| $) 16 T ELT)) (-3024 (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3022 (((-350 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-2994 (($) NIL (|has| |#1| (-320)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2489 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-909 |#1|) (-909 |#1|)) 29 T ELT)) (-3132 ((|#1| $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-320)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2400 (($ (-830)) NIL (|has| |#1| (-320)) ELT)) (-2486 ((|#1| $) 22 T ELT)) (-2487 ((|#1| $) 20 T ELT)) (-2488 ((|#1| $) 18 T ELT)) (-3006 ((|#1| $) 26 T ELT)) (-3007 ((|#1| $) 25 T ELT)) (-3008 ((|#1| $) 24 T ELT)) (-2485 ((|#1| $) 23 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3768 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-3800 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3972 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-909 |#1|)) 30 T ELT) (($ (-350 (-484))) NIL (OR (|has| (-909 |#1|) (-950 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3383 ((|#1| $) NIL (|has| |#1| (-973)) ELT)) (-2660 (($) 8 T CONST)) (-2666 (($) 12 T CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-722 |#1|) (-13 (-720 |#1|) (-355 (-909 |#1|)) (-10 -8 (-15 -2489 ($ (-909 |#1|) (-909 |#1|))))) (-146)) (T -722)) -((-2489 (*1 *1 *2 *2) (-12 (-5 *2 (-909 *3)) (-4 *3 (-146)) (-5 *1 (-722 *3))))) -((-3958 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) -(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#3| (-1 |#4| |#2|) |#1|))) (-720 |#2|) (-146) (-720 |#4|) (-146)) (T -723)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-720 *6)) (-5 *1 (-723 *4 *5 *2 *6)) (-4 *4 (-720 *5))))) -((-2490 (((-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#3| |#2| (-1090)) 19 T ELT))) -(((-724 |#1| |#2| |#3|) (-10 -7 (-15 -2490 ((-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#3| |#2| (-1090)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1115) (-871)) (-600 |#2|)) (T -724)) -((-2490 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1090)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-4 *4 (-13 (-29 *6) (-1115) (-871))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4)))) (-5 *1 (-724 *6 *4 *3)) (-4 *3 (-600 *4))))) -((-3573 (((-3 |#2| #1="failed") |#2| (-86) (-249 |#2|) (-583 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) |#2| (-86) (-1090)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1090)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2012 (-583 (-1179 |#2|)))) #1#) (-583 |#2|) (-583 (-86)) (-1090)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2012 (-583 (-1179 |#2|)))) #1#) (-583 (-249 |#2|)) (-583 (-86)) (-1090)) 26 T ELT) (((-3 (-583 (-1179 |#2|)) #1#) (-630 |#2|) (-1090)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2012 (-583 (-1179 |#2|)))) #1#) (-630 |#2|) (-1179 |#2|) (-1090)) 35 T ELT))) -(((-725 |#1| |#2|) (-10 -7 (-15 -3573 ((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2012 (-583 (-1179 |#2|)))) #1="failed") (-630 |#2|) (-1179 |#2|) (-1090))) (-15 -3573 ((-3 (-583 (-1179 |#2|)) #1#) (-630 |#2|) (-1090))) (-15 -3573 ((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2012 (-583 (-1179 |#2|)))) #1#) (-583 (-249 |#2|)) (-583 (-86)) (-1090))) (-15 -3573 ((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2012 (-583 (-1179 |#2|)))) #1#) (-583 |#2|) (-583 (-86)) (-1090))) (-15 -3573 ((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1090))) (-15 -3573 ((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) |#2| (-86) (-1090))) (-15 -3573 ((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|))) (-15 -3573 ((-3 |#2| #1#) |#2| (-86) (-249 |#2|) (-583 |#2|)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1115) (-871))) (T -725)) -((-3573 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1115) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-725 *6 *2)))) (-3573 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1115) (-871))) (-5 *1 (-725 *6 *2)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))))) (-3573 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1090)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2012 (-583 *3))) *3 #1="failed")) (-5 *1 (-725 *6 *3)) (-4 *3 (-13 (-29 *6) (-1115) (-871))))) (-3573 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1115) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2012 (-583 *7))) *7 #1#)) (-5 *1 (-725 *6 *7)))) (-3573 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1115) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2012 (-583 (-1179 *7))))) (-5 *1 (-725 *6 *7)))) (-3573 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1115) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2012 (-583 (-1179 *7))))) (-5 *1 (-725 *6 *7)))) (-3573 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-630 *6)) (-5 *4 (-1090)) (-4 *6 (-13 (-29 *5) (-1115) (-871))) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-1179 *6))) (-5 *1 (-725 *5 *6)))) (-3573 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-630 *7)) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1115) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2012 (-583 (-1179 *7))))) (-5 *1 (-725 *6 *7)) (-5 *4 (-1179 *7))))) -((-3470 ((|#2| |#2| (-1090)) 17 T ELT)) (-2491 ((|#2| |#2| (-1090)) 56 T ELT)) (-2492 (((-1 |#2| |#2|) (-1090)) 11 T ELT))) -(((-726 |#1| |#2|) (-10 -7 (-15 -3470 (|#2| |#2| (-1090))) (-15 -2491 (|#2| |#2| (-1090))) (-15 -2492 ((-1 |#2| |#2|) (-1090)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1115) (-871))) (T -726)) -((-2492 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-726 *4 *5)) (-4 *5 (-13 (-29 *4) (-1115) (-871))))) (-2491 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1115) (-871))))) (-3470 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1115) (-871)))))) -((-2493 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2012 (-583 |#4|))) (-597 |#4|) |#4|) 33 T ELT))) -(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2493 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2012 (-583 |#4|))) (-597 |#4|) |#4|))) (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -727)) -((-2493 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *4)) (-4 *4 (-291 *5 *6 *7)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-727 *5 *6 *7 *4))))) -((-3741 (((-2 (|:| -3266 |#3|) (|:| |rh| (-583 (-350 |#2|)))) |#4| (-583 (-350 |#2|))) 53 T ELT)) (-2495 (((-583 (-2 (|:| -3773 |#2|) (|:| -3226 |#2|))) |#4| |#2|) 62 T ELT) (((-583 (-2 (|:| -3773 |#2|) (|:| -3226 |#2|))) |#4|) 61 T ELT) (((-583 (-2 (|:| -3773 |#2|) (|:| -3226 |#2|))) |#3| |#2|) 20 T ELT) (((-583 (-2 (|:| -3773 |#2|) (|:| -3226 |#2|))) |#3|) 21 T ELT)) (-2496 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2494 ((|#2| |#3| (-583 (-350 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-350 |#2|)) 105 T ELT))) -(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2494 ((-3 |#2| "failed") |#3| (-350 |#2|))) (-15 -2494 (|#2| |#3| (-583 (-350 |#2|)))) (-15 -2495 ((-583 (-2 (|:| -3773 |#2|) (|:| -3226 |#2|))) |#3|)) (-15 -2495 ((-583 (-2 (|:| -3773 |#2|) (|:| -3226 |#2|))) |#3| |#2|)) (-15 -2496 (|#2| |#3| |#1|)) (-15 -2495 ((-583 (-2 (|:| -3773 |#2|) (|:| -3226 |#2|))) |#4|)) (-15 -2495 ((-583 (-2 (|:| -3773 |#2|) (|:| -3226 |#2|))) |#4| |#2|)) (-15 -2496 (|#2| |#4| |#1|)) (-15 -3741 ((-2 (|:| -3266 |#3|) (|:| |rh| (-583 (-350 |#2|)))) |#4| (-583 (-350 |#2|))))) (-13 (-312) (-120) (-950 (-350 (-484)))) (-1155 |#1|) (-600 |#2|) (-600 (-350 |#2|))) (T -728)) -((-3741 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-5 *2 (-2 (|:| -3266 *7) (|:| |rh| (-583 (-350 *6))))) (-5 *1 (-728 *5 *6 *7 *3)) (-5 *4 (-583 (-350 *6))) (-4 *7 (-600 *6)) (-4 *3 (-600 (-350 *6))))) (-2496 (*1 *2 *3 *4) (-12 (-4 *2 (-1155 *4)) (-5 *1 (-728 *4 *2 *5 *3)) (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-600 *2)) (-4 *3 (-600 (-350 *2))))) (-2495 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *4 (-1155 *5)) (-5 *2 (-583 (-2 (|:| -3773 *4) (|:| -3226 *4)))) (-5 *1 (-728 *5 *4 *6 *3)) (-4 *6 (-600 *4)) (-4 *3 (-600 (-350 *4))))) (-2495 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) (-5 *2 (-583 (-2 (|:| -3773 *5) (|:| -3226 *5)))) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 (-350 *5))))) (-2496 (*1 *2 *3 *4) (-12 (-4 *2 (-1155 *4)) (-5 *1 (-728 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-600 *2)) (-4 *5 (-600 (-350 *2))))) (-2495 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *4 (-1155 *5)) (-5 *2 (-583 (-2 (|:| -3773 *4) (|:| -3226 *4)))) (-5 *1 (-728 *5 *4 *3 *6)) (-4 *3 (-600 *4)) (-4 *6 (-600 (-350 *4))))) (-2495 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) (-5 *2 (-583 (-2 (|:| -3773 *5) (|:| -3226 *5)))) (-5 *1 (-728 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-350 *5))))) (-2494 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-350 *2))) (-4 *2 (-1155 *5)) (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-600 *2)) (-4 *6 (-600 (-350 *2))))) (-2494 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-600 *2)) (-4 *6 (-600 *4))))) -((-2504 (((-583 (-2 (|:| |frac| (-350 |#2|)) (|:| -3266 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1085 |#2|)) (-1 (-348 |#2|) |#2|)) 156 T ELT)) (-2505 (((-583 (-2 (|:| |poly| |#2|) (|:| -3266 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 52 T ELT)) (-2498 (((-583 (-2 (|:| |deg| (-694)) (|:| -3266 |#2|))) |#3|) 123 T ELT)) (-2497 ((|#2| |#3|) 42 T ELT)) (-2499 (((-583 (-2 (|:| -3952 |#1|) (|:| -3266 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 100 T ELT)) (-2500 ((|#3| |#3| (-350 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) -(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2497 (|#2| |#3|)) (-15 -2498 ((-583 (-2 (|:| |deg| (-694)) (|:| -3266 |#2|))) |#3|)) (-15 -2499 ((-583 (-2 (|:| -3952 |#1|) (|:| -3266 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2505 ((-583 (-2 (|:| |poly| |#2|) (|:| -3266 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2504 ((-583 (-2 (|:| |frac| (-350 |#2|)) (|:| -3266 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1085 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2500 (|#3| |#3| |#2|)) (-15 -2500 (|#3| |#3| (-350 |#2|)))) (-13 (-312) (-120) (-950 (-350 (-484)))) (-1155 |#1|) (-600 |#2|) (-600 (-350 |#2|))) (T -729)) -((-2500 (*1 *2 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *2 (-600 *5)) (-4 *6 (-600 *3)))) (-2500 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-1155 *4)) (-5 *1 (-729 *4 *3 *2 *5)) (-4 *2 (-600 *3)) (-4 *5 (-600 (-350 *3))))) (-2504 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1085 *7))) (-5 *5 (-1 (-348 *7) *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-312) (-120) (-950 (-350 (-484))))) (-5 *2 (-583 (-2 (|:| |frac| (-350 *7)) (|:| -3266 *3)))) (-5 *1 (-729 *6 *7 *3 *8)) (-4 *3 (-600 *7)) (-4 *8 (-600 (-350 *7))))) (-2505 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3266 *3)))) (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-350 *6))))) (-2499 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-5 *2 (-583 (-2 (|:| -3952 *5) (|:| -3266 *3)))) (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-350 *6))))) (-2498 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -3266 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-350 *5))))) (-2497 (*1 *2 *3) (-12 (-4 *2 (-1155 *4)) (-5 *1 (-729 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-600 *2)) (-4 *5 (-600 (-350 *2)))))) -((-2501 (((-2 (|:| -2012 (-583 (-350 |#2|))) (|:| |mat| (-630 |#1|))) (-598 |#2| (-350 |#2|)) (-583 (-350 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2012 (-583 (-350 |#2|)))) (-598 |#2| (-350 |#2|)) (-350 |#2|)) 145 T ELT) (((-2 (|:| -2012 (-583 (-350 |#2|))) (|:| |mat| (-630 |#1|))) (-597 (-350 |#2|)) (-583 (-350 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2012 (-583 (-350 |#2|)))) (-597 (-350 |#2|)) (-350 |#2|)) 138 T ELT)) (-2502 ((|#2| (-598 |#2| (-350 |#2|))) 86 T ELT) ((|#2| (-597 (-350 |#2|))) 89 T ELT))) -(((-730 |#1| |#2|) (-10 -7 (-15 -2501 ((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2012 (-583 (-350 |#2|)))) (-597 (-350 |#2|)) (-350 |#2|))) (-15 -2501 ((-2 (|:| -2012 (-583 (-350 |#2|))) (|:| |mat| (-630 |#1|))) (-597 (-350 |#2|)) (-583 (-350 |#2|)))) (-15 -2501 ((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2012 (-583 (-350 |#2|)))) (-598 |#2| (-350 |#2|)) (-350 |#2|))) (-15 -2501 ((-2 (|:| -2012 (-583 (-350 |#2|))) (|:| |mat| (-630 |#1|))) (-598 |#2| (-350 |#2|)) (-583 (-350 |#2|)))) (-15 -2502 (|#2| (-597 (-350 |#2|)))) (-15 -2502 (|#2| (-598 |#2| (-350 |#2|))))) (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))) (-1155 |#1|)) (T -730)) -((-2502 (*1 *2 *3) (-12 (-5 *3 (-598 *2 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-730 *4 *2)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-597 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-730 *4 *2)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-350 *6))) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-2 (|:| -2012 (-583 (-350 *6))) (|:| |mat| (-630 *5)))) (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-350 *6))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-730 *5 *6)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-350 *6))) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-2 (|:| -2012 (-583 (-350 *6))) (|:| |mat| (-630 *5)))) (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-350 *6))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) (-5 *1 (-730 *5 *6))))) -((-2503 (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#1|))) |#5| |#4|) 49 T ELT))) -(((-731 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2503 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#1|))) |#5| |#4|))) (-312) (-600 |#1|) (-1155 |#1|) (-661 |#1| |#3|) (-600 |#4|)) (T -731)) -((-2503 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *7 (-1155 *5)) (-4 *4 (-661 *5 *7)) (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1179 *5)))) (-5 *1 (-731 *5 *6 *7 *4 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 *4))))) -((-2504 (((-583 (-2 (|:| |frac| (-350 |#2|)) (|:| -3266 (-598 |#2| (-350 |#2|))))) (-598 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 47 T ELT)) (-2506 (((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-583 (-350 |#2|)) (-597 (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-583 (-350 |#2|)) (-597 (-350 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 38 T ELT) (((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|)) (-1 (-583 |#1|) |#2|)) 39 T ELT) (((-583 (-350 |#2|)) (-597 (-350 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 36 T ELT) (((-583 (-350 |#2|)) (-597 (-350 |#2|)) (-1 (-583 |#1|) |#2|)) 37 T ELT)) (-2505 (((-583 (-2 (|:| |poly| |#2|) (|:| -3266 (-598 |#2| (-350 |#2|))))) (-598 |#2| (-350 |#2|)) (-1 (-583 |#1|) |#2|)) 96 T ELT))) -(((-732 |#1| |#2|) (-10 -7 (-15 -2506 ((-583 (-350 |#2|)) (-597 (-350 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2506 ((-583 (-350 |#2|)) (-597 (-350 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2506 ((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2506 ((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2504 ((-583 (-2 (|:| |frac| (-350 |#2|)) (|:| -3266 (-598 |#2| (-350 |#2|))))) (-598 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2505 ((-583 (-2 (|:| |poly| |#2|) (|:| -3266 (-598 |#2| (-350 |#2|))))) (-598 |#2| (-350 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2506 ((-583 (-350 |#2|)) (-597 (-350 |#2|)))) (-15 -2506 ((-583 (-350 |#2|)) (-597 (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2506 ((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|)))) (-15 -2506 ((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)))) |%noBranch|)) (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))) (-1155 |#1|)) (T -732)) -((-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6)))) (-2506 (*1 *2 *3) (-12 (-5 *3 (-598 *5 (-350 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-583 (-350 *5))) (-5 *1 (-732 *4 *5)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6)))) (-2506 (*1 *2 *3) (-12 (-5 *3 (-597 (-350 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-583 (-350 *5))) (-5 *1 (-732 *4 *5)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3266 (-598 *6 (-350 *6)))))) (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-350 *6))))) (-2504 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-583 (-2 (|:| |frac| (-350 *6)) (|:| -3266 (-598 *6 (-350 *6)))))) (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-350 *6))))) (-2506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 *7 (-350 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *7 (-1155 *6)) (-5 *2 (-583 (-350 *7))) (-5 *1 (-732 *6 *7)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-350 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6)))) (-2506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-350 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *7 (-1155 *6)) (-5 *2 (-583 (-350 *7))) (-5 *1 (-732 *6 *7)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-350 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6))))) -((-2507 (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#1|))) (-630 |#2|) (-1179 |#1|)) 110 T ELT) (((-2 (|:| A (-630 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1179 |#1|)) (|:| -3266 |#2|) (|:| |rh| |#1|))))) (-630 |#1|) (-1179 |#1|)) 15 T ELT)) (-2508 (((-2 (|:| |particular| (-3 (-1179 |#1|) #1="failed")) (|:| -2012 (-583 (-1179 |#1|)))) (-630 |#2|) (-1179 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2012 (-583 |#1|))) |#2| |#1|)) 116 T ELT)) (-3573 (((-3 (-2 (|:| |particular| (-1179 |#1|)) (|:| -2012 (-630 |#1|))) #1#) (-630 |#1|) (-1179 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) -(((-733 |#1| |#2|) (-10 -7 (-15 -2507 ((-2 (|:| A (-630 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1179 |#1|)) (|:| -3266 |#2|) (|:| |rh| |#1|))))) (-630 |#1|) (-1179 |#1|))) (-15 -2507 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#1|))) (-630 |#2|) (-1179 |#1|))) (-15 -3573 ((-3 (-2 (|:| |particular| (-1179 |#1|)) (|:| -2012 (-630 |#1|))) #1="failed") (-630 |#1|) (-1179 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#) |#2| |#1|))) (-15 -2508 ((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2012 (-583 (-1179 |#1|)))) (-630 |#2|) (-1179 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2012 (-583 |#1|))) |#2| |#1|)))) (-312) (-600 |#1|)) (T -733)) -((-2508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2012 (-583 *6))) *7 *6)) (-4 *6 (-312)) (-4 *7 (-600 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 *6) "failed")) (|:| -2012 (-583 (-1179 *6))))) (-5 *1 (-733 *6 *7)) (-5 *4 (-1179 *6)))) (-3573 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2012 (-583 *6))) "failed") *7 *6)) (-4 *6 (-312)) (-4 *7 (-600 *6)) (-5 *2 (-2 (|:| |particular| (-1179 *6)) (|:| -2012 (-630 *6)))) (-5 *1 (-733 *6 *7)) (-5 *3 (-630 *6)) (-5 *4 (-1179 *6)))) (-2507 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-600 *5)) (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1179 *5)))) (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *6)) (-5 *4 (-1179 *5)))) (-2507 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| A (-630 *5)) (|:| |eqs| (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1179 *5)) (|:| -3266 *6) (|:| |rh| *5)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *5)) (-5 *4 (-1179 *5)) (-4 *6 (-600 *5))))) -((-2509 (((-630 |#1|) (-583 |#1|) (-694)) 14 T ELT) (((-630 |#1|) (-583 |#1|)) 15 T ELT)) (-2510 (((-3 (-1179 |#1|) #1="failed") |#2| |#1| (-583 |#1|)) 39 T ELT)) (-3340 (((-3 |#1| #1#) |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)) 46 T ELT))) -(((-734 |#1| |#2|) (-10 -7 (-15 -2509 ((-630 |#1|) (-583 |#1|))) (-15 -2509 ((-630 |#1|) (-583 |#1|) (-694))) (-15 -2510 ((-3 (-1179 |#1|) #1="failed") |#2| |#1| (-583 |#1|))) (-15 -3340 ((-3 |#1| #1#) |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) (-312) (-600 |#1|)) (T -734)) -((-3340 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) (-5 *1 (-734 *2 *3)) (-4 *3 (-600 *2)))) (-2510 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-1179 *4)) (-5 *1 (-734 *4 *3)) (-4 *3 (-600 *4)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-312)) (-5 *2 (-630 *5)) (-5 *1 (-734 *5 *6)) (-4 *6 (-600 *5)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4)) (-5 *1 (-734 *4 *5)) (-4 *5 (-600 *4))))) -((-2568 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3707 (($ (-830)) NIL (|has| |#2| (-961)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-2483 (($ $ $) NIL (|has| |#2| (-717)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3136 (((-694)) NIL (|has| |#2| (-320)) ELT)) (-3788 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1013)) ELT)) (-3156 (((-484) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-350 (-484)) $) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) NIL (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3467 (((-3 $ #1#) $) NIL (|has| |#2| (-961)) ELT)) (-2994 (($) NIL (|has| |#2| (-320)) ELT)) (-1576 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ (-484)) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-2889 (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2608 (((-583 |#2|) $) NIL T ELT)) (-3245 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-3326 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#2| (-320)) ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1179 $)) NIL (|has| |#2| (-961)) ELT)) (-3242 (((-1073) $) NIL (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#2| (-320)) ELT)) (-3243 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3801 ((|#2| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3836 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1468 (($ (-1179 |#2|)) NIL T ELT)) (-3911 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3758 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1946 (((-694) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-694) (-1 (-85) |#2|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-1179 |#2|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-350 (-484))) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) NIL (|has| |#2| (-1013)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3126 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1265 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#2| (-961)) ELT)) (-2660 (($) NIL (|has| |#2| (-23)) CONST)) (-2666 (($) NIL (|has| |#2| (-961)) CONST)) (-2669 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2685 (((-85) $ $) 11 (|has| |#2| (-756)) ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3839 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) NIL (|has| |#2| (-961)) ELT) (($ $ |#2|) NIL (|has| |#2| (-663)) ELT) (($ |#2| $) NIL (|has| |#2| (-663)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-735 |#1| |#2| |#3|) (-196 |#1| |#2|) (-694) (-717) (-1 (-85) (-1179 |#2|) (-1179 |#2|))) (T -735)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1488 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ (-1090)) NIL T ELT)) (-1522 (((-694) $) NIL T ELT) (((-694) $ (-1090)) NIL T ELT)) (-3081 (((-583 (-738 (-1090))) $) NIL T ELT)) (-3083 (((-1085 $) $ (-738 (-1090))) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-738 (-1090)))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-1484 (($ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-738 (-1090)) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL T ELT) (((-3 (-1039 |#1| (-1090)) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-738 (-1090)) $) NIL T ELT) (((-1090) $) NIL T ELT) (((-1039 |#1| (-1090)) $) NIL T ELT)) (-3756 (($ $ $ (-738 (-1090))) NIL (|has| |#1| (-146)) ELT)) (-3959 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-738 (-1090))) NIL (|has| |#1| (-392)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-469 (-738 (-1090))) $) NIL T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-738 (-1090)) (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-738 (-1090)) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3772 (((-694) $ (-1090)) NIL T ELT) (((-694) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1085 |#1|) (-738 (-1090))) NIL T ELT) (($ (-1085 $) (-738 (-1090))) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-469 (-738 (-1090)))) NIL T ELT) (($ $ (-738 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1090))) (-583 (-694))) NIL T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-738 (-1090))) NIL T ELT)) (-2820 (((-469 (-738 (-1090))) $) NIL T ELT) (((-694) $ (-738 (-1090))) NIL T ELT) (((-583 (-694)) $ (-583 (-738 (-1090)))) NIL T ELT)) (-1625 (($ (-1 (-469 (-738 (-1090))) (-469 (-738 (-1090)))) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1523 (((-1 $ (-694)) (-1090)) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3082 (((-3 (-738 (-1090)) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1486 (((-738 (-1090)) $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1487 (((-85) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-738 (-1090))) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-1485 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-738 (-1090)) |#1|) NIL T ELT) (($ $ (-583 (-738 (-1090))) (-583 |#1|)) NIL T ELT) (($ $ (-738 (-1090)) $) NIL T ELT) (($ $ (-583 (-738 (-1090))) (-583 $)) NIL T ELT) (($ $ (-1090) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1090)) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3757 (($ $ (-738 (-1090))) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-583 (-738 (-1090))) (-583 (-694))) NIL T ELT) (($ $ (-738 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1090)))) NIL T ELT) (($ $ (-738 (-1090))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1489 (((-583 (-1090)) $) NIL T ELT)) (-3948 (((-469 (-738 (-1090))) $) NIL T ELT) (((-694) $ (-738 (-1090))) NIL T ELT) (((-583 (-694)) $ (-583 (-738 (-1090)))) NIL T ELT) (((-694) $ (-1090)) NIL T ELT)) (-3972 (((-800 (-330)) $) NIL (-12 (|has| (-738 (-1090)) (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-738 (-1090)) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-738 (-1090)) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-738 (-1090))) NIL (|has| |#1| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-738 (-1090))) NIL T ELT) (($ (-1090)) NIL T ELT) (($ (-1039 |#1| (-1090))) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3817 (((-583 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-469 (-738 (-1090)))) NIL T ELT) (($ $ (-738 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1090))) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-738 (-1090))) (-583 (-694))) NIL T ELT) (($ $ (-738 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1090)))) NIL T ELT) (($ $ (-738 (-1090))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-736 |#1|) (-13 (-213 |#1| (-1090) (-738 (-1090)) (-469 (-738 (-1090)))) (-950 (-1039 |#1| (-1090)))) (-961)) (T -736)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#2| (-312)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-312)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#2| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3724 (($) NIL T CONST)) (-2564 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#2| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-1891 (($ (-583 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 20 (|has| |#2| (-312)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-1607 (((-694) $) NIL (|has| |#2| (-312)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3758 (($ $) 13 T ELT) (($ $ (-694)) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-350 (-484))) NIL (|has| |#2| (-312)) ELT) (($ $) NIL (|has| |#2| (-312)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) 15 (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ $ (-484)) 18 (|has| |#2| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| |#2| (-312)) ELT) (($ $ (-350 (-484))) NIL (|has| |#2| (-312)) ELT))) -(((-737 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-430 |#2|) (-10 -7 (IF (|has| |#2| (-312)) (-6 (-312)) |%noBranch|))) (-1013) (-809 |#1|) |#1|) (T -737)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-1522 (((-694) $) NIL T ELT)) (-3831 ((|#1| $) 10 T ELT)) (-3157 (((-3 |#1| "failed") $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-3772 (((-694) $) 11 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-1523 (($ |#1| (-694)) 9 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3758 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2669 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) -(((-738 |#1|) (-228 |#1|) (-756)) (T -738)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3934 (((-583 |#1|) $) 39 T ELT)) (-3136 (((-694) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3939 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3157 (((-3 |#1| #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-3799 (($ $) 43 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1750 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-2300 (((-694) $ (-484)) NIL T ELT)) (-3936 (($ $) 55 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-2290 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2291 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3940 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2511 (((-85) $ $) 52 T ELT)) (-3833 (((-694) $) 35 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1751 (($ $ $) NIL T ELT)) (-1752 (($ $ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3801 ((|#1| $) 42 T ELT)) (-1779 (((-583 (-2 (|:| |gen| |#1|) (|:| -3943 (-694)))) $) NIL T ELT)) (-2879 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2565 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2666 (($) 7 T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 54 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ |#1| (-694)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-739 |#1|) (-13 (-336 |#1|) (-754) (-10 -8 (-15 -3801 (|#1| $)) (-15 -3799 ($ $)) (-15 -3936 ($ $)) (-15 -2511 ((-85) $ $)) (-15 -3940 ((-3 $ #1="failed") $ |#1|)) (-15 -3939 ((-3 $ #1#) $ |#1|)) (-15 -2565 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3833 ((-694) $)) (-15 -3934 ((-583 |#1|) $)))) (-756)) (T -739)) -((-3801 (*1 *2 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3799 (*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3936 (*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-2511 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3940 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3939 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-2565 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-739 *3)) (|:| |rm| (-739 *3)))) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-739 *3)) (-4 *3 (-756))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3623 (((-484) $) 69 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3186 (((-85) $) 67 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3187 (((-85) $) 68 T ELT)) (-2531 (($ $ $) 61 T ELT)) (-2857 (($ $ $) 62 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3383 (($ $) 70 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 63 T ELT)) (-2567 (((-85) $ $) 65 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 64 T ELT)) (-2685 (((-85) $ $) 66 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-740) (-113)) (T -740)) -NIL -(-13 (-495) (-755)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2512 ((|#1| $) 10 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2513 (($ |#1|) 9 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-694)) NIL T ELT)) (-2820 (((-694) $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3758 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-694)) NIL (|has| |#1| (-190)) ELT)) (-3948 (((-694) $) NIL T ELT)) (-3946 (((-772) $) 17 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3677 ((|#2| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-694)) NIL (|has| |#1| (-190)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-741 |#1| |#2|) (-13 (-645 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2513 ($ |#1|)) (-15 -2512 (|#1| $)))) (-645 |#2|) (-961)) (T -741)) -((-2513 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-741 *2 *3)) (-4 *2 (-645 *3)))) (-2512 (*1 *2 *1) (-12 (-4 *2 (-645 *3)) (-5 *1 (-741 *2 *3)) (-4 *3 (-961))))) -((-2568 (((-85) $ $) 19 T ELT)) (-3234 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3236 (($ $ $) 77 T ELT)) (-3235 (((-85) $ $) 78 T ELT)) (-3239 (($ (-583 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2368 (($ $) 66 T ELT)) (-1353 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ |#1| $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3995)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3241 (((-85) $ $) 69 T ELT)) (-2531 ((|#1| $) 84 T ELT)) (-2856 (($ $ $) 87 T ELT)) (-3518 (($ $ $) 86 T ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2857 ((|#1| $) 85 T ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1073) $) 22 T ELT)) (-3238 (($ $ $) 74 T ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT) (($ |#1| $ (-694)) 67 T ELT)) (-3243 (((-1033) $) 21 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1946 (-694)))) $) 65 T ELT)) (-3237 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1466 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 T ELT) (((-694) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 63 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 54 T ELT)) (-3946 (((-772) $) 17 T ELT)) (-3240 (($ (-583 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1265 (((-85) $ $) 20 T ELT)) (-1276 (($ (-583 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 T ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-742 |#1|) (-113) (-756)) (T -742)) -((-2531 (*1 *2 *1) (-12 (-4 *1 (-742 *2)) (-4 *2 (-756))))) -(-13 (-676 |t#1|) (-881 |t#1|) (-10 -8 (-15 -2531 (|t#1| $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-634 |#1|) . T) ((-676 |#1|) . T) ((-881 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1035 |#1|) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3623 (((-484) $) NIL (|has| |#1| (-755)) ELT)) (-3724 (($) NIL (|has| |#1| (-21)) CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 9 T ELT)) (-3467 (((-3 $ #1#) $) 42 (|has| |#1| (-755)) ELT)) (-3024 (((-3 (-350 (-484)) #1#) $) 51 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 46 (|has| |#1| (-483)) ELT)) (-3022 (((-350 (-484)) $) 48 (|has| |#1| (-483)) ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2410 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2514 (($) 13 T ELT)) (-2524 (((-85) $) 12 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2525 (((-85) $) 11 T ELT)) (-3946 (((-772) $) 18 T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) 8 T ELT) (($ (-484)) NIL (OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ELT)) (-3126 (((-694)) 36 (|has| |#1| (-755)) CONST)) (-1265 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3383 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2660 (($) 23 (|has| |#1| (-21)) CONST)) (-2666 (($) 33 (|has| |#1| (-755)) CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3056 (((-85) $ $) 21 T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2685 (((-85) $ $) 45 (|has| |#1| (-755)) ELT)) (-3837 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3839 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-830)) NIL (|has| |#1| (-755)) ELT) (($ $ (-694)) NIL (|has| |#1| (-755)) ELT)) (* (($ $ $) 39 (|has| |#1| (-755)) ELT) (($ (-484) $) 27 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-21)) ELT))) -(((-743 |#1|) (-13 (-1013) (-355 |#1|) (-10 -8 (-15 -2514 ($)) (-15 -2525 ((-85) $)) (-15 -2524 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-350 (-484)) $)) (-15 -3024 ((-3 (-350 (-484)) "failed") $))) |%noBranch|))) (-1013)) (T -743)) -((-2514 (*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1013)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3024 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))) -((-3958 (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|)) 12 T ELT) (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|)) 13 T ELT))) -(((-744 |#1| |#2|) (-10 -7 (-15 -3958 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|))) (-15 -3958 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|)))) (-1013) (-1013)) (T -744)) -((-3958 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-744 *5 *6)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2516 ((|#1| (-86) |#1|) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2515 (($ |#1| (-310 (-86))) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2517 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2518 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3800 ((|#1| $ |#1|) NIL T ELT)) (-2519 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2520 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ (-86) (-484)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-745 |#1|) (-13 (-961) (-950 |#1|) (-950 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2520 ($ $)) (-15 -2520 ($ $ $)) (-15 -2519 (|#1| |#1|))) |%noBranch|) (-15 -2518 ($ $ (-1 |#1| |#1|))) (-15 -2517 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-484))) (-15 ** ($ $ (-484))) (-15 -2516 (|#1| (-86) |#1|)) (-15 -2515 ($ |#1| (-310 (-86)))))) (-961)) (T -745)) -((-2520 (*1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2520 (*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2519 (*1 *2 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-5 *1 (-745 *4)) (-4 *4 (-961)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-745 *3)) (-4 *3 (-961)))) (-2516 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-745 *2)) (-4 *2 (-961)))) (-2515 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-745 *2)) (-4 *2 (-961))))) -((-2633 (((-85) $ |#2|) 14 T ELT)) (-3946 (((-772) $) 11 T ELT))) -(((-746 |#1| |#2|) (-10 -7 (-15 -2633 ((-85) |#1| |#2|)) (-15 -3946 ((-772) |#1|))) (-747 |#2|) (-1013)) (T -746)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3542 ((|#1| $) 19 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2633 (((-85) $ |#1|) 17 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2521 (((-55) $) 18 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) -(((-747 |#1|) (-113) (-1013)) (T -747)) -((-3542 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-1013)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-55)))) (-2633 (*1 *2 *1 *3) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) -(-13 (-1013) (-10 -8 (-15 -3542 (|t#1| $)) (-15 -2521 ((-55) $)) (-15 -2633 ((-85) $ |t#1|)))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-2522 (((-167 (-441)) (-1073)) 9 T ELT))) -(((-748) (-10 -7 (-15 -2522 ((-167 (-441)) (-1073))))) (T -748)) -((-2522 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-167 (-441))) (-5 *1 (-748))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3319 (((-1028) $) 10 T ELT)) (-3542 (((-446) $) 9 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2633 (((-85) $ (-446)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3530 (($ (-446) (-1028)) 8 T ELT)) (-3946 (((-772) $) 25 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2521 (((-55) $) 20 T ELT)) (-3056 (((-85) $ $) 12 T ELT))) -(((-749) (-13 (-747 (-446)) (-10 -8 (-15 -3319 ((-1028) $)) (-15 -3530 ($ (-446) (-1028)))))) (T -749)) -((-3319 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-749)))) (-3530 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-749))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2523 (((-1033) $) 31 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3623 (((-484) $) NIL (|has| |#1| (-755)) ELT)) (-3724 (($) NIL (|has| |#1| (-21)) CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 9 T ELT)) (-3467 (((-3 $ #1#) $) 57 (|has| |#1| (-755)) ELT)) (-3024 (((-3 (-350 (-484)) #1#) $) 65 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 60 (|has| |#1| (-483)) ELT)) (-3022 (((-350 (-484)) $) 63 (|has| |#1| (-483)) ELT)) (-3186 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2527 (($) 14 T ELT)) (-1214 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2410 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2526 (($) 16 T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2524 (((-85) $) 12 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2525 (((-85) $) 11 T ELT)) (-3946 (((-772) $) 24 T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) 8 T ELT) (($ (-484)) NIL (OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ELT)) (-3126 (((-694)) 50 (|has| |#1| (-755)) CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3383 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2660 (($) 37 (|has| |#1| (-21)) CONST)) (-2666 (($) 47 (|has| |#1| (-755)) CONST)) (-2566 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3056 (((-85) $ $) 35 T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2685 (((-85) $ $) 59 (|has| |#1| (-755)) ELT)) (-3837 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3839 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-830)) NIL (|has| |#1| (-755)) ELT) (($ $ (-694)) NIL (|has| |#1| (-755)) ELT)) (* (($ $ $) 54 (|has| |#1| (-755)) ELT) (($ (-484) $) 41 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-21)) ELT))) -(((-750 |#1|) (-13 (-1013) (-355 |#1|) (-10 -8 (-15 -2527 ($)) (-15 -2526 ($)) (-15 -2525 ((-85) $)) (-15 -2524 ((-85) $)) (-15 -2523 ((-1033) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-350 (-484)) $)) (-15 -3024 ((-3 (-350 (-484)) "failed") $))) |%noBranch|))) (-1013)) (T -750)) -((-2527 (*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013)))) (-2526 (*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3024 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))) -((-3958 (((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|) (-750 |#2|) (-750 |#2|)) 13 T ELT) (((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|)) 14 T ELT))) -(((-751 |#1| |#2|) (-10 -7 (-15 -3958 ((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|))) (-15 -3958 ((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|) (-750 |#2|) (-750 |#2|)))) (-1013) (-1013)) (T -751)) -((-3958 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-750 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-751 *5 *6)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-750 *6)) (-5 *1 (-751 *5 *6))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3136 (((-694)) 27 T ELT)) (-2994 (($) 30 T ELT)) (-2531 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2857 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2010 (((-830) $) 29 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2400 (($ (-830)) 28 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT))) -(((-752) (-113)) (T -752)) -((-2531 (*1 *1) (-4 *1 (-752))) (-2857 (*1 *1) (-4 *1 (-752)))) -(-13 (-756) (-320) (-10 -8 (-15 -2531 ($) -3952) (-15 -2857 ($) -3952))) -(((-72) . T) ((-552 (-772)) . T) ((-320) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1129) . T)) -((-2529 (((-85) (-1179 |#2|) (-1179 |#2|)) 19 T ELT)) (-2530 (((-85) (-1179 |#2|) (-1179 |#2|)) 20 T ELT)) (-2528 (((-85) (-1179 |#2|) (-1179 |#2|)) 16 T ELT))) -(((-753 |#1| |#2|) (-10 -7 (-15 -2528 ((-85) (-1179 |#2|) (-1179 |#2|))) (-15 -2529 ((-85) (-1179 |#2|) (-1179 |#2|))) (-15 -2530 ((-85) (-1179 |#2|) (-1179 |#2|)))) (-694) (-716)) (T -753)) -((-2530 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694)))) (-2529 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694)))) (-2528 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3724 (($) 29 T CONST)) (-3467 (((-3 $ "failed") $) 32 T ELT)) (-2410 (((-85) $) 30 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2666 (($) 28 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (** (($ $ (-830)) 26 T ELT) (($ $ (-694)) 31 T ELT)) (* (($ $ $) 25 T ELT))) -(((-754) (-113)) (T -754)) -NIL -(-13 (-766) (-663)) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-766) . T) ((-756) . T) ((-759) . T) ((-1025) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 31 T ELT)) (-1312 (((-3 $ "failed") $ $) 35 T ELT)) (-3623 (((-484) $) 38 T ELT)) (-3724 (($) 30 T CONST)) (-3467 (((-3 $ "failed") $) 55 T ELT)) (-3186 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-2410 (((-85) $) 53 T ELT)) (-3187 (((-85) $) 39 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 56 T ELT)) (-3126 (((-694)) 57 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 51 T ELT)) (-3383 (($ $) 37 T ELT)) (-2660 (($) 29 T CONST)) (-2666 (($) 52 T CONST)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (-3837 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3839 (($ $ $) 25 T ELT)) (** (($ $ (-694)) 54 T ELT) (($ $ (-830)) 49 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ (-484) $) 40 T ELT) (($ $ $) 50 T ELT))) +((-2484 (*1 *1 *1 *1) (-4 *1 (-718)))) +(-13 (-722) (-10 -8 (-15 -2484 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 7 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT))) +(((-719) (-113)) (T -719)) +NIL +(-13 (-757) (-25)) +(((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T)) +((-3189 (((-85) $) 42 T ELT)) (-3158 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3157 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) 78 T ELT)) (-3024 (((-85) $) 72 T ELT)) (-3023 (((-350 (-485)) $) 76 T ELT)) (-3133 ((|#2| $) 26 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2485 (($ $) 58 T ELT)) (-3973 (((-474) $) 67 T ELT)) (-3010 (($ $) 21 T ELT)) (-3947 (((-773) $) 53 T ELT) (($ (-485)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3127 (((-695)) 10 T CONST)) (-3384 ((|#2| $) 71 T ELT)) (-3057 (((-85) $ $) 30 T ELT)) (-2686 (((-85) $ $) 69 T ELT)) (-3838 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 31 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) +(((-720 |#1| |#2|) (-10 -7 (-15 -2686 ((-85) |#1| |#1|)) (-15 -3973 ((-474) |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -3025 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3023 ((-350 (-485)) |#1|)) (-15 -3024 ((-85) |#1|)) (-15 -3384 (|#2| |#1|)) (-15 -3133 (|#2| |#1|)) (-15 -3010 (|#1| |#1|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3947 (|#1| (-350 (-485)))) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3127 ((-695)) -3953) (-15 -3947 (|#1| (-485))) (-15 * (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3189 ((-85) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3947 ((-773) |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-721 |#2|) (-146)) (T -720)) +((-3127 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-720 *3 *4)) (-4 *3 (-721 *4))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3137 (((-695)) 67 (|has| |#1| (-320)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-485) #1="failed") $) 109 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 106 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 103 T ELT)) (-3157 (((-485) $) 108 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 105 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 104 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3644 ((|#1| $) 93 T ELT)) (-3025 (((-3 (-350 (-485)) "failed") $) 80 (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) 82 (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) 81 (|has| |#1| (-484)) ELT)) (-2995 (($) 70 (|has| |#1| (-320)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2490 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 84 T ELT)) (-3133 ((|#1| $) 85 T ELT)) (-2532 (($ $ $) 71 (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) 72 (|has| |#1| (-757)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 95 T ELT)) (-2011 (((-831) $) 69 (|has| |#1| (-320)) ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 79 (|has| |#1| (-312)) ELT)) (-2401 (($ (-831)) 68 (|has| |#1| (-320)) ELT)) (-2487 ((|#1| $) 90 T ELT)) (-2488 ((|#1| $) 91 T ELT)) (-2489 ((|#1| $) 92 T ELT)) (-3007 ((|#1| $) 86 T ELT)) (-3008 ((|#1| $) 87 T ELT)) (-3009 ((|#1| $) 88 T ELT)) (-2486 ((|#1| $) 89 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3769 (($ $ (-584 |#1|) (-584 |#1|)) 101 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 100 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 98 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 97 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 96 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3801 (($ $ |#1|) 102 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3973 (((-474) $) 77 (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $) 94 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-485))) 107 (|has| |#1| (-951 (-350 (-485)))) ELT)) (-2703 (((-633 $) $) 78 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3384 ((|#1| $) 83 (|has| |#1| (-974)) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 73 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 75 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 74 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 76 (|has| |#1| (-757)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT))) +(((-721 |#1|) (-113) (-146)) (T -721)) +((-3010 (*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2490 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-3025 (*1 *2 *1) (|partial| -12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-2485 (*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) +(-13 (-38 |t#1|) (-355 |t#1|) (-288 |t#1|) (-10 -8 (-15 -3010 ($ $)) (-15 -3644 (|t#1| $)) (-15 -2489 (|t#1| $)) (-15 -2488 (|t#1| $)) (-15 -2487 (|t#1| $)) (-15 -2486 (|t#1| $)) (-15 -3009 (|t#1| $)) (-15 -3008 (|t#1| $)) (-15 -3007 (|t#1| $)) (-15 -3133 (|t#1| $)) (-15 -2490 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -3384 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-485)) $)) (-15 -3025 ((-3 (-350 (-485)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -2485 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-320) |has| |#1| (-320)) ((-288 |#1|) . T) ((-355 |#1|) . T) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3725 (($) 30 T CONST)) (-3187 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 29 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT))) +(((-722) (-113)) (T -722)) +NIL +(-13 (-717) (-104)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-717) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-910 |#1|) #1#) $) 35 T ELT) (((-3 (-485) #1#) $) NIL (OR (|has| (-910 |#1|) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (OR (|has| (-910 |#1|) (-951 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3157 ((|#1| $) NIL T ELT) (((-910 |#1|) $) 33 T ELT) (((-485) $) NIL (OR (|has| (-910 |#1|) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT) (((-350 (-485)) $) NIL (OR (|has| (-910 |#1|) (-951 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3644 ((|#1| $) 16 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) NIL (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2490 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-910 |#1|) (-910 |#1|)) 29 T ELT)) (-3133 ((|#1| $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2487 ((|#1| $) 22 T ELT)) (-2488 ((|#1| $) 20 T ELT)) (-2489 ((|#1| $) 18 T ELT)) (-3007 ((|#1| $) 26 T ELT)) (-3008 ((|#1| $) 25 T ELT)) (-3009 ((|#1| $) 24 T ELT)) (-2486 ((|#1| $) 23 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3769 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3801 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-910 |#1|)) 30 T ELT) (($ (-350 (-485))) NIL (OR (|has| (-910 |#1|) (-951 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 ((|#1| $) NIL (|has| |#1| (-974)) ELT)) (-2661 (($) 8 T CONST)) (-2667 (($) 12 T CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-723 |#1|) (-13 (-721 |#1|) (-355 (-910 |#1|)) (-10 -8 (-15 -2490 ($ (-910 |#1|) (-910 |#1|))))) (-146)) (T -723)) +((-2490 (*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-146)) (-5 *1 (-723 *3))))) +((-3959 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) +(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#3| (-1 |#4| |#2|) |#1|))) (-721 |#2|) (-146) (-721 |#4|) (-146)) (T -724)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-721 *6)) (-5 *1 (-724 *4 *5 *2 *6)) (-4 *4 (-721 *5))))) +((-2491 (((-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#3| |#2| (-1091)) 19 T ELT))) +(((-725 |#1| |#2| |#3|) (-10 -7 (-15 -2491 ((-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#3| |#2| (-1091)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-872)) (-601 |#2|)) (T -725)) +((-2491 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-4 *4 (-13 (-29 *6) (-1116) (-872))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4)))) (-5 *1 (-725 *6 *4 *3)) (-4 *3 (-601 *4))))) +((-3574 (((-3 |#2| #1="failed") |#2| (-86) (-249 |#2|) (-584 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) |#2| (-86) (-1091)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1091)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1#) (-584 |#2|) (-584 (-86)) (-1091)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1#) (-584 (-249 |#2|)) (-584 (-86)) (-1091)) 26 T ELT) (((-3 (-584 (-1180 |#2|)) #1#) (-631 |#2|) (-1091)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1#) (-631 |#2|) (-1180 |#2|) (-1091)) 35 T ELT))) +(((-726 |#1| |#2|) (-10 -7 (-15 -3574 ((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1="failed") (-631 |#2|) (-1180 |#2|) (-1091))) (-15 -3574 ((-3 (-584 (-1180 |#2|)) #1#) (-631 |#2|) (-1091))) (-15 -3574 ((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1#) (-584 (-249 |#2|)) (-584 (-86)) (-1091))) (-15 -3574 ((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1#) (-584 |#2|) (-584 (-86)) (-1091))) (-15 -3574 ((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1091))) (-15 -3574 ((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) |#2| (-86) (-1091))) (-15 -3574 ((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|))) (-15 -3574 ((-3 |#2| #1#) |#2| (-86) (-249 |#2|) (-584 |#2|)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-872))) (T -726)) +((-3574 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-726 *6 *2)))) (-3574 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1116) (-872))) (-5 *1 (-726 *6 *2)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2013 (-584 *3))) *3 #1="failed")) (-5 *1 (-726 *6 *3)) (-4 *3 (-13 (-29 *6) (-1116) (-872))))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2013 (-584 *7))) *7 #1#)) (-5 *1 (-726 *6 *7)))) (-3574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7))))) (-5 *1 (-726 *6 *7)))) (-3574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7))))) (-5 *1 (-726 *6 *7)))) (-3574 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-631 *6)) (-5 *4 (-1091)) (-4 *6 (-13 (-29 *5) (-1116) (-872))) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-1180 *6))) (-5 *1 (-726 *5 *6)))) (-3574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-631 *7)) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7))))) (-5 *1 (-726 *6 *7)) (-5 *4 (-1180 *7))))) +((-3471 ((|#2| |#2| (-1091)) 17 T ELT)) (-2492 ((|#2| |#2| (-1091)) 56 T ELT)) (-2493 (((-1 |#2| |#2|) (-1091)) 11 T ELT))) +(((-727 |#1| |#2|) (-10 -7 (-15 -3471 (|#2| |#2| (-1091))) (-15 -2492 (|#2| |#2| (-1091))) (-15 -2493 ((-1 |#2| |#2|) (-1091)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-872))) (T -727)) +((-2493 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-727 *4 *5)) (-4 *5 (-13 (-29 *4) (-1116) (-872))))) (-2492 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-872))))) (-3471 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-872)))))) +((-2494 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2013 (-584 |#4|))) (-598 |#4|) |#4|) 33 T ELT))) +(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2494 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2013 (-584 |#4|))) (-598 |#4|) |#4|))) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -728)) +((-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *4)) (-4 *4 (-291 *5 *6 *7)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-728 *5 *6 *7 *4))))) +((-3742 (((-2 (|:| -3267 |#3|) (|:| |rh| (-584 (-350 |#2|)))) |#4| (-584 (-350 |#2|))) 53 T ELT)) (-2496 (((-584 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#4| |#2|) 62 T ELT) (((-584 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#4|) 61 T ELT) (((-584 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#3| |#2|) 20 T ELT) (((-584 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#3|) 21 T ELT)) (-2497 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2495 ((|#2| |#3| (-584 (-350 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-350 |#2|)) 105 T ELT))) +(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2495 ((-3 |#2| "failed") |#3| (-350 |#2|))) (-15 -2495 (|#2| |#3| (-584 (-350 |#2|)))) (-15 -2496 ((-584 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#3|)) (-15 -2496 ((-584 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#3| |#2|)) (-15 -2497 (|#2| |#3| |#1|)) (-15 -2496 ((-584 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#4|)) (-15 -2496 ((-584 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#4| |#2|)) (-15 -2497 (|#2| |#4| |#1|)) (-15 -3742 ((-2 (|:| -3267 |#3|) (|:| |rh| (-584 (-350 |#2|)))) |#4| (-584 (-350 |#2|))))) (-13 (-312) (-120) (-951 (-350 (-485)))) (-1156 |#1|) (-601 |#2|) (-601 (-350 |#2|))) (T -729)) +((-3742 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-2 (|:| -3267 *7) (|:| |rh| (-584 (-350 *6))))) (-5 *1 (-729 *5 *6 *7 *3)) (-5 *4 (-584 (-350 *6))) (-4 *7 (-601 *6)) (-4 *3 (-601 (-350 *6))))) (-2497 (*1 *2 *3 *4) (-12 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *5 *3)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-601 *2)) (-4 *3 (-601 (-350 *2))))) (-2496 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -3774 *4) (|:| -3227 *4)))) (-5 *1 (-729 *5 *4 *6 *3)) (-4 *6 (-601 *4)) (-4 *3 (-601 (-350 *4))))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-2 (|:| -3774 *5) (|:| -3227 *5)))) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 (-350 *5))))) (-2497 (*1 *2 *3 *4) (-12 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-350 *2))))) (-2496 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -3774 *4) (|:| -3227 *4)))) (-5 *1 (-729 *5 *4 *3 *6)) (-4 *3 (-601 *4)) (-4 *6 (-601 (-350 *4))))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-2 (|:| -3774 *5) (|:| -3227 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5))))) (-2495 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-350 *2))) (-4 *2 (-1156 *5)) (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *6 (-601 (-350 *2))))) (-2495 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *6 (-601 *4))))) +((-2505 (((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3267 |#3|))) |#3| (-1 (-584 |#2|) |#2| (-1086 |#2|)) (-1 (-348 |#2|) |#2|)) 156 T ELT)) (-2506 (((-584 (-2 (|:| |poly| |#2|) (|:| -3267 |#3|))) |#3| (-1 (-584 |#1|) |#2|)) 52 T ELT)) (-2499 (((-584 (-2 (|:| |deg| (-695)) (|:| -3267 |#2|))) |#3|) 123 T ELT)) (-2498 ((|#2| |#3|) 42 T ELT)) (-2500 (((-584 (-2 (|:| -3953 |#1|) (|:| -3267 |#3|))) |#3| (-1 (-584 |#1|) |#2|)) 100 T ELT)) (-2501 ((|#3| |#3| (-350 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) +(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2498 (|#2| |#3|)) (-15 -2499 ((-584 (-2 (|:| |deg| (-695)) (|:| -3267 |#2|))) |#3|)) (-15 -2500 ((-584 (-2 (|:| -3953 |#1|) (|:| -3267 |#3|))) |#3| (-1 (-584 |#1|) |#2|))) (-15 -2506 ((-584 (-2 (|:| |poly| |#2|) (|:| -3267 |#3|))) |#3| (-1 (-584 |#1|) |#2|))) (-15 -2505 ((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3267 |#3|))) |#3| (-1 (-584 |#2|) |#2| (-1086 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2501 (|#3| |#3| |#2|)) (-15 -2501 (|#3| |#3| (-350 |#2|)))) (-13 (-312) (-120) (-951 (-350 (-485)))) (-1156 |#1|) (-601 |#2|) (-601 (-350 |#2|))) (T -730)) +((-2501 (*1 *2 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *2 (-601 *5)) (-4 *6 (-601 *3)))) (-2501 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-1156 *4)) (-5 *1 (-730 *4 *3 *2 *5)) (-4 *2 (-601 *3)) (-4 *5 (-601 (-350 *3))))) (-2505 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-584 *7) *7 (-1086 *7))) (-5 *5 (-1 (-348 *7) *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-312) (-120) (-951 (-350 (-485))))) (-5 *2 (-584 (-2 (|:| |frac| (-350 *7)) (|:| -3267 *3)))) (-5 *1 (-730 *6 *7 *3 *8)) (-4 *3 (-601 *7)) (-4 *8 (-601 (-350 *7))))) (-2506 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3267 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6))))) (-2500 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -3953 *5) (|:| -3267 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6))))) (-2499 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -3267 *5)))) (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5))))) (-2498 (*1 *2 *3) (-12 (-4 *2 (-1156 *4)) (-5 *1 (-730 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-350 *2)))))) +((-2502 (((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-599 |#2| (-350 |#2|)) (-584 (-350 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2013 (-584 (-350 |#2|)))) (-599 |#2| (-350 |#2|)) (-350 |#2|)) 145 T ELT) (((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-598 (-350 |#2|)) (-584 (-350 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2013 (-584 (-350 |#2|)))) (-598 (-350 |#2|)) (-350 |#2|)) 138 T ELT)) (-2503 ((|#2| (-599 |#2| (-350 |#2|))) 86 T ELT) ((|#2| (-598 (-350 |#2|))) 89 T ELT))) +(((-731 |#1| |#2|) (-10 -7 (-15 -2502 ((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2013 (-584 (-350 |#2|)))) (-598 (-350 |#2|)) (-350 |#2|))) (-15 -2502 ((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-598 (-350 |#2|)) (-584 (-350 |#2|)))) (-15 -2502 ((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2013 (-584 (-350 |#2|)))) (-599 |#2| (-350 |#2|)) (-350 |#2|))) (-15 -2502 ((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-599 |#2| (-350 |#2|)) (-584 (-350 |#2|)))) (-15 -2503 (|#2| (-598 (-350 |#2|)))) (-15 -2503 (|#2| (-599 |#2| (-350 |#2|))))) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1156 |#1|)) (T -731)) +((-2503 (*1 *2 *3) (-12 (-5 *3 (-599 *2 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-598 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5)))) (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-731 *5 *6)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5)))) (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) (-5 *1 (-731 *5 *6))))) +((-2504 (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) |#5| |#4|) 49 T ELT))) +(((-732 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2504 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) |#5| |#4|))) (-312) (-601 |#1|) (-1156 |#1|) (-662 |#1| |#3|) (-601 |#4|)) (T -732)) +((-2504 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *7 (-1156 *5)) (-4 *4 (-662 *5 *7)) (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5)))) (-5 *1 (-732 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4))))) +((-2505 (((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3267 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 47 T ELT)) (-2507 (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 38 T ELT) (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 39 T ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 36 T ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 37 T ELT)) (-2506 (((-584 (-2 (|:| |poly| |#2|) (|:| -3267 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 96 T ELT))) +(((-733 |#1| |#2|) (-10 -7 (-15 -2507 ((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (-15 -2507 ((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2507 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (-15 -2507 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2505 ((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3267 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2506 ((-584 (-2 (|:| |poly| |#2|) (|:| -3267 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2507 ((-584 (-350 |#2|)) (-598 (-350 |#2|)))) (-15 -2507 ((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2507 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)))) (-15 -2507 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)))) |%noBranch|)) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1156 |#1|)) (T -733)) +((-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-599 *5 (-350 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-598 (-350 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3267 (-599 *6 (-350 *6)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6))))) (-2505 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-2 (|:| |frac| (-350 *6)) (|:| -3267 (-599 *6 (-350 *6)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6))))) (-2507 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 *7 (-350 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *7 (-1156 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) (-2507 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-350 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *7 (-1156 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6))))) +((-2508 (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) (-631 |#2|) (-1180 |#1|)) 110 T ELT) (((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)) (|:| -3267 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1180 |#1|)) 15 T ELT)) (-2509 (((-2 (|:| |particular| (-3 (-1180 |#1|) #1="failed")) (|:| -2013 (-584 (-1180 |#1|)))) (-631 |#2|) (-1180 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2013 (-584 |#1|))) |#2| |#1|)) 116 T ELT)) (-3574 (((-3 (-2 (|:| |particular| (-1180 |#1|)) (|:| -2013 (-631 |#1|))) #1#) (-631 |#1|) (-1180 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) +(((-734 |#1| |#2|) (-10 -7 (-15 -2508 ((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)) (|:| -3267 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1180 |#1|))) (-15 -2508 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) (-631 |#2|) (-1180 |#1|))) (-15 -3574 ((-3 (-2 (|:| |particular| (-1180 |#1|)) (|:| -2013 (-631 |#1|))) #1="failed") (-631 |#1|) (-1180 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#) |#2| |#1|))) (-15 -2509 ((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|)))) (-631 |#2|) (-1180 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2013 (-584 |#1|))) |#2| |#1|)))) (-312) (-601 |#1|)) (T -734)) +((-2509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2013 (-584 *6))) *7 *6)) (-4 *6 (-312)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 *6) "failed")) (|:| -2013 (-584 (-1180 *6))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1180 *6)))) (-3574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2013 (-584 *6))) "failed") *7 *6)) (-4 *6 (-312)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-1180 *6)) (|:| -2013 (-631 *6)))) (-5 *1 (-734 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *6)))) (-2508 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-601 *5)) (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5)))) (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *5)))) (-2508 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| A (-631 *5)) (|:| |eqs| (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5)) (|:| -3267 *6) (|:| |rh| *5)))))) (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *6 (-601 *5))))) +((-2510 (((-631 |#1|) (-584 |#1|) (-695)) 14 T ELT) (((-631 |#1|) (-584 |#1|)) 15 T ELT)) (-2511 (((-3 (-1180 |#1|) #1="failed") |#2| |#1| (-584 |#1|)) 39 T ELT)) (-3341 (((-3 |#1| #1#) |#2| |#1| (-584 |#1|) (-1 |#1| |#1|)) 46 T ELT))) +(((-735 |#1| |#2|) (-10 -7 (-15 -2510 ((-631 |#1|) (-584 |#1|))) (-15 -2510 ((-631 |#1|) (-584 |#1|) (-695))) (-15 -2511 ((-3 (-1180 |#1|) #1="failed") |#2| |#1| (-584 |#1|))) (-15 -3341 ((-3 |#1| #1#) |#2| |#1| (-584 |#1|) (-1 |#1| |#1|)))) (-312) (-601 |#1|)) (T -735)) +((-3341 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-584 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) (-5 *1 (-735 *2 *3)) (-4 *3 (-601 *2)))) (-2511 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-1180 *4)) (-5 *1 (-735 *4 *3)) (-4 *3 (-601 *4)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-312)) (-5 *2 (-631 *5)) (-5 *1 (-735 *5 *6)) (-4 *6 (-601 *5)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4)) (-5 *1 (-735 *4 *5)) (-4 *5 (-601 *4))))) +((-2569 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3708 (($ (-831)) NIL (|has| |#2| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-2484 (($ $ $) NIL (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3137 (((-695)) NIL (|has| |#2| (-320)) ELT)) (-3789 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1014)) ELT)) (-3157 (((-485) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) NIL (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#2| (-962)) ELT)) (-2995 (($) NIL (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ (-485)) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-2890 (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2609 (((-584 |#2|) $) NIL T ELT)) (-3246 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3327 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) NIL (|has| |#2| (-962)) ELT)) (-3243 (((-1074) $) NIL (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#2| (-320)) ELT)) (-3244 (((-1034) $) NIL (|has| |#2| (-1014)) ELT)) (-3802 ((|#2| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3837 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) NIL T ELT)) (-3912 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1947 (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1180 |#2|) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) NIL (|has| |#2| (-1014)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3127 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#2| (-962)) ELT)) (-2661 (($) NIL (|has| |#2| (-23)) CONST)) (-2667 (($) NIL (|has| |#2| (-962)) CONST)) (-2670 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2686 (((-85) $ $) 11 (|has| |#2| (-757)) ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) NIL (|has| |#2| (-962)) ELT) (($ $ |#2|) NIL (|has| |#2| (-664)) ELT) (($ |#2| $) NIL (|has| |#2| (-664)) ELT) (($ (-485) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-736 |#1| |#2| |#3|) (-196 |#1| |#2|) (-695) (-718) (-1 (-85) (-1180 |#2|) (-1180 |#2|))) (T -736)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1489 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ (-1091)) NIL T ELT)) (-1523 (((-695) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3082 (((-584 (-739 (-1091))) $) NIL T ELT)) (-3084 (((-1086 $) $ (-739 (-1091))) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-739 (-1091)))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1485 (($ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-739 (-1091)) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 (-1040 |#1| (-1091)) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-739 (-1091)) $) NIL T ELT) (((-1091) $) NIL T ELT) (((-1040 |#1| (-1091)) $) NIL T ELT)) (-3757 (($ $ $ (-739 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3960 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-739 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 (-739 (-1091))) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-739 (-1091)) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-739 (-1091)) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3773 (((-695) $ (-1091)) NIL T ELT) (((-695) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3085 (($ (-1086 |#1|) (-739 (-1091))) NIL T ELT) (($ (-1086 $) (-739 (-1091))) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-470 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-739 (-1091))) NIL T ELT)) (-2821 (((-470 (-739 (-1091))) $) NIL T ELT) (((-695) $ (-739 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-739 (-1091)))) NIL T ELT)) (-1626 (($ (-1 (-470 (-739 (-1091))) (-470 (-739 (-1091)))) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-695)) (-1091)) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3083 (((-3 (-739 (-1091)) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1487 (((-739 (-1091)) $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1488 (((-85) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-739 (-1091))) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-739 (-1091)) |#1|) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 |#1|)) NIL T ELT) (($ $ (-739 (-1091)) $) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 $)) NIL T ELT) (($ $ (-1091) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1091)) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3758 (($ $ (-739 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1490 (((-584 (-1091)) $) NIL T ELT)) (-3949 (((-470 (-739 (-1091))) $) NIL T ELT) (((-695) $ (-739 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-739 (-1091)))) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3973 (((-801 (-330)) $) NIL (-12 (|has| (-739 (-1091)) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-739 (-1091)) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-739 (-1091)) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-739 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-739 (-1091))) NIL T ELT) (($ (-1091)) NIL T ELT) (($ (-1040 |#1| (-1091))) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-584 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-470 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-737 |#1|) (-13 (-213 |#1| (-1091) (-739 (-1091)) (-470 (-739 (-1091)))) (-951 (-1040 |#1| (-1091)))) (-962)) (T -737)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-312)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-312)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#2| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#2| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-1892 (($ (-584 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 20 (|has| |#2| (-312)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-1608 (((-695) $) NIL (|has| |#2| (-312)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $) 13 T ELT) (($ $ (-695)) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-312)) ELT) (($ $) NIL (|has| |#2| (-312)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) 15 (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ $ (-485)) 18 (|has| |#2| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-312)) ELT))) +(((-738 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-430 |#2|) (-10 -7 (IF (|has| |#2| (-312)) (-6 (-312)) |%noBranch|))) (-1014) (-810 |#1|) |#1|) (T -738)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-1523 (((-695) $) NIL T ELT)) (-3832 ((|#1| $) 10 T ELT)) (-3158 (((-3 |#1| "failed") $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3773 (((-695) $) 11 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-1524 (($ |#1| (-695)) 9 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3759 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2670 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT))) +(((-739 |#1|) (-228 |#1|) (-757)) (T -739)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3935 (((-584 |#1|) $) 39 T ELT)) (-3137 (((-695) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3940 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3800 (($ $) 43 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1751 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-2301 (((-695) $ (-485)) NIL T ELT)) (-3937 (($ $) 55 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-2291 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2292 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3941 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2512 (((-85) $ $) 52 T ELT)) (-3834 (((-695) $) 35 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1752 (($ $ $) NIL T ELT)) (-1753 (($ $ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3802 ((|#1| $) 42 T ELT)) (-1780 (((-584 (-2 (|:| |gen| |#1|) (|:| -3944 (-695)))) $) NIL T ELT)) (-2880 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2566 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2667 (($) 7 T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 54 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ |#1| (-695)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-740 |#1|) (-13 (-336 |#1|) (-755) (-10 -8 (-15 -3802 (|#1| $)) (-15 -3800 ($ $)) (-15 -3937 ($ $)) (-15 -2512 ((-85) $ $)) (-15 -3941 ((-3 $ #1="failed") $ |#1|)) (-15 -3940 ((-3 $ #1#) $ |#1|)) (-15 -2566 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3834 ((-695) $)) (-15 -3935 ((-584 |#1|) $)))) (-757)) (T -740)) +((-3802 (*1 *2 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3800 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-2512 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3941 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3940 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-2566 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-740 *3)) (|:| |rm| (-740 *3)))) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-740 *3)) (-4 *3 (-757))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3624 (((-485) $) 69 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3187 (((-85) $) 67 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3188 (((-85) $) 68 T ELT)) (-2532 (($ $ $) 61 T ELT)) (-2858 (($ $ $) 62 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3384 (($ $) 70 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 63 T ELT)) (-2568 (((-85) $ $) 65 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 64 T ELT)) (-2686 (((-85) $ $) 66 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-741) (-113)) (T -741)) +NIL +(-13 (-496) (-756)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2513 ((|#1| $) 10 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2514 (($ |#1|) 9 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-695)) NIL T ELT)) (-2821 (((-695) $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3759 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-695)) NIL (|has| |#1| (-190)) ELT)) (-3949 (((-695) $) NIL T ELT)) (-3947 (((-773) $) 17 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3678 ((|#2| $ (-695)) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-695)) NIL (|has| |#1| (-190)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-742 |#1| |#2|) (-13 (-646 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2514 ($ |#1|)) (-15 -2513 (|#1| $)))) (-646 |#2|) (-962)) (T -742)) +((-2514 (*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-742 *2 *3)) (-4 *2 (-646 *3)))) (-2513 (*1 *2 *1) (-12 (-4 *2 (-646 *3)) (-5 *1 (-742 *2 *3)) (-4 *3 (-962))))) +((-2569 (((-85) $ $) 19 T ELT)) (-3235 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3237 (($ $ $) 77 T ELT)) (-3236 (((-85) $ $) 78 T ELT)) (-3240 (($ (-584 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2369 (($ $) 66 T ELT)) (-1354 (($ $) 62 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ |#1| $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) 61 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3996)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3242 (((-85) $ $) 69 T ELT)) (-2532 ((|#1| $) 84 T ELT)) (-2857 (($ $ $) 87 T ELT)) (-3519 (($ $ $) 86 T ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2858 ((|#1| $) 85 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1074) $) 22 T ELT)) (-3239 (($ $ $) 74 T ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT) (($ |#1| $ (-695)) 67 T ELT)) (-3244 (((-1034) $) 21 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1947 (-695)))) $) 65 T ELT)) (-3238 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1467 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 T ELT) (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 54 T ELT)) (-3947 (((-773) $) 17 T ELT)) (-3241 (($ (-584 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1266 (((-85) $ $) 20 T ELT)) (-1277 (($ (-584 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 T ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-743 |#1|) (-113) (-757)) (T -743)) +((-2532 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-757))))) +(-13 (-677 |t#1|) (-882 |t#1|) (-10 -8 (-15 -2532 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-635 |#1|) . T) ((-677 |#1|) . T) ((-882 |#1|) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1036 |#1|) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3624 (((-485) $) NIL (|has| |#1| (-756)) ELT)) (-3725 (($) NIL (|has| |#1| (-21)) CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 9 T ELT)) (-3468 (((-3 $ #1#) $) 42 (|has| |#1| (-756)) ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) 51 (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) 46 (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) 48 (|has| |#1| (-484)) ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2411 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2515 (($) 13 T ELT)) (-2525 (((-85) $) 12 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2526 (((-85) $) 11 T ELT)) (-3947 (((-773) $) 18 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 8 T ELT) (($ (-485)) NIL (OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ELT)) (-3127 (((-695)) 36 (|has| |#1| (-756)) CONST)) (-1266 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3384 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2661 (($) 23 (|has| |#1| (-21)) CONST)) (-2667 (($) 33 (|has| |#1| (-756)) CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) 21 T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) 45 (|has| |#1| (-756)) ELT)) (-3838 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-831)) NIL (|has| |#1| (-756)) ELT) (($ $ (-695)) NIL (|has| |#1| (-756)) ELT)) (* (($ $ $) 39 (|has| |#1| (-756)) ELT) (($ (-485) $) 27 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-21)) ELT))) +(((-744 |#1|) (-13 (-1014) (-355 |#1|) (-10 -8 (-15 -2515 ($)) (-15 -2526 ((-85) $)) (-15 -2525 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-485)) $)) (-15 -3025 ((-3 (-350 (-485)) "failed") $))) |%noBranch|))) (-1014)) (T -744)) +((-2515 (*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1014)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3025 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))) +((-3959 (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|)) 12 T ELT) (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|)) 13 T ELT))) +(((-745 |#1| |#2|) (-10 -7 (-15 -3959 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|))) (-15 -3959 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|)))) (-1014) (-1014)) (T -745)) +((-3959 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-745 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2517 ((|#1| (-86) |#1|) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2516 (($ |#1| (-310 (-86))) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2518 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2519 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3801 ((|#1| $ |#1|) NIL T ELT)) (-2520 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2521 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ (-86) (-485)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-746 |#1|) (-13 (-962) (-951 |#1|) (-951 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2521 ($ $)) (-15 -2521 ($ $ $)) (-15 -2520 (|#1| |#1|))) |%noBranch|) (-15 -2519 ($ $ (-1 |#1| |#1|))) (-15 -2518 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-485))) (-15 ** ($ $ (-485))) (-15 -2517 (|#1| (-86) |#1|)) (-15 -2516 ($ |#1| (-310 (-86)))))) (-962)) (T -746)) +((-2521 (*1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2521 (*1 *1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2520 (*1 *2 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-5 *1 (-746 *4)) (-4 *4 (-962)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-746 *3)) (-4 *3 (-962)))) (-2517 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-746 *2)) (-4 *2 (-962)))) (-2516 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-746 *2)) (-4 *2 (-962))))) +((-2634 (((-85) $ |#2|) 14 T ELT)) (-3947 (((-773) $) 11 T ELT))) +(((-747 |#1| |#2|) (-10 -7 (-15 -2634 ((-85) |#1| |#2|)) (-15 -3947 ((-773) |#1|))) (-748 |#2|) (-1014)) (T -747)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3543 ((|#1| $) 19 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2634 (((-85) $ |#1|) 17 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2522 (((-55) $) 18 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) +(((-748 |#1|) (-113) (-1014)) (T -748)) +((-3543 (*1 *2 *1) (-12 (-4 *1 (-748 *2)) (-4 *2 (-1014)))) (-2522 (*1 *2 *1) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-55)))) (-2634 (*1 *2 *1 *3) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))) +(-13 (-1014) (-10 -8 (-15 -3543 (|t#1| $)) (-15 -2522 ((-55) $)) (-15 -2634 ((-85) $ |t#1|)))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-2523 (((-167 (-442)) (-1074)) 9 T ELT))) +(((-749) (-10 -7 (-15 -2523 ((-167 (-442)) (-1074))))) (T -749)) +((-2523 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-167 (-442))) (-5 *1 (-749))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3320 (((-1029) $) 10 T ELT)) (-3543 (((-447) $) 9 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2634 (((-85) $ (-447)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3531 (($ (-447) (-1029)) 8 T ELT)) (-3947 (((-773) $) 25 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2522 (((-55) $) 20 T ELT)) (-3057 (((-85) $ $) 12 T ELT))) +(((-750) (-13 (-748 (-447)) (-10 -8 (-15 -3320 ((-1029) $)) (-15 -3531 ($ (-447) (-1029)))))) (T -750)) +((-3320 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-750)))) (-3531 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-750))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2524 (((-1034) $) 31 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3624 (((-485) $) NIL (|has| |#1| (-756)) ELT)) (-3725 (($) NIL (|has| |#1| (-21)) CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 9 T ELT)) (-3468 (((-3 $ #1#) $) 57 (|has| |#1| (-756)) ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) 65 (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) 60 (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) 63 (|has| |#1| (-484)) ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2528 (($) 14 T ELT)) (-1215 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2411 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2527 (($) 16 T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2525 (((-85) $) 12 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2526 (((-85) $) 11 T ELT)) (-3947 (((-773) $) 24 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 8 T ELT) (($ (-485)) NIL (OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ELT)) (-3127 (((-695)) 50 (|has| |#1| (-756)) CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3384 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2661 (($) 37 (|has| |#1| (-21)) CONST)) (-2667 (($) 47 (|has| |#1| (-756)) CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) 35 T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) 59 (|has| |#1| (-756)) ELT)) (-3838 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-831)) NIL (|has| |#1| (-756)) ELT) (($ $ (-695)) NIL (|has| |#1| (-756)) ELT)) (* (($ $ $) 54 (|has| |#1| (-756)) ELT) (($ (-485) $) 41 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-21)) ELT))) +(((-751 |#1|) (-13 (-1014) (-355 |#1|) (-10 -8 (-15 -2528 ($)) (-15 -2527 ($)) (-15 -2526 ((-85) $)) (-15 -2525 ((-85) $)) (-15 -2524 ((-1034) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-485)) $)) (-15 -3025 ((-3 (-350 (-485)) "failed") $))) |%noBranch|))) (-1014)) (T -751)) +((-2528 (*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014)))) (-2527 (*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3025 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))) +((-3959 (((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|) (-751 |#2|) (-751 |#2|)) 13 T ELT) (((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|)) 14 T ELT))) +(((-752 |#1| |#2|) (-10 -7 (-15 -3959 ((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|))) (-15 -3959 ((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|) (-751 |#2|) (-751 |#2|)))) (-1014) (-1014)) (T -752)) +((-3959 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-751 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-752 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-751 *6)) (-5 *1 (-752 *5 *6))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3137 (((-695)) 27 T ELT)) (-2995 (($) 30 T ELT)) (-2532 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2858 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2011 (((-831) $) 29 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2401 (($ (-831)) 28 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT))) +(((-753) (-113)) (T -753)) +((-2532 (*1 *1) (-4 *1 (-753))) (-2858 (*1 *1) (-4 *1 (-753)))) +(-13 (-757) (-320) (-10 -8 (-15 -2532 ($) -3953) (-15 -2858 ($) -3953))) +(((-72) . T) ((-553 (-773)) . T) ((-320) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T)) +((-2530 (((-85) (-1180 |#2|) (-1180 |#2|)) 19 T ELT)) (-2531 (((-85) (-1180 |#2|) (-1180 |#2|)) 20 T ELT)) (-2529 (((-85) (-1180 |#2|) (-1180 |#2|)) 16 T ELT))) +(((-754 |#1| |#2|) (-10 -7 (-15 -2529 ((-85) (-1180 |#2|) (-1180 |#2|))) (-15 -2530 ((-85) (-1180 |#2|) (-1180 |#2|))) (-15 -2531 ((-85) (-1180 |#2|) (-1180 |#2|)))) (-695) (-717)) (T -754)) +((-2531 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695)))) (-2530 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695)))) (-2529 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3725 (($) 29 T CONST)) (-3468 (((-3 $ "failed") $) 32 T ELT)) (-2411 (((-85) $) 30 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2667 (($) 28 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (** (($ $ (-831)) 26 T ELT) (($ $ (-695)) 31 T ELT)) (* (($ $ $) 25 T ELT))) (((-755) (-113)) (T -755)) NIL -(-13 (-714) (-120) (-663)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 7 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT))) +(-13 (-767) (-664)) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-767) . T) ((-757) . T) ((-760) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3624 (((-485) $) 38 T ELT)) (-3725 (($) 30 T CONST)) (-3468 (((-3 $ "failed") $) 55 T ELT)) (-3187 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2411 (((-85) $) 53 T ELT)) (-3188 (((-85) $) 39 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 56 T ELT)) (-3127 (((-695)) 57 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 51 T ELT)) (-3384 (($ $) 37 T ELT)) (-2661 (($) 29 T CONST)) (-2667 (($) 52 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3840 (($ $ $) 25 T ELT)) (** (($ $ (-695)) 54 T ELT) (($ $ (-831)) 49 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ (-485) $) 40 T ELT) (($ $ $) 50 T ELT))) (((-756) (-113)) (T -756)) NIL -(-13 (-1013) (-759)) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-759) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3946 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 12 T ELT))) -(((-757 |#1| |#2|) (-13 (-759) (-430 |#1|) (-10 -7 (IF (|has| |#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|))) (-1129) (-1 (-85) |#1| |#1|)) (T -757)) -NIL -((-2531 (($ $ $) 16 T ELT)) (-2857 (($ $ $) 15 T ELT)) (-1265 (((-85) $ $) 17 T ELT)) (-2566 (((-85) $ $) 12 T ELT)) (-2567 (((-85) $ $) 9 T ELT)) (-3056 (((-85) $ $) 14 T ELT)) (-2684 (((-85) $ $) 11 T ELT))) -(((-758 |#1|) (-10 -7 (-15 -2531 (|#1| |#1| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -2566 ((-85) |#1| |#1|)) (-15 -2684 ((-85) |#1| |#1|)) (-15 -2567 ((-85) |#1| |#1|)) (-15 -1265 ((-85) |#1| |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-759)) (T -758)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-2531 (($ $ $) 10 T ELT)) (-2857 (($ $ $) 11 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2566 (((-85) $ $) 12 T ELT)) (-2567 (((-85) $ $) 14 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 13 T ELT)) (-2685 (((-85) $ $) 15 T ELT))) -(((-759) (-113)) (T -759)) -((-2685 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2567 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2684 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2566 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2857 (*1 *1 *1 *1) (-4 *1 (-759))) (-2531 (*1 *1 *1 *1) (-4 *1 (-759)))) -(-13 (-72) (-10 -8 (-15 -2685 ((-85) $ $)) (-15 -2567 ((-85) $ $)) (-15 -2684 ((-85) $ $)) (-15 -2566 ((-85) $ $)) (-15 -2857 ($ $ $)) (-15 -2531 ($ $ $)))) -(((-72) . T) ((-13) . T) ((-1129) . T)) -((-2536 (($ $ $) 49 T ELT)) (-2537 (($ $ $) 48 T ELT)) (-2538 (($ $ $) 46 T ELT)) (-2534 (($ $ $) 55 T ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 50 T ELT)) (-2535 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3157 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3503 (($ $) 39 T ELT)) (-2542 (($ $ $) 43 T ELT)) (-2543 (($ $ $) 42 T ELT)) (-2532 (($ $ $) 51 T ELT)) (-2540 (($ $ $) 57 T ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 45 T ELT)) (-2541 (((-3 $ #1#) $ $) 52 T ELT)) (-3466 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2817 ((|#2| $) 36 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3817 (((-583 |#2|) $) 21 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) -(((-760 |#1| |#2|) (-10 -7 (-15 -2532 (|#1| |#1| |#1|)) (-15 -2533 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2409 |#1|)) |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -2535 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2536 (|#1| |#1| |#1|)) (-15 -2537 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2539 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2409 |#1|)) |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2541 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -2817 (|#2| |#1|)) (-15 -3466 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3817 ((-583 |#2|) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3157 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3946 (|#1| (-350 (-484)))) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3946 (|#1| (-484))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3946 ((-772) |#1|))) (-761 |#2|) (-961)) (T -760)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-2536 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ "failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #1="failed") $) 88 (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 85 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 82 T ELT)) (-3156 (((-484) $) 87 (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) 84 (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 83 T ELT)) (-3959 (($ $) 77 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3503 (($ $) 68 (|has| |#1| (-392)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2893 (($ |#1| (-694)) 75 T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 70 (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 71 (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) 79 T ELT)) (-2542 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ "failed") $ $) 64 (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) 78 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3466 (((-3 $ "failed") $ |#1|) 72 (|has| |#1| (-495)) ELT)) (-3948 (((-694) $) 80 T ELT)) (-2817 ((|#1| $) 69 (|has| |#1| (-392)) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 86 (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) 81 T ELT)) (-3817 (((-583 |#1|) $) 74 T ELT)) (-3677 ((|#1| $ (-694)) 76 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2545 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) -(((-761 |#1|) (-113) (-961)) (T -761)) -((-3948 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3959 (*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) (-2545 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3466 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-2546 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-761 *3)))) (-2547 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-761 *3)))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-392)))) (-3503 (*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-392)))) (-2548 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-761 *3)))) (-2543 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2542 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2541 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2540 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2539 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) (-4 *1 (-761 *3)))) (-2538 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2549 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-761 *3)))) (-2537 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2536 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2535 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2534 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2533 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) (-4 *1 (-761 *3)))) (-2532 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) -(-13 (-961) (-82 |t#1| |t#1|) (-355 |t#1|) (-10 -8 (-15 -3948 ((-694) $)) (-15 -2820 ((-694) $)) (-15 -3174 (|t#1| $)) (-15 -3959 ($ $)) (-15 -3677 (|t#1| $ (-694))) (-15 -2893 ($ |t#1| (-694))) (-15 -3817 ((-583 |t#1|) $)) (-15 -2545 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3466 ((-3 $ "failed") $ |t#1|)) (-15 -2546 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -2547 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -2817 (|t#1| $)) (-15 -3503 ($ $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -2548 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -2543 ($ $ $)) (-15 -2542 ($ $ $)) (-15 -2541 ((-3 $ "failed") $ $)) (-15 -2540 ($ $ $)) (-15 -2539 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $)) (-15 -2538 ($ $ $)) (-15 -2549 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -2537 ($ $ $)) (-15 -2536 ($ $ $)) (-15 -2535 ((-3 $ "failed") $ $)) (-15 -2534 ($ $ $)) (-15 -2533 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $)) (-15 -2532 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-355 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2544 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2549 (((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-312)) ELT)) (-2547 (((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-495)) ELT)) (-2548 (((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-312)) ELT)) (-2545 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT))) -(((-762 |#1| |#2|) (-10 -7 (-15 -2544 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2545 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-495)) (PROGN (-15 -2546 ((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2547 ((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -2548 ((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2549 ((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-961) (-761 |#1|)) (T -762)) -((-2549 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2548 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2547 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2546 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2545 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-762 *2 *3)) (-4 *3 (-761 *2)))) (-2544 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-762 *5 *2)) (-4 *2 (-761 *5))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 34 (|has| |#1| (-312)) ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3533 (((-772) $ (-772)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) NIL T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 30 (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 28 (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 32 (|has| |#1| (-312)) ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3948 (((-694) $) NIL T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3817 (((-583 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2545 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) 23 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 19 T ELT) (($ $ (-694)) 24 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-763 |#1| |#2| |#3|) (-13 (-761 |#1|) (-10 -8 (-15 -3533 ((-772) $ (-772))))) (-961) (-69 |#1|) (-1 |#1| |#1|)) (T -763)) -((-3533 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-763 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2536 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2537 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2533 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2535 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#2| (-392)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-694)) 17 T ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2546 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT)) (-2542 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2543 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2539 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2541 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3174 ((|#2| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-3948 (((-694) $) NIL T ELT)) (-2817 ((|#2| $) NIL (|has| |#2| (-392)) ELT)) (-3946 (((-772) $) 24 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (($ |#2|) NIL T ELT) (($ (-1176 |#1|)) 19 T ELT)) (-3817 (((-583 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-694)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2545 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) 13 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-764 |#1| |#2| |#3| |#4|) (-13 (-761 |#2|) (-555 (-1176 |#1|))) (-1090) (-961) (-69 |#2|) (-1 |#2| |#2|)) (T -764)) -NIL -((-2552 ((|#1| (-694) |#1|) 45 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2551 ((|#1| (-694) (-694) |#1|) 36 T ELT) ((|#1| (-694) |#1|) 24 T ELT)) (-2550 ((|#1| (-694) |#1|) 40 T ELT)) (-2800 ((|#1| (-694) |#1|) 38 T ELT)) (-2799 ((|#1| (-694) |#1|) 37 T ELT))) -(((-765 |#1|) (-10 -7 (-15 -2799 (|#1| (-694) |#1|)) (-15 -2800 (|#1| (-694) |#1|)) (-15 -2550 (|#1| (-694) |#1|)) (-15 -2551 (|#1| (-694) |#1|)) (-15 -2551 (|#1| (-694) (-694) |#1|)) (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -2552 (|#1| (-694) |#1|)) |%noBranch|)) (-146)) (T -765)) -((-2552 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-146)))) (-2551 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2551 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2550 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2800 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2799 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))) -((-2568 (((-85) $ $) 7 T ELT)) (-2531 (($ $ $) 23 T ELT)) (-2857 (($ $ $) 22 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2566 (((-85) $ $) 21 T ELT)) (-2567 (((-85) $ $) 19 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) 18 T ELT)) (** (($ $ (-830)) 26 T ELT)) (* (($ $ $) 25 T ELT))) -(((-766) (-113)) (T -766)) -NIL -(-13 (-756) (-1025)) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1025) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3402 (((-484) $) 14 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 20 T ELT) (($ (-484)) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 10 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 12 T ELT))) -(((-767) (-13 (-756) (-10 -8 (-15 -3946 ($ (-484))) (-15 -3402 ((-484) $))))) (T -767)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-767)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-767))))) -((-2553 (((-1185) (-583 (-51))) 23 T ELT)) (-3460 (((-1185) (-1073) (-772)) 13 T ELT) (((-1185) (-772)) 8 T ELT) (((-1185) (-1073)) 10 T ELT))) -(((-768) (-10 -7 (-15 -3460 ((-1185) (-1073))) (-15 -3460 ((-1185) (-772))) (-15 -3460 ((-1185) (-1073) (-772))) (-15 -2553 ((-1185) (-583 (-51)))))) (T -768)) -((-2553 (*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1185)) (-5 *1 (-768)))) (-3460 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-772)) (-5 *2 (-1185)) (-5 *1 (-768)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-768)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-768))))) -((-2555 (((-632 (-1138)) $ (-1138)) 15 T ELT)) (-2556 (((-632 (-488)) $ (-488)) 12 T ELT)) (-2554 (((-694) $ (-102)) 30 T ELT))) -(((-769 |#1|) (-10 -7 (-15 -2554 ((-694) |#1| (-102))) (-15 -2555 ((-632 (-1138)) |#1| (-1138))) (-15 -2556 ((-632 (-488)) |#1| (-488)))) (-770)) (T -769)) -NIL -((-2555 (((-632 (-1138)) $ (-1138)) 8 T ELT)) (-2556 (((-632 (-488)) $ (-488)) 9 T ELT)) (-2554 (((-694) $ (-102)) 7 T ELT)) (-2557 (((-632 (-101)) $ (-101)) 10 T ELT)) (-1700 (($ $) 6 T ELT))) -(((-770) (-113)) (T -770)) -((-2557 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-101))) (-5 *3 (-101)))) (-2556 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-488))) (-5 *3 (-488)))) (-2555 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-1138))) (-5 *3 (-1138)))) (-2554 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-102)) (-5 *2 (-694))))) -(-13 (-147) (-10 -8 (-15 -2557 ((-632 (-101)) $ (-101))) (-15 -2556 ((-632 (-488)) $ (-488))) (-15 -2555 ((-632 (-1138)) $ (-1138))) (-15 -2554 ((-694) $ (-102))))) +(-13 (-715) (-120) (-664)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 7 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT))) +(((-757) (-113)) (T -757)) +NIL +(-13 (-1014) (-760)) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-760) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3947 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 12 T ELT))) +(((-758 |#1| |#2|) (-13 (-760) (-430 |#1|) (-10 -7 (IF (|has| |#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|))) (-1130) (-1 (-85) |#1| |#1|)) (T -758)) +NIL +((-2532 (($ $ $) 16 T ELT)) (-2858 (($ $ $) 15 T ELT)) (-1266 (((-85) $ $) 17 T ELT)) (-2567 (((-85) $ $) 12 T ELT)) (-2568 (((-85) $ $) 9 T ELT)) (-3057 (((-85) $ $) 14 T ELT)) (-2685 (((-85) $ $) 11 T ELT))) +(((-759 |#1|) (-10 -7 (-15 -2532 (|#1| |#1| |#1|)) (-15 -2858 (|#1| |#1| |#1|)) (-15 -2567 ((-85) |#1| |#1|)) (-15 -2685 ((-85) |#1| |#1|)) (-15 -2568 ((-85) |#1| |#1|)) (-15 -1266 ((-85) |#1| |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-760)) (T -759)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-2532 (($ $ $) 10 T ELT)) (-2858 (($ $ $) 11 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2567 (((-85) $ $) 12 T ELT)) (-2568 (((-85) $ $) 14 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 13 T ELT)) (-2686 (((-85) $ $) 15 T ELT))) +(((-760) (-113)) (T -760)) +((-2686 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2568 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2685 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2567 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2858 (*1 *1 *1 *1) (-4 *1 (-760))) (-2532 (*1 *1 *1 *1) (-4 *1 (-760)))) +(-13 (-72) (-10 -8 (-15 -2686 ((-85) $ $)) (-15 -2568 ((-85) $ $)) (-15 -2685 ((-85) $ $)) (-15 -2567 ((-85) $ $)) (-15 -2858 ($ $ $)) (-15 -2532 ($ $ $)))) +(((-72) . T) ((-13) . T) ((-1130) . T)) +((-2537 (($ $ $) 49 T ELT)) (-2538 (($ $ $) 48 T ELT)) (-2539 (($ $ $) 46 T ELT)) (-2535 (($ $ $) 55 T ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 50 T ELT)) (-2536 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3158 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3504 (($ $) 39 T ELT)) (-2543 (($ $ $) 43 T ELT)) (-2544 (($ $ $) 42 T ELT)) (-2533 (($ $ $) 51 T ELT)) (-2541 (($ $ $) 57 T ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 45 T ELT)) (-2542 (((-3 $ #1#) $ $) 52 T ELT)) (-3467 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2818 ((|#2| $) 36 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3818 (((-584 |#2|) $) 21 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) +(((-761 |#1| |#2|) (-10 -7 (-15 -2533 (|#1| |#1| |#1|)) (-15 -2534 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2410 |#1|)) |#1| |#1|)) (-15 -2535 (|#1| |#1| |#1|)) (-15 -2536 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2537 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2540 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2410 |#1|)) |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2542 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -2818 (|#2| |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3818 ((-584 |#2|) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3947 (|#1| (-350 (-485)))) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3947 (|#1| (-485))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3947 ((-773) |#1|))) (-762 |#2|) (-962)) (T -761)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2537 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ "failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-485) #1="failed") $) 88 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 85 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 82 T ELT)) (-3157 (((-485) $) 87 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 84 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 83 T ELT)) (-3960 (($ $) 77 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3504 (($ $) 68 (|has| |#1| (-392)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2894 (($ |#1| (-695)) 75 T ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2547 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 71 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) 79 T ELT)) (-2543 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ "failed") $ $) 64 (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) 78 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ |#1|) 72 (|has| |#1| (-496)) ELT)) (-3949 (((-695) $) 80 T ELT)) (-2818 ((|#1| $) 69 (|has| |#1| (-392)) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 86 (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 81 T ELT)) (-3818 (((-584 |#1|) $) 74 T ELT)) (-3678 ((|#1| $ (-695)) 76 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2546 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT))) +(((-762 |#1|) (-113) (-962)) (T -762)) +((-3949 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-584 *3)))) (-2546 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3467 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-2547 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-762 *3)))) (-2548 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-762 *3)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392)))) (-3504 (*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392)))) (-2549 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-762 *3)))) (-2544 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2543 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2542 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2541 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2540 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) (-4 *1 (-762 *3)))) (-2539 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2550 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-762 *3)))) (-2538 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2537 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2536 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2535 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2534 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) (-4 *1 (-762 *3)))) (-2533 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) +(-13 (-962) (-82 |t#1| |t#1|) (-355 |t#1|) (-10 -8 (-15 -3949 ((-695) $)) (-15 -2821 ((-695) $)) (-15 -3175 (|t#1| $)) (-15 -3960 ($ $)) (-15 -3678 (|t#1| $ (-695))) (-15 -2894 ($ |t#1| (-695))) (-15 -3818 ((-584 |t#1|) $)) (-15 -2546 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-15 -3467 ((-3 $ "failed") $ |t#1|)) (-15 -2547 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -2548 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -2818 (|t#1| $)) (-15 -3504 ($ $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -2549 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -2544 ($ $ $)) (-15 -2543 ($ $ $)) (-15 -2542 ((-3 $ "failed") $ $)) (-15 -2541 ($ $ $)) (-15 -2540 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $)) (-15 -2539 ($ $ $)) (-15 -2550 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -2538 ($ $ $)) (-15 -2537 ($ $ $)) (-15 -2536 ((-3 $ "failed") $ $)) (-15 -2535 ($ $ $)) (-15 -2534 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $)) (-15 -2533 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-355 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2545 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2550 (((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-496)) ELT)) (-2547 (((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-496)) ELT)) (-2549 (((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-312)) ELT)) (-2546 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT))) +(((-763 |#1| |#2|) (-10 -7 (-15 -2545 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2546 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-496)) (PROGN (-15 -2547 ((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2548 ((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -2549 ((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2550 ((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-962) (-762 |#1|)) (T -763)) +((-2550 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2549 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2548 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2547 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2546 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962)) (-5 *1 (-763 *2 *3)) (-4 *3 (-762 *2)))) (-2545 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962)) (-5 *1 (-763 *5 *2)) (-4 *2 (-762 *5))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 34 (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3534 (((-773) $ (-773)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) NIL T ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 30 (|has| |#1| (-496)) ELT)) (-2547 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 28 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 32 (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3949 (((-695) $) NIL T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3818 (((-584 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-695)) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2546 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) 23 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 19 T ELT) (($ $ (-695)) 24 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-764 |#1| |#2| |#3|) (-13 (-762 |#1|) (-10 -8 (-15 -3534 ((-773) $ (-773))))) (-962) (-69 |#1|) (-1 |#1| |#1|)) (T -764)) +((-3534 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-764 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2536 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#2| (-392)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-695)) 17 T ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2547 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2544 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3175 ((|#2| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-3949 (((-695) $) NIL T ELT)) (-2818 ((|#2| $) NIL (|has| |#2| (-392)) ELT)) (-3947 (((-773) $) 24 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) NIL T ELT) (($ (-1177 |#1|)) 19 T ELT)) (-3818 (((-584 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-695)) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2546 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) 13 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-765 |#1| |#2| |#3| |#4|) (-13 (-762 |#2|) (-556 (-1177 |#1|))) (-1091) (-962) (-69 |#2|) (-1 |#2| |#2|)) (T -765)) +NIL +((-2553 ((|#1| (-695) |#1|) 45 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2552 ((|#1| (-695) (-695) |#1|) 36 T ELT) ((|#1| (-695) |#1|) 24 T ELT)) (-2551 ((|#1| (-695) |#1|) 40 T ELT)) (-2801 ((|#1| (-695) |#1|) 38 T ELT)) (-2800 ((|#1| (-695) |#1|) 37 T ELT))) +(((-766 |#1|) (-10 -7 (-15 -2800 (|#1| (-695) |#1|)) (-15 -2801 (|#1| (-695) |#1|)) (-15 -2551 (|#1| (-695) |#1|)) (-15 -2552 (|#1| (-695) |#1|)) (-15 -2552 (|#1| (-695) (-695) |#1|)) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -2553 (|#1| (-695) |#1|)) |%noBranch|)) (-146)) (T -766)) +((-2553 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-146)))) (-2552 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2552 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2551 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2801 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2800 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))) +((-2569 (((-85) $ $) 7 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (** (($ $ (-831)) 26 T ELT)) (* (($ $ $) 25 T ELT))) +(((-767) (-113)) (T -767)) +NIL +(-13 (-757) (-1026)) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3403 (((-485) $) 14 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 20 T ELT) (($ (-485)) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 10 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 12 T ELT))) +(((-768) (-13 (-757) (-10 -8 (-15 -3947 ($ (-485))) (-15 -3403 ((-485) $))))) (T -768)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-768)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-768))))) +((-2554 (((-1186) (-584 (-51))) 23 T ELT)) (-3461 (((-1186) (-1074) (-773)) 13 T ELT) (((-1186) (-773)) 8 T ELT) (((-1186) (-1074)) 10 T ELT))) +(((-769) (-10 -7 (-15 -3461 ((-1186) (-1074))) (-15 -3461 ((-1186) (-773))) (-15 -3461 ((-1186) (-1074) (-773))) (-15 -2554 ((-1186) (-584 (-51)))))) (T -769)) +((-2554 (*1 *2 *3) (-12 (-5 *3 (-584 (-51))) (-5 *2 (-1186)) (-5 *1 (-769)))) (-3461 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-769)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-769)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-769))))) +((-2556 (((-633 (-1139)) $ (-1139)) 15 T ELT)) (-2557 (((-633 (-489)) $ (-489)) 12 T ELT)) (-2555 (((-695) $ (-102)) 30 T ELT))) +(((-770 |#1|) (-10 -7 (-15 -2555 ((-695) |#1| (-102))) (-15 -2556 ((-633 (-1139)) |#1| (-1139))) (-15 -2557 ((-633 (-489)) |#1| (-489)))) (-771)) (T -770)) +NIL +((-2556 (((-633 (-1139)) $ (-1139)) 8 T ELT)) (-2557 (((-633 (-489)) $ (-489)) 9 T ELT)) (-2555 (((-695) $ (-102)) 7 T ELT)) (-2558 (((-633 (-101)) $ (-101)) 10 T ELT)) (-1701 (($ $) 6 T ELT))) +(((-771) (-113)) (T -771)) +((-2558 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-101))) (-5 *3 (-101)))) (-2557 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-489))) (-5 *3 (-489)))) (-2556 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-1139))) (-5 *3 (-1139)))) (-2555 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *3 (-102)) (-5 *2 (-695))))) +(-13 (-147) (-10 -8 (-15 -2558 ((-633 (-101)) $ (-101))) (-15 -2557 ((-633 (-489)) $ (-489))) (-15 -2556 ((-633 (-1139)) $ (-1139))) (-15 -2555 ((-695) $ (-102))))) (((-147) . T)) -((-2555 (((-632 (-1138)) $ (-1138)) NIL T ELT)) (-2556 (((-632 (-488)) $ (-488)) NIL T ELT)) (-2554 (((-694) $ (-102)) NIL T ELT)) (-2557 (((-632 (-101)) $ (-101)) 22 T ELT)) (-2559 (($ (-338)) 12 T ELT) (($ (-1073)) 14 T ELT)) (-2558 (((-85) $) 19 T ELT)) (-3946 (((-772) $) 26 T ELT)) (-1700 (($ $) 23 T ELT))) -(((-771) (-13 (-770) (-552 (-772)) (-10 -8 (-15 -2559 ($ (-338))) (-15 -2559 ($ (-1073))) (-15 -2558 ((-85) $))))) (T -771)) -((-2559 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-771)))) (-2559 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-771)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-771))))) -((-2568 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2589 (($ $ $) 125 T ELT)) (-2604 (((-484) $) 31 T ELT) (((-484)) 36 T ELT)) (-2599 (($ (-484)) 53 T ELT)) (-2596 (($ $ $) 54 T ELT) (($ (-583 $)) 84 T ELT)) (-2580 (($ $ (-583 $)) 82 T ELT)) (-2601 (((-484) $) 34 T ELT)) (-2583 (($ $ $) 73 T ELT)) (-3532 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2602 (((-484) $) 33 T ELT)) (-2584 (($ $ $) 72 T ELT)) (-3535 (($ $) 114 T ELT)) (-2587 (($ $ $) 129 T ELT)) (-2570 (($ (-583 $)) 61 T ELT)) (-3540 (($ $ (-583 $)) 79 T ELT)) (-2598 (($ (-484) (-484)) 55 T ELT)) (-2611 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3137 (($ $ (-484)) 43 T ELT) (($ $) 46 T ELT)) (-2564 (($ $ $) 97 T ELT)) (-2585 (($ $ $) 132 T ELT)) (-2579 (($ $) 115 T ELT)) (-2563 (($ $ $) 98 T ELT)) (-2575 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2837 (((-1185) $) 10 T ELT)) (-2578 (($ $) 118 T ELT) (($ $ (-694)) 122 T ELT)) (-2581 (($ $ $) 75 T ELT)) (-2582 (($ $ $) 74 T ELT)) (-2595 (($ $ (-583 $)) 110 T ELT)) (-2593 (($ $ $) 113 T ELT)) (-2572 (($ (-583 $)) 59 T ELT)) (-2573 (($ $) 70 T ELT) (($ (-583 $)) 71 T ELT)) (-2576 (($ $ $) 123 T ELT)) (-2577 (($ $) 116 T ELT)) (-2588 (($ $ $) 128 T ELT)) (-3533 (($ (-484)) 21 T ELT) (($ (-1090)) 23 T ELT) (($ (-1073)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2561 (($ $ $) 101 T ELT)) (-2560 (($ $) 102 T ELT)) (-2606 (((-1185) (-1073)) 15 T ELT)) (-2607 (($ (-1073)) 14 T ELT)) (-3123 (($ (-583 (-583 $))) 58 T ELT)) (-3138 (($ $ (-484)) 42 T ELT) (($ $) 45 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2591 (($ $ $) 131 T ELT)) (-3470 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2592 (((-85) $) 108 T ELT)) (-2594 (($ $ (-583 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2600 (($ (-484)) 39 T ELT)) (-2603 (((-484) $) 32 T ELT) (((-484)) 35 T ELT)) (-2597 (($ $ $) 40 T ELT) (($ (-583 $)) 83 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3466 (($ $ $) 99 T ELT)) (-3565 (($) 13 T ELT)) (-3800 (($ $ (-583 $)) 109 T ELT)) (-2605 (((-1073) (-1073)) 8 T ELT)) (-3836 (($ $) 117 T ELT) (($ $ (-694)) 121 T ELT)) (-2565 (($ $ $) 96 T ELT)) (-3758 (($ $ (-694)) 139 T ELT)) (-2571 (($ (-583 $)) 60 T ELT)) (-3946 (((-772) $) 19 T ELT)) (-3773 (($ $ (-484)) 41 T ELT) (($ $) 44 T ELT)) (-2574 (($ $) 68 T ELT) (($ (-583 $)) 69 T ELT)) (-3240 (($ $) 66 T ELT) (($ (-583 $)) 67 T ELT)) (-2590 (($ $) 124 T ELT)) (-2569 (($ (-583 $)) 65 T ELT)) (-3101 (($ $ $) 105 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2586 (($ $ $) 130 T ELT)) (-2562 (($ $ $) 100 T ELT)) (-3737 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2566 (($ $ $) 89 T ELT)) (-2567 (($ $ $) 87 T ELT)) (-3056 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2684 (($ $ $) 88 T ELT)) (-2685 (($ $ $) 86 T ELT)) (-3949 (($ $ $) 94 T ELT)) (-3837 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3839 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) -(((-772) (-13 (-1013) (-10 -8 (-15 -2837 ((-1185) $)) (-15 -2607 ($ (-1073))) (-15 -2606 ((-1185) (-1073))) (-15 -3533 ($ (-484))) (-15 -3533 ($ (-1090))) (-15 -3533 ($ (-1073))) (-15 -3533 ($ (-179))) (-15 -3565 ($)) (-15 -2605 ((-1073) (-1073))) (-15 -2604 ((-484) $)) (-15 -2603 ((-484) $)) (-15 -2604 ((-484))) (-15 -2603 ((-484))) (-15 -2602 ((-484) $)) (-15 -2601 ((-484) $)) (-15 -2600 ($ (-484))) (-15 -2599 ($ (-484))) (-15 -2598 ($ (-484) (-484))) (-15 -3138 ($ $ (-484))) (-15 -3137 ($ $ (-484))) (-15 -3773 ($ $ (-484))) (-15 -3138 ($ $)) (-15 -3137 ($ $)) (-15 -3773 ($ $)) (-15 -2597 ($ $ $)) (-15 -2596 ($ $ $)) (-15 -2597 ($ (-583 $))) (-15 -2596 ($ (-583 $))) (-15 -2595 ($ $ (-583 $))) (-15 -2594 ($ $ (-583 $))) (-15 -2594 ($ $ $ $)) (-15 -2593 ($ $ $)) (-15 -2592 ((-85) $)) (-15 -3800 ($ $ (-583 $))) (-15 -3535 ($ $)) (-15 -2591 ($ $ $)) (-15 -2590 ($ $)) (-15 -3123 ($ (-583 (-583 $)))) (-15 -2589 ($ $ $)) (-15 -2611 ($ $)) (-15 -2611 ($ $ $)) (-15 -2588 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -2586 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -3758 ($ $ (-694))) (-15 -3101 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -2582 ($ $ $)) (-15 -2581 ($ $ $)) (-15 -3540 ($ $ (-583 $))) (-15 -2580 ($ $ (-583 $))) (-15 -2579 ($ $)) (-15 -3836 ($ $)) (-15 -3836 ($ $ (-694))) (-15 -2578 ($ $)) (-15 -2578 ($ $ (-694))) (-15 -2577 ($ $)) (-15 -2576 ($ $ $)) (-15 -3532 ($ $)) (-15 -3532 ($ $ $)) (-15 -3532 ($ $ $ $)) (-15 -2575 ($ $)) (-15 -2575 ($ $ $)) (-15 -2575 ($ $ $ $)) (-15 -3470 ($ $)) (-15 -3470 ($ $ $)) (-15 -3470 ($ $ $ $)) (-15 -3240 ($ $)) (-15 -3240 ($ (-583 $))) (-15 -2574 ($ $)) (-15 -2574 ($ (-583 $))) (-15 -2573 ($ $)) (-15 -2573 ($ (-583 $))) (-15 -2572 ($ (-583 $))) (-15 -2571 ($ (-583 $))) (-15 -2570 ($ (-583 $))) (-15 -2569 ($ (-583 $))) (-15 -3056 ($ $ $)) (-15 -2568 ($ $ $)) (-15 -2685 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2684 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -3839 ($ $ $)) (-15 -3837 ($ $ $)) (-15 -3837 ($ $)) (-15 * ($ $ $)) (-15 -3949 ($ $ $)) (-15 ** ($ $ $)) (-15 -2565 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -3466 ($ $ $)) (-15 -2562 ($ $ $)) (-15 -2561 ($ $ $)) (-15 -2560 ($ $)) (-15 -3737 ($ $ $)) (-15 -3737 ($ $))))) (T -772)) -((-2837 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-772)))) (-2607 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-772)))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-772)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-772)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-772)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-772)))) (-3565 (*1 *1) (-5 *1 (-772))) (-2605 (*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-772)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2604 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2603 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2600 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2598 (*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3138 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3137 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3773 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3138 (*1 *1 *1) (-5 *1 (-772))) (-3137 (*1 *1 *1) (-5 *1 (-772))) (-3773 (*1 *1 *1) (-5 *1 (-772))) (-2597 (*1 *1 *1 *1) (-5 *1 (-772))) (-2596 (*1 *1 *1 *1) (-5 *1 (-772))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2596 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2595 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2594 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2594 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-2593 (*1 *1 *1 *1) (-5 *1 (-772))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-3535 (*1 *1 *1) (-5 *1 (-772))) (-2591 (*1 *1 *1 *1) (-5 *1 (-772))) (-2590 (*1 *1 *1) (-5 *1 (-772))) (-3123 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-772)))) (-2589 (*1 *1 *1 *1) (-5 *1 (-772))) (-2611 (*1 *1 *1) (-5 *1 (-772))) (-2611 (*1 *1 *1 *1) (-5 *1 (-772))) (-2588 (*1 *1 *1 *1) (-5 *1 (-772))) (-2587 (*1 *1 *1 *1) (-5 *1 (-772))) (-2586 (*1 *1 *1 *1) (-5 *1 (-772))) (-2585 (*1 *1 *1 *1) (-5 *1 (-772))) (-3758 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-3101 (*1 *1 *1 *1) (-5 *1 (-772))) (-2584 (*1 *1 *1 *1) (-5 *1 (-772))) (-2583 (*1 *1 *1 *1) (-5 *1 (-772))) (-2582 (*1 *1 *1 *1) (-5 *1 (-772))) (-2581 (*1 *1 *1 *1) (-5 *1 (-772))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2580 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2579 (*1 *1 *1) (-5 *1 (-772))) (-3836 (*1 *1 *1) (-5 *1 (-772))) (-3836 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-2578 (*1 *1 *1) (-5 *1 (-772))) (-2578 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-2577 (*1 *1 *1) (-5 *1 (-772))) (-2576 (*1 *1 *1 *1) (-5 *1 (-772))) (-3532 (*1 *1 *1) (-5 *1 (-772))) (-3532 (*1 *1 *1 *1) (-5 *1 (-772))) (-3532 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-2575 (*1 *1 *1) (-5 *1 (-772))) (-2575 (*1 *1 *1 *1) (-5 *1 (-772))) (-2575 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-3470 (*1 *1 *1) (-5 *1 (-772))) (-3470 (*1 *1 *1 *1) (-5 *1 (-772))) (-3470 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-3240 (*1 *1 *1) (-5 *1 (-772))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2574 (*1 *1 *1) (-5 *1 (-772))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2573 (*1 *1 *1) (-5 *1 (-772))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2569 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-3056 (*1 *1 *1 *1) (-5 *1 (-772))) (-2568 (*1 *1 *1 *1) (-5 *1 (-772))) (-2685 (*1 *1 *1 *1) (-5 *1 (-772))) (-2567 (*1 *1 *1 *1) (-5 *1 (-772))) (-2684 (*1 *1 *1 *1) (-5 *1 (-772))) (-2566 (*1 *1 *1 *1) (-5 *1 (-772))) (-3839 (*1 *1 *1 *1) (-5 *1 (-772))) (-3837 (*1 *1 *1 *1) (-5 *1 (-772))) (-3837 (*1 *1 *1) (-5 *1 (-772))) (* (*1 *1 *1 *1) (-5 *1 (-772))) (-3949 (*1 *1 *1 *1) (-5 *1 (-772))) (** (*1 *1 *1 *1) (-5 *1 (-772))) (-2565 (*1 *1 *1 *1) (-5 *1 (-772))) (-2564 (*1 *1 *1 *1) (-5 *1 (-772))) (-2563 (*1 *1 *1 *1) (-5 *1 (-772))) (-3466 (*1 *1 *1 *1) (-5 *1 (-772))) (-2562 (*1 *1 *1 *1) (-5 *1 (-772))) (-2561 (*1 *1 *1 *1) (-5 *1 (-772))) (-2560 (*1 *1 *1) (-5 *1 (-772))) (-3737 (*1 *1 *1 *1) (-5 *1 (-772))) (-3737 (*1 *1 *1) (-5 *1 (-772)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3831 (((-3 $ "failed") (-1090)) 36 T ELT)) (-3136 (((-694)) 32 T ELT)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) 29 T ELT)) (-3242 (((-1073) $) 43 T ELT)) (-2400 (($ (-830)) 28 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3972 (((-1090) $) 13 T ELT) (((-473) $) 19 T ELT) (((-800 (-330)) $) 26 T ELT) (((-800 (-484)) $) 22 T ELT)) (-3946 (((-772) $) 16 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 40 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 38 T ELT))) -(((-773 |#1|) (-13 (-752) (-553 (-1090)) (-553 (-473)) (-553 (-800 (-330))) (-553 (-800 (-484))) (-10 -8 (-15 -3831 ((-3 $ "failed") (-1090))))) (-583 (-1090))) (T -773)) -((-3831 (*1 *1 *2) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-773 *3)) (-14 *3 (-583 *2))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3542 (((-446) $) 12 T ELT)) (-2608 (((-583 (-381)) $) 14 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 17 T ELT))) -(((-774) (-13 (-1013) (-10 -8 (-15 -3542 ((-446) $)) (-15 -2608 ((-583 (-381)) $))))) (T -774)) -((-3542 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-774)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-583 (-381))) (-5 *1 (-774))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-857 |#1|)) NIL T ELT) (((-857 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3923 (((-1185) (-694)) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-775 |#1| |#2| |#3| |#4|) (-13 (-961) (-430 (-857 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3949 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3923 ((-1185) (-694))))) (-961) (-583 (-1090)) (-583 (-694)) (-694)) (T -775)) -((-3949 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-775 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-961)) (-14 *3 (-583 (-1090))) (-14 *4 (-583 (-694))) (-14 *5 (-694)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-775 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1090))) (-14 *6 (-583 *3)) (-14 *7 *3)))) -((-2609 (((-3 (-148 |#3|) #1="failed") (-694) (-694) |#2| |#2|) 38 T ELT)) (-2610 (((-3 (-350 |#3|) #1#) (-694) (-694) |#2| |#2|) 29 T ELT))) -(((-776 |#1| |#2| |#3|) (-10 -7 (-15 -2610 ((-3 (-350 |#3|) #1="failed") (-694) (-694) |#2| |#2|)) (-15 -2609 ((-3 (-148 |#3|) #1#) (-694) (-694) |#2| |#2|))) (-312) (-1172 |#1|) (-1155 |#1|)) (T -776)) -((-2609 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-148 *6)) (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5)))) (-2610 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-350 *6)) (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5))))) -((-2610 (((-3 (-350 (-1148 |#2| |#1|)) #1="failed") (-694) (-694) (-1169 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-350 (-1148 |#2| |#1|)) #1#) (-694) (-694) (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) 28 T ELT))) -(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -2610 ((-3 (-350 (-1148 |#2| |#1|)) #1="failed") (-694) (-694) (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) (-15 -2610 ((-3 (-350 (-1148 |#2| |#1|)) #1#) (-694) (-694) (-1169 |#1| |#2| |#3|)))) (-312) (-1090) |#1|) (T -777)) -((-2610 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-350 (-1148 *6 *5))) (-5 *1 (-777 *5 *6 *7)))) (-2610 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-350 (-1148 *6 *5))) (-5 *1 (-777 *5 *6 *7))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $ (-484)) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2611 (($ (-1085 (-484)) (-484)) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2612 (($ $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3772 (((-694) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2614 (((-484)) NIL T ELT)) (-2613 (((-484) $) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3769 (($ $ (-484)) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2615 (((-1069 (-484)) $) NIL T ELT)) (-2891 (($ $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3770 (((-484) $ (-484)) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-778 |#1|) (-779 |#1|) (-484)) (T -778)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3037 (($ $ (-484)) 78 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3724 (($) 23 T CONST)) (-2611 (($ (-1085 (-484)) (-484)) 77 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2612 (($ $) 80 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3772 (((-694) $) 85 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-2614 (((-484)) 82 T ELT)) (-2613 (((-484) $) 81 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3769 (($ $ (-484)) 84 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-2615 (((-1069 (-484)) $) 86 T ELT)) (-2891 (($ $) 83 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3770 (((-484) $ (-484)) 79 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-779 |#1|) (-113) (-484)) (T -779)) -((-2615 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-1069 (-484))))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-694)))) (-3769 (*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2891 (*1 *1 *1) (-4 *1 (-779 *2))) (-2614 (*1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2612 (*1 *1 *1) (-4 *1 (-779 *2))) (-3770 (*1 *2 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-3037 (*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2611 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *3 (-484)) (-4 *1 (-779 *4))))) -(-13 (-258) (-120) (-10 -8 (-15 -2615 ((-1069 (-484)) $)) (-15 -3772 ((-694) $)) (-15 -3769 ($ $ (-484))) (-15 -2891 ($ $)) (-15 -2614 ((-484))) (-15 -2613 ((-484) $)) (-15 -2612 ($ $)) (-15 -3770 ((-484) $ (-484))) (-15 -3037 ($ $ (-484))) (-15 -2611 ($ (-1085 (-484)) (-484))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-258)) ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-484) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-778 |#1|) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-778 |#1|) (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT)) (-3156 (((-778 |#1|) $) NIL T ELT) (((-1090) $) NIL (|has| (-778 |#1|) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT)) (-3730 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-778 |#1|))) (|:| |vec| (-1179 (-778 |#1|)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-778 |#1|)) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-778 |#1|) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-778 |#1|) (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| (-778 |#1|) (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-778 |#1|) $) NIL T ELT)) (-3445 (((-632 $) $) NIL (|has| (-778 |#1|) (-1066)) ELT)) (-3187 (((-85) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3958 (($ (-1 (-778 |#1|) (-778 |#1|)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-778 |#1|))) (|:| |vec| (-1179 (-778 |#1|)))) (-1179 $) $) NIL T ELT) (((-630 (-778 |#1|)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-778 |#1|) (-1066)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-778 |#1|) (-258)) ELT)) (-3130 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-483)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3768 (($ $ (-583 (-778 |#1|)) (-583 (-778 |#1|))) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-778 |#1|) (-778 |#1|)) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-249 (-778 |#1|))) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-583 (-249 (-778 |#1|)))) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-583 (-1090)) (-583 (-778 |#1|))) NIL (|has| (-778 |#1|) (-455 (-1090) (-778 |#1|))) ELT) (($ $ (-1090) (-778 |#1|)) NIL (|has| (-778 |#1|) (-455 (-1090) (-778 |#1|))) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3800 (($ $ (-778 |#1|)) NIL (|has| (-778 |#1|) (-241 (-778 |#1|) (-778 |#1|))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 (-778 |#1|) (-778 |#1|))) NIL T ELT) (($ $ (-1 (-778 |#1|) (-778 |#1|)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $) NIL (|has| (-778 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-778 |#1|) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-778 |#1|) $) NIL T ELT)) (-3972 (((-800 (-484)) $) NIL (|has| (-778 |#1|) (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| (-778 |#1|) (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| (-778 |#1|) (-553 (-473))) ELT) (((-330) $) NIL (|has| (-778 |#1|) (-933)) ELT) (((-179) $) NIL (|has| (-778 |#1|) (-933)) ELT)) (-2616 (((-148 (-350 (-484))) $) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-778 |#1|) (-821))) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-778 |#1|)) NIL T ELT) (($ (-1090)) NIL (|has| (-778 |#1|) (-950 (-1090))) ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-778 |#1|) (-821))) (|has| (-778 |#1|) (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3770 (((-350 (-484)) $ (-484)) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-778 |#1|) (-778 |#1|))) NIL T ELT) (($ $ (-1 (-778 |#1|) (-778 |#1|)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $) NIL (|has| (-778 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-778 |#1|) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3949 (($ $ $) NIL T ELT) (($ (-778 |#1|) (-778 |#1|)) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ (-778 |#1|) $) NIL T ELT) (($ $ (-778 |#1|)) NIL T ELT))) -(((-780 |#1|) (-13 (-904 (-778 |#1|)) (-10 -8 (-15 -3770 ((-350 (-484)) $ (-484))) (-15 -2616 ((-148 (-350 (-484))) $)) (-15 -3730 ($ $)) (-15 -3730 ($ (-484) $)))) (-484)) (T -780)) -((-3770 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-780 *4)) (-14 *4 *3) (-5 *3 (-484)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-484)))) (-5 *1 (-780 *3)) (-14 *3 (-484)))) (-3730 (*1 *1 *1) (-12 (-5 *1 (-780 *2)) (-14 *2 (-484)))) (-3730 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-780 *3)) (-14 *3 *2)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 ((|#2| $) NIL (|has| |#2| (-258)) ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-484) $) NIL (|has| |#2| (-740)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| |#2| (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT)) (-3156 ((|#2| $) NIL T ELT) (((-1090) $) NIL (|has| |#2| (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT)) (-3730 (($ $) 35 T ELT) (($ (-484) $) 38 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) 64 T ELT)) (-2994 (($) NIL (|has| |#2| (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3186 (((-85) $) NIL (|has| |#2| (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| |#2| (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| |#2| (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 ((|#2| $) NIL T ELT)) (-3445 (((-632 $) $) NIL (|has| |#2| (-1066)) ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 60 T ELT)) (-3446 (($) NIL (|has| |#2| (-1066)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3130 ((|#2| $) NIL (|has| |#2| (-483)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3768 (($ $ (-583 |#2|) (-583 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-249 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-583 (-249 |#2|))) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-583 (-1090)) (-583 |#2|)) NIL (|has| |#2| (-455 (-1090) |#2|)) ELT) (($ $ (-1090) |#2|) NIL (|has| |#2| (-455 (-1090) |#2|)) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3800 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 ((|#2| $) NIL T ELT)) (-3972 (((-800 (-484)) $) NIL (|has| |#2| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| |#2| (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| |#2| (-553 (-473))) ELT) (((-330) $) NIL (|has| |#2| (-933)) ELT) (((-179) $) NIL (|has| |#2| (-933)) ELT)) (-2616 (((-148 (-350 (-484))) $) 78 T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3946 (((-772) $) 105 T ELT) (($ (-484)) 20 T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1090)) NIL (|has| |#2| (-950 (-1090))) ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3131 ((|#2| $) NIL (|has| |#2| (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3770 (((-350 (-484)) $ (-484)) 71 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| |#2| (-740)) ELT)) (-2660 (($) 15 T CONST)) (-2666 (($) 17 T CONST)) (-2669 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3056 (((-85) $ $) 46 T ELT)) (-2684 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3949 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3837 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3839 (($ $ $) 48 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 61 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) -(((-781 |#1| |#2|) (-13 (-904 |#2|) (-10 -8 (-15 -3770 ((-350 (-484)) $ (-484))) (-15 -2616 ((-148 (-350 (-484))) $)) (-15 -3730 ($ $)) (-15 -3730 ($ (-484) $)))) (-484) (-779 |#1|)) (T -781)) -((-3770 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-350 (-484))) (-5 *1 (-781 *4 *5)) (-5 *3 (-484)) (-4 *5 (-779 *4)))) (-2616 (*1 *2 *1) (-12 (-14 *3 (-484)) (-5 *2 (-148 (-350 (-484)))) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3)))) (-3730 (*1 *1 *1) (-12 (-14 *2 (-484)) (-5 *1 (-781 *2 *3)) (-4 *3 (-779 *2)))) (-3730 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-14 *3 *2) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3))))) -((-2568 (((-85) $ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3796 ((|#2| $) 12 T ELT)) (-2617 (($ |#1| |#2|) 9 T ELT)) (-3242 (((-1073) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3243 (((-1033) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3801 ((|#1| $) 11 T ELT)) (-3530 (($ |#1| |#2|) 10 T ELT)) (-3946 (((-772) $) 18 (OR (-12 (|has| |#1| (-552 (-772))) (|has| |#2| (-552 (-772)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))) ELT)) (-1265 (((-85) $ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3056 (((-85) $ $) 23 (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT))) -(((-782 |#1| |#2|) (-13 (-1129) (-10 -8 (IF (|has| |#1| (-552 (-772))) (IF (|has| |#2| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1013)) (IF (|has| |#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -2617 ($ |#1| |#2|)) (-15 -3530 ($ |#1| |#2|)) (-15 -3801 (|#1| $)) (-15 -3796 (|#2| $)))) (-1129) (-1129)) (T -782)) -((-2617 (*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1129)) (-4 *3 (-1129)))) (-3530 (*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1129)) (-4 *3 (-1129)))) (-3801 (*1 *2 *1) (-12 (-4 *2 (-1129)) (-5 *1 (-782 *2 *3)) (-4 *3 (-1129)))) (-3796 (*1 *2 *1) (-12 (-4 *2 (-1129)) (-5 *1 (-782 *3 *2)) (-4 *3 (-1129))))) -((-2568 (((-85) $ $) NIL T ELT)) (-2957 (((-484) $) 16 T ELT)) (-2619 (($ (-130)) 13 T ELT)) (-2618 (($ (-130)) 14 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2956 (((-130) $) 15 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2621 (($ (-130)) 11 T ELT)) (-2622 (($ (-130)) 10 T ELT)) (-3946 (((-772) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2620 (($ (-130)) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-783) (-13 (-1013) (-555 (-130)) (-10 -8 (-15 -2622 ($ (-130))) (-15 -2621 ($ (-130))) (-15 -2620 ($ (-130))) (-15 -2619 ($ (-130))) (-15 -2618 ($ (-130))) (-15 -2956 ((-130) $)) (-15 -2957 ((-484) $))))) (T -783)) -((-2622 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2621 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2618 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-783))))) -((-3946 (((-265 (-484)) (-350 (-857 (-48)))) 23 T ELT) (((-265 (-484)) (-857 (-48))) 18 T ELT))) -(((-784) (-10 -7 (-15 -3946 ((-265 (-484)) (-857 (-48)))) (-15 -3946 ((-265 (-484)) (-350 (-857 (-48))))))) (T -784)) -((-3946 (*1 *2 *3) (-12 (-5 *3 (-350 (-857 (-48)))) (-5 *2 (-265 (-484))) (-5 *1 (-784)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-857 (-48))) (-5 *2 (-265 (-484))) (-5 *1 (-784))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3566 (((-85) $ (|[\|\|]| (-446))) 9 T ELT) (((-85) $ (|[\|\|]| (-1073))) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3572 (((-446) $) 10 T ELT) (((-1073) $) 14 T ELT)) (-3056 (((-85) $ $) 15 T ELT))) -(((-785) (-13 (-995) (-1175) (-10 -8 (-15 -3566 ((-85) $ (|[\|\|]| (-446)))) (-15 -3572 ((-446) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1073)))) (-15 -3572 ((-1073) $))))) (T -785)) -((-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-785)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-785)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)) (-5 *1 (-785)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-785))))) -((-3958 (((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)) 15 T ELT))) -(((-786 |#1| |#2|) (-10 -7 (-15 -3958 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)))) (-1129) (-1129)) (T -786)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6))))) -((-3371 (($ |#1| |#1|) 8 T ELT)) (-2625 ((|#1| $ (-694)) 15 T ELT))) -(((-787 |#1|) (-10 -8 (-15 -3371 ($ |#1| |#1|)) (-15 -2625 (|#1| $ (-694)))) (-1129)) (T -787)) -((-2625 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-787 *2)) (-4 *2 (-1129)))) (-3371 (*1 *1 *2 *2) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1129))))) -((-3958 (((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)) 15 T ELT))) -(((-788 |#1| |#2|) (-10 -7 (-15 -3958 ((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)))) (-1129) (-1129)) (T -788)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6))))) -((-3371 (($ |#1| |#1| |#1|) 8 T ELT)) (-2625 ((|#1| $ (-694)) 15 T ELT))) -(((-789 |#1|) (-10 -8 (-15 -3371 ($ |#1| |#1| |#1|)) (-15 -2625 (|#1| $ (-694)))) (-1129)) (T -789)) -((-2625 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-789 *2)) (-4 *2 (-1129)))) (-3371 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1129))))) -((-2623 (((-583 (-1095)) (-1073)) 9 T ELT))) -(((-790) (-10 -7 (-15 -2623 ((-583 (-1095)) (-1073))))) (T -790)) -((-2623 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-583 (-1095))) (-5 *1 (-790))))) -((-3958 (((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)) 15 T ELT))) -(((-791 |#1| |#2|) (-10 -7 (-15 -3958 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) (-1129) (-1129)) (T -791)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6))))) -((-2624 (($ |#1| |#1| |#1|) 8 T ELT)) (-2625 ((|#1| $ (-694)) 15 T ELT))) -(((-792 |#1|) (-10 -8 (-15 -2624 ($ |#1| |#1| |#1|)) (-15 -2625 (|#1| $ (-694)))) (-1129)) (T -792)) -((-2625 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-792 *2)) (-4 *2 (-1129)))) (-2624 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1129))))) -((-2628 (((-1069 (-583 (-484))) (-583 (-484)) (-1069 (-583 (-484)))) 41 T ELT)) (-2627 (((-1069 (-583 (-484))) (-583 (-484)) (-583 (-484))) 31 T ELT)) (-2629 (((-1069 (-583 (-484))) (-583 (-484))) 53 T ELT) (((-1069 (-583 (-484))) (-583 (-484)) (-583 (-484))) 50 T ELT)) (-2630 (((-1069 (-583 (-484))) (-484)) 55 T ELT)) (-2626 (((-1069 (-583 (-830))) (-1069 (-583 (-830)))) 22 T ELT)) (-3009 (((-583 (-830)) (-583 (-830))) 18 T ELT))) -(((-793) (-10 -7 (-15 -3009 ((-583 (-830)) (-583 (-830)))) (-15 -2626 ((-1069 (-583 (-830))) (-1069 (-583 (-830))))) (-15 -2627 ((-1069 (-583 (-484))) (-583 (-484)) (-583 (-484)))) (-15 -2628 ((-1069 (-583 (-484))) (-583 (-484)) (-1069 (-583 (-484))))) (-15 -2629 ((-1069 (-583 (-484))) (-583 (-484)) (-583 (-484)))) (-15 -2629 ((-1069 (-583 (-484))) (-583 (-484)))) (-15 -2630 ((-1069 (-583 (-484))) (-484))))) (T -793)) -((-2630 (*1 *2 *3) (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-484)))) (-2629 (*1 *2 *3) (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))) (-2629 (*1 *2 *3 *3) (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))) (-2628 (*1 *2 *3 *2) (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *3 (-583 (-484))) (-5 *1 (-793)))) (-2627 (*1 *2 *3 *3) (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-1069 (-583 (-830)))) (-5 *1 (-793)))) (-3009 (*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-793))))) -((-3972 (((-800 (-330)) $) 9 (|has| |#1| (-553 (-800 (-330)))) ELT) (((-800 (-484)) $) 8 (|has| |#1| (-553 (-800 (-484)))) ELT))) -(((-794 |#1|) (-113) (-1129)) (T -794)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-553 (-800 (-484)))) (-6 (-553 (-800 (-484)))) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-330)))) (-6 (-553 (-800 (-330)))) |%noBranch|))) -(((-553 (-800 (-330))) |has| |#1| (-553 (-800 (-330)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3614 (($) 14 T ELT)) (-2632 (($ (-798 |#1| |#2|) (-798 |#1| |#3|)) 28 T ELT)) (-2631 (((-798 |#1| |#3|) $) 16 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2640 (((-85) $) 22 T ELT)) (-2639 (($) 19 T ELT)) (-3946 (((-772) $) 31 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2850 (((-798 |#1| |#2|) $) 15 T ELT)) (-3056 (((-85) $ $) 26 T ELT))) -(((-795 |#1| |#2| |#3|) (-13 (-1013) (-10 -8 (-15 -2640 ((-85) $)) (-15 -2639 ($)) (-15 -3614 ($)) (-15 -2632 ($ (-798 |#1| |#2|) (-798 |#1| |#3|))) (-15 -2850 ((-798 |#1| |#2|) $)) (-15 -2631 ((-798 |#1| |#3|) $)))) (-1013) (-1013) (-608 |#2|)) (T -795)) -((-2640 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-608 *4)))) (-2639 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-608 *3)))) (-3614 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-608 *3)))) (-2632 (*1 *1 *2 *3) (-12 (-5 *2 (-798 *4 *5)) (-5 *3 (-798 *4 *6)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-608 *5)) (-5 *1 (-795 *4 *5 *6)))) (-2850 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *4)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-608 *4)))) (-2631 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *5)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-608 *4))))) -((-2568 (((-85) $ $) 7 T ELT)) (-2796 (((-798 |#1| $) $ (-800 |#1|) (-798 |#1| $)) 17 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) -(((-796 |#1|) (-113) (-1013)) (T -796)) -((-2796 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-798 *4 *1)) (-5 *3 (-800 *4)) (-4 *1 (-796 *4)) (-4 *4 (-1013))))) -(-13 (-1013) (-10 -8 (-15 -2796 ((-798 |t#1| $) $ (-800 |t#1|) (-798 |t#1| $))))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-2633 (((-85) (-583 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2634 (((-798 |#1| |#2|) |#2| |#3|) 45 (-12 (-2560 (|has| |#2| (-950 (-1090)))) (-2560 (|has| |#2| (-961)))) ELT) (((-583 (-249 (-857 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-961)) (-2560 (|has| |#2| (-950 (-1090))))) ELT) (((-583 (-249 |#2|)) |#2| |#3|) 36 (|has| |#2| (-950 (-1090))) ELT) (((-795 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|) 21 T ELT))) -(((-797 |#1| |#2| |#3|) (-10 -7 (-15 -2633 ((-85) |#2| |#3|)) (-15 -2633 ((-85) (-583 |#2|) |#3|)) (-15 -2634 ((-795 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-950 (-1090))) (-15 -2634 ((-583 (-249 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -2634 ((-583 (-249 (-857 |#2|))) |#2| |#3|)) (-15 -2634 ((-798 |#1| |#2|) |#2| |#3|))))) (-1013) (-796 |#1|) (-553 (-800 |#1|))) (T -797)) -((-2634 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-798 *5 *3)) (-5 *1 (-797 *5 *3 *4)) (-2560 (-4 *3 (-950 (-1090)))) (-2560 (-4 *3 (-961))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2634 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 (-857 *3)))) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-961)) (-2560 (-4 *3 (-950 (-1090)))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2634 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 *3))) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-950 (-1090))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2634 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *6 (-796 *5)) (-5 *2 (-795 *5 *6 (-583 *6))) (-5 *1 (-797 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-553 (-800 *5))))) (-2633 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-796 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-797 *5 *6 *4)) (-4 *4 (-553 (-800 *5))))) (-2633 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3234 (($ $ $) 40 T ELT)) (-2661 (((-3 (-85) #1="failed") $ (-800 |#1|)) 37 T ELT)) (-3614 (($) 12 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2636 (($ (-800 |#1|) |#2| $) 20 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2638 (((-3 |#2| #1#) (-800 |#1|) $) 51 T ELT)) (-2640 (((-85) $) 15 T ELT)) (-2639 (($) 13 T ELT)) (-3257 (((-583 (-2 (|:| -3860 (-1090)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3530 (($ (-583 (-2 (|:| -3860 (-1090)) (|:| |entry| |#2|)))) 23 T ELT)) (-3946 (((-772) $) 45 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2635 (($ (-800 |#1|) |#2| $ |#2|) 49 T ELT)) (-2637 (($ (-800 |#1|) |#2| $) 48 T ELT)) (-3056 (((-85) $ $) 42 T ELT))) -(((-798 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -2640 ((-85) $)) (-15 -2639 ($)) (-15 -3614 ($)) (-15 -3234 ($ $ $)) (-15 -2638 ((-3 |#2| #1="failed") (-800 |#1|) $)) (-15 -2637 ($ (-800 |#1|) |#2| $)) (-15 -2636 ($ (-800 |#1|) |#2| $)) (-15 -2635 ($ (-800 |#1|) |#2| $ |#2|)) (-15 -3257 ((-583 (-2 (|:| -3860 (-1090)) (|:| |entry| |#2|))) $)) (-15 -3530 ($ (-583 (-2 (|:| -3860 (-1090)) (|:| |entry| |#2|))))) (-15 -2661 ((-3 (-85) #1#) $ (-800 |#1|))))) (-1013) (-1013)) (T -798)) -((-2640 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-2639 (*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3614 (*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3234 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2638 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-5 *1 (-798 *4 *2)))) (-2637 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))) (-2636 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))) (-2635 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3860 (-1090)) (|:| |entry| *4)))) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3860 (-1090)) (|:| |entry| *4)))) (-4 *4 (-1013)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)))) (-2661 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-798 *4 *5)) (-4 *5 (-1013))))) -((-3958 (((-798 |#1| |#3|) (-1 |#3| |#2|) (-798 |#1| |#2|)) 22 T ELT))) -(((-799 |#1| |#2| |#3|) (-10 -7 (-15 -3958 ((-798 |#1| |#3|) (-1 |#3| |#2|) (-798 |#1| |#2|)))) (-1013) (-1013) (-1013)) (T -799)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-798 *5 *6)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-798 *5 *7)) (-5 *1 (-799 *5 *6 *7))))) -((-2568 (((-85) $ $) NIL T ELT)) (-2648 (($ $ (-583 (-51))) 74 T ELT)) (-3081 (((-583 $) $) 139 T ELT)) (-2645 (((-2 (|:| |var| (-583 (-1090))) (|:| |pred| (-51))) $) 30 T ELT)) (-3260 (((-85) $) 35 T ELT)) (-2646 (($ $ (-583 (-1090)) (-51)) 31 T ELT)) (-2649 (($ $ (-583 (-51))) 73 T ELT)) (-3157 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1090) #1#) $) 167 T ELT)) (-3156 ((|#1| $) 68 T ELT) (((-1090) $) NIL T ELT)) (-2643 (($ $) 126 T ELT)) (-2655 (((-85) $) 55 T ELT)) (-2650 (((-583 (-51)) $) 50 T ELT)) (-2647 (($ (-1090) (-85) (-85) (-85)) 75 T ELT)) (-2641 (((-3 (-583 $) #1#) (-583 $)) 82 T ELT)) (-2652 (((-85) $) 58 T ELT)) (-2653 (((-85) $) 57 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) 41 T ELT)) (-2658 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 $)) #1#) $) 97 T ELT)) (-2822 (((-3 (-583 $) #1#) $) 40 T ELT)) (-2659 (((-3 (-583 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2513 (-86)) (|:| |arg| (-583 $))) #1#) $) 107 T ELT)) (-2657 (((-3 (-583 $) #1#) $) 42 T ELT)) (-2824 (((-3 (-2 (|:| |val| $) (|:| -2401 (-694))) #1#) $) 45 T ELT)) (-2656 (((-85) $) 34 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2644 (((-85) $) 28 T ELT)) (-2651 (((-85) $) 52 T ELT)) (-2642 (((-583 (-51)) $) 130 T ELT)) (-2654 (((-85) $) 56 T ELT)) (-3800 (($ (-86) (-583 $)) 104 T ELT)) (-3322 (((-694) $) 33 T ELT)) (-3400 (($ $) 72 T ELT)) (-3972 (($ (-583 $)) 69 T ELT)) (-3953 (((-85) $) 32 T ELT)) (-3946 (((-772) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1090)) 76 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2662 (($ $ (-51)) 129 T ELT)) (-2660 (($) 103 T CONST)) (-2666 (($) 83 T CONST)) (-3056 (((-85) $ $) 93 T ELT)) (-3949 (($ $ $) 117 T ELT)) (-3839 (($ $ $) 121 T ELT)) (** (($ $ (-694)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) -(((-800 |#1|) (-13 (-1013) (-950 |#1|) (-950 (-1090)) (-10 -8 (-15 -2660 ($) -3952) (-15 -2666 ($) -3952) (-15 -2822 ((-3 (-583 $) #1="failed") $)) (-15 -2823 ((-3 (-583 $) #1#) $)) (-15 -2659 ((-3 (-583 $) #1#) $ (-86))) (-15 -2659 ((-3 (-2 (|:| -2513 (-86)) (|:| |arg| (-583 $))) #1#) $)) (-15 -2824 ((-3 (-2 (|:| |val| $) (|:| -2401 (-694))) #1#) $)) (-15 -2658 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2657 ((-3 (-583 $) #1#) $)) (-15 -2825 ((-3 (-2 (|:| |val| $) (|:| -2401 $)) #1#) $)) (-15 -3800 ($ (-86) (-583 $))) (-15 -3839 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694))) (-15 ** ($ $ $)) (-15 -3949 ($ $ $)) (-15 -3322 ((-694) $)) (-15 -3972 ($ (-583 $))) (-15 -3400 ($ $)) (-15 -2656 ((-85) $)) (-15 -2655 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -3953 ((-85) $)) (-15 -2654 ((-85) $)) (-15 -2653 ((-85) $)) (-15 -2652 ((-85) $)) (-15 -2651 ((-85) $)) (-15 -2650 ((-583 (-51)) $)) (-15 -2649 ($ $ (-583 (-51)))) (-15 -2648 ($ $ (-583 (-51)))) (-15 -2647 ($ (-1090) (-85) (-85) (-85))) (-15 -2646 ($ $ (-583 (-1090)) (-51))) (-15 -2645 ((-2 (|:| |var| (-583 (-1090))) (|:| |pred| (-51))) $)) (-15 -2644 ((-85) $)) (-15 -2643 ($ $)) (-15 -2662 ($ $ (-51))) (-15 -2642 ((-583 (-51)) $)) (-15 -3081 ((-583 $) $)) (-15 -2641 ((-3 (-583 $) #1#) (-583 $))))) (-1013)) (T -800)) -((-2660 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2666 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2822 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2823 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2659 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-800 *4))) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-2659 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2513 (-86)) (|:| |arg| (-583 (-800 *3))))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2824 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-694)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2658 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-800 *3)) (|:| |den| (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2657 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2825 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3800 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 (-800 *4))) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-3839 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-3949 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3400 (*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2649 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2648 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2647 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-85)) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-2646 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-51)) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1090))) (|:| |pred| (-51)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2643 (*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2662 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2641 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) -((-3209 (((-800 |#1|) (-800 |#1|) (-583 (-1090)) (-1 (-85) (-583 |#2|))) 32 T ELT) (((-800 |#1|) (-800 |#1|) (-583 (-1 (-85) |#2|))) 46 T ELT) (((-800 |#1|) (-800 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2661 (((-85) (-583 |#2|) (-800 |#1|)) 42 T ELT) (((-85) |#2| (-800 |#1|)) 36 T ELT)) (-3531 (((-1 (-85) |#2|) (-800 |#1|)) 16 T ELT)) (-2663 (((-583 |#2|) (-800 |#1|)) 24 T ELT)) (-2662 (((-800 |#1|) (-800 |#1|) |#2|) 20 T ELT))) -(((-801 |#1| |#2|) (-10 -7 (-15 -3209 ((-800 |#1|) (-800 |#1|) (-1 (-85) |#2|))) (-15 -3209 ((-800 |#1|) (-800 |#1|) (-583 (-1 (-85) |#2|)))) (-15 -3209 ((-800 |#1|) (-800 |#1|) (-583 (-1090)) (-1 (-85) (-583 |#2|)))) (-15 -3531 ((-1 (-85) |#2|) (-800 |#1|))) (-15 -2661 ((-85) |#2| (-800 |#1|))) (-15 -2661 ((-85) (-583 |#2|) (-800 |#1|))) (-15 -2662 ((-800 |#1|) (-800 |#1|) |#2|)) (-15 -2663 ((-583 |#2|) (-800 |#1|)))) (-1013) (-1129)) (T -801)) -((-2663 (*1 *2 *3) (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-583 *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-1129)))) (-2662 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-801 *4 *3)) (-4 *3 (-1129)))) (-2661 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1129)) (-5 *2 (-85)) (-5 *1 (-801 *5 *6)))) (-2661 (*1 *2 *3 *4) (-12 (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-801 *5 *3)) (-4 *3 (-1129)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-1129)))) (-3209 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-800 *5)) (-5 *3 (-583 (-1090))) (-5 *4 (-1 (-85) (-583 *6))) (-4 *5 (-1013)) (-4 *6 (-1129)) (-5 *1 (-801 *5 *6)))) (-3209 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-5 *3 (-583 (-1 (-85) *5))) (-4 *4 (-1013)) (-4 *5 (-1129)) (-5 *1 (-801 *4 *5)))) (-3209 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1013)) (-4 *5 (-1129)) (-5 *1 (-801 *4 *5))))) -((-3958 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 19 T ELT))) -(((-802 |#1| |#2|) (-10 -7 (-15 -3958 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1013) (-1013)) (T -802)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-800 *6)) (-5 *1 (-802 *5 *6))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3934 (((-583 |#1|) $) 20 T ELT)) (-2664 (((-85) $) 49 T ELT)) (-3157 (((-3 (-614 |#1|) "failed") $) 55 T ELT)) (-3156 (((-614 |#1|) $) 53 T ELT)) (-3799 (($ $) 24 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3833 (((-694) $) 60 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3801 (((-614 |#1|) $) 22 T ELT)) (-3946 (((-772) $) 47 T ELT) (($ (-614 |#1|)) 27 T ELT) (((-739 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2666 (($) 11 T CONST)) (-2665 (((-583 (-614 |#1|)) $) 28 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 14 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 66 T ELT))) -(((-803 |#1|) (-13 (-756) (-950 (-614 |#1|)) (-10 -8 (-15 -2666 ($) -3952) (-15 -3946 ((-739 |#1|) $)) (-15 -3946 ($ |#1|)) (-15 -3801 ((-614 |#1|) $)) (-15 -3833 ((-694) $)) (-15 -2665 ((-583 (-614 |#1|)) $)) (-15 -3799 ($ $)) (-15 -2664 ((-85) $)) (-15 -3934 ((-583 |#1|) $)))) (-756)) (T -803)) -((-2666 (*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3946 (*1 *1 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-583 (-614 *3))) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3799 (*1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756))))) -((-3474 ((|#1| |#1| |#1|) 19 T ELT))) -(((-804 |#1| |#2|) (-10 -7 (-15 -3474 (|#1| |#1| |#1|))) (-1155 |#2|) (-961)) (T -804)) -((-3474 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-804 *2 *3)) (-4 *2 (-1155 *3))))) -((-2669 ((|#2| $ |#3|) 10 T ELT))) -(((-805 |#1| |#2| |#3|) (-10 -7 (-15 -2669 (|#2| |#1| |#3|))) (-806 |#2| |#3|) (-1129) (-1129)) (T -805)) -NIL -((-3758 ((|#1| $ |#2|) 7 T ELT)) (-2669 ((|#1| $ |#2|) 6 T ELT))) -(((-806 |#1| |#2|) (-113) (-1129) (-1129)) (T -806)) -((-3758 (*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1129)))) (-2669 (*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1129))))) -(-13 (-1129) (-10 -8 (-15 -3758 (|t#1| $ |t#2|)) (-15 -2669 (|t#1| $ |t#2|)))) -(((-13) . T) ((-1129) . T)) -((-2668 ((|#1| |#1| (-694)) 26 T ELT)) (-2667 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3435 (((-3 (-2 (|:| -3138 |#1|) (|:| -3137 |#1|)) #1#) |#1| (-694) (-694)) 29 T ELT) (((-583 |#1|) |#1|) 38 T ELT))) -(((-807 |#1| |#2|) (-10 -7 (-15 -3435 ((-583 |#1|) |#1|)) (-15 -3435 ((-3 (-2 (|:| -3138 |#1|) (|:| -3137 |#1|)) #1="failed") |#1| (-694) (-694))) (-15 -2667 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2668 (|#1| |#1| (-694)))) (-1155 |#2|) (-312)) (T -807)) -((-2668 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-5 *1 (-807 *2 *4)) (-4 *2 (-1155 *4)))) (-2667 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-807 *2 *3)) (-4 *2 (-1155 *3)))) (-3435 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-694)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3138 *3) (|:| -3137 *3))) (-5 *1 (-807 *3 *5)) (-4 *3 (-1155 *5)))) (-3435 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-807 *3 *4)) (-4 *3 (-1155 *4))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3758 (($ $ (-583 |#2|) (-583 (-694))) 45 T ELT) (($ $ |#2| (-694)) 44 T ELT) (($ $ (-583 |#2|)) 43 T ELT) (($ $ |#2|) 41 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-2669 (($ $ (-583 |#2|) (-583 (-694))) 48 T ELT) (($ $ |#2| (-694)) 47 T ELT) (($ $ (-583 |#2|)) 46 T ELT) (($ $ |#2|) 42 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-808 |#1| |#2|) (-113) (-961) (-1013)) (T -808)) -NIL -(-13 (-82 |t#1| |t#1|) (-811 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-806 $ |#2|) . T) ((-811 |#2|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3758 (($ $ (-583 |#1|) (-583 (-694))) 52 T ELT) (($ $ |#1| (-694)) 51 T ELT) (($ $ (-583 |#1|)) 50 T ELT) (($ $ |#1|) 48 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 |#1|) (-583 (-694))) 55 T ELT) (($ $ |#1| (-694)) 54 T ELT) (($ $ (-583 |#1|)) 53 T ELT) (($ $ |#1|) 49 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-809 |#1|) (-113) (-1013)) (T -809)) -NIL -(-13 (-961) (-811 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-806 $ |#1|) . T) ((-811 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-3758 (($ $ |#2|) NIL T ELT) (($ $ (-583 |#2|)) 10 T ELT) (($ $ |#2| (-694)) 12 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 15 T ELT)) (-2669 (($ $ |#2|) 16 T ELT) (($ $ (-583 |#2|)) 18 T ELT) (($ $ |#2| (-694)) 19 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 21 T ELT))) -(((-810 |#1| |#2|) (-10 -7 (-15 -2669 (|#1| |#1| (-583 |#2|) (-583 (-694)))) (-15 -2669 (|#1| |#1| |#2| (-694))) (-15 -2669 (|#1| |#1| (-583 |#2|))) (-15 -3758 (|#1| |#1| (-583 |#2|) (-583 (-694)))) (-15 -3758 (|#1| |#1| |#2| (-694))) (-15 -3758 (|#1| |#1| (-583 |#2|))) (-15 -2669 (|#1| |#1| |#2|)) (-15 -3758 (|#1| |#1| |#2|))) (-811 |#2|) (-1013)) (T -810)) -NIL -((-3758 (($ $ |#1|) 7 T ELT) (($ $ (-583 |#1|)) 15 T ELT) (($ $ |#1| (-694)) 14 T ELT) (($ $ (-583 |#1|) (-583 (-694))) 13 T ELT)) (-2669 (($ $ |#1|) 6 T ELT) (($ $ (-583 |#1|)) 12 T ELT) (($ $ |#1| (-694)) 11 T ELT) (($ $ (-583 |#1|) (-583 (-694))) 10 T ELT))) -(((-811 |#1|) (-113) (-1013)) (T -811)) -((-3758 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013)))) (-3758 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013)))) (-3758 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) (-4 *4 (-1013)))) (-2669 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) (-4 *4 (-1013))))) -(-13 (-806 $ |t#1|) (-10 -8 (-15 -3758 ($ $ (-583 |t#1|))) (-15 -3758 ($ $ |t#1| (-694))) (-15 -3758 ($ $ (-583 |t#1|) (-583 (-694)))) (-15 -2669 ($ $ (-583 |t#1|))) (-15 -2669 ($ $ |t#1| (-694))) (-15 -2669 ($ $ (-583 |t#1|) (-583 (-694)))))) -(((-13) . T) ((-806 $ |#1|) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 26 T ELT)) (-3025 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1293 (($ $ $) NIL (|has| $ (-6 -3996)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3996)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3137 (($ $) 25 T ELT)) (-2670 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3138 (($ $) 23 T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3527 (((-85) $) 20 T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3633 (((-85) $) NIL T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-1116 |#1|) $) 9 T ELT) (((-772) $) 29 (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 21 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) NIL (|has| $ (-6 -3995)) ELT))) -(((-812 |#1|) (-13 (-92 |#1|) (-552 (-1116 |#1|)) (-10 -8 (-15 -2670 ($ |#1|)) (-15 -2670 ($ $ $)))) (-1013)) (T -812)) -((-2670 (*1 *1 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013)))) (-2670 (*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013))))) -((-2568 (((-85) $ $) NIL T ELT)) (-2686 (((-1009 |#1|) $) 61 T ELT)) (-2909 (((-583 $) (-583 $)) 104 T ELT)) (-3623 (((-484) $) 84 T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ "failed") $) NIL T ELT)) (-3772 (((-694) $) 81 T ELT)) (-2690 (((-1009 |#1|) $ |#1|) 71 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2673 (((-85) $) 89 T ELT)) (-2675 (((-694) $) 85 T ELT)) (-2531 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-756))) ELT)) (-2857 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-756))) ELT)) (-2679 (((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $) 56 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 131 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2672 (((-1009 |#1|) $) 136 (|has| |#1| (-320)) ELT)) (-2674 (((-85) $) 82 T ELT)) (-3800 ((|#1| $ |#1|) 69 T ELT)) (-3948 (((-694) $) 63 T ELT)) (-2681 (($ (-583 (-583 |#1|))) 119 T ELT)) (-2676 (((-884) $) 75 T ELT)) (-2682 (($ (-583 |#1|)) 32 T ELT)) (-3009 (($ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-2678 (($ (-583 (-583 |#1|))) 58 T ELT)) (-2677 (($ (-583 (-583 |#1|))) 124 T ELT)) (-2671 (($ (-583 |#1|)) 133 T ELT)) (-3946 (((-772) $) 118 T ELT) (($ (-583 (-583 |#1|))) 92 T ELT) (($ (-583 |#1|)) 93 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2666 (($) 24 T CONST)) (-2566 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-756))) ELT)) (-2567 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-756))) ELT)) (-3056 (((-85) $ $) 67 T ELT)) (-2684 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-756))) ELT)) (-2685 (((-85) $ $) 91 T ELT)) (-3949 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 33 T ELT))) -(((-813 |#1|) (-13 (-815 |#1|) (-10 -8 (-15 -2679 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2678 ($ (-583 (-583 |#1|)))) (-15 -3946 ($ (-583 (-583 |#1|)))) (-15 -3946 ($ (-583 |#1|))) (-15 -2677 ($ (-583 (-583 |#1|)))) (-15 -3948 ((-694) $)) (-15 -2676 ((-884) $)) (-15 -3772 ((-694) $)) (-15 -2675 ((-694) $)) (-15 -3623 ((-484) $)) (-15 -2674 ((-85) $)) (-15 -2673 ((-85) $)) (-15 -2909 ((-583 $) (-583 $))) (IF (|has| |#1| (-320)) (-15 -2672 ((-1009 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-483)) (-15 -2671 ($ (-583 |#1|))) (IF (|has| |#1| (-320)) (-15 -2671 ($ (-583 |#1|))) |%noBranch|)))) (-1013)) (T -813)) -((-2679 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2678 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-2677 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2909 (*1 *2 *2) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-813 *3)) (-4 *3 (-320)) (-4 *3 (-1013)))) (-2671 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3))))) -((-2680 ((|#2| (-1056 |#1| |#2|)) 48 T ELT))) -(((-814 |#1| |#2|) (-10 -7 (-15 -2680 (|#2| (-1056 |#1| |#2|)))) (-830) (-13 (-961) (-10 -7 (-6 (-3997 "*"))))) (T -814)) -((-2680 (*1 *2 *3) (-12 (-5 *3 (-1056 *4 *2)) (-14 *4 (-830)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-3997 "*"))))) (-5 *1 (-814 *4 *2))))) -((-2568 (((-85) $ $) 7 T ELT)) (-2686 (((-1009 |#1|) $) 42 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 20 T ELT)) (-2690 (((-1009 |#1|) $ |#1|) 41 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-2531 (($ $ $) 35 (OR (|has| |#1| (-756)) (|has| |#1| (-320))) ELT)) (-2857 (($ $ $) 36 (OR (|has| |#1| (-756)) (|has| |#1| (-320))) ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 30 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3800 ((|#1| $ |#1|) 45 T ELT)) (-2681 (($ (-583 (-583 |#1|))) 43 T ELT)) (-2682 (($ (-583 |#1|)) 44 T ELT)) (-3009 (($ $ $) 27 T ELT)) (-2435 (($ $ $) 26 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2666 (($) 24 T CONST)) (-2566 (((-85) $ $) 37 (OR (|has| |#1| (-756)) (|has| |#1| (-320))) ELT)) (-2567 (((-85) $ $) 39 (OR (|has| |#1| (-756)) (|has| |#1| (-320))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 38 (OR (|has| |#1| (-756)) (|has| |#1| (-320))) ELT)) (-2685 (((-85) $ $) 40 T ELT)) (-3949 (($ $ $) 29 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ $ (-484)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-815 |#1|) (-113) (-1013)) (T -815)) -((-2682 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-815 *3)))) (-2681 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-4 *1 (-815 *3)))) (-2686 (*1 *2 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) (-2690 (*1 *2 *1 *3) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) (-2685 (*1 *2 *1 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) -(-13 (-413) (-241 |t#1| |t#1|) (-10 -8 (-15 -2682 ($ (-583 |t#1|))) (-15 -2681 ($ (-583 (-583 |t#1|)))) (-15 -2686 ((-1009 |t#1|) $)) (-15 -2690 ((-1009 |t#1|) $ |t#1|)) (-15 -2685 ((-85) $ $)) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-320)) (-6 (-756)) |%noBranch|))) -(((-72) . T) ((-552 (-772)) . T) ((-241 |#1| |#1|) . T) ((-413) . T) ((-13) . T) ((-663) . T) ((-756) OR (|has| |#1| (-756)) (|has| |#1| (-320))) ((-759) OR (|has| |#1| (-756)) (|has| |#1| (-320))) ((-1025) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-2692 (((-583 (-583 (-694))) $) 163 T ELT)) (-2688 (((-583 (-694)) (-813 |#1|) $) 191 T ELT)) (-2687 (((-583 (-694)) (-813 |#1|) $) 192 T ELT)) (-2686 (((-1009 |#1|) $) 155 T ELT)) (-2693 (((-583 (-813 |#1|)) $) 152 T ELT)) (-2994 (((-813 |#1|) $ (-484)) 157 T ELT) (((-813 |#1|) $) 158 T ELT)) (-2691 (($ (-583 (-813 |#1|))) 165 T ELT)) (-3772 (((-694) $) 159 T ELT)) (-2689 (((-1009 (-1009 |#1|)) $) 189 T ELT)) (-2690 (((-1009 |#1|) $ |#1|) 180 T ELT) (((-1009 (-1009 |#1|)) $ (-1009 |#1|)) 201 T ELT) (((-1009 (-583 |#1|)) $ (-583 |#1|)) 204 T ELT)) (-3245 (((-85) (-813 |#1|) $) 140 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2683 (((-1185) $) 145 T ELT) (((-1185) $ (-484) (-484)) 205 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2695 (((-583 (-813 |#1|)) $) 146 T ELT)) (-3800 (((-813 |#1|) $ (-694)) 153 T ELT)) (-3948 (((-694) $) 160 T ELT)) (-3946 (((-772) $) 177 T ELT) (((-583 (-813 |#1|)) $) 28 T ELT) (($ (-583 (-813 |#1|))) 164 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2694 (((-583 |#1|) $) 162 T ELT)) (-3056 (((-85) $ $) 198 T ELT)) (-2684 (((-85) $ $) 195 T ELT)) (-2685 (((-85) $ $) 194 T ELT))) -(((-816 |#1|) (-13 (-1013) (-10 -8 (-15 -3946 ((-583 (-813 |#1|)) $)) (-15 -2695 ((-583 (-813 |#1|)) $)) (-15 -3800 ((-813 |#1|) $ (-694))) (-15 -2994 ((-813 |#1|) $ (-484))) (-15 -2994 ((-813 |#1|) $)) (-15 -3772 ((-694) $)) (-15 -3948 ((-694) $)) (-15 -2694 ((-583 |#1|) $)) (-15 -2693 ((-583 (-813 |#1|)) $)) (-15 -2692 ((-583 (-583 (-694))) $)) (-15 -3946 ($ (-583 (-813 |#1|)))) (-15 -2691 ($ (-583 (-813 |#1|)))) (-15 -2690 ((-1009 |#1|) $ |#1|)) (-15 -2689 ((-1009 (-1009 |#1|)) $)) (-15 -2690 ((-1009 (-1009 |#1|)) $ (-1009 |#1|))) (-15 -2690 ((-1009 (-583 |#1|)) $ (-583 |#1|))) (-15 -3245 ((-85) (-813 |#1|) $)) (-15 -2688 ((-583 (-694)) (-813 |#1|) $)) (-15 -2687 ((-583 (-694)) (-813 |#1|) $)) (-15 -2686 ((-1009 |#1|) $)) (-15 -2685 ((-85) $ $)) (-15 -2684 ((-85) $ $)) (-15 -2683 ((-1185) $)) (-15 -2683 ((-1185) $ (-484) (-484))))) (-1013)) (T -816)) -((-3946 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))) (-2994 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-694)))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3)))) (-2691 (*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3)))) (-2690 (*1 *2 *1 *3) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2689 (*1 *2 *1) (-12 (-5 *2 (-1009 (-1009 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2690 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-1009 *4))) (-5 *1 (-816 *4)) (-5 *3 (-1009 *4)))) (-2690 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-583 *4))) (-5 *1 (-816 *4)) (-5 *3 (-583 *4)))) (-3245 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-816 *4)))) (-2688 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694))) (-5 *1 (-816 *4)))) (-2687 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694))) (-5 *1 (-816 *4)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2685 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2684 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2683 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-816 *4)) (-4 *4 (-1013))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3929 (((-694)) NIL T ELT)) (-3330 (($ $ (-830)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 $ #1#) $) NIL T ELT)) (-3156 (($ $) NIL T ELT)) (-1792 (($ (-1179 $)) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2833 (($) NIL T ELT)) (-1680 (((-85) $) NIL T ELT)) (-1764 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3772 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| $ (-320)) ELT)) (-2011 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3132 (($ $ (-830)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3445 (((-632 $) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 $) $ (-830)) NIL (|has| $ (-320)) ELT) (((-1085 $) $) NIL T ELT)) (-2010 (((-830) $) NIL T ELT)) (-1627 (((-1085 $) $) NIL (|has| $ (-320)) ELT)) (-1626 (((-3 (-1085 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1085 $) $) NIL (|has| $ (-320)) ELT)) (-1628 (($ $ (-1085 $)) NIL (|has| $ (-320)) ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL T CONST)) (-2400 (($ (-830)) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| $ (-320)) ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-3930 (((-830)) NIL T ELT) (((-743 (-830))) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-1765 (((-3 (-694) #1#) $ $) NIL T ELT) (((-694) $) NIL T ELT)) (-3911 (((-107)) NIL T ELT)) (-3758 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3948 (((-830) $) NIL T ELT) (((-743 (-830)) $) NIL T ELT)) (-3185 (((-1085 $)) NIL T ELT)) (-1674 (($) NIL T ELT)) (-1629 (($) NIL (|has| $ (-320)) ELT)) (-3224 (((-630 $) (-1179 $)) NIL T ELT) (((-1179 $) $) NIL T ELT)) (-3972 (((-484) $) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT)) (-2702 (((-632 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $) (-830)) NIL T ELT) (((-1179 $)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3928 (($ $ (-694)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT))) -(((-817 |#1|) (-13 (-299) (-280 $) (-553 (-484))) (-830)) (T -817)) -NIL -((-2697 (((-3 (-583 (-1085 |#4|)) #1="failed") (-583 (-1085 |#4|)) (-1085 |#4|)) 164 T ELT)) (-2700 ((|#1|) 101 T ELT)) (-2699 (((-348 (-1085 |#4|)) (-1085 |#4|)) 173 T ELT)) (-2701 (((-348 (-1085 |#4|)) (-583 |#3|) (-1085 |#4|)) 83 T ELT)) (-2698 (((-348 (-1085 |#4|)) (-1085 |#4|)) 183 T ELT)) (-2696 (((-3 (-583 (-1085 |#4|)) #1#) (-583 (-1085 |#4|)) (-1085 |#4|) |#3|) 117 T ELT))) -(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2697 ((-3 (-583 (-1085 |#4|)) #1="failed") (-583 (-1085 |#4|)) (-1085 |#4|))) (-15 -2698 ((-348 (-1085 |#4|)) (-1085 |#4|))) (-15 -2699 ((-348 (-1085 |#4|)) (-1085 |#4|))) (-15 -2700 (|#1|)) (-15 -2696 ((-3 (-583 (-1085 |#4|)) #1#) (-583 (-1085 |#4|)) (-1085 |#4|) |#3|)) (-15 -2701 ((-348 (-1085 |#4|)) (-583 |#3|) (-1085 |#4|)))) (-821) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -818)) -((-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-756)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-348 (-1085 *8))) (-5 *1 (-818 *5 *6 *7 *8)) (-5 *4 (-1085 *8)))) (-2696 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1085 *7))) (-5 *3 (-1085 *7)) (-4 *7 (-861 *5 *6 *4)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *4 (-756)) (-5 *1 (-818 *5 *6 *4 *7)))) (-2700 (*1 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-818 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2699 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-2697 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1085 *7))) (-5 *3 (-1085 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-818 *4 *5 *6 *7))))) -((-2697 (((-3 (-583 (-1085 |#2|)) "failed") (-583 (-1085 |#2|)) (-1085 |#2|)) 39 T ELT)) (-2700 ((|#1|) 71 T ELT)) (-2699 (((-348 (-1085 |#2|)) (-1085 |#2|)) 125 T ELT)) (-2701 (((-348 (-1085 |#2|)) (-1085 |#2|)) 109 T ELT)) (-2698 (((-348 (-1085 |#2|)) (-1085 |#2|)) 136 T ELT))) -(((-819 |#1| |#2|) (-10 -7 (-15 -2697 ((-3 (-583 (-1085 |#2|)) "failed") (-583 (-1085 |#2|)) (-1085 |#2|))) (-15 -2698 ((-348 (-1085 |#2|)) (-1085 |#2|))) (-15 -2699 ((-348 (-1085 |#2|)) (-1085 |#2|))) (-15 -2700 (|#1|)) (-15 -2701 ((-348 (-1085 |#2|)) (-1085 |#2|)))) (-821) (-1155 |#1|)) (T -819)) -((-2701 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1085 *5)))) (-2700 (*1 *2) (-12 (-4 *2 (-821)) (-5 *1 (-819 *2 *3)) (-4 *3 (-1155 *2)))) (-2699 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1085 *5)))) (-2698 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1085 *5)))) (-2697 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1085 *5))) (-5 *3 (-1085 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-821)) (-5 *1 (-819 *4 *5))))) -((-2704 (((-3 (-583 (-1085 $)) "failed") (-583 (-1085 $)) (-1085 $)) 46 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 18 T ELT)) (-2702 (((-632 $) $) 40 T ELT))) -(((-820 |#1|) (-10 -7 (-15 -2702 ((-632 |#1|) |#1|)) (-15 -2704 ((-3 (-583 (-1085 |#1|)) "failed") (-583 (-1085 |#1|)) (-1085 |#1|))) (-15 -2708 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|)))) (-821)) (T -820)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 75 T ELT)) (-3775 (($ $) 66 T ELT)) (-3971 (((-348 $) $) 67 T ELT)) (-2704 (((-3 (-583 (-1085 $)) "failed") (-583 (-1085 $)) (-1085 $)) 72 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3723 (((-85) $) 68 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) 73 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 74 T ELT)) (-3732 (((-348 $) $) 65 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2703 (((-3 (-1179 $) "failed") (-630 $)) 71 (|has| $ (-118)) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-2702 (((-632 $) $) 70 (|has| $ (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-821) (-113)) (T -821)) -((-2708 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-821)))) (-2707 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1)))) (-2706 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1)))) (-2705 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1)))) (-2704 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1085 *1))) (-5 *3 (-1085 *1)) (-4 *1 (-821)))) (-2703 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-118)) (-4 *1 (-821)) (-5 *2 (-1179 *1)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-821))))) -(-13 (-1134) (-10 -8 (-15 -2707 ((-348 (-1085 $)) (-1085 $))) (-15 -2706 ((-348 (-1085 $)) (-1085 $))) (-15 -2705 ((-348 (-1085 $)) (-1085 $))) (-15 -2708 ((-1085 $) (-1085 $) (-1085 $))) (-15 -2704 ((-3 (-583 (-1085 $)) "failed") (-583 (-1085 $)) (-1085 $))) (IF (|has| $ (-118)) (PROGN (-15 -2703 ((-3 (-1179 $) "failed") (-630 $))) (-15 -2702 ((-632 $) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T)) -((-2710 (((-3 (-2 (|:| -3772 (-694)) (|:| -2383 |#5|)) #1="failed") (-283 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2709 (((-85) (-283 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3772 (((-3 (-694) #1#) (-283 |#2| |#3| |#4| |#5|)) 15 T ELT))) -(((-822 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3772 ((-3 (-694) #1="failed") (-283 |#2| |#3| |#4| |#5|))) (-15 -2709 ((-85) (-283 |#2| |#3| |#4| |#5|))) (-15 -2710 ((-3 (-2 (|:| -3772 (-694)) (|:| -2383 |#5|)) #1#) (-283 |#2| |#3| |#4| |#5|)))) (-13 (-495) (-950 (-484))) (-364 |#1|) (-1155 |#2|) (-1155 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -822)) -((-2710 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-2 (|:| -3772 (-694)) (|:| -2383 *8))) (-5 *1 (-822 *4 *5 *6 *7 *8)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85)) (-5 *1 (-822 *4 *5 *6 *7 *8)))) (-3772 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-694)) (-5 *1 (-822 *4 *5 *6 *7 *8))))) -((-2710 (((-3 (-2 (|:| -3772 (-694)) (|:| -2383 |#3|)) #1="failed") (-283 (-350 (-484)) |#1| |#2| |#3|)) 64 T ELT)) (-2709 (((-85) (-283 (-350 (-484)) |#1| |#2| |#3|)) 16 T ELT)) (-3772 (((-3 (-694) #1#) (-283 (-350 (-484)) |#1| |#2| |#3|)) 14 T ELT))) -(((-823 |#1| |#2| |#3|) (-10 -7 (-15 -3772 ((-3 (-694) #1="failed") (-283 (-350 (-484)) |#1| |#2| |#3|))) (-15 -2709 ((-85) (-283 (-350 (-484)) |#1| |#2| |#3|))) (-15 -2710 ((-3 (-2 (|:| -3772 (-694)) (|:| -2383 |#3|)) #1#) (-283 (-350 (-484)) |#1| |#2| |#3|)))) (-1155 (-350 (-484))) (-1155 (-350 |#1|)) (-291 (-350 (-484)) |#1| |#2|)) (T -823)) -((-2710 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-484)) *4 *5 *6)) (-4 *4 (-1155 (-350 (-484)))) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 (-350 (-484)) *4 *5)) (-5 *2 (-2 (|:| -3772 (-694)) (|:| -2383 *6))) (-5 *1 (-823 *4 *5 *6)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-283 (-350 (-484)) *4 *5 *6)) (-4 *4 (-1155 (-350 (-484)))) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 (-350 (-484)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-823 *4 *5 *6)))) (-3772 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-484)) *4 *5 *6)) (-4 *4 (-1155 (-350 (-484)))) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 (-350 (-484)) *4 *5)) (-5 *2 (-694)) (-5 *1 (-823 *4 *5 *6))))) -((-2715 ((|#2| |#2|) 26 T ELT)) (-2713 (((-484) (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))))) 15 T ELT)) (-2711 (((-830) (-484)) 38 T ELT)) (-2714 (((-484) |#2|) 45 T ELT)) (-2712 (((-484) |#2|) 21 T ELT) (((-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))) |#1|) 20 T ELT))) -(((-824 |#1| |#2|) (-10 -7 (-15 -2711 ((-830) (-484))) (-15 -2712 ((-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))) |#1|)) (-15 -2712 ((-484) |#2|)) (-15 -2713 ((-484) (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))))) (-15 -2714 ((-484) |#2|)) (-15 -2715 (|#2| |#2|))) (-1155 (-350 (-484))) (-1155 (-350 |#1|))) (T -824)) -((-2715 (*1 *2 *2) (-12 (-4 *3 (-1155 (-350 (-484)))) (-5 *1 (-824 *3 *2)) (-4 *2 (-1155 (-350 *3))))) (-2714 (*1 *2 *3) (-12 (-4 *4 (-1155 (-350 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1155 (-350 *4))))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))))) (-4 *4 (-1155 (-350 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1155 (-350 *4))))) (-2712 (*1 *2 *3) (-12 (-4 *4 (-1155 (-350 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1155 (-350 *4))))) (-2712 (*1 *2 *3) (-12 (-4 *3 (-1155 (-350 (-484)))) (-5 *2 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))) (-5 *1 (-824 *3 *4)) (-4 *4 (-1155 (-350 *3))))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-1155 (-350 *3))) (-5 *2 (-830)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1155 (-350 *4)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 ((|#1| $) 99 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2564 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 93 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-2723 (($ |#1| (-348 |#1|)) 91 T ELT)) (-2717 (((-1085 |#1|) |#1| |#1|) 52 T ELT)) (-2716 (($ $) 60 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2718 (((-484) $) 96 T ELT)) (-2719 (($ $ (-484)) 98 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2720 ((|#1| $) 95 T ELT)) (-2721 (((-348 |#1|) $) 94 T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) 92 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2722 (($ $) 49 T ELT)) (-3946 (((-772) $) 123 T ELT) (($ (-484)) 72 T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) 40 T ELT) (((-350 |#1|) $) 77 T ELT) (($ (-350 (-348 |#1|))) 85 T ELT)) (-3126 (((-694)) 70 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 12 T CONST)) (-3056 (((-85) $ $) 86 T ELT)) (-3949 (($ $ $) NIL T ELT)) (-3837 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 48 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) -(((-825 |#1|) (-13 (-312) (-38 |#1|) (-10 -8 (-15 -3946 ((-350 |#1|) $)) (-15 -3946 ($ (-350 (-348 |#1|)))) (-15 -2722 ($ $)) (-15 -2721 ((-348 |#1|) $)) (-15 -2720 (|#1| $)) (-15 -2719 ($ $ (-484))) (-15 -2718 ((-484) $)) (-15 -2717 ((-1085 |#1|) |#1| |#1|)) (-15 -2716 ($ $)) (-15 -2723 ($ |#1| (-348 |#1|))) (-15 -3129 (|#1| $)))) (-258)) (T -825)) -((-3946 (*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-825 *3)))) (-2722 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2720 (*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))) (-2719 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2718 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2717 (*1 *2 *3 *3) (-12 (-5 *2 (-1085 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2716 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))) (-2723 (*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-825 *2)))) (-3129 (*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258))))) -((-2723 (((-51) (-857 |#1|) (-348 (-857 |#1|)) (-1090)) 17 T ELT) (((-51) (-350 (-857 |#1|)) (-1090)) 18 T ELT))) -(((-826 |#1|) (-10 -7 (-15 -2723 ((-51) (-350 (-857 |#1|)) (-1090))) (-15 -2723 ((-51) (-857 |#1|) (-348 (-857 |#1|)) (-1090)))) (-13 (-258) (-120))) (T -826)) -((-2723 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-348 (-857 *6))) (-5 *5 (-1090)) (-5 *3 (-857 *6)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *6)))) (-2723 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *5))))) -((-2724 ((|#4| (-583 |#4|)) 148 T ELT) (((-1085 |#4|) (-1085 |#4|) (-1085 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3144 (((-1085 |#4|) (-583 (-1085 |#4|))) 141 T ELT) (((-1085 |#4|) (-1085 |#4|) (-1085 |#4|)) 61 T ELT) ((|#4| (-583 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) -(((-827 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3144 (|#4| |#4| |#4|)) (-15 -3144 (|#4| (-583 |#4|))) (-15 -3144 ((-1085 |#4|) (-1085 |#4|) (-1085 |#4|))) (-15 -3144 ((-1085 |#4|) (-583 (-1085 |#4|)))) (-15 -2724 (|#4| |#4| |#4|)) (-15 -2724 ((-1085 |#4|) (-1085 |#4|) (-1085 |#4|))) (-15 -2724 (|#4| (-583 |#4|)))) (-717) (-756) (-258) (-861 |#3| |#1| |#2|)) (T -827)) -((-2724 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)))) (-2724 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6)))) (-2724 (*1 *2 *2 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2)) (-4 *2 (-861 *5 *3 *4)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-583 (-1085 *7))) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-1085 *7)) (-5 *1 (-827 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-3144 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)))) (-3144 (*1 *2 *2 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2)) (-4 *2 (-861 *5 *3 *4))))) -((-2737 (((-816 (-484)) (-884)) 38 T ELT) (((-816 (-484)) (-583 (-484))) 34 T ELT)) (-2725 (((-816 (-484)) (-583 (-484))) 66 T ELT) (((-816 (-484)) (-830)) 67 T ELT)) (-2736 (((-816 (-484))) 39 T ELT)) (-2734 (((-816 (-484))) 53 T ELT) (((-816 (-484)) (-583 (-484))) 52 T ELT)) (-2733 (((-816 (-484))) 51 T ELT) (((-816 (-484)) (-583 (-484))) 50 T ELT)) (-2732 (((-816 (-484))) 49 T ELT) (((-816 (-484)) (-583 (-484))) 48 T ELT)) (-2731 (((-816 (-484))) 47 T ELT) (((-816 (-484)) (-583 (-484))) 46 T ELT)) (-2730 (((-816 (-484))) 45 T ELT) (((-816 (-484)) (-583 (-484))) 44 T ELT)) (-2735 (((-816 (-484))) 55 T ELT) (((-816 (-484)) (-583 (-484))) 54 T ELT)) (-2729 (((-816 (-484)) (-583 (-484))) 71 T ELT) (((-816 (-484)) (-830)) 73 T ELT)) (-2728 (((-816 (-484)) (-583 (-484))) 68 T ELT) (((-816 (-484)) (-830)) 69 T ELT)) (-2726 (((-816 (-484)) (-583 (-484))) 64 T ELT) (((-816 (-484)) (-830)) 65 T ELT)) (-2727 (((-816 (-484)) (-583 (-830))) 57 T ELT))) -(((-828) (-10 -7 (-15 -2725 ((-816 (-484)) (-830))) (-15 -2725 ((-816 (-484)) (-583 (-484)))) (-15 -2726 ((-816 (-484)) (-830))) (-15 -2726 ((-816 (-484)) (-583 (-484)))) (-15 -2727 ((-816 (-484)) (-583 (-830)))) (-15 -2728 ((-816 (-484)) (-830))) (-15 -2728 ((-816 (-484)) (-583 (-484)))) (-15 -2729 ((-816 (-484)) (-830))) (-15 -2729 ((-816 (-484)) (-583 (-484)))) (-15 -2730 ((-816 (-484)) (-583 (-484)))) (-15 -2730 ((-816 (-484)))) (-15 -2731 ((-816 (-484)) (-583 (-484)))) (-15 -2731 ((-816 (-484)))) (-15 -2732 ((-816 (-484)) (-583 (-484)))) (-15 -2732 ((-816 (-484)))) (-15 -2733 ((-816 (-484)) (-583 (-484)))) (-15 -2733 ((-816 (-484)))) (-15 -2734 ((-816 (-484)) (-583 (-484)))) (-15 -2734 ((-816 (-484)))) (-15 -2735 ((-816 (-484)) (-583 (-484)))) (-15 -2735 ((-816 (-484)))) (-15 -2736 ((-816 (-484)))) (-15 -2737 ((-816 (-484)) (-583 (-484)))) (-15 -2737 ((-816 (-484)) (-884))))) (T -828)) -((-2737 (*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2736 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2735 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2734 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2733 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2732 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2731 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2730 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828))))) -((-2739 (((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1090))) 14 T ELT)) (-2738 (((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1090))) 13 T ELT))) -(((-829 |#1|) (-10 -7 (-15 -2738 ((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1090)))) (-15 -2739 ((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1090))))) (-392)) (T -829)) -((-2739 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1090))) (-4 *4 (-392)) (-5 *1 (-829 *4)))) (-2738 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1090))) (-4 *4 (-392)) (-5 *1 (-829 *4))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3144 (($ $ $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-830) (-13 (-718) (-663) (-10 -8 (-15 -3144 ($ $ $)) (-6 (-3997 "*"))))) (T -830)) -((-3144 (*1 *1 *1 *1) (-5 *1 (-830)))) -((-694) (|%ilt| 0 |#1|)) -((-3946 (((-265 |#1|) (-417)) 16 T ELT))) -(((-831 |#1|) (-10 -7 (-15 -3946 ((-265 |#1|) (-417)))) (-495)) (T -831)) -((-3946 (*1 *2 *3) (-12 (-5 *3 (-417)) (-5 *2 (-265 *4)) (-5 *1 (-831 *4)) (-4 *4 (-495))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-832) (-113)) (T -832)) -((-2741 (*1 *2 *3) (-12 (-4 *1 (-832)) (-5 *2 (-2 (|:| -3954 (-583 *1)) (|:| -2409 *1))) (-5 *3 (-583 *1)))) (-2740 (*1 *2 *3 *1) (-12 (-4 *1 (-832)) (-5 *2 (-632 (-583 *1))) (-5 *3 (-583 *1))))) -(-13 (-392) (-10 -8 (-15 -2741 ((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $))) (-15 -2740 ((-632 (-583 $)) (-583 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-3105 (((-1085 |#2|) (-583 |#2|) (-583 |#2|)) 17 T ELT) (((-1148 |#1| |#2|) (-1148 |#1| |#2|) (-583 |#2|) (-583 |#2|)) 13 T ELT))) -(((-833 |#1| |#2|) (-10 -7 (-15 -3105 ((-1148 |#1| |#2|) (-1148 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -3105 ((-1085 |#2|) (-583 |#2|) (-583 |#2|)))) (-1090) (-312)) (T -833)) -((-3105 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-312)) (-5 *2 (-1085 *5)) (-5 *1 (-833 *4 *5)) (-14 *4 (-1090)))) (-3105 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1148 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1090)) (-4 *5 (-312)) (-5 *1 (-833 *4 *5))))) -((-2742 ((|#2| (-583 |#1|) (-583 |#1|)) 28 T ELT))) -(((-834 |#1| |#2|) (-10 -7 (-15 -2742 (|#2| (-583 |#1|) (-583 |#1|)))) (-312) (-1155 |#1|)) (T -834)) -((-2742 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-4 *2 (-1155 *4)) (-5 *1 (-834 *4 *2))))) -((-2744 (((-484) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-1073)) 175 T ELT)) (-2763 ((|#4| |#4|) 194 T ELT)) (-2748 (((-583 (-350 (-857 |#1|))) (-583 (-1090))) 146 T ELT)) (-2762 (((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))) (-630 |#4|) (-583 (-350 (-857 |#1|))) (-583 (-583 |#4|)) (-694) (-694) (-484)) 88 T ELT)) (-2752 (((-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))) (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))) (-583 |#4|)) 69 T ELT)) (-2761 (((-630 |#4|) (-630 |#4|) (-583 |#4|)) 65 T ELT)) (-2745 (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-1073)) 187 T ELT)) (-2743 (((-484) (-630 |#4|) (-830) (-1073)) 167 T ELT) (((-484) (-630 |#4|) (-583 (-1090)) (-830) (-1073)) 166 T ELT) (((-484) (-630 |#4|) (-583 |#4|) (-830) (-1073)) 165 T ELT) (((-484) (-630 |#4|) (-1073)) 154 T ELT) (((-484) (-630 |#4|) (-583 (-1090)) (-1073)) 153 T ELT) (((-484) (-630 |#4|) (-583 |#4|) (-1073)) 152 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-830)) 151 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1090)) (-830)) 150 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|) (-830)) 149 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|)) 148 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1090))) 147 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|)) 143 T ELT)) (-2749 ((|#4| (-857 |#1|)) 80 T ELT)) (-2759 (((-85) (-583 |#4|) (-583 (-583 |#4|))) 191 T ELT)) (-2758 (((-583 (-583 (-484))) (-484) (-484)) 161 T ELT)) (-2757 (((-583 (-583 |#4|)) (-583 (-583 |#4|))) 106 T ELT)) (-2756 (((-694) (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|))))) 100 T ELT)) (-2755 (((-694) (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|))))) 99 T ELT)) (-2764 (((-85) (-583 (-857 |#1|))) 19 T ELT) (((-85) (-583 |#4|)) 15 T ELT)) (-2750 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|)) 84 T ELT)) (-2754 (((-583 |#4|) |#4|) 57 T ELT)) (-2747 (((-583 (-350 (-857 |#1|))) (-583 |#4|)) 142 T ELT) (((-630 (-350 (-857 |#1|))) (-630 |#4|)) 66 T ELT) (((-350 (-857 |#1|)) |#4|) 139 T ELT)) (-2746 (((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))))))) (|:| |rgsz| (-484))) (-630 |#4|) (-583 (-350 (-857 |#1|))) (-694) (-1073) (-484)) 112 T ELT)) (-2751 (((-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))) (-630 |#4|) (-694)) 98 T ELT)) (-2760 (((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-630 |#4|) (-694)) 121 T ELT)) (-2753 (((-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))) (-2 (|:| |mat| (-630 (-350 (-857 |#1|)))) (|:| |vec| (-583 (-350 (-857 |#1|)))) (|:| -3108 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) 56 T ELT))) -(((-835 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|))) (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1090)))) (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|))) (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|) (-830))) (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1090)) (-830))) (-15 -2743 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-830))) (-15 -2743 ((-484) (-630 |#4|) (-583 |#4|) (-1073))) (-15 -2743 ((-484) (-630 |#4|) (-583 (-1090)) (-1073))) (-15 -2743 ((-484) (-630 |#4|) (-1073))) (-15 -2743 ((-484) (-630 |#4|) (-583 |#4|) (-830) (-1073))) (-15 -2743 ((-484) (-630 |#4|) (-583 (-1090)) (-830) (-1073))) (-15 -2743 ((-484) (-630 |#4|) (-830) (-1073))) (-15 -2744 ((-484) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-1073))) (-15 -2745 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-1073))) (-15 -2746 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))))))) (|:| |rgsz| (-484))) (-630 |#4|) (-583 (-350 (-857 |#1|))) (-694) (-1073) (-484))) (-15 -2747 ((-350 (-857 |#1|)) |#4|)) (-15 -2747 ((-630 (-350 (-857 |#1|))) (-630 |#4|))) (-15 -2747 ((-583 (-350 (-857 |#1|))) (-583 |#4|))) (-15 -2748 ((-583 (-350 (-857 |#1|))) (-583 (-1090)))) (-15 -2749 (|#4| (-857 |#1|))) (-15 -2750 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -2751 ((-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))) (-630 |#4|) (-694))) (-15 -2752 ((-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))) (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))) (-583 |#4|))) (-15 -2753 ((-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))) (-2 (|:| |mat| (-630 (-350 (-857 |#1|)))) (|:| |vec| (-583 (-350 (-857 |#1|)))) (|:| -3108 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (-15 -2754 ((-583 |#4|) |#4|)) (-15 -2755 ((-694) (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2756 ((-694) (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2757 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -2758 ((-583 (-583 (-484))) (-484) (-484))) (-15 -2759 ((-85) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2760 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-630 |#4|) (-694))) (-15 -2761 ((-630 |#4|) (-630 |#4|) (-583 |#4|))) (-15 -2762 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))) (-630 |#4|) (-583 (-350 (-857 |#1|))) (-583 (-583 |#4|)) (-694) (-694) (-484))) (-15 -2763 (|#4| |#4|)) (-15 -2764 ((-85) (-583 |#4|))) (-15 -2764 ((-85) (-583 (-857 |#1|))))) (-13 (-258) (-120)) (-13 (-756) (-553 (-1090))) (-717) (-861 |#1| |#3| |#2|)) (T -835)) -((-2764 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2764 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2763 (*1 *2 *2) (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1090)))) (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *2)) (-4 *2 (-861 *3 *5 *4)))) (-2762 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-5 *4 (-630 *12)) (-5 *5 (-583 (-350 (-857 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-694)) (-5 *8 (-484)) (-4 *9 (-13 (-258) (-120))) (-4 *12 (-861 *9 *11 *10)) (-4 *10 (-13 (-756) (-553 (-1090)))) (-4 *11 (-717)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-857 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *9)))) (|:| -2012 (-583 (-1179 (-350 (-857 *9))))))))) (-5 *1 (-835 *9 *10 *11 *12)))) (-2761 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *7)) (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-694)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2758 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-583 (-583 (-484)))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-484)) (-4 *7 (-861 *4 *6 *5)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-861 *3 *5 *4)) (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1090)))) (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *6)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-694)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-694)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2754 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-583 *3)) (-5 *1 (-835 *4 *5 *6 *3)) (-4 *3 (-861 *4 *6 *5)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-630 (-350 (-857 *4)))) (|:| |vec| (-583 (-350 (-857 *4)))) (|:| -3108 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-2 (|:| |partsol| (-1179 (-350 (-857 *4)))) (|:| -2012 (-583 (-1179 (-350 (-857 *4))))))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2752 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1179 (-350 (-857 *4)))) (|:| -2012 (-583 (-1179 (-350 (-857 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-861 *4 *6 *5)) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| -3108 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-694)))) (-2750 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-4 *7 (-861 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-861 *4 *6 *5)) (-5 *1 (-835 *4 *5 *6 *2)) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-583 (-1090))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-583 (-350 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-583 (-350 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-630 (-350 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2747 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-350 (-857 *4))) (-5 *1 (-835 *4 *5 *6 *3)) (-4 *3 (-861 *4 *6 *5)))) (-2746 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-630 *11)) (-5 *4 (-583 (-350 (-857 *8)))) (-5 *5 (-694)) (-5 *6 (-1073)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-861 *8 *10 *9)) (-4 *9 (-13 (-756) (-553 (-1090)))) (-4 *10 (-717)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-857 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *8)))) (|:| -2012 (-583 (-1179 (-350 (-857 *8)))))))))) (|:| |rgsz| (-484)))) (-5 *1 (-835 *8 *9 *10 *11)) (-5 *7 (-484)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *4)))) (|:| -2012 (-583 (-1179 (-350 (-857 *4)))))))))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *5)))) (|:| -2012 (-583 (-1179 (-350 (-857 *5)))))))))) (-5 *4 (-1073)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-861 *5 *7 *6)) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-830)) (-5 *5 (-1073)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2743 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 (-1090))) (-5 *5 (-830)) (-5 *6 (-1073)) (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-756) (-553 (-1090)))) (-4 *9 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *7 *8 *9 *10)))) (-2743 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 *10)) (-5 *5 (-830)) (-5 *6 (-1073)) (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-756) (-553 (-1090)))) (-4 *9 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *7 *8 *9 *10)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-1073)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1090))) (-5 *5 (-1073)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1073)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-830)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *5)))) (|:| -2012 (-583 (-1179 (-350 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1090))) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *6)))) (|:| -2012 (-583 (-1179 (-350 (-857 *6)))))))))) (-5 *1 (-835 *6 *7 *8 *9)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *6)))) (|:| -2012 (-583 (-1179 (-350 (-857 *6)))))))))) (-5 *1 (-835 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *4)))) (|:| -2012 (-583 (-1179 (-350 (-857 *4)))))))))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-583 (-1090))) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *5)))) (|:| -2012 (-583 (-1179 (-350 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *5)))) (|:| -2012 (-583 (-1179 (-350 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) -((-3874 (($ $ (-1001 (-179))) 125 T ELT) (($ $ (-1001 (-179)) (-1001 (-179))) 126 T ELT)) (-2896 (((-1001 (-179)) $) 73 T ELT)) (-2897 (((-1001 (-179)) $) 72 T ELT)) (-2788 (((-1001 (-179)) $) 74 T ELT)) (-2769 (((-484) (-484)) 66 T ELT)) (-2773 (((-484) (-484)) 61 T ELT)) (-2771 (((-484) (-484)) 64 T ELT)) (-2767 (((-85) (-85)) 68 T ELT)) (-2770 (((-484)) 65 T ELT)) (-3134 (($ $ (-1001 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2790 (($ (-1 (-854 (-179)) (-179)) (-1001 (-179))) 148 T ELT) (($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 149 T ELT)) (-2776 (($ (-1 (-179) (-179)) (-1001 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2789 (($ (-1 (-179) (-179)) (-1001 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179))) 145 T ELT) (($ (-583 (-1 (-179) (-179))) (-1001 (-179))) 153 T ELT) (($ (-583 (-1 (-179) (-179))) (-1001 (-179)) (-1001 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 147 T ELT) (($ $ (-1001 (-179))) 131 T ELT)) (-2775 (((-85) $) 69 T ELT)) (-2766 (((-484)) 70 T ELT)) (-2774 (((-484)) 59 T ELT)) (-2772 (((-484)) 62 T ELT)) (-2898 (((-583 (-583 (-854 (-179)))) $) 35 T ELT)) (-2765 (((-85) (-85)) 71 T ELT)) (-3946 (((-772) $) 174 T ELT)) (-2768 (((-85)) 67 T ELT))) -(((-836) (-13 (-866) (-10 -8 (-15 -2789 ($ (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2789 ($ (-583 (-1 (-179) (-179))) (-1001 (-179)))) (-15 -2789 ($ (-583 (-1 (-179) (-179))) (-1001 (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2790 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)))) (-15 -2790 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2776 ($ (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2776 ($ (-1 (-179) (-179)))) (-15 -2789 ($ $ (-1001 (-179)))) (-15 -2775 ((-85) $)) (-15 -3874 ($ $ (-1001 (-179)))) (-15 -3874 ($ $ (-1001 (-179)) (-1001 (-179)))) (-15 -3134 ($ $ (-1001 (-179)))) (-15 -3134 ($ $)) (-15 -2788 ((-1001 (-179)) $)) (-15 -2774 ((-484))) (-15 -2773 ((-484) (-484))) (-15 -2772 ((-484))) (-15 -2771 ((-484) (-484))) (-15 -2770 ((-484))) (-15 -2769 ((-484) (-484))) (-15 -2768 ((-85))) (-15 -2767 ((-85) (-85))) (-15 -2766 ((-484))) (-15 -2765 ((-85) (-85)))))) (T -836)) -((-2789 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2790 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2776 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2776 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-836)))) (-2789 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-3874 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-3874 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-3134 (*1 *1 *1) (-5 *1 (-836))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-2774 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2772 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2770 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2768 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-2766 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2765 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836))))) -((-2776 (((-836) |#1| (-1090)) 17 T ELT) (((-836) |#1| (-1090) (-1001 (-179))) 21 T ELT)) (-2789 (((-836) |#1| |#1| (-1090) (-1001 (-179))) 19 T ELT) (((-836) |#1| (-1090) (-1001 (-179))) 15 T ELT))) -(((-837 |#1|) (-10 -7 (-15 -2789 ((-836) |#1| (-1090) (-1001 (-179)))) (-15 -2789 ((-836) |#1| |#1| (-1090) (-1001 (-179)))) (-15 -2776 ((-836) |#1| (-1090) (-1001 (-179)))) (-15 -2776 ((-836) |#1| (-1090)))) (-553 (-473))) (T -837)) -((-2776 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))) (-2776 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))) (-2789 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))) (-2789 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473)))))) -((-3874 (($ $ (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 123 T ELT)) (-2895 (((-1001 (-179)) $) 64 T ELT)) (-2896 (((-1001 (-179)) $) 63 T ELT)) (-2897 (((-1001 (-179)) $) 62 T ELT)) (-2787 (((-583 (-583 (-179))) $) 69 T ELT)) (-2788 (((-1001 (-179)) $) 65 T ELT)) (-2781 (((-484) (-484)) 57 T ELT)) (-2785 (((-484) (-484)) 52 T ELT)) (-2783 (((-484) (-484)) 55 T ELT)) (-2779 (((-85) (-85)) 59 T ELT)) (-2782 (((-484)) 56 T ELT)) (-3134 (($ $ (-1001 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2790 (($ (-1 (-854 (-179)) (-179)) (-1001 (-179))) 133 T ELT) (($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 134 T ELT)) (-2789 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 141 T ELT) (($ $ (-1001 (-179))) 129 T ELT)) (-2778 (((-484)) 60 T ELT)) (-2786 (((-484)) 50 T ELT)) (-2784 (((-484)) 53 T ELT)) (-2898 (((-583 (-583 (-854 (-179)))) $) 157 T ELT)) (-2777 (((-85) (-85)) 61 T ELT)) (-3946 (((-772) $) 155 T ELT)) (-2780 (((-85)) 58 T ELT))) -(((-838) (-13 (-887) (-10 -8 (-15 -2790 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)))) (-15 -2790 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2789 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2789 ($ $ (-1001 (-179)))) (-15 -3874 ($ $ (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -3134 ($ $ (-1001 (-179)))) (-15 -3134 ($ $)) (-15 -2788 ((-1001 (-179)) $)) (-15 -2787 ((-583 (-583 (-179))) $)) (-15 -2786 ((-484))) (-15 -2785 ((-484) (-484))) (-15 -2784 ((-484))) (-15 -2783 ((-484) (-484))) (-15 -2782 ((-484))) (-15 -2781 ((-484) (-484))) (-15 -2780 ((-85))) (-15 -2779 ((-85) (-85))) (-15 -2778 ((-484))) (-15 -2777 ((-85) (-85)))))) (T -838)) -((-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2790 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2789 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2789 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2789 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-3874 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-3134 (*1 *1 *1) (-5 *1 (-838))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-838)))) (-2786 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2784 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2782 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2781 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2780 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2778 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2777 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) -((-2791 (((-583 (-1001 (-179))) (-583 (-583 (-854 (-179))))) 34 T ELT))) -(((-839) (-10 -7 (-15 -2791 ((-583 (-1001 (-179))) (-583 (-583 (-854 (-179)))))))) (T -839)) -((-2791 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-1001 (-179)))) (-5 *1 (-839))))) -((-2793 (((-265 (-484)) (-1090)) 16 T ELT)) (-2794 (((-265 (-484)) (-1090)) 14 T ELT)) (-3952 (((-265 (-484)) (-1090)) 12 T ELT)) (-2792 (((-265 (-484)) (-1090) (-446)) 19 T ELT))) -(((-840) (-10 -7 (-15 -2792 ((-265 (-484)) (-1090) (-446))) (-15 -3952 ((-265 (-484)) (-1090))) (-15 -2793 ((-265 (-484)) (-1090))) (-15 -2794 ((-265 (-484)) (-1090))))) (T -840)) -((-2794 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-446)) (-5 *2 (-265 (-484))) (-5 *1 (-840))))) -((-2793 ((|#2| |#2|) 28 T ELT)) (-2794 ((|#2| |#2|) 29 T ELT)) (-3952 ((|#2| |#2|) 27 T ELT)) (-2792 ((|#2| |#2| (-446)) 26 T ELT))) -(((-841 |#1| |#2|) (-10 -7 (-15 -2792 (|#2| |#2| (-446))) (-15 -3952 (|#2| |#2|)) (-15 -2793 (|#2| |#2|)) (-15 -2794 (|#2| |#2|))) (-1013) (-364 |#1|)) (T -841)) -((-2794 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-364 *3)))) (-2793 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-364 *3)))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-364 *3)))) (-2792 (*1 *2 *2 *3) (-12 (-5 *3 (-446)) (-4 *4 (-1013)) (-5 *1 (-841 *4 *2)) (-4 *2 (-364 *4))))) -((-2796 (((-798 |#1| |#3|) |#2| (-800 |#1|) (-798 |#1| |#3|)) 25 T ELT)) (-2795 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT))) -(((-842 |#1| |#2| |#3|) (-10 -7 (-15 -2795 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2796 ((-798 |#1| |#3|) |#2| (-800 |#1|) (-798 |#1| |#3|)))) (-1013) (-796 |#1|) (-13 (-1013) (-950 |#2|))) (T -842)) -((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-13 (-1013) (-950 *3))) (-4 *3 (-796 *5)) (-5 *1 (-842 *5 *3 *6)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1013) (-950 *5))) (-4 *5 (-796 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-842 *4 *5 *6))))) -((-2796 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 30 T ELT))) -(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-1013) (-13 (-495) (-796 |#1|)) (-13 (-364 |#2|) (-553 (-800 |#1|)) (-796 |#1|) (-950 (-550 $)))) (T -843)) -((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-364 *6) (-553 *4) (-796 *5) (-950 (-550 $)))) (-5 *4 (-800 *5)) (-4 *6 (-13 (-495) (-796 *5))) (-5 *1 (-843 *5 *6 *3))))) -((-2796 (((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|)) 13 T ELT))) -(((-844 |#1|) (-10 -7 (-15 -2796 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|)))) (-483)) (T -844)) -((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 (-484) *3)) (-5 *4 (-800 (-484))) (-4 *3 (-483)) (-5 *1 (-844 *3))))) -((-2796 (((-798 |#1| |#2|) (-550 |#2|) (-800 |#1|) (-798 |#1| |#2|)) 57 T ELT))) -(((-845 |#1| |#2|) (-10 -7 (-15 -2796 ((-798 |#1| |#2|) (-550 |#2|) (-800 |#1|) (-798 |#1| |#2|)))) (-1013) (-13 (-1013) (-950 (-550 $)) (-553 (-800 |#1|)) (-796 |#1|))) (T -845)) -((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *6)) (-5 *3 (-550 *6)) (-4 *5 (-1013)) (-4 *6 (-13 (-1013) (-950 (-550 $)) (-553 *4) (-796 *5))) (-5 *4 (-800 *5)) (-5 *1 (-845 *5 *6))))) -((-2796 (((-795 |#1| |#2| |#3|) |#3| (-800 |#1|) (-795 |#1| |#2| |#3|)) 17 T ELT))) -(((-846 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-795 |#1| |#2| |#3|) |#3| (-800 |#1|) (-795 |#1| |#2| |#3|)))) (-1013) (-796 |#1|) (-608 |#2|)) (T -846)) -((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-795 *5 *6 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-796 *5)) (-4 *3 (-608 *6)) (-5 *1 (-846 *5 *6 *3))))) -((-2796 (((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|)) 17 (|has| |#3| (-796 |#1|)) ELT) (((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|) (-1 (-798 |#1| |#5|) |#3| (-800 |#1|) (-798 |#1| |#5|))) 16 T ELT))) -(((-847 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2796 ((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|) (-1 (-798 |#1| |#5|) |#3| (-800 |#1|) (-798 |#1| |#5|)))) (IF (|has| |#3| (-796 |#1|)) (-15 -2796 ((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|))) |%noBranch|)) (-1013) (-717) (-756) (-13 (-961) (-796 |#1|)) (-13 (-861 |#4| |#2| |#3|) (-553 (-800 |#1|)))) (T -847)) -((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-861 *8 *6 *7) (-553 *4))) (-5 *4 (-800 *5)) (-4 *7 (-796 *5)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-13 (-961) (-796 *5))) (-5 *1 (-847 *5 *6 *7 *8 *3)))) (-2796 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-798 *6 *3) *8 (-800 *6) (-798 *6 *3))) (-4 *8 (-756)) (-5 *2 (-798 *6 *3)) (-5 *4 (-800 *6)) (-4 *6 (-1013)) (-4 *3 (-13 (-861 *9 *7 *8) (-553 *4))) (-4 *7 (-717)) (-4 *9 (-13 (-961) (-796 *6))) (-5 *1 (-847 *6 *7 *8 *9 *3))))) -((-3209 (((-265 (-484)) (-1090) (-583 (-1 (-85) |#1|))) 18 T ELT) (((-265 (-484)) (-1090) (-1 (-85) |#1|)) 15 T ELT))) -(((-848 |#1|) (-10 -7 (-15 -3209 ((-265 (-484)) (-1090) (-1 (-85) |#1|))) (-15 -3209 ((-265 (-484)) (-1090) (-583 (-1 (-85) |#1|))))) (-1129)) (T -848)) -((-3209 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-583 (-1 (-85) *5))) (-4 *5 (-1129)) (-5 *2 (-265 (-484))) (-5 *1 (-848 *5)))) (-3209 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1129)) (-5 *2 (-265 (-484))) (-5 *1 (-848 *5))))) -((-3209 ((|#2| |#2| (-583 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT))) -(((-849 |#1| |#2| |#3|) (-10 -7 (-15 -3209 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3209 (|#2| |#2| (-583 (-1 (-85) |#3|))))) (-1013) (-364 |#1|) (-1129)) (T -849)) -((-3209 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-85) *5))) (-4 *5 (-1129)) (-4 *4 (-1013)) (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-364 *4)))) (-3209 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1129)) (-4 *4 (-1013)) (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-364 *4))))) -((-2796 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 25 T ELT))) -(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-1013) (-13 (-495) (-796 |#1|) (-553 (-800 |#1|))) (-904 |#2|)) (T -850)) -((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-904 *6)) (-4 *6 (-13 (-495) (-796 *5) (-553 *4))) (-5 *4 (-800 *5)) (-5 *1 (-850 *5 *6 *3))))) -((-2796 (((-798 |#1| (-1090)) (-1090) (-800 |#1|) (-798 |#1| (-1090))) 18 T ELT))) -(((-851 |#1|) (-10 -7 (-15 -2796 ((-798 |#1| (-1090)) (-1090) (-800 |#1|) (-798 |#1| (-1090))))) (-1013)) (T -851)) -((-2796 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 (-1090))) (-5 *3 (-1090)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-5 *1 (-851 *5))))) -((-2797 (((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) 34 T ELT)) (-2796 (((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-1 |#3| (-583 |#3|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) 33 T ELT))) -(((-852 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-1 |#3| (-583 |#3|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-15 -2797 ((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))))) (-1013) (-961) (-13 (-961) (-553 (-800 |#1|)) (-950 |#2|))) (T -852)) -((-2797 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-800 *6))) (-5 *5 (-1 (-798 *6 *8) *8 (-800 *6) (-798 *6 *8))) (-4 *6 (-1013)) (-4 *8 (-13 (-961) (-553 (-800 *6)) (-950 *7))) (-5 *2 (-798 *6 *8)) (-4 *7 (-961)) (-5 *1 (-852 *6 *7 *8)))) (-2796 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-800 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-798 *7 *9) *9 (-800 *7) (-798 *7 *9))) (-4 *7 (-1013)) (-4 *9 (-13 (-961) (-553 (-800 *7)) (-950 *8))) (-5 *2 (-798 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-961)) (-5 *1 (-852 *7 *8 *9))))) -((-2805 (((-1085 (-350 (-484))) (-484)) 80 T ELT)) (-2804 (((-1085 (-484)) (-484)) 83 T ELT)) (-3334 (((-1085 (-484)) (-484)) 77 T ELT)) (-2803 (((-484) (-1085 (-484))) 73 T ELT)) (-2802 (((-1085 (-350 (-484))) (-484)) 66 T ELT)) (-2801 (((-1085 (-484)) (-484)) 49 T ELT)) (-2800 (((-1085 (-484)) (-484)) 85 T ELT)) (-2799 (((-1085 (-484)) (-484)) 84 T ELT)) (-2798 (((-1085 (-350 (-484))) (-484)) 68 T ELT))) -(((-853) (-10 -7 (-15 -2798 ((-1085 (-350 (-484))) (-484))) (-15 -2799 ((-1085 (-484)) (-484))) (-15 -2800 ((-1085 (-484)) (-484))) (-15 -2801 ((-1085 (-484)) (-484))) (-15 -2802 ((-1085 (-350 (-484))) (-484))) (-15 -2803 ((-484) (-1085 (-484)))) (-15 -3334 ((-1085 (-484)) (-484))) (-15 -2804 ((-1085 (-484)) (-484))) (-15 -2805 ((-1085 (-350 (-484))) (-484))))) (T -853)) -((-2805 (*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-3334 (*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-1085 (-484))) (-5 *2 (-484)) (-5 *1 (-853)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2798 (*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-853)) (-5 *3 (-484))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3838 (($ (-694)) NIL (|has| |#1| (-23)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3788 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3419 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-3706 (($ (-583 |#1|)) 9 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3835 (((-630 |#1|) $ $) NIL (|has| |#1| (-961)) ELT)) (-3614 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3832 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3833 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-583 |#1|)) 25 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 18 T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-3836 ((|#1| $ $) NIL (|has| |#1| (-961)) ELT)) (-3911 (((-830) $) 13 T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-3834 (($ $ $) 23 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT) (($ (-583 |#1|)) 14 T ELT)) (-3530 (($ (-583 |#1|)) NIL T ELT)) (-3802 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-583 $)) NIL T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3837 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3839 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-484) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-663)) ELT) (($ $ |#1|) NIL (|has| |#1| (-663)) ELT)) (-3957 (((-694) $) 11 T ELT))) -(((-854 |#1|) (-893 |#1|) (-961)) (T -854)) -NIL -((-2808 (((-421 |#1| |#2|) (-857 |#2|)) 22 T ELT)) (-2811 (((-206 |#1| |#2|) (-857 |#2|)) 35 T ELT)) (-2809 (((-857 |#2|) (-421 |#1| |#2|)) 27 T ELT)) (-2807 (((-206 |#1| |#2|) (-421 |#1| |#2|)) 57 T ELT)) (-2810 (((-857 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2806 (((-421 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT))) -(((-855 |#1| |#2|) (-10 -7 (-15 -2806 ((-421 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2807 ((-206 |#1| |#2|) (-421 |#1| |#2|))) (-15 -2808 ((-421 |#1| |#2|) (-857 |#2|))) (-15 -2809 ((-857 |#2|) (-421 |#1| |#2|))) (-15 -2810 ((-857 |#2|) (-206 |#1| |#2|))) (-15 -2811 ((-206 |#1| |#2|) (-857 |#2|)))) (-583 (-1090)) (-961)) (T -855)) -((-2811 (*1 *2 *3) (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1090))))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961)) (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961)) (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-421 *4 *5)) (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1090))))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961)) (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961)) (-5 *2 (-421 *4 *5)) (-5 *1 (-855 *4 *5))))) -((-2812 (((-583 |#2|) |#2| |#2|) 10 T ELT)) (-2815 (((-694) (-583 |#1|)) 47 (|has| |#1| (-755)) ELT)) (-2813 (((-583 |#2|) |#2|) 11 T ELT)) (-2816 (((-694) (-583 |#1|) (-484) (-484)) 45 (|has| |#1| (-755)) ELT)) (-2814 ((|#1| |#2|) 37 (|has| |#1| (-755)) ELT))) -(((-856 |#1| |#2|) (-10 -7 (-15 -2812 ((-583 |#2|) |#2| |#2|)) (-15 -2813 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-755)) (PROGN (-15 -2814 (|#1| |#2|)) (-15 -2815 ((-694) (-583 |#1|))) (-15 -2816 ((-694) (-583 |#1|) (-484) (-484)))) |%noBranch|)) (-312) (-1155 |#1|)) (T -856)) -((-2816 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-484)) (-4 *5 (-755)) (-4 *5 (-312)) (-5 *2 (-694)) (-5 *1 (-856 *5 *6)) (-4 *6 (-1155 *5)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-755)) (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-856 *4 *5)) (-4 *5 (-1155 *4)))) (-2814 (*1 *2 *3) (-12 (-4 *2 (-312)) (-4 *2 (-755)) (-5 *1 (-856 *2 *3)) (-4 *3 (-1155 *2)))) (-2813 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1155 *4)))) (-2812 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1155 *4))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-1090)) $) 16 T ELT)) (-3083 (((-1085 $) $ (-1090)) 21 T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-1090))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-1090) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-1090) $) NIL T ELT)) (-3756 (($ $ $ (-1090)) NIL (|has| |#1| (-146)) ELT)) (-3959 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-392)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-469 (-1090)) $) NIL T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-1090) (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1090) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1085 |#1|) (-1090)) NIL T ELT) (($ (-1085 $) (-1090)) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-469 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-1090)) NIL T ELT)) (-2820 (((-469 (-1090)) $) NIL T ELT) (((-694) $ (-1090)) NIL T ELT) (((-583 (-694)) $ (-583 (-1090))) NIL T ELT)) (-1625 (($ (-1 (-469 (-1090)) (-469 (-1090))) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3082 (((-3 (-1090) #1#) $) 19 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-1090)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3812 (($ $ (-1090)) 29 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-1090) |#1|) NIL T ELT) (($ $ (-583 (-1090)) (-583 |#1|)) NIL T ELT) (($ $ (-1090) $) NIL T ELT) (($ $ (-583 (-1090)) (-583 $)) NIL T ELT)) (-3757 (($ $ (-1090)) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT)) (-3948 (((-469 (-1090)) $) NIL T ELT) (((-694) $ (-1090)) NIL T ELT) (((-583 (-694)) $ (-583 (-1090))) NIL T ELT)) (-3972 (((-800 (-330)) $) NIL (-12 (|has| (-1090) (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1090) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-1090) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3946 (((-772) $) 25 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1090)) 27 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3817 (((-583 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-469 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-857 |#1|) (-13 (-861 |#1| (-469 (-1090)) (-1090)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3812 ($ $ (-1090))) |%noBranch|))) (-961)) (T -857)) -((-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-857 *3)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961))))) -((-3958 (((-857 |#2|) (-1 |#2| |#1|) (-857 |#1|)) 19 T ELT))) -(((-858 |#1| |#2|) (-10 -7 (-15 -3958 ((-857 |#2|) (-1 |#2| |#1|) (-857 |#1|)))) (-961) (-961)) (T -858)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-857 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-857 *6)) (-5 *1 (-858 *5 *6))))) -((-3083 (((-1148 |#1| (-857 |#2|)) (-857 |#2|) (-1176 |#1|)) 18 T ELT))) -(((-859 |#1| |#2|) (-10 -7 (-15 -3083 ((-1148 |#1| (-857 |#2|)) (-857 |#2|) (-1176 |#1|)))) (-1090) (-961)) (T -859)) -((-3083 (*1 *2 *3 *4) (-12 (-5 *4 (-1176 *5)) (-14 *5 (-1090)) (-4 *6 (-961)) (-5 *2 (-1148 *5 (-857 *6))) (-5 *1 (-859 *5 *6)) (-5 *3 (-857 *6))))) -((-2819 (((-694) $) 88 T ELT) (((-694) $ (-583 |#4|)) 93 T ELT)) (-3775 (($ $) 214 T ELT)) (-3971 (((-348 $) $) 206 T ELT)) (-2704 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 141 T ELT)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3756 (($ $ $ |#4|) 95 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) 131 T ELT) (((-630 |#2|) (-630 $)) 121 T ELT)) (-3503 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2818 (((-583 $) $) 77 T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 240 T ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 233 T ELT)) (-2821 (((-583 $) $) 34 T ELT)) (-2893 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-694)) NIL T ELT) (($ $ (-583 |#4|) (-583 (-694))) 71 T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#4|) 203 T ELT)) (-2823 (((-3 (-583 $) #1#) $) 52 T ELT)) (-2822 (((-3 (-583 $) #1#) $) 39 T ELT)) (-2824 (((-3 (-2 (|:| |var| |#4|) (|:| -2401 (-694))) #1#) $) 57 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 134 T ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) 147 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 145 T ELT)) (-3732 (((-348 $) $) 165 T ELT)) (-3768 (($ $ (-583 (-249 $))) 24 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-583 |#4|) (-583 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-583 |#4|) (-583 $)) NIL T ELT)) (-3757 (($ $ |#4|) 97 T ELT)) (-3972 (((-800 (-330)) $) 254 T ELT) (((-800 (-484)) $) 247 T ELT) (((-473) $) 262 T ELT)) (-2817 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) 185 T ELT)) (-3677 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-694)) 62 T ELT) (($ $ (-583 |#4|) (-583 (-694))) 69 T ELT)) (-2702 (((-632 $) $) 195 T ELT)) (-1265 (((-85) $ $) 227 T ELT))) -(((-860 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2708 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|))) (-15 -3971 ((-348 |#1|) |#1|)) (-15 -3775 (|#1| |#1|)) (-15 -2702 ((-632 |#1|) |#1|)) (-15 -3972 ((-473) |#1|)) (-15 -3972 ((-800 (-484)) |#1|)) (-15 -3972 ((-800 (-330)) |#1|)) (-15 -2796 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -2796 ((-798 (-330) |#1|) |#1| (-800 (-330)) (-798 (-330) |#1|))) (-15 -3732 ((-348 |#1|) |#1|)) (-15 -2706 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2705 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2704 ((-3 (-583 (-1085 |#1|)) #1="failed") (-583 (-1085 |#1|)) (-1085 |#1|))) (-15 -2703 ((-3 (-1179 |#1|) #1#) (-630 |#1|))) (-15 -3503 (|#1| |#1| |#4|)) (-15 -2817 (|#1| |#1| |#4|)) (-15 -3757 (|#1| |#1| |#4|)) (-15 -3756 (|#1| |#1| |#1| |#4|)) (-15 -2818 ((-583 |#1|) |#1|)) (-15 -2819 ((-694) |#1| (-583 |#4|))) (-15 -2819 ((-694) |#1|)) (-15 -2824 ((-3 (-2 (|:| |var| |#4|) (|:| -2401 (-694))) #1#) |#1|)) (-15 -2823 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2822 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2893 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -2893 (|#1| |#1| |#4| (-694))) (-15 -3763 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1| |#4|)) (-15 -2821 ((-583 |#1|) |#1|)) (-15 -3677 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -3677 (|#1| |#1| |#4| (-694))) (-15 -2279 ((-630 |#2|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3157 ((-3 |#4| #1#) |#1|)) (-15 -3156 (|#4| |#1|)) (-15 -3768 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3768 (|#1| |#1| |#4| |#1|)) (-15 -3768 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3768 (|#1| |#1| |#4| |#2|)) (-15 -3768 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3768 (|#1| |#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| (-249 |#1|))) (-15 -3768 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -2893 (|#1| |#2| |#3|)) (-15 -3677 (|#2| |#1| |#3|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3156 ((-350 (-484)) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -2817 (|#2| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -1265 ((-85) |#1| |#1|))) (-861 |#2| |#3| |#4|) (-961) (-717) (-756)) (T -860)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 |#3|) $) 123 T ELT)) (-3083 (((-1085 $) $ |#3|) 138 T ELT) (((-1085 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) 125 T ELT) (((-694) $ (-583 |#3|)) 124 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 113 (|has| |#1| (-821)) ELT)) (-3775 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 116 (|has| |#1| (-821)) ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-484)) #2#) $) 178 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #2#) $) 153 T ELT)) (-3156 ((|#1| $) 180 T ELT) (((-350 (-484)) $) 179 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) ((|#3| $) 154 T ELT)) (-3756 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3959 (($ $) 171 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3503 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2818 (((-583 $) $) 122 T ELT)) (-3723 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| |#2| $) 189 T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 97 (-12 (|has| |#3| (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| |#3| (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3084 (($ (-1085 |#1|) |#3|) 130 T ELT) (($ (-1085 $) |#3|) 129 T ELT)) (-2821 (((-583 $) $) 139 T ELT)) (-3937 (((-85) $) 169 T ELT)) (-2893 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-694)) 132 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 131 T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#3|) 133 T ELT)) (-2820 ((|#2| $) 187 T ELT) (((-694) $ |#3|) 135 T ELT) (((-583 (-694)) $ (-583 |#3|)) 134 T ELT)) (-1625 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3082 (((-3 |#3| "failed") $) 136 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 145 T ELT) (((-630 |#1|) (-1179 $)) 144 T ELT)) (-2894 (($ $) 166 T ELT)) (-3174 ((|#1| $) 165 T ELT)) (-1891 (($ (-583 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2823 (((-3 (-583 $) "failed") $) 127 T ELT)) (-2822 (((-3 (-583 $) "failed") $) 128 T ELT)) (-2824 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) "failed") $) 126 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1797 (((-85) $) 183 T ELT)) (-1796 ((|#1| $) 184 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 108 (|has| |#1| (-392)) ELT)) (-3144 (($ (-583 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) 115 (|has| |#1| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 114 (|has| |#1| (-821)) ELT)) (-3732 (((-348 $) $) 112 (|has| |#1| (-821)) ELT)) (-3466 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-583 |#3|) (-583 $)) 155 T ELT)) (-3757 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-583 |#3|) (-583 (-694))) 52 T ELT) (($ $ |#3| (-694)) 51 T ELT) (($ $ (-583 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3948 ((|#2| $) 167 T ELT) (((-694) $ |#3|) 143 T ELT) (((-583 (-694)) $ (-583 |#3|)) 142 T ELT)) (-3972 (((-800 (-330)) $) 95 (-12 (|has| |#3| (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| |#3| (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| |#3| (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) 117 (-2562 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ $) 98 (|has| |#1| (-495)) ELT) (($ (-350 (-484))) 91 (OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ELT)) (-3817 (((-583 |#1|) $) 185 T ELT)) (-3677 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-694)) 141 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 140 T ELT)) (-2702 (((-632 $) $) 92 (OR (-2562 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1623 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 |#3|) (-583 (-694))) 55 T ELT) (($ $ |#3| (-694)) 54 T ELT) (($ $ (-583 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 175 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) 174 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) -(((-861 |#1| |#2| |#3|) (-113) (-961) (-717) (-756)) (T -861)) -((-3503 (*1 *1 *1) (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-392)))) (-3948 (*1 *2 *1 *3) (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3948 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-694))))) (-3677 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *2 (-756)))) (-3677 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) (-2821 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-3083 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-1085 *1)) (-4 *1 (-861 *4 *5 *3)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-1085 *3)))) (-3082 (*1 *2 *1) (|partial| -12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-2820 (*1 *2 *1 *3) (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-694)))) (-2820 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-694))))) (-3763 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-861 *4 *5 *3)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *2 (-756)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) (-3084 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *4)) (-4 *4 (-961)) (-4 *1 (-861 *4 *5 *3)) (-4 *5 (-717)) (-4 *3 (-756)))) (-3084 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)))) (-2822 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-694)))))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-694)))) (-2819 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *5)))) (-2818 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-3756 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3757 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-146)))) (-2817 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-392)))) (-3503 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-392)))) (-3775 (*1 *1 *1) (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-392)))) (-3971 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-348 *1)) (-4 *1 (-861 *3 *4 *5))))) -(-13 (-809 |t#3|) (-277 |t#1| |t#2|) (-260 $) (-455 |t#3| |t#1|) (-455 |t#3| $) (-950 |t#3|) (-329 |t#1|) (-10 -8 (-15 -3948 ((-694) $ |t#3|)) (-15 -3948 ((-583 (-694)) $ (-583 |t#3|))) (-15 -3677 ($ $ |t#3| (-694))) (-15 -3677 ($ $ (-583 |t#3|) (-583 (-694)))) (-15 -2821 ((-583 $) $)) (-15 -3083 ((-1085 $) $ |t#3|)) (-15 -3083 ((-1085 |t#1|) $)) (-15 -3082 ((-3 |t#3| "failed") $)) (-15 -2820 ((-694) $ |t#3|)) (-15 -2820 ((-583 (-694)) $ (-583 |t#3|))) (-15 -3763 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |t#3|)) (-15 -2893 ($ $ |t#3| (-694))) (-15 -2893 ($ $ (-583 |t#3|) (-583 (-694)))) (-15 -3084 ($ (-1085 |t#1|) |t#3|)) (-15 -3084 ($ (-1085 $) |t#3|)) (-15 -2822 ((-3 (-583 $) "failed") $)) (-15 -2823 ((-3 (-583 $) "failed") $)) (-15 -2824 ((-3 (-2 (|:| |var| |t#3|) (|:| -2401 (-694))) "failed") $)) (-15 -2819 ((-694) $)) (-15 -2819 ((-694) $ (-583 |t#3|))) (-15 -3081 ((-583 |t#3|) $)) (-15 -2818 ((-583 $) $)) (IF (|has| |t#1| (-553 (-473))) (IF (|has| |t#3| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-484)))) (IF (|has| |t#3| (-553 (-800 (-484)))) (-6 (-553 (-800 (-484)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-330)))) (IF (|has| |t#3| (-553 (-800 (-330)))) (-6 (-553 (-800 (-330)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-796 (-484))) (IF (|has| |t#3| (-796 (-484))) (-6 (-796 (-484))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-796 (-330))) (IF (|has| |t#3| (-796 (-330))) (-6 (-796 (-330))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3756 ($ $ $ |t#3|)) (-15 -3757 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-6 (-392)) (-15 -2817 ($ $ |t#3|)) (-15 -3503 ($ $)) (-15 -3503 ($ $ |t#3|)) (-15 -3971 ((-348 $) $)) (-15 -3775 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3993)) (-6 -3993) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ((-553 (-800 (-330))) -12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#3| (-553 (-800 (-330))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-821)) (|has| |#1| (-392))) ((-455 |#3| |#1|) . T) ((-455 |#3| $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-663) . T) ((-806 $ |#3|) . T) ((-809 |#3|) . T) ((-811 |#3|) . T) ((-796 (-330)) -12 (|has| |#1| (-796 (-330))) (|has| |#3| (-796 (-330)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ((-821) |has| |#1| (-821)) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) |has| |#1| (-821))) -((-3081 (((-583 |#2|) |#5|) 40 T ELT)) (-3083 (((-1085 |#5|) |#5| |#2| (-1085 |#5|)) 23 T ELT) (((-350 (-1085 |#5|)) |#5| |#2|) 16 T ELT)) (-3084 ((|#5| (-350 (-1085 |#5|)) |#2|) 30 T ELT)) (-3082 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2823 (((-3 (-583 |#5|) #1#) |#5|) 64 T ELT)) (-2825 (((-3 (-2 (|:| |val| |#5|) (|:| -2401 (-484))) #1#) |#5|) 53 T ELT)) (-2822 (((-3 (-583 |#5|) #1#) |#5|) 66 T ELT)) (-2824 (((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-484))) #1#) |#5|) 56 T ELT))) -(((-862 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3081 ((-583 |#2|) |#5|)) (-15 -3082 ((-3 |#2| #1="failed") |#5|)) (-15 -3083 ((-350 (-1085 |#5|)) |#5| |#2|)) (-15 -3084 (|#5| (-350 (-1085 |#5|)) |#2|)) (-15 -3083 ((-1085 |#5|) |#5| |#2| (-1085 |#5|))) (-15 -2822 ((-3 (-583 |#5|) #1#) |#5|)) (-15 -2823 ((-3 (-583 |#5|) #1#) |#5|)) (-15 -2824 ((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-484))) #1#) |#5|)) (-15 -2825 ((-3 (-2 (|:| |val| |#5|) (|:| -2401 (-484))) #1#) |#5|))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3946 ($ |#4|)) (-15 -2998 (|#4| $)) (-15 -2997 (|#4| $))))) (T -862)) -((-2825 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2401 (-484)))) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) (-2824 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-484)))) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) (-2823 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) (-2822 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) (-3083 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))) (-4 *7 (-861 *6 *5 *4)) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-5 *1 (-862 *5 *4 *6 *7 *3)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1085 *2))) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *2 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))) (-5 *1 (-862 *5 *4 *6 *7 *2)) (-4 *7 (-861 *6 *5 *4)))) (-3083 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-350 (-1085 *3))) (-5 *1 (-862 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) (-3082 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-961)) (-4 *6 (-861 *5 *4 *2)) (-4 *2 (-756)) (-5 *1 (-862 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *6)) (-15 -2998 (*6 $)) (-15 -2997 (*6 $))))))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) -((-3958 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) -(((-863 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3958 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3839 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694)))))) (T -863)) -((-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-756)) (-4 *8 (-961)) (-4 *6 (-717)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -3839 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694)))))) (-5 *1 (-863 *6 *7 *8 *5 *2)) (-4 *5 (-861 *8 *6 *7))))) -((-2826 (((-2 (|:| -2401 (-694)) (|:| -3954 |#5|) (|:| |radicand| |#5|)) |#3| (-694)) 48 T ELT)) (-2827 (((-2 (|:| -2401 (-694)) (|:| -3954 |#5|) (|:| |radicand| |#5|)) (-350 (-484)) (-694)) 43 T ELT)) (-2829 (((-2 (|:| -2401 (-694)) (|:| -3954 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-694)) 64 T ELT)) (-2828 (((-2 (|:| -2401 (-694)) (|:| -3954 |#5|) (|:| |radicand| |#5|)) |#5| (-694)) 73 (|has| |#3| (-392)) ELT))) -(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2826 ((-2 (|:| -2401 (-694)) (|:| -3954 |#5|) (|:| |radicand| |#5|)) |#3| (-694))) (-15 -2827 ((-2 (|:| -2401 (-694)) (|:| -3954 |#5|) (|:| |radicand| |#5|)) (-350 (-484)) (-694))) (IF (|has| |#3| (-392)) (-15 -2828 ((-2 (|:| -2401 (-694)) (|:| -3954 |#5|) (|:| |radicand| |#5|)) |#5| (-694))) |%noBranch|) (-15 -2829 ((-2 (|:| -2401 (-694)) (|:| -3954 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-694)))) (-717) (-756) (-495) (-861 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3946 ($ |#4|)) (-15 -2998 (|#4| $)) (-15 -2997 (|#4| $))))) (T -864)) -((-2829 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *3 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3954 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-864 *5 *6 *7 *3 *8)) (-5 *4 (-694)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3946 ($ *3)) (-15 -2998 (*3 $)) (-15 -2997 (*3 $))))))) (-2828 (*1 *2 *3 *4) (-12 (-4 *7 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *8 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3954 *3) (|:| |radicand| *3))) (-5 *1 (-864 *5 *6 *7 *8 *3)) (-5 *4 (-694)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3946 ($ *8)) (-15 -2998 (*8 $)) (-15 -2997 (*8 $))))))) (-2827 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-484))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *8 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3954 *9) (|:| |radicand| *9))) (-5 *1 (-864 *5 *6 *7 *8 *9)) (-5 *4 (-694)) (-4 *9 (-13 (-312) (-10 -8 (-15 -3946 ($ *8)) (-15 -2998 (*8 $)) (-15 -2997 (*8 $))))))) (-2826 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-495)) (-4 *7 (-861 *3 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3954 *8) (|:| |radicand| *8))) (-5 *1 (-864 *5 *6 *3 *7 *8)) (-5 *4 (-694)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) -((-2568 (((-85) $ $) NIL T ELT)) (-2830 (($ (-1033)) 8 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 15 T ELT) (((-1033) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 11 T ELT))) -(((-865) (-13 (-1013) (-552 (-1033)) (-10 -8 (-15 -2830 ($ (-1033)))))) (T -865)) -((-2830 (*1 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-865))))) -((-2896 (((-1001 (-179)) $) 8 T ELT)) (-2897 (((-1001 (-179)) $) 9 T ELT)) (-2898 (((-583 (-583 (-854 (-179)))) $) 10 T ELT)) (-3946 (((-772) $) 6 T ELT))) -(((-866) (-113)) (T -866)) -((-2898 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-583 (-583 (-854 (-179))))))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179))))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179)))))) -(-13 (-552 (-772)) (-10 -8 (-15 -2898 ((-583 (-583 (-854 (-179)))) $)) (-15 -2897 ((-1001 (-179)) $)) (-15 -2896 ((-1001 (-179)) $)))) -(((-552 (-772)) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 80 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 81 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3959 (($ $) 32 T ELT)) (-3467 (((-3 $ #1#) $) 43 T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1624 (($ $ |#1| |#2| $) 64 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 18 T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| |#2|) NIL T ELT)) (-2820 ((|#2| $) 25 T ELT)) (-1625 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2894 (($ $) 29 T ELT)) (-3174 ((|#1| $) 27 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) 52 T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-3738 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-495))) ELT)) (-3466 (((-3 $ #1#) $ $) 92 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-495)) ELT)) (-3948 ((|#2| $) 23 T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) 47 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 42 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3817 (((-583 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ |#2|) 38 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 15 T CONST)) (-1623 (($ $ $ (-694)) 76 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) 86 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 28 T CONST)) (-2666 (($) 12 T CONST)) (-3056 (((-85) $ $) 85 T ELT)) (-3949 (($ $ |#1|) 93 (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 71 T ELT) (($ $ (-694)) 69 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-867 |#1| |#2|) (-13 (-277 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-495)) (IF (|has| |#2| (-104)) (-15 -3738 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3993)) (-6 -3993) |%noBranch|))) (-961) (-716)) (T -867)) -((-3738 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-867 *3 *2)) (-4 *2 (-104)) (-4 *3 (-495)) (-4 *3 (-961)) (-4 *2 (-716))))) -((-2831 (((-3 (-630 |#1|) "failed") |#2| (-830)) 18 T ELT))) -(((-868 |#1| |#2|) (-10 -7 (-15 -2831 ((-3 (-630 |#1|) "failed") |#2| (-830)))) (-495) (-600 |#1|)) (T -868)) -((-2831 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-830)) (-4 *5 (-495)) (-5 *2 (-630 *5)) (-5 *1 (-868 *5 *3)) (-4 *3 (-600 *5))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3788 ((|#1| $ (-484) |#1|) 18 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-484) |#1|) 17 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) 15 T ELT)) (-3419 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) 23 (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-694) |#1|) 14 T ELT)) (-2200 (((-484) $) 10 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 24 T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 22 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) 19 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) 11 T ELT)) (-3800 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 16 T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 20 T ELT)) (-3972 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 13 T ELT)) (-3802 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3957 (((-694) $) 8 T ELT))) -(((-869 |#1|) (-19 |#1|) (-1129)) (T -869)) -NIL -((-3841 (((-869 |#2|) (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|) 16 T ELT)) (-3842 ((|#2| (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|) 18 T ELT)) (-3958 (((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)) 13 T ELT))) -(((-870 |#1| |#2|) (-10 -7 (-15 -3841 ((-869 |#2|) (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|)) (-15 -3842 (|#2| (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|)) (-15 -3958 ((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)))) (-1129) (-1129)) (T -870)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-869 *6)) (-5 *1 (-870 *5 *6)))) (-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-869 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-870 *5 *2)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-869 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-5 *2 (-869 *5)) (-5 *1 (-870 *6 *5))))) -((-2832 (($ $ (-1004 $)) 7 T ELT) (($ $ (-1090)) 6 T ELT))) -(((-871) (-113)) (T -871)) -((-2832 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-871)))) (-2832 (*1 *1 *1 *2) (-12 (-4 *1 (-871)) (-5 *2 (-1090))))) -(-13 (-10 -8 (-15 -2832 ($ $ (-1090))) (-15 -2832 ($ $ (-1004 $))))) -((-2833 (((-2 (|:| -3954 (-583 (-484))) (|:| |poly| (-583 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-583 (-857 |#1|)) (-583 (-1090)) (-1090)) 26 T ELT) (((-2 (|:| -3954 (-583 (-484))) (|:| |poly| (-583 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-583 (-857 |#1|)) (-583 (-1090))) 27 T ELT) (((-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1085 |#1|))) (-857 |#1|) (-1090) (-857 |#1|) (-1090)) 49 T ELT))) -(((-872 |#1|) (-10 -7 (-15 -2833 ((-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1085 |#1|))) (-857 |#1|) (-1090) (-857 |#1|) (-1090))) (-15 -2833 ((-2 (|:| -3954 (-583 (-484))) (|:| |poly| (-583 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-583 (-857 |#1|)) (-583 (-1090)))) (-15 -2833 ((-2 (|:| -3954 (-583 (-484))) (|:| |poly| (-583 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-583 (-857 |#1|)) (-583 (-1090)) (-1090)))) (-13 (-312) (-120))) (T -872)) -((-2833 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1090))) (-5 *5 (-1090)) (-4 *6 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3954 (-583 (-484))) (|:| |poly| (-583 (-1085 *6))) (|:| |prim| (-1085 *6)))) (-5 *1 (-872 *6)))) (-2833 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1090))) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3954 (-583 (-484))) (|:| |poly| (-583 (-1085 *5))) (|:| |prim| (-1085 *5)))) (-5 *1 (-872 *5)))) (-2833 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-1090)) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1085 *5)))) (-5 *1 (-872 *5))))) -((-2836 (((-583 |#1|) |#1| |#1|) 47 T ELT)) (-3723 (((-85) |#1|) 44 T ELT)) (-2835 ((|#1| |#1|) 80 T ELT)) (-2834 ((|#1| |#1|) 79 T ELT))) -(((-873 |#1|) (-10 -7 (-15 -3723 ((-85) |#1|)) (-15 -2834 (|#1| |#1|)) (-15 -2835 (|#1| |#1|)) (-15 -2836 ((-583 |#1|) |#1| |#1|))) (-483)) (T -873)) -((-2836 (*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-873 *3)) (-4 *3 (-483)))) (-2835 (*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483)))) (-2834 (*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483)))) (-3723 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-873 *3)) (-4 *3 (-483))))) -((-2837 (((-1185) (-772)) 9 T ELT))) -(((-874) (-10 -7 (-15 -2837 ((-1185) (-772))))) (T -874)) -((-2837 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-874))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-2483 (($ $ $) 65 (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) ELT)) (-1312 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-3136 (((-694)) 36 (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-2838 ((|#2| $) 22 T ELT)) (-2839 ((|#1| $) 21 T ELT)) (-3724 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) CONST)) (-3467 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (-2994 (($) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3186 (((-85) $) NIL (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) ELT)) (-1214 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-2410 (((-85) $) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (-2531 (($ $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2857 (($ $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2840 (($ |#1| |#2|) 20 T ELT)) (-2010 (((-830) $) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 39 (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-2400 (($ (-830)) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3009 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-2435 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-3946 (((-772) $) 14 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) CONST)) (-2666 (($) 25 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) CONST)) (-2566 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-3056 (((-85) $ $) 19 T ELT)) (-2684 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2685 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-3949 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-3837 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3839 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (** (($ $ (-484)) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT) (($ $ (-694)) 32 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT) (($ $ (-830)) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (* (($ (-484) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-694) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT) (($ (-830) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT))) -(((-875 |#1| |#2|) (-13 (-1013) (-10 -8 (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-663)) (IF (|has| |#2| (-663)) (-6 (-663)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-413)) (IF (|has| |#2| (-413)) (-6 (-413)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-717)) (IF (|has| |#2| (-717)) (-6 (-717)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-756)) (IF (|has| |#2| (-756)) (-6 (-756)) |%noBranch|) |%noBranch|) (-15 -2840 ($ |#1| |#2|)) (-15 -2839 (|#1| $)) (-15 -2838 (|#2| $)))) (-1013) (-1013)) (T -875)) -((-2840 (*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2839 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1013)))) (-2838 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1013))))) -((-3402 (((-1015) $) 13 T ELT)) (-2841 (($ (-446) (-1015)) 15 T ELT)) (-3542 (((-446) $) 11 T ELT)) (-3946 (((-772) $) 25 T ELT))) -(((-876) (-13 (-552 (-772)) (-10 -8 (-15 -3542 ((-446) $)) (-15 -3402 ((-1015) $)) (-15 -2841 ($ (-446) (-1015)))))) (T -876)) -((-3542 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-876)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-876)))) (-2841 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-876))))) -((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 29 T ELT)) (-2855 (($) 17 T CONST)) (-2561 (($ $ $) NIL T ELT)) (-2560 (($ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2846 (((-632 (-782 $ $)) $) 62 T ELT)) (-2848 (((-632 $) $) 52 T ELT)) (-2845 (((-632 (-782 $ $)) $) 63 T ELT)) (-2844 (((-632 (-782 $ $)) $) 64 T ELT)) (-2849 (((-632 |#1|) $) 43 T ELT)) (-2847 (((-632 (-782 $ $)) $) 61 T ELT)) (-2853 (($ $ $) 38 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2854 (($) 16 T CONST)) (-2852 (($ $ $) 39 T ELT)) (-2842 (($ $ $) 36 T ELT)) (-2843 (($ $ $) 34 T ELT)) (-3946 (((-772) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2311 (($ $ $) 37 T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 35 T ELT))) -(((-877 |#1|) (-13 (-880) (-555 |#1|) (-10 -8 (-15 -2849 ((-632 |#1|) $)) (-15 -2848 ((-632 $) $)) (-15 -2847 ((-632 (-782 $ $)) $)) (-15 -2846 ((-632 (-782 $ $)) $)) (-15 -2845 ((-632 (-782 $ $)) $)) (-15 -2844 ((-632 (-782 $ $)) $)) (-15 -2843 ($ $ $)) (-15 -2842 ($ $ $)))) (-1013)) (T -877)) -((-2849 (*1 *2 *1) (-12 (-5 *2 (-632 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-632 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2843 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013)))) (-2842 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013))))) -((-3649 (((-877 |#1|) (-877 |#1|)) 46 T ELT)) (-2851 (((-877 |#1|) (-877 |#1|)) 22 T ELT)) (-2850 (((-1009 |#1|) (-877 |#1|)) 41 T ELT))) -(((-878 |#1|) (-13 (-1129) (-10 -7 (-15 -2851 ((-877 |#1|) (-877 |#1|))) (-15 -2850 ((-1009 |#1|) (-877 |#1|))) (-15 -3649 ((-877 |#1|) (-877 |#1|))))) (-1013)) (T -878)) -((-2851 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-877 *4)) (-4 *4 (-1013)) (-5 *2 (-1009 *4)) (-5 *1 (-878 *4)))) (-3649 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3))))) -((-3958 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 29 T ELT))) -(((-879 |#1| |#2|) (-13 (-1129) (-10 -7 (-15 -3958 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|))))) (-1013) (-1013)) (T -879)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-877 *6)) (-5 *1 (-879 *5 *6))))) -((-2568 (((-85) $ $) 19 T ELT)) (-2313 (($ $) 8 T ELT)) (-2855 (($) 17 T CONST)) (-2561 (($ $ $) 9 T ELT)) (-2560 (($ $) 11 T ELT)) (-3242 (((-1073) $) 23 T ELT)) (-2853 (($ $ $) 15 T ELT)) (-3243 (((-1033) $) 22 T ELT)) (-2854 (($) 16 T CONST)) (-2852 (($ $ $) 14 T ELT)) (-3946 (((-772) $) 21 T ELT)) (-1265 (((-85) $ $) 20 T ELT)) (-2562 (($ $ $) 10 T ELT)) (-2311 (($ $ $) 6 T ELT)) (-3056 (((-85) $ $) 18 T ELT)) (-2312 (($ $ $) 7 T ELT))) -(((-880) (-113)) (T -880)) -((-2855 (*1 *1) (-4 *1 (-880))) (-2854 (*1 *1) (-4 *1 (-880))) (-2853 (*1 *1 *1 *1) (-4 *1 (-880))) (-2852 (*1 *1 *1 *1) (-4 *1 (-880)))) -(-13 (-84) (-1013) (-10 -8 (-15 -2855 ($) -3952) (-15 -2854 ($) -3952) (-15 -2853 ($ $ $)) (-15 -2852 ($ $ $)))) -(((-72) . T) ((-84) . T) ((-552 (-772)) . T) ((-13) . T) ((-604) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3724 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2856 (($ $ $) 48 T ELT)) (-3518 (($ $ $) 49 T ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2857 ((|#1| $) 50 T ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-1946 (((-694) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-881 |#1|) (-113) (-756)) (T -881)) -((-2857 (*1 *2 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))) (-3518 (*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))) (-2856 (*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756))))) -(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -2857 (|t#1| $)) (-15 -3518 ($ $ $)) (-15 -2856 ($ $ $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T)) -((-2869 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3144 |#2|)) |#2| |#2|) 105 T ELT)) (-3755 ((|#2| |#2| |#2|) 103 T ELT)) (-2870 (((-2 (|:| |coef2| |#2|) (|:| -3144 |#2|)) |#2| |#2|) 107 T ELT)) (-2871 (((-2 (|:| |coef1| |#2|) (|:| -3144 |#2|)) |#2| |#2|) 109 T ELT)) (-2878 (((-2 (|:| |coef2| |#2|) (|:| -2876 |#1|)) |#2| |#2|) 132 (|has| |#1| (-392)) ELT)) (-2885 (((-2 (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|) 56 T ELT)) (-2859 (((-2 (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|) 80 T ELT)) (-2860 (((-2 (|:| |coef1| |#2|) (|:| -3756 |#1|)) |#2| |#2|) 82 T ELT)) (-2868 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2863 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 89 T ELT)) (-2873 (((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2|) 121 T ELT)) (-2866 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 92 T ELT)) (-2875 (((-583 (-694)) |#2| |#2|) 102 T ELT)) (-2883 ((|#1| |#2| |#2|) 50 T ELT)) (-2877 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2876 |#1|)) |#2| |#2|) 130 (|has| |#1| (-392)) ELT)) (-2876 ((|#1| |#2| |#2|) 128 (|has| |#1| (-392)) ELT)) (-2884 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|) 54 T ELT)) (-2858 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|) 79 T ELT)) (-3756 ((|#1| |#2| |#2|) 76 T ELT)) (-3752 (((-2 (|:| -3954 |#1|) (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2|) 41 T ELT)) (-2882 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2867 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3190 ((|#2| |#2| |#2|) 93 T ELT)) (-2862 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 87 T ELT)) (-2861 ((|#2| |#2| |#2| (-694)) 85 T ELT)) (-3144 ((|#2| |#2| |#2|) 136 (|has| |#1| (-392)) ELT)) (-3466 (((-1179 |#2|) (-1179 |#2|) |#1|) 22 T ELT)) (-2879 (((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2|) 46 T ELT)) (-2872 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2|) 119 T ELT)) (-3757 ((|#1| |#2|) 116 T ELT)) (-2865 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 91 T ELT)) (-2864 ((|#2| |#2| |#2| (-694)) 90 T ELT)) (-2874 (((-583 |#2|) |#2| |#2|) 99 T ELT)) (-2881 ((|#2| |#2| |#1| |#1| (-694)) 62 T ELT)) (-2880 ((|#1| |#1| |#1| (-694)) 61 T ELT)) (* (((-1179 |#2|) |#1| (-1179 |#2|)) 17 T ELT))) -(((-882 |#1| |#2|) (-10 -7 (-15 -3756 (|#1| |#2| |#2|)) (-15 -2858 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|)) (-15 -2859 ((-2 (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|)) (-15 -2860 ((-2 (|:| |coef1| |#2|) (|:| -3756 |#1|)) |#2| |#2|)) (-15 -2861 (|#2| |#2| |#2| (-694))) (-15 -2862 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2863 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2864 (|#2| |#2| |#2| (-694))) (-15 -2865 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2866 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -3190 (|#2| |#2| |#2|)) (-15 -2867 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2868 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3755 (|#2| |#2| |#2|)) (-15 -2869 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3144 |#2|)) |#2| |#2|)) (-15 -2870 ((-2 (|:| |coef2| |#2|) (|:| -3144 |#2|)) |#2| |#2|)) (-15 -2871 ((-2 (|:| |coef1| |#2|) (|:| -3144 |#2|)) |#2| |#2|)) (-15 -3757 (|#1| |#2|)) (-15 -2872 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2|)) (-15 -2873 ((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2|)) (-15 -2874 ((-583 |#2|) |#2| |#2|)) (-15 -2875 ((-583 (-694)) |#2| |#2|)) (IF (|has| |#1| (-392)) (PROGN (-15 -2876 (|#1| |#2| |#2|)) (-15 -2877 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2876 |#1|)) |#2| |#2|)) (-15 -2878 ((-2 (|:| |coef2| |#2|) (|:| -2876 |#1|)) |#2| |#2|)) (-15 -3144 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1179 |#2|) |#1| (-1179 |#2|))) (-15 -3466 ((-1179 |#2|) (-1179 |#2|) |#1|)) (-15 -3752 ((-2 (|:| -3954 |#1|) (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2|)) (-15 -2879 ((-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) |#2| |#2|)) (-15 -2880 (|#1| |#1| |#1| (-694))) (-15 -2881 (|#2| |#2| |#1| |#1| (-694))) (-15 -2882 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2883 (|#1| |#2| |#2|)) (-15 -2884 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|)) (-15 -2885 ((-2 (|:| |coef2| |#2|) (|:| -3756 |#1|)) |#2| |#2|))) (-495) (-1155 |#1|)) (T -882)) -((-2885 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3756 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2884 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3756 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2883 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2)))) (-2882 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3)))) (-2881 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3)))) (-2880 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *2 (-495)) (-5 *1 (-882 *2 *4)) (-4 *4 (-1155 *2)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-3752 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -3954 *4) (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-3466 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-495)) (-5 *1 (-882 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-495)) (-5 *1 (-882 *3 *4)))) (-3144 (*1 *2 *2 *2) (-12 (-4 *3 (-392)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2876 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2876 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-4 *2 (-392)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2)))) (-2875 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-694))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2872 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-3757 (*1 *2 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3144 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3144 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2869 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3144 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-3755 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3)))) (-2868 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2867 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-3190 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3)))) (-2866 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1155 *5)))) (-2865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1155 *5)))) (-2864 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1155 *4)))) (-2863 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1155 *5)))) (-2862 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1155 *5)))) (-2861 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1155 *4)))) (-2860 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3756 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2859 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3756 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2858 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3756 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-3756 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3318 (((-1130) $) 14 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1049) $) 11 T ELT)) (-3946 (((-772) $) 21 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-883) (-13 (-995) (-10 -8 (-15 -3206 ((-1049) $)) (-15 -3318 ((-1130) $))))) (T -883)) -((-3206 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-883)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-883))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 40 T ELT)) (-1312 (((-3 $ "failed") $ $) 54 T ELT)) (-3724 (($) NIL T CONST)) (-2887 (((-583 (-782 (-830) (-830))) $) 64 T ELT)) (-3186 (((-85) $) NIL T ELT)) (-2886 (((-830) $) 91 T ELT)) (-2889 (((-583 (-830)) $) 17 T ELT)) (-2888 (((-1069 $) (-694)) 39 T ELT)) (-2890 (($ (-583 (-830))) 16 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3009 (($ $) 67 T ELT)) (-3946 (((-772) $) 87 T ELT) (((-583 (-830)) $) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) 10 T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 44 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 42 T ELT)) (-3839 (($ $ $) 46 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 49 T ELT)) (-3957 (((-694) $) 22 T ELT))) -(((-884) (-13 (-721) (-552 (-583 (-830))) (-10 -8 (-15 -2890 ($ (-583 (-830)))) (-15 -2889 ((-583 (-830)) $)) (-15 -3957 ((-694) $)) (-15 -2888 ((-1069 $) (-694))) (-15 -2887 ((-583 (-782 (-830) (-830))) $)) (-15 -2886 ((-830) $)) (-15 -3009 ($ $))))) (T -884)) -((-2890 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-884)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1069 (-884))) (-5 *1 (-884)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-830) (-830)))) (-5 *1 (-884)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-884)))) (-3009 (*1 *1 *1) (-5 *1 (-884)))) -((-3949 (($ $ |#2|) 31 T ELT)) (-3837 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-350 (-484)) $) 27 T ELT) (($ $ (-350 (-484))) 29 T ELT))) -(((-885 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-350 (-484)))) (-15 * (|#1| (-350 (-484)) |#1|)) (-15 -3949 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-886 |#2| |#3| |#4|) (-961) (-716) (-756)) (T -885)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 |#3|) $) 95 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2892 (((-85) $) 94 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3937 (((-85) $) 82 T ELT)) (-2893 (($ |#1| |#2|) 81 T ELT) (($ $ |#3| |#2|) 97 T ELT) (($ $ (-583 |#3|) (-583 |#2|)) 96 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3948 ((|#2| $) 84 T ELT)) (-2891 (($ $) 93 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3677 ((|#1| $ |#2|) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-886 |#1| |#2| |#3|) (-113) (-961) (-716) (-756)) (T -886)) -((-3174 (*1 *2 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *3 (-716)) (-4 *4 (-756)) (-4 *2 (-961)))) (-2894 (*1 *1 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *2 (-716)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-886 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-716)) (-4 *2 (-756)))) (-2893 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-886 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-716)) (-4 *6 (-756)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) (-5 *2 (-583 *5)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) (-5 *2 (-85)))) (-2891 (*1 *1 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2893 ($ $ |t#3| |t#2|)) (-15 -2893 ($ $ (-583 |t#3|) (-583 |t#2|))) (-15 -2894 ($ $)) (-15 -3174 (|t#1| $)) (-15 -3948 (|t#2| $)) (-15 -3081 ((-583 |t#3|) $)) (-15 -2892 ((-85) $)) (-15 -2891 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-246) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2895 (((-1001 (-179)) $) 8 T ELT)) (-2896 (((-1001 (-179)) $) 9 T ELT)) (-2897 (((-1001 (-179)) $) 10 T ELT)) (-2898 (((-583 (-583 (-854 (-179)))) $) 11 T ELT)) (-3946 (((-772) $) 6 T ELT))) -(((-887) (-113)) (T -887)) -((-2898 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-583 (-583 (-854 (-179))))))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179)))))) -(-13 (-552 (-772)) (-10 -8 (-15 -2898 ((-583 (-583 (-854 (-179)))) $)) (-15 -2897 ((-1001 (-179)) $)) (-15 -2896 ((-1001 (-179)) $)) (-15 -2895 ((-1001 (-179)) $)))) -(((-552 (-772)) . T)) -((-3081 (((-583 |#4|) $) 23 T ELT)) (-2908 (((-85) $) 55 T ELT)) (-2899 (((-85) $) 54 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2904 (((-85) $) 56 T ELT)) (-2906 (((-85) $ $) 62 T ELT)) (-2905 (((-85) $ $) 65 T ELT)) (-2907 (((-85) $) 60 T ELT)) (-2900 (((-583 |#5|) (-583 |#5|) $) 98 T ELT)) (-2901 (((-583 |#5|) (-583 |#5|) $) 95 T ELT)) (-2902 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2914 (((-583 |#4|) $) 27 T ELT)) (-2913 (((-85) |#4| $) 34 T ELT)) (-2903 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2910 (($ $ |#4|) 39 T ELT)) (-2912 (($ $ |#4|) 38 T ELT)) (-2911 (($ $ |#4|) 40 T ELT)) (-3056 (((-85) $ $) 46 T ELT))) -(((-888 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2899 ((-85) |#1|)) (-15 -2900 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2901 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2902 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2903 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2904 ((-85) |#1|)) (-15 -2905 ((-85) |#1| |#1|)) (-15 -2906 ((-85) |#1| |#1|)) (-15 -2907 ((-85) |#1|)) (-15 -2908 ((-85) |#1|)) (-15 -2909 ((-2 (|:| |under| |#1|) (|:| -3130 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2910 (|#1| |#1| |#4|)) (-15 -2911 (|#1| |#1| |#4|)) (-15 -2912 (|#1| |#1| |#4|)) (-15 -2913 ((-85) |#4| |#1|)) (-15 -2914 ((-583 |#4|) |#1|)) (-15 -3081 ((-583 |#4|) |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-889 |#2| |#3| |#4| |#5|) (-961) (-717) (-756) (-977 |#2| |#3| |#4|)) (T -888)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3081 (((-583 |#3|) $) 38 T ELT)) (-2908 (((-85) $) 31 T ELT)) (-2899 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3710 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 54 T CONST)) (-2904 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3156 (($ (-583 |#4|)) 40 T ELT)) (-1353 (($ $) 70 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#4| $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3995)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3995)) ELT)) (-2889 (((-583 |#4|) $) 57 (|has| $ (-6 -3995)) ELT)) (-3180 ((|#3| $) 39 T ELT)) (-2608 (((-583 |#4|) $) 47 T ELT)) (-3245 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-3326 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2914 (((-583 |#3|) $) 37 T ELT)) (-2913 (((-85) |#3| $) 36 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3768 (($ $ (-583 |#4|) (-583 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) 50 T ELT)) (-3403 (((-85) $) 53 T ELT)) (-3565 (($) 52 T ELT)) (-1946 (((-694) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3400 (($ $) 51 T ELT)) (-3972 (((-473) $) 71 (|has| |#4| (-553 (-473))) ELT)) (-3530 (($ (-583 |#4|)) 62 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-2912 (($ $ |#3|) 35 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3946 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3957 (((-694) $) 43 T ELT))) -(((-889 |#1| |#2| |#3| |#4|) (-113) (-961) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -889)) -((-3157 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) (-3156 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-977 *3 *4 *2)) (-4 *2 (-756)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2913 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))) (-2912 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-977 *3 *4 *2)))) (-2911 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-977 *3 *4 *2)))) (-2910 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-977 *3 *4 *2)))) (-2909 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3130 *1) (|:| |upper| *1))) (-4 *1 (-889 *4 *5 *3 *6)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2906 (*1 *2 *1 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2905 (*1 *2 *1 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2903 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2902 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2901 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))) (-2900 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) -(-13 (-1013) (-124 |t#4|) (-318 |t#4|) (-552 (-583 |t#4|)) (-10 -8 (-15 -3157 ((-3 $ "failed") (-583 |t#4|))) (-15 -3156 ($ (-583 |t#4|))) (-15 -3180 (|t#3| $)) (-15 -3081 ((-583 |t#3|) $)) (-15 -2914 ((-583 |t#3|) $)) (-15 -2913 ((-85) |t#3| $)) (-15 -2912 ($ $ |t#3|)) (-15 -2911 ($ $ |t#3|)) (-15 -2910 ($ $ |t#3|)) (-15 -2909 ((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |t#3|)) (-15 -2908 ((-85) $)) (IF (|has| |t#1| (-495)) (PROGN (-15 -2907 ((-85) $)) (-15 -2906 ((-85) $ $)) (-15 -2905 ((-85) $ $)) (-15 -2904 ((-85) $)) (-15 -2903 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2902 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2901 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2900 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2899 ((-85) $))) |%noBranch|))) -(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-2916 (((-583 |#4|) |#4| |#4|) 135 T ELT)) (-2939 (((-583 |#4|) (-583 |#4|) (-85)) 123 (|has| |#1| (-392)) ELT) (((-583 |#4|) (-583 |#4|)) 124 (|has| |#1| (-392)) ELT)) (-2926 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 44 T ELT)) (-2925 (((-85) |#4|) 43 T ELT)) (-2938 (((-583 |#4|) |#4|) 120 (|has| |#1| (-392)) ELT)) (-2921 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-85) |#4|) (-583 |#4|)) 24 T ELT)) (-2922 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|)) 30 T ELT)) (-2923 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|)) 31 T ELT)) (-2934 (((-3 (-2 (|:| |bas| (-416 |#1| |#2| |#3| |#4|)) (|:| -3323 (-583 |#4|))) "failed") (-583 |#4|)) 90 T ELT)) (-2936 (((-583 |#4|) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2937 (((-583 |#4|) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2915 (((-583 |#4|) (-583 |#4|)) 126 T ELT)) (-2931 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-85)) 59 T ELT) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 61 T ELT)) (-2932 ((|#4| |#4| (-583 |#4|)) 60 T ELT)) (-2940 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 131 (|has| |#1| (-392)) ELT)) (-2942 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 134 (|has| |#1| (-392)) ELT)) (-2941 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 133 (|has| |#1| (-392)) ELT)) (-2917 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|))) 105 T ELT) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 107 T ELT) (((-583 |#4|) (-583 |#4|) |#4|) 139 T ELT) (((-583 |#4|) |#4| |#4|) 136 T ELT) (((-583 |#4|) (-583 |#4|)) 106 T ELT)) (-2945 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2924 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 52 T ELT)) (-2920 (((-85) (-583 |#4|)) 79 T ELT)) (-2919 (((-85) (-583 |#4|) (-583 (-583 |#4|))) 67 T ELT)) (-2928 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 37 T ELT)) (-2927 (((-85) |#4|) 36 T ELT)) (-2944 (((-583 |#4|) (-583 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2943 (((-583 |#4|) (-583 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2933 (((-583 |#4|) (-583 |#4|)) 83 T ELT)) (-2935 (((-583 |#4|) (-583 |#4|)) 97 T ELT)) (-2918 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-2930 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 50 T ELT)) (-2929 (((-85) |#4|) 45 T ELT))) -(((-890 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2917 ((-583 |#4|) (-583 |#4|))) (-15 -2917 ((-583 |#4|) |#4| |#4|)) (-15 -2915 ((-583 |#4|) (-583 |#4|))) (-15 -2916 ((-583 |#4|) |#4| |#4|)) (-15 -2917 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -2917 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2917 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -2918 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -2919 ((-85) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2920 ((-85) (-583 |#4|))) (-15 -2921 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-85) |#4|) (-583 |#4|))) (-15 -2922 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|))) (-15 -2923 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|))) (-15 -2924 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2925 ((-85) |#4|)) (-15 -2926 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2927 ((-85) |#4|)) (-15 -2928 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2929 ((-85) |#4|)) (-15 -2930 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2931 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2931 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-85))) (-15 -2932 (|#4| |#4| (-583 |#4|))) (-15 -2933 ((-583 |#4|) (-583 |#4|))) (-15 -2934 ((-3 (-2 (|:| |bas| (-416 |#1| |#2| |#3| |#4|)) (|:| -3323 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -2935 ((-583 |#4|) (-583 |#4|))) (-15 -2936 ((-583 |#4|) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2937 ((-583 |#4|) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-392)) (PROGN (-15 -2938 ((-583 |#4|) |#4|)) (-15 -2939 ((-583 |#4|) (-583 |#4|))) (-15 -2939 ((-583 |#4|) (-583 |#4|) (-85))) (-15 -2940 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2941 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2942 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (PROGN (-15 -2943 ((-583 |#4|) (-583 |#4|))) (-15 -2944 ((-583 |#4|) (-583 |#4|))) (-15 -2945 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|)) (-495) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -890)) -((-2945 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2944 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2943 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2942 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2941 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2940 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2939 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2939 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2938 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2937 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-890 *5 *6 *7 *8)))) (-2936 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *1 (-890 *6 *7 *8 *9)))) (-2935 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2934 (*1 *2 *3) (|partial| -12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-416 *4 *5 *6 *7)) (|:| -3323 (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2933 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2932 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *2)))) (-2931 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2931 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2926 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2924 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2921 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *5 *6 *7 *8)))) (-2918 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2917 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2917 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2917 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *3)))) (-2916 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2915 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2917 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) -((-2946 (((-2 (|:| R (-630 |#1|)) (|:| A (-630 |#1|)) (|:| |Ainv| (-630 |#1|))) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2948 (((-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1179 |#1|)))) (-630 |#1|) (-1179 |#1|)) 45 T ELT)) (-2947 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT))) -(((-891 |#1|) (-10 -7 (-15 -2946 ((-2 (|:| R (-630 |#1|)) (|:| A (-630 |#1|)) (|:| |Ainv| (-630 |#1|))) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2947 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2948 ((-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1179 |#1|)))) (-630 |#1|) (-1179 |#1|)))) (-312)) (T -891)) -((-2948 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1179 *5))))) (-5 *1 (-891 *5)) (-5 *3 (-630 *5)) (-5 *4 (-1179 *5)))) (-2947 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-630 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-891 *5)))) (-2946 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) (-5 *2 (-2 (|:| R (-630 *6)) (|:| A (-630 *6)) (|:| |Ainv| (-630 *6)))) (-5 *1 (-891 *6)) (-5 *3 (-630 *6))))) -((-3971 (((-348 |#4|) |#4|) 61 T ELT))) -(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3971 ((-348 |#4|) |#4|))) (-756) (-717) (-392) (-861 |#3| |#2| |#1|)) (T -892)) -((-3971 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-392)) (-5 *2 (-348 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))) -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3838 (($ (-694)) 123 (|has| |#1| (-23)) ELT)) (-2198 (((-1185) $ (-484) (-484)) 44 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-756)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3996)) ELT) (($ $) 98 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3996))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-756)) ELT)) (-3788 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2297 (($ $) 100 (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) 110 T ELT)) (-1353 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-3419 (((-484) (-1 (-85) |#1|) $) 107 T ELT) (((-484) |#1| $) 106 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 105 (|has| |#1| (-1013)) ELT)) (-3706 (($ (-583 |#1|)) 129 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3835 (((-630 |#1|) $ $) 116 (|has| |#1| (-961)) ELT)) (-3614 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 93 (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3832 ((|#1| $) 113 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3833 ((|#1| $) 114 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-583 |#1|)) 127 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1146 (-484))) 75 T ELT)) (-3836 ((|#1| $ $) 117 (|has| |#1| (-961)) ELT)) (-3911 (((-830) $) 128 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1146 (-484))) 67 T ELT)) (-3834 (($ $ $) 115 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 T ELT) (((-694) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-484)) 101 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT) (($ (-583 |#1|)) 130 T ELT)) (-3530 (($ (-583 |#1|)) 76 T ELT)) (-3802 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2566 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 97 (|has| |#1| (-756)) ELT)) (-3837 (($ $) 122 (|has| |#1| (-21)) ELT) (($ $ $) 121 (|has| |#1| (-21)) ELT)) (-3839 (($ $ $) 124 (|has| |#1| (-25)) ELT)) (* (($ (-484) $) 120 (|has| |#1| (-21)) ELT) (($ |#1| $) 119 (|has| |#1| (-663)) ELT) (($ $ |#1|) 118 (|has| |#1| (-663)) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-893 |#1|) (-113) (-961)) (T -893)) -((-3706 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-893 *3)))) (-3911 (*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-961)) (-5 *2 (-830)))) (-3834 (*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-961)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-893 *3)) (-4 *3 (-961))))) -(-13 (-1178 |t#1|) (-557 (-583 |t#1|)) (-10 -8 (-15 -3706 ($ (-583 |t#1|))) (-15 -3911 ((-830) $)) (-15 -3834 ($ $ $)) (-15 -3769 ($ $ (-583 |t#1|))))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-557 (-583 |#1|)) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1035 |#1|) . T) ((-1129) . T) ((-1178 |#1|) . T)) -((-3958 (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)) 17 T ELT))) -(((-894 |#1| |#2|) (-10 -7 (-15 -3958 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)))) (-961) (-961)) (T -894)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-854 *6)) (-5 *1 (-894 *5 *6))))) -((-2951 ((|#1| (-854 |#1|)) 14 T ELT)) (-2950 ((|#1| (-854 |#1|)) 13 T ELT)) (-2949 ((|#1| (-854 |#1|)) 12 T ELT)) (-2953 ((|#1| (-854 |#1|)) 16 T ELT)) (-2957 ((|#1| (-854 |#1|)) 24 T ELT)) (-2952 ((|#1| (-854 |#1|)) 15 T ELT)) (-2954 ((|#1| (-854 |#1|)) 17 T ELT)) (-2956 ((|#1| (-854 |#1|)) 23 T ELT)) (-2955 ((|#1| (-854 |#1|)) 22 T ELT))) -(((-895 |#1|) (-10 -7 (-15 -2949 (|#1| (-854 |#1|))) (-15 -2950 (|#1| (-854 |#1|))) (-15 -2951 (|#1| (-854 |#1|))) (-15 -2952 (|#1| (-854 |#1|))) (-15 -2953 (|#1| (-854 |#1|))) (-15 -2954 (|#1| (-854 |#1|))) (-15 -2955 (|#1| (-854 |#1|))) (-15 -2956 (|#1| (-854 |#1|))) (-15 -2957 (|#1| (-854 |#1|)))) (-961)) (T -895)) -((-2957 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) -((-2975 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2977 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2958 (((-3 |#1| "failed") |#1| (-694)) 1 T ELT)) (-2960 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2959 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2978 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2976 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2983 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2984 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 11 T ELT))) -(((-896 |#1|) (-113) (-1115)) (T -896)) -((-2984 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2983 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2960 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2959 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2958 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(-13 (-10 -7 (-15 -2958 ((-3 |t#1| "failed") |t#1| (-694))) (-15 -2959 ((-3 |t#1| "failed") |t#1|)) (-15 -2960 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|)) (-15 -2983 ((-3 |t#1| "failed") |t#1|)) (-15 -2984 ((-3 |t#1| "failed") |t#1|)))) -((-2986 ((|#4| |#4| (-583 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2985 ((|#4| |#4| (-583 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3958 ((|#4| (-1 |#4| (-857 |#1|)) |#4|) 33 T ELT))) -(((-897 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2985 (|#4| |#4| |#3|)) (-15 -2985 (|#4| |#4| (-583 |#3|))) (-15 -2986 (|#4| |#4| |#3|)) (-15 -2986 (|#4| |#4| (-583 |#3|))) (-15 -3958 (|#4| (-1 |#4| (-857 |#1|)) |#4|))) (-961) (-717) (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090))))) (-861 (-857 |#1|) |#2| |#3|)) (T -897)) -((-3958 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-857 *4))) (-4 *4 (-961)) (-4 *2 (-861 (-857 *4) *5 *6)) (-4 *5 (-717)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ #1="failed") (-1090)))))) (-5 *1 (-897 *4 *5 *6 *2)))) (-2986 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ #1#) (-1090)))))) (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) (-4 *2 (-861 (-857 *4) *5 *6)))) (-2986 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ #1#) (-1090)))))) (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3)))) (-2985 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ #1#) (-1090)))))) (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) (-4 *2 (-861 (-857 *4) *5 *6)))) (-2985 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ #1#) (-1090)))))) (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3))))) -((-2987 ((|#2| |#3|) 35 T ELT)) (-3919 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|) 79 T ELT)) (-3918 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) 100 T ELT))) -(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3918 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))))) (-15 -3919 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|)) (-15 -2987 (|#2| |#3|))) (-299) (-1155 |#1|) (-1155 |#2|) (-661 |#2| |#3|)) (T -898)) -((-2987 (*1 *2 *3) (-12 (-4 *3 (-1155 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-898 *4 *2 *3 *5)) (-4 *4 (-299)) (-4 *5 (-661 *2 *3)))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-898 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5)))) (-3918 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3401 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3649 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2991 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2992 (($ (-583 |#4|) |#4|) 25 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2988 (($ $) 69 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3403 (((-85) $) 70 T ELT)) (-3565 (($) 30 T ELT)) (-2989 ((|#4| $) 74 T ELT)) (-2990 (((-583 |#4|) $) 73 T ELT)) (-3946 (((-772) $) 68 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-899 |#1| |#2| |#3| |#4|) (-13 (-1013) (-552 (-772)) (-10 -8 (-15 -3565 ($)) (-15 -2992 ($ (-583 |#4|) |#4|)) (-15 -3401 ((-3 (-85) #1="failed") $)) (-15 -2991 ($ $ (-3 (-85) #1#))) (-15 -3403 ((-85) $)) (-15 -2990 ((-583 |#4|) $)) (-15 -2989 (|#4| $)) (-15 -2988 ($ $)) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (-15 -3649 ($ $)) |%noBranch|) |%noBranch|))) (-392) (-756) (-717) (-861 |#1| |#3| |#2|)) (T -899)) -((-3565 (*1 *1) (-12 (-4 *2 (-392)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))) (-2992 (*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-861 *4 *6 *5)) (-4 *4 (-392)) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *1 (-899 *4 *5 *6 *3)))) (-3401 (*1 *2 *1) (|partial| -12 (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2991 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-3403 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2990 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-583 *6)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2989 (*1 *2 *1) (-12 (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-899 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)))) (-2988 (*1 *1 *1) (-12 (-4 *2 (-392)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))) (-3649 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-392)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3))))) -((-2993 (((-899 (-350 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-350 (-484)))) (-899 (-350 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-350 (-484))))) 82 T ELT))) -(((-900 |#1| |#2|) (-10 -7 (-15 -2993 ((-899 (-350 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-350 (-484)))) (-899 (-350 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-350 (-484))))))) (-583 (-1090)) (-694)) (T -900)) -((-2993 (*1 *2 *2) (-12 (-5 *2 (-899 (-350 (-484)) (-773 *3) (-197 *4 (-694)) (-206 *3 (-350 (-484))))) (-14 *3 (-583 (-1090))) (-14 *4 (-694)) (-5 *1 (-900 *3 *4))))) -((-3269 (((-85) |#5| |#5|) 44 T ELT)) (-3272 (((-85) |#5| |#5|) 59 T ELT)) (-3277 (((-85) |#5| (-583 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3273 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-3279 (((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) 70 T ELT)) (-3268 (((-1185)) 32 T ELT)) (-3267 (((-1185) (-1073) (-1073) (-1073)) 28 T ELT)) (-3278 (((-583 |#5|) (-583 |#5|)) 100 T ELT)) (-3280 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)))) 92 T ELT)) (-3281 (((-583 (-2 (|:| -3266 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85)) 122 T ELT)) (-3271 (((-85) |#5| |#5|) 53 T ELT)) (-3276 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3274 (((-85) (-583 |#4|) (-583 |#4|)) 64 T ELT)) (-3275 (((-85) (-583 |#4|) (-583 |#4|)) 66 T ELT)) (-3699 (((-85) (-583 |#4|) (-583 |#4|)) 67 T ELT)) (-3282 (((-3 (-2 (|:| -3266 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3270 (((-583 |#5|) (-583 |#5|)) 49 T ELT))) -(((-901 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3267 ((-1185) (-1073) (-1073) (-1073))) (-15 -3268 ((-1185))) (-15 -3269 ((-85) |#5| |#5|)) (-15 -3270 ((-583 |#5|) (-583 |#5|))) (-15 -3271 ((-85) |#5| |#5|)) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3274 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3275 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3699 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3276 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3277 ((-85) |#5| |#5|)) (-15 -3277 ((-85) |#5| (-583 |#5|))) (-15 -3278 ((-583 |#5|) (-583 |#5|))) (-15 -3279 ((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)))) (-15 -3280 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) (-15 -3281 ((-583 (-2 (|:| -3266 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3282 ((-3 (-2 (|:| -3266 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -901)) -((-3282 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| -3266 (-583 *9)) (|:| -1600 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-901 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-3281 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3266 (-583 *9)) (|:| -1600 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-901 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1600 *7)))) (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)))) (-3278 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-901 *5 *6 *7 *8 *3)))) (-3277 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3699 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3268 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-901 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3267 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -((-3831 (((-1090) $) 15 T ELT)) (-3402 (((-1073) $) 16 T ELT)) (-3226 (($ (-1090) (-1073)) 14 T ELT)) (-3946 (((-772) $) 13 T ELT))) -(((-902) (-13 (-552 (-772)) (-10 -8 (-15 -3226 ($ (-1090) (-1073))) (-15 -3831 ((-1090) $)) (-15 -3402 ((-1073) $))))) (T -902)) -((-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1073)) (-5 *1 (-902)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-902)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-902))))) -((-3157 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1090) #1#) $) 72 T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) 102 T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-1090) $) 67 T ELT) (((-350 (-484)) $) NIL T ELT) (((-484) $) 99 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) 121 T ELT) (((-630 |#2|) (-630 $)) 35 T ELT)) (-2994 (($) 105 T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 82 T ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 91 T ELT)) (-2996 (($ $) 10 T ELT)) (-3445 (((-632 $) $) 27 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3446 (($) 16 T CONST)) (-3128 (($ $) 61 T ELT)) (-3758 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2995 (($ $) 12 T ELT)) (-3972 (((-800 (-484)) $) 77 T ELT) (((-800 (-330)) $) 86 T ELT) (((-473) $) 47 T ELT) (((-330) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1090)) 64 T ELT)) (-3126 (((-694)) 38 T CONST)) (-2685 (((-85) $ $) 57 T ELT))) -(((-903 |#1| |#2|) (-10 -7 (-15 -2685 ((-85) |#1| |#1|)) (-15 -3758 (|#1| |#1| (-694))) (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3758 (|#1| |#1| (-1090) (-694))) (-15 -3758 (|#1| |#1| (-583 (-1090)))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3446 (|#1|) -3952) (-15 -3445 ((-632 |#1|) |#1|)) (-15 -3157 ((-3 (-484) #1="failed") |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3156 ((-350 (-484)) |#1|)) (-15 -3972 ((-179) |#1|)) (-15 -3972 ((-330) |#1|)) (-15 -3972 ((-473) |#1|)) (-15 -3946 (|#1| (-1090))) (-15 -3157 ((-3 (-1090) #1#) |#1|)) (-15 -3156 ((-1090) |#1|)) (-15 -2994 (|#1|)) (-15 -3128 (|#1| |#1|)) (-15 -2995 (|#1| |#1|)) (-15 -2996 (|#1| |#1|)) (-15 -2796 ((-798 (-330) |#1|) |#1| (-800 (-330)) (-798 (-330) |#1|))) (-15 -2796 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -3972 ((-800 (-330)) |#1|)) (-15 -3972 ((-800 (-484)) |#1|)) (-15 -2279 ((-630 |#2|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3958 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3946 (|#1| |#2|)) (-15 -3946 (|#1| (-350 (-484)))) (-15 -3946 (|#1| |#1|)) (-15 -3126 ((-694)) -3952) (-15 -3946 (|#1| (-484))) (-15 -3946 ((-772) |#1|))) (-904 |#2|) (-495)) (T -903)) -((-3126 (*1 *2) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3129 ((|#1| $) 173 (|has| |#1| (-258)) ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 164 (|has| |#1| (-821)) ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-2704 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 167 (|has| |#1| (-821)) ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3623 (((-484) $) 154 (|has| |#1| (-740)) ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 |#1| #2="failed") $) 203 T ELT) (((-3 (-1090) #2#) $) 162 (|has| |#1| (-950 (-1090))) ELT) (((-3 (-350 (-484)) #2#) $) 145 (|has| |#1| (-950 (-484))) ELT) (((-3 (-484) #2#) $) 143 (|has| |#1| (-950 (-484))) ELT)) (-3156 ((|#1| $) 204 T ELT) (((-1090) $) 163 (|has| |#1| (-950 (-1090))) ELT) (((-350 (-484)) $) 146 (|has| |#1| (-950 (-484))) ELT) (((-484) $) 144 (|has| |#1| (-950 (-484))) ELT)) (-2564 (($ $ $) 71 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 188 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 187 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 186 T ELT) (((-630 |#1|) (-630 $)) 185 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2994 (($) 171 (|has| |#1| (-483)) ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-3186 (((-85) $) 156 (|has| |#1| (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 180 (|has| |#1| (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 179 (|has| |#1| (-796 (-330))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2996 (($ $) 175 T ELT)) (-2998 ((|#1| $) 177 T ELT)) (-3445 (((-632 $) $) 142 (|has| |#1| (-1066)) ELT)) (-3187 (((-85) $) 155 (|has| |#1| (-740)) ELT)) (-1605 (((-3 (-583 $) #3="failed") (-583 $) $) 68 T ELT)) (-2531 (($ $ $) 147 (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) 148 (|has| |#1| (-756)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 195 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 190 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 189 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 184 T ELT) (((-630 |#1|) (-1179 $)) 183 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3446 (($) 141 (|has| |#1| (-1066)) CONST)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3128 (($ $) 172 (|has| |#1| (-258)) ELT)) (-3130 ((|#1| $) 169 (|has| |#1| (-483)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) 166 (|has| |#1| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 165 (|has| |#1| (-821)) ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-3768 (($ $ (-583 |#1|) (-583 |#1|)) 201 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 200 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 199 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 198 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) 197 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) 196 (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-1607 (((-694) $) 74 T ELT)) (-3800 (($ $ |#1|) 202 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-3758 (($ $ (-1 |#1| |#1|)) 194 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 193 T ELT) (($ $) 140 (|has| |#1| (-189)) ELT) (($ $ (-694)) 138 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 136 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 134 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 133 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 132 (|has| |#1| (-811 (-1090))) ELT)) (-2995 (($ $) 174 T ELT)) (-2997 ((|#1| $) 176 T ELT)) (-3972 (((-800 (-484)) $) 182 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) 181 (|has| |#1| (-553 (-800 (-330)))) ELT) (((-473) $) 159 (|has| |#1| (-553 (-473))) ELT) (((-330) $) 158 (|has| |#1| (-933)) ELT) (((-179) $) 157 (|has| |#1| (-933)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) 168 (-2562 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT) (($ |#1|) 207 T ELT) (($ (-1090)) 161 (|has| |#1| (-950 (-1090))) ELT)) (-2702 (((-632 $) $) 160 (OR (|has| |#1| (-118)) (-2562 (|has| $ (-118)) (|has| |#1| (-821)))) ELT)) (-3126 (((-694)) 40 T CONST)) (-3131 ((|#1| $) 170 (|has| |#1| (-483)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3383 (($ $) 153 (|has| |#1| (-740)) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 191 T ELT) (($ $) 139 (|has| |#1| (-189)) ELT) (($ $ (-694)) 137 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 135 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 131 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 130 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 129 (|has| |#1| (-811 (-1090))) ELT)) (-2566 (((-85) $ $) 149 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 151 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 150 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 152 (|has| |#1| (-756)) ELT)) (-3949 (($ $ $) 83 T ELT) (($ |#1| |#1|) 178 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT) (($ |#1| $) 206 T ELT) (($ $ |#1|) 205 T ELT))) -(((-904 |#1|) (-113) (-495)) (T -904)) -((-3949 (*1 *1 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2998 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2997 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2995 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258)))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258)))) (-2994 (*1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-483)) (-4 *2 (-495)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483))))) -(-13 (-312) (-38 |t#1|) (-950 |t#1|) (-288 |t#1|) (-184 |t#1|) (-329 |t#1|) (-794 |t#1|) (-343 |t#1|) (-10 -8 (-15 -3949 ($ |t#1| |t#1|)) (-15 -2998 (|t#1| $)) (-15 -2997 (|t#1| $)) (-15 -2996 ($ $)) (-15 -2995 ($ $)) (IF (|has| |t#1| (-1066)) (-6 (-1066)) |%noBranch|) (IF (|has| |t#1| (-950 (-484))) (PROGN (-6 (-950 (-484))) (-6 (-950 (-350 (-484))))) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-740)) (-6 (-740)) |%noBranch|) (IF (|has| |t#1| (-933)) (-6 (-933)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-950 (-1090))) (-6 (-950 (-1090))) |%noBranch|) (IF (|has| |t#1| (-258)) (PROGN (-15 -3129 (|t#1| $)) (-15 -3128 ($ $))) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -2994 ($)) (-15 -3131 (|t#1| $)) (-15 -3130 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) OR (|has| |#1| (-740)) (|has| |#1| (-120))) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 (-1090)) |has| |#1| (-950 (-1090))) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) |has| |#1| (-933)) ((-553 (-330)) |has| |#1| (-933)) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-330))) |has| |#1| (-553 (-800 (-330)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) . T) ((-258) . T) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-392) . T) ((-455 (-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-714) |has| |#1| (-740)) ((-716) |has| |#1| (-740)) ((-718) |has| |#1| (-740)) ((-721) |has| |#1| (-740)) ((-740) |has| |#1| (-740)) ((-755) |has| |#1| (-740)) ((-756) OR (|has| |#1| (-756)) (|has| |#1| (-740))) ((-759) OR (|has| |#1| (-756)) (|has| |#1| (-740))) ((-806 $ (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-809 (-1090)) |has| |#1| (-809 (-1090))) ((-811 (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-796 (-330)) |has| |#1| (-796 (-330))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-821) |has| |#1| (-821)) ((-832) . T) ((-933) |has| |#1| (-933)) ((-950 (-350 (-484))) |has| |#1| (-950 (-484))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-1090)) |has| |#1| (-950 (-1090))) ((-950 |#1|) . T) ((-963 (-350 (-484))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) |has| |#1| (-1066)) ((-1129) . T) ((-1134) . T)) -((-3958 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) -(((-905 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#4| (-1 |#2| |#1|) |#3|))) (-495) (-495) (-904 |#1|) (-904 |#2|)) (T -905)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-4 *2 (-904 *6)) (-5 *1 (-905 *5 *6 *4 *2)) (-4 *4 (-904 *5))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2999 (($ (-1056 |#1| |#2|)) 11 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-3123 (((-1056 |#1| |#2|) $) 12 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT))) -(((-906 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -2999 ($ (-1056 |#1| |#2|))) (-15 -3123 ((-1056 |#1| |#2|) $)))) (-830) (-312)) (T -906)) -((-2999 (*1 *1 *2) (-12 (-5 *2 (-1056 *3 *4)) (-14 *3 (-830)) (-4 *4 (-312)) (-5 *1 (-906 *3 *4)))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-1056 *3 *4)) (-5 *1 (-906 *3 *4)) (-14 *3 (-830)) (-4 *4 (-312))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1049) $) 10 T ELT)) (-3946 (((-772) $) 16 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-907) (-13 (-995) (-10 -8 (-15 -3206 ((-1049) $))))) (T -907)) -((-3206 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-907))))) -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3724 (($) 7 T CONST)) (-3002 (($ $) 51 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3833 (((-694) $) 50 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3001 ((|#1| $) 49 T ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3004 ((|#1| |#1| $) 53 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3003 ((|#1| $) 52 T ELT)) (-1946 (((-694) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 46 T ELT)) (-3000 ((|#1| $) 48 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-908 |#1|) (-113) (-1129)) (T -908)) -((-3004 (*1 *2 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129)))) (-3002 (*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129))))) -(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3004 (|t#1| |t#1| $)) (-15 -3003 (|t#1| $)) (-15 -3002 ($ $)) (-15 -3833 ((-694) $)) (-15 -3001 (|t#1| $)) (-15 -3000 (|t#1| $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3643 ((|#1| $) 12 T ELT)) (-3024 (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3022 (((-350 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-3005 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3132 ((|#1| $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3006 ((|#1| $) 15 T ELT)) (-3007 ((|#1| $) 14 T ELT)) (-3008 ((|#1| $) 13 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3768 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-3800 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3758 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3972 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3383 ((|#1| $) NIL (|has| |#1| (-973)) ELT)) (-2660 (($) 8 T CONST)) (-2666 (($) 10 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-312)) ELT))) -(((-909 |#1|) (-911 |#1|) (-146)) (T -909)) -NIL -((-3188 (((-85) $) 43 T ELT)) (-3157 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3156 (((-484) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3024 (((-3 (-350 (-484)) #1#) $) 78 T ELT)) (-3023 (((-85) $) 72 T ELT)) (-3022 (((-350 (-484)) $) 76 T ELT)) (-2410 (((-85) $) 42 T ELT)) (-3132 ((|#2| $) 22 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2484 (($ $) 58 T ELT)) (-3758 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3972 (((-473) $) 67 T ELT)) (-3009 (($ $) 17 T ELT)) (-3946 (((-772) $) 53 T ELT) (($ (-484)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-350 (-484))) NIL T ELT)) (-3126 (((-694)) 10 T CONST)) (-3383 ((|#2| $) 71 T ELT)) (-3056 (((-85) $ $) 26 T ELT)) (-2685 (((-85) $ $) 69 T ELT)) (-3837 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3839 (($ $ $) 27 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT))) -(((-910 |#1| |#2|) (-10 -7 (-15 -3946 (|#1| (-350 (-484)))) (-15 -3758 (|#1| |#1| (-694))) (-15 -3758 (|#1| |#1|)) (-15 -3758 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3758 (|#1| |#1| (-1090) (-694))) (-15 -3758 (|#1| |#1| (-583 (-1090)))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -2685 ((-85) |#1| |#1|)) (-15 * (|#1| (-350 (-484)) |#1|)) (-15 * (|#1| |#1| (-350 (-484)))) (-15 -2484 (|#1| |#1|)) (-15 -3972 ((-473) |#1|)) (-15 -3024 ((-3 (-350 (-484)) #1="failed") |#1|)) (-15 -3022 ((-350 (-484)) |#1|)) (-15 -3023 ((-85) |#1|)) (-15 -3383 (|#2| |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -3958 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3156 ((-350 (-484)) |#1|)) (-15 -3157 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3126 ((-694)) -3952) (-15 -3946 (|#1| (-484))) (-15 -2410 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3188 ((-85) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3946 ((-772) |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-911 |#2|) (-146)) (T -910)) -((-3126 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-910 *3 *4)) (-4 *3 (-911 *4))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 (-484) #1="failed") $) 143 (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 141 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 138 T ELT)) (-3156 (((-484) $) 142 (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) 140 (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 139 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 123 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 122 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 121 T ELT) (((-630 |#1|) (-630 $)) 120 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3643 ((|#1| $) 111 T ELT)) (-3024 (((-3 (-350 (-484)) "failed") $) 107 (|has| |#1| (-483)) ELT)) (-3023 (((-85) $) 109 (|has| |#1| (-483)) ELT)) (-3022 (((-350 (-484)) $) 108 (|has| |#1| (-483)) ELT)) (-3005 (($ |#1| |#1| |#1| |#1|) 112 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3132 ((|#1| $) 113 T ELT)) (-2531 (($ $ $) 95 (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) 96 (|has| |#1| (-756)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 126 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 125 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 124 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 119 T ELT) (((-630 |#1|) (-1179 $)) 118 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 104 (|has| |#1| (-312)) ELT)) (-3006 ((|#1| $) 114 T ELT)) (-3007 ((|#1| $) 115 T ELT)) (-3008 ((|#1| $) 116 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3768 (($ $ (-583 |#1|) (-583 |#1|)) 132 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 131 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 130 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 129 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) 128 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) 127 (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-3800 (($ $ |#1|) 133 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3758 (($ $ (-1 |#1| |#1|)) 137 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 136 T ELT) (($ $) 94 (|has| |#1| (-189)) ELT) (($ $ (-694)) 92 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 90 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 88 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 87 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 86 (|has| |#1| (-811 (-1090))) ELT)) (-3972 (((-473) $) 105 (|has| |#1| (-553 (-473))) ELT)) (-3009 (($ $) 117 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-484))) 82 (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2702 (((-632 $) $) 106 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3383 ((|#1| $) 110 (|has| |#1| (-973)) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 134 T ELT) (($ $) 93 (|has| |#1| (-189)) ELT) (($ $ (-694)) 91 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 89 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 85 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 84 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 83 (|has| |#1| (-811 (-1090))) ELT)) (-2566 (((-85) $ $) 97 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 99 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 98 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 100 (|has| |#1| (-756)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 103 (|has| |#1| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ $ (-350 (-484))) 102 (|has| |#1| (-312)) ELT) (($ (-350 (-484)) $) 101 (|has| |#1| (-312)) ELT))) -(((-911 |#1|) (-113) (-146)) (T -911)) -((-3009 (*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3005 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484))))) (-3024 (*1 *2 *1) (|partial| -12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484)))))) -(-13 (-38 |t#1|) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-329 |t#1|) (-10 -8 (-15 -3009 ($ $)) (-15 -3008 (|t#1| $)) (-15 -3007 (|t#1| $)) (-15 -3006 (|t#1| $)) (-15 -3132 (|t#1| $)) (-15 -3005 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3643 (|t#1| $)) (IF (|has| |t#1| (-246)) (-6 (-246)) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3383 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3023 ((-85) $)) (-15 -3022 ((-350 (-484)) $)) (-15 -3024 ((-3 (-350 (-484)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-312)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-312)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-312))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-312)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-455 (-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-312)) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-312)) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-312)) ((-582 |#1|) . T) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) |has| |#1| (-312)) ((-654 |#1|) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-806 $ (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-809 (-1090)) |has| |#1| (-809 (-1090))) ((-811 (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-350 (-484))) |has| |#1| (-312)) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-968 (-350 (-484))) |has| |#1| (-312)) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-3958 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) -(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#3| (-1 |#4| |#2|) |#1|))) (-911 |#2|) (-146) (-911 |#4|) (-146)) (T -912)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-911 *6)) (-5 *1 (-912 *4 *5 *2 *6)) (-4 *4 (-911 *5))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3724 (($) NIL T CONST)) (-3002 (($ $) 24 T ELT)) (-3010 (($ (-583 |#1|)) 34 T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3833 (((-694) $) 27 T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 29 T ELT)) (-3609 (($ |#1| $) 18 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3001 ((|#1| $) 28 T ELT)) (-1275 ((|#1| $) 23 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3004 ((|#1| |#1| $) 17 T ELT)) (-3403 (((-85) $) 19 T ELT)) (-3565 (($) NIL T ELT)) (-3003 ((|#1| $) 22 T ELT)) (-1946 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) NIL T ELT)) (-3000 ((|#1| $) 31 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-913 |#1|) (-13 (-908 |#1|) (-10 -8 (-15 -3010 ($ (-583 |#1|))))) (-1013)) (T -913)) -((-3010 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-913 *3))))) -((-3037 (($ $) 12 T ELT)) (-3011 (($ $ (-484)) 13 T ELT))) -(((-914 |#1|) (-10 -7 (-15 -3037 (|#1| |#1|)) (-15 -3011 (|#1| |#1| (-484)))) (-915)) (T -914)) -NIL -((-3037 (($ $) 6 T ELT)) (-3011 (($ $ (-484)) 7 T ELT)) (** (($ $ (-350 (-484))) 8 T ELT))) -(((-915) (-113)) (T -915)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-350 (-484))))) (-3011 (*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-484)))) (-3037 (*1 *1 *1) (-4 *1 (-915)))) -(-13 (-10 -8 (-15 -3037 ($ $)) (-15 -3011 ($ $ (-484))) (-15 ** ($ $ (-350 (-484)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1647 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2063 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2061 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1782 (((-630 (-350 |#2|)) (-1179 $)) NIL T ELT) (((-630 (-350 |#2|))) NIL T ELT)) (-3330 (((-350 |#2|) $) NIL T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3136 (((-694)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1661 (((-85)) NIL T ELT)) (-1660 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| (-350 |#2|) (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-350 |#2|) (-950 (-350 (-484)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| (-350 |#2|) (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| (-350 |#2|) (-950 (-350 (-484)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1792 (($ (-1179 (-350 |#2|)) (-1179 $)) NIL T ELT) (($ (-1179 (-350 |#2|))) 79 T ELT) (($ (-1179 |#2|) |#2|) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2564 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1781 (((-630 (-350 |#2|)) $ (-1179 $)) NIL T ELT) (((-630 (-350 |#2|)) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-350 |#2|)) (-630 $)) NIL T ELT)) (-1652 (((-1179 $) (-1179 $)) NIL T ELT)) (-3842 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1639 (((-583 (-583 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1664 (((-85) |#1| |#1|) NIL T ELT)) (-3108 (((-830)) NIL T ELT)) (-2994 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1659 (((-85)) NIL T ELT)) (-1658 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2563 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3503 (($ $) NIL T ELT)) (-2833 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1680 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1764 (($ $ (-694)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3723 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3772 (((-830) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-743 (-830)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3377 (((-694)) NIL T ELT)) (-1653 (((-1179 $) (-1179 $)) NIL T ELT)) (-3132 (((-350 |#2|) $) NIL T ELT)) (-1640 (((-583 (-857 |#1|)) (-1090)) NIL (|has| |#1| (-312)) ELT)) (-3445 (((-632 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2014 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2010 (((-830) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3079 ((|#3| $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-1179 $) $) NIL T ELT) (((-630 (-350 |#2|)) (-1179 $)) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1648 (((-630 (-350 |#2|))) 57 T ELT)) (-1650 (((-630 (-350 |#2|))) 56 T ELT)) (-2484 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1645 (($ (-1179 |#2|) |#2|) 80 T ELT)) (-1649 (((-630 (-350 |#2|))) 55 T ELT)) (-1651 (((-630 (-350 |#2|))) 54 T ELT)) (-1644 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1646 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1657 (((-1179 $)) 51 T ELT)) (-3918 (((-1179 $)) 50 T ELT)) (-1656 (((-85) $) NIL T ELT)) (-1655 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3446 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2400 (($ (-830)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1642 (((-3 |#2| #1#)) 70 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1666 (((-694)) NIL T ELT)) (-2409 (($) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3732 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-694) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3800 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1643 (((-3 |#2| #1#)) 68 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3757 (((-350 |#2|) (-1179 $)) NIL T ELT) (((-350 |#2|)) 47 T ELT)) (-1765 (((-694) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3758 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-694)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2408 (((-630 (-350 |#2|)) (-1179 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3185 ((|#3|) 58 T ELT)) (-1674 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3224 (((-1179 (-350 |#2|)) $ (-1179 $)) NIL T ELT) (((-630 (-350 |#2|)) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 (-350 |#2|)) $) 81 T ELT) (((-630 (-350 |#2|)) (-1179 $)) NIL T ELT)) (-3972 (((-1179 (-350 |#2|)) $) NIL T ELT) (($ (-1179 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1654 (((-1179 $) (-1179 $)) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2702 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-632 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2449 ((|#3| $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1663 (((-85)) 65 T ELT)) (-1662 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-1641 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1665 (((-85)) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-694)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-484))) NIL (|has| (-350 |#2|) (-312)) ELT))) -(((-916 |#1| |#2| |#3| |#4| |#5|) (-291 |#1| |#2| |#3|) (-1134) (-1155 |#1|) (-1155 (-350 |#2|)) (-350 |#2|) (-694)) (T -916)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3017 (((-583 (-484)) $) 73 T ELT)) (-3013 (($ (-583 (-484))) 81 T ELT)) (-3129 (((-484) $) 48 (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) 60 T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) 57 (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) 60 (|has| (-484) (-950 (-484))) ELT)) (-3156 (((-484) $) NIL T ELT) (((-1090) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2994 (($) NIL (|has| (-484) (-483)) ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3015 (((-583 (-484)) $) 79 T ELT)) (-3186 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| (-484) (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) 45 T ELT)) (-3445 (((-632 $) $) NIL (|has| (-484) (-1066)) ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3958 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL T ELT)) (-3446 (($) NIL (|has| (-484) (-1066)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3128 (($ $) NIL (|has| (-484) (-258)) ELT) (((-350 (-484)) $) 50 T ELT)) (-3016 (((-1069 (-484)) $) 78 T ELT)) (-3012 (($ (-583 (-484)) (-583 (-484))) 82 T ELT)) (-3130 (((-484) $) 64 (|has| (-484) (-483)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3768 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1090)) (-583 (-484))) NIL (|has| (-484) (-455 (-1090) (-484))) ELT) (($ $ (-1090) (-484)) NIL (|has| (-484) (-455 (-1090) (-484))) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3800 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3758 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) 15 (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2995 (($ $) NIL T ELT)) (-2997 (((-484) $) 47 T ELT)) (-3014 (((-583 (-484)) $) 80 T ELT)) (-3972 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| (-484) (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-330) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3946 (((-772) $) 108 T ELT) (($ (-484)) 51 T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) 27 T ELT) (($ (-484)) 51 T ELT) (($ (-1090)) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) 25 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3126 (((-694)) 13 T CONST)) (-3131 (((-484) $) 62 (|has| (-484) (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3383 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2660 (($) 14 T CONST)) (-2666 (($) 17 T CONST)) (-2669 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2566 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3056 (((-85) $ $) 21 T ELT)) (-2684 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2685 (((-85) $ $) 40 (|has| (-484) (-756)) ELT)) (-3949 (($ $ $) 36 T ELT) (($ (-484) (-484)) 38 T ELT)) (-3837 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3839 (($ $ $) 28 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ $ (-484)) NIL T ELT))) -(((-917 |#1|) (-13 (-904 (-484)) (-552 (-350 (-484))) (-10 -8 (-15 -3128 ((-350 (-484)) $)) (-15 -3017 ((-583 (-484)) $)) (-15 -3016 ((-1069 (-484)) $)) (-15 -3015 ((-583 (-484)) $)) (-15 -3014 ((-583 (-484)) $)) (-15 -3013 ($ (-583 (-484)))) (-15 -3012 ($ (-583 (-484)) (-583 (-484)))))) (-484)) (T -917)) -((-3128 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-1069 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3013 (*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3012 (*1 *1 *2 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))) -((-3018 (((-51) (-350 (-484)) (-484)) 9 T ELT))) -(((-918) (-10 -7 (-15 -3018 ((-51) (-350 (-484)) (-484))))) (T -918)) -((-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-484))) (-5 *4 (-484)) (-5 *2 (-51)) (-5 *1 (-918))))) -((-3136 (((-484)) 21 T ELT)) (-3021 (((-484)) 26 T ELT)) (-3020 (((-1185) (-484)) 24 T ELT)) (-3019 (((-484) (-484)) 27 T ELT) (((-484)) 20 T ELT))) -(((-919) (-10 -7 (-15 -3019 ((-484))) (-15 -3136 ((-484))) (-15 -3019 ((-484) (-484))) (-15 -3020 ((-1185) (-484))) (-15 -3021 ((-484))))) (T -919)) -((-3021 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) (-3020 (*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-919)))) (-3019 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) (-3136 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) (-3019 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919))))) -((-3733 (((-348 |#1|) |#1|) 43 T ELT)) (-3732 (((-348 |#1|) |#1|) 41 T ELT))) -(((-920 |#1|) (-10 -7 (-15 -3732 ((-348 |#1|) |#1|)) (-15 -3733 ((-348 |#1|) |#1|))) (-1155 (-350 (-484)))) (T -920)) -((-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1155 (-350 (-484)))))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1155 (-350 (-484))))))) -((-3024 (((-3 (-350 (-484)) "failed") |#1|) 15 T ELT)) (-3023 (((-85) |#1|) 14 T ELT)) (-3022 (((-350 (-484)) |#1|) 10 T ELT))) -(((-921 |#1|) (-10 -7 (-15 -3022 ((-350 (-484)) |#1|)) (-15 -3023 ((-85) |#1|)) (-15 -3024 ((-3 (-350 (-484)) "failed") |#1|))) (-950 (-350 (-484)))) (T -921)) -((-3024 (*1 *2 *3) (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2)))) (-3023 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-921 *3)) (-4 *3 (-950 (-350 (-484)))))) (-3022 (*1 *2 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2))))) -((-3788 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3800 ((|#2| $ #1#) 10 T ELT)) (-3028 (((-85) $ $) 18 T ELT))) -(((-922 |#1| |#2|) (-10 -7 (-15 -3788 (|#2| |#1| #1="value" |#2|)) (-15 -3028 ((-85) |#1| |#1|)) (-15 -3800 (|#2| |#1| #1#))) (-923 |#2|) (-1129)) (T -922)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3996)) ELT)) (-3724 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ "value") 51 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-923 |#1|) (-113) (-1129)) (T -923)) -((-3522 (*1 *2 *1) (-12 (-4 *3 (-1129)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))) (-3031 (*1 *2 *1) (-12 (-4 *3 (-1129)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))) (-3527 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1129)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-923 *2)) (-4 *2 (-1129)))) (-3633 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-3030 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-583 *3)))) (-3029 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-484)))) (-3028 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3027 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3026 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -3996)) (-4 *1 (-923 *3)) (-4 *3 (-1129)))) (-3788 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -3996)) (-4 *1 (-923 *2)) (-4 *2 (-1129)))) (-3025 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-923 *2)) (-4 *2 (-1129))))) -(-13 (-429 |t#1|) (-10 -8 (-15 -3522 ((-583 $) $)) (-15 -3031 ((-583 $) $)) (-15 -3527 ((-85) $)) (-15 -3402 (|t#1| $)) (-15 -3800 (|t#1| $ "value")) (-15 -3633 ((-85) $)) (-15 -3030 ((-583 |t#1|) $)) (-15 -3029 ((-484) $ $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3028 ((-85) $ $)) (-15 -3027 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-6 -3996)) (PROGN (-15 -3026 ($ $ (-583 $))) (-15 -3788 (|t#1| $ "value" |t#1|)) (-15 -3025 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T)) -((-3037 (($ $) 9 T ELT) (($ $ (-830)) 49 T ELT) (($ (-350 (-484))) 13 T ELT) (($ (-484)) 15 T ELT)) (-3183 (((-3 $ #1="failed") (-1085 $) (-830) (-772)) 24 T ELT) (((-3 $ #1#) (-1085 $) (-830)) 32 T ELT)) (-3011 (($ $ (-484)) 58 T ELT)) (-3126 (((-694)) 18 T CONST)) (-3184 (((-583 $) (-1085 $)) NIL T ELT) (((-583 $) (-1085 (-350 (-484)))) 63 T ELT) (((-583 $) (-1085 (-484))) 68 T ELT) (((-583 $) (-857 $)) 72 T ELT) (((-583 $) (-857 (-350 (-484)))) 76 T ELT) (((-583 $) (-857 (-484))) 80 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-350 (-484))) 53 T ELT))) -(((-924 |#1|) (-10 -7 (-15 -3037 (|#1| (-484))) (-15 -3037 (|#1| (-350 (-484)))) (-15 -3037 (|#1| |#1| (-830))) (-15 -3184 ((-583 |#1|) (-857 (-484)))) (-15 -3184 ((-583 |#1|) (-857 (-350 (-484))))) (-15 -3184 ((-583 |#1|) (-857 |#1|))) (-15 -3184 ((-583 |#1|) (-1085 (-484)))) (-15 -3184 ((-583 |#1|) (-1085 (-350 (-484))))) (-15 -3184 ((-583 |#1|) (-1085 |#1|))) (-15 -3183 ((-3 |#1| #1="failed") (-1085 |#1|) (-830))) (-15 -3183 ((-3 |#1| #1#) (-1085 |#1|) (-830) (-772))) (-15 ** (|#1| |#1| (-350 (-484)))) (-15 -3011 (|#1| |#1| (-484))) (-15 -3037 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3126 ((-694)) -3952) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830)))) (-925)) (T -924)) -((-3126 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-924 *3)) (-4 *3 (-925))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 111 T ELT)) (-2063 (($ $) 112 T ELT)) (-2061 (((-85) $) 114 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 131 T ELT)) (-3971 (((-348 $) $) 132 T ELT)) (-3037 (($ $) 95 T ELT) (($ $ (-830)) 81 T ELT) (($ (-350 (-484))) 80 T ELT) (($ (-484)) 79 T ELT)) (-1608 (((-85) $ $) 122 T ELT)) (-3623 (((-484) $) 148 T ELT)) (-3724 (($) 23 T CONST)) (-3183 (((-3 $ "failed") (-1085 $) (-830) (-772)) 89 T ELT) (((-3 $ "failed") (-1085 $) (-830)) 88 T ELT)) (-3157 (((-3 (-484) #1="failed") $) 108 (|has| (-350 (-484)) (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 106 (|has| (-350 (-484)) (-950 (-350 (-484)))) ELT) (((-3 (-350 (-484)) #1#) $) 103 T ELT)) (-3156 (((-484) $) 107 (|has| (-350 (-484)) (-950 (-484))) ELT) (((-350 (-484)) $) 105 (|has| (-350 (-484)) (-950 (-350 (-484)))) ELT) (((-350 (-484)) $) 104 T ELT)) (-3033 (($ $ (-772)) 78 T ELT)) (-3032 (($ $ (-772)) 77 T ELT)) (-2564 (($ $ $) 126 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 125 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 120 T ELT)) (-3723 (((-85) $) 133 T ELT)) (-3186 (((-85) $) 146 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 94 T ELT)) (-3187 (((-85) $) 147 T ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 129 T ELT)) (-2531 (($ $ $) 140 T ELT)) (-2857 (($ $ $) 141 T ELT)) (-3034 (((-3 (-1085 $) "failed") $) 90 T ELT)) (-3036 (((-3 (-772) "failed") $) 92 T ELT)) (-3035 (((-3 (-1085 $) "failed") $) 91 T ELT)) (-1891 (($ (-583 $)) 118 T ELT) (($ $ $) 117 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 134 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 119 T ELT)) (-3144 (($ (-583 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3732 (((-348 $) $) 130 T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 127 T ELT)) (-3466 (((-3 $ "failed") $ $) 110 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 121 T ELT)) (-1607 (((-694) $) 123 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 124 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 138 T ELT) (($ $) 109 T ELT) (($ (-350 (-484))) 102 T ELT) (($ (-484)) 101 T ELT) (($ (-350 (-484))) 98 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 113 T ELT)) (-3770 (((-350 (-484)) $ $) 76 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3184 (((-583 $) (-1085 $)) 87 T ELT) (((-583 $) (-1085 (-350 (-484)))) 86 T ELT) (((-583 $) (-1085 (-484))) 85 T ELT) (((-583 $) (-857 $)) 84 T ELT) (((-583 $) (-857 (-350 (-484)))) 83 T ELT) (((-583 $) (-857 (-484))) 82 T ELT)) (-3383 (($ $) 149 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 142 T ELT)) (-2567 (((-85) $ $) 144 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 143 T ELT)) (-2685 (((-85) $ $) 145 T ELT)) (-3949 (($ $ $) 139 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 135 T ELT) (($ $ (-350 (-484))) 93 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-484)) $) 137 T ELT) (($ $ (-350 (-484))) 136 T ELT) (($ (-484) $) 100 T ELT) (($ $ (-484)) 99 T ELT) (($ (-350 (-484)) $) 97 T ELT) (($ $ (-350 (-484))) 96 T ELT))) -(((-925) (-113)) (T -925)) -((-3037 (*1 *1 *1) (-4 *1 (-925))) (-3036 (*1 *2 *1) (|partial| -12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3035 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-925)))) (-3034 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-925)))) (-3183 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-830)) (-5 *4 (-772)) (-4 *1 (-925)))) (-3183 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-830)) (-4 *1 (-925)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1085 (-350 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-1085 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-857 (-350 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3184 (*1 *2 *3) (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3037 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-830)))) (-3037 (*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-4 *1 (-925)))) (-3037 (*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-925)))) (-3033 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3032 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3770 (*1 *2 *1 *1) (-12 (-4 *1 (-925)) (-5 *2 (-350 (-484)))))) -(-13 (-120) (-755) (-146) (-312) (-355 (-350 (-484))) (-38 (-484)) (-38 (-350 (-484))) (-915) (-10 -8 (-15 -3036 ((-3 (-772) "failed") $)) (-15 -3035 ((-3 (-1085 $) "failed") $)) (-15 -3034 ((-3 (-1085 $) "failed") $)) (-15 -3183 ((-3 $ "failed") (-1085 $) (-830) (-772))) (-15 -3183 ((-3 $ "failed") (-1085 $) (-830))) (-15 -3184 ((-583 $) (-1085 $))) (-15 -3184 ((-583 $) (-1085 (-350 (-484))))) (-15 -3184 ((-583 $) (-1085 (-484)))) (-15 -3184 ((-583 $) (-857 $))) (-15 -3184 ((-583 $) (-857 (-350 (-484))))) (-15 -3184 ((-583 $) (-857 (-484)))) (-15 -3037 ($ $ (-830))) (-15 -3037 ($ $)) (-15 -3037 ($ (-350 (-484)))) (-15 -3037 ($ (-484))) (-15 -3033 ($ $ (-772))) (-15 -3032 ($ $ (-772))) (-15 -3770 ((-350 (-484)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 (-484)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 (-484) (-484)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-355 (-350 (-484))) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 (-484)) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 (-484)) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 (-484)) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-832) . T) ((-915) . T) ((-950 (-350 (-484))) . T) ((-950 (-484)) |has| (-350 (-484)) (-950 (-484))) ((-963 (-350 (-484))) . T) ((-963 (-484)) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 (-484)) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T)) -((-3038 (((-2 (|:| |ans| |#2|) (|:| -3137 |#2|) (|:| |sol?| (-85))) (-484) |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) -(((-926 |#1| |#2|) (-10 -7 (-15 -3038 ((-2 (|:| |ans| |#2|) (|:| -3137 |#2|) (|:| |sol?| (-85))) (-484) |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-392) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-27) (-364 |#1|))) (T -926)) -((-3038 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1090)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1115) (-27) (-364 *8))) (-4 *8 (-13 (-392) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3137 *4) (|:| |sol?| (-85)))) (-5 *1 (-926 *8 *4))))) -((-3039 (((-3 (-583 |#2|) #1="failed") (-484) |#2| |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) -(((-927 |#1| |#2|) (-10 -7 (-15 -3039 ((-3 (-583 |#2|) #1="failed") (-484) |#2| |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-392) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-27) (-364 |#1|))) (T -927)) -((-3039 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1090)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1115) (-27) (-364 *8))) (-4 *8 (-13 (-392) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484)) (-5 *2 (-583 *4)) (-5 *1 (-927 *8 *4))))) -((-3042 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3266 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-484)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-484) (-1 |#2| |#2|)) 39 T ELT)) (-3040 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3093 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3041 (((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|)) 76 T ELT))) -(((-928 |#1| |#2|) (-10 -7 (-15 -3040 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3093 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3041 ((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|))) (-15 -3042 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3266 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-484)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-484) (-1 |#2| |#2|)))) (-13 (-312) (-120) (-950 (-484))) (-1155 |#1|)) (T -928)) -((-3042 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1155 *6)) (-4 *6 (-13 (-312) (-120) (-950 *4))) (-5 *4 (-484)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3266 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-928 *6 *3)))) (-3041 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-928 *4 *5)) (-5 *3 (-350 *5)))) (-3040 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3093 *6))) (-5 *1 (-928 *5 *6)) (-5 *3 (-350 *6))))) -((-3043 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3093 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3044 (((-3 (-583 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 34 T ELT))) -(((-929 |#1| |#2|) (-10 -7 (-15 -3043 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3093 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3044 ((-3 (-583 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)))) (-13 (-312) (-120) (-950 (-484))) (-1155 |#1|)) (T -929)) -((-3044 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4)) (-5 *2 (-583 (-350 *5))) (-5 *1 (-929 *4 *5)) (-5 *3 (-350 *5)))) (-3043 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |h| *6) (|:| |c1| (-350 *6)) (|:| |c2| (-350 *6)) (|:| -3093 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-350 *6))))) -((-3045 (((-1 |#1|) (-583 (-2 (|:| -3402 |#1|) (|:| -1522 (-484))))) 34 T ELT)) (-3100 (((-1 |#1|) (-1009 |#1|)) 42 T ELT)) (-3046 (((-1 |#1|) (-1179 |#1|) (-1179 (-484)) (-484)) 31 T ELT))) -(((-930 |#1|) (-10 -7 (-15 -3100 ((-1 |#1|) (-1009 |#1|))) (-15 -3045 ((-1 |#1|) (-583 (-2 (|:| -3402 |#1|) (|:| -1522 (-484)))))) (-15 -3046 ((-1 |#1|) (-1179 |#1|) (-1179 (-484)) (-484)))) (-1013)) (T -930)) -((-3046 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1179 *6)) (-5 *4 (-1179 (-484))) (-5 *5 (-484)) (-4 *6 (-1013)) (-5 *2 (-1 *6)) (-5 *1 (-930 *6)))) (-3045 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3402 *4) (|:| -1522 (-484))))) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-1009 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4))))) -((-3772 (((-694) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) -(((-931 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3772 ((-694) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-13 (-320) (-312))) (T -931)) -((-3772 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-4 *4 (-1155 (-350 *7))) (-4 *8 (-291 *6 *7 *4)) (-4 *9 (-13 (-320) (-312))) (-5 *2 (-694)) (-5 *1 (-931 *6 *7 *4 *8 *9))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3595 (((-1049) $) 10 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3233 (((-1049) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-932) (-13 (-995) (-10 -8 (-15 -3595 ((-1049) $)) (-15 -3233 ((-1049) $))))) (T -932)) -((-3595 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-932)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-932))))) -((-3972 (((-179) $) 6 T ELT) (((-330) $) 9 T ELT))) -(((-933) (-113)) (T -933)) -NIL -(-13 (-553 (-179)) (-553 (-330))) -(((-553 (-179)) . T) ((-553 (-330)) . T)) -((-3134 (((-3 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) "failed") |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) 32 T ELT) (((-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) (-350 (-484))) 29 T ELT)) (-3049 (((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) (-350 (-484))) 34 T ELT) (((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1| (-350 (-484))) 30 T ELT) (((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) 33 T ELT) (((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1|) 28 T ELT)) (-3048 (((-583 (-350 (-484))) (-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) 20 T ELT)) (-3047 (((-350 (-484)) (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) 17 T ELT))) -(((-934 |#1|) (-10 -7 (-15 -3049 ((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1|)) (-15 -3049 ((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) (-15 -3049 ((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1| (-350 (-484)))) (-15 -3049 ((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) (-350 (-484)))) (-15 -3134 ((-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) (-350 (-484)))) (-15 -3134 ((-3 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) "failed") |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) (-15 -3047 ((-350 (-484)) (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) (-15 -3048 ((-583 (-350 (-484))) (-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))))) (-1155 (-484))) (T -934)) -((-3048 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) (-5 *2 (-583 (-350 (-484)))) (-5 *1 (-934 *4)) (-4 *4 (-1155 (-484))))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) (-5 *2 (-350 (-484))) (-5 *1 (-934 *4)) (-4 *4 (-1155 (-484))))) (-3134 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))))) (-3134 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) (-5 *4 (-350 (-484))) (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))))) (-3049 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *5) (|:| -3137 *5)))) (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))) (-5 *4 (-2 (|:| -3138 *5) (|:| -3137 *5))))) (-3049 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))) (-5 *4 (-350 (-484))))) (-3049 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))) (-5 *4 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))))) (-3049 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484)))))) -((-3134 (((-3 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) "failed") |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) 35 T ELT) (((-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) (-350 (-484))) 32 T ELT)) (-3049 (((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) (-350 (-484))) 30 T ELT) (((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1| (-350 (-484))) 26 T ELT) (((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) 28 T ELT) (((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1|) 24 T ELT))) -(((-935 |#1|) (-10 -7 (-15 -3049 ((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1|)) (-15 -3049 ((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) (-15 -3049 ((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1| (-350 (-484)))) (-15 -3049 ((-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) (-350 (-484)))) (-15 -3134 ((-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) (-350 (-484)))) (-15 -3134 ((-3 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) "failed") |#1| (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))) (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))))) (-1155 (-350 (-484)))) (T -935)) -((-3134 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) (-5 *1 (-935 *3)) (-4 *3 (-1155 (-350 (-484)))))) (-3134 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) (-5 *4 (-350 (-484))) (-5 *1 (-935 *3)) (-4 *3 (-1155 *4)))) (-3049 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *5) (|:| -3137 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1155 *5)) (-5 *4 (-2 (|:| -3138 *5) (|:| -3137 *5))))) (-3049 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *4) (|:| -3137 *4)))) (-5 *1 (-935 *3)) (-4 *3 (-1155 *4)))) (-3049 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) (-5 *1 (-935 *3)) (-4 *3 (-1155 (-350 (-484)))) (-5 *4 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))))) (-3049 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) (-5 *1 (-935 *3)) (-4 *3 (-1155 (-350 (-484))))))) -((-3573 (((-583 (-330)) (-857 (-484)) (-330)) 28 T ELT) (((-583 (-330)) (-857 (-350 (-484))) (-330)) 27 T ELT)) (-3969 (((-583 (-583 (-330))) (-583 (-857 (-484))) (-583 (-1090)) (-330)) 37 T ELT))) -(((-936) (-10 -7 (-15 -3573 ((-583 (-330)) (-857 (-350 (-484))) (-330))) (-15 -3573 ((-583 (-330)) (-857 (-484)) (-330))) (-15 -3969 ((-583 (-583 (-330))) (-583 (-857 (-484))) (-583 (-1090)) (-330))))) (T -936)) -((-3969 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-583 (-1090))) (-5 *2 (-583 (-583 (-330)))) (-5 *1 (-936)) (-5 *5 (-330)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 (-330))) (-5 *1 (-936)) (-5 *4 (-330)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-350 (-484)))) (-5 *2 (-583 (-330))) (-5 *1 (-936)) (-5 *4 (-330))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 75 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-3037 (($ $) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-484)) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-484) $) 70 T ELT)) (-3724 (($) NIL T CONST)) (-3183 (((-3 $ #1#) (-1085 $) (-830) (-772)) NIL T ELT) (((-3 $ #1#) (-1085 $) (-830)) 55 T ELT)) (-3157 (((-3 (-350 (-484)) #1#) $) NIL (|has| (-350 (-484)) (-950 (-350 (-484)))) ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-484) #1#) $) NIL (OR (|has| (-350 (-484)) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT)) (-3156 (((-350 (-484)) $) 17 (|has| (-350 (-484)) (-950 (-350 (-484)))) ELT) (((-350 (-484)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-484) $) NIL (OR (|has| (-350 (-484)) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT)) (-3033 (($ $ (-772)) 47 T ELT)) (-3032 (($ $ (-772)) 48 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3182 (((-350 (-484)) $ $) 21 T ELT)) (-3467 (((-3 $ #1#) $) 88 T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-3186 (((-85) $) 66 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL T ELT)) (-3187 (((-85) $) 69 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3034 (((-3 (-1085 $) #1#) $) 83 T ELT)) (-3036 (((-3 (-772) #1#) $) 82 T ELT)) (-3035 (((-3 (-1085 $) #1#) $) 80 T ELT)) (-3050 (((-3 (-974 $ (-1085 $)) #1#) $) 78 T ELT)) (-1891 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 89 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3946 (((-772) $) 87 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) 63 T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3770 (((-350 (-484)) $ $) 27 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3184 (((-583 $) (-1085 $)) 61 T ELT) (((-583 $) (-1085 (-350 (-484)))) NIL T ELT) (((-583 $) (-1085 (-484))) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-857 (-350 (-484)))) NIL T ELT) (((-583 $) (-857 (-484))) NIL T ELT)) (-3051 (($ (-974 $ (-1085 $)) (-772)) 46 T ELT)) (-3383 (($ $) 22 T ELT)) (-2660 (($) 32 T CONST)) (-2666 (($) 39 T CONST)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 76 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 24 T ELT)) (-3949 (($ $ $) 37 T ELT)) (-3837 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3839 (($ $ $) 111 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-484) $) 71 T ELT) (($ $ (-484)) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT))) -(((-937 |#1|) (-13 (-925) (-355 |#1|) (-38 |#1|) (-10 -8 (-15 -3051 ($ (-974 $ (-1085 $)) (-772))) (-15 -3050 ((-3 (-974 $ (-1085 $)) "failed") $)) (-15 -3182 ((-350 (-484)) $ $)))) (-13 (-755) (-312) (-933))) (T -937)) -((-3051 (*1 *1 *2 *3) (-12 (-5 *2 (-974 (-937 *4) (-1085 (-937 *4)))) (-5 *3 (-772)) (-5 *1 (-937 *4)) (-4 *4 (-13 (-755) (-312) (-933))))) (-3050 (*1 *2 *1) (|partial| -12 (-5 *2 (-974 (-937 *3) (-1085 (-937 *3)))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-755) (-312) (-933))))) (-3182 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-755) (-312) (-933)))))) -((-3052 (((-2 (|:| -3266 |#2|) (|:| -2513 (-583 |#1|))) |#2| (-583 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) -(((-938 |#1| |#2|) (-10 -7 (-15 -3052 (|#2| |#2| |#1|)) (-15 -3052 ((-2 (|:| -3266 |#2|) (|:| -2513 (-583 |#1|))) |#2| (-583 |#1|)))) (-312) (-600 |#1|)) (T -938)) -((-3052 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3266 *3) (|:| -2513 (-583 *5)))) (-5 *1 (-938 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-600 *5)))) (-3052 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-938 *3 *2)) (-4 *2 (-600 *3))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3053 ((|#1| $ |#1|) 12 T ELT)) (-3055 (($ |#1|) 10 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3054 ((|#1| $) 11 T ELT)) (-3946 (((-772) $) 17 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 9 T ELT))) -(((-939 |#1|) (-13 (-1013) (-10 -8 (-15 -3055 ($ |#1|)) (-15 -3054 (|#1| $)) (-15 -3053 (|#1| $ |#1|)) (-15 -3056 ((-85) $ $)))) (-1129)) (T -939)) -((-3056 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-939 *3)) (-4 *3 (-1129)))) (-3055 (*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1129)))) (-3054 (*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1129)))) (-3053 (*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1129))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3681 (((-583 (-2 (|:| -3861 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3682 (((-583 $) (-583 |#4|)) 114 T ELT) (((-583 $) (-583 |#4|) (-85)) 115 T ELT) (((-583 $) (-583 |#4|) (-85) (-85)) 113 T ELT) (((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85)) 116 T ELT)) (-3081 (((-583 |#3|) $) NIL T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3775 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 108 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3710 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) 63 T ELT)) (-3724 (($) NIL T CONST)) (-2904 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3689 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3156 (($ (-583 |#4|)) NIL T ELT)) (-3799 (((-3 $ #1#) $) 45 T ELT)) (-3685 ((|#4| |#4| $) 66 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT)) (-3406 (($ |#4| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 81 (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3696 (((-2 (|:| -3861 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3195 (((-85) |#4| $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3438 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85)) 129 T ELT)) (-2889 (((-583 |#4|) $) 18 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3180 ((|#3| $) 38 T ELT)) (-2608 (((-583 |#4|) $) 19 T ELT)) (-3245 (((-85) |#4| $) 27 (|has| |#4| (-72)) ELT)) (-3326 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2914 (((-583 |#3|) $) NIL T ELT)) (-2913 (((-85) |#3| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 106 T ELT)) (-3798 (((-3 |#4| #1#) $) 42 T ELT)) (-3192 (((-583 $) |#4| $) 89 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) NIL T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 99 T ELT) (((-85) |#4| $) 61 T ELT)) (-3238 (((-583 $) |#4| $) 111 T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 112 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT)) (-3439 (((-583 $) (-583 |#4|) (-85) (-85) (-85)) 124 T ELT)) (-3440 (($ |#4| $) 78 T ELT) (($ (-583 |#4|) $) 79 T ELT) (((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 75 T ELT)) (-3697 (((-583 |#4|) $) NIL T ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3699 (((-85) $ $) NIL T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3801 (((-3 |#4| #1#) $) 40 T ELT)) (-1354 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3679 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3769 (($ $ |#4|) NIL T ELT) (((-583 $) |#4| $) 91 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 85 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3768 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 17 T ELT)) (-3565 (($) 14 T ELT)) (-3948 (((-694) $) NIL T ELT)) (-1946 (((-694) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3400 (($ $) 13 T ELT)) (-3972 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3530 (($ (-583 |#4|)) 22 T ELT)) (-2910 (($ $ |#3|) 49 T ELT)) (-2912 (($ $ |#3|) 51 T ELT)) (-3684 (($ $) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3946 (((-772) $) 35 T ELT) (((-583 |#4|) $) 46 T ELT)) (-3678 (((-694) $) NIL (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-3189 (((-583 $) |#4| $) 88 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-583 |#3|) $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT)) (-3933 (((-85) |#3| $) 62 T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-940 |#1| |#2| |#3| |#4|) (-13 (-983 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3440 ((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3682 ((-583 $) (-583 |#4|) (-85) (-85))) (-15 -3682 ((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85))) (-15 -3439 ((-583 $) (-583 |#4|) (-85) (-85) (-85))) (-15 -3438 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85))))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -940)) -((-3440 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3)) (-4 *3 (-977 *5 *6 *7)))) (-3682 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3682 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3438 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-940 *5 *6 *7 *8))))) (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) -((-3057 (((-583 (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-583 (-630 (-265 (-484))))))) (-630 (-350 (-857 (-484))))) 67 T ELT)) (-3058 (((-583 (-630 (-265 (-484)))) (-265 (-484)) (-630 (-350 (-857 (-484))))) 52 T ELT)) (-3059 (((-583 (-265 (-484))) (-630 (-350 (-857 (-484))))) 45 T ELT)) (-3063 (((-583 (-630 (-265 (-484)))) (-630 (-350 (-857 (-484))))) 85 T ELT)) (-3061 (((-630 (-265 (-484))) (-630 (-265 (-484)))) 38 T ELT)) (-3062 (((-583 (-630 (-265 (-484)))) (-583 (-630 (-265 (-484))))) 74 T ELT)) (-3060 (((-3 (-630 (-265 (-484))) "failed") (-630 (-350 (-857 (-484))))) 82 T ELT))) -(((-941) (-10 -7 (-15 -3057 ((-583 (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-583 (-630 (-265 (-484))))))) (-630 (-350 (-857 (-484)))))) (-15 -3058 ((-583 (-630 (-265 (-484)))) (-265 (-484)) (-630 (-350 (-857 (-484)))))) (-15 -3059 ((-583 (-265 (-484))) (-630 (-350 (-857 (-484)))))) (-15 -3060 ((-3 (-630 (-265 (-484))) "failed") (-630 (-350 (-857 (-484)))))) (-15 -3061 ((-630 (-265 (-484))) (-630 (-265 (-484))))) (-15 -3062 ((-583 (-630 (-265 (-484)))) (-583 (-630 (-265 (-484)))))) (-15 -3063 ((-583 (-630 (-265 (-484)))) (-630 (-350 (-857 (-484)))))))) (T -941)) -((-3063 (*1 *2 *3) (-12 (-5 *3 (-630 (-350 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941)))) (-3061 (*1 *2 *2) (-12 (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941)))) (-3060 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 (-350 (-857 (-484))))) (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-630 (-350 (-857 (-484))))) (-5 *2 (-583 (-265 (-484)))) (-5 *1 (-941)))) (-3058 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-350 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941)) (-5 *3 (-265 (-484))))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-630 (-350 (-857 (-484))))) (-5 *2 (-583 (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-583 (-630 (-265 (-484)))))))) (-5 *1 (-941))))) -((-3067 (((-583 (-630 |#1|)) (-583 (-630 |#1|))) 69 T ELT) (((-630 |#1|) (-630 |#1|)) 68 T ELT) (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-583 (-630 |#1|))) 67 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 64 T ELT)) (-3066 (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830)) 62 T ELT) (((-630 |#1|) (-630 |#1|) (-830)) 61 T ELT)) (-3068 (((-583 (-630 (-484))) (-583 (-583 (-484)))) 80 T ELT) (((-583 (-630 (-484))) (-583 (-813 (-484))) (-484)) 79 T ELT) (((-630 (-484)) (-583 (-484))) 76 T ELT) (((-630 (-484)) (-813 (-484)) (-484)) 74 T ELT)) (-3065 (((-630 (-857 |#1|)) (-694)) 94 T ELT)) (-3064 (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830)) 48 (|has| |#1| (-6 (-3997 #1="*"))) ELT) (((-630 |#1|) (-630 |#1|) (-830)) 46 (|has| |#1| (-6 (-3997 #1#))) ELT))) -(((-942 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3997 #1="*"))) (-15 -3064 ((-630 |#1|) (-630 |#1|) (-830))) |%noBranch|) (IF (|has| |#1| (-6 (-3997 #1#))) (-15 -3064 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830))) |%noBranch|) (-15 -3065 ((-630 (-857 |#1|)) (-694))) (-15 -3066 ((-630 |#1|) (-630 |#1|) (-830))) (-15 -3066 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830))) (-15 -3067 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -3067 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3067 ((-630 |#1|) (-630 |#1|))) (-15 -3067 ((-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3068 ((-630 (-484)) (-813 (-484)) (-484))) (-15 -3068 ((-630 (-484)) (-583 (-484)))) (-15 -3068 ((-583 (-630 (-484))) (-583 (-813 (-484))) (-484))) (-15 -3068 ((-583 (-630 (-484))) (-583 (-583 (-484)))))) (-961)) (T -942)) -((-3068 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-484)))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-813 (-484)))) (-5 *4 (-484)) (-5 *2 (-583 (-630 *4))) (-5 *1 (-942 *5)) (-4 *5 (-961)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-813 (-484))) (-5 *4 (-484)) (-5 *2 (-630 *4)) (-5 *1 (-942 *5)) (-4 *5 (-961)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3067 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3067 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3067 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-630 (-857 *4))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3064 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (|has| *4 (-6 (-3997 "*"))) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3064 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (|has| *4 (-6 (-3997 "*"))) (-4 *4 (-961)) (-5 *1 (-942 *4))))) -((-3072 (((-630 |#1|) (-583 (-630 |#1|)) (-1179 |#1|)) 69 (|has| |#1| (-258)) ELT)) (-3418 (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1179 (-1179 |#1|))) 107 (|has| |#1| (-312)) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1179 |#1|)) 104 (|has| |#1| (-312)) ELT)) (-3076 (((-1179 |#1|) (-583 (-1179 |#1|)) (-484)) 113 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3075 (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-830)) 119 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85)) 118 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|))) 117 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85) (-484) (-484)) 116 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3074 (((-85) (-583 (-630 |#1|))) 101 (|has| |#1| (-312)) ELT) (((-85) (-583 (-630 |#1|)) (-484)) 100 (|has| |#1| (-312)) ELT)) (-3071 (((-1179 (-1179 |#1|)) (-583 (-630 |#1|)) (-1179 |#1|)) 66 (|has| |#1| (-258)) ELT)) (-3070 (((-630 |#1|) (-583 (-630 |#1|)) (-630 |#1|)) 46 T ELT)) (-3069 (((-630 |#1|) (-1179 (-1179 |#1|))) 39 T ELT)) (-3073 (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-484)) 93 (|has| |#1| (-312)) ELT) (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|))) 92 (|has| |#1| (-312)) ELT) (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-85) (-484)) 91 (|has| |#1| (-312)) ELT))) -(((-943 |#1|) (-10 -7 (-15 -3069 ((-630 |#1|) (-1179 (-1179 |#1|)))) (-15 -3070 ((-630 |#1|) (-583 (-630 |#1|)) (-630 |#1|))) (IF (|has| |#1| (-258)) (PROGN (-15 -3071 ((-1179 (-1179 |#1|)) (-583 (-630 |#1|)) (-1179 |#1|))) (-15 -3072 ((-630 |#1|) (-583 (-630 |#1|)) (-1179 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3073 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-85) (-484))) (-15 -3073 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3073 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-484))) (-15 -3074 ((-85) (-583 (-630 |#1|)) (-484))) (-15 -3074 ((-85) (-583 (-630 |#1|)))) (-15 -3418 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1179 |#1|))) (-15 -3418 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1179 (-1179 |#1|))))) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#1| (-312)) (PROGN (-15 -3075 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85) (-484) (-484))) (-15 -3075 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)))) (-15 -3075 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85))) (-15 -3075 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-830))) (-15 -3076 ((-1179 |#1|) (-583 (-1179 |#1|)) (-484)))) |%noBranch|) |%noBranch|)) (-961)) (T -943)) -((-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1179 *5))) (-5 *4 (-484)) (-5 *2 (-1179 *5)) (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-961)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3075 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-630 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-583 (-630 *4))))) (-3075 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-484)) (-4 *6 (-312)) (-4 *6 (-320)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-630 *6)))) (-5 *1 (-943 *6)) (-5 *3 (-583 (-630 *6))))) (-3418 (*1 *2 *3 *4) (-12 (-5 *4 (-1179 (-1179 *5))) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3418 (*1 *2 *3 *4) (-12 (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3074 (*1 *2 *3) (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-943 *4)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-85)) (-5 *1 (-943 *5)))) (-3073 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-961)))) (-3073 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-5 *1 (-943 *4)) (-4 *4 (-312)) (-4 *4 (-961)))) (-3073 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-630 *6))) (-5 *4 (-85)) (-5 *5 (-484)) (-5 *2 (-630 *6)) (-5 *1 (-943 *6)) (-4 *6 (-312)) (-4 *6 (-961)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-1179 *5)) (-4 *5 (-258)) (-4 *5 (-961)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-4 *5 (-258)) (-4 *5 (-961)) (-5 *2 (-1179 (-1179 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1179 *5)))) (-3070 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-1179 (-1179 *4))) (-4 *4 (-961)) (-5 *2 (-630 *4)) (-5 *1 (-943 *4))))) -((-3077 ((|#1| (-830) |#1|) 18 T ELT))) -(((-944 |#1|) (-10 -7 (-15 -3077 (|#1| (-830) |#1|))) (-13 (-1013) (-10 -8 (-15 -3839 ($ $ $))))) (T -944)) -((-3077 (*1 *2 *3 *2) (-12 (-5 *3 (-830)) (-5 *1 (-944 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -3839 ($ $ $)))))))) -((-3078 ((|#1| |#1| (-830)) 18 T ELT))) -(((-945 |#1|) (-10 -7 (-15 -3078 (|#1| |#1| (-830)))) (-13 (-1013) (-10 -8 (-15 * ($ $ $))))) (T -945)) -((-3078 (*1 *2 *2 *3) (-12 (-5 *3 (-830)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $)))))))) -((-3946 ((|#1| (-262)) 11 T ELT) (((-1185) |#1|) 9 T ELT))) -(((-946 |#1|) (-10 -7 (-15 -3946 ((-1185) |#1|)) (-15 -3946 (|#1| (-262)))) (-1129)) (T -946)) -((-3946 (*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-946 *2)) (-4 *2 (-1129)))) (-3946 (*1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *1 (-946 *3)) (-4 *3 (-1129))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3842 (($ |#4|) 24 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3079 ((|#4| $) 26 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 45 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3126 (((-694)) 42 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 22 T CONST)) (-3056 (((-85) $ $) 39 T ELT)) (-3837 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 28 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT))) -(((-947 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3842 ($ |#4|)) (-15 -3946 ($ |#4|)) (-15 -3079 (|#4| $)))) (-312) (-717) (-756) (-861 |#1| |#2| |#3|) (-583 |#4|)) (T -947)) -((-3842 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) (-3946 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) (-3079 (*1 *2 *1) (-12 (-4 *2 (-861 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-14 *6 (-583 *2))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1049) $) 11 T ELT)) (-3946 (((-772) $) 17 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-948) (-13 (-995) (-10 -8 (-15 -3206 ((-1049) $))))) (T -948)) -((-3206 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-948))))) -((-3156 ((|#2| $) 10 T ELT))) -(((-949 |#1| |#2|) (-10 -7 (-15 -3156 (|#2| |#1|))) (-950 |#2|) (-1129)) (T -949)) -NIL -((-3157 (((-3 |#1| "failed") $) 9 T ELT)) (-3156 ((|#1| $) 8 T ELT)) (-3946 (($ |#1|) 6 T ELT))) -(((-950 |#1|) (-113) (-1129)) (T -950)) -((-3157 (*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1129)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1129))))) -(-13 (-555 |t#1|) (-10 -8 (-15 -3157 ((-3 |t#1| "failed") $)) (-15 -3156 (|t#1| $)))) -(((-555 |#1|) . T)) -((-3080 (((-583 (-583 (-249 (-350 (-857 |#2|))))) (-583 (-857 |#2|)) (-583 (-1090))) 38 T ELT))) -(((-951 |#1| |#2|) (-10 -7 (-15 -3080 ((-583 (-583 (-249 (-350 (-857 |#2|))))) (-583 (-857 |#2|)) (-583 (-1090))))) (-495) (-13 (-495) (-950 |#1|))) (T -951)) -((-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1090))) (-4 *6 (-13 (-495) (-950 *5))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *6)))))) (-5 *1 (-951 *5 *6))))) -((-3081 (((-583 (-1090)) (-350 (-857 |#1|))) 17 T ELT)) (-3083 (((-350 (-1085 (-350 (-857 |#1|)))) (-350 (-857 |#1|)) (-1090)) 24 T ELT)) (-3084 (((-350 (-857 |#1|)) (-350 (-1085 (-350 (-857 |#1|)))) (-1090)) 26 T ELT)) (-3082 (((-3 (-1090) "failed") (-350 (-857 |#1|))) 20 T ELT)) (-3768 (((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-583 (-249 (-350 (-857 |#1|))))) 32 T ELT) (((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|)))) 33 T ELT) (((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-583 (-1090)) (-583 (-350 (-857 |#1|)))) 28 T ELT) (((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-1090) (-350 (-857 |#1|))) 29 T ELT)) (-3946 (((-350 (-857 |#1|)) |#1|) 11 T ELT))) -(((-952 |#1|) (-10 -7 (-15 -3081 ((-583 (-1090)) (-350 (-857 |#1|)))) (-15 -3082 ((-3 (-1090) "failed") (-350 (-857 |#1|)))) (-15 -3083 ((-350 (-1085 (-350 (-857 |#1|)))) (-350 (-857 |#1|)) (-1090))) (-15 -3084 ((-350 (-857 |#1|)) (-350 (-1085 (-350 (-857 |#1|)))) (-1090))) (-15 -3768 ((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-1090) (-350 (-857 |#1|)))) (-15 -3768 ((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-583 (-1090)) (-583 (-350 (-857 |#1|))))) (-15 -3768 ((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|))))) (-15 -3768 ((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-583 (-249 (-350 (-857 |#1|)))))) (-15 -3946 ((-350 (-857 |#1|)) |#1|))) (-495)) (T -952)) -((-3946 (*1 *2 *3) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-952 *3)) (-4 *3 (-495)))) (-3768 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-249 (-350 (-857 *4))))) (-5 *2 (-350 (-857 *4))) (-4 *4 (-495)) (-5 *1 (-952 *4)))) (-3768 (*1 *2 *2 *3) (-12 (-5 *3 (-249 (-350 (-857 *4)))) (-5 *2 (-350 (-857 *4))) (-4 *4 (-495)) (-5 *1 (-952 *4)))) (-3768 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1090))) (-5 *4 (-583 (-350 (-857 *5)))) (-5 *2 (-350 (-857 *5))) (-4 *5 (-495)) (-5 *1 (-952 *5)))) (-3768 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-350 (-857 *4))) (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-952 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1085 (-350 (-857 *5))))) (-5 *4 (-1090)) (-5 *2 (-350 (-857 *5))) (-5 *1 (-952 *5)) (-4 *5 (-495)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-495)) (-5 *2 (-350 (-1085 (-350 (-857 *5))))) (-5 *1 (-952 *5)) (-5 *3 (-350 (-857 *5))))) (-3082 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-1090)) (-5 *1 (-952 *4)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-1090))) (-5 *1 (-952 *4))))) -((-3085 (((-330)) 17 T ELT)) (-3100 (((-1 (-330)) (-330) (-330)) 22 T ELT)) (-3093 (((-1 (-330)) (-694)) 48 T ELT)) (-3086 (((-330)) 37 T ELT)) (-3089 (((-1 (-330)) (-330) (-330)) 38 T ELT)) (-3087 (((-330)) 29 T ELT)) (-3090 (((-1 (-330)) (-330)) 30 T ELT)) (-3088 (((-330) (-694)) 43 T ELT)) (-3091 (((-1 (-330)) (-694)) 44 T ELT)) (-3092 (((-1 (-330)) (-694) (-694)) 47 T ELT)) (-3384 (((-1 (-330)) (-694) (-694)) 45 T ELT))) -(((-953) (-10 -7 (-15 -3085 ((-330))) (-15 -3086 ((-330))) (-15 -3087 ((-330))) (-15 -3088 ((-330) (-694))) (-15 -3100 ((-1 (-330)) (-330) (-330))) (-15 -3089 ((-1 (-330)) (-330) (-330))) (-15 -3090 ((-1 (-330)) (-330))) (-15 -3091 ((-1 (-330)) (-694))) (-15 -3384 ((-1 (-330)) (-694) (-694))) (-15 -3092 ((-1 (-330)) (-694) (-694))) (-15 -3093 ((-1 (-330)) (-694))))) (T -953)) -((-3093 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953)))) (-3092 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953)))) (-3384 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953)))) (-3090 (*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-953)) (-5 *3 (-330)))) (-3089 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-953)) (-5 *3 (-330)))) (-3100 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-953)) (-5 *3 (-330)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-330)) (-5 *1 (-953)))) (-3087 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-953)))) (-3086 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-953)))) (-3085 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-953))))) -((-3732 (((-348 |#1|) |#1|) 33 T ELT))) -(((-954 |#1|) (-10 -7 (-15 -3732 ((-348 |#1|) |#1|))) (-1155 (-350 (-857 (-484))))) (T -954)) -((-3732 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-954 *3)) (-4 *3 (-1155 (-350 (-857 (-484)))))))) -((-3094 (((-350 (-348 (-857 |#1|))) (-350 (-857 |#1|))) 14 T ELT))) -(((-955 |#1|) (-10 -7 (-15 -3094 ((-350 (-348 (-857 |#1|))) (-350 (-857 |#1|))))) (-258)) (T -955)) -((-3094 (*1 *2 *3) (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-857 *4)))) (-5 *1 (-955 *4))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3724 (($) 23 T CONST)) (-3098 ((|#1| $) 29 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3097 ((|#1| $) 28 T ELT)) (-3095 ((|#1|) 26 T CONST)) (-3946 (((-772) $) 13 T ELT)) (-3096 ((|#1| $) 27 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT))) -(((-956 |#1|) (-113) (-23)) (T -956)) -((-3098 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3095 (*1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3098 (|t#1| $)) (-15 -3097 (|t#1| $)) (-15 -3096 (|t#1| $)) (-15 -3095 (|t#1|) -3952))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3099 (($) 31 T CONST)) (-3724 (($) 23 T CONST)) (-3098 ((|#1| $) 29 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3097 ((|#1| $) 28 T ELT)) (-3095 ((|#1|) 26 T CONST)) (-3946 (((-772) $) 13 T ELT)) (-3096 ((|#1| $) 27 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT))) +((-2556 (((-633 (-1139)) $ (-1139)) NIL T ELT)) (-2557 (((-633 (-489)) $ (-489)) NIL T ELT)) (-2555 (((-695) $ (-102)) NIL T ELT)) (-2558 (((-633 (-101)) $ (-101)) 22 T ELT)) (-2560 (($ (-338)) 12 T ELT) (($ (-1074)) 14 T ELT)) (-2559 (((-85) $) 19 T ELT)) (-3947 (((-773) $) 26 T ELT)) (-1701 (($ $) 23 T ELT))) +(((-772) (-13 (-771) (-553 (-773)) (-10 -8 (-15 -2560 ($ (-338))) (-15 -2560 ($ (-1074))) (-15 -2559 ((-85) $))))) (T -772)) +((-2560 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-772)))) (-2560 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-772)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772))))) +((-2569 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2590 (($ $ $) 125 T ELT)) (-2605 (((-485) $) 31 T ELT) (((-485)) 36 T ELT)) (-2600 (($ (-485)) 53 T ELT)) (-2597 (($ $ $) 54 T ELT) (($ (-584 $)) 84 T ELT)) (-2581 (($ $ (-584 $)) 82 T ELT)) (-2602 (((-485) $) 34 T ELT)) (-2584 (($ $ $) 73 T ELT)) (-3533 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2603 (((-485) $) 33 T ELT)) (-2585 (($ $ $) 72 T ELT)) (-3536 (($ $) 114 T ELT)) (-2588 (($ $ $) 129 T ELT)) (-2571 (($ (-584 $)) 61 T ELT)) (-3541 (($ $ (-584 $)) 79 T ELT)) (-2599 (($ (-485) (-485)) 55 T ELT)) (-2612 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3138 (($ $ (-485)) 43 T ELT) (($ $) 46 T ELT)) (-2565 (($ $ $) 97 T ELT)) (-2586 (($ $ $) 132 T ELT)) (-2580 (($ $) 115 T ELT)) (-2564 (($ $ $) 98 T ELT)) (-2576 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2838 (((-1186) $) 10 T ELT)) (-2579 (($ $) 118 T ELT) (($ $ (-695)) 122 T ELT)) (-2582 (($ $ $) 75 T ELT)) (-2583 (($ $ $) 74 T ELT)) (-2596 (($ $ (-584 $)) 110 T ELT)) (-2594 (($ $ $) 113 T ELT)) (-2573 (($ (-584 $)) 59 T ELT)) (-2574 (($ $) 70 T ELT) (($ (-584 $)) 71 T ELT)) (-2577 (($ $ $) 123 T ELT)) (-2578 (($ $) 116 T ELT)) (-2589 (($ $ $) 128 T ELT)) (-3534 (($ (-485)) 21 T ELT) (($ (-1091)) 23 T ELT) (($ (-1074)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2562 (($ $ $) 101 T ELT)) (-2561 (($ $) 102 T ELT)) (-2607 (((-1186) (-1074)) 15 T ELT)) (-2608 (($ (-1074)) 14 T ELT)) (-3124 (($ (-584 (-584 $))) 58 T ELT)) (-3139 (($ $ (-485)) 42 T ELT) (($ $) 45 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2592 (($ $ $) 131 T ELT)) (-3471 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2593 (((-85) $) 108 T ELT)) (-2595 (($ $ (-584 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2601 (($ (-485)) 39 T ELT)) (-2604 (((-485) $) 32 T ELT) (((-485)) 35 T ELT)) (-2598 (($ $ $) 40 T ELT) (($ (-584 $)) 83 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3467 (($ $ $) 99 T ELT)) (-3566 (($) 13 T ELT)) (-3801 (($ $ (-584 $)) 109 T ELT)) (-2606 (((-1074) (-1074)) 8 T ELT)) (-3837 (($ $) 117 T ELT) (($ $ (-695)) 121 T ELT)) (-2566 (($ $ $) 96 T ELT)) (-3759 (($ $ (-695)) 139 T ELT)) (-2572 (($ (-584 $)) 60 T ELT)) (-3947 (((-773) $) 19 T ELT)) (-3774 (($ $ (-485)) 41 T ELT) (($ $) 44 T ELT)) (-2575 (($ $) 68 T ELT) (($ (-584 $)) 69 T ELT)) (-3241 (($ $) 66 T ELT) (($ (-584 $)) 67 T ELT)) (-2591 (($ $) 124 T ELT)) (-2570 (($ (-584 $)) 65 T ELT)) (-3102 (($ $ $) 105 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2587 (($ $ $) 130 T ELT)) (-2563 (($ $ $) 100 T ELT)) (-3738 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2567 (($ $ $) 89 T ELT)) (-2568 (($ $ $) 87 T ELT)) (-3057 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2685 (($ $ $) 88 T ELT)) (-2686 (($ $ $) 86 T ELT)) (-3950 (($ $ $) 94 T ELT)) (-3838 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3840 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) +(((-773) (-13 (-1014) (-10 -8 (-15 -2838 ((-1186) $)) (-15 -2608 ($ (-1074))) (-15 -2607 ((-1186) (-1074))) (-15 -3534 ($ (-485))) (-15 -3534 ($ (-1091))) (-15 -3534 ($ (-1074))) (-15 -3534 ($ (-179))) (-15 -3566 ($)) (-15 -2606 ((-1074) (-1074))) (-15 -2605 ((-485) $)) (-15 -2604 ((-485) $)) (-15 -2605 ((-485))) (-15 -2604 ((-485))) (-15 -2603 ((-485) $)) (-15 -2602 ((-485) $)) (-15 -2601 ($ (-485))) (-15 -2600 ($ (-485))) (-15 -2599 ($ (-485) (-485))) (-15 -3139 ($ $ (-485))) (-15 -3138 ($ $ (-485))) (-15 -3774 ($ $ (-485))) (-15 -3139 ($ $)) (-15 -3138 ($ $)) (-15 -3774 ($ $)) (-15 -2598 ($ $ $)) (-15 -2597 ($ $ $)) (-15 -2598 ($ (-584 $))) (-15 -2597 ($ (-584 $))) (-15 -2596 ($ $ (-584 $))) (-15 -2595 ($ $ (-584 $))) (-15 -2595 ($ $ $ $)) (-15 -2594 ($ $ $)) (-15 -2593 ((-85) $)) (-15 -3801 ($ $ (-584 $))) (-15 -3536 ($ $)) (-15 -2592 ($ $ $)) (-15 -2591 ($ $)) (-15 -3124 ($ (-584 (-584 $)))) (-15 -2590 ($ $ $)) (-15 -2612 ($ $)) (-15 -2612 ($ $ $)) (-15 -2589 ($ $ $)) (-15 -2588 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -2586 ($ $ $)) (-15 -3759 ($ $ (-695))) (-15 -3102 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -2582 ($ $ $)) (-15 -3541 ($ $ (-584 $))) (-15 -2581 ($ $ (-584 $))) (-15 -2580 ($ $)) (-15 -3837 ($ $)) (-15 -3837 ($ $ (-695))) (-15 -2579 ($ $)) (-15 -2579 ($ $ (-695))) (-15 -2578 ($ $)) (-15 -2577 ($ $ $)) (-15 -3533 ($ $)) (-15 -3533 ($ $ $)) (-15 -3533 ($ $ $ $)) (-15 -2576 ($ $)) (-15 -2576 ($ $ $)) (-15 -2576 ($ $ $ $)) (-15 -3471 ($ $)) (-15 -3471 ($ $ $)) (-15 -3471 ($ $ $ $)) (-15 -3241 ($ $)) (-15 -3241 ($ (-584 $))) (-15 -2575 ($ $)) (-15 -2575 ($ (-584 $))) (-15 -2574 ($ $)) (-15 -2574 ($ (-584 $))) (-15 -2573 ($ (-584 $))) (-15 -2572 ($ (-584 $))) (-15 -2571 ($ (-584 $))) (-15 -2570 ($ (-584 $))) (-15 -3057 ($ $ $)) (-15 -2569 ($ $ $)) (-15 -2686 ($ $ $)) (-15 -2568 ($ $ $)) (-15 -2685 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -3840 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -3838 ($ $)) (-15 * ($ $ $)) (-15 -3950 ($ $ $)) (-15 ** ($ $ $)) (-15 -2566 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -3467 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -2562 ($ $ $)) (-15 -2561 ($ $)) (-15 -3738 ($ $ $)) (-15 -3738 ($ $))))) (T -773)) +((-2838 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-773)))) (-2608 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-773)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-773)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-773)))) (-3566 (*1 *1) (-5 *1 (-773))) (-2606 (*1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2605 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2604 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2600 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2599 (*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3139 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3138 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3774 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3139 (*1 *1 *1) (-5 *1 (-773))) (-3138 (*1 *1 *1) (-5 *1 (-773))) (-3774 (*1 *1 *1) (-5 *1 (-773))) (-2598 (*1 *1 *1 *1) (-5 *1 (-773))) (-2597 (*1 *1 *1 *1) (-5 *1 (-773))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2595 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2595 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-2594 (*1 *1 *1 *1) (-5 *1 (-773))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-3536 (*1 *1 *1) (-5 *1 (-773))) (-2592 (*1 *1 *1 *1) (-5 *1 (-773))) (-2591 (*1 *1 *1) (-5 *1 (-773))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-773)))) (-2590 (*1 *1 *1 *1) (-5 *1 (-773))) (-2612 (*1 *1 *1) (-5 *1 (-773))) (-2612 (*1 *1 *1 *1) (-5 *1 (-773))) (-2589 (*1 *1 *1 *1) (-5 *1 (-773))) (-2588 (*1 *1 *1 *1) (-5 *1 (-773))) (-2587 (*1 *1 *1 *1) (-5 *1 (-773))) (-2586 (*1 *1 *1 *1) (-5 *1 (-773))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-3102 (*1 *1 *1 *1) (-5 *1 (-773))) (-2585 (*1 *1 *1 *1) (-5 *1 (-773))) (-2584 (*1 *1 *1 *1) (-5 *1 (-773))) (-2583 (*1 *1 *1 *1) (-5 *1 (-773))) (-2582 (*1 *1 *1 *1) (-5 *1 (-773))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2581 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2580 (*1 *1 *1) (-5 *1 (-773))) (-3837 (*1 *1 *1) (-5 *1 (-773))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-2579 (*1 *1 *1) (-5 *1 (-773))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-2578 (*1 *1 *1) (-5 *1 (-773))) (-2577 (*1 *1 *1 *1) (-5 *1 (-773))) (-3533 (*1 *1 *1) (-5 *1 (-773))) (-3533 (*1 *1 *1 *1) (-5 *1 (-773))) (-3533 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-2576 (*1 *1 *1) (-5 *1 (-773))) (-2576 (*1 *1 *1 *1) (-5 *1 (-773))) (-2576 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-3471 (*1 *1 *1) (-5 *1 (-773))) (-3471 (*1 *1 *1 *1) (-5 *1 (-773))) (-3471 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-3241 (*1 *1 *1) (-5 *1 (-773))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2575 (*1 *1 *1) (-5 *1 (-773))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2574 (*1 *1 *1) (-5 *1 (-773))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-3057 (*1 *1 *1 *1) (-5 *1 (-773))) (-2569 (*1 *1 *1 *1) (-5 *1 (-773))) (-2686 (*1 *1 *1 *1) (-5 *1 (-773))) (-2568 (*1 *1 *1 *1) (-5 *1 (-773))) (-2685 (*1 *1 *1 *1) (-5 *1 (-773))) (-2567 (*1 *1 *1 *1) (-5 *1 (-773))) (-3840 (*1 *1 *1 *1) (-5 *1 (-773))) (-3838 (*1 *1 *1 *1) (-5 *1 (-773))) (-3838 (*1 *1 *1) (-5 *1 (-773))) (* (*1 *1 *1 *1) (-5 *1 (-773))) (-3950 (*1 *1 *1 *1) (-5 *1 (-773))) (** (*1 *1 *1 *1) (-5 *1 (-773))) (-2566 (*1 *1 *1 *1) (-5 *1 (-773))) (-2565 (*1 *1 *1 *1) (-5 *1 (-773))) (-2564 (*1 *1 *1 *1) (-5 *1 (-773))) (-3467 (*1 *1 *1 *1) (-5 *1 (-773))) (-2563 (*1 *1 *1 *1) (-5 *1 (-773))) (-2562 (*1 *1 *1 *1) (-5 *1 (-773))) (-2561 (*1 *1 *1) (-5 *1 (-773))) (-3738 (*1 *1 *1 *1) (-5 *1 (-773))) (-3738 (*1 *1 *1) (-5 *1 (-773)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3832 (((-3 $ "failed") (-1091)) 36 T ELT)) (-3137 (((-695)) 32 T ELT)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) 29 T ELT)) (-3243 (((-1074) $) 43 T ELT)) (-2401 (($ (-831)) 28 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3973 (((-1091) $) 13 T ELT) (((-474) $) 19 T ELT) (((-801 (-330)) $) 26 T ELT) (((-801 (-485)) $) 22 T ELT)) (-3947 (((-773) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 40 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 38 T ELT))) +(((-774 |#1|) (-13 (-753) (-554 (-1091)) (-554 (-474)) (-554 (-801 (-330))) (-554 (-801 (-485))) (-10 -8 (-15 -3832 ((-3 $ "failed") (-1091))))) (-584 (-1091))) (T -774)) +((-3832 (*1 *1 *2) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-774 *3)) (-14 *3 (-584 *2))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3543 (((-447) $) 12 T ELT)) (-2609 (((-584 (-381)) $) 14 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 17 T ELT))) +(((-775) (-13 (-1014) (-10 -8 (-15 -3543 ((-447) $)) (-15 -2609 ((-584 (-381)) $))))) (T -775)) +((-3543 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-775)))) (-2609 (*1 *2 *1) (-12 (-5 *2 (-584 (-381))) (-5 *1 (-775))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-858 |#1|)) NIL T ELT) (((-858 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3924 (((-1186) (-695)) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-776 |#1| |#2| |#3| |#4|) (-13 (-962) (-430 (-858 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3950 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3924 ((-1186) (-695))))) (-962) (-584 (-1091)) (-584 (-695)) (-695)) (T -776)) +((-3950 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-776 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-962)) (-14 *3 (-584 (-1091))) (-14 *4 (-584 (-695))) (-14 *5 (-695)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-776 *4 *5 *6 *7)) (-4 *4 (-962)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 *3)) (-14 *7 *3)))) +((-2610 (((-3 (-148 |#3|) #1="failed") (-695) (-695) |#2| |#2|) 38 T ELT)) (-2611 (((-3 (-350 |#3|) #1#) (-695) (-695) |#2| |#2|) 29 T ELT))) +(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -2611 ((-3 (-350 |#3|) #1="failed") (-695) (-695) |#2| |#2|)) (-15 -2610 ((-3 (-148 |#3|) #1#) (-695) (-695) |#2| |#2|))) (-312) (-1173 |#1|) (-1156 |#1|)) (T -777)) +((-2610 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-148 *6)) (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5)))) (-2611 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-350 *6)) (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5))))) +((-2611 (((-3 (-350 (-1149 |#2| |#1|)) #1="failed") (-695) (-695) (-1170 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-350 (-1149 |#2| |#1|)) #1#) (-695) (-695) (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) 28 T ELT))) +(((-778 |#1| |#2| |#3|) (-10 -7 (-15 -2611 ((-3 (-350 (-1149 |#2| |#1|)) #1="failed") (-695) (-695) (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) (-15 -2611 ((-3 (-350 (-1149 |#2| |#1|)) #1#) (-695) (-695) (-1170 |#1| |#2| |#3|)))) (-312) (-1091) |#1|) (T -778)) +((-2611 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-350 (-1149 *6 *5))) (-5 *1 (-778 *5 *6 *7)))) (-2611 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-350 (-1149 *6 *5))) (-5 *1 (-778 *5 *6 *7))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $ (-485)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2612 (($ (-1086 (-485)) (-485)) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2613 (($ $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3773 (((-695) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2615 (((-485)) NIL T ELT)) (-2614 (((-485) $) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3770 (($ $ (-485)) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2616 (((-1070 (-485)) $) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3771 (((-485) $ (-485)) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-779 |#1|) (-780 |#1|) (-485)) (T -779)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3038 (($ $ (-485)) 78 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-2612 (($ (-1086 (-485)) (-485)) 77 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2613 (($ $) 80 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3773 (((-695) $) 85 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-2615 (((-485)) 82 T ELT)) (-2614 (((-485) $) 81 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3770 (($ $ (-485)) 84 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-2616 (((-1070 (-485)) $) 86 T ELT)) (-2892 (($ $) 83 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3771 (((-485) $ (-485)) 79 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-780 |#1|) (-113) (-485)) (T -780)) +((-2616 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-1070 (-485))))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-695)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2892 (*1 *1 *1) (-4 *1 (-780 *2))) (-2615 (*1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2613 (*1 *1 *1) (-4 *1 (-780 *2))) (-3771 (*1 *2 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-3038 (*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2612 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *3 (-485)) (-4 *1 (-780 *4))))) +(-13 (-258) (-120) (-10 -8 (-15 -2616 ((-1070 (-485)) $)) (-15 -3773 ((-695) $)) (-15 -3770 ($ $ (-485))) (-15 -2892 ($ $)) (-15 -2615 ((-485))) (-15 -2614 ((-485) $)) (-15 -2613 ($ $)) (-15 -3771 ((-485) $ (-485))) (-15 -3038 ($ $ (-485))) (-15 -2612 ($ (-1086 (-485)) (-485))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-258)) ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-779 |#1|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-779 |#1|) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT)) (-3157 (((-779 |#1|) $) NIL T ELT) (((-1091) $) NIL (|has| (-779 |#1|) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT)) (-3731 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-779 |#1|))) (|:| |vec| (-1180 (-779 |#1|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-779 |#1|)) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-779 |#1|) (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-779 |#1|) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-779 |#1|) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-779 |#1|) $) NIL T ELT)) (-3446 (((-633 $) $) NIL (|has| (-779 |#1|) (-1067)) ELT)) (-3188 (((-85) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3959 (($ (-1 (-779 |#1|) (-779 |#1|)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-779 |#1|))) (|:| |vec| (-1180 (-779 |#1|)))) (-1180 $) $) NIL T ELT) (((-631 (-779 |#1|)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-779 |#1|) (-1067)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-779 |#1|) (-258)) ELT)) (-3131 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-484)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3769 (($ $ (-584 (-779 |#1|)) (-584 (-779 |#1|))) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-779 |#1|) (-779 |#1|)) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-249 (-779 |#1|))) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-584 (-249 (-779 |#1|)))) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-584 (-1091)) (-584 (-779 |#1|))) NIL (|has| (-779 |#1|) (-456 (-1091) (-779 |#1|))) ELT) (($ $ (-1091) (-779 |#1|)) NIL (|has| (-779 |#1|) (-456 (-1091) (-779 |#1|))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3801 (($ $ (-779 |#1|)) NIL (|has| (-779 |#1|) (-241 (-779 |#1|) (-779 |#1|))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-779 |#1|) (-779 |#1|))) NIL T ELT) (($ $ (-1 (-779 |#1|) (-779 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-779 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-779 |#1|) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-779 |#1|) $) NIL T ELT)) (-3973 (((-801 (-485)) $) NIL (|has| (-779 |#1|) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-779 |#1|) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-779 |#1|) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-779 |#1|) (-934)) ELT) (((-179) $) NIL (|has| (-779 |#1|) (-934)) ELT)) (-2617 (((-148 (-350 (-485))) $) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-779 |#1|) (-822))) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-779 |#1|)) NIL T ELT) (($ (-1091)) NIL (|has| (-779 |#1|) (-951 (-1091))) ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-779 |#1|) (-822))) (|has| (-779 |#1|) (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3771 (((-350 (-485)) $ (-485)) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-779 |#1|) (-779 |#1|))) NIL T ELT) (($ $ (-1 (-779 |#1|) (-779 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-779 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-779 |#1|) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3950 (($ $ $) NIL T ELT) (($ (-779 |#1|) (-779 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-779 |#1|) $) NIL T ELT) (($ $ (-779 |#1|)) NIL T ELT))) +(((-781 |#1|) (-13 (-905 (-779 |#1|)) (-10 -8 (-15 -3771 ((-350 (-485)) $ (-485))) (-15 -2617 ((-148 (-350 (-485))) $)) (-15 -3731 ($ $)) (-15 -3731 ($ (-485) $)))) (-485)) (T -781)) +((-3771 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-781 *4)) (-14 *4 *3) (-5 *3 (-485)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-781 *3)) (-14 *3 (-485)))) (-3731 (*1 *1 *1) (-12 (-5 *1 (-781 *2)) (-14 *2 (-485)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-781 *3)) (-14 *3 *2)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 ((|#2| $) NIL (|has| |#2| (-258)) ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| |#2| (-741)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| |#2| (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT)) (-3157 ((|#2| $) NIL T ELT) (((-1091) $) NIL (|has| |#2| (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT)) (-3731 (($ $) 35 T ELT) (($ (-485) $) 38 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) 64 T ELT)) (-2995 (($) NIL (|has| |#2| (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| |#2| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| |#2| (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 ((|#2| $) NIL T ELT)) (-3446 (((-633 $) $) NIL (|has| |#2| (-1067)) ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 60 T ELT)) (-3447 (($) NIL (|has| |#2| (-1067)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3131 ((|#2| $) NIL (|has| |#2| (-484)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3769 (($ $ (-584 |#2|) (-584 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-249 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-584 (-249 |#2|))) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-584 (-1091)) (-584 |#2|)) NIL (|has| |#2| (-456 (-1091) |#2|)) ELT) (($ $ (-1091) |#2|) NIL (|has| |#2| (-456 (-1091) |#2|)) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3801 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 ((|#2| $) NIL T ELT)) (-3973 (((-801 (-485)) $) NIL (|has| |#2| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#2| (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| |#2| (-554 (-474))) ELT) (((-330) $) NIL (|has| |#2| (-934)) ELT) (((-179) $) NIL (|has| |#2| (-934)) ELT)) (-2617 (((-148 (-350 (-485))) $) 78 T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3947 (((-773) $) 105 T ELT) (($ (-485)) 20 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1091)) NIL (|has| |#2| (-951 (-1091))) ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3132 ((|#2| $) NIL (|has| |#2| (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3771 (((-350 (-485)) $ (-485)) 71 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| |#2| (-741)) ELT)) (-2661 (($) 15 T CONST)) (-2667 (($) 17 T CONST)) (-2670 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3057 (((-85) $ $) 46 T ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3950 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3838 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3840 (($ $ $) 48 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 61 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) +(((-782 |#1| |#2|) (-13 (-905 |#2|) (-10 -8 (-15 -3771 ((-350 (-485)) $ (-485))) (-15 -2617 ((-148 (-350 (-485))) $)) (-15 -3731 ($ $)) (-15 -3731 ($ (-485) $)))) (-485) (-780 |#1|)) (T -782)) +((-3771 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-350 (-485))) (-5 *1 (-782 *4 *5)) (-5 *3 (-485)) (-4 *5 (-780 *4)))) (-2617 (*1 *2 *1) (-12 (-14 *3 (-485)) (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3)))) (-3731 (*1 *1 *1) (-12 (-14 *2 (-485)) (-5 *1 (-782 *2 *3)) (-4 *3 (-780 *2)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-14 *3 *2) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3))))) +((-2569 (((-85) $ $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3797 ((|#2| $) 12 T ELT)) (-2618 (($ |#1| |#2|) 9 T ELT)) (-3243 (((-1074) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3244 (((-1034) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3802 ((|#1| $) 11 T ELT)) (-3531 (($ |#1| |#2|) 10 T ELT)) (-3947 (((-773) $) 18 (OR (-12 (|has| |#1| (-553 (-773))) (|has| |#2| (-553 (-773)))) (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))) ELT)) (-1266 (((-85) $ $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3057 (((-85) $ $) 23 (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT))) +(((-783 |#1| |#2|) (-13 (-1130) (-10 -8 (IF (|has| |#1| (-553 (-773))) (IF (|has| |#2| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1014)) (IF (|has| |#2| (-1014)) (-6 (-1014)) |%noBranch|) |%noBranch|) (-15 -2618 ($ |#1| |#2|)) (-15 -3531 ($ |#1| |#2|)) (-15 -3802 (|#1| $)) (-15 -3797 (|#2| $)))) (-1130) (-1130)) (T -783)) +((-2618 (*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3531 (*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3802 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-783 *2 *3)) (-4 *3 (-1130)))) (-3797 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-783 *3 *2)) (-4 *3 (-1130))))) +((-2569 (((-85) $ $) NIL T ELT)) (-2958 (((-485) $) 16 T ELT)) (-2620 (($ (-130)) 13 T ELT)) (-2619 (($ (-130)) 14 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2957 (((-130) $) 15 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2622 (($ (-130)) 11 T ELT)) (-2623 (($ (-130)) 10 T ELT)) (-3947 (((-773) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2621 (($ (-130)) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-784) (-13 (-1014) (-556 (-130)) (-10 -8 (-15 -2623 ($ (-130))) (-15 -2622 ($ (-130))) (-15 -2621 ($ (-130))) (-15 -2620 ($ (-130))) (-15 -2619 ($ (-130))) (-15 -2957 ((-130) $)) (-15 -2958 ((-485) $))))) (T -784)) +((-2623 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2622 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2621 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-784))))) +((-3947 (((-265 (-485)) (-350 (-858 (-48)))) 23 T ELT) (((-265 (-485)) (-858 (-48))) 18 T ELT))) +(((-785) (-10 -7 (-15 -3947 ((-265 (-485)) (-858 (-48)))) (-15 -3947 ((-265 (-485)) (-350 (-858 (-48))))))) (T -785)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 (-48)))) (-5 *2 (-265 (-485))) (-5 *1 (-785)))) (-3947 (*1 *2 *3) (-12 (-5 *3 (-858 (-48))) (-5 *2 (-265 (-485))) (-5 *1 (-785))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3567 (((-85) $ (|[\|\|]| (-447))) 9 T ELT) (((-85) $ (|[\|\|]| (-1074))) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3573 (((-447) $) 10 T ELT) (((-1074) $) 14 T ELT)) (-3057 (((-85) $ $) 15 T ELT))) +(((-786) (-13 (-996) (-1176) (-10 -8 (-15 -3567 ((-85) $ (|[\|\|]| (-447)))) (-15 -3573 ((-447) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1074)))) (-15 -3573 ((-1074) $))))) (T -786)) +((-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-786)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-786)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-786)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-786))))) +((-3959 (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)) 15 T ELT))) +(((-787 |#1| |#2|) (-10 -7 (-15 -3959 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)))) (-1130) (-1130)) (T -787)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6))))) +((-3372 (($ |#1| |#1|) 8 T ELT)) (-2626 ((|#1| $ (-695)) 15 T ELT))) +(((-788 |#1|) (-10 -8 (-15 -3372 ($ |#1| |#1|)) (-15 -2626 (|#1| $ (-695)))) (-1130)) (T -788)) +((-2626 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-788 *2)) (-4 *2 (-1130)))) (-3372 (*1 *1 *2 *2) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1130))))) +((-3959 (((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)) 15 T ELT))) +(((-789 |#1| |#2|) (-10 -7 (-15 -3959 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)))) (-1130) (-1130)) (T -789)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6))))) +((-3372 (($ |#1| |#1| |#1|) 8 T ELT)) (-2626 ((|#1| $ (-695)) 15 T ELT))) +(((-790 |#1|) (-10 -8 (-15 -3372 ($ |#1| |#1| |#1|)) (-15 -2626 (|#1| $ (-695)))) (-1130)) (T -790)) +((-2626 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-790 *2)) (-4 *2 (-1130)))) (-3372 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1130))))) +((-2624 (((-584 (-1096)) (-1074)) 9 T ELT))) +(((-791) (-10 -7 (-15 -2624 ((-584 (-1096)) (-1074))))) (T -791)) +((-2624 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-791))))) +((-3959 (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)) 15 T ELT))) +(((-792 |#1| |#2|) (-10 -7 (-15 -3959 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)))) (-1130) (-1130)) (T -792)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6))))) +((-2625 (($ |#1| |#1| |#1|) 8 T ELT)) (-2626 ((|#1| $ (-695)) 15 T ELT))) +(((-793 |#1|) (-10 -8 (-15 -2625 ($ |#1| |#1| |#1|)) (-15 -2626 (|#1| $ (-695)))) (-1130)) (T -793)) +((-2626 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-793 *2)) (-4 *2 (-1130)))) (-2625 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1130))))) +((-2629 (((-1070 (-584 (-485))) (-584 (-485)) (-1070 (-584 (-485)))) 41 T ELT)) (-2628 (((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485))) 31 T ELT)) (-2630 (((-1070 (-584 (-485))) (-584 (-485))) 53 T ELT) (((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485))) 50 T ELT)) (-2631 (((-1070 (-584 (-485))) (-485)) 55 T ELT)) (-2627 (((-1070 (-584 (-831))) (-1070 (-584 (-831)))) 22 T ELT)) (-3010 (((-584 (-831)) (-584 (-831))) 18 T ELT))) +(((-794) (-10 -7 (-15 -3010 ((-584 (-831)) (-584 (-831)))) (-15 -2627 ((-1070 (-584 (-831))) (-1070 (-584 (-831))))) (-15 -2628 ((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485)))) (-15 -2629 ((-1070 (-584 (-485))) (-584 (-485)) (-1070 (-584 (-485))))) (-15 -2630 ((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485)))) (-15 -2630 ((-1070 (-584 (-485))) (-584 (-485)))) (-15 -2631 ((-1070 (-584 (-485))) (-485))))) (T -794)) +((-2631 (*1 *2 *3) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-485)))) (-2630 (*1 *2 *3) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) (-2630 (*1 *2 *3 *3) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) (-2629 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *3 (-584 (-485))) (-5 *1 (-794)))) (-2628 (*1 *2 *3 *3) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) (-2627 (*1 *2 *2) (-12 (-5 *2 (-1070 (-584 (-831)))) (-5 *1 (-794)))) (-3010 (*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-794))))) +((-3973 (((-801 (-330)) $) 9 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-801 (-485)) $) 8 (|has| |#1| (-554 (-801 (-485)))) ELT))) +(((-795 |#1|) (-113) (-1130)) (T -795)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-554 (-801 (-485)))) (-6 (-554 (-801 (-485)))) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-330)))) (-6 (-554 (-801 (-330)))) |%noBranch|))) +(((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3615 (($) 14 T ELT)) (-2633 (($ (-799 |#1| |#2|) (-799 |#1| |#3|)) 28 T ELT)) (-2632 (((-799 |#1| |#3|) $) 16 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2641 (((-85) $) 22 T ELT)) (-2640 (($) 19 T ELT)) (-3947 (((-773) $) 31 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2851 (((-799 |#1| |#2|) $) 15 T ELT)) (-3057 (((-85) $ $) 26 T ELT))) +(((-796 |#1| |#2| |#3|) (-13 (-1014) (-10 -8 (-15 -2641 ((-85) $)) (-15 -2640 ($)) (-15 -3615 ($)) (-15 -2633 ($ (-799 |#1| |#2|) (-799 |#1| |#3|))) (-15 -2851 ((-799 |#1| |#2|) $)) (-15 -2632 ((-799 |#1| |#3|) $)))) (-1014) (-1014) (-609 |#2|)) (T -796)) +((-2641 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-609 *4)))) (-2640 (*1 *1) (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014)) (-4 *4 (-609 *3)))) (-3615 (*1 *1) (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014)) (-4 *4 (-609 *3)))) (-2633 (*1 *1 *2 *3) (-12 (-5 *2 (-799 *4 *5)) (-5 *3 (-799 *4 *6)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-609 *5)) (-5 *1 (-796 *4 *5 *6)))) (-2851 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *4)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-609 *4)))) (-2632 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *5)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-609 *4))))) +((-2569 (((-85) $ $) 7 T ELT)) (-2797 (((-799 |#1| $) $ (-801 |#1|) (-799 |#1| $)) 17 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) +(((-797 |#1|) (-113) (-1014)) (T -797)) +((-2797 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-799 *4 *1)) (-5 *3 (-801 *4)) (-4 *1 (-797 *4)) (-4 *4 (-1014))))) +(-13 (-1014) (-10 -8 (-15 -2797 ((-799 |t#1| $) $ (-801 |t#1|) (-799 |t#1| $))))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-2634 (((-85) (-584 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2635 (((-799 |#1| |#2|) |#2| |#3|) 45 (-12 (-2561 (|has| |#2| (-951 (-1091)))) (-2561 (|has| |#2| (-962)))) ELT) (((-584 (-249 (-858 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-962)) (-2561 (|has| |#2| (-951 (-1091))))) ELT) (((-584 (-249 |#2|)) |#2| |#3|) 36 (|has| |#2| (-951 (-1091))) ELT) (((-796 |#1| |#2| (-584 |#2|)) (-584 |#2|) |#3|) 21 T ELT))) +(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -2634 ((-85) |#2| |#3|)) (-15 -2634 ((-85) (-584 |#2|) |#3|)) (-15 -2635 ((-796 |#1| |#2| (-584 |#2|)) (-584 |#2|) |#3|)) (IF (|has| |#2| (-951 (-1091))) (-15 -2635 ((-584 (-249 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-962)) (-15 -2635 ((-584 (-249 (-858 |#2|))) |#2| |#3|)) (-15 -2635 ((-799 |#1| |#2|) |#2| |#3|))))) (-1014) (-797 |#1|) (-554 (-801 |#1|))) (T -798)) +((-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-799 *5 *3)) (-5 *1 (-798 *5 *3 *4)) (-2561 (-4 *3 (-951 (-1091)))) (-2561 (-4 *3 (-962))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 (-858 *3)))) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-962)) (-2561 (-4 *3 (-951 (-1091)))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 *3))) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-951 (-1091))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-4 *6 (-797 *5)) (-5 *2 (-796 *5 *6 (-584 *6))) (-5 *1 (-798 *5 *6 *4)) (-5 *3 (-584 *6)) (-4 *4 (-554 (-801 *5))))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-4 *6 (-797 *5)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-798 *5 *6 *4)) (-4 *4 (-554 (-801 *5))))) (-2634 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3235 (($ $ $) 40 T ELT)) (-2662 (((-3 (-85) #1="failed") $ (-801 |#1|)) 37 T ELT)) (-3615 (($) 12 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2637 (($ (-801 |#1|) |#2| $) 20 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2639 (((-3 |#2| #1#) (-801 |#1|) $) 51 T ELT)) (-2641 (((-85) $) 15 T ELT)) (-2640 (($) 13 T ELT)) (-3258 (((-584 (-2 (|:| -3861 (-1091)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3531 (($ (-584 (-2 (|:| -3861 (-1091)) (|:| |entry| |#2|)))) 23 T ELT)) (-3947 (((-773) $) 45 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2636 (($ (-801 |#1|) |#2| $ |#2|) 49 T ELT)) (-2638 (($ (-801 |#1|) |#2| $) 48 T ELT)) (-3057 (((-85) $ $) 42 T ELT))) +(((-799 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -2641 ((-85) $)) (-15 -2640 ($)) (-15 -3615 ($)) (-15 -3235 ($ $ $)) (-15 -2639 ((-3 |#2| #1="failed") (-801 |#1|) $)) (-15 -2638 ($ (-801 |#1|) |#2| $)) (-15 -2637 ($ (-801 |#1|) |#2| $)) (-15 -2636 ($ (-801 |#1|) |#2| $ |#2|)) (-15 -3258 ((-584 (-2 (|:| -3861 (-1091)) (|:| |entry| |#2|))) $)) (-15 -3531 ($ (-584 (-2 (|:| -3861 (-1091)) (|:| |entry| |#2|))))) (-15 -2662 ((-3 (-85) #1#) $ (-801 |#1|))))) (-1014) (-1014)) (T -799)) +((-2641 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-2640 (*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3615 (*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3235 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-2639 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) (-5 *1 (-799 *4 *2)))) (-2638 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))) (-2637 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))) (-2636 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3861 (-1091)) (|:| |entry| *4)))) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3861 (-1091)) (|:| |entry| *4)))) (-4 *4 (-1014)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)))) (-2662 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-799 *4 *5)) (-4 *5 (-1014))))) +((-3959 (((-799 |#1| |#3|) (-1 |#3| |#2|) (-799 |#1| |#2|)) 22 T ELT))) +(((-800 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-799 |#1| |#3|) (-1 |#3| |#2|) (-799 |#1| |#2|)))) (-1014) (-1014) (-1014)) (T -800)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-799 *5 *6)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-799 *5 *7)) (-5 *1 (-800 *5 *6 *7))))) +((-2569 (((-85) $ $) NIL T ELT)) (-2649 (($ $ (-584 (-51))) 74 T ELT)) (-3082 (((-584 $) $) 139 T ELT)) (-2646 (((-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-51))) $) 30 T ELT)) (-3261 (((-85) $) 35 T ELT)) (-2647 (($ $ (-584 (-1091)) (-51)) 31 T ELT)) (-2650 (($ $ (-584 (-51))) 73 T ELT)) (-3158 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1091) #1#) $) 167 T ELT)) (-3157 ((|#1| $) 68 T ELT) (((-1091) $) NIL T ELT)) (-2644 (($ $) 126 T ELT)) (-2656 (((-85) $) 55 T ELT)) (-2651 (((-584 (-51)) $) 50 T ELT)) (-2648 (($ (-1091) (-85) (-85) (-85)) 75 T ELT)) (-2642 (((-3 (-584 $) #1#) (-584 $)) 82 T ELT)) (-2653 (((-85) $) 58 T ELT)) (-2654 (((-85) $) 57 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) 41 T ELT)) (-2659 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2402 $)) #1#) $) 97 T ELT)) (-2823 (((-3 (-584 $) #1#) $) 40 T ELT)) (-2660 (((-3 (-584 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2514 (-86)) (|:| |arg| (-584 $))) #1#) $) 107 T ELT)) (-2658 (((-3 (-584 $) #1#) $) 42 T ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2402 (-695))) #1#) $) 45 T ELT)) (-2657 (((-85) $) 34 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2645 (((-85) $) 28 T ELT)) (-2652 (((-85) $) 52 T ELT)) (-2643 (((-584 (-51)) $) 130 T ELT)) (-2655 (((-85) $) 56 T ELT)) (-3801 (($ (-86) (-584 $)) 104 T ELT)) (-3323 (((-695) $) 33 T ELT)) (-3401 (($ $) 72 T ELT)) (-3973 (($ (-584 $)) 69 T ELT)) (-3954 (((-85) $) 32 T ELT)) (-3947 (((-773) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1091)) 76 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2663 (($ $ (-51)) 129 T ELT)) (-2661 (($) 103 T CONST)) (-2667 (($) 83 T CONST)) (-3057 (((-85) $ $) 93 T ELT)) (-3950 (($ $ $) 117 T ELT)) (-3840 (($ $ $) 121 T ELT)) (** (($ $ (-695)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) +(((-801 |#1|) (-13 (-1014) (-951 |#1|) (-951 (-1091)) (-10 -8 (-15 -2661 ($) -3953) (-15 -2667 ($) -3953) (-15 -2823 ((-3 (-584 $) #1="failed") $)) (-15 -2824 ((-3 (-584 $) #1#) $)) (-15 -2660 ((-3 (-584 $) #1#) $ (-86))) (-15 -2660 ((-3 (-2 (|:| -2514 (-86)) (|:| |arg| (-584 $))) #1#) $)) (-15 -2825 ((-3 (-2 (|:| |val| $) (|:| -2402 (-695))) #1#) $)) (-15 -2659 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2658 ((-3 (-584 $) #1#) $)) (-15 -2826 ((-3 (-2 (|:| |val| $) (|:| -2402 $)) #1#) $)) (-15 -3801 ($ (-86) (-584 $))) (-15 -3840 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695))) (-15 ** ($ $ $)) (-15 -3950 ($ $ $)) (-15 -3323 ((-695) $)) (-15 -3973 ($ (-584 $))) (-15 -3401 ($ $)) (-15 -2657 ((-85) $)) (-15 -2656 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3954 ((-85) $)) (-15 -2655 ((-85) $)) (-15 -2654 ((-85) $)) (-15 -2653 ((-85) $)) (-15 -2652 ((-85) $)) (-15 -2651 ((-584 (-51)) $)) (-15 -2650 ($ $ (-584 (-51)))) (-15 -2649 ($ $ (-584 (-51)))) (-15 -2648 ($ (-1091) (-85) (-85) (-85))) (-15 -2647 ($ $ (-584 (-1091)) (-51))) (-15 -2646 ((-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-51))) $)) (-15 -2645 ((-85) $)) (-15 -2644 ($ $)) (-15 -2663 ($ $ (-51))) (-15 -2643 ((-584 (-51)) $)) (-15 -3082 ((-584 $) $)) (-15 -2642 ((-3 (-584 $) #1#) (-584 $))))) (-1014)) (T -801)) +((-2661 (*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2667 (*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2823 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2824 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2660 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-801 *4))) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-2660 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2514 (-86)) (|:| |arg| (-584 (-801 *3))))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2825 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-695)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2659 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-801 *3)) (|:| |den| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2658 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2826 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3801 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 (-801 *4))) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-3840 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-3950 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3401 (*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2649 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2648 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-85)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-2647 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-51)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-51)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2644 (*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2663 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2642 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) +((-3210 (((-801 |#1|) (-801 |#1|) (-584 (-1091)) (-1 (-85) (-584 |#2|))) 32 T ELT) (((-801 |#1|) (-801 |#1|) (-584 (-1 (-85) |#2|))) 46 T ELT) (((-801 |#1|) (-801 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2662 (((-85) (-584 |#2|) (-801 |#1|)) 42 T ELT) (((-85) |#2| (-801 |#1|)) 36 T ELT)) (-3532 (((-1 (-85) |#2|) (-801 |#1|)) 16 T ELT)) (-2664 (((-584 |#2|) (-801 |#1|)) 24 T ELT)) (-2663 (((-801 |#1|) (-801 |#1|) |#2|) 20 T ELT))) +(((-802 |#1| |#2|) (-10 -7 (-15 -3210 ((-801 |#1|) (-801 |#1|) (-1 (-85) |#2|))) (-15 -3210 ((-801 |#1|) (-801 |#1|) (-584 (-1 (-85) |#2|)))) (-15 -3210 ((-801 |#1|) (-801 |#1|) (-584 (-1091)) (-1 (-85) (-584 |#2|)))) (-15 -3532 ((-1 (-85) |#2|) (-801 |#1|))) (-15 -2662 ((-85) |#2| (-801 |#1|))) (-15 -2662 ((-85) (-584 |#2|) (-801 |#1|))) (-15 -2663 ((-801 |#1|) (-801 |#1|) |#2|)) (-15 -2664 ((-584 |#2|) (-801 |#1|)))) (-1014) (-1130)) (T -802)) +((-2664 (*1 *2 *3) (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-584 *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-1130)))) (-2663 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1130)))) (-2662 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *2 (-85)) (-5 *1 (-802 *5 *6)))) (-2662 (*1 *2 *3 *4) (-12 (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-802 *5 *3)) (-4 *3 (-1130)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-1130)))) (-3210 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-801 *5)) (-5 *3 (-584 (-1091))) (-5 *4 (-1 (-85) (-584 *6))) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *1 (-802 *5 *6)))) (-3210 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-5 *3 (-584 (-1 (-85) *5))) (-4 *4 (-1014)) (-4 *5 (-1130)) (-5 *1 (-802 *4 *5)))) (-3210 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1014)) (-4 *5 (-1130)) (-5 *1 (-802 *4 *5))))) +((-3959 (((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)) 19 T ELT))) +(((-803 |#1| |#2|) (-10 -7 (-15 -3959 ((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)))) (-1014) (-1014)) (T -803)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-801 *6)) (-5 *1 (-803 *5 *6))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3935 (((-584 |#1|) $) 20 T ELT)) (-2665 (((-85) $) 49 T ELT)) (-3158 (((-3 (-615 |#1|) "failed") $) 55 T ELT)) (-3157 (((-615 |#1|) $) 53 T ELT)) (-3800 (($ $) 24 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3834 (((-695) $) 60 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3802 (((-615 |#1|) $) 22 T ELT)) (-3947 (((-773) $) 47 T ELT) (($ (-615 |#1|)) 27 T ELT) (((-740 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2667 (($) 11 T CONST)) (-2666 (((-584 (-615 |#1|)) $) 28 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 14 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 66 T ELT))) +(((-804 |#1|) (-13 (-757) (-951 (-615 |#1|)) (-10 -8 (-15 -2667 ($) -3953) (-15 -3947 ((-740 |#1|) $)) (-15 -3947 ($ |#1|)) (-15 -3802 ((-615 |#1|) $)) (-15 -3834 ((-695) $)) (-15 -2666 ((-584 (-615 |#1|)) $)) (-15 -3800 ($ $)) (-15 -2665 ((-85) $)) (-15 -3935 ((-584 |#1|) $)))) (-757)) (T -804)) +((-2667 (*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3947 (*1 *1 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-584 (-615 *3))) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3800 (*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757))))) +((-3475 ((|#1| |#1| |#1|) 19 T ELT))) +(((-805 |#1| |#2|) (-10 -7 (-15 -3475 (|#1| |#1| |#1|))) (-1156 |#2|) (-962)) (T -805)) +((-3475 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-805 *2 *3)) (-4 *2 (-1156 *3))))) +((-2670 ((|#2| $ |#3|) 10 T ELT))) +(((-806 |#1| |#2| |#3|) (-10 -7 (-15 -2670 (|#2| |#1| |#3|))) (-807 |#2| |#3|) (-1130) (-1130)) (T -806)) +NIL +((-3759 ((|#1| $ |#2|) 7 T ELT)) (-2670 ((|#1| $ |#2|) 6 T ELT))) +(((-807 |#1| |#2|) (-113) (-1130) (-1130)) (T -807)) +((-3759 (*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))) (-2670 (*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130))))) +(-13 (-1130) (-10 -8 (-15 -3759 (|t#1| $ |t#2|)) (-15 -2670 (|t#1| $ |t#2|)))) +(((-13) . T) ((-1130) . T)) +((-2669 ((|#1| |#1| (-695)) 26 T ELT)) (-2668 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3436 (((-3 (-2 (|:| -3139 |#1|) (|:| -3138 |#1|)) #1#) |#1| (-695) (-695)) 29 T ELT) (((-584 |#1|) |#1|) 38 T ELT))) +(((-808 |#1| |#2|) (-10 -7 (-15 -3436 ((-584 |#1|) |#1|)) (-15 -3436 ((-3 (-2 (|:| -3139 |#1|) (|:| -3138 |#1|)) #1="failed") |#1| (-695) (-695))) (-15 -2668 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2669 (|#1| |#1| (-695)))) (-1156 |#2|) (-312)) (T -808)) +((-2669 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-5 *1 (-808 *2 *4)) (-4 *2 (-1156 *4)))) (-2668 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1156 *3)))) (-3436 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-695)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3139 *3) (|:| -3138 *3))) (-5 *1 (-808 *3 *5)) (-4 *3 (-1156 *5)))) (-3436 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-808 *3 *4)) (-4 *3 (-1156 *4))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3759 (($ $ (-584 |#2|) (-584 (-695))) 45 T ELT) (($ $ |#2| (-695)) 44 T ELT) (($ $ (-584 |#2|)) 43 T ELT) (($ $ |#2|) 41 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-2670 (($ $ (-584 |#2|) (-584 (-695))) 48 T ELT) (($ $ |#2| (-695)) 47 T ELT) (($ $ (-584 |#2|)) 46 T ELT) (($ $ |#2|) 42 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-809 |#1| |#2|) (-113) (-962) (-1014)) (T -809)) +NIL +(-13 (-82 |t#1| |t#1|) (-812 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-807 $ |#2|) . T) ((-812 |#2|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3759 (($ $ (-584 |#1|) (-584 (-695))) 52 T ELT) (($ $ |#1| (-695)) 51 T ELT) (($ $ (-584 |#1|)) 50 T ELT) (($ $ |#1|) 48 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-584 |#1|) (-584 (-695))) 55 T ELT) (($ $ |#1| (-695)) 54 T ELT) (($ $ (-584 |#1|)) 53 T ELT) (($ $ |#1|) 49 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-810 |#1|) (-113) (-1014)) (T -810)) +NIL +(-13 (-962) (-812 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-807 $ |#1|) . T) ((-812 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-3759 (($ $ |#2|) NIL T ELT) (($ $ (-584 |#2|)) 10 T ELT) (($ $ |#2| (-695)) 12 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 15 T ELT)) (-2670 (($ $ |#2|) 16 T ELT) (($ $ (-584 |#2|)) 18 T ELT) (($ $ |#2| (-695)) 19 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 21 T ELT))) +(((-811 |#1| |#2|) (-10 -7 (-15 -2670 (|#1| |#1| (-584 |#2|) (-584 (-695)))) (-15 -2670 (|#1| |#1| |#2| (-695))) (-15 -2670 (|#1| |#1| (-584 |#2|))) (-15 -3759 (|#1| |#1| (-584 |#2|) (-584 (-695)))) (-15 -3759 (|#1| |#1| |#2| (-695))) (-15 -3759 (|#1| |#1| (-584 |#2|))) (-15 -2670 (|#1| |#1| |#2|)) (-15 -3759 (|#1| |#1| |#2|))) (-812 |#2|) (-1014)) (T -811)) +NIL +((-3759 (($ $ |#1|) 7 T ELT) (($ $ (-584 |#1|)) 15 T ELT) (($ $ |#1| (-695)) 14 T ELT) (($ $ (-584 |#1|) (-584 (-695))) 13 T ELT)) (-2670 (($ $ |#1|) 6 T ELT) (($ $ (-584 |#1|)) 12 T ELT) (($ $ |#1| (-695)) 11 T ELT) (($ $ (-584 |#1|) (-584 (-695))) 10 T ELT))) +(((-812 |#1|) (-113) (-1014)) (T -812)) +((-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014)))) (-3759 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014)))) (-3759 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) (-4 *4 (-1014)))) (-2670 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) (-4 *4 (-1014))))) +(-13 (-807 $ |t#1|) (-10 -8 (-15 -3759 ($ $ (-584 |t#1|))) (-15 -3759 ($ $ |t#1| (-695))) (-15 -3759 ($ $ (-584 |t#1|) (-584 (-695)))) (-15 -2670 ($ $ (-584 |t#1|))) (-15 -2670 ($ $ |t#1| (-695))) (-15 -2670 ($ $ (-584 |t#1|) (-584 (-695)))))) +(((-13) . T) ((-807 $ |#1|) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 26 T ELT)) (-3026 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-6 -3997)) ELT)) (-1295 (($ $ $) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3997)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3138 (($ $) 25 T ELT)) (-2671 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-2609 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-72))) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3139 (($ $) 23 T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3528 (((-85) $) 20 T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-72))) ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1117 |#1|) $) 9 T ELT) (((-773) $) 29 (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 21 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-813 |#1|) (-13 (-92 |#1|) (-553 (-1117 |#1|)) (-10 -8 (-15 -2671 ($ |#1|)) (-15 -2671 ($ $ $)))) (-1014)) (T -813)) +((-2671 (*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014)))) (-2671 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014))))) +((-2569 (((-85) $ $) NIL T ELT)) (-2687 (((-1010 |#1|) $) 61 T ELT)) (-2910 (((-584 $) (-584 $)) 104 T ELT)) (-3624 (((-485) $) 84 T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-3773 (((-695) $) 81 T ELT)) (-2691 (((-1010 |#1|) $ |#1|) 71 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2674 (((-85) $) 89 T ELT)) (-2676 (((-695) $) 85 T ELT)) (-2532 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2858 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2680 (((-2 (|:| |preimage| (-584 |#1|)) (|:| |image| (-584 |#1|))) $) 56 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 131 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2673 (((-1010 |#1|) $) 136 (|has| |#1| (-320)) ELT)) (-2675 (((-85) $) 82 T ELT)) (-3801 ((|#1| $ |#1|) 69 T ELT)) (-3949 (((-695) $) 63 T ELT)) (-2682 (($ (-584 (-584 |#1|))) 119 T ELT)) (-2677 (((-885) $) 75 T ELT)) (-2683 (($ (-584 |#1|)) 32 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-2679 (($ (-584 (-584 |#1|))) 58 T ELT)) (-2678 (($ (-584 (-584 |#1|))) 124 T ELT)) (-2672 (($ (-584 |#1|)) 133 T ELT)) (-3947 (((-773) $) 118 T ELT) (($ (-584 (-584 |#1|))) 92 T ELT) (($ (-584 |#1|)) 93 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2667 (($) 24 T CONST)) (-2567 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2568 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-3057 (((-85) $ $) 67 T ELT)) (-2685 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2686 (((-85) $ $) 91 T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 33 T ELT))) +(((-814 |#1|) (-13 (-816 |#1|) (-10 -8 (-15 -2680 ((-2 (|:| |preimage| (-584 |#1|)) (|:| |image| (-584 |#1|))) $)) (-15 -2679 ($ (-584 (-584 |#1|)))) (-15 -3947 ($ (-584 (-584 |#1|)))) (-15 -3947 ($ (-584 |#1|))) (-15 -2678 ($ (-584 (-584 |#1|)))) (-15 -3949 ((-695) $)) (-15 -2677 ((-885) $)) (-15 -3773 ((-695) $)) (-15 -2676 ((-695) $)) (-15 -3624 ((-485) $)) (-15 -2675 ((-85) $)) (-15 -2674 ((-85) $)) (-15 -2910 ((-584 $) (-584 $))) (IF (|has| |#1| (-320)) (-15 -2673 ((-1010 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-484)) (-15 -2672 ($ (-584 |#1|))) (IF (|has| |#1| (-320)) (-15 -2672 ($ (-584 |#1|))) |%noBranch|)))) (-1014)) (T -814)) +((-2680 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-584 *3)) (|:| |image| (-584 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2679 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-2678 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-814 *3)) (-4 *3 (-320)) (-4 *3 (-1014)))) (-2672 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3))))) +((-2681 ((|#2| (-1057 |#1| |#2|)) 48 T ELT))) +(((-815 |#1| |#2|) (-10 -7 (-15 -2681 (|#2| (-1057 |#1| |#2|)))) (-831) (-13 (-962) (-10 -7 (-6 (-3998 "*"))))) (T -815)) +((-2681 (*1 *2 *3) (-12 (-5 *3 (-1057 *4 *2)) (-14 *4 (-831)) (-4 *2 (-13 (-962) (-10 -7 (-6 (-3998 "*"))))) (-5 *1 (-815 *4 *2))))) +((-2569 (((-85) $ $) 7 T ELT)) (-2687 (((-1010 |#1|) $) 42 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 20 T ELT)) (-2691 (((-1010 |#1|) $ |#1|) 41 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-2532 (($ $ $) 35 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-2858 (($ $ $) 36 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 30 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3801 ((|#1| $ |#1|) 45 T ELT)) (-2682 (($ (-584 (-584 |#1|))) 43 T ELT)) (-2683 (($ (-584 |#1|)) 44 T ELT)) (-3010 (($ $ $) 27 T ELT)) (-2436 (($ $ $) 26 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2667 (($) 24 T CONST)) (-2567 (((-85) $ $) 37 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-2568 (((-85) $ $) 39 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 38 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-2686 (((-85) $ $) 40 T ELT)) (-3950 (($ $ $) 29 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ $ (-485)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-816 |#1|) (-113) (-1014)) (T -816)) +((-2683 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-816 *3)))) (-2682 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-4 *1 (-816 *3)))) (-2687 (*1 *2 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3)))) (-2691 (*1 *2 *1 *3) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3)))) (-2686 (*1 *2 *1 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))) +(-13 (-413) (-241 |t#1| |t#1|) (-10 -8 (-15 -2683 ($ (-584 |t#1|))) (-15 -2682 ($ (-584 (-584 |t#1|)))) (-15 -2687 ((-1010 |t#1|) $)) (-15 -2691 ((-1010 |t#1|) $ |t#1|)) (-15 -2686 ((-85) $ $)) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-320)) (-6 (-757)) |%noBranch|))) +(((-72) . T) ((-553 (-773)) . T) ((-241 |#1| |#1|) . T) ((-413) . T) ((-13) . T) ((-664) . T) ((-757) OR (|has| |#1| (-757)) (|has| |#1| (-320))) ((-760) OR (|has| |#1| (-757)) (|has| |#1| (-320))) ((-1026) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-2693 (((-584 (-584 (-695))) $) 163 T ELT)) (-2689 (((-584 (-695)) (-814 |#1|) $) 191 T ELT)) (-2688 (((-584 (-695)) (-814 |#1|) $) 192 T ELT)) (-2687 (((-1010 |#1|) $) 155 T ELT)) (-2694 (((-584 (-814 |#1|)) $) 152 T ELT)) (-2995 (((-814 |#1|) $ (-485)) 157 T ELT) (((-814 |#1|) $) 158 T ELT)) (-2692 (($ (-584 (-814 |#1|))) 165 T ELT)) (-3773 (((-695) $) 159 T ELT)) (-2690 (((-1010 (-1010 |#1|)) $) 189 T ELT)) (-2691 (((-1010 |#1|) $ |#1|) 180 T ELT) (((-1010 (-1010 |#1|)) $ (-1010 |#1|)) 201 T ELT) (((-1010 (-584 |#1|)) $ (-584 |#1|)) 204 T ELT)) (-3246 (((-85) (-814 |#1|) $) 140 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2684 (((-1186) $) 145 T ELT) (((-1186) $ (-485) (-485)) 205 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2696 (((-584 (-814 |#1|)) $) 146 T ELT)) (-3801 (((-814 |#1|) $ (-695)) 153 T ELT)) (-3949 (((-695) $) 160 T ELT)) (-3947 (((-773) $) 177 T ELT) (((-584 (-814 |#1|)) $) 28 T ELT) (($ (-584 (-814 |#1|))) 164 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2695 (((-584 |#1|) $) 162 T ELT)) (-3057 (((-85) $ $) 198 T ELT)) (-2685 (((-85) $ $) 195 T ELT)) (-2686 (((-85) $ $) 194 T ELT))) +(((-817 |#1|) (-13 (-1014) (-10 -8 (-15 -3947 ((-584 (-814 |#1|)) $)) (-15 -2696 ((-584 (-814 |#1|)) $)) (-15 -3801 ((-814 |#1|) $ (-695))) (-15 -2995 ((-814 |#1|) $ (-485))) (-15 -2995 ((-814 |#1|) $)) (-15 -3773 ((-695) $)) (-15 -3949 ((-695) $)) (-15 -2695 ((-584 |#1|) $)) (-15 -2694 ((-584 (-814 |#1|)) $)) (-15 -2693 ((-584 (-584 (-695))) $)) (-15 -3947 ($ (-584 (-814 |#1|)))) (-15 -2692 ($ (-584 (-814 |#1|)))) (-15 -2691 ((-1010 |#1|) $ |#1|)) (-15 -2690 ((-1010 (-1010 |#1|)) $)) (-15 -2691 ((-1010 (-1010 |#1|)) $ (-1010 |#1|))) (-15 -2691 ((-1010 (-584 |#1|)) $ (-584 |#1|))) (-15 -3246 ((-85) (-814 |#1|) $)) (-15 -2689 ((-584 (-695)) (-814 |#1|) $)) (-15 -2688 ((-584 (-695)) (-814 |#1|) $)) (-15 -2687 ((-1010 |#1|) $)) (-15 -2686 ((-85) $ $)) (-15 -2685 ((-85) $ $)) (-15 -2684 ((-1186) $)) (-15 -2684 ((-1186) $ (-485) (-485))))) (-1014)) (T -817)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) (-2995 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-695)))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3)))) (-2692 (*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3)))) (-2691 (*1 *2 *1 *3) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-1010 (-1010 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2691 (*1 *2 *1 *3) (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-1010 *4))) (-5 *1 (-817 *4)) (-5 *3 (-1010 *4)))) (-2691 (*1 *2 *1 *3) (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-584 *4))) (-5 *1 (-817 *4)) (-5 *3 (-584 *4)))) (-3246 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-817 *4)))) (-2689 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695))) (-5 *1 (-817 *4)))) (-2688 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695))) (-5 *1 (-817 *4)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2686 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2685 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2684 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-817 *4)) (-4 *4 (-1014))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-695)) NIL T ELT)) (-3331 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 $ #1#) $) NIL T ELT)) (-3157 (($ $) NIL T ELT)) (-1793 (($ (-1180 $)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2834 (($) NIL T ELT)) (-1681 (((-85) $) NIL T ELT)) (-1765 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| $ (-320)) ELT)) (-2012 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3133 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3446 (((-633 $) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 $) $ (-831)) NIL (|has| $ (-320)) ELT) (((-1086 $) $) NIL T ELT)) (-2011 (((-831) $) NIL T ELT)) (-1628 (((-1086 $) $) NIL (|has| $ (-320)) ELT)) (-1627 (((-3 (-1086 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1086 $) $) NIL (|has| $ (-320)) ELT)) (-1629 (($ $ (-1086 $)) NIL (|has| $ (-320)) ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL T CONST)) (-2401 (($ (-831)) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| $ (-320)) ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-831)) NIL T ELT) (((-744 (-831))) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1766 (((-3 (-695) #1#) $ $) NIL T ELT) (((-695) $) NIL T ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3949 (((-831) $) NIL T ELT) (((-744 (-831)) $) NIL T ELT)) (-3186 (((-1086 $)) NIL T ELT)) (-1675 (($) NIL T ELT)) (-1630 (($) NIL (|has| $ (-320)) ELT)) (-3225 (((-631 $) (-1180 $)) NIL T ELT) (((-1180 $) $) NIL T ELT)) (-3973 (((-485) $) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT)) (-2703 (((-633 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $) (-831)) NIL T ELT) (((-1180 $)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $ (-695)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT))) +(((-818 |#1|) (-13 (-299) (-280 $) (-554 (-485))) (-831)) (T -818)) +NIL +((-2698 (((-3 (-584 (-1086 |#4|)) #1="failed") (-584 (-1086 |#4|)) (-1086 |#4|)) 164 T ELT)) (-2701 ((|#1|) 101 T ELT)) (-2700 (((-348 (-1086 |#4|)) (-1086 |#4|)) 173 T ELT)) (-2702 (((-348 (-1086 |#4|)) (-584 |#3|) (-1086 |#4|)) 83 T ELT)) (-2699 (((-348 (-1086 |#4|)) (-1086 |#4|)) 183 T ELT)) (-2697 (((-3 (-584 (-1086 |#4|)) #1#) (-584 (-1086 |#4|)) (-1086 |#4|) |#3|) 117 T ELT))) +(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2698 ((-3 (-584 (-1086 |#4|)) #1="failed") (-584 (-1086 |#4|)) (-1086 |#4|))) (-15 -2699 ((-348 (-1086 |#4|)) (-1086 |#4|))) (-15 -2700 ((-348 (-1086 |#4|)) (-1086 |#4|))) (-15 -2701 (|#1|)) (-15 -2697 ((-3 (-584 (-1086 |#4|)) #1#) (-584 (-1086 |#4|)) (-1086 |#4|) |#3|)) (-15 -2702 ((-348 (-1086 |#4|)) (-584 |#3|) (-1086 |#4|)))) (-822) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -819)) +((-2702 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *7)) (-4 *7 (-757)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-348 (-1086 *8))) (-5 *1 (-819 *5 *6 *7 *8)) (-5 *4 (-1086 *8)))) (-2697 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7)) (-4 *7 (-862 *5 *6 *4)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *4 (-757)) (-5 *1 (-819 *5 *6 *4 *7)))) (-2701 (*1 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-819 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-2699 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-2698 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-819 *4 *5 *6 *7))))) +((-2698 (((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|)) 39 T ELT)) (-2701 ((|#1|) 71 T ELT)) (-2700 (((-348 (-1086 |#2|)) (-1086 |#2|)) 125 T ELT)) (-2702 (((-348 (-1086 |#2|)) (-1086 |#2|)) 109 T ELT)) (-2699 (((-348 (-1086 |#2|)) (-1086 |#2|)) 136 T ELT))) +(((-820 |#1| |#2|) (-10 -7 (-15 -2698 ((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|))) (-15 -2699 ((-348 (-1086 |#2|)) (-1086 |#2|))) (-15 -2700 ((-348 (-1086 |#2|)) (-1086 |#2|))) (-15 -2701 (|#1|)) (-15 -2702 ((-348 (-1086 |#2|)) (-1086 |#2|)))) (-822) (-1156 |#1|)) (T -820)) +((-2702 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))) (-2701 (*1 *2) (-12 (-4 *2 (-822)) (-5 *1 (-820 *2 *3)) (-4 *3 (-1156 *2)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))) (-2699 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))) (-2698 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-822)) (-5 *1 (-820 *4 *5))))) +((-2705 (((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $)) 46 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 18 T ELT)) (-2703 (((-633 $) $) 40 T ELT))) +(((-821 |#1|) (-10 -7 (-15 -2703 ((-633 |#1|) |#1|)) (-15 -2705 ((-3 (-584 (-1086 |#1|)) "failed") (-584 (-1086 |#1|)) (-1086 |#1|))) (-15 -2709 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) (-822)) (T -821)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 75 T ELT)) (-3776 (($ $) 66 T ELT)) (-3972 (((-348 $) $) 67 T ELT)) (-2705 (((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $)) 72 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3724 (((-85) $) 68 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) 73 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 74 T ELT)) (-3733 (((-348 $) $) 65 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2704 (((-3 (-1180 $) "failed") (-631 $)) 71 (|has| $ (-118)) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-2703 (((-633 $) $) 70 (|has| $ (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-822) (-113)) (T -822)) +((-2709 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-822)))) (-2708 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2707 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2706 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2705 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 *1))) (-5 *3 (-1086 *1)) (-4 *1 (-822)))) (-2704 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-118)) (-4 *1 (-822)) (-5 *2 (-1180 *1)))) (-2703 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)) (-4 *1 (-822))))) +(-13 (-1135) (-10 -8 (-15 -2708 ((-348 (-1086 $)) (-1086 $))) (-15 -2707 ((-348 (-1086 $)) (-1086 $))) (-15 -2706 ((-348 (-1086 $)) (-1086 $))) (-15 -2709 ((-1086 $) (-1086 $) (-1086 $))) (-15 -2705 ((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $))) (IF (|has| $ (-118)) (PROGN (-15 -2704 ((-3 (-1180 $) "failed") (-631 $))) (-15 -2703 ((-633 $) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) +((-2711 (((-3 (-2 (|:| -3773 (-695)) (|:| -2384 |#5|)) #1="failed") (-283 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2710 (((-85) (-283 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3773 (((-3 (-695) #1#) (-283 |#2| |#3| |#4| |#5|)) 15 T ELT))) +(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3773 ((-3 (-695) #1="failed") (-283 |#2| |#3| |#4| |#5|))) (-15 -2710 ((-85) (-283 |#2| |#3| |#4| |#5|))) (-15 -2711 ((-3 (-2 (|:| -3773 (-695)) (|:| -2384 |#5|)) #1#) (-283 |#2| |#3| |#4| |#5|)))) (-13 (-496) (-951 (-485))) (-364 |#1|) (-1156 |#2|) (-1156 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -823)) +((-2711 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-2 (|:| -3773 (-695)) (|:| -2384 *8))) (-5 *1 (-823 *4 *5 *6 *7 *8)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85)) (-5 *1 (-823 *4 *5 *6 *7 *8)))) (-3773 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-695)) (-5 *1 (-823 *4 *5 *6 *7 *8))))) +((-2711 (((-3 (-2 (|:| -3773 (-695)) (|:| -2384 |#3|)) #1="failed") (-283 (-350 (-485)) |#1| |#2| |#3|)) 64 T ELT)) (-2710 (((-85) (-283 (-350 (-485)) |#1| |#2| |#3|)) 16 T ELT)) (-3773 (((-3 (-695) #1#) (-283 (-350 (-485)) |#1| |#2| |#3|)) 14 T ELT))) +(((-824 |#1| |#2| |#3|) (-10 -7 (-15 -3773 ((-3 (-695) #1="failed") (-283 (-350 (-485)) |#1| |#2| |#3|))) (-15 -2710 ((-85) (-283 (-350 (-485)) |#1| |#2| |#3|))) (-15 -2711 ((-3 (-2 (|:| -3773 (-695)) (|:| -2384 |#3|)) #1#) (-283 (-350 (-485)) |#1| |#2| |#3|)))) (-1156 (-350 (-485))) (-1156 (-350 |#1|)) (-291 (-350 (-485)) |#1| |#2|)) (T -824)) +((-2711 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-2 (|:| -3773 (-695)) (|:| -2384 *6))) (-5 *1 (-824 *4 *5 *6)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-824 *4 *5 *6)))) (-3773 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-695)) (-5 *1 (-824 *4 *5 *6))))) +((-2716 ((|#2| |#2|) 26 T ELT)) (-2714 (((-485) (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))))) 15 T ELT)) (-2712 (((-831) (-485)) 38 T ELT)) (-2715 (((-485) |#2|) 45 T ELT)) (-2713 (((-485) |#2|) 21 T ELT) (((-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))) |#1|) 20 T ELT))) +(((-825 |#1| |#2|) (-10 -7 (-15 -2712 ((-831) (-485))) (-15 -2713 ((-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))) |#1|)) (-15 -2713 ((-485) |#2|)) (-15 -2714 ((-485) (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))))) (-15 -2715 ((-485) |#2|)) (-15 -2716 (|#2| |#2|))) (-1156 (-350 (-485))) (-1156 (-350 |#1|))) (T -825)) +((-2716 (*1 *2 *2) (-12 (-4 *3 (-1156 (-350 (-485)))) (-5 *1 (-825 *3 *2)) (-4 *2 (-1156 (-350 *3))))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1156 (-350 *4))))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))))) (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1156 (-350 *4))))) (-2713 (*1 *2 *3) (-12 (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1156 (-350 *4))))) (-2713 (*1 *2 *3) (-12 (-4 *3 (-1156 (-350 (-485)))) (-5 *2 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))) (-5 *1 (-825 *3 *4)) (-4 *4 (-1156 (-350 *3))))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-1156 (-350 *3))) (-5 *2 (-831)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1156 (-350 *4)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 ((|#1| $) 99 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 93 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2724 (($ |#1| (-348 |#1|)) 91 T ELT)) (-2718 (((-1086 |#1|) |#1| |#1|) 52 T ELT)) (-2717 (($ $) 60 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2719 (((-485) $) 96 T ELT)) (-2720 (($ $ (-485)) 98 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2721 ((|#1| $) 95 T ELT)) (-2722 (((-348 |#1|) $) 94 T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) 92 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2723 (($ $) 49 T ELT)) (-3947 (((-773) $) 123 T ELT) (($ (-485)) 72 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 40 T ELT) (((-350 |#1|) $) 77 T ELT) (($ (-350 (-348 |#1|))) 85 T ELT)) (-3127 (((-695)) 70 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 12 T CONST)) (-3057 (((-85) $ $) 86 T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 48 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) +(((-826 |#1|) (-13 (-312) (-38 |#1|) (-10 -8 (-15 -3947 ((-350 |#1|) $)) (-15 -3947 ($ (-350 (-348 |#1|)))) (-15 -2723 ($ $)) (-15 -2722 ((-348 |#1|) $)) (-15 -2721 (|#1| $)) (-15 -2720 ($ $ (-485))) (-15 -2719 ((-485) $)) (-15 -2718 ((-1086 |#1|) |#1| |#1|)) (-15 -2717 ($ $)) (-15 -2724 ($ |#1| (-348 |#1|))) (-15 -3130 (|#1| $)))) (-258)) (T -826)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-826 *3)))) (-2723 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2721 (*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))) (-2720 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2718 (*1 *2 *3 *3) (-12 (-5 *2 (-1086 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2717 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))) (-2724 (*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-826 *2)))) (-3130 (*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258))))) +((-2724 (((-51) (-858 |#1|) (-348 (-858 |#1|)) (-1091)) 17 T ELT) (((-51) (-350 (-858 |#1|)) (-1091)) 18 T ELT))) +(((-827 |#1|) (-10 -7 (-15 -2724 ((-51) (-350 (-858 |#1|)) (-1091))) (-15 -2724 ((-51) (-858 |#1|) (-348 (-858 |#1|)) (-1091)))) (-13 (-258) (-120))) (T -827)) +((-2724 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-348 (-858 *6))) (-5 *5 (-1091)) (-5 *3 (-858 *6)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *6)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *5))))) +((-2725 ((|#4| (-584 |#4|)) 148 T ELT) (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3145 (((-1086 |#4|) (-584 (-1086 |#4|))) 141 T ELT) (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 61 T ELT) ((|#4| (-584 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) +(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3145 (|#4| |#4| |#4|)) (-15 -3145 (|#4| (-584 |#4|))) (-15 -3145 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -3145 ((-1086 |#4|) (-584 (-1086 |#4|)))) (-15 -2725 (|#4| |#4| |#4|)) (-15 -2725 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -2725 (|#4| (-584 |#4|)))) (-718) (-757) (-258) (-862 |#3| |#1| |#2|)) (T -828)) +((-2725 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)))) (-2725 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6)))) (-2725 (*1 *2 *2 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-862 *5 *3 *4)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-584 (-1086 *7))) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-1086 *7)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-3145 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)))) (-3145 (*1 *2 *2 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-862 *5 *3 *4))))) +((-2738 (((-817 (-485)) (-885)) 38 T ELT) (((-817 (-485)) (-584 (-485))) 34 T ELT)) (-2726 (((-817 (-485)) (-584 (-485))) 66 T ELT) (((-817 (-485)) (-831)) 67 T ELT)) (-2737 (((-817 (-485))) 39 T ELT)) (-2735 (((-817 (-485))) 53 T ELT) (((-817 (-485)) (-584 (-485))) 52 T ELT)) (-2734 (((-817 (-485))) 51 T ELT) (((-817 (-485)) (-584 (-485))) 50 T ELT)) (-2733 (((-817 (-485))) 49 T ELT) (((-817 (-485)) (-584 (-485))) 48 T ELT)) (-2732 (((-817 (-485))) 47 T ELT) (((-817 (-485)) (-584 (-485))) 46 T ELT)) (-2731 (((-817 (-485))) 45 T ELT) (((-817 (-485)) (-584 (-485))) 44 T ELT)) (-2736 (((-817 (-485))) 55 T ELT) (((-817 (-485)) (-584 (-485))) 54 T ELT)) (-2730 (((-817 (-485)) (-584 (-485))) 71 T ELT) (((-817 (-485)) (-831)) 73 T ELT)) (-2729 (((-817 (-485)) (-584 (-485))) 68 T ELT) (((-817 (-485)) (-831)) 69 T ELT)) (-2727 (((-817 (-485)) (-584 (-485))) 64 T ELT) (((-817 (-485)) (-831)) 65 T ELT)) (-2728 (((-817 (-485)) (-584 (-831))) 57 T ELT))) +(((-829) (-10 -7 (-15 -2726 ((-817 (-485)) (-831))) (-15 -2726 ((-817 (-485)) (-584 (-485)))) (-15 -2727 ((-817 (-485)) (-831))) (-15 -2727 ((-817 (-485)) (-584 (-485)))) (-15 -2728 ((-817 (-485)) (-584 (-831)))) (-15 -2729 ((-817 (-485)) (-831))) (-15 -2729 ((-817 (-485)) (-584 (-485)))) (-15 -2730 ((-817 (-485)) (-831))) (-15 -2730 ((-817 (-485)) (-584 (-485)))) (-15 -2731 ((-817 (-485)) (-584 (-485)))) (-15 -2731 ((-817 (-485)))) (-15 -2732 ((-817 (-485)) (-584 (-485)))) (-15 -2732 ((-817 (-485)))) (-15 -2733 ((-817 (-485)) (-584 (-485)))) (-15 -2733 ((-817 (-485)))) (-15 -2734 ((-817 (-485)) (-584 (-485)))) (-15 -2734 ((-817 (-485)))) (-15 -2735 ((-817 (-485)) (-584 (-485)))) (-15 -2735 ((-817 (-485)))) (-15 -2736 ((-817 (-485)) (-584 (-485)))) (-15 -2736 ((-817 (-485)))) (-15 -2737 ((-817 (-485)))) (-15 -2738 ((-817 (-485)) (-584 (-485)))) (-15 -2738 ((-817 (-485)) (-885))))) (T -829)) +((-2738 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2737 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2736 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2735 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2734 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2733 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2732 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2731 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))) +((-2740 (((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091))) 14 T ELT)) (-2739 (((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091))) 13 T ELT))) +(((-830 |#1|) (-10 -7 (-15 -2739 ((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091)))) (-15 -2740 ((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091))))) (-392)) (T -830)) +((-2740 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392)) (-5 *1 (-830 *4)))) (-2739 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392)) (-5 *1 (-830 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3145 (($ $ $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2667 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-831) (-13 (-719) (-664) (-10 -8 (-15 -3145 ($ $ $)) (-6 (-3998 "*"))))) (T -831)) +((-3145 (*1 *1 *1 *1) (-5 *1 (-831)))) +((-695) (|%ilt| 0 |#1|)) +((-3947 (((-265 |#1|) (-417)) 16 T ELT))) +(((-832 |#1|) (-10 -7 (-15 -3947 ((-265 |#1|) (-417)))) (-496)) (T -832)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-417)) (-5 *2 (-265 *4)) (-5 *1 (-832 *4)) (-4 *4 (-496))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-833) (-113)) (T -833)) +((-2742 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *2 (-2 (|:| -3955 (-584 *1)) (|:| -2410 *1))) (-5 *3 (-584 *1)))) (-2741 (*1 *2 *3 *1) (-12 (-4 *1 (-833)) (-5 *2 (-633 (-584 *1))) (-5 *3 (-584 *1))))) +(-13 (-392) (-10 -8 (-15 -2742 ((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $))) (-15 -2741 ((-633 (-584 $)) (-584 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-3106 (((-1086 |#2|) (-584 |#2|) (-584 |#2|)) 17 T ELT) (((-1149 |#1| |#2|) (-1149 |#1| |#2|) (-584 |#2|) (-584 |#2|)) 13 T ELT))) +(((-834 |#1| |#2|) (-10 -7 (-15 -3106 ((-1149 |#1| |#2|) (-1149 |#1| |#2|) (-584 |#2|) (-584 |#2|))) (-15 -3106 ((-1086 |#2|) (-584 |#2|) (-584 |#2|)))) (-1091) (-312)) (T -834)) +((-3106 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-312)) (-5 *2 (-1086 *5)) (-5 *1 (-834 *4 *5)) (-14 *4 (-1091)))) (-3106 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1149 *4 *5)) (-5 *3 (-584 *5)) (-14 *4 (-1091)) (-4 *5 (-312)) (-5 *1 (-834 *4 *5))))) +((-2743 ((|#2| (-584 |#1|) (-584 |#1|)) 28 T ELT))) +(((-835 |#1| |#2|) (-10 -7 (-15 -2743 (|#2| (-584 |#1|) (-584 |#1|)))) (-312) (-1156 |#1|)) (T -835)) +((-2743 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-4 *2 (-1156 *4)) (-5 *1 (-835 *4 *2))))) +((-2745 (((-485) (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-1074)) 175 T ELT)) (-2764 ((|#4| |#4|) 194 T ELT)) (-2749 (((-584 (-350 (-858 |#1|))) (-584 (-1091))) 146 T ELT)) (-2763 (((-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-584 (-584 |#4|)) (-695) (-695) (-485)) 88 T ELT)) (-2753 (((-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-584 |#4|)) 69 T ELT)) (-2762 (((-631 |#4|) (-631 |#4|) (-584 |#4|)) 65 T ELT)) (-2746 (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-1074)) 187 T ELT)) (-2744 (((-485) (-631 |#4|) (-831) (-1074)) 167 T ELT) (((-485) (-631 |#4|) (-584 (-1091)) (-831) (-1074)) 166 T ELT) (((-485) (-631 |#4|) (-584 |#4|) (-831) (-1074)) 165 T ELT) (((-485) (-631 |#4|) (-1074)) 154 T ELT) (((-485) (-631 |#4|) (-584 (-1091)) (-1074)) 153 T ELT) (((-485) (-631 |#4|) (-584 |#4|) (-1074)) 152 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-831)) 151 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091)) (-831)) 150 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|) (-831)) 149 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|)) 148 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091))) 147 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|)) 143 T ELT)) (-2750 ((|#4| (-858 |#1|)) 80 T ELT)) (-2760 (((-85) (-584 |#4|) (-584 (-584 |#4|))) 191 T ELT)) (-2759 (((-584 (-584 (-485))) (-485) (-485)) 161 T ELT)) (-2758 (((-584 (-584 |#4|)) (-584 (-584 |#4|))) 106 T ELT)) (-2757 (((-695) (-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|))))) 100 T ELT)) (-2756 (((-695) (-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|))))) 99 T ELT)) (-2765 (((-85) (-584 (-858 |#1|))) 19 T ELT) (((-85) (-584 |#4|)) 15 T ELT)) (-2751 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-584 |#4|)) (|:| |n0| (-584 |#4|))) (-584 |#4|) (-584 |#4|)) 84 T ELT)) (-2755 (((-584 |#4|) |#4|) 57 T ELT)) (-2748 (((-584 (-350 (-858 |#1|))) (-584 |#4|)) 142 T ELT) (((-631 (-350 (-858 |#1|))) (-631 |#4|)) 66 T ELT) (((-350 (-858 |#1|)) |#4|) 139 T ELT)) (-2747 (((-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))))))) (|:| |rgsz| (-485))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-695) (-1074) (-485)) 112 T ELT)) (-2752 (((-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))) (-631 |#4|) (-695)) 98 T ELT)) (-2761 (((-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-631 |#4|) (-695)) 121 T ELT)) (-2754 (((-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-2 (|:| |mat| (-631 (-350 (-858 |#1|)))) (|:| |vec| (-584 (-350 (-858 |#1|)))) (|:| -3109 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) 56 T ELT))) +(((-836 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2744 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|))) (-15 -2744 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091)))) (-15 -2744 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|))) (-15 -2744 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|) (-831))) (-15 -2744 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091)) (-831))) (-15 -2744 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-831))) (-15 -2744 ((-485) (-631 |#4|) (-584 |#4|) (-1074))) (-15 -2744 ((-485) (-631 |#4|) (-584 (-1091)) (-1074))) (-15 -2744 ((-485) (-631 |#4|) (-1074))) (-15 -2744 ((-485) (-631 |#4|) (-584 |#4|) (-831) (-1074))) (-15 -2744 ((-485) (-631 |#4|) (-584 (-1091)) (-831) (-1074))) (-15 -2744 ((-485) (-631 |#4|) (-831) (-1074))) (-15 -2745 ((-485) (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-1074))) (-15 -2746 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-1074))) (-15 -2747 ((-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))))))) (|:| |rgsz| (-485))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-695) (-1074) (-485))) (-15 -2748 ((-350 (-858 |#1|)) |#4|)) (-15 -2748 ((-631 (-350 (-858 |#1|))) (-631 |#4|))) (-15 -2748 ((-584 (-350 (-858 |#1|))) (-584 |#4|))) (-15 -2749 ((-584 (-350 (-858 |#1|))) (-584 (-1091)))) (-15 -2750 (|#4| (-858 |#1|))) (-15 -2751 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-584 |#4|)) (|:| |n0| (-584 |#4|))) (-584 |#4|) (-584 |#4|))) (-15 -2752 ((-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))) (-631 |#4|) (-695))) (-15 -2753 ((-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-584 |#4|))) (-15 -2754 ((-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-2 (|:| |mat| (-631 (-350 (-858 |#1|)))) (|:| |vec| (-584 (-350 (-858 |#1|)))) (|:| -3109 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (-15 -2755 ((-584 |#4|) |#4|)) (-15 -2756 ((-695) (-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))))) (-15 -2757 ((-695) (-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))))) (-15 -2758 ((-584 (-584 |#4|)) (-584 (-584 |#4|)))) (-15 -2759 ((-584 (-584 (-485))) (-485) (-485))) (-15 -2760 ((-85) (-584 |#4|) (-584 (-584 |#4|)))) (-15 -2761 ((-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-631 |#4|) (-695))) (-15 -2762 ((-631 |#4|) (-631 |#4|) (-584 |#4|))) (-15 -2763 ((-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-584 (-584 |#4|)) (-695) (-695) (-485))) (-15 -2764 (|#4| |#4|)) (-15 -2765 ((-85) (-584 |#4|))) (-15 -2765 ((-85) (-584 (-858 |#1|))))) (-13 (-258) (-120)) (-13 (-757) (-554 (-1091))) (-718) (-862 |#1| |#3| |#2|)) (T -836)) +((-2765 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2764 (*1 *2 *2) (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1091)))) (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-862 *3 *5 *4)))) (-2763 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-5 *4 (-631 *12)) (-5 *5 (-584 (-350 (-858 *9)))) (-5 *6 (-584 (-584 *12))) (-5 *7 (-695)) (-5 *8 (-485)) (-4 *9 (-13 (-258) (-120))) (-4 *12 (-862 *9 *11 *10)) (-4 *10 (-13 (-757) (-554 (-1091)))) (-4 *11 (-718)) (-5 *2 (-2 (|:| |eqzro| (-584 *12)) (|:| |neqzro| (-584 *12)) (|:| |wcond| (-584 (-858 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *9)))) (|:| -2013 (-584 (-1180 (-350 (-858 *9))))))))) (-5 *1 (-836 *9 *10 *11 *12)))) (-2762 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-695)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |det| *8) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2759 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-584 (-485)))) (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-485)) (-4 *7 (-862 *4 *6 *5)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-584 (-584 *6))) (-4 *6 (-862 *3 *5 *4)) (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1091)))) (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *6)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *7) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 *7))))) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *7) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 *7))))) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2755 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 *3)) (-5 *1 (-836 *4 *5 *6 *3)) (-4 *3 (-862 *4 *6 *5)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-631 (-350 (-858 *4)))) (|:| |vec| (-584 (-350 (-858 *4)))) (|:| -3109 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) (|:| -2013 (-584 (-1180 (-350 (-858 *4))))))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2753 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) (|:| -2013 (-584 (-1180 (-350 (-858 *4))))))) (-5 *3 (-584 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-862 *4 *6 *5)) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| -3109 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *8) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 *8))))) (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-695)))) (-2751 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-4 *7 (-862 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-584 *7)) (|:| |n0| (-584 *7)))) (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-862 *4 *6 *5)) (-5 *1 (-836 *4 *5 *6 *2)) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-631 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2748 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-350 (-858 *4))) (-5 *1 (-836 *4 *5 *6 *3)) (-4 *3 (-862 *4 *6 *5)))) (-2747 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-631 *11)) (-5 *4 (-584 (-350 (-858 *8)))) (-5 *5 (-695)) (-5 *6 (-1074)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-862 *8 *10 *9)) (-4 *9 (-13 (-757) (-554 (-1091)))) (-4 *10 (-718)) (-5 *2 (-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 *11)) (|:| |neqzro| (-584 *11)) (|:| |wcond| (-584 (-858 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *8)))) (|:| -2013 (-584 (-1180 (-350 (-858 *8)))))))))) (|:| |rgsz| (-485)))) (-5 *1 (-836 *8 *9 *10 *11)) (-5 *7 (-485)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) (|:| -2013 (-584 (-1180 (-350 (-858 *4)))))))))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) (-5 *4 (-1074)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-862 *5 *7 *6)) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-831)) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2744 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 (-1091))) (-5 *5 (-831)) (-5 *6 (-1074)) (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *7 *8 *9 *10)))) (-2744 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 *10)) (-5 *5 (-831)) (-5 *6 (-1074)) (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *7 *8 *9 *10)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-1074)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 *9)) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-831)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *6)))) (|:| -2013 (-584 (-1180 (-350 (-858 *6)))))))))) (-5 *1 (-836 *6 *7 *8 *9)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *6)))) (|:| -2013 (-584 (-1180 (-350 (-858 *6)))))))))) (-5 *1 (-836 *6 *7 *8 *9)) (-5 *4 (-584 *9)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) (|:| -2013 (-584 (-1180 (-350 (-858 *4)))))))))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-584 (-1091))) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-584 *8))))) +((-3875 (($ $ (-1002 (-179))) 125 T ELT) (($ $ (-1002 (-179)) (-1002 (-179))) 126 T ELT)) (-2897 (((-1002 (-179)) $) 73 T ELT)) (-2898 (((-1002 (-179)) $) 72 T ELT)) (-2789 (((-1002 (-179)) $) 74 T ELT)) (-2770 (((-485) (-485)) 66 T ELT)) (-2774 (((-485) (-485)) 61 T ELT)) (-2772 (((-485) (-485)) 64 T ELT)) (-2768 (((-85) (-85)) 68 T ELT)) (-2771 (((-485)) 65 T ELT)) (-3135 (($ $ (-1002 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2791 (($ (-1 (-855 (-179)) (-179)) (-1002 (-179))) 148 T ELT) (($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 149 T ELT)) (-2777 (($ (-1 (-179) (-179)) (-1002 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2790 (($ (-1 (-179) (-179)) (-1002 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179))) 145 T ELT) (($ (-584 (-1 (-179) (-179))) (-1002 (-179))) 153 T ELT) (($ (-584 (-1 (-179) (-179))) (-1002 (-179)) (-1002 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 147 T ELT) (($ $ (-1002 (-179))) 131 T ELT)) (-2776 (((-85) $) 69 T ELT)) (-2767 (((-485)) 70 T ELT)) (-2775 (((-485)) 59 T ELT)) (-2773 (((-485)) 62 T ELT)) (-2899 (((-584 (-584 (-855 (-179)))) $) 35 T ELT)) (-2766 (((-85) (-85)) 71 T ELT)) (-3947 (((-773) $) 174 T ELT)) (-2769 (((-85)) 67 T ELT))) +(((-837) (-13 (-867) (-10 -8 (-15 -2790 ($ (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2790 ($ (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2790 ($ (-584 (-1 (-179) (-179))) (-1002 (-179)))) (-15 -2790 ($ (-584 (-1 (-179) (-179))) (-1002 (-179)) (-1002 (-179)))) (-15 -2790 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2790 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2777 ($ (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2777 ($ (-1 (-179) (-179)))) (-15 -2790 ($ $ (-1002 (-179)))) (-15 -2776 ((-85) $)) (-15 -3875 ($ $ (-1002 (-179)))) (-15 -3875 ($ $ (-1002 (-179)) (-1002 (-179)))) (-15 -3135 ($ $ (-1002 (-179)))) (-15 -3135 ($ $)) (-15 -2789 ((-1002 (-179)) $)) (-15 -2775 ((-485))) (-15 -2774 ((-485) (-485))) (-15 -2773 ((-485))) (-15 -2772 ((-485) (-485))) (-15 -2771 ((-485))) (-15 -2770 ((-485) (-485))) (-15 -2769 ((-85))) (-15 -2768 ((-85) (-85))) (-15 -2767 ((-485))) (-15 -2766 ((-85) (-85)))))) (T -837)) +((-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2790 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2790 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2790 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2790 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2777 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2777 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-837)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-3875 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-3875 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-3135 (*1 *1 *1) (-5 *1 (-837))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-2775 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2773 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2771 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2769 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-2767 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2766 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) +((-2777 (((-837) |#1| (-1091)) 17 T ELT) (((-837) |#1| (-1091) (-1002 (-179))) 21 T ELT)) (-2790 (((-837) |#1| |#1| (-1091) (-1002 (-179))) 19 T ELT) (((-837) |#1| (-1091) (-1002 (-179))) 15 T ELT))) +(((-838 |#1|) (-10 -7 (-15 -2790 ((-837) |#1| (-1091) (-1002 (-179)))) (-15 -2790 ((-837) |#1| |#1| (-1091) (-1002 (-179)))) (-15 -2777 ((-837) |#1| (-1091) (-1002 (-179)))) (-15 -2777 ((-837) |#1| (-1091)))) (-554 (-474))) (T -838)) +((-2777 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))) (-2777 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))) (-2790 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))) (-2790 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474)))))) +((-3875 (($ $ (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 123 T ELT)) (-2896 (((-1002 (-179)) $) 64 T ELT)) (-2897 (((-1002 (-179)) $) 63 T ELT)) (-2898 (((-1002 (-179)) $) 62 T ELT)) (-2788 (((-584 (-584 (-179))) $) 69 T ELT)) (-2789 (((-1002 (-179)) $) 65 T ELT)) (-2782 (((-485) (-485)) 57 T ELT)) (-2786 (((-485) (-485)) 52 T ELT)) (-2784 (((-485) (-485)) 55 T ELT)) (-2780 (((-85) (-85)) 59 T ELT)) (-2783 (((-485)) 56 T ELT)) (-3135 (($ $ (-1002 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2791 (($ (-1 (-855 (-179)) (-179)) (-1002 (-179))) 133 T ELT) (($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 134 T ELT)) (-2790 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 141 T ELT) (($ $ (-1002 (-179))) 129 T ELT)) (-2779 (((-485)) 60 T ELT)) (-2787 (((-485)) 50 T ELT)) (-2785 (((-485)) 53 T ELT)) (-2899 (((-584 (-584 (-855 (-179)))) $) 157 T ELT)) (-2778 (((-85) (-85)) 61 T ELT)) (-3947 (((-773) $) 155 T ELT)) (-2781 (((-85)) 58 T ELT))) +(((-839) (-13 (-888) (-10 -8 (-15 -2791 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2790 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2790 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2790 ($ $ (-1002 (-179)))) (-15 -3875 ($ $ (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -3135 ($ $ (-1002 (-179)))) (-15 -3135 ($ $)) (-15 -2789 ((-1002 (-179)) $)) (-15 -2788 ((-584 (-584 (-179))) $)) (-15 -2787 ((-485))) (-15 -2786 ((-485) (-485))) (-15 -2785 ((-485))) (-15 -2784 ((-485) (-485))) (-15 -2783 ((-485))) (-15 -2782 ((-485) (-485))) (-15 -2781 ((-85))) (-15 -2780 ((-85) (-85))) (-15 -2779 ((-485))) (-15 -2778 ((-85) (-85)))))) (T -839)) +((-2791 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2791 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2790 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2790 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-3875 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-3135 (*1 *1 *1) (-5 *1 (-839))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-839)))) (-2787 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2785 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2783 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2782 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2781 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))) (-2779 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2778 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839))))) +((-2792 (((-584 (-1002 (-179))) (-584 (-584 (-855 (-179))))) 34 T ELT))) +(((-840) (-10 -7 (-15 -2792 ((-584 (-1002 (-179))) (-584 (-584 (-855 (-179)))))))) (T -840)) +((-2792 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-1002 (-179)))) (-5 *1 (-840))))) +((-2794 (((-265 (-485)) (-1091)) 16 T ELT)) (-2795 (((-265 (-485)) (-1091)) 14 T ELT)) (-3953 (((-265 (-485)) (-1091)) 12 T ELT)) (-2793 (((-265 (-485)) (-1091) (-447)) 19 T ELT))) +(((-841) (-10 -7 (-15 -2793 ((-265 (-485)) (-1091) (-447))) (-15 -3953 ((-265 (-485)) (-1091))) (-15 -2794 ((-265 (-485)) (-1091))) (-15 -2795 ((-265 (-485)) (-1091))))) (T -841)) +((-2795 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-447)) (-5 *2 (-265 (-485))) (-5 *1 (-841))))) +((-2794 ((|#2| |#2|) 28 T ELT)) (-2795 ((|#2| |#2|) 29 T ELT)) (-3953 ((|#2| |#2|) 27 T ELT)) (-2793 ((|#2| |#2| (-447)) 26 T ELT))) +(((-842 |#1| |#2|) (-10 -7 (-15 -2793 (|#2| |#2| (-447))) (-15 -3953 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2795 (|#2| |#2|))) (-1014) (-364 |#1|)) (T -842)) +((-2795 (*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))) (-3953 (*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))) (-2793 (*1 *2 *2 *3) (-12 (-5 *3 (-447)) (-4 *4 (-1014)) (-5 *1 (-842 *4 *2)) (-4 *2 (-364 *4))))) +((-2797 (((-799 |#1| |#3|) |#2| (-801 |#1|) (-799 |#1| |#3|)) 25 T ELT)) (-2796 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT))) +(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2797 ((-799 |#1| |#3|) |#2| (-801 |#1|) (-799 |#1| |#3|)))) (-1014) (-797 |#1|) (-13 (-1014) (-951 |#2|))) (T -843)) +((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-13 (-1014) (-951 *3))) (-4 *3 (-797 *5)) (-5 *1 (-843 *5 *3 *6)))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1014) (-951 *5))) (-4 *5 (-797 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-843 *4 *5 *6))))) +((-2797 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 30 T ELT))) +(((-844 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-1014) (-13 (-496) (-797 |#1|)) (-13 (-364 |#2|) (-554 (-801 |#1|)) (-797 |#1|) (-951 (-551 $)))) (T -844)) +((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-13 (-364 *6) (-554 *4) (-797 *5) (-951 (-551 $)))) (-5 *4 (-801 *5)) (-4 *6 (-13 (-496) (-797 *5))) (-5 *1 (-844 *5 *6 *3))))) +((-2797 (((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|)) 13 T ELT))) +(((-845 |#1|) (-10 -7 (-15 -2797 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|)))) (-484)) (T -845)) +((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 (-485) *3)) (-5 *4 (-801 (-485))) (-4 *3 (-484)) (-5 *1 (-845 *3))))) +((-2797 (((-799 |#1| |#2|) (-551 |#2|) (-801 |#1|) (-799 |#1| |#2|)) 57 T ELT))) +(((-846 |#1| |#2|) (-10 -7 (-15 -2797 ((-799 |#1| |#2|) (-551 |#2|) (-801 |#1|) (-799 |#1| |#2|)))) (-1014) (-13 (-1014) (-951 (-551 $)) (-554 (-801 |#1|)) (-797 |#1|))) (T -846)) +((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *6)) (-5 *3 (-551 *6)) (-4 *5 (-1014)) (-4 *6 (-13 (-1014) (-951 (-551 $)) (-554 *4) (-797 *5))) (-5 *4 (-801 *5)) (-5 *1 (-846 *5 *6))))) +((-2797 (((-796 |#1| |#2| |#3|) |#3| (-801 |#1|) (-796 |#1| |#2| |#3|)) 17 T ELT))) +(((-847 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-796 |#1| |#2| |#3|) |#3| (-801 |#1|) (-796 |#1| |#2| |#3|)))) (-1014) (-797 |#1|) (-609 |#2|)) (T -847)) +((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-796 *5 *6 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-797 *5)) (-4 *3 (-609 *6)) (-5 *1 (-847 *5 *6 *3))))) +((-2797 (((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|)) 17 (|has| |#3| (-797 |#1|)) ELT) (((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|) (-1 (-799 |#1| |#5|) |#3| (-801 |#1|) (-799 |#1| |#5|))) 16 T ELT))) +(((-848 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2797 ((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|) (-1 (-799 |#1| |#5|) |#3| (-801 |#1|) (-799 |#1| |#5|)))) (IF (|has| |#3| (-797 |#1|)) (-15 -2797 ((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|))) |%noBranch|)) (-1014) (-718) (-757) (-13 (-962) (-797 |#1|)) (-13 (-862 |#4| |#2| |#3|) (-554 (-801 |#1|)))) (T -848)) +((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-13 (-862 *8 *6 *7) (-554 *4))) (-5 *4 (-801 *5)) (-4 *7 (-797 *5)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-13 (-962) (-797 *5))) (-5 *1 (-848 *5 *6 *7 *8 *3)))) (-2797 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-799 *6 *3) *8 (-801 *6) (-799 *6 *3))) (-4 *8 (-757)) (-5 *2 (-799 *6 *3)) (-5 *4 (-801 *6)) (-4 *6 (-1014)) (-4 *3 (-13 (-862 *9 *7 *8) (-554 *4))) (-4 *7 (-718)) (-4 *9 (-13 (-962) (-797 *6))) (-5 *1 (-848 *6 *7 *8 *9 *3))))) +((-3210 (((-265 (-485)) (-1091) (-584 (-1 (-85) |#1|))) 18 T ELT) (((-265 (-485)) (-1091) (-1 (-85) |#1|)) 15 T ELT))) +(((-849 |#1|) (-10 -7 (-15 -3210 ((-265 (-485)) (-1091) (-1 (-85) |#1|))) (-15 -3210 ((-265 (-485)) (-1091) (-584 (-1 (-85) |#1|))))) (-1130)) (T -849)) +((-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-584 (-1 (-85) *5))) (-4 *5 (-1130)) (-5 *2 (-265 (-485))) (-5 *1 (-849 *5)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1130)) (-5 *2 (-265 (-485))) (-5 *1 (-849 *5))))) +((-3210 ((|#2| |#2| (-584 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT))) +(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -3210 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3210 (|#2| |#2| (-584 (-1 (-85) |#3|))))) (-1014) (-364 |#1|) (-1130)) (T -850)) +((-3210 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-1 (-85) *5))) (-4 *5 (-1130)) (-4 *4 (-1014)) (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4)))) (-3210 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1130)) (-4 *4 (-1014)) (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4))))) +((-2797 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 25 T ELT))) +(((-851 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-1014) (-13 (-496) (-797 |#1|) (-554 (-801 |#1|))) (-905 |#2|)) (T -851)) +((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-905 *6)) (-4 *6 (-13 (-496) (-797 *5) (-554 *4))) (-5 *4 (-801 *5)) (-5 *1 (-851 *5 *6 *3))))) +((-2797 (((-799 |#1| (-1091)) (-1091) (-801 |#1|) (-799 |#1| (-1091))) 18 T ELT))) +(((-852 |#1|) (-10 -7 (-15 -2797 ((-799 |#1| (-1091)) (-1091) (-801 |#1|) (-799 |#1| (-1091))))) (-1014)) (T -852)) +((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 (-1091))) (-5 *3 (-1091)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-5 *1 (-852 *5))))) +((-2798 (((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) 34 T ELT)) (-2797 (((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-1 |#3| (-584 |#3|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) 33 T ELT))) +(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-1 |#3| (-584 |#3|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-15 -2798 ((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))))) (-1014) (-962) (-13 (-962) (-554 (-801 |#1|)) (-951 |#2|))) (T -853)) +((-2798 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-801 *6))) (-5 *5 (-1 (-799 *6 *8) *8 (-801 *6) (-799 *6 *8))) (-4 *6 (-1014)) (-4 *8 (-13 (-962) (-554 (-801 *6)) (-951 *7))) (-5 *2 (-799 *6 *8)) (-4 *7 (-962)) (-5 *1 (-853 *6 *7 *8)))) (-2797 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-584 (-801 *7))) (-5 *5 (-1 *9 (-584 *9))) (-5 *6 (-1 (-799 *7 *9) *9 (-801 *7) (-799 *7 *9))) (-4 *7 (-1014)) (-4 *9 (-13 (-962) (-554 (-801 *7)) (-951 *8))) (-5 *2 (-799 *7 *9)) (-5 *3 (-584 *9)) (-4 *8 (-962)) (-5 *1 (-853 *7 *8 *9))))) +((-2806 (((-1086 (-350 (-485))) (-485)) 80 T ELT)) (-2805 (((-1086 (-485)) (-485)) 83 T ELT)) (-3335 (((-1086 (-485)) (-485)) 77 T ELT)) (-2804 (((-485) (-1086 (-485))) 73 T ELT)) (-2803 (((-1086 (-350 (-485))) (-485)) 66 T ELT)) (-2802 (((-1086 (-485)) (-485)) 49 T ELT)) (-2801 (((-1086 (-485)) (-485)) 85 T ELT)) (-2800 (((-1086 (-485)) (-485)) 84 T ELT)) (-2799 (((-1086 (-350 (-485))) (-485)) 68 T ELT))) +(((-854) (-10 -7 (-15 -2799 ((-1086 (-350 (-485))) (-485))) (-15 -2800 ((-1086 (-485)) (-485))) (-15 -2801 ((-1086 (-485)) (-485))) (-15 -2802 ((-1086 (-485)) (-485))) (-15 -2803 ((-1086 (-350 (-485))) (-485))) (-15 -2804 ((-485) (-1086 (-485)))) (-15 -3335 ((-1086 (-485)) (-485))) (-15 -2805 ((-1086 (-485)) (-485))) (-15 -2806 ((-1086 (-350 (-485))) (-485))))) (T -854)) +((-2806 (*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2805 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-3335 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-485)) (-5 *1 (-854)))) (-2803 (*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3839 (($ (-695)) NIL (|has| |#1| (-23)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-757))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3789 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT)) (-3707 (($ (-584 |#1|)) 9 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3836 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3615 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3833 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3834 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3770 (($ $ (-584 |#1|)) 25 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 18 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3837 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-3912 (((-831) $) 13 T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3835 (($ $ $) 23 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT) (($ (-584 |#1|)) 14 T ELT)) (-3531 (($ (-584 |#1|)) NIL T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-584 $)) NIL T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3838 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-485) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3958 (((-695) $) 11 T ELT))) +(((-855 |#1|) (-894 |#1|) (-962)) (T -855)) +NIL +((-2809 (((-421 |#1| |#2|) (-858 |#2|)) 22 T ELT)) (-2812 (((-206 |#1| |#2|) (-858 |#2|)) 35 T ELT)) (-2810 (((-858 |#2|) (-421 |#1| |#2|)) 27 T ELT)) (-2808 (((-206 |#1| |#2|) (-421 |#1| |#2|)) 57 T ELT)) (-2811 (((-858 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2807 (((-421 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT))) +(((-856 |#1| |#2|) (-10 -7 (-15 -2807 ((-421 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2808 ((-206 |#1| |#2|) (-421 |#1| |#2|))) (-15 -2809 ((-421 |#1| |#2|) (-858 |#2|))) (-15 -2810 ((-858 |#2|) (-421 |#1| |#2|))) (-15 -2811 ((-858 |#2|) (-206 |#1| |#2|))) (-15 -2812 ((-206 |#1| |#2|) (-858 |#2|)))) (-584 (-1091)) (-962)) (T -856)) +((-2812 (*1 *2 *3) (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1091))))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-421 *4 *5)) (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1091))))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-421 *4 *5)) (-5 *1 (-856 *4 *5))))) +((-2813 (((-584 |#2|) |#2| |#2|) 10 T ELT)) (-2816 (((-695) (-584 |#1|)) 47 (|has| |#1| (-756)) ELT)) (-2814 (((-584 |#2|) |#2|) 11 T ELT)) (-2817 (((-695) (-584 |#1|) (-485) (-485)) 45 (|has| |#1| (-756)) ELT)) (-2815 ((|#1| |#2|) 37 (|has| |#1| (-756)) ELT))) +(((-857 |#1| |#2|) (-10 -7 (-15 -2813 ((-584 |#2|) |#2| |#2|)) (-15 -2814 ((-584 |#2|) |#2|)) (IF (|has| |#1| (-756)) (PROGN (-15 -2815 (|#1| |#2|)) (-15 -2816 ((-695) (-584 |#1|))) (-15 -2817 ((-695) (-584 |#1|) (-485) (-485)))) |%noBranch|)) (-312) (-1156 |#1|)) (T -857)) +((-2817 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-485)) (-4 *5 (-756)) (-4 *5 (-312)) (-5 *2 (-695)) (-5 *1 (-857 *5 *6)) (-4 *6 (-1156 *5)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-756)) (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-857 *4 *5)) (-4 *5 (-1156 *4)))) (-2815 (*1 *2 *3) (-12 (-4 *2 (-312)) (-4 *2 (-756)) (-5 *1 (-857 *2 *3)) (-4 *3 (-1156 *2)))) (-2814 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) (-4 *3 (-1156 *4)))) (-2813 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) (-4 *3 (-1156 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-1091)) $) 16 T ELT)) (-3084 (((-1086 $) $ (-1091)) 21 T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-1091))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-1091) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-1091) $) NIL T ELT)) (-3757 (($ $ $ (-1091)) NIL (|has| |#1| (-146)) ELT)) (-3960 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 (-1091)) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1091) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1091) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3085 (($ (-1086 |#1|) (-1091)) NIL T ELT) (($ (-1086 $) (-1091)) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-1091)) NIL T ELT)) (-2821 (((-470 (-1091)) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT) (((-584 (-695)) $ (-584 (-1091))) NIL T ELT)) (-1626 (($ (-1 (-470 (-1091)) (-470 (-1091))) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3083 (((-3 (-1091) #1#) $) 19 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-1091)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3813 (($ $ (-1091)) 29 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-1091) |#1|) NIL T ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL T ELT) (($ $ (-1091) $) NIL T ELT) (($ $ (-584 (-1091)) (-584 $)) NIL T ELT)) (-3758 (($ $ (-1091)) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3949 (((-470 (-1091)) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT) (((-584 (-695)) $ (-584 (-1091))) NIL T ELT)) (-3973 (((-801 (-330)) $) NIL (-12 (|has| (-1091) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1091) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-1091) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3947 (((-773) $) 25 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1091)) 27 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-584 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-858 |#1|) (-13 (-862 |#1| (-470 (-1091)) (-1091)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3813 ($ $ (-1091))) |%noBranch|))) (-962)) (T -858)) +((-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-858 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962))))) +((-3959 (((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)) 19 T ELT))) +(((-859 |#1| |#2|) (-10 -7 (-15 -3959 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) (-962) (-962)) (T -859)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-858 *6)) (-5 *1 (-859 *5 *6))))) +((-3084 (((-1149 |#1| (-858 |#2|)) (-858 |#2|) (-1177 |#1|)) 18 T ELT))) +(((-860 |#1| |#2|) (-10 -7 (-15 -3084 ((-1149 |#1| (-858 |#2|)) (-858 |#2|) (-1177 |#1|)))) (-1091) (-962)) (T -860)) +((-3084 (*1 *2 *3 *4) (-12 (-5 *4 (-1177 *5)) (-14 *5 (-1091)) (-4 *6 (-962)) (-5 *2 (-1149 *5 (-858 *6))) (-5 *1 (-860 *5 *6)) (-5 *3 (-858 *6))))) +((-2820 (((-695) $) 88 T ELT) (((-695) $ (-584 |#4|)) 93 T ELT)) (-3776 (($ $) 214 T ELT)) (-3972 (((-348 $) $) 206 T ELT)) (-2705 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 141 T ELT)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3757 (($ $ $ |#4|) 95 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 131 T ELT) (((-631 |#2|) (-631 $)) 121 T ELT)) (-3504 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2819 (((-584 $) $) 77 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 240 T ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 233 T ELT)) (-2822 (((-584 $) $) 34 T ELT)) (-2894 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-695)) NIL T ELT) (($ $ (-584 |#4|) (-584 (-695))) 71 T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |#4|) 203 T ELT)) (-2824 (((-3 (-584 $) #1#) $) 52 T ELT)) (-2823 (((-3 (-584 $) #1#) $) 39 T ELT)) (-2825 (((-3 (-2 (|:| |var| |#4|) (|:| -2402 (-695))) #1#) $) 57 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 134 T ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) 147 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 145 T ELT)) (-3733 (((-348 $) $) 165 T ELT)) (-3769 (($ $ (-584 (-249 $))) 24 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-584 |#4|) (-584 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-584 |#4|) (-584 $)) NIL T ELT)) (-3758 (($ $ |#4|) 97 T ELT)) (-3973 (((-801 (-330)) $) 254 T ELT) (((-801 (-485)) $) 247 T ELT) (((-474) $) 262 T ELT)) (-2818 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) 185 T ELT)) (-3678 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-695)) 62 T ELT) (($ $ (-584 |#4|) (-584 (-695))) 69 T ELT)) (-2703 (((-633 $) $) 195 T ELT)) (-1266 (((-85) $ $) 227 T ELT))) +(((-861 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2709 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -3972 ((-348 |#1|) |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -2703 ((-633 |#1|) |#1|)) (-15 -3973 ((-474) |#1|)) (-15 -3973 ((-801 (-485)) |#1|)) (-15 -3973 ((-801 (-330)) |#1|)) (-15 -2797 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -2797 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -2707 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2706 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2705 ((-3 (-584 (-1086 |#1|)) #1="failed") (-584 (-1086 |#1|)) (-1086 |#1|))) (-15 -2704 ((-3 (-1180 |#1|) #1#) (-631 |#1|))) (-15 -3504 (|#1| |#1| |#4|)) (-15 -2818 (|#1| |#1| |#4|)) (-15 -3758 (|#1| |#1| |#4|)) (-15 -3757 (|#1| |#1| |#1| |#4|)) (-15 -2819 ((-584 |#1|) |#1|)) (-15 -2820 ((-695) |#1| (-584 |#4|))) (-15 -2820 ((-695) |#1|)) (-15 -2825 ((-3 (-2 (|:| |var| |#4|) (|:| -2402 (-695))) #1#) |#1|)) (-15 -2824 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2823 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2894 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -2894 (|#1| |#1| |#4| (-695))) (-15 -3764 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1| |#4|)) (-15 -2822 ((-584 |#1|) |#1|)) (-15 -3678 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -3678 (|#1| |#1| |#4| (-695))) (-15 -2280 ((-631 |#2|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3158 ((-3 |#4| #1#) |#1|)) (-15 -3157 (|#4| |#1|)) (-15 -3769 (|#1| |#1| (-584 |#4|) (-584 |#1|))) (-15 -3769 (|#1| |#1| |#4| |#1|)) (-15 -3769 (|#1| |#1| (-584 |#4|) (-584 |#2|))) (-15 -3769 (|#1| |#1| |#4| |#2|)) (-15 -3769 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3769 (|#1| |#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| (-249 |#1|))) (-15 -3769 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -2894 (|#1| |#2| |#3|)) (-15 -3678 (|#2| |#1| |#3|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -2818 (|#2| |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -1266 ((-85) |#1| |#1|))) (-862 |#2| |#3| |#4|) (-962) (-718) (-757)) (T -861)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 |#3|) $) 123 T ELT)) (-3084 (((-1086 $) $ |#3|) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) 125 T ELT) (((-695) $ (-584 |#3|)) 124 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-822)) ELT)) (-3776 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #2#) $) 153 T ELT)) (-3157 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) ((|#3| $) 154 T ELT)) (-3757 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3960 (($ $) 171 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3504 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) 122 T ELT)) (-3724 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| |#2| $) 189 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| |#3| (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| |#3| (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3085 (($ (-1086 |#1|) |#3|) 130 T ELT) (($ (-1086 $) |#3|) 129 T ELT)) (-2822 (((-584 $) $) 139 T ELT)) (-3938 (((-85) $) 169 T ELT)) (-2894 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-695)) 132 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 131 T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |#3|) 133 T ELT)) (-2821 ((|#2| $) 187 T ELT) (((-695) $ |#3|) 135 T ELT) (((-584 (-695)) $ (-584 |#3|)) 134 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3083 (((-3 |#3| "failed") $) 136 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-631 |#1|) (-1180 $)) 144 T ELT)) (-2895 (($ $) 166 T ELT)) (-3175 ((|#1| $) 165 T ELT)) (-1892 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2824 (((-3 (-584 $) "failed") $) 127 T ELT)) (-2823 (((-3 (-584 $) "failed") $) 128 T ELT)) (-2825 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) "failed") $) 126 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1798 (((-85) $) 183 T ELT)) (-1797 ((|#1| $) 184 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3733 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-3467 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-584 |#3|) (-584 $)) 155 T ELT)) (-3758 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-584 |#3|) (-584 (-695))) 52 T ELT) (($ $ |#3| (-695)) 51 T ELT) (($ $ (-584 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3949 ((|#2| $) 167 T ELT) (((-695) $ |#3|) 143 T ELT) (((-584 (-695)) $ (-584 |#3|)) 142 T ELT)) (-3973 (((-801 (-330)) $) 95 (-12 (|has| |#3| (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| |#3| (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| |#3| (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) 117 (-2563 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ $) 98 (|has| |#1| (-496)) ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3818 (((-584 |#1|) $) 185 T ELT)) (-3678 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-695)) 141 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 140 T ELT)) (-2703 (((-633 $) $) 92 (OR (-2563 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-584 |#3|) (-584 (-695))) 55 T ELT) (($ $ |#3| (-695)) 54 T ELT) (($ $ (-584 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-862 |#1| |#2| |#3|) (-113) (-962) (-718) (-757)) (T -862)) +((-3504 (*1 *1 *1) (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3949 (*1 *2 *1 *3) (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3949 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-695))))) (-3678 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *2 (-757)))) (-3678 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) (-2822 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-3084 (*1 *2 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-1086 *1)) (-4 *1 (-862 *4 *5 *3)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-1086 *3)))) (-3083 (*1 *2 *1) (|partial| -12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-2821 (*1 *2 *1 *3) (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-695)))) (-2821 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-695))))) (-3764 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-862 *4 *5 *3)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *2 (-757)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) (-3085 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *4)) (-4 *4 (-962)) (-4 *1 (-862 *4 *5 *3)) (-4 *5 (-718)) (-4 *3 (-757)))) (-3085 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-695)))))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-695)))) (-2820 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *5)))) (-2819 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-3757 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3758 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-146)))) (-2818 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-392)))) (-3504 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-392)))) (-3776 (*1 *1 *1) (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3972 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-348 *1)) (-4 *1 (-862 *3 *4 *5))))) +(-13 (-810 |t#3|) (-277 |t#1| |t#2|) (-260 $) (-456 |t#3| |t#1|) (-456 |t#3| $) (-951 |t#3|) (-329 |t#1|) (-10 -8 (-15 -3949 ((-695) $ |t#3|)) (-15 -3949 ((-584 (-695)) $ (-584 |t#3|))) (-15 -3678 ($ $ |t#3| (-695))) (-15 -3678 ($ $ (-584 |t#3|) (-584 (-695)))) (-15 -2822 ((-584 $) $)) (-15 -3084 ((-1086 $) $ |t#3|)) (-15 -3084 ((-1086 |t#1|) $)) (-15 -3083 ((-3 |t#3| "failed") $)) (-15 -2821 ((-695) $ |t#3|)) (-15 -2821 ((-584 (-695)) $ (-584 |t#3|))) (-15 -3764 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |t#3|)) (-15 -2894 ($ $ |t#3| (-695))) (-15 -2894 ($ $ (-584 |t#3|) (-584 (-695)))) (-15 -3085 ($ (-1086 |t#1|) |t#3|)) (-15 -3085 ($ (-1086 $) |t#3|)) (-15 -2823 ((-3 (-584 $) "failed") $)) (-15 -2824 ((-3 (-584 $) "failed") $)) (-15 -2825 ((-3 (-2 (|:| |var| |t#3|) (|:| -2402 (-695))) "failed") $)) (-15 -2820 ((-695) $)) (-15 -2820 ((-695) $ (-584 |t#3|))) (-15 -3082 ((-584 |t#3|) $)) (-15 -2819 ((-584 $) $)) (IF (|has| |t#1| (-554 (-474))) (IF (|has| |t#3| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-485)))) (IF (|has| |t#3| (-554 (-801 (-485)))) (-6 (-554 (-801 (-485)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-330)))) (IF (|has| |t#3| (-554 (-801 (-330)))) (-6 (-554 (-801 (-330)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797 (-485))) (IF (|has| |t#3| (-797 (-485))) (-6 (-797 (-485))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797 (-330))) (IF (|has| |t#3| (-797 (-330))) (-6 (-797 (-330))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3757 ($ $ $ |t#3|)) (-15 -3758 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-6 (-392)) (-15 -2818 ($ $ |t#3|)) (-15 -3504 ($ $)) (-15 -3504 ($ $ |t#3|)) (-15 -3972 ((-348 $) $)) (-15 -3776 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3994)) (-6 -3994) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392))) ((-456 |#3| |#1|) . T) ((-456 |#3| $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-664) . T) ((-807 $ |#3|) . T) ((-810 |#3|) . T) ((-812 |#3|) . T) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ((-822) |has| |#1| (-822)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-951 |#3|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-822))) +((-3082 (((-584 |#2|) |#5|) 40 T ELT)) (-3084 (((-1086 |#5|) |#5| |#2| (-1086 |#5|)) 23 T ELT) (((-350 (-1086 |#5|)) |#5| |#2|) 16 T ELT)) (-3085 ((|#5| (-350 (-1086 |#5|)) |#2|) 30 T ELT)) (-3083 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2824 (((-3 (-584 |#5|) #1#) |#5|) 64 T ELT)) (-2826 (((-3 (-2 (|:| |val| |#5|) (|:| -2402 (-485))) #1#) |#5|) 53 T ELT)) (-2823 (((-3 (-584 |#5|) #1#) |#5|) 66 T ELT)) (-2825 (((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-485))) #1#) |#5|) 56 T ELT))) +(((-863 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3082 ((-584 |#2|) |#5|)) (-15 -3083 ((-3 |#2| #1="failed") |#5|)) (-15 -3084 ((-350 (-1086 |#5|)) |#5| |#2|)) (-15 -3085 (|#5| (-350 (-1086 |#5|)) |#2|)) (-15 -3084 ((-1086 |#5|) |#5| |#2| (-1086 |#5|))) (-15 -2823 ((-3 (-584 |#5|) #1#) |#5|)) (-15 -2824 ((-3 (-584 |#5|) #1#) |#5|)) (-15 -2825 ((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-485))) #1#) |#5|)) (-15 -2826 ((-3 (-2 (|:| |val| |#5|) (|:| -2402 (-485))) #1#) |#5|))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3947 ($ |#4|)) (-15 -2999 (|#4| $)) (-15 -2998 (|#4| $))))) (T -863)) +((-2826 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2402 (-485)))) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) (-2825 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-485)))) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) (-2824 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) (-2823 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) (-3084 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))) (-4 *7 (-862 *6 *5 *4)) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-5 *1 (-863 *5 *4 *6 *7 *3)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1086 *2))) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *2 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))) (-5 *1 (-863 *5 *4 *6 *7 *2)) (-4 *7 (-862 *6 *5 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-350 (-1086 *3))) (-5 *1 (-863 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) (-3083 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-962)) (-4 *6 (-862 *5 *4 *2)) (-4 *2 (-757)) (-5 *1 (-863 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *6)) (-15 -2999 (*6 $)) (-15 -2998 (*6 $))))))) (-3082 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *5)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))))) +((-3959 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) +(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3959 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3840 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695)))))) (T -864)) +((-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-757)) (-4 *8 (-962)) (-4 *6 (-718)) (-4 *2 (-13 (-1014) (-10 -8 (-15 -3840 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695)))))) (-5 *1 (-864 *6 *7 *8 *5 *2)) (-4 *5 (-862 *8 *6 *7))))) +((-2827 (((-2 (|:| -2402 (-695)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) |#3| (-695)) 48 T ELT)) (-2828 (((-2 (|:| -2402 (-695)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) (-350 (-485)) (-695)) 43 T ELT)) (-2830 (((-2 (|:| -2402 (-695)) (|:| -3955 |#4|) (|:| |radicand| (-584 |#4|))) |#4| (-695)) 64 T ELT)) (-2829 (((-2 (|:| -2402 (-695)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) |#5| (-695)) 73 (|has| |#3| (-392)) ELT))) +(((-865 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2827 ((-2 (|:| -2402 (-695)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) |#3| (-695))) (-15 -2828 ((-2 (|:| -2402 (-695)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) (-350 (-485)) (-695))) (IF (|has| |#3| (-392)) (-15 -2829 ((-2 (|:| -2402 (-695)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) |#5| (-695))) |%noBranch|) (-15 -2830 ((-2 (|:| -2402 (-695)) (|:| -3955 |#4|) (|:| |radicand| (-584 |#4|))) |#4| (-695)))) (-718) (-757) (-496) (-862 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3947 ($ |#4|)) (-15 -2999 (|#4| $)) (-15 -2998 (|#4| $))))) (T -865)) +((-2830 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *3 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3955 *3) (|:| |radicand| (-584 *3)))) (-5 *1 (-865 *5 *6 *7 *3 *8)) (-5 *4 (-695)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3947 ($ *3)) (-15 -2999 (*3 $)) (-15 -2998 (*3 $))))))) (-2829 (*1 *2 *3 *4) (-12 (-4 *7 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *8 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3955 *3) (|:| |radicand| *3))) (-5 *1 (-865 *5 *6 *7 *8 *3)) (-5 *4 (-695)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *8)) (-15 -2999 (*8 $)) (-15 -2998 (*8 $))))))) (-2828 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-485))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *8 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3955 *9) (|:| |radicand| *9))) (-5 *1 (-865 *5 *6 *7 *8 *9)) (-5 *4 (-695)) (-4 *9 (-13 (-312) (-10 -8 (-15 -3947 ($ *8)) (-15 -2999 (*8 $)) (-15 -2998 (*8 $))))))) (-2827 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-496)) (-4 *7 (-862 *3 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3955 *8) (|:| |radicand| *8))) (-5 *1 (-865 *5 *6 *3 *7 *8)) (-5 *4 (-695)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))))) +((-2569 (((-85) $ $) NIL T ELT)) (-2831 (($ (-1034)) 8 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 15 T ELT) (((-1034) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 11 T ELT))) +(((-866) (-13 (-1014) (-553 (-1034)) (-10 -8 (-15 -2831 ($ (-1034)))))) (T -866)) +((-2831 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-866))))) +((-2897 (((-1002 (-179)) $) 8 T ELT)) (-2898 (((-1002 (-179)) $) 9 T ELT)) (-2899 (((-584 (-584 (-855 (-179)))) $) 10 T ELT)) (-3947 (((-773) $) 6 T ELT))) +(((-867) (-113)) (T -867)) +((-2899 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-584 (-584 (-855 (-179))))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179))))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179)))))) +(-13 (-553 (-773)) (-10 -8 (-15 -2899 ((-584 (-584 (-855 (-179)))) $)) (-15 -2898 ((-1002 (-179)) $)) (-15 -2897 ((-1002 (-179)) $)))) +(((-553 (-773)) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 80 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 81 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) 32 T ELT)) (-3468 (((-3 $ #1#) $) 43 T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1625 (($ $ |#1| |#2| $) 64 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 18 T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| |#2|) NIL T ELT)) (-2821 ((|#2| $) 25 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2895 (($ $) 29 T ELT)) (-3175 ((|#1| $) 27 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) 52 T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-3739 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-496))) ELT)) (-3467 (((-3 $ #1#) $ $) 92 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-496)) ELT)) (-3949 ((|#2| $) 23 T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) 47 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 42 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3818 (((-584 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ |#2|) 38 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 15 T CONST)) (-1624 (($ $ $ (-695)) 76 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) 86 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 28 T CONST)) (-2667 (($) 12 T CONST)) (-3057 (((-85) $ $) 85 T ELT)) (-3950 (($ $ |#1|) 93 (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 71 T ELT) (($ $ (-695)) 69 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-868 |#1| |#2|) (-13 (-277 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-496)) (IF (|has| |#2| (-104)) (-15 -3739 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3994)) (-6 -3994) |%noBranch|))) (-962) (-717)) (T -868)) +((-3739 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-868 *3 *2)) (-4 *2 (-104)) (-4 *3 (-496)) (-4 *3 (-962)) (-4 *2 (-717))))) +((-2832 (((-3 (-631 |#1|) "failed") |#2| (-831)) 18 T ELT))) +(((-869 |#1| |#2|) (-10 -7 (-15 -2832 ((-3 (-631 |#1|) "failed") |#2| (-831)))) (-496) (-601 |#1|)) (T -869)) +((-2832 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-831)) (-4 *5 (-496)) (-5 *2 (-631 *5)) (-5 *1 (-869 *5 *3)) (-4 *3 (-601 *5))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-757))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 18 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 17 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) 15 T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT)) (-2890 (((-584 |#1|) $) 23 (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-695) |#1|) 14 T ELT)) (-2201 (((-485) $) 10 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) 24 T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 22 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) 19 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 11 T ELT)) (-3801 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 16 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 20 T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 13 T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3958 (((-695) $) 8 T ELT))) +(((-870 |#1|) (-19 |#1|) (-1130)) (T -870)) +NIL +((-3842 (((-870 |#2|) (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|) 16 T ELT)) (-3843 ((|#2| (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|) 18 T ELT)) (-3959 (((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)) 13 T ELT))) +(((-871 |#1| |#2|) (-10 -7 (-15 -3842 ((-870 |#2|) (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|)) (-15 -3843 (|#2| (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|)) (-15 -3959 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)))) (-1130) (-1130)) (T -871)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-870 *6)) (-5 *1 (-871 *5 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-871 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-870 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-870 *5)) (-5 *1 (-871 *6 *5))))) +((-2833 (($ $ (-1005 $)) 7 T ELT) (($ $ (-1091)) 6 T ELT))) +(((-872) (-113)) (T -872)) +((-2833 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-872)))) (-2833 (*1 *1 *1 *2) (-12 (-4 *1 (-872)) (-5 *2 (-1091))))) +(-13 (-10 -8 (-15 -2833 ($ $ (-1091))) (-15 -2833 ($ $ (-1005 $))))) +((-2834 (((-2 (|:| -3955 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091)) (-1091)) 26 T ELT) (((-2 (|:| -3955 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091))) 27 T ELT) (((-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 |#1|))) (-858 |#1|) (-1091) (-858 |#1|) (-1091)) 49 T ELT))) +(((-873 |#1|) (-10 -7 (-15 -2834 ((-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 |#1|))) (-858 |#1|) (-1091) (-858 |#1|) (-1091))) (-15 -2834 ((-2 (|:| -3955 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091)))) (-15 -2834 ((-2 (|:| -3955 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091)) (-1091)))) (-13 (-312) (-120))) (T -873)) +((-2834 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-5 *5 (-1091)) (-4 *6 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3955 (-584 (-485))) (|:| |poly| (-584 (-1086 *6))) (|:| |prim| (-1086 *6)))) (-5 *1 (-873 *6)))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3955 (-584 (-485))) (|:| |poly| (-584 (-1086 *5))) (|:| |prim| (-1086 *5)))) (-5 *1 (-873 *5)))) (-2834 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1091)) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 *5)))) (-5 *1 (-873 *5))))) +((-2837 (((-584 |#1|) |#1| |#1|) 47 T ELT)) (-3724 (((-85) |#1|) 44 T ELT)) (-2836 ((|#1| |#1|) 80 T ELT)) (-2835 ((|#1| |#1|) 79 T ELT))) +(((-874 |#1|) (-10 -7 (-15 -3724 ((-85) |#1|)) (-15 -2835 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2837 ((-584 |#1|) |#1| |#1|))) (-484)) (T -874)) +((-2837 (*1 *2 *3 *3) (-12 (-5 *2 (-584 *3)) (-5 *1 (-874 *3)) (-4 *3 (-484)))) (-2836 (*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484)))) (-2835 (*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484)))) (-3724 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-874 *3)) (-4 *3 (-484))))) +((-2838 (((-1186) (-773)) 9 T ELT))) +(((-875) (-10 -7 (-15 -2838 ((-1186) (-773))))) (T -875)) +((-2838 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-875))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-2484 (($ $ $) 65 (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) ELT)) (-1313 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-3137 (((-695)) 36 (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-2839 ((|#2| $) 22 T ELT)) (-2840 ((|#1| $) 21 T ELT)) (-3725 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) CONST)) (-3468 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (-2995 (($) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3187 (((-85) $) NIL (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) ELT)) (-1215 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-2411 (((-85) $) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (-2532 (($ $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2858 (($ $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2841 (($ |#1| |#2|) 20 T ELT)) (-2011 (((-831) $) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 39 (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-2401 (($ (-831)) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3010 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-2436 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-3947 (((-773) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) CONST)) (-2667 (($) 25 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) CONST)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-3057 (((-85) $ $) 19 T ELT)) (-2685 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2686 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-3950 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-3838 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3840 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (** (($ $ (-485)) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT) (($ $ (-695)) 32 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT) (($ $ (-831)) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (* (($ (-485) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-695) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT) (($ (-831) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT))) +(((-876 |#1| |#2|) (-13 (-1014) (-10 -8 (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-664)) (IF (|has| |#2| (-664)) (-6 (-664)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-413)) (IF (|has| |#2| (-413)) (-6 (-413)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-718)) (IF (|has| |#2| (-718)) (-6 (-718)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-757)) (IF (|has| |#2| (-757)) (-6 (-757)) |%noBranch|) |%noBranch|) (-15 -2841 ($ |#1| |#2|)) (-15 -2840 (|#1| $)) (-15 -2839 (|#2| $)))) (-1014) (-1014)) (T -876)) +((-2841 (*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-2840 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1014)))) (-2839 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1014))))) +((-3403 (((-1016) $) 13 T ELT)) (-2842 (($ (-447) (-1016)) 15 T ELT)) (-3543 (((-447) $) 11 T ELT)) (-3947 (((-773) $) 25 T ELT))) +(((-877) (-13 (-553 (-773)) (-10 -8 (-15 -3543 ((-447) $)) (-15 -3403 ((-1016) $)) (-15 -2842 ($ (-447) (-1016)))))) (T -877)) +((-3543 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-877)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-877)))) (-2842 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-877))))) +((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 29 T ELT)) (-2856 (($) 17 T CONST)) (-2562 (($ $ $) NIL T ELT)) (-2561 (($ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2847 (((-633 (-783 $ $)) $) 62 T ELT)) (-2849 (((-633 $) $) 52 T ELT)) (-2846 (((-633 (-783 $ $)) $) 63 T ELT)) (-2845 (((-633 (-783 $ $)) $) 64 T ELT)) (-2850 (((-633 |#1|) $) 43 T ELT)) (-2848 (((-633 (-783 $ $)) $) 61 T ELT)) (-2854 (($ $ $) 38 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2855 (($) 16 T CONST)) (-2853 (($ $ $) 39 T ELT)) (-2843 (($ $ $) 36 T ELT)) (-2844 (($ $ $) 34 T ELT)) (-3947 (((-773) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2312 (($ $ $) 37 T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) 35 T ELT))) +(((-878 |#1|) (-13 (-881) (-556 |#1|) (-10 -8 (-15 -2850 ((-633 |#1|) $)) (-15 -2849 ((-633 $) $)) (-15 -2848 ((-633 (-783 $ $)) $)) (-15 -2847 ((-633 (-783 $ $)) $)) (-15 -2846 ((-633 (-783 $ $)) $)) (-15 -2845 ((-633 (-783 $ $)) $)) (-15 -2844 ($ $ $)) (-15 -2843 ($ $ $)))) (-1014)) (T -878)) +((-2850 (*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-633 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2844 (*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014)))) (-2843 (*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014))))) +((-3650 (((-878 |#1|) (-878 |#1|)) 46 T ELT)) (-2852 (((-878 |#1|) (-878 |#1|)) 22 T ELT)) (-2851 (((-1010 |#1|) (-878 |#1|)) 41 T ELT))) +(((-879 |#1|) (-13 (-1130) (-10 -7 (-15 -2852 ((-878 |#1|) (-878 |#1|))) (-15 -2851 ((-1010 |#1|) (-878 |#1|))) (-15 -3650 ((-878 |#1|) (-878 |#1|))))) (-1014)) (T -879)) +((-2852 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-878 *4)) (-4 *4 (-1014)) (-5 *2 (-1010 *4)) (-5 *1 (-879 *4)))) (-3650 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3))))) +((-3959 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 29 T ELT))) +(((-880 |#1| |#2|) (-13 (-1130) (-10 -7 (-15 -3959 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|))))) (-1014) (-1014)) (T -880)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-878 *6)) (-5 *1 (-880 *5 *6))))) +((-2569 (((-85) $ $) 19 T ELT)) (-2314 (($ $) 8 T ELT)) (-2856 (($) 17 T CONST)) (-2562 (($ $ $) 9 T ELT)) (-2561 (($ $) 11 T ELT)) (-3243 (((-1074) $) 23 T ELT)) (-2854 (($ $ $) 15 T ELT)) (-3244 (((-1034) $) 22 T ELT)) (-2855 (($) 16 T CONST)) (-2853 (($ $ $) 14 T ELT)) (-3947 (((-773) $) 21 T ELT)) (-1266 (((-85) $ $) 20 T ELT)) (-2563 (($ $ $) 10 T ELT)) (-2312 (($ $ $) 6 T ELT)) (-3057 (((-85) $ $) 18 T ELT)) (-2313 (($ $ $) 7 T ELT))) +(((-881) (-113)) (T -881)) +((-2856 (*1 *1) (-4 *1 (-881))) (-2855 (*1 *1) (-4 *1 (-881))) (-2854 (*1 *1 *1 *1) (-4 *1 (-881))) (-2853 (*1 *1 *1 *1) (-4 *1 (-881)))) +(-13 (-84) (-1014) (-10 -8 (-15 -2856 ($) -3953) (-15 -2855 ($) -3953) (-15 -2854 ($ $ $)) (-15 -2853 ($ $ $)))) +(((-72) . T) ((-84) . T) ((-553 (-773)) . T) ((-13) . T) ((-605) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3725 (($) 7 T CONST)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2857 (($ $ $) 48 T ELT)) (-3519 (($ $ $) 49 T ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2858 ((|#1| $) 50 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-1947 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-882 |#1|) (-113) (-757)) (T -882)) +((-2858 (*1 *2 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))) (-3519 (*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))) (-2857 (*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757))))) +(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -2858 (|t#1| $)) (-15 -3519 ($ $ $)) (-15 -2857 ($ $ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) +((-2870 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3145 |#2|)) |#2| |#2|) 105 T ELT)) (-3756 ((|#2| |#2| |#2|) 103 T ELT)) (-2871 (((-2 (|:| |coef2| |#2|) (|:| -3145 |#2|)) |#2| |#2|) 107 T ELT)) (-2872 (((-2 (|:| |coef1| |#2|) (|:| -3145 |#2|)) |#2| |#2|) 109 T ELT)) (-2879 (((-2 (|:| |coef2| |#2|) (|:| -2877 |#1|)) |#2| |#2|) 132 (|has| |#1| (-392)) ELT)) (-2886 (((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|) 56 T ELT)) (-2860 (((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|) 80 T ELT)) (-2861 (((-2 (|:| |coef1| |#2|) (|:| -3757 |#1|)) |#2| |#2|) 82 T ELT)) (-2869 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2864 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 89 T ELT)) (-2874 (((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2|) 121 T ELT)) (-2867 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 92 T ELT)) (-2876 (((-584 (-695)) |#2| |#2|) 102 T ELT)) (-2884 ((|#1| |#2| |#2|) 50 T ELT)) (-2878 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2877 |#1|)) |#2| |#2|) 130 (|has| |#1| (-392)) ELT)) (-2877 ((|#1| |#2| |#2|) 128 (|has| |#1| (-392)) ELT)) (-2885 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|) 54 T ELT)) (-2859 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|) 79 T ELT)) (-3757 ((|#1| |#2| |#2|) 76 T ELT)) (-3753 (((-2 (|:| -3955 |#1|) (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2|) 41 T ELT)) (-2883 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2868 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3191 ((|#2| |#2| |#2|) 93 T ELT)) (-2863 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 87 T ELT)) (-2862 ((|#2| |#2| |#2| (-695)) 85 T ELT)) (-3145 ((|#2| |#2| |#2|) 136 (|has| |#1| (-392)) ELT)) (-3467 (((-1180 |#2|) (-1180 |#2|) |#1|) 22 T ELT)) (-2880 (((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2|) 46 T ELT)) (-2873 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2|) 119 T ELT)) (-3758 ((|#1| |#2|) 116 T ELT)) (-2866 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 91 T ELT)) (-2865 ((|#2| |#2| |#2| (-695)) 90 T ELT)) (-2875 (((-584 |#2|) |#2| |#2|) 99 T ELT)) (-2882 ((|#2| |#2| |#1| |#1| (-695)) 62 T ELT)) (-2881 ((|#1| |#1| |#1| (-695)) 61 T ELT)) (* (((-1180 |#2|) |#1| (-1180 |#2|)) 17 T ELT))) +(((-883 |#1| |#2|) (-10 -7 (-15 -3757 (|#1| |#2| |#2|)) (-15 -2859 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|)) (-15 -2860 ((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|)) (-15 -2861 ((-2 (|:| |coef1| |#2|) (|:| -3757 |#1|)) |#2| |#2|)) (-15 -2862 (|#2| |#2| |#2| (-695))) (-15 -2863 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2864 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2865 (|#2| |#2| |#2| (-695))) (-15 -2866 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2867 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -3191 (|#2| |#2| |#2|)) (-15 -2868 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2869 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3756 (|#2| |#2| |#2|)) (-15 -2870 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3145 |#2|)) |#2| |#2|)) (-15 -2871 ((-2 (|:| |coef2| |#2|) (|:| -3145 |#2|)) |#2| |#2|)) (-15 -2872 ((-2 (|:| |coef1| |#2|) (|:| -3145 |#2|)) |#2| |#2|)) (-15 -3758 (|#1| |#2|)) (-15 -2873 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2|)) (-15 -2874 ((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2|)) (-15 -2875 ((-584 |#2|) |#2| |#2|)) (-15 -2876 ((-584 (-695)) |#2| |#2|)) (IF (|has| |#1| (-392)) (PROGN (-15 -2877 (|#1| |#2| |#2|)) (-15 -2878 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2877 |#1|)) |#2| |#2|)) (-15 -2879 ((-2 (|:| |coef2| |#2|) (|:| -2877 |#1|)) |#2| |#2|)) (-15 -3145 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1180 |#2|) |#1| (-1180 |#2|))) (-15 -3467 ((-1180 |#2|) (-1180 |#2|) |#1|)) (-15 -3753 ((-2 (|:| -3955 |#1|) (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2|)) (-15 -2880 ((-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) |#2| |#2|)) (-15 -2881 (|#1| |#1| |#1| (-695))) (-15 -2882 (|#2| |#2| |#1| |#1| (-695))) (-15 -2883 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2884 (|#1| |#2| |#2|)) (-15 -2885 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|)) (-15 -2886 ((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|))) (-496) (-1156 |#1|)) (T -883)) +((-2886 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2885 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2884 (*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) (-2883 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2882 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2881 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *2 (-496)) (-5 *1 (-883 *2 *4)) (-4 *4 (-1156 *2)))) (-2880 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3753 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -3955 *4) (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3467 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) (-5 *1 (-883 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) (-5 *1 (-883 *3 *4)))) (-3145 (*1 *2 *2 *2) (-12 (-4 *3 (-392)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2877 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2877 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-4 *2 (-392)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-695))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2875 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2874 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3758 (*1 *2 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) (-2872 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3145 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3145 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3145 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3756 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2869 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2868 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3191 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2867 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2866 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2865 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4)))) (-2864 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2863 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2862 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4)))) (-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3757 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2860 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2859 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3757 (*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3319 (((-1131) $) 14 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3207 (((-1050) $) 11 T ELT)) (-3947 (((-773) $) 21 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-884) (-13 (-996) (-10 -8 (-15 -3207 ((-1050) $)) (-15 -3319 ((-1131) $))))) (T -884)) +((-3207 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-884)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-884))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 40 T ELT)) (-1313 (((-3 $ "failed") $ $) 54 T ELT)) (-3725 (($) NIL T CONST)) (-2888 (((-584 (-783 (-831) (-831))) $) 64 T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2887 (((-831) $) 91 T ELT)) (-2890 (((-584 (-831)) $) 17 T ELT)) (-2889 (((-1070 $) (-695)) 39 T ELT)) (-2891 (($ (-584 (-831))) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3010 (($ $) 67 T ELT)) (-3947 (((-773) $) 87 T ELT) (((-584 (-831)) $) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) 10 T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 44 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 42 T ELT)) (-3840 (($ $ $) 46 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 49 T ELT)) (-3958 (((-695) $) 22 T ELT))) +(((-885) (-13 (-722) (-553 (-584 (-831))) (-10 -8 (-15 -2891 ($ (-584 (-831)))) (-15 -2890 ((-584 (-831)) $)) (-15 -3958 ((-695) $)) (-15 -2889 ((-1070 $) (-695))) (-15 -2888 ((-584 (-783 (-831) (-831))) $)) (-15 -2887 ((-831) $)) (-15 -3010 ($ $))))) (T -885)) +((-2891 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-885)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1070 (-885))) (-5 *1 (-885)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-831) (-831)))) (-5 *1 (-885)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-885)))) (-3010 (*1 *1 *1) (-5 *1 (-885)))) +((-3950 (($ $ |#2|) 31 T ELT)) (-3838 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-350 (-485)) $) 27 T ELT) (($ $ (-350 (-485))) 29 T ELT))) +(((-886 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3950 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-887 |#2| |#3| |#4|) (-962) (-717) (-757)) (T -886)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 |#3|) $) 95 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2893 (((-85) $) 94 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| |#2|) 81 T ELT) (($ $ |#3| |#2|) 97 T ELT) (($ $ (-584 |#3|) (-584 |#2|)) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3949 ((|#2| $) 84 T ELT)) (-2892 (($ $) 93 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3678 ((|#1| $ |#2|) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-887 |#1| |#2| |#3|) (-113) (-962) (-717) (-757)) (T -887)) +((-3175 (*1 *2 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *3 (-717)) (-4 *4 (-757)) (-4 *2 (-962)))) (-2895 (*1 *1 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *2 (-717)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-887 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-717)) (-4 *2 (-757)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 *5)) (-4 *1 (-887 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-717)) (-4 *6 (-757)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) (-5 *2 (-584 *5)))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) (-5 *2 (-85)))) (-2892 (*1 *1 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2894 ($ $ |t#3| |t#2|)) (-15 -2894 ($ $ (-584 |t#3|) (-584 |t#2|))) (-15 -2895 ($ $)) (-15 -3175 (|t#1| $)) (-15 -3949 (|t#2| $)) (-15 -3082 ((-584 |t#3|) $)) (-15 -2893 ((-85) $)) (-15 -2892 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-246) |has| |#1| (-496)) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2896 (((-1002 (-179)) $) 8 T ELT)) (-2897 (((-1002 (-179)) $) 9 T ELT)) (-2898 (((-1002 (-179)) $) 10 T ELT)) (-2899 (((-584 (-584 (-855 (-179)))) $) 11 T ELT)) (-3947 (((-773) $) 6 T ELT))) +(((-888) (-113)) (T -888)) +((-2899 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-584 (-584 (-855 (-179))))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179)))))) +(-13 (-553 (-773)) (-10 -8 (-15 -2899 ((-584 (-584 (-855 (-179)))) $)) (-15 -2898 ((-1002 (-179)) $)) (-15 -2897 ((-1002 (-179)) $)) (-15 -2896 ((-1002 (-179)) $)))) +(((-553 (-773)) . T)) +((-3082 (((-584 |#4|) $) 23 T ELT)) (-2909 (((-85) $) 55 T ELT)) (-2900 (((-85) $) 54 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2905 (((-85) $) 56 T ELT)) (-2907 (((-85) $ $) 62 T ELT)) (-2906 (((-85) $ $) 65 T ELT)) (-2908 (((-85) $) 60 T ELT)) (-2901 (((-584 |#5|) (-584 |#5|) $) 98 T ELT)) (-2902 (((-584 |#5|) (-584 |#5|) $) 95 T ELT)) (-2903 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2915 (((-584 |#4|) $) 27 T ELT)) (-2914 (((-85) |#4| $) 34 T ELT)) (-2904 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2911 (($ $ |#4|) 39 T ELT)) (-2913 (($ $ |#4|) 38 T ELT)) (-2912 (($ $ |#4|) 40 T ELT)) (-3057 (((-85) $ $) 46 T ELT))) +(((-889 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2900 ((-85) |#1|)) (-15 -2901 ((-584 |#5|) (-584 |#5|) |#1|)) (-15 -2902 ((-584 |#5|) (-584 |#5|) |#1|)) (-15 -2903 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2904 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2905 ((-85) |#1|)) (-15 -2906 ((-85) |#1| |#1|)) (-15 -2907 ((-85) |#1| |#1|)) (-15 -2908 ((-85) |#1|)) (-15 -2909 ((-85) |#1|)) (-15 -2910 ((-2 (|:| |under| |#1|) (|:| -3131 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2911 (|#1| |#1| |#4|)) (-15 -2912 (|#1| |#1| |#4|)) (-15 -2913 (|#1| |#1| |#4|)) (-15 -2914 ((-85) |#4| |#1|)) (-15 -2915 ((-584 |#4|) |#1|)) (-15 -3082 ((-584 |#4|) |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-890 |#2| |#3| |#4| |#5|) (-962) (-718) (-757) (-978 |#2| |#3| |#4|)) (T -889)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3082 (((-584 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 54 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3157 (($ (-584 |#4|)) 40 T ELT)) (-1354 (($ $) 70 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#4| $) 69 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3996)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3996)) ELT)) (-2890 (((-584 |#4|) $) 57 (|has| $ (-6 -3996)) ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-584 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2915 (((-584 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3769 (($ $ (-584 |#4|) (-584 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 50 T ELT)) (-3404 (((-85) $) 53 T ELT)) (-3566 (($) 52 T ELT)) (-1947 (((-695) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3401 (($ $) 51 T ELT)) (-3973 (((-474) $) 71 (|has| |#4| (-554 (-474))) ELT)) (-3531 (($ (-584 |#4|)) 62 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3947 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3958 (((-695) $) 43 T ELT))) +(((-890 |#1| |#2| |#3| |#4|) (-113) (-962) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -890)) +((-3158 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) (-3157 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-978 *3 *4 *2)) (-4 *2 (-757)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) (-2915 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) (-2914 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85)))) (-2913 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-978 *3 *4 *2)))) (-2912 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-978 *3 *4 *2)))) (-2911 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-978 *3 *4 *2)))) (-2910 (*1 *2 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3131 *1) (|:| |upper| *1))) (-4 *1 (-890 *4 *5 *3 *6)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2907 (*1 *2 *1 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2906 (*1 *2 *1 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2904 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2903 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2902 (*1 *2 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))) (-2901 (*1 *2 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) +(-13 (-1014) (-124 |t#4|) (-318 |t#4|) (-553 (-584 |t#4|)) (-10 -8 (-15 -3158 ((-3 $ "failed") (-584 |t#4|))) (-15 -3157 ($ (-584 |t#4|))) (-15 -3181 (|t#3| $)) (-15 -3082 ((-584 |t#3|) $)) (-15 -2915 ((-584 |t#3|) $)) (-15 -2914 ((-85) |t#3| $)) (-15 -2913 ($ $ |t#3|)) (-15 -2912 ($ $ |t#3|)) (-15 -2911 ($ $ |t#3|)) (-15 -2910 ((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |t#3|)) (-15 -2909 ((-85) $)) (IF (|has| |t#1| (-496)) (PROGN (-15 -2908 ((-85) $)) (-15 -2907 ((-85) $ $)) (-15 -2906 ((-85) $ $)) (-15 -2905 ((-85) $)) (-15 -2904 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2903 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2902 ((-584 |t#4|) (-584 |t#4|) $)) (-15 -2901 ((-584 |t#4|) (-584 |t#4|) $)) (-15 -2900 ((-85) $))) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-2917 (((-584 |#4|) |#4| |#4|) 135 T ELT)) (-2940 (((-584 |#4|) (-584 |#4|) (-85)) 123 (|has| |#1| (-392)) ELT) (((-584 |#4|) (-584 |#4|)) 124 (|has| |#1| (-392)) ELT)) (-2927 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 44 T ELT)) (-2926 (((-85) |#4|) 43 T ELT)) (-2939 (((-584 |#4|) |#4|) 120 (|has| |#1| (-392)) ELT)) (-2922 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-1 (-85) |#4|) (-584 |#4|)) 24 T ELT)) (-2923 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|)) 30 T ELT)) (-2924 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|)) 31 T ELT)) (-2935 (((-3 (-2 (|:| |bas| (-416 |#1| |#2| |#3| |#4|)) (|:| -3324 (-584 |#4|))) "failed") (-584 |#4|)) 90 T ELT)) (-2937 (((-584 |#4|) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2938 (((-584 |#4|) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2916 (((-584 |#4|) (-584 |#4|)) 126 T ELT)) (-2932 (((-584 |#4|) (-584 |#4|) (-584 |#4|) (-85)) 59 T ELT) (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 61 T ELT)) (-2933 ((|#4| |#4| (-584 |#4|)) 60 T ELT)) (-2941 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 131 (|has| |#1| (-392)) ELT)) (-2943 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 134 (|has| |#1| (-392)) ELT)) (-2942 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 133 (|has| |#1| (-392)) ELT)) (-2918 (((-584 |#4|) (-584 |#4|) (-584 |#4|) (-1 (-584 |#4|) (-584 |#4|))) 105 T ELT) (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 107 T ELT) (((-584 |#4|) (-584 |#4|) |#4|) 139 T ELT) (((-584 |#4|) |#4| |#4|) 136 T ELT) (((-584 |#4|) (-584 |#4|)) 106 T ELT)) (-2946 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2925 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 52 T ELT)) (-2921 (((-85) (-584 |#4|)) 79 T ELT)) (-2920 (((-85) (-584 |#4|) (-584 (-584 |#4|))) 67 T ELT)) (-2929 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 37 T ELT)) (-2928 (((-85) |#4|) 36 T ELT)) (-2945 (((-584 |#4|) (-584 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2944 (((-584 |#4|) (-584 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2934 (((-584 |#4|) (-584 |#4|)) 83 T ELT)) (-2936 (((-584 |#4|) (-584 |#4|)) 97 T ELT)) (-2919 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-2931 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 50 T ELT)) (-2930 (((-85) |#4|) 45 T ELT))) +(((-891 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2918 ((-584 |#4|) (-584 |#4|))) (-15 -2918 ((-584 |#4|) |#4| |#4|)) (-15 -2916 ((-584 |#4|) (-584 |#4|))) (-15 -2917 ((-584 |#4|) |#4| |#4|)) (-15 -2918 ((-584 |#4|) (-584 |#4|) |#4|)) (-15 -2918 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2918 ((-584 |#4|) (-584 |#4|) (-584 |#4|) (-1 (-584 |#4|) (-584 |#4|)))) (-15 -2919 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -2920 ((-85) (-584 |#4|) (-584 (-584 |#4|)))) (-15 -2921 ((-85) (-584 |#4|))) (-15 -2922 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-1 (-85) |#4|) (-584 |#4|))) (-15 -2923 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|))) (-15 -2924 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|))) (-15 -2925 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2926 ((-85) |#4|)) (-15 -2927 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2928 ((-85) |#4|)) (-15 -2929 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2930 ((-85) |#4|)) (-15 -2931 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2932 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2932 ((-584 |#4|) (-584 |#4|) (-584 |#4|) (-85))) (-15 -2933 (|#4| |#4| (-584 |#4|))) (-15 -2934 ((-584 |#4|) (-584 |#4|))) (-15 -2935 ((-3 (-2 (|:| |bas| (-416 |#1| |#2| |#3| |#4|)) (|:| -3324 (-584 |#4|))) "failed") (-584 |#4|))) (-15 -2936 ((-584 |#4|) (-584 |#4|))) (-15 -2937 ((-584 |#4|) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2938 ((-584 |#4|) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-392)) (PROGN (-15 -2939 ((-584 |#4|) |#4|)) (-15 -2940 ((-584 |#4|) (-584 |#4|))) (-15 -2940 ((-584 |#4|) (-584 |#4|) (-85))) (-15 -2941 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2942 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2943 ((-584 |#4|) (-584 |#4|) (-584 |#4|)))) |%noBranch|) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (PROGN (-15 -2944 ((-584 |#4|) (-584 |#4|))) (-15 -2945 ((-584 |#4|) (-584 |#4|))) (-15 -2946 ((-584 |#4|) (-584 |#4|) (-584 |#4|)))) |%noBranch|) |%noBranch|)) (-496) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -891)) +((-2946 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2945 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2944 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2943 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2942 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2941 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2940 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2940 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2939 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2938 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-891 *5 *6 *7 *8)))) (-2937 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-584 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *1 (-891 *6 *7 *8 *9)))) (-2936 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2935 (*1 *2 *3) (|partial| -12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-416 *4 *5 *6 *7)) (|:| -3324 (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2933 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *2)))) (-2932 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2932 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2931 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2926 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2921 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *5 *6 *7 *8)))) (-2919 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2918 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-584 *7) (-584 *7))) (-5 *2 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2918 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2918 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *3)))) (-2917 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2916 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2918 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2918 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) +((-2947 (((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2949 (((-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|)) 45 T ELT)) (-2948 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT))) +(((-892 |#1|) (-10 -7 (-15 -2947 ((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2948 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2949 ((-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|)))) (-312)) (T -892)) +((-2949 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5))))) (-5 *1 (-892 *5)) (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)))) (-2948 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-631 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-892 *5)))) (-2947 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) (-5 *2 (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6)))) (-5 *1 (-892 *6)) (-5 *3 (-631 *6))))) +((-3972 (((-348 |#4|) |#4|) 61 T ELT))) +(((-893 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 ((-348 |#4|) |#4|))) (-757) (-718) (-392) (-862 |#3| |#2| |#1|)) (T -893)) +((-3972 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-392)) (-5 *2 (-348 *3)) (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))) +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3839 (($ (-695)) 123 (|has| |#1| (-23)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-757)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3997)) ELT) (($ $) 98 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3997))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-757)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2298 (($ $) 100 (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) 110 T ELT)) (-1354 (($ $) 84 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#1| $) 83 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) 55 T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) 107 T ELT) (((-485) |#1| $) 106 (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) 105 (|has| |#1| (-1014)) ELT)) (-3707 (($ (-584 |#1|)) 129 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3836 (((-631 |#1|) $ $) 116 (|has| |#1| (-962)) ELT)) (-3615 (($ (-695) |#1|) 74 T ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 93 (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3833 ((|#1| $) 113 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3834 ((|#1| $) 114 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) 46 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2200 (($ $ |#1|) 45 (|has| $ (-6 -3997)) ELT)) (-3770 (($ $ (-584 |#1|)) 127 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-3837 ((|#1| $ $) 117 (|has| |#1| (-962)) ELT)) (-3912 (((-831) $) 128 T ELT)) (-2306 (($ $ (-485)) 68 T ELT) (($ $ (-1147 (-485))) 67 T ELT)) (-3835 (($ $ $) 115 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 T ELT) (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-1732 (($ $ $ (-485)) 101 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 85 (|has| |#1| (-554 (-474))) ELT) (($ (-584 |#1|)) 130 T ELT)) (-3531 (($ (-584 |#1|)) 76 T ELT)) (-3803 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2567 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 97 (|has| |#1| (-757)) ELT)) (-3838 (($ $) 122 (|has| |#1| (-21)) ELT) (($ $ $) 121 (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) 124 (|has| |#1| (-25)) ELT)) (* (($ (-485) $) 120 (|has| |#1| (-21)) ELT) (($ |#1| $) 119 (|has| |#1| (-664)) ELT) (($ $ |#1|) 118 (|has| |#1| (-664)) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-894 |#1|) (-113) (-962)) (T -894)) +((-3707 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-894 *3)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-4 *3 (-962)) (-5 *2 (-831)))) (-3835 (*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-962)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-894 *3)) (-4 *3 (-962))))) +(-13 (-1179 |t#1|) (-558 (-584 |t#1|)) (-10 -8 (-15 -3707 ($ (-584 |t#1|))) (-15 -3912 ((-831) $)) (-15 -3835 ($ $ $)) (-15 -3770 ($ $ (-584 |t#1|))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-558 (-584 |#1|)) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1130) . T) ((-1179 |#1|) . T)) +((-3959 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 17 T ELT))) +(((-895 |#1| |#2|) (-10 -7 (-15 -3959 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)))) (-962) (-962)) (T -895)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-855 *6)) (-5 *1 (-895 *5 *6))))) +((-2952 ((|#1| (-855 |#1|)) 14 T ELT)) (-2951 ((|#1| (-855 |#1|)) 13 T ELT)) (-2950 ((|#1| (-855 |#1|)) 12 T ELT)) (-2954 ((|#1| (-855 |#1|)) 16 T ELT)) (-2958 ((|#1| (-855 |#1|)) 24 T ELT)) (-2953 ((|#1| (-855 |#1|)) 15 T ELT)) (-2955 ((|#1| (-855 |#1|)) 17 T ELT)) (-2957 ((|#1| (-855 |#1|)) 23 T ELT)) (-2956 ((|#1| (-855 |#1|)) 22 T ELT))) +(((-896 |#1|) (-10 -7 (-15 -2950 (|#1| (-855 |#1|))) (-15 -2951 (|#1| (-855 |#1|))) (-15 -2952 (|#1| (-855 |#1|))) (-15 -2953 (|#1| (-855 |#1|))) (-15 -2954 (|#1| (-855 |#1|))) (-15 -2955 (|#1| (-855 |#1|))) (-15 -2956 (|#1| (-855 |#1|))) (-15 -2957 (|#1| (-855 |#1|))) (-15 -2958 (|#1| (-855 |#1|)))) (-962)) (T -896)) +((-2958 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) +((-2976 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2978 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2959 (((-3 |#1| "failed") |#1| (-695)) 1 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2960 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2977 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2975 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2984 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2985 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2983 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 11 T ELT))) +(((-897 |#1|) (-113) (-1116)) (T -897)) +((-2985 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2984 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2983 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2960 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2959 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(-13 (-10 -7 (-15 -2959 ((-3 |t#1| "failed") |t#1| (-695))) (-15 -2960 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|)) (-15 -2983 ((-3 |t#1| "failed") |t#1|)) (-15 -2984 ((-3 |t#1| "failed") |t#1|)) (-15 -2985 ((-3 |t#1| "failed") |t#1|)))) +((-2987 ((|#4| |#4| (-584 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2986 ((|#4| |#4| (-584 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3959 ((|#4| (-1 |#4| (-858 |#1|)) |#4|) 33 T ELT))) +(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2986 (|#4| |#4| |#3|)) (-15 -2986 (|#4| |#4| (-584 |#3|))) (-15 -2987 (|#4| |#4| |#3|)) (-15 -2987 (|#4| |#4| (-584 |#3|))) (-15 -3959 (|#4| (-1 |#4| (-858 |#1|)) |#4|))) (-962) (-718) (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091))))) (-862 (-858 |#1|) |#2| |#3|)) (T -898)) +((-3959 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-858 *4))) (-4 *4 (-962)) (-4 *2 (-862 (-858 *4) *5 *6)) (-4 *5 (-718)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ #1="failed") (-1091)))))) (-5 *1 (-898 *4 *5 *6 *2)))) (-2987 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ #1#) (-1091)))))) (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *2 (-862 (-858 *4) *5 *6)))) (-2987 (*1 *2 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ #1#) (-1091)))))) (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))) (-2986 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ #1#) (-1091)))))) (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *2 (-862 (-858 *4) *5 *6)))) (-2986 (*1 *2 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ #1#) (-1091)))))) (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3))))) +((-2988 ((|#2| |#3|) 35 T ELT)) (-3920 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 79 T ELT)) (-3919 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 100 T ELT))) +(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3919 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3920 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|)) (-15 -2988 (|#2| |#3|))) (-299) (-1156 |#1|) (-1156 |#2|) (-662 |#2| |#3|)) (T -899)) +((-2988 (*1 *2 *3) (-12 (-4 *3 (-1156 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-899 *4 *2 *3 *5)) (-4 *4 (-299)) (-4 *5 (-662 *2 *3)))) (-3920 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-899 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5)))) (-3919 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3402 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3650 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2992 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2993 (($ (-584 |#4|) |#4|) 25 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2989 (($ $) 69 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3404 (((-85) $) 70 T ELT)) (-3566 (($) 30 T ELT)) (-2990 ((|#4| $) 74 T ELT)) (-2991 (((-584 |#4|) $) 73 T ELT)) (-3947 (((-773) $) 68 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-900 |#1| |#2| |#3| |#4|) (-13 (-1014) (-553 (-773)) (-10 -8 (-15 -3566 ($)) (-15 -2993 ($ (-584 |#4|) |#4|)) (-15 -3402 ((-3 (-85) #1="failed") $)) (-15 -2992 ($ $ (-3 (-85) #1#))) (-15 -3404 ((-85) $)) (-15 -2991 ((-584 |#4|) $)) (-15 -2990 (|#4| $)) (-15 -2989 ($ $)) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (-15 -3650 ($ $)) |%noBranch|) |%noBranch|))) (-392) (-757) (-718) (-862 |#1| |#3| |#2|)) (T -900)) +((-3566 (*1 *1) (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) (-2993 (*1 *1 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-862 *4 *6 *5)) (-4 *4 (-392)) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *1 (-900 *4 *5 *6 *3)))) (-3402 (*1 *2 *1) (|partial| -12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2992 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-3404 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2991 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-584 *6)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2990 (*1 *2 *1) (-12 (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)))) (-2989 (*1 *1 *1) (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) (-3650 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3))))) +((-2994 (((-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485)))) (-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485))))) 82 T ELT))) +(((-901 |#1| |#2|) (-10 -7 (-15 -2994 ((-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485)))) (-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485))))))) (-584 (-1091)) (-695)) (T -901)) +((-2994 (*1 *2 *2) (-12 (-5 *2 (-900 (-350 (-485)) (-774 *3) (-197 *4 (-695)) (-206 *3 (-350 (-485))))) (-14 *3 (-584 (-1091))) (-14 *4 (-695)) (-5 *1 (-901 *3 *4))))) +((-3270 (((-85) |#5| |#5|) 44 T ELT)) (-3273 (((-85) |#5| |#5|) 59 T ELT)) (-3278 (((-85) |#5| (-584 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3274 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-3280 (((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 70 T ELT)) (-3269 (((-1186)) 32 T ELT)) (-3268 (((-1186) (-1074) (-1074) (-1074)) 28 T ELT)) (-3279 (((-584 |#5|) (-584 |#5|)) 100 T ELT)) (-3281 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) 92 T ELT)) (-3282 (((-584 (-2 (|:| -3267 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85)) 122 T ELT)) (-3272 (((-85) |#5| |#5|) 53 T ELT)) (-3277 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3275 (((-85) (-584 |#4|) (-584 |#4|)) 64 T ELT)) (-3276 (((-85) (-584 |#4|) (-584 |#4|)) 66 T ELT)) (-3700 (((-85) (-584 |#4|) (-584 |#4|)) 67 T ELT)) (-3283 (((-3 (-2 (|:| -3267 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3271 (((-584 |#5|) (-584 |#5|)) 49 T ELT))) +(((-902 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3268 ((-1186) (-1074) (-1074) (-1074))) (-15 -3269 ((-1186))) (-15 -3270 ((-85) |#5| |#5|)) (-15 -3271 ((-584 |#5|) (-584 |#5|))) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-85) |#5| |#5|)) (-15 -3274 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3275 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3276 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3700 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3277 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3278 ((-85) |#5| |#5|)) (-15 -3278 ((-85) |#5| (-584 |#5|))) (-15 -3279 ((-584 |#5|) (-584 |#5|))) (-15 -3280 ((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-15 -3281 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-15 -3282 ((-584 (-2 (|:| -3267 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3283 ((-3 (-2 (|:| -3267 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -902)) +((-3283 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| -3267 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9)))) (-5 *1 (-902 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-984 *6 *7 *8 *9)))) (-3282 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| -3267 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9))))) (-5 *1 (-902 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) (-3281 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7)))) (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3280 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)))) (-3279 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-902 *5 *6 *7 *8 *3)))) (-3278 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3700 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3271 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3269 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-902 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3268 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7))))) +((-3832 (((-1091) $) 15 T ELT)) (-3403 (((-1074) $) 16 T ELT)) (-3227 (($ (-1091) (-1074)) 14 T ELT)) (-3947 (((-773) $) 13 T ELT))) +(((-903) (-13 (-553 (-773)) (-10 -8 (-15 -3227 ($ (-1091) (-1074))) (-15 -3832 ((-1091) $)) (-15 -3403 ((-1074) $))))) (T -903)) +((-3227 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1074)) (-5 *1 (-903)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-903)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-903))))) +((-3158 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1091) #1#) $) 72 T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) 102 T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-1091) $) 67 T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) 99 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 121 T ELT) (((-631 |#2|) (-631 $)) 35 T ELT)) (-2995 (($) 105 T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 82 T ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 91 T ELT)) (-2997 (($ $) 10 T ELT)) (-3446 (((-633 $) $) 27 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3447 (($) 16 T CONST)) (-3129 (($ $) 61 T ELT)) (-3759 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2996 (($ $) 12 T ELT)) (-3973 (((-801 (-485)) $) 77 T ELT) (((-801 (-330)) $) 86 T ELT) (((-474) $) 47 T ELT) (((-330) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1091)) 64 T ELT)) (-3127 (((-695)) 38 T CONST)) (-2686 (((-85) $ $) 57 T ELT))) +(((-904 |#1| |#2|) (-10 -7 (-15 -2686 ((-85) |#1| |#1|)) (-15 -3759 (|#1| |#1| (-695))) (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3759 (|#1| |#1| (-1091) (-695))) (-15 -3759 (|#1| |#1| (-584 (-1091)))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3447 (|#1|) -3953) (-15 -3446 ((-633 |#1|) |#1|)) (-15 -3158 ((-3 (-485) #1="failed") |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3973 ((-179) |#1|)) (-15 -3973 ((-330) |#1|)) (-15 -3973 ((-474) |#1|)) (-15 -3947 (|#1| (-1091))) (-15 -3158 ((-3 (-1091) #1#) |#1|)) (-15 -3157 ((-1091) |#1|)) (-15 -2995 (|#1|)) (-15 -3129 (|#1| |#1|)) (-15 -2996 (|#1| |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -2797 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -2797 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -3973 ((-801 (-330)) |#1|)) (-15 -3973 ((-801 (-485)) |#1|)) (-15 -2280 ((-631 |#2|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3947 (|#1| (-350 (-485)))) (-15 -3947 (|#1| |#1|)) (-15 -3127 ((-695)) -3953) (-15 -3947 (|#1| (-485))) (-15 -3947 ((-773) |#1|))) (-905 |#2|) (-496)) (T -904)) +((-3127 (*1 *2) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3130 ((|#1| $) 173 (|has| |#1| (-258)) ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 164 (|has| |#1| (-822)) ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-2705 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 167 (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3624 (((-485) $) 154 (|has| |#1| (-741)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| #2="failed") $) 203 T ELT) (((-3 (-1091) #2#) $) 162 (|has| |#1| (-951 (-1091))) ELT) (((-3 (-350 (-485)) #2#) $) 145 (|has| |#1| (-951 (-485))) ELT) (((-3 (-485) #2#) $) 143 (|has| |#1| (-951 (-485))) ELT)) (-3157 ((|#1| $) 204 T ELT) (((-1091) $) 163 (|has| |#1| (-951 (-1091))) ELT) (((-350 (-485)) $) 146 (|has| |#1| (-951 (-485))) ELT) (((-485) $) 144 (|has| |#1| (-951 (-485))) ELT)) (-2565 (($ $ $) 71 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 188 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 187 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 186 T ELT) (((-631 |#1|) (-631 $)) 185 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2995 (($) 171 (|has| |#1| (-484)) ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-3187 (((-85) $) 156 (|has| |#1| (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 180 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 179 (|has| |#1| (-797 (-330))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2997 (($ $) 175 T ELT)) (-2999 ((|#1| $) 177 T ELT)) (-3446 (((-633 $) $) 142 (|has| |#1| (-1067)) ELT)) (-3188 (((-85) $) 155 (|has| |#1| (-741)) ELT)) (-1606 (((-3 (-584 $) #3="failed") (-584 $) $) 68 T ELT)) (-2532 (($ $ $) 147 (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) 148 (|has| |#1| (-757)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 195 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 190 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 189 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 184 T ELT) (((-631 |#1|) (-1180 $)) 183 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3447 (($) 141 (|has| |#1| (-1067)) CONST)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3129 (($ $) 172 (|has| |#1| (-258)) ELT)) (-3131 ((|#1| $) 169 (|has| |#1| (-484)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) 166 (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 165 (|has| |#1| (-822)) ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-3769 (($ $ (-584 |#1|) (-584 |#1|)) 201 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 200 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 199 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 198 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 197 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 196 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) 74 T ELT)) (-3801 (($ $ |#1|) 202 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-3759 (($ $ (-1 |#1| |#1|)) 194 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 193 T ELT) (($ $) 140 (|has| |#1| (-189)) ELT) (($ $ (-695)) 138 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 136 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 134 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 133 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 132 (|has| |#1| (-812 (-1091))) ELT)) (-2996 (($ $) 174 T ELT)) (-2998 ((|#1| $) 176 T ELT)) (-3973 (((-801 (-485)) $) 182 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 181 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-474) $) 159 (|has| |#1| (-554 (-474))) ELT) (((-330) $) 158 (|has| |#1| (-934)) ELT) (((-179) $) 157 (|has| |#1| (-934)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) 168 (-2563 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ |#1|) 207 T ELT) (($ (-1091)) 161 (|has| |#1| (-951 (-1091))) ELT)) (-2703 (((-633 $) $) 160 (OR (|has| |#1| (-118)) (-2563 (|has| $ (-118)) (|has| |#1| (-822)))) ELT)) (-3127 (((-695)) 40 T CONST)) (-3132 ((|#1| $) 170 (|has| |#1| (-484)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3384 (($ $) 153 (|has| |#1| (-741)) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 191 T ELT) (($ $) 139 (|has| |#1| (-189)) ELT) (($ $ (-695)) 137 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 135 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 131 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 130 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 129 (|has| |#1| (-812 (-1091))) ELT)) (-2567 (((-85) $ $) 149 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 151 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 150 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 152 (|has| |#1| (-757)) ELT)) (-3950 (($ $ $) 83 T ELT) (($ |#1| |#1|) 178 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ |#1| $) 206 T ELT) (($ $ |#1|) 205 T ELT))) +(((-905 |#1|) (-113) (-496)) (T -905)) +((-3950 (*1 *1 *2 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2998 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2997 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) (-3129 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) (-2995 (*1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-484)) (-4 *2 (-496)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484))))) +(-13 (-312) (-38 |t#1|) (-951 |t#1|) (-288 |t#1|) (-184 |t#1|) (-329 |t#1|) (-795 |t#1|) (-343 |t#1|) (-10 -8 (-15 -3950 ($ |t#1| |t#1|)) (-15 -2999 (|t#1| $)) (-15 -2998 (|t#1| $)) (-15 -2997 ($ $)) (-15 -2996 ($ $)) (IF (|has| |t#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |t#1| (-951 (-485))) (PROGN (-6 (-951 (-485))) (-6 (-951 (-350 (-485))))) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-741)) (-6 (-741)) |%noBranch|) (IF (|has| |t#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-951 (-1091))) (-6 (-951 (-1091))) |%noBranch|) (IF (|has| |t#1| (-258)) (PROGN (-15 -3130 (|t#1| $)) (-15 -3129 ($ $))) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -2995 ($)) (-15 -3132 (|t#1| $)) (-15 -3131 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) OR (|has| |#1| (-741)) (|has| |#1| (-120))) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 (-1091)) |has| |#1| (-951 (-1091))) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) |has| |#1| (-934)) ((-554 (-330)) |has| |#1| (-934)) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) . T) ((-258) . T) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-392) . T) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-715) |has| |#1| (-741)) ((-717) |has| |#1| (-741)) ((-719) |has| |#1| (-741)) ((-722) |has| |#1| (-741)) ((-741) |has| |#1| (-741)) ((-756) |has| |#1| (-741)) ((-757) OR (|has| |#1| (-757)) (|has| |#1| (-741))) ((-760) OR (|has| |#1| (-757)) (|has| |#1| (-741))) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-822) |has| |#1| (-822)) ((-833) . T) ((-934) |has| |#1| (-934)) ((-951 (-350 (-485))) |has| |#1| (-951 (-485))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-1091)) |has| |#1| (-951 (-1091))) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-1067)) ((-1130) . T) ((-1135) . T)) +((-3959 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) +(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#2| |#1|) |#3|))) (-496) (-496) (-905 |#1|) (-905 |#2|)) (T -906)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-4 *2 (-905 *6)) (-5 *1 (-906 *5 *6 *4 *2)) (-4 *4 (-905 *5))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3000 (($ (-1057 |#1| |#2|)) 11 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3124 (((-1057 |#1| |#2|) $) 12 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT))) +(((-907 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -3000 ($ (-1057 |#1| |#2|))) (-15 -3124 ((-1057 |#1| |#2|) $)))) (-831) (-312)) (T -907)) +((-3000 (*1 *1 *2) (-12 (-5 *2 (-1057 *3 *4)) (-14 *3 (-831)) (-4 *4 (-312)) (-5 *1 (-907 *3 *4)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-1057 *3 *4)) (-5 *1 (-907 *3 *4)) (-14 *3 (-831)) (-4 *4 (-312))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3207 (((-1050) $) 10 T ELT)) (-3947 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-908) (-13 (-996) (-10 -8 (-15 -3207 ((-1050) $))))) (T -908)) +((-3207 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-908))))) +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3725 (($) 7 T CONST)) (-3003 (($ $) 51 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3834 (((-695) $) 50 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3002 ((|#1| $) 49 T ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3005 ((|#1| |#1| $) 53 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3004 ((|#1| $) 52 T ELT)) (-1947 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 46 T ELT)) (-3001 ((|#1| $) 48 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-909 |#1|) (-113) (-1130)) (T -909)) +((-3005 (*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3003 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130))))) +(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3005 (|t#1| |t#1| $)) (-15 -3004 (|t#1| $)) (-15 -3003 ($ $)) (-15 -3834 ((-695) $)) (-15 -3002 (|t#1| $)) (-15 -3001 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3644 ((|#1| $) 12 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) NIL (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-3006 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3133 ((|#1| $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3007 ((|#1| $) 15 T ELT)) (-3008 ((|#1| $) 14 T ELT)) (-3009 ((|#1| $) 13 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3769 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3801 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3759 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 ((|#1| $) NIL (|has| |#1| (-974)) ELT)) (-2661 (($) 8 T CONST)) (-2667 (($) 10 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-312)) ELT))) +(((-910 |#1|) (-912 |#1|) (-146)) (T -910)) +NIL +((-3189 (((-85) $) 43 T ELT)) (-3158 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3157 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) 78 T ELT)) (-3024 (((-85) $) 72 T ELT)) (-3023 (((-350 (-485)) $) 76 T ELT)) (-2411 (((-85) $) 42 T ELT)) (-3133 ((|#2| $) 22 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2485 (($ $) 58 T ELT)) (-3759 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3973 (((-474) $) 67 T ELT)) (-3010 (($ $) 17 T ELT)) (-3947 (((-773) $) 53 T ELT) (($ (-485)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3127 (((-695)) 10 T CONST)) (-3384 ((|#2| $) 71 T ELT)) (-3057 (((-85) $ $) 26 T ELT)) (-2686 (((-85) $ $) 69 T ELT)) (-3838 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3840 (($ $ $) 27 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT))) +(((-911 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| (-350 (-485)))) (-15 -3759 (|#1| |#1| (-695))) (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3759 (|#1| |#1| (-1091) (-695))) (-15 -3759 (|#1| |#1| (-584 (-1091)))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -2686 ((-85) |#1| |#1|)) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 * (|#1| |#1| (-350 (-485)))) (-15 -2485 (|#1| |#1|)) (-15 -3973 ((-474) |#1|)) (-15 -3025 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3023 ((-350 (-485)) |#1|)) (-15 -3024 ((-85) |#1|)) (-15 -3384 (|#2| |#1|)) (-15 -3133 (|#2| |#1|)) (-15 -3010 (|#1| |#1|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3127 ((-695)) -3953) (-15 -3947 (|#1| (-485))) (-15 -2411 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3189 ((-85) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3947 ((-773) |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-912 |#2|) (-146)) (T -911)) +((-3127 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-485) #1="failed") $) 143 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 141 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 138 T ELT)) (-3157 (((-485) $) 142 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 140 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 139 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 123 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 122 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 121 T ELT) (((-631 |#1|) (-631 $)) 120 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3644 ((|#1| $) 111 T ELT)) (-3025 (((-3 (-350 (-485)) "failed") $) 107 (|has| |#1| (-484)) ELT)) (-3024 (((-85) $) 109 (|has| |#1| (-484)) ELT)) (-3023 (((-350 (-485)) $) 108 (|has| |#1| (-484)) ELT)) (-3006 (($ |#1| |#1| |#1| |#1|) 112 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3133 ((|#1| $) 113 T ELT)) (-2532 (($ $ $) 95 (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) 96 (|has| |#1| (-757)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 126 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 125 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 124 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 119 T ELT) (((-631 |#1|) (-1180 $)) 118 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 104 (|has| |#1| (-312)) ELT)) (-3007 ((|#1| $) 114 T ELT)) (-3008 ((|#1| $) 115 T ELT)) (-3009 ((|#1| $) 116 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3769 (($ $ (-584 |#1|) (-584 |#1|)) 132 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 131 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 130 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 129 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 128 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 127 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3801 (($ $ |#1|) 133 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3759 (($ $ (-1 |#1| |#1|)) 137 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 136 T ELT) (($ $) 94 (|has| |#1| (-189)) ELT) (($ $ (-695)) 92 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 90 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 88 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 87 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 86 (|has| |#1| (-812 (-1091))) ELT)) (-3973 (((-474) $) 105 (|has| |#1| (-554 (-474))) ELT)) (-3010 (($ $) 117 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-485))) 82 (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2703 (((-633 $) $) 106 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3384 ((|#1| $) 110 (|has| |#1| (-974)) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 134 T ELT) (($ $) 93 (|has| |#1| (-189)) ELT) (($ $ (-695)) 91 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 89 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 85 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 84 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 83 (|has| |#1| (-812 (-1091))) ELT)) (-2567 (((-85) $ $) 97 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 99 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 98 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 100 (|has| |#1| (-757)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 103 (|has| |#1| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ $ (-350 (-485))) 102 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) 101 (|has| |#1| (-312)) ELT))) +(((-912 |#1|) (-113) (-146)) (T -912)) +((-3010 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3006 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-3025 (*1 *2 *1) (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485)))))) +(-13 (-38 |t#1|) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-329 |t#1|) (-10 -8 (-15 -3010 ($ $)) (-15 -3009 (|t#1| $)) (-15 -3008 (|t#1| $)) (-15 -3007 (|t#1| $)) (-15 -3133 (|t#1| $)) (-15 -3006 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3644 (|t#1| $)) (IF (|has| |t#1| (-246)) (-6 (-246)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -3384 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-485)) $)) (-15 -3025 ((-3 (-350 (-485)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-312)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-312)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-312))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-312)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-312)) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-312)) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-312)) ((-583 |#1|) . T) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-312)) ((-655 |#1|) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-312)) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-969 (-350 (-485))) |has| |#1| (-312)) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-3959 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) +(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#3| (-1 |#4| |#2|) |#1|))) (-912 |#2|) (-146) (-912 |#4|) (-146)) (T -913)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-912 *6)) (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3725 (($) NIL T CONST)) (-3003 (($ $) 24 T ELT)) (-3011 (($ (-584 |#1|)) 34 T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3834 (((-695) $) 27 T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 29 T ELT)) (-3610 (($ |#1| $) 18 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3002 ((|#1| $) 28 T ELT)) (-1276 ((|#1| $) 23 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3005 ((|#1| |#1| $) 17 T ELT)) (-3404 (((-85) $) 19 T ELT)) (-3566 (($) NIL T ELT)) (-3004 ((|#1| $) 22 T ELT)) (-1947 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-3001 ((|#1| $) 31 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-914 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -3011 ($ (-584 |#1|))))) (-1014)) (T -914)) +((-3011 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-914 *3))))) +((-3038 (($ $) 12 T ELT)) (-3012 (($ $ (-485)) 13 T ELT))) +(((-915 |#1|) (-10 -7 (-15 -3038 (|#1| |#1|)) (-15 -3012 (|#1| |#1| (-485)))) (-916)) (T -915)) +NIL +((-3038 (($ $) 6 T ELT)) (-3012 (($ $ (-485)) 7 T ELT)) (** (($ $ (-350 (-485))) 8 T ELT))) +(((-916) (-113)) (T -916)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-350 (-485))))) (-3012 (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-485)))) (-3038 (*1 *1 *1) (-4 *1 (-916)))) +(-13 (-10 -8 (-15 -3038 ($ $)) (-15 -3012 ($ $ (-485))) (-15 ** ($ $ (-350 (-485)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1648 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2064 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2062 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1783 (((-631 (-350 |#2|)) (-1180 $)) NIL T ELT) (((-631 (-350 |#2|))) NIL T ELT)) (-3331 (((-350 |#2|) $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3137 (((-695)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1662 (((-85)) NIL T ELT)) (-1661 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1793 (($ (-1180 (-350 |#2|)) (-1180 $)) NIL T ELT) (($ (-1180 (-350 |#2|))) 79 T ELT) (($ (-1180 |#2|) |#2|) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2565 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1782 (((-631 (-350 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) (-631 $)) NIL T ELT)) (-1653 (((-1180 $) (-1180 $)) NIL T ELT)) (-3843 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1640 (((-584 (-584 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1665 (((-85) |#1| |#1|) NIL T ELT)) (-3109 (((-831)) NIL T ELT)) (-2995 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1660 (((-85)) NIL T ELT)) (-1659 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2564 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3504 (($ $) NIL T ELT)) (-2834 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1681 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1765 (($ $ (-695)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3724 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3773 (((-831) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-744 (-831)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3378 (((-695)) NIL T ELT)) (-1654 (((-1180 $) (-1180 $)) NIL T ELT)) (-3133 (((-350 |#2|) $) NIL T ELT)) (-1641 (((-584 (-858 |#1|)) (-1091)) NIL (|has| |#1| (-312)) ELT)) (-3446 (((-633 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2015 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2011 (((-831) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3080 ((|#3| $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-1180 $) $) NIL T ELT) (((-631 (-350 |#2|)) (-1180 $)) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1649 (((-631 (-350 |#2|))) 57 T ELT)) (-1651 (((-631 (-350 |#2|))) 56 T ELT)) (-2485 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1646 (($ (-1180 |#2|) |#2|) 80 T ELT)) (-1650 (((-631 (-350 |#2|))) 55 T ELT)) (-1652 (((-631 (-350 |#2|))) 54 T ELT)) (-1645 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1647 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1658 (((-1180 $)) 51 T ELT)) (-3919 (((-1180 $)) 50 T ELT)) (-1657 (((-85) $) NIL T ELT)) (-1656 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3447 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2401 (($ (-831)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1643 (((-3 |#2| #1#)) 70 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1667 (((-695)) NIL T ELT)) (-2410 (($) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3733 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-695) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3801 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1644 (((-3 |#2| #1#)) 68 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3758 (((-350 |#2|) (-1180 $)) NIL T ELT) (((-350 |#2|)) 47 T ELT)) (-1766 (((-695) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3759 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2409 (((-631 (-350 |#2|)) (-1180 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3186 ((|#3|) 58 T ELT)) (-1675 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3225 (((-1180 (-350 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 (-350 |#2|)) $) 81 T ELT) (((-631 (-350 |#2|)) (-1180 $)) NIL T ELT)) (-3973 (((-1180 (-350 |#2|)) $) NIL T ELT) (($ (-1180 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1655 (((-1180 $) (-1180 $)) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2703 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-633 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2450 ((|#3| $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1664 (((-85)) 65 T ELT)) (-1663 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1666 (((-85)) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| (-350 |#2|) (-312)) ELT))) +(((-917 |#1| |#2| |#3| |#4| |#5|) (-291 |#1| |#2| |#3|) (-1135) (-1156 |#1|) (-1156 (-350 |#2|)) (-350 |#2|) (-695)) (T -917)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3018 (((-584 (-485)) $) 73 T ELT)) (-3014 (($ (-584 (-485))) 81 T ELT)) (-3130 (((-485) $) 48 (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) 60 T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) 57 (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) 60 (|has| (-485) (-951 (-485))) ELT)) (-3157 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-485) (-484)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3016 (((-584 (-485)) $) 79 T ELT)) (-3187 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) 45 T ELT)) (-3446 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3959 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-485) (-1067)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) 50 T ELT)) (-3017 (((-1070 (-485)) $) 78 T ELT)) (-3013 (($ (-584 (-485)) (-584 (-485))) 82 T ELT)) (-3131 (((-485) $) 64 (|has| (-485) (-484)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3769 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3801 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) 15 (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-485) $) 47 T ELT)) (-3015 (((-584 (-485)) $) 80 T ELT)) (-3973 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3947 (((-773) $) 108 T ELT) (($ (-485)) 51 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 27 T ELT) (($ (-485)) 51 T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) 25 T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3127 (((-695)) 13 T CONST)) (-3132 (((-485) $) 62 (|has| (-485) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2661 (($) 14 T CONST)) (-2667 (($) 17 T CONST)) (-2670 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3057 (((-85) $ $) 21 T ELT)) (-2685 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2686 (((-85) $ $) 40 (|has| (-485) (-757)) ELT)) (-3950 (($ $ $) 36 T ELT) (($ (-485) (-485)) 38 T ELT)) (-3838 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3840 (($ $ $) 28 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ $ (-485)) NIL T ELT))) +(((-918 |#1|) (-13 (-905 (-485)) (-553 (-350 (-485))) (-10 -8 (-15 -3129 ((-350 (-485)) $)) (-15 -3018 ((-584 (-485)) $)) (-15 -3017 ((-1070 (-485)) $)) (-15 -3016 ((-584 (-485)) $)) (-15 -3015 ((-584 (-485)) $)) (-15 -3014 ($ (-584 (-485)))) (-15 -3013 ($ (-584 (-485)) (-584 (-485)))))) (-485)) (T -918)) +((-3129 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3014 (*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3013 (*1 *1 *2 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))) +((-3019 (((-51) (-350 (-485)) (-485)) 9 T ELT))) +(((-919) (-10 -7 (-15 -3019 ((-51) (-350 (-485)) (-485))))) (T -919)) +((-3019 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-485))) (-5 *4 (-485)) (-5 *2 (-51)) (-5 *1 (-919))))) +((-3137 (((-485)) 21 T ELT)) (-3022 (((-485)) 26 T ELT)) (-3021 (((-1186) (-485)) 24 T ELT)) (-3020 (((-485) (-485)) 27 T ELT) (((-485)) 20 T ELT))) +(((-920) (-10 -7 (-15 -3020 ((-485))) (-15 -3137 ((-485))) (-15 -3020 ((-485) (-485))) (-15 -3021 ((-1186) (-485))) (-15 -3022 ((-485))))) (T -920)) +((-3022 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-920)))) (-3020 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) (-3137 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) (-3020 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920))))) +((-3734 (((-348 |#1|) |#1|) 43 T ELT)) (-3733 (((-348 |#1|) |#1|) 41 T ELT))) +(((-921 |#1|) (-10 -7 (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3734 ((-348 |#1|) |#1|))) (-1156 (-350 (-485)))) (T -921)) +((-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-350 (-485)))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-350 (-485))))))) +((-3025 (((-3 (-350 (-485)) "failed") |#1|) 15 T ELT)) (-3024 (((-85) |#1|) 14 T ELT)) (-3023 (((-350 (-485)) |#1|) 10 T ELT))) +(((-922 |#1|) (-10 -7 (-15 -3023 ((-350 (-485)) |#1|)) (-15 -3024 ((-85) |#1|)) (-15 -3025 ((-3 (-350 (-485)) "failed") |#1|))) (-951 (-350 (-485)))) (T -922)) +((-3025 (*1 *2 *3) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))) (-3024 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-922 *3)) (-4 *3 (-951 (-350 (-485)))))) (-3023 (*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2))))) +((-3789 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3801 ((|#2| $ #1#) 10 T ELT)) (-3029 (((-85) $ $) 18 T ELT))) +(((-923 |#1| |#2|) (-10 -7 (-15 -3789 (|#2| |#1| #1="value" |#2|)) (-15 -3029 ((-85) |#1| |#1|)) (-15 -3801 (|#2| |#1| #1#))) (-924 |#2|) (-1130)) (T -923)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3997)) ELT)) (-3725 (($) 7 T CONST)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ "value") 51 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-924 |#1|) (-113) (-1130)) (T -924)) +((-3523 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) (-3032 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) (-3528 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1130)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1130)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3031 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3)))) (-3030 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-485)))) (-3029 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-3028 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-3027 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *1)) (|has| *1 (-6 -3997)) (-4 *1 (-924 *3)) (-4 *3 (-1130)))) (-3789 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -3997)) (-4 *1 (-924 *2)) (-4 *2 (-1130)))) (-3026 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-924 *2)) (-4 *2 (-1130))))) +(-13 (-429 |t#1|) (-10 -8 (-15 -3523 ((-584 $) $)) (-15 -3032 ((-584 $) $)) (-15 -3528 ((-85) $)) (-15 -3403 (|t#1| $)) (-15 -3801 (|t#1| $ "value")) (-15 -3634 ((-85) $)) (-15 -3031 ((-584 |t#1|) $)) (-15 -3030 ((-485) $ $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -3029 ((-85) $ $)) (-15 -3028 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-6 -3997)) (PROGN (-15 -3027 ($ $ (-584 $))) (-15 -3789 (|t#1| $ "value" |t#1|)) (-15 -3026 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) +((-3038 (($ $) 9 T ELT) (($ $ (-831)) 49 T ELT) (($ (-350 (-485))) 13 T ELT) (($ (-485)) 15 T ELT)) (-3184 (((-3 $ #1="failed") (-1086 $) (-831) (-773)) 24 T ELT) (((-3 $ #1#) (-1086 $) (-831)) 32 T ELT)) (-3012 (($ $ (-485)) 58 T ELT)) (-3127 (((-695)) 18 T CONST)) (-3185 (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-1086 (-350 (-485)))) 63 T ELT) (((-584 $) (-1086 (-485))) 68 T ELT) (((-584 $) (-858 $)) 72 T ELT) (((-584 $) (-858 (-350 (-485)))) 76 T ELT) (((-584 $) (-858 (-485))) 80 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-350 (-485))) 53 T ELT))) +(((-925 |#1|) (-10 -7 (-15 -3038 (|#1| (-485))) (-15 -3038 (|#1| (-350 (-485)))) (-15 -3038 (|#1| |#1| (-831))) (-15 -3185 ((-584 |#1|) (-858 (-485)))) (-15 -3185 ((-584 |#1|) (-858 (-350 (-485))))) (-15 -3185 ((-584 |#1|) (-858 |#1|))) (-15 -3185 ((-584 |#1|) (-1086 (-485)))) (-15 -3185 ((-584 |#1|) (-1086 (-350 (-485))))) (-15 -3185 ((-584 |#1|) (-1086 |#1|))) (-15 -3184 ((-3 |#1| #1="failed") (-1086 |#1|) (-831))) (-15 -3184 ((-3 |#1| #1#) (-1086 |#1|) (-831) (-773))) (-15 ** (|#1| |#1| (-350 (-485)))) (-15 -3012 (|#1| |#1| (-485))) (-15 -3038 (|#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3127 ((-695)) -3953) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831)))) (-926)) (T -925)) +((-3127 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-925 *3)) (-4 *3 (-926))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 111 T ELT)) (-2064 (($ $) 112 T ELT)) (-2062 (((-85) $) 114 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 131 T ELT)) (-3972 (((-348 $) $) 132 T ELT)) (-3038 (($ $) 95 T ELT) (($ $ (-831)) 81 T ELT) (($ (-350 (-485))) 80 T ELT) (($ (-485)) 79 T ELT)) (-1609 (((-85) $ $) 122 T ELT)) (-3624 (((-485) $) 148 T ELT)) (-3725 (($) 23 T CONST)) (-3184 (((-3 $ "failed") (-1086 $) (-831) (-773)) 89 T ELT) (((-3 $ "failed") (-1086 $) (-831)) 88 T ELT)) (-3158 (((-3 (-485) #1="failed") $) 108 (|has| (-350 (-485)) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 106 (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) 103 T ELT)) (-3157 (((-485) $) 107 (|has| (-350 (-485)) (-951 (-485))) ELT) (((-350 (-485)) $) 105 (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-350 (-485)) $) 104 T ELT)) (-3034 (($ $ (-773)) 78 T ELT)) (-3033 (($ $ (-773)) 77 T ELT)) (-2565 (($ $ $) 126 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 125 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 120 T ELT)) (-3724 (((-85) $) 133 T ELT)) (-3187 (((-85) $) 146 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 94 T ELT)) (-3188 (((-85) $) 147 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 129 T ELT)) (-2532 (($ $ $) 140 T ELT)) (-2858 (($ $ $) 141 T ELT)) (-3035 (((-3 (-1086 $) "failed") $) 90 T ELT)) (-3037 (((-3 (-773) "failed") $) 92 T ELT)) (-3036 (((-3 (-1086 $) "failed") $) 91 T ELT)) (-1892 (($ (-584 $)) 118 T ELT) (($ $ $) 117 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 134 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 119 T ELT)) (-3145 (($ (-584 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3733 (((-348 $) $) 130 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 127 T ELT)) (-3467 (((-3 $ "failed") $ $) 110 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 121 T ELT)) (-1608 (((-695) $) 123 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 124 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 138 T ELT) (($ $) 109 T ELT) (($ (-350 (-485))) 102 T ELT) (($ (-485)) 101 T ELT) (($ (-350 (-485))) 98 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 113 T ELT)) (-3771 (((-350 (-485)) $ $) 76 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3185 (((-584 $) (-1086 $)) 87 T ELT) (((-584 $) (-1086 (-350 (-485)))) 86 T ELT) (((-584 $) (-1086 (-485))) 85 T ELT) (((-584 $) (-858 $)) 84 T ELT) (((-584 $) (-858 (-350 (-485)))) 83 T ELT) (((-584 $) (-858 (-485))) 82 T ELT)) (-3384 (($ $) 149 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 142 T ELT)) (-2568 (((-85) $ $) 144 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 143 T ELT)) (-2686 (((-85) $ $) 145 T ELT)) (-3950 (($ $ $) 139 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 135 T ELT) (($ $ (-350 (-485))) 93 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-485)) $) 137 T ELT) (($ $ (-350 (-485))) 136 T ELT) (($ (-485) $) 100 T ELT) (($ $ (-485)) 99 T ELT) (($ (-350 (-485)) $) 97 T ELT) (($ $ (-350 (-485))) 96 T ELT))) +(((-926) (-113)) (T -926)) +((-3038 (*1 *1 *1) (-4 *1 (-926))) (-3037 (*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3036 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-926)))) (-3035 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-926)))) (-3184 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-5 *4 (-773)) (-4 *1 (-926)))) (-3184 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-4 *1 (-926)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-1086 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3038 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-831)))) (-3038 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-926)))) (-3038 (*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-926)))) (-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3033 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3771 (*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-350 (-485)))))) +(-13 (-120) (-756) (-146) (-312) (-355 (-350 (-485))) (-38 (-485)) (-38 (-350 (-485))) (-916) (-10 -8 (-15 -3037 ((-3 (-773) "failed") $)) (-15 -3036 ((-3 (-1086 $) "failed") $)) (-15 -3035 ((-3 (-1086 $) "failed") $)) (-15 -3184 ((-3 $ "failed") (-1086 $) (-831) (-773))) (-15 -3184 ((-3 $ "failed") (-1086 $) (-831))) (-15 -3185 ((-584 $) (-1086 $))) (-15 -3185 ((-584 $) (-1086 (-350 (-485))))) (-15 -3185 ((-584 $) (-1086 (-485)))) (-15 -3185 ((-584 $) (-858 $))) (-15 -3185 ((-584 $) (-858 (-350 (-485))))) (-15 -3185 ((-584 $) (-858 (-485)))) (-15 -3038 ($ $ (-831))) (-15 -3038 ($ $)) (-15 -3038 ($ (-350 (-485)))) (-15 -3038 ($ (-485))) (-15 -3034 ($ $ (-773))) (-15 -3033 ($ $ (-773))) (-15 -3771 ((-350 (-485)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 (-485)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 (-485) (-485)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-355 (-350 (-485))) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 (-485)) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 (-485)) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 (-485)) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-833) . T) ((-916) . T) ((-951 (-350 (-485))) . T) ((-951 (-485)) |has| (-350 (-485)) (-951 (-485))) ((-964 (-350 (-485))) . T) ((-964 (-485)) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 (-485)) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) +((-3039 (((-2 (|:| |ans| |#2|) (|:| -3138 |#2|) (|:| |sol?| (-85))) (-485) |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) +(((-927 |#1| |#2|) (-10 -7 (-15 -3039 ((-2 (|:| |ans| |#2|) (|:| -3138 |#2|) (|:| |sol?| (-85))) (-485) |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-392) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-27) (-364 |#1|))) (T -927)) +((-3039 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-584 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1116) (-27) (-364 *8))) (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3138 *4) (|:| |sol?| (-85)))) (-5 *1 (-927 *8 *4))))) +((-3040 (((-3 (-584 |#2|) #1="failed") (-485) |#2| |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) +(((-928 |#1| |#2|) (-10 -7 (-15 -3040 ((-3 (-584 |#2|) #1="failed") (-485) |#2| |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-392) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-27) (-364 |#1|))) (T -928)) +((-3040 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-584 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1116) (-27) (-364 *8))) (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485)) (-5 *2 (-584 *4)) (-5 *1 (-928 *8 *4))))) +((-3043 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3267 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-485)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-485) (-1 |#2| |#2|)) 39 T ELT)) (-3041 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3094 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3042 (((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|)) 76 T ELT))) +(((-929 |#1| |#2|) (-10 -7 (-15 -3041 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3094 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3042 ((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|))) (-15 -3043 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3267 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-485)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-485) (-1 |#2| |#2|)))) (-13 (-312) (-120) (-951 (-485))) (-1156 |#1|)) (T -929)) +((-3043 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1156 *6)) (-4 *6 (-13 (-312) (-120) (-951 *4))) (-5 *4 (-485)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3267 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-929 *6 *3)))) (-3042 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-929 *4 *5)) (-5 *3 (-350 *5)))) (-3041 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3094 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-350 *6))))) +((-3044 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3094 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3045 (((-3 (-584 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 34 T ELT))) +(((-930 |#1| |#2|) (-10 -7 (-15 -3044 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3094 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3045 ((-3 (-584 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)))) (-13 (-312) (-120) (-951 (-485))) (-1156 |#1|)) (T -930)) +((-3045 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-350 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-350 *5)))) (-3044 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |h| *6) (|:| |c1| (-350 *6)) (|:| |c2| (-350 *6)) (|:| -3094 *6))) (-5 *1 (-930 *5 *6)) (-5 *3 (-350 *6))))) +((-3046 (((-1 |#1|) (-584 (-2 (|:| -3403 |#1|) (|:| -1523 (-485))))) 34 T ELT)) (-3101 (((-1 |#1|) (-1010 |#1|)) 42 T ELT)) (-3047 (((-1 |#1|) (-1180 |#1|) (-1180 (-485)) (-485)) 31 T ELT))) +(((-931 |#1|) (-10 -7 (-15 -3101 ((-1 |#1|) (-1010 |#1|))) (-15 -3046 ((-1 |#1|) (-584 (-2 (|:| -3403 |#1|) (|:| -1523 (-485)))))) (-15 -3047 ((-1 |#1|) (-1180 |#1|) (-1180 (-485)) (-485)))) (-1014)) (T -931)) +((-3047 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1180 *6)) (-5 *4 (-1180 (-485))) (-5 *5 (-485)) (-4 *6 (-1014)) (-5 *2 (-1 *6)) (-5 *1 (-931 *6)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3403 *4) (|:| -1523 (-485))))) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-1010 *4)) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4))))) +((-3773 (((-695) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) +(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3773 ((-695) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-13 (-320) (-312))) (T -932)) +((-3773 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-4 *4 (-1156 (-350 *7))) (-4 *8 (-291 *6 *7 *4)) (-4 *9 (-13 (-320) (-312))) (-5 *2 (-695)) (-5 *1 (-932 *6 *7 *4 *8 *9))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3596 (((-1050) $) 10 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3234 (((-1050) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-933) (-13 (-996) (-10 -8 (-15 -3596 ((-1050) $)) (-15 -3234 ((-1050) $))))) (T -933)) +((-3596 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-933)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-933))))) +((-3973 (((-179) $) 6 T ELT) (((-330) $) 9 T ELT))) +(((-934) (-113)) (T -934)) +NIL +(-13 (-554 (-179)) (-554 (-330))) +(((-554 (-179)) . T) ((-554 (-330)) . T)) +((-3135 (((-3 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) "failed") |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) 32 T ELT) (((-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485))) 29 T ELT)) (-3050 (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485))) 34 T ELT) (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-350 (-485))) 30 T ELT) (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) 33 T ELT) (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1|) 28 T ELT)) (-3049 (((-584 (-350 (-485))) (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) 20 T ELT)) (-3048 (((-350 (-485)) (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) 17 T ELT))) +(((-935 |#1|) (-10 -7 (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1|)) (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-350 (-485)))) (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485)))) (-15 -3135 ((-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485)))) (-15 -3135 ((-3 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) "failed") |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-15 -3048 ((-350 (-485)) (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-15 -3049 ((-584 (-350 (-485))) (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))))) (-1156 (-485))) (T -935)) +((-3049 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-5 *2 (-584 (-350 (-485)))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485))))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) (-5 *2 (-350 (-485))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485))))) (-3135 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))) (-3135 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) (-5 *4 (-350 (-485))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))) (-3050 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3139 *5) (|:| -3138 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-2 (|:| -3139 *5) (|:| -3138 *5))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-350 (-485))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))))) (-3050 (*1 *2 *3) (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485)))))) +((-3135 (((-3 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) "failed") |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) 35 T ELT) (((-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485))) 32 T ELT)) (-3050 (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485))) 30 T ELT) (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-350 (-485))) 26 T ELT) (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) 28 T ELT) (((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1|) 24 T ELT))) +(((-936 |#1|) (-10 -7 (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1|)) (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-350 (-485)))) (-15 -3050 ((-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485)))) (-15 -3135 ((-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-350 (-485)))) (-15 -3135 ((-3 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) "failed") |#1| (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))) (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))))) (-1156 (-350 (-485)))) (T -936)) +((-3135 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485)))))) (-3135 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) (-5 *4 (-350 (-485))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *4)))) (-3050 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3139 *5) (|:| -3138 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *5)) (-5 *4 (-2 (|:| -3139 *5) (|:| -3138 *5))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3139 *4) (|:| -3138 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *4)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485)))) (-5 *4 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))))) (-3050 (*1 *2 *3) (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485))))))) +((-3574 (((-584 (-330)) (-858 (-485)) (-330)) 28 T ELT) (((-584 (-330)) (-858 (-350 (-485))) (-330)) 27 T ELT)) (-3970 (((-584 (-584 (-330))) (-584 (-858 (-485))) (-584 (-1091)) (-330)) 37 T ELT))) +(((-937) (-10 -7 (-15 -3574 ((-584 (-330)) (-858 (-350 (-485))) (-330))) (-15 -3574 ((-584 (-330)) (-858 (-485)) (-330))) (-15 -3970 ((-584 (-584 (-330))) (-584 (-858 (-485))) (-584 (-1091)) (-330))))) (T -937)) +((-3970 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-584 (-1091))) (-5 *2 (-584 (-584 (-330)))) (-5 *1 (-937)) (-5 *5 (-330)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 (-330))) (-5 *1 (-937)) (-5 *4 (-330)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 (-330))) (-5 *1 (-937)) (-5 *4 (-330))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 75 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-3038 (($ $) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) 70 T ELT)) (-3725 (($) NIL T CONST)) (-3184 (((-3 $ #1#) (-1086 $) (-831) (-773)) NIL T ELT) (((-3 $ #1#) (-1086 $) (-831)) 55 T ELT)) (-3158 (((-3 (-350 (-485)) #1#) $) NIL (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-485) #1#) $) NIL (OR (|has| (-350 (-485)) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT)) (-3157 (((-350 (-485)) $) 17 (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-350 (-485)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-485) $) NIL (OR (|has| (-350 (-485)) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT)) (-3034 (($ $ (-773)) 47 T ELT)) (-3033 (($ $ (-773)) 48 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3183 (((-350 (-485)) $ $) 21 T ELT)) (-3468 (((-3 $ #1#) $) 88 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) 66 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL T ELT)) (-3188 (((-85) $) 69 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3035 (((-3 (-1086 $) #1#) $) 83 T ELT)) (-3037 (((-3 (-773) #1#) $) 82 T ELT)) (-3036 (((-3 (-1086 $) #1#) $) 80 T ELT)) (-3051 (((-3 (-975 $ (-1086 $)) #1#) $) 78 T ELT)) (-1892 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 89 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3947 (((-773) $) 87 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) 63 T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3771 (((-350 (-485)) $ $) 27 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3185 (((-584 $) (-1086 $)) 61 T ELT) (((-584 $) (-1086 (-350 (-485)))) NIL T ELT) (((-584 $) (-1086 (-485))) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-858 (-350 (-485)))) NIL T ELT) (((-584 $) (-858 (-485))) NIL T ELT)) (-3052 (($ (-975 $ (-1086 $)) (-773)) 46 T ELT)) (-3384 (($ $) 22 T ELT)) (-2661 (($) 32 T CONST)) (-2667 (($) 39 T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 76 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 24 T ELT)) (-3950 (($ $ $) 37 T ELT)) (-3838 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3840 (($ $ $) 111 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-485) $) 71 T ELT) (($ $ (-485)) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT))) +(((-938 |#1|) (-13 (-926) (-355 |#1|) (-38 |#1|) (-10 -8 (-15 -3052 ($ (-975 $ (-1086 $)) (-773))) (-15 -3051 ((-3 (-975 $ (-1086 $)) "failed") $)) (-15 -3183 ((-350 (-485)) $ $)))) (-13 (-756) (-312) (-934))) (T -938)) +((-3052 (*1 *1 *2 *3) (-12 (-5 *2 (-975 (-938 *4) (-1086 (-938 *4)))) (-5 *3 (-773)) (-5 *1 (-938 *4)) (-4 *4 (-13 (-756) (-312) (-934))))) (-3051 (*1 *2 *1) (|partial| -12 (-5 *2 (-975 (-938 *3) (-1086 (-938 *3)))) (-5 *1 (-938 *3)) (-4 *3 (-13 (-756) (-312) (-934))))) (-3183 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-938 *3)) (-4 *3 (-13 (-756) (-312) (-934)))))) +((-3053 (((-2 (|:| -3267 |#2|) (|:| -2514 (-584 |#1|))) |#2| (-584 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) +(((-939 |#1| |#2|) (-10 -7 (-15 -3053 (|#2| |#2| |#1|)) (-15 -3053 ((-2 (|:| -3267 |#2|) (|:| -2514 (-584 |#1|))) |#2| (-584 |#1|)))) (-312) (-601 |#1|)) (T -939)) +((-3053 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3267 *3) (|:| -2514 (-584 *5)))) (-5 *1 (-939 *5 *3)) (-5 *4 (-584 *5)) (-4 *3 (-601 *5)))) (-3053 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-939 *3 *2)) (-4 *2 (-601 *3))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3054 ((|#1| $ |#1|) 12 T ELT)) (-3056 (($ |#1|) 10 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3055 ((|#1| $) 11 T ELT)) (-3947 (((-773) $) 17 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 9 T ELT))) +(((-940 |#1|) (-13 (-1014) (-10 -8 (-15 -3056 ($ |#1|)) (-15 -3055 (|#1| $)) (-15 -3054 (|#1| $ |#1|)) (-15 -3057 ((-85) $ $)))) (-1130)) (T -940)) +((-3057 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-940 *3)) (-4 *3 (-1130)))) (-3056 (*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130)))) (-3055 (*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130)))) (-3054 (*1 *2 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3682 (((-584 (-2 (|:| -3862 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3683 (((-584 $) (-584 |#4|)) 114 T ELT) (((-584 $) (-584 |#4|) (-85)) 115 T ELT) (((-584 $) (-584 |#4|) (-85) (-85)) 113 T ELT) (((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85)) 116 T ELT)) (-3082 (((-584 |#3|) $) NIL T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3776 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 108 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3711 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) 63 T ELT)) (-3725 (($) NIL T CONST)) (-2905 (((-85) $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3690 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3157 (($ (-584 |#4|)) NIL T ELT)) (-3800 (((-3 $ #1#) $) 45 T ELT)) (-3686 ((|#4| |#4| $) 66 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT)) (-3407 (($ |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 81 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3697 (((-2 (|:| -3862 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3439 (((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85)) 129 T ELT)) (-2890 (((-584 |#4|) $) 18 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3181 ((|#3| $) 38 T ELT)) (-2609 (((-584 |#4|) $) 19 T ELT)) (-3246 (((-85) |#4| $) 27 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2915 (((-584 |#3|) $) NIL T ELT)) (-2914 (((-85) |#3| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3192 (((-3 |#4| (-584 $)) |#4| |#4| $) NIL T ELT)) (-3191 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 106 T ELT)) (-3799 (((-3 |#4| #1#) $) 42 T ELT)) (-3193 (((-584 $) |#4| $) 89 T ELT)) (-3195 (((-3 (-85) (-584 $)) |#4| $) NIL T ELT)) (-3194 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 99 T ELT) (((-85) |#4| $) 61 T ELT)) (-3239 (((-584 $) |#4| $) 111 T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 112 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT)) (-3440 (((-584 $) (-584 |#4|) (-85) (-85) (-85)) 124 T ELT)) (-3441 (($ |#4| $) 78 T ELT) (($ (-584 |#4|) $) 79 T ELT) (((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 75 T ELT)) (-3698 (((-584 |#4|) $) NIL T ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3700 (((-85) $ $) NIL T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3802 (((-3 |#4| #1#) $) 40 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3770 (($ $ |#4|) NIL T ELT) (((-584 $) |#4| $) 91 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 85 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3769 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 17 T ELT)) (-3566 (($) 14 T ELT)) (-3949 (((-695) $) NIL T ELT)) (-1947 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3401 (($ $) 13 T ELT)) (-3973 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3531 (($ (-584 |#4|)) 22 T ELT)) (-2911 (($ $ |#3|) 49 T ELT)) (-2913 (($ $ |#3|) 51 T ELT)) (-3685 (($ $) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3947 (((-773) $) 35 T ELT) (((-584 |#4|) $) 46 T ELT)) (-3679 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-3190 (((-584 $) |#4| $) 88 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-584 |#3|) $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3934 (((-85) |#3| $) 62 T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-941 |#1| |#2| |#3| |#4|) (-13 (-984 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3441 ((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3683 ((-584 $) (-584 |#4|) (-85) (-85))) (-15 -3683 ((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85))) (-15 -3440 ((-584 $) (-584 |#4|) (-85) (-85) (-85))) (-15 -3439 ((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85))))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -941)) +((-3441 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *3))) (-5 *1 (-941 *5 *6 *7 *3)) (-4 *3 (-978 *5 *6 *7)))) (-3683 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3683 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3440 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-941 *5 *6 *7 *8))))) (-5 *1 (-941 *5 *6 *7 *8)) (-5 *3 (-584 *8))))) +((-3058 (((-584 (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-584 (-631 (-265 (-485))))))) (-631 (-350 (-858 (-485))))) 67 T ELT)) (-3059 (((-584 (-631 (-265 (-485)))) (-265 (-485)) (-631 (-350 (-858 (-485))))) 52 T ELT)) (-3060 (((-584 (-265 (-485))) (-631 (-350 (-858 (-485))))) 45 T ELT)) (-3064 (((-584 (-631 (-265 (-485)))) (-631 (-350 (-858 (-485))))) 85 T ELT)) (-3062 (((-631 (-265 (-485))) (-631 (-265 (-485)))) 38 T ELT)) (-3063 (((-584 (-631 (-265 (-485)))) (-584 (-631 (-265 (-485))))) 74 T ELT)) (-3061 (((-3 (-631 (-265 (-485))) "failed") (-631 (-350 (-858 (-485))))) 82 T ELT))) +(((-942) (-10 -7 (-15 -3058 ((-584 (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-584 (-631 (-265 (-485))))))) (-631 (-350 (-858 (-485)))))) (-15 -3059 ((-584 (-631 (-265 (-485)))) (-265 (-485)) (-631 (-350 (-858 (-485)))))) (-15 -3060 ((-584 (-265 (-485))) (-631 (-350 (-858 (-485)))))) (-15 -3061 ((-3 (-631 (-265 (-485))) "failed") (-631 (-350 (-858 (-485)))))) (-15 -3062 ((-631 (-265 (-485))) (-631 (-265 (-485))))) (-15 -3063 ((-584 (-631 (-265 (-485)))) (-584 (-631 (-265 (-485)))))) (-15 -3064 ((-584 (-631 (-265 (-485)))) (-631 (-350 (-858 (-485)))))))) (T -942)) +((-3064 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942)))) (-3061 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-265 (-485)))) (-5 *1 (-942)))) (-3059 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942)) (-5 *3 (-265 (-485))))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-584 (-631 (-265 (-485)))))))) (-5 *1 (-942))))) +((-3068 (((-584 (-631 |#1|)) (-584 (-631 |#1|))) 69 T ELT) (((-631 |#1|) (-631 |#1|)) 68 T ELT) (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-584 (-631 |#1|))) 67 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 64 T ELT)) (-3067 (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831)) 62 T ELT) (((-631 |#1|) (-631 |#1|) (-831)) 61 T ELT)) (-3069 (((-584 (-631 (-485))) (-584 (-584 (-485)))) 80 T ELT) (((-584 (-631 (-485))) (-584 (-814 (-485))) (-485)) 79 T ELT) (((-631 (-485)) (-584 (-485))) 76 T ELT) (((-631 (-485)) (-814 (-485)) (-485)) 74 T ELT)) (-3066 (((-631 (-858 |#1|)) (-695)) 94 T ELT)) (-3065 (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831)) 48 (|has| |#1| (-6 (-3998 #1="*"))) ELT) (((-631 |#1|) (-631 |#1|) (-831)) 46 (|has| |#1| (-6 (-3998 #1#))) ELT))) +(((-943 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3998 #1="*"))) (-15 -3065 ((-631 |#1|) (-631 |#1|) (-831))) |%noBranch|) (IF (|has| |#1| (-6 (-3998 #1#))) (-15 -3065 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831))) |%noBranch|) (-15 -3066 ((-631 (-858 |#1|)) (-695))) (-15 -3067 ((-631 |#1|) (-631 |#1|) (-831))) (-15 -3067 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831))) (-15 -3068 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -3068 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3068 ((-631 |#1|) (-631 |#1|))) (-15 -3068 ((-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3069 ((-631 (-485)) (-814 (-485)) (-485))) (-15 -3069 ((-631 (-485)) (-584 (-485)))) (-15 -3069 ((-584 (-631 (-485))) (-584 (-814 (-485))) (-485))) (-15 -3069 ((-584 (-631 (-485))) (-584 (-584 (-485)))))) (-962)) (T -943)) +((-3069 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-485)))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-814 (-485)))) (-5 *4 (-485)) (-5 *2 (-584 (-631 *4))) (-5 *1 (-943 *5)) (-4 *5 (-962)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-485))) (-5 *4 (-485)) (-5 *2 (-631 *4)) (-5 *1 (-943 *5)) (-4 *5 (-962)))) (-3068 (*1 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3068 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3068 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3068 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3067 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3067 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-631 (-858 *4))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3065 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (|has| *4 (-6 (-3998 "*"))) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3065 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (|has| *4 (-6 (-3998 "*"))) (-4 *4 (-962)) (-5 *1 (-943 *4))))) +((-3073 (((-631 |#1|) (-584 (-631 |#1|)) (-1180 |#1|)) 69 (|has| |#1| (-258)) ELT)) (-3419 (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 (-1180 |#1|))) 107 (|has| |#1| (-312)) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 |#1|)) 104 (|has| |#1| (-312)) ELT)) (-3077 (((-1180 |#1|) (-584 (-1180 |#1|)) (-485)) 113 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3076 (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-831)) 119 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85)) 118 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|))) 117 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85) (-485) (-485)) 116 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3075 (((-85) (-584 (-631 |#1|))) 101 (|has| |#1| (-312)) ELT) (((-85) (-584 (-631 |#1|)) (-485)) 100 (|has| |#1| (-312)) ELT)) (-3072 (((-1180 (-1180 |#1|)) (-584 (-631 |#1|)) (-1180 |#1|)) 66 (|has| |#1| (-258)) ELT)) (-3071 (((-631 |#1|) (-584 (-631 |#1|)) (-631 |#1|)) 46 T ELT)) (-3070 (((-631 |#1|) (-1180 (-1180 |#1|))) 39 T ELT)) (-3074 (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-485)) 93 (|has| |#1| (-312)) ELT) (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|))) 92 (|has| |#1| (-312)) ELT) (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-85) (-485)) 91 (|has| |#1| (-312)) ELT))) +(((-944 |#1|) (-10 -7 (-15 -3070 ((-631 |#1|) (-1180 (-1180 |#1|)))) (-15 -3071 ((-631 |#1|) (-584 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-258)) (PROGN (-15 -3072 ((-1180 (-1180 |#1|)) (-584 (-631 |#1|)) (-1180 |#1|))) (-15 -3073 ((-631 |#1|) (-584 (-631 |#1|)) (-1180 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3074 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-85) (-485))) (-15 -3074 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3074 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-485))) (-15 -3075 ((-85) (-584 (-631 |#1|)) (-485))) (-15 -3075 ((-85) (-584 (-631 |#1|)))) (-15 -3419 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 |#1|))) (-15 -3419 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 (-1180 |#1|))))) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#1| (-312)) (PROGN (-15 -3076 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85) (-485) (-485))) (-15 -3076 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)))) (-15 -3076 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85))) (-15 -3076 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-831))) (-15 -3077 ((-1180 |#1|) (-584 (-1180 |#1|)) (-485)))) |%noBranch|) |%noBranch|)) (-962)) (T -944)) +((-3077 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1180 *5))) (-5 *4 (-485)) (-5 *2 (-1180 *5)) (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3076 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3076 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-962)) (-5 *2 (-584 (-584 (-631 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-584 (-631 *4))))) (-3076 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-485)) (-4 *6 (-312)) (-4 *6 (-320)) (-4 *6 (-962)) (-5 *2 (-584 (-584 (-631 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-584 (-631 *6))))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-1180 (-1180 *5))) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-944 *4)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-85)) (-5 *1 (-944 *5)))) (-3074 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-962)))) (-3074 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-944 *4)) (-4 *4 (-312)) (-4 *4 (-962)))) (-3074 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-584 (-631 *6))) (-5 *4 (-85)) (-5 *5 (-485)) (-5 *2 (-631 *6)) (-5 *1 (-944 *6)) (-4 *6 (-312)) (-4 *6 (-962)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-1180 *5)) (-4 *5 (-258)) (-4 *5 (-962)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-4 *5 (-258)) (-4 *5 (-962)) (-5 *2 (-1180 (-1180 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1180 *5)))) (-3071 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-944 *4)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-1180 (-1180 *4))) (-4 *4 (-962)) (-5 *2 (-631 *4)) (-5 *1 (-944 *4))))) +((-3078 ((|#1| (-831) |#1|) 18 T ELT))) +(((-945 |#1|) (-10 -7 (-15 -3078 (|#1| (-831) |#1|))) (-13 (-1014) (-10 -8 (-15 -3840 ($ $ $))))) (T -945)) +((-3078 (*1 *2 *3 *2) (-12 (-5 *3 (-831)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1014) (-10 -8 (-15 -3840 ($ $ $)))))))) +((-3079 ((|#1| |#1| (-831)) 18 T ELT))) +(((-946 |#1|) (-10 -7 (-15 -3079 (|#1| |#1| (-831)))) (-13 (-1014) (-10 -8 (-15 * ($ $ $))))) (T -946)) +((-3079 (*1 *2 *2 *3) (-12 (-5 *3 (-831)) (-5 *1 (-946 *2)) (-4 *2 (-13 (-1014) (-10 -8 (-15 * ($ $ $)))))))) +((-3947 ((|#1| (-262)) 11 T ELT) (((-1186) |#1|) 9 T ELT))) +(((-947 |#1|) (-10 -7 (-15 -3947 ((-1186) |#1|)) (-15 -3947 (|#1| (-262)))) (-1130)) (T -947)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-947 *2)) (-4 *2 (-1130)))) (-3947 (*1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *1 (-947 *3)) (-4 *3 (-1130))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3843 (($ |#4|) 24 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3080 ((|#4| $) 26 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 45 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3127 (((-695)) 42 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 22 T CONST)) (-3057 (((-85) $ $) 39 T ELT)) (-3838 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 28 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT))) +(((-948 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3843 ($ |#4|)) (-15 -3947 ($ |#4|)) (-15 -3080 (|#4| $)))) (-312) (-718) (-757) (-862 |#1| |#2| |#3|) (-584 |#4|)) (T -948)) +((-3843 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) (-3947 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) (-3080 (*1 *2 *1) (-12 (-4 *2 (-862 *3 *4 *5)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-14 *6 (-584 *2))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3207 (((-1050) $) 11 T ELT)) (-3947 (((-773) $) 17 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-949) (-13 (-996) (-10 -8 (-15 -3207 ((-1050) $))))) (T -949)) +((-3207 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-949))))) +((-3157 ((|#2| $) 10 T ELT))) +(((-950 |#1| |#2|) (-10 -7 (-15 -3157 (|#2| |#1|))) (-951 |#2|) (-1130)) (T -950)) +NIL +((-3158 (((-3 |#1| "failed") $) 9 T ELT)) (-3157 ((|#1| $) 8 T ELT)) (-3947 (($ |#1|) 6 T ELT))) +(((-951 |#1|) (-113) (-1130)) (T -951)) +((-3158 (*1 *2 *1) (|partial| -12 (-4 *1 (-951 *2)) (-4 *2 (-1130)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1130))))) +(-13 (-556 |t#1|) (-10 -8 (-15 -3158 ((-3 |t#1| "failed") $)) (-15 -3157 (|t#1| $)))) +(((-556 |#1|) . T)) +((-3081 (((-584 (-584 (-249 (-350 (-858 |#2|))))) (-584 (-858 |#2|)) (-584 (-1091))) 38 T ELT))) +(((-952 |#1| |#2|) (-10 -7 (-15 -3081 ((-584 (-584 (-249 (-350 (-858 |#2|))))) (-584 (-858 |#2|)) (-584 (-1091))))) (-496) (-13 (-496) (-951 |#1|))) (T -952)) +((-3081 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-4 *6 (-13 (-496) (-951 *5))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *6)))))) (-5 *1 (-952 *5 *6))))) +((-3082 (((-584 (-1091)) (-350 (-858 |#1|))) 17 T ELT)) (-3084 (((-350 (-1086 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1091)) 24 T ELT)) (-3085 (((-350 (-858 |#1|)) (-350 (-1086 (-350 (-858 |#1|)))) (-1091)) 26 T ELT)) (-3083 (((-3 (-1091) "failed") (-350 (-858 |#1|))) 20 T ELT)) (-3769 (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-249 (-350 (-858 |#1|))))) 32 T ELT) (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|)))) 33 T ELT) (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-1091)) (-584 (-350 (-858 |#1|)))) 28 T ELT) (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|))) 29 T ELT)) (-3947 (((-350 (-858 |#1|)) |#1|) 11 T ELT))) +(((-953 |#1|) (-10 -7 (-15 -3082 ((-584 (-1091)) (-350 (-858 |#1|)))) (-15 -3083 ((-3 (-1091) "failed") (-350 (-858 |#1|)))) (-15 -3084 ((-350 (-1086 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1091))) (-15 -3085 ((-350 (-858 |#1|)) (-350 (-1086 (-350 (-858 |#1|)))) (-1091))) (-15 -3769 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|)))) (-15 -3769 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-1091)) (-584 (-350 (-858 |#1|))))) (-15 -3769 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))))) (-15 -3769 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-249 (-350 (-858 |#1|)))))) (-15 -3947 ((-350 (-858 |#1|)) |#1|))) (-496)) (T -953)) +((-3947 (*1 *2 *3) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-953 *3)) (-4 *3 (-496)))) (-3769 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-5 *2 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *1 (-953 *4)))) (-3769 (*1 *2 *2 *3) (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-5 *2 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *1 (-953 *4)))) (-3769 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-1091))) (-5 *4 (-584 (-350 (-858 *5)))) (-5 *2 (-350 (-858 *5))) (-4 *5 (-496)) (-5 *1 (-953 *5)))) (-3769 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-953 *4)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1086 (-350 (-858 *5))))) (-5 *4 (-1091)) (-5 *2 (-350 (-858 *5))) (-5 *1 (-953 *5)) (-4 *5 (-496)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-350 (-1086 (-350 (-858 *5))))) (-5 *1 (-953 *5)) (-5 *3 (-350 (-858 *5))))) (-3083 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-1091)) (-5 *1 (-953 *4)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-1091))) (-5 *1 (-953 *4))))) +((-3086 (((-330)) 17 T ELT)) (-3101 (((-1 (-330)) (-330) (-330)) 22 T ELT)) (-3094 (((-1 (-330)) (-695)) 48 T ELT)) (-3087 (((-330)) 37 T ELT)) (-3090 (((-1 (-330)) (-330) (-330)) 38 T ELT)) (-3088 (((-330)) 29 T ELT)) (-3091 (((-1 (-330)) (-330)) 30 T ELT)) (-3089 (((-330) (-695)) 43 T ELT)) (-3092 (((-1 (-330)) (-695)) 44 T ELT)) (-3093 (((-1 (-330)) (-695) (-695)) 47 T ELT)) (-3385 (((-1 (-330)) (-695) (-695)) 45 T ELT))) +(((-954) (-10 -7 (-15 -3086 ((-330))) (-15 -3087 ((-330))) (-15 -3088 ((-330))) (-15 -3089 ((-330) (-695))) (-15 -3101 ((-1 (-330)) (-330) (-330))) (-15 -3090 ((-1 (-330)) (-330) (-330))) (-15 -3091 ((-1 (-330)) (-330))) (-15 -3092 ((-1 (-330)) (-695))) (-15 -3385 ((-1 (-330)) (-695) (-695))) (-15 -3093 ((-1 (-330)) (-695) (-695))) (-15 -3094 ((-1 (-330)) (-695))))) (T -954)) +((-3094 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3093 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3385 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3091 (*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))) (-3090 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))) (-3101 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-330)) (-5 *1 (-954)))) (-3088 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))) (-3087 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))) (-3086 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954))))) +((-3733 (((-348 |#1|) |#1|) 33 T ELT))) +(((-955 |#1|) (-10 -7 (-15 -3733 ((-348 |#1|) |#1|))) (-1156 (-350 (-858 (-485))))) (T -955)) +((-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1156 (-350 (-858 (-485)))))))) +((-3095 (((-350 (-348 (-858 |#1|))) (-350 (-858 |#1|))) 14 T ELT))) +(((-956 |#1|) (-10 -7 (-15 -3095 ((-350 (-348 (-858 |#1|))) (-350 (-858 |#1|))))) (-258)) (T -956)) +((-3095 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-858 *4)))) (-5 *1 (-956 *4))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3725 (($) 23 T CONST)) (-3099 ((|#1| $) 29 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3098 ((|#1| $) 28 T ELT)) (-3096 ((|#1|) 26 T CONST)) (-3947 (((-773) $) 13 T ELT)) (-3097 ((|#1| $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT))) (((-957 |#1|) (-113) (-23)) (T -957)) -((-3099 (*1 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) -(-13 (-956 |t#1|) (-10 -8 (-15 -3099 ($) -3952))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-956 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3681 (((-583 (-2 (|:| -3861 $) (|:| -1702 (-583 (-703 |#1| (-773 |#2|)))))) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3682 (((-583 $) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85) (-85)) NIL T ELT)) (-3081 (((-583 (-773 |#2|)) $) NIL T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3775 (((-583 (-2 (|:| |val| (-703 |#1| (-773 |#2|))) (|:| -1600 $))) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ (-773 |#2|)) NIL T ELT)) (-3710 (($ (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 (-703 |#1| (-773 |#2|)) #1="failed") $ (-773 |#2|)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2904 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3689 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-2900 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1#) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3156 (($ (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3799 (((-3 $ #1#) $) NIL T ELT)) (-3685 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT)) (-3406 (($ (-703 |#1| (-773 |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (($ (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-703 |#1| (-773 |#2|))) (|:| |den| |#1|)) (-703 |#1| (-773 |#2|)) $) NIL (|has| |#1| (-495)) ELT)) (-3694 (((-85) (-703 |#1| (-773 |#2|)) $ (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3683 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3842 (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $ (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $ (-703 |#1| (-773 |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3696 (((-2 (|:| -3861 (-583 (-703 |#1| (-773 |#2|)))) (|:| -1702 (-583 (-703 |#1| (-773 |#2|))))) $) NIL T ELT)) (-3197 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3195 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3198 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-2889 (((-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3180 (((-773 |#2|) $) NIL T ELT)) (-2608 (((-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3245 (((-85) (-703 |#1| (-773 |#2|)) $) NIL (|has| (-703 |#1| (-773 |#2|)) (-72)) ELT)) (-3326 (($ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-2914 (((-583 (-773 |#2|)) $) NIL T ELT)) (-2913 (((-85) (-773 |#2|) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3191 (((-3 (-703 |#1| (-773 |#2|)) (-583 $)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3190 (((-583 (-2 (|:| |val| (-703 |#1| (-773 |#2|))) (|:| -1600 $))) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3798 (((-3 (-703 |#1| (-773 |#2|)) #1#) $) NIL T ELT)) (-3192 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3194 (((-3 (-85) (-583 $)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3238 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT)) (-3440 (($ (-703 |#1| (-773 |#2|)) $) NIL T ELT) (($ (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3697 (((-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3691 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3699 (((-85) $ $) NIL T ELT)) (-2903 (((-2 (|:| |num| (-703 |#1| (-773 |#2|))) (|:| |den| |#1|)) (-703 |#1| (-773 |#2|)) $) NIL (|has| |#1| (-495)) ELT)) (-3692 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3801 (((-3 (-703 |#1| (-773 |#2|)) #1#) $) NIL T ELT)) (-1354 (((-3 (-703 |#1| (-773 |#2|)) #1#) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3679 (((-3 $ #1#) $ (-703 |#1| (-773 |#2|))) NIL T ELT)) (-3769 (($ $ (-703 |#1| (-773 |#2|))) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3768 (($ $ (-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|)))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (($ $ (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (($ $ (-249 (-703 |#1| (-773 |#2|)))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-703 |#1| (-773 |#2|))))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3948 (((-694) $) NIL T ELT)) (-1946 (((-694) (-703 |#1| (-773 |#2|)) $) NIL (|has| (-703 |#1| (-773 |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| (-703 |#1| (-773 |#2|)) (-553 (-473))) ELT)) (-3530 (($ (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-2910 (($ $ (-773 |#2|)) NIL T ELT)) (-2912 (($ $ (-773 |#2|)) NIL T ELT)) (-3684 (($ $) NIL T ELT)) (-2911 (($ $ (-773 |#2|)) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (((-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3678 (((-694) $) NIL (|has| (-773 |#2|) (-320)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 (-703 |#1| (-773 |#2|))))) #1#) (-583 (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 (-703 |#1| (-773 |#2|))))) #1#) (-583 (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3690 (((-85) $ (-1 (-85) (-703 |#1| (-773 |#2|)) (-583 (-703 |#1| (-773 |#2|))))) NIL T ELT)) (-3189 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3680 (((-583 (-773 |#2|)) $) NIL T ELT)) (-3196 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3933 (((-85) (-773 |#2|) $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-958 |#1| |#2|) (-13 (-983 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) (-10 -8 (-15 -3682 ((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85) (-85))))) (-392) (-583 (-1090))) (T -958)) -((-3682 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6))))) -((-3100 (((-1 (-484)) (-1001 (-484))) 32 T ELT)) (-3104 (((-484) (-484) (-484) (-484) (-484)) 29 T ELT)) (-3102 (((-1 (-484)) |RationalNumber|) NIL T ELT)) (-3103 (((-1 (-484)) |RationalNumber|) NIL T ELT)) (-3101 (((-1 (-484)) (-484) |RationalNumber|) NIL T ELT))) -(((-959) (-10 -7 (-15 -3100 ((-1 (-484)) (-1001 (-484)))) (-15 -3101 ((-1 (-484)) (-484) |RationalNumber|)) (-15 -3102 ((-1 (-484)) |RationalNumber|)) (-15 -3103 ((-1 (-484)) |RationalNumber|)) (-15 -3104 ((-484) (-484) (-484) (-484) (-484))))) (T -959)) -((-3104 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-959)))) (-3103 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)))) (-3102 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)))) (-3101 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)) (-5 *3 (-484)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-1001 (-484))) (-5 *2 (-1 (-484))) (-5 *1 (-959))))) -((-3946 (((-772) $) NIL T ELT) (($ (-484)) 10 T ELT))) -(((-960 |#1|) (-10 -7 (-15 -3946 (|#1| (-484))) (-15 -3946 ((-772) |#1|))) (-961)) (T -960)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-961) (-113)) (T -961)) -((-3126 (*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-694))))) -(-13 (-970) (-1061) (-590 $) (-555 (-484)) (-10 -7 (-15 -3126 ((-694)) -3952) (-6 -3992))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-3105 (((-350 (-857 |#2|)) (-583 |#2|) (-583 |#2|) (-694) (-694)) 55 T ELT))) -(((-962 |#1| |#2|) (-10 -7 (-15 -3105 ((-350 (-857 |#2|)) (-583 |#2|) (-583 |#2|) (-694) (-694)))) (-1090) (-312)) (T -962)) -((-3105 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-694)) (-4 *6 (-312)) (-5 *2 (-350 (-857 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1090))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) -(((-963 |#1|) (-113) (-1025)) (T -963)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-1025))))) -(-13 (-1013) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-3120 (((-85) $) 38 T ELT)) (-3122 (((-85) $) 17 T ELT)) (-3114 (((-694) $) 13 T ELT)) (-3113 (((-694) $) 14 T ELT)) (-3121 (((-85) $) 30 T ELT)) (-3119 (((-85) $) 40 T ELT))) -(((-964 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3113 ((-694) |#1|)) (-15 -3114 ((-694) |#1|)) (-15 -3119 ((-85) |#1|)) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|))) (-965 |#2| |#3| |#4| |#5| |#6|) (-694) (-694) (-961) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -964)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3120 (((-85) $) 62 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3122 (((-85) $) 64 T ELT)) (-3724 (($) 23 T CONST)) (-3109 (($ $) 45 (|has| |#3| (-258)) ELT)) (-3111 ((|#4| $ (-484)) 50 T ELT)) (-3108 (((-694) $) 44 (|has| |#3| (-495)) ELT)) (-3112 ((|#3| $ (-484) (-484)) 52 T ELT)) (-2889 (((-583 |#3|) $) 72 (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-3107 (((-694) $) 43 (|has| |#3| (-495)) ELT)) (-3106 (((-583 |#5|) $) 42 (|has| |#3| (-495)) ELT)) (-3114 (((-694) $) 56 T ELT)) (-3113 (((-694) $) 55 T ELT)) (-3118 (((-484) $) 60 T ELT)) (-3116 (((-484) $) 58 T ELT)) (-2608 (((-583 |#3|) $) 81 T ELT)) (-3245 (((-85) |#3| $) 83 (|has| |#3| (-72)) ELT)) (-3117 (((-484) $) 59 T ELT)) (-3115 (((-484) $) 57 T ELT)) (-3123 (($ (-583 (-583 |#3|))) 65 T ELT)) (-3326 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 48 T ELT)) (-3594 (((-583 (-583 |#3|)) $) 54 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3466 (((-3 $ "failed") $ |#3|) 47 (|has| |#3| (-495)) ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) 79 T ELT)) (-3768 (($ $ (-583 |#3|) (-583 |#3|)) 76 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) 75 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) 74 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 (-249 |#3|))) 73 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1222 (((-85) $ $) 66 T ELT)) (-3403 (((-85) $) 69 T ELT)) (-3565 (($) 68 T ELT)) (-3800 ((|#3| $ (-484) (-484)) 53 T ELT) ((|#3| $ (-484) (-484) |#3|) 51 T ELT)) (-3121 (((-85) $) 63 T ELT)) (-1946 (((-694) |#3| $) 82 (|has| |#3| (-72)) ELT) (((-694) (-1 (-85) |#3|) $) 80 T ELT)) (-3400 (($ $) 67 T ELT)) (-3110 ((|#5| $ (-484)) 49 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) 78 T ELT)) (-3119 (((-85) $) 61 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#3|) 46 (|has| |#3| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#3| $) 33 T ELT) (($ $ |#3|) 37 T ELT)) (-3957 (((-694) $) 77 T ELT))) -(((-965 |#1| |#2| |#3| |#4| |#5|) (-113) (-694) (-694) (-961) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -965)) -((-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3123 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-583 (-583 *5))))) (-3800 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))) (-3112 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))) (-3800 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3958 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3466 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-495)))) (-3949 (*1 *1 *1 *2) (-12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) (-3109 (*1 *1 *1) (-12 (-4 *1 (-965 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-258)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-583 *7))))) -(-13 (-82 |t#3| |t#3|) (-318 |t#3|) (-10 -8 (IF (|has| |t#3| (-146)) (-6 (-654 |t#3|)) |%noBranch|) (-15 -3123 ($ (-583 (-583 |t#3|)))) (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3119 ((-85) $)) (-15 -3118 ((-484) $)) (-15 -3117 ((-484) $)) (-15 -3116 ((-484) $)) (-15 -3115 ((-484) $)) (-15 -3114 ((-694) $)) (-15 -3113 ((-694) $)) (-15 -3594 ((-583 (-583 |t#3|)) $)) (-15 -3800 (|t#3| $ (-484) (-484))) (-15 -3112 (|t#3| $ (-484) (-484))) (-15 -3800 (|t#3| $ (-484) (-484) |t#3|)) (-15 -3111 (|t#4| $ (-484))) (-15 -3110 (|t#5| $ (-484))) (-15 -3958 ($ (-1 |t#3| |t#3|) $)) (-15 -3958 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-495)) (-15 -3466 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-312)) (-15 -3949 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-258)) (-15 -3109 ($ $)) |%noBranch|) (IF (|has| |t#3| (-495)) (PROGN (-15 -3108 ((-694) $)) (-15 -3107 ((-694) $)) (-15 -3106 ((-583 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-552 (-772)) . T) ((-260 |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ((-318 |#3|) . T) ((-429 |#3|) . T) ((-455 |#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ((-13) . T) ((-588 (-484)) . T) ((-588 |#3|) . T) ((-590 |#3|) . T) ((-582 |#3|) |has| |#3| (-146)) ((-654 |#3|) |has| |#3| (-146)) ((-963 |#3|) . T) ((-968 |#3|) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3109 (($ $) 46 (|has| |#3| (-258)) ELT)) (-3111 (((-197 |#2| |#3|) $ (-484)) 35 T ELT)) (-3124 (($ (-630 |#3|)) 44 T ELT)) (-3108 (((-694) $) 48 (|has| |#3| (-495)) ELT)) (-3112 ((|#3| $ (-484) (-484)) NIL T ELT)) (-2889 (((-583 |#3|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-3107 (((-694) $) 50 (|has| |#3| (-495)) ELT)) (-3106 (((-583 (-197 |#1| |#3|)) $) 54 (|has| |#3| (-495)) ELT)) (-3114 (((-694) $) NIL T ELT)) (-3113 (((-694) $) NIL T ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-2608 (((-583 |#3|) $) NIL T ELT)) (-3245 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-3123 (($ (-583 (-583 |#3|))) 30 T ELT)) (-3326 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3594 (((-583 (-583 |#3|)) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-495)) ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3768 (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#3| $ (-484) (-484)) NIL T ELT) ((|#3| $ (-484) (-484) |#3|) NIL T ELT)) (-3911 (((-107)) 58 (|has| |#3| (-312)) ELT)) (-3121 (((-85) $) NIL T ELT)) (-1946 (((-694) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-694) (-1 (-85) |#3|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) 65 (|has| |#3| (-553 (-473))) ELT)) (-3110 (((-197 |#1| |#3|) $ (-484)) 39 T ELT)) (-3946 (((-772) $) 18 T ELT) (((-630 |#3|) $) 41 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-2660 (($) 15 T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-966 |#1| |#2| |#3|) (-13 (-965 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-552 (-630 |#3|)) (-10 -8 (IF (|has| |#3| (-312)) (-6 (-1187 |#3|)) |%noBranch|) (IF (|has| |#3| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (-15 -3124 ($ (-630 |#3|))))) (-694) (-694) (-961)) (T -966)) -((-3124 (*1 *1 *2) (-12 (-5 *2 (-630 *5)) (-4 *5 (-961)) (-5 *1 (-966 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694))))) -((-3842 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3958 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) -(((-967 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3958 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3842 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-694) (-694) (-961) (-196 |#2| |#3|) (-196 |#1| |#3|) (-965 |#1| |#2| |#3| |#4| |#5|) (-961) (-196 |#2| |#7|) (-196 |#1| |#7|) (-965 |#1| |#2| |#7| |#8| |#9|)) (T -967)) -((-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-694)) (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *12 (-965 *5 *6 *2 *10 *11)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-694)) (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-965 *5 *6 *10 *11 *12)) (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ |#1|) 33 T ELT))) -(((-968 |#1|) (-113) (-970)) (T -968)) -NIL -(-13 (-21) (-963 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-963 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-3125 (((-85) $ $) 10 T ELT))) -(((-969 |#1|) (-10 -7 (-15 -3125 ((-85) |#1| |#1|))) (-970)) (T -969)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-970) (-113)) (T -970)) -((-3125 (*1 *2 *1 *1) (-12 (-4 *1 (-970)) (-5 *2 (-85))))) -(-13 (-21) (-1025) (-10 -8 (-15 -3125 ((-85) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-1025) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3831 (((-1090) $) 11 T ELT)) (-3736 ((|#1| $) 12 T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3226 (($ (-1090) |#1|) 10 T ELT)) (-3946 (((-772) $) 22 (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3056 (((-85) $ $) 17 (|has| |#1| (-1013)) ELT))) -(((-971 |#1| |#2|) (-13 (-1129) (-10 -8 (-15 -3226 ($ (-1090) |#1|)) (-15 -3831 ((-1090) $)) (-15 -3736 (|#1| $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1006 |#2|) (-1129)) (T -971)) -((-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-4 *4 (-1129)) (-5 *1 (-971 *3 *4)) (-4 *3 (-1006 *4)))) (-3831 (*1 *2 *1) (-12 (-4 *4 (-1129)) (-5 *2 (-1090)) (-5 *1 (-971 *3 *4)) (-4 *3 (-1006 *4)))) (-3736 (*1 *2 *1) (-12 (-4 *2 (-1006 *3)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1129))))) -((-3771 (($ $) 17 T ELT)) (-3127 (($ $) 25 T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 54 T ELT)) (-3132 (($ $) 27 T ELT)) (-3128 (($ $) 12 T ELT)) (-3130 (($ $) 40 T ELT)) (-3972 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-800 (-330)) $) 36 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) 31 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) 31 T ELT)) (-3126 (((-694)) 9 T CONST)) (-3131 (($ $) 44 T ELT))) -(((-972 |#1|) (-10 -7 (-15 -3127 (|#1| |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3130 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -2796 ((-798 (-330) |#1|) |#1| (-800 (-330)) (-798 (-330) |#1|))) (-15 -3972 ((-800 (-330)) |#1|)) (-15 -3946 (|#1| (-350 (-484)))) (-15 -3946 (|#1| (-484))) (-15 -3972 ((-179) |#1|)) (-15 -3972 ((-330) |#1|)) (-15 -3946 (|#1| (-350 (-484)))) (-15 -3946 (|#1| |#1|)) (-15 -3126 ((-694)) -3952) (-15 -3946 (|#1| (-484))) (-15 -3946 ((-772) |#1|))) (-973)) (T -972)) -((-3126 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-972 *3)) (-4 *3 (-973))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3129 (((-484) $) 108 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3771 (($ $) 106 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-3037 (($ $) 116 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3623 (((-484) $) 133 T ELT)) (-3724 (($) 23 T CONST)) (-3127 (($ $) 105 T ELT)) (-3157 (((-3 (-484) #1="failed") $) 121 T ELT) (((-3 (-350 (-484)) #1#) $) 118 T ELT)) (-3156 (((-484) $) 122 T ELT) (((-350 (-484)) $) 119 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3723 (((-85) $) 89 T ELT)) (-3186 (((-85) $) 131 T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 112 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 115 T ELT)) (-3132 (($ $) 111 T ELT)) (-3187 (((-85) $) 132 T ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 68 T ELT)) (-2531 (($ $ $) 125 T ELT)) (-2857 (($ $ $) 126 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3128 (($ $) 107 T ELT)) (-3130 (($ $) 109 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-3972 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-800 (-330)) $) 113 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT) (($ (-484)) 120 T ELT) (($ (-350 (-484))) 117 T ELT)) (-3126 (((-694)) 40 T CONST)) (-3131 (($ $) 110 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3383 (($ $) 134 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2566 (((-85) $ $) 127 T ELT)) (-2567 (((-85) $ $) 129 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 128 T ELT)) (-2685 (((-85) $ $) 130 T ELT)) (-3949 (($ $ $) 83 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-350 (-484))) 114 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT))) -(((-973) (-113)) (T -973)) -((-3132 (*1 *1 *1) (-4 *1 (-973))) (-3131 (*1 *1 *1) (-4 *1 (-973))) (-3130 (*1 *1 *1) (-4 *1 (-973))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-484)))) (-3128 (*1 *1 *1) (-4 *1 (-973))) (-3771 (*1 *1 *1) (-4 *1 (-973))) (-3127 (*1 *1 *1) (-4 *1 (-973)))) -(-13 (-312) (-755) (-933) (-950 (-484)) (-950 (-350 (-484))) (-915) (-553 (-800 (-330))) (-796 (-330)) (-120) (-10 -8 (-15 -3132 ($ $)) (-15 -3131 ($ $)) (-15 -3130 ($ $)) (-15 -3129 ((-484) $)) (-15 -3128 ($ $)) (-15 -3771 ($ $)) (-15 -3127 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-330)) . T) ((-553 (-800 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-330)) . T) ((-832) . T) ((-915) . T) ((-933) . T) ((-950 (-350 (-484))) . T) ((-950 (-484)) . T) ((-963 (-350 (-484))) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) |#2| $) 26 T ELT)) (-3136 ((|#1| $) 10 T ELT)) (-3623 (((-484) |#2| $) 119 T ELT)) (-3183 (((-3 $ #1="failed") |#2| (-830)) 76 T ELT)) (-3137 ((|#1| $) 31 T ELT)) (-3182 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3134 (($ $) 28 T ELT)) (-3467 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3186 (((-85) |#2| $) NIL T ELT)) (-3187 (((-85) |#2| $) NIL T ELT)) (-3133 (((-85) |#2| $) 27 T ELT)) (-3135 ((|#1| $) 120 T ELT)) (-3138 ((|#1| $) 30 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3185 ((|#2| $) 104 T ELT)) (-3946 (((-772) $) 95 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3770 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3184 (((-583 $) |#2|) 78 T ELT)) (-3056 (((-85) $ $) 99 T ELT))) -(((-974 |#1| |#2|) (-13 (-980 |#1| |#2|) (-10 -8 (-15 -3138 (|#1| $)) (-15 -3137 (|#1| $)) (-15 -3136 (|#1| $)) (-15 -3135 (|#1| $)) (-15 -3134 ($ $)) (-15 -3133 ((-85) |#2| $)) (-15 -3182 (|#1| |#2| $ |#1|)))) (-13 (-755) (-312)) (-1155 |#1|)) (T -974)) -((-3182 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))) (-3138 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))) (-3137 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))) (-3136 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))) (-3135 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))) (-3134 (*1 *1 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))) (-3133 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-755) (-312))) (-5 *2 (-85)) (-5 *1 (-974 *4 *3)) (-4 *3 (-1155 *4))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2047 (($ $ $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3623 (((-484) $) NIL T ELT)) (-2441 (($ $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3139 (($ (-1090)) 10 T ELT) (($ (-484)) 7 T ELT)) (-3157 (((-3 (-484) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3024 (((-3 (-350 (-484)) #1#) $) NIL T ELT)) (-3023 (((-85) $) NIL T ELT)) (-3022 (((-350 (-484)) $) NIL T ELT)) (-2994 (($) NIL T ELT) (($ $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-2040 (($ $ $ $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-3186 (((-85) $) NIL T ELT)) (-1369 (($ $ $) NIL T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2673 (((-85) $) NIL T ELT)) (-3445 (((-632 $) $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-2044 (($ $) NIL T ELT)) (-3833 (($ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2039 (($ $ $) NIL T ELT)) (-3446 (($) NIL T CONST)) (-2046 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1367 (($ $) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2674 (((-85) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-3758 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-484) $) 16 T ELT) (((-473) $) NIL T ELT) (((-800 (-484)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1090)) 9 T ELT)) (-3946 (((-772) $) 23 T ELT) (($ (-484)) 6 T ELT) (($ $) NIL T ELT) (($ (-484)) 6 T ELT)) (-3126 (((-694)) NIL T CONST)) (-2049 (((-85) $ $) NIL T ELT)) (-3101 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2694 (($) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2043 (($ $ $ $) NIL T ELT)) (-3383 (($ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-3837 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT))) -(((-975) (-13 (-483) (-557 (-1090)) (-10 -8 (-6 -3982) (-6 -3987) (-6 -3983) (-15 -3139 ($ (-1090))) (-15 -3139 ($ (-484)))))) (T -975)) -((-3139 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-975)))) (-3139 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-975))))) -((-3797 (($ $) 46 T ELT)) (-3166 (((-85) $ $) 82 T ELT)) (-3157 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-857 (-350 (-484)))) 247 T ELT) (((-3 $ #1#) (-857 (-484))) 246 T ELT) (((-3 $ #1#) (-857 |#2|)) 249 T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-857 (-350 (-484)))) 235 T ELT) (($ (-857 (-484))) 231 T ELT) (($ (-857 |#2|)) 255 T ELT)) (-3959 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3694 (((-85) $ $) 131 T ELT) (((-85) $ (-583 $)) 135 T ELT)) (-3172 (((-85) $) 60 T ELT)) (-3752 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 125 T ELT)) (-3143 (($ $) 160 T ELT)) (-3154 (($ $) 156 T ELT)) (-3155 (($ $) 155 T ELT)) (-3165 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3164 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3695 (((-85) $ $) 143 T ELT) (((-85) $ (-583 $)) 144 T ELT)) (-3180 ((|#4| $) 32 T ELT)) (-3159 (($ $ $) 128 T ELT)) (-3173 (((-85) $) 59 T ELT)) (-3179 (((-694) $) 35 T ELT)) (-3140 (($ $) 174 T ELT)) (-3141 (($ $) 171 T ELT)) (-3168 (((-583 $) $) 72 T ELT)) (-3171 (($ $) 62 T ELT)) (-3142 (($ $) 167 T ELT)) (-3169 (((-583 $) $) 69 T ELT)) (-3170 (($ $) 64 T ELT)) (-3174 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3158 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3481 (-694))) $ $) 130 T ELT)) (-3160 (((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $) 126 T ELT) (((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $ |#4|) 127 T ELT)) (-3161 (((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $) 121 T ELT) (((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $ |#4|) 123 T ELT)) (-3163 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3162 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3176 (((-583 $) $) 54 T ELT)) (-3691 (((-85) $ $) 140 T ELT) (((-85) $ (-583 $)) 141 T ELT)) (-3686 (($ $ $) 116 T ELT)) (-3446 (($ $) 37 T ELT)) (-3699 (((-85) $ $) 80 T ELT)) (-3692 (((-85) $ $) 136 T ELT) (((-85) $ (-583 $)) 138 T ELT)) (-3687 (($ $ $) 112 T ELT)) (-3178 (($ $) 41 T ELT)) (-3144 ((|#2| |#2| $) 164 T ELT) (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3152 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3153 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3177 (($ $) 49 T ELT)) (-3175 (($ $) 55 T ELT)) (-3972 (((-800 (-330)) $) NIL T ELT) (((-800 (-484)) $) NIL T ELT) (((-473) $) NIL T ELT) (($ (-857 (-350 (-484)))) 237 T ELT) (($ (-857 (-484))) 233 T ELT) (($ (-857 |#2|)) 248 T ELT) (((-1073) $) 278 T ELT) (((-857 |#2|) $) 184 T ELT)) (-3946 (((-772) $) 29 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-857 |#2|) $) 185 T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-3167 (((-3 (-85) #1#) $ $) 79 T ELT))) -(((-976 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3946 (|#1| |#1|)) (-15 -3144 (|#1| |#1| |#1|)) (-15 -3144 (|#1| (-583 |#1|))) (-15 -3946 (|#1| (-350 (-484)))) (-15 -3946 ((-857 |#2|) |#1|)) (-15 -3972 ((-857 |#2|) |#1|)) (-15 -3972 ((-1073) |#1|)) (-15 -3140 (|#1| |#1|)) (-15 -3141 (|#1| |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -3144 (|#2| |#2| |#1|)) (-15 -3152 (|#1| |#1| |#1|)) (-15 -3153 (|#1| |#1| |#1|)) (-15 -3152 (|#1| |#1| |#2|)) (-15 -3153 (|#1| |#1| |#2|)) (-15 -3154 (|#1| |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3972 (|#1| (-857 |#2|))) (-15 -3156 (|#1| (-857 |#2|))) (-15 -3157 ((-3 |#1| #1="failed") (-857 |#2|))) (-15 -3972 (|#1| (-857 (-484)))) (-15 -3156 (|#1| (-857 (-484)))) (-15 -3157 ((-3 |#1| #1#) (-857 (-484)))) (-15 -3972 (|#1| (-857 (-350 (-484))))) (-15 -3156 (|#1| (-857 (-350 (-484))))) (-15 -3157 ((-3 |#1| #1#) (-857 (-350 (-484))))) (-15 -3686 (|#1| |#1| |#1|)) (-15 -3687 (|#1| |#1| |#1|)) (-15 -3158 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3481 (-694))) |#1| |#1|)) (-15 -3159 (|#1| |#1| |#1|)) (-15 -3752 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -3160 ((-2 (|:| -3954 |#1|) (|:| |gap| (-694)) (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1| |#4|)) (-15 -3160 ((-2 (|:| -3954 |#1|) (|:| |gap| (-694)) (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -3161 ((-2 (|:| -3954 |#1|) (|:| |gap| (-694)) (|:| -2902 |#1|)) |#1| |#1| |#4|)) (-15 -3161 ((-2 (|:| -3954 |#1|) (|:| |gap| (-694)) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -3162 (|#1| |#1| |#1| |#4|)) (-15 -3163 (|#1| |#1| |#1| |#4|)) (-15 -3162 (|#1| |#1| |#1|)) (-15 -3163 (|#1| |#1| |#1|)) (-15 -3164 (|#1| |#1| |#1| |#4|)) (-15 -3165 (|#1| |#1| |#1| |#4|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -3695 ((-85) |#1| (-583 |#1|))) (-15 -3695 ((-85) |#1| |#1|)) (-15 -3691 ((-85) |#1| (-583 |#1|))) (-15 -3691 ((-85) |#1| |#1|)) (-15 -3692 ((-85) |#1| (-583 |#1|))) (-15 -3692 ((-85) |#1| |#1|)) (-15 -3694 ((-85) |#1| (-583 |#1|))) (-15 -3694 ((-85) |#1| |#1|)) (-15 -3166 ((-85) |#1| |#1|)) (-15 -3699 ((-85) |#1| |#1|)) (-15 -3167 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3168 ((-583 |#1|) |#1|)) (-15 -3169 ((-583 |#1|) |#1|)) (-15 -3170 (|#1| |#1|)) (-15 -3171 (|#1| |#1|)) (-15 -3172 ((-85) |#1|)) (-15 -3173 ((-85) |#1|)) (-15 -3959 (|#1| |#1| |#4|)) (-15 -3174 (|#1| |#1| |#4|)) (-15 -3175 (|#1| |#1|)) (-15 -3176 ((-583 |#1|) |#1|)) (-15 -3177 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3178 (|#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -3179 ((-694) |#1|)) (-15 -3180 (|#4| |#1|)) (-15 -3972 ((-473) |#1|)) (-15 -3972 ((-800 (-484)) |#1|)) (-15 -3972 ((-800 (-330)) |#1|)) (-15 -3946 (|#1| |#4|)) (-15 -3157 ((-3 |#4| #1#) |#1|)) (-15 -3156 (|#4| |#1|)) (-15 -3174 (|#2| |#1|)) (-15 -3959 (|#1| |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3156 ((-350 (-484)) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 -3946 (|#1| (-484))) (-15 -3946 ((-772) |#1|))) (-977 |#2| |#3| |#4|) (-961) (-717) (-756)) (T -976)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 |#3|) $) 123 T ELT)) (-3083 (((-1085 $) $ |#3|) 138 T ELT) (((-1085 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) 125 T ELT) (((-694) $ (-583 |#3|)) 124 T ELT)) (-3797 (($ $) 293 T ELT)) (-3166 (((-85) $ $) 279 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3755 (($ $ $) 238 (|has| |#1| (-495)) ELT)) (-3148 (((-583 $) $ $) 233 (|has| |#1| (-495)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 113 (|has| |#1| (-821)) ELT)) (-3775 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 116 (|has| |#1| (-821)) ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-484)) #2#) $) 178 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 $ "failed") (-857 (-350 (-484)))) 253 (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090)))) ELT) (((-3 $ "failed") (-857 (-484))) 250 (OR (-12 (-2560 (|has| |#1| (-38 (-350 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1090)))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090))))) ELT) (((-3 $ "failed") (-857 |#1|)) 247 (OR (-12 (-2560 (|has| |#1| (-38 (-350 (-484))))) (-2560 (|has| |#1| (-38 (-484)))) (|has| |#3| (-553 (-1090)))) (-12 (-2560 (|has| |#1| (-483))) (-2560 (|has| |#1| (-38 (-350 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1090)))) (-12 (-2560 (|has| |#1| (-904 (-484)))) (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090))))) ELT)) (-3156 ((|#1| $) 180 T ELT) (((-350 (-484)) $) 179 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) ((|#3| $) 154 T ELT) (($ (-857 (-350 (-484)))) 252 (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090)))) ELT) (($ (-857 (-484))) 249 (OR (-12 (-2560 (|has| |#1| (-38 (-350 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1090)))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090))))) ELT) (($ (-857 |#1|)) 246 (OR (-12 (-2560 (|has| |#1| (-38 (-350 (-484))))) (-2560 (|has| |#1| (-38 (-484)))) (|has| |#3| (-553 (-1090)))) (-12 (-2560 (|has| |#1| (-483))) (-2560 (|has| |#1| (-38 (-350 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1090)))) (-12 (-2560 (|has| |#1| (-904 (-484)))) (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090))))) ELT)) (-3756 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT) (($ $ $) 234 (|has| |#1| (-495)) ELT)) (-3959 (($ $) 171 T ELT) (($ $ |#3|) 288 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3694 (((-85) $ $) 278 T ELT) (((-85) $ (-583 $)) 277 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3172 (((-85) $) 286 T ELT)) (-3752 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 258 T ELT)) (-3143 (($ $) 227 (|has| |#1| (-392)) ELT)) (-3503 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2818 (((-583 $) $) 122 T ELT)) (-3723 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-3154 (($ $) 243 (|has| |#1| (-495)) ELT)) (-3155 (($ $) 244 (|has| |#1| (-495)) ELT)) (-3165 (($ $ $) 270 T ELT) (($ $ $ |#3|) 268 T ELT)) (-3164 (($ $ $) 269 T ELT) (($ $ $ |#3|) 267 T ELT)) (-1624 (($ $ |#1| |#2| $) 189 T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 97 (-12 (|has| |#3| (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| |#3| (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3695 (((-85) $ $) 272 T ELT) (((-85) $ (-583 $)) 271 T ELT)) (-3145 (($ $ $ $ $) 229 (|has| |#1| (-495)) ELT)) (-3180 ((|#3| $) 297 T ELT)) (-3084 (($ (-1085 |#1|) |#3|) 130 T ELT) (($ (-1085 $) |#3|) 129 T ELT)) (-2821 (((-583 $) $) 139 T ELT)) (-3937 (((-85) $) 169 T ELT)) (-2893 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-694)) 132 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 131 T ELT)) (-3159 (($ $ $) 257 T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#3|) 133 T ELT)) (-3173 (((-85) $) 287 T ELT)) (-2820 ((|#2| $) 187 T ELT) (((-694) $ |#3|) 135 T ELT) (((-583 (-694)) $ (-583 |#3|)) 134 T ELT)) (-3179 (((-694) $) 296 T ELT)) (-1625 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3082 (((-3 |#3| #3="failed") $) 136 T ELT)) (-3140 (($ $) 224 (|has| |#1| (-392)) ELT)) (-3141 (($ $) 225 (|has| |#1| (-392)) ELT)) (-3168 (((-583 $) $) 282 T ELT)) (-3171 (($ $) 285 T ELT)) (-3142 (($ $) 226 (|has| |#1| (-392)) ELT)) (-3169 (((-583 $) $) 283 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 145 T ELT) (((-630 |#1|) (-1179 $)) 144 T ELT)) (-3170 (($ $) 284 T ELT)) (-2894 (($ $) 166 T ELT)) (-3174 ((|#1| $) 165 T ELT) (($ $ |#3|) 289 T ELT)) (-1891 (($ (-583 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3158 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3481 (-694))) $ $) 256 T ELT)) (-3160 (((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $) 260 T ELT) (((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $ |#3|) 259 T ELT)) (-3161 (((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $) 262 T ELT) (((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $ |#3|) 261 T ELT)) (-3163 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-3162 (($ $ $) 265 T ELT) (($ $ $ |#3|) 263 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3190 (($ $ $) 232 (|has| |#1| (-495)) ELT)) (-3176 (((-583 $) $) 291 T ELT)) (-2823 (((-3 (-583 $) #3#) $) 127 T ELT)) (-2822 (((-3 (-583 $) #3#) $) 128 T ELT)) (-2824 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) #3#) $) 126 T ELT)) (-3691 (((-85) $ $) 274 T ELT) (((-85) $ (-583 $)) 273 T ELT)) (-3686 (($ $ $) 254 T ELT)) (-3446 (($ $) 295 T ELT)) (-3699 (((-85) $ $) 280 T ELT)) (-3692 (((-85) $ $) 276 T ELT) (((-85) $ (-583 $)) 275 T ELT)) (-3687 (($ $ $) 255 T ELT)) (-3178 (($ $) 294 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3149 (((-2 (|:| -3144 $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-495)) ELT)) (-3150 (((-2 (|:| -3144 $) (|:| |coef1| $)) $ $) 236 (|has| |#1| (-495)) ELT)) (-1797 (((-85) $) 183 T ELT)) (-1796 ((|#1| $) 184 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 108 (|has| |#1| (-392)) ELT)) (-3144 ((|#1| |#1| $) 228 (|has| |#1| (-392)) ELT) (($ (-583 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) 115 (|has| |#1| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 114 (|has| |#1| (-821)) ELT)) (-3732 (((-348 $) $) 112 (|has| |#1| (-821)) ELT)) (-3151 (((-2 (|:| -3144 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 237 (|has| |#1| (-495)) ELT)) (-3466 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-3152 (($ $ |#1|) 241 (|has| |#1| (-495)) ELT) (($ $ $) 239 (|has| |#1| (-495)) ELT)) (-3153 (($ $ |#1|) 242 (|has| |#1| (-495)) ELT) (($ $ $) 240 (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-583 |#3|) (-583 $)) 155 T ELT)) (-3757 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-583 |#3|) (-583 (-694))) 52 T ELT) (($ $ |#3| (-694)) 51 T ELT) (($ $ (-583 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3948 ((|#2| $) 167 T ELT) (((-694) $ |#3|) 143 T ELT) (((-583 (-694)) $ (-583 |#3|)) 142 T ELT)) (-3177 (($ $) 292 T ELT)) (-3175 (($ $) 290 T ELT)) (-3972 (((-800 (-330)) $) 95 (-12 (|has| |#3| (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| |#3| (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| |#3| (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT) (($ (-857 (-350 (-484)))) 251 (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090)))) ELT) (($ (-857 (-484))) 248 (OR (-12 (-2560 (|has| |#1| (-38 (-350 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1090)))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090))))) ELT) (($ (-857 |#1|)) 245 (|has| |#3| (-553 (-1090))) ELT) (((-1073) $) 223 (-12 (|has| |#1| (-950 (-484))) (|has| |#3| (-553 (-1090)))) ELT) (((-857 |#1|) $) 222 (|has| |#3| (-553 (-1090))) ELT)) (-2817 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) 117 (-2562 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (((-857 |#1|) $) 221 (|has| |#3| (-553 (-1090))) ELT) (($ (-350 (-484))) 91 (OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ELT) (($ $) 98 (|has| |#1| (-495)) ELT)) (-3817 (((-583 |#1|) $) 185 T ELT)) (-3677 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-694)) 141 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 140 T ELT)) (-2702 (((-632 $) $) 92 (OR (-2562 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1623 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-3167 (((-3 (-85) "failed") $ $) 281 T ELT)) (-2666 (($) 45 T CONST)) (-3146 (($ $ $ $ (-694)) 230 (|has| |#1| (-495)) ELT)) (-3147 (($ $ $ (-694)) 231 (|has| |#1| (-495)) ELT)) (-2669 (($ $ (-583 |#3|) (-583 (-694))) 55 T ELT) (($ $ |#3| (-694)) 54 T ELT) (($ $ (-583 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 175 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) 174 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) -(((-977 |#1| |#2| |#3|) (-113) (-961) (-717) (-756)) (T -977)) -((-3180 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3179 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-694)))) (-3446 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3177 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3176 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3175 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3174 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3959 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3171 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3170 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3169 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3168 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3167 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3699 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3166 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3691 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3695 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3165 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3165 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3164 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3163 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3162 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3163 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3162 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3161 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-694)) (|:| -2902 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3161 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-694)) (|:| -2902 *1))) (-4 *1 (-977 *4 *5 *3)))) (-3160 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3160 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-977 *4 *5 *3)))) (-3752 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3159 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3158 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3481 (-694)))) (-4 *1 (-977 *3 *4 *5)))) (-3687 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3686 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3157 (*1 *1 *2) (|partial| -12 (-5 *2 (-857 (-350 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3156 (*1 *1 *2) (-12 (-5 *2 (-857 (-350 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-857 (-350 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3157 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2560 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3156 (*1 *1 *2) (OR (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2560 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3972 (*1 *1 *2) (OR (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2560 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3157 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-38 (-350 (-484))))) (-2560 (-4 *3 (-38 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-483))) (-2560 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3156 (*1 *1 *2) (OR (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-38 (-350 (-484))))) (-2560 (-4 *3 (-38 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-483))) (-2560 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2560 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *5 (-553 (-1090))) (-4 *4 (-717)) (-4 *5 (-756)))) (-3155 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3154 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3153 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3152 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3153 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3152 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3755 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3151 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3144 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3150 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3144 *1) (|:| |coef1| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3149 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3144 *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3148 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3190 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3147 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *3 (-495)))) (-3146 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *3 (-495)))) (-3145 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3144 (*1 *2 *2 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-392)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-392)))) (-3142 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-392)))) (-3141 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-392)))) (-3140 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-392))))) -(-13 (-861 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3180 (|t#3| $)) (-15 -3179 ((-694) $)) (-15 -3446 ($ $)) (-15 -3178 ($ $)) (-15 -3797 ($ $)) (-15 -3177 ($ $)) (-15 -3176 ((-583 $) $)) (-15 -3175 ($ $)) (-15 -3174 ($ $ |t#3|)) (-15 -3959 ($ $ |t#3|)) (-15 -3173 ((-85) $)) (-15 -3172 ((-85) $)) (-15 -3171 ($ $)) (-15 -3170 ($ $)) (-15 -3169 ((-583 $) $)) (-15 -3168 ((-583 $) $)) (-15 -3167 ((-3 (-85) "failed") $ $)) (-15 -3699 ((-85) $ $)) (-15 -3166 ((-85) $ $)) (-15 -3694 ((-85) $ $)) (-15 -3694 ((-85) $ (-583 $))) (-15 -3692 ((-85) $ $)) (-15 -3692 ((-85) $ (-583 $))) (-15 -3691 ((-85) $ $)) (-15 -3691 ((-85) $ (-583 $))) (-15 -3695 ((-85) $ $)) (-15 -3695 ((-85) $ (-583 $))) (-15 -3165 ($ $ $)) (-15 -3164 ($ $ $)) (-15 -3165 ($ $ $ |t#3|)) (-15 -3164 ($ $ $ |t#3|)) (-15 -3163 ($ $ $)) (-15 -3162 ($ $ $)) (-15 -3163 ($ $ $ |t#3|)) (-15 -3162 ($ $ $ |t#3|)) (-15 -3161 ((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $)) (-15 -3161 ((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -2902 $)) $ $ |t#3|)) (-15 -3160 ((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -3160 ((-2 (|:| -3954 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2902 $)) $ $ |t#3|)) (-15 -3752 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -3159 ($ $ $)) (-15 -3158 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3481 (-694))) $ $)) (-15 -3687 ($ $ $)) (-15 -3686 ($ $ $)) (IF (|has| |t#3| (-553 (-1090))) (PROGN (-6 (-552 (-857 |t#1|))) (-6 (-553 (-857 |t#1|))) (IF (|has| |t#1| (-38 (-350 (-484)))) (PROGN (-15 -3157 ((-3 $ "failed") (-857 (-350 (-484))))) (-15 -3156 ($ (-857 (-350 (-484))))) (-15 -3972 ($ (-857 (-350 (-484))))) (-15 -3157 ((-3 $ "failed") (-857 (-484)))) (-15 -3156 ($ (-857 (-484)))) (-15 -3972 ($ (-857 (-484)))) (IF (|has| |t#1| (-904 (-484))) |%noBranch| (PROGN (-15 -3157 ((-3 $ "failed") (-857 |t#1|))) (-15 -3156 ($ (-857 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-484))) (IF (|has| |t#1| (-38 (-350 (-484)))) |%noBranch| (PROGN (-15 -3157 ((-3 $ "failed") (-857 (-484)))) (-15 -3156 ($ (-857 (-484)))) (-15 -3972 ($ (-857 (-484)))) (IF (|has| |t#1| (-483)) |%noBranch| (PROGN (-15 -3157 ((-3 $ "failed") (-857 |t#1|))) (-15 -3156 ($ (-857 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-484))) |%noBranch| (IF (|has| |t#1| (-38 (-350 (-484)))) |%noBranch| (PROGN (-15 -3157 ((-3 $ "failed") (-857 |t#1|))) (-15 -3156 ($ (-857 |t#1|)))))) (-15 -3972 ($ (-857 |t#1|))) (IF (|has| |t#1| (-950 (-484))) (-6 (-553 (-1073))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3155 ($ $)) (-15 -3154 ($ $)) (-15 -3153 ($ $ |t#1|)) (-15 -3152 ($ $ |t#1|)) (-15 -3153 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -3755 ($ $ $)) (-15 -3151 ((-2 (|:| -3144 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3150 ((-2 (|:| -3144 $) (|:| |coef1| $)) $ $)) (-15 -3149 ((-2 (|:| -3144 $) (|:| |coef2| $)) $ $)) (-15 -3756 ($ $ $)) (-15 -3148 ((-583 $) $ $)) (-15 -3190 ($ $ $)) (-15 -3147 ($ $ $ (-694))) (-15 -3146 ($ $ $ $ (-694))) (-15 -3145 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -3144 (|t#1| |t#1| $)) (-15 -3143 ($ $)) (-15 -3142 ($ $)) (-15 -3141 ($ $)) (-15 -3140 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-552 (-772)) . T) ((-552 (-857 |#1|)) |has| |#3| (-553 (-1090))) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ((-553 (-800 (-330))) -12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#3| (-553 (-800 (-330))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ((-553 (-857 |#1|)) |has| |#3| (-553 (-1090))) ((-553 (-1073)) -12 (|has| |#1| (-950 (-484))) (|has| |#3| (-553 (-1090)))) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-821)) (|has| |#1| (-392))) ((-455 |#3| |#1|) . T) ((-455 |#3| $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-663) . T) ((-806 $ |#3|) . T) ((-809 |#3|) . T) ((-811 |#3|) . T) ((-796 (-330)) -12 (|has| |#1| (-796 (-330))) (|has| |#3| (-796 (-330)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ((-861 |#1| |#2| |#3|) . T) ((-821) |has| |#1| (-821)) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) |has| |#1| (-821))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3181 (((-583 (-1049)) $) 18 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 27 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3233 (((-1049) $) 20 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-978) (-13 (-995) (-10 -8 (-15 -3181 ((-583 (-1049)) $)) (-15 -3233 ((-1049) $))))) (T -978)) -((-3181 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-978)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-978))))) -((-3188 (((-85) |#3| $) 15 T ELT)) (-3183 (((-3 $ #1="failed") |#3| (-830)) 29 T ELT)) (-3467 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3186 (((-85) |#3| $) 19 T ELT)) (-3187 (((-85) |#3| $) 17 T ELT))) -(((-979 |#1| |#2| |#3|) (-10 -7 (-15 -3183 ((-3 |#1| #1="failed") |#3| (-830))) (-15 -3467 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3186 ((-85) |#3| |#1|)) (-15 -3187 ((-85) |#3| |#1|)) (-15 -3188 ((-85) |#3| |#1|))) (-980 |#2| |#3|) (-13 (-755) (-312)) (-1155 |#2|)) (T -979)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) |#2| $) 25 T ELT)) (-3623 (((-484) |#2| $) 26 T ELT)) (-3183 (((-3 $ "failed") |#2| (-830)) 19 T ELT)) (-3182 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3467 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3186 (((-85) |#2| $) 23 T ELT)) (-3187 (((-85) |#2| $) 24 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3185 ((|#2| $) 21 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3770 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3184 (((-583 $) |#2|) 20 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) -(((-980 |#1| |#2|) (-113) (-13 (-755) (-312)) (-1155 |t#1|)) (T -980)) -((-3623 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-484)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-85)))) (-3187 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-85)))) (-3186 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-85)))) (-3467 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312))) (-4 *2 (-1155 *3)))) (-3185 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312))) (-4 *2 (-1155 *3)))) (-3184 (*1 *2 *3) (-12 (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *3)))) (-3183 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-830)) (-4 *4 (-13 (-755) (-312))) (-4 *1 (-980 *4 *2)) (-4 *2 (-1155 *4)))) (-3770 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1155 *2)))) (-3182 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1155 *2))))) -(-13 (-1013) (-10 -8 (-15 -3623 ((-484) |t#2| $)) (-15 -3188 ((-85) |t#2| $)) (-15 -3187 ((-85) |t#2| $)) (-15 -3186 ((-85) |t#2| $)) (-15 -3467 ((-3 |t#2| "failed") |t#2| $)) (-15 -3185 (|t#2| $)) (-15 -3184 ((-583 $) |t#2|)) (-15 -3183 ((-3 $ "failed") |t#2| (-830))) (-15 -3770 (|t#1| |t#2| $ |t#1|)) (-15 -3182 (|t#1| |t#2| $ |t#1|)))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-3436 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) (-694)) 114 T ELT)) (-3433 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694)) 63 T ELT)) (-3437 (((-1185) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-694)) 99 T ELT)) (-3431 (((-694) (-583 |#4|) (-583 |#5|)) 30 T ELT)) (-3434 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694)) 65 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694) (-85)) 67 T ELT)) (-3435 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85)) 87 T ELT)) (-3972 (((-1073) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) 92 T ELT)) (-3432 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3430 (((-694) (-583 |#4|) (-583 |#5|)) 21 T ELT))) -(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3430 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3431 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3432 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-85))) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694))) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|)) (-15 -3434 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694) (-85))) (-15 -3434 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694))) (-15 -3434 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|)) (-15 -3435 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3435 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3436 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) (-694))) (-15 -3972 ((-1073) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)))) (-15 -3437 ((-1185) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-694)))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -981)) -((-3437 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *4 (-694)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1185)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1073)) (-5 *1 (-981 *4 *5 *6 *7 *8)))) (-3436 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1600 *11)))))) (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1600 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9)) (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-717)) (-4 *9 (-756)) (-5 *1 (-981 *7 *8 *9 *10 *11)))) (-3435 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3435 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3434 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-717)) (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3432 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3430 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9))))) -((-3197 (((-85) |#5| $) 26 T ELT)) (-3195 (((-85) |#5| $) 29 T ELT)) (-3198 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3238 (((-583 $) |#5| $) NIL T ELT) (((-583 $) (-583 |#5|) $) 94 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 92 T ELT) (((-583 $) |#5| (-583 $)) 95 T ELT)) (-3769 (($ $ |#5|) NIL T ELT) (((-583 $) |#5| $) NIL T ELT) (((-583 $) |#5| (-583 $)) 73 T ELT) (((-583 $) (-583 |#5|) $) 75 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 77 T ELT)) (-3189 (((-583 $) |#5| $) NIL T ELT) (((-583 $) |#5| (-583 $)) 64 T ELT) (((-583 $) (-583 |#5|) $) 69 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 71 T ELT)) (-3196 (((-85) |#5| $) 32 T ELT))) -(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3769 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3769 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3769 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3769 ((-583 |#1|) |#5| |#1|)) (-15 -3189 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3189 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3189 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3189 ((-583 |#1|) |#5| |#1|)) (-15 -3238 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3238 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3238 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3238 ((-583 |#1|) |#5| |#1|)) (-15 -3195 ((-85) |#5| |#1|)) (-15 -3198 ((-85) |#1|)) (-15 -3196 ((-85) |#5| |#1|)) (-15 -3197 ((-85) |#5| |#1|)) (-15 -3198 ((-85) |#5| |#1|)) (-15 -3769 (|#1| |#1| |#5|))) (-983 |#2| |#3| |#4| |#5|) (-392) (-717) (-756) (-977 |#2| |#3| |#4|)) (T -982)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3681 (((-583 (-2 (|:| -3861 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) 91 T ELT)) (-3682 (((-583 $) (-583 |#4|)) 92 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT)) (-3081 (((-583 |#3|) $) 38 T ELT)) (-2908 (((-85) $) 31 T ELT)) (-2899 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3688 ((|#4| |#4| $) 98 T ELT)) (-3775 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 134 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3710 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3724 (($) 54 T CONST)) (-2904 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-3689 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3156 (($ (-583 |#4|)) 40 T ELT)) (-3799 (((-3 $ #1#) $) 88 T ELT)) (-3685 ((|#4| |#4| $) 95 T ELT)) (-1353 (($ $) 70 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#4| $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3995)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3683 ((|#4| |#4| $) 93 T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3696 (((-2 (|:| -3861 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) 111 T ELT)) (-3197 (((-85) |#4| $) 144 T ELT)) (-3195 (((-85) |#4| $) 141 T ELT)) (-3198 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2889 (((-583 |#4|) $) 57 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3180 ((|#3| $) 39 T ELT)) (-2608 (((-583 |#4|) $) 47 T ELT)) (-3245 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-3326 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2914 (((-583 |#3|) $) 37 T ELT)) (-2913 (((-85) |#3| $) 36 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) 136 T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 135 T ELT)) (-3798 (((-3 |#4| #1#) $) 89 T ELT)) (-3192 (((-583 $) |#4| $) 137 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) 140 T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3238 (((-583 $) |#4| $) 133 T ELT) (((-583 $) (-583 |#4|) $) 132 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 131 T ELT) (((-583 $) |#4| (-583 $)) 130 T ELT)) (-3440 (($ |#4| $) 125 T ELT) (($ (-583 |#4|) $) 124 T ELT)) (-3697 (((-583 |#4|) $) 113 T ELT)) (-3691 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3686 ((|#4| |#4| $) 96 T ELT)) (-3699 (((-85) $ $) 116 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3687 ((|#4| |#4| $) 97 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3801 (((-3 |#4| #1#) $) 90 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3679 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3769 (($ $ |#4|) 83 T ELT) (((-583 $) |#4| $) 123 T ELT) (((-583 $) |#4| (-583 $)) 122 T ELT) (((-583 $) (-583 |#4|) $) 121 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 120 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3768 (($ $ (-583 |#4|) (-583 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) 50 T ELT)) (-3403 (((-85) $) 53 T ELT)) (-3565 (($) 52 T ELT)) (-3948 (((-694) $) 112 T ELT)) (-1946 (((-694) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3400 (($ $) 51 T ELT)) (-3972 (((-473) $) 71 (|has| |#4| (-553 (-473))) ELT)) (-3530 (($ (-583 |#4|)) 62 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-2912 (($ $ |#3|) 35 T ELT)) (-3684 (($ $) 94 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3946 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-3678 (((-694) $) 82 (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 104 T ELT)) (-3189 (((-583 $) |#4| $) 129 T ELT) (((-583 $) |#4| (-583 $)) 128 T ELT) (((-583 $) (-583 |#4|) $) 127 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 126 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3680 (((-583 |#3|) $) 87 T ELT)) (-3196 (((-85) |#4| $) 143 T ELT)) (-3933 (((-85) |#3| $) 86 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3957 (((-694) $) 43 T ELT))) -(((-983 |#1| |#2| |#3| |#4|) (-113) (-392) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -983)) -((-3198 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3197 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3198 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 (-85) (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3193 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3193 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3192 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3191 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3190 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3775 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3238 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3238 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3238 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) (-3238 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) (-3189 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3189 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) (-3189 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3189 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) (-3440 (*1 *1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3440 (*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)))) (-3769 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3769 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) (-3769 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3769 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) (-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *5 *6 *7 *8))))) -(-13 (-1124 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3198 ((-85) |t#4| $)) (-15 -3197 ((-85) |t#4| $)) (-15 -3196 ((-85) |t#4| $)) (-15 -3198 ((-85) $)) (-15 -3195 ((-85) |t#4| $)) (-15 -3194 ((-3 (-85) (-583 $)) |t#4| $)) (-15 -3193 ((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) |t#4| $)) (-15 -3193 ((-85) |t#4| $)) (-15 -3192 ((-583 $) |t#4| $)) (-15 -3191 ((-3 |t#4| (-583 $)) |t#4| |t#4| $)) (-15 -3190 ((-583 (-2 (|:| |val| |t#4|) (|:| -1600 $))) |t#4| |t#4| $)) (-15 -3775 ((-583 (-2 (|:| |val| |t#4|) (|:| -1600 $))) |t#4| $)) (-15 -3238 ((-583 $) |t#4| $)) (-15 -3238 ((-583 $) (-583 |t#4|) $)) (-15 -3238 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3238 ((-583 $) |t#4| (-583 $))) (-15 -3189 ((-583 $) |t#4| $)) (-15 -3189 ((-583 $) |t#4| (-583 $))) (-15 -3189 ((-583 $) (-583 |t#4|) $)) (-15 -3189 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3440 ($ |t#4| $)) (-15 -3440 ($ (-583 |t#4|) $)) (-15 -3769 ((-583 $) |t#4| $)) (-15 -3769 ((-583 $) |t#4| (-583 $))) (-15 -3769 ((-583 $) (-583 |t#4|) $)) (-15 -3769 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3682 ((-583 $) (-583 |t#4|) (-85))))) -(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1124 |#1| |#2| |#3| |#4|) . T) ((-1129) . T)) -((-3205 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|) 86 T ELT)) (-3202 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3204 (((-583 |#5|) |#4| |#5|) 74 T ELT)) (-3203 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3286 (((-1185)) 36 T ELT)) (-3284 (((-1185)) 25 T ELT)) (-3285 (((-1185) (-1073) (-1073) (-1073)) 32 T ELT)) (-3283 (((-1185) (-1073) (-1073) (-1073)) 21 T ELT)) (-3199 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3200 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#3| (-85)) 117 T ELT) (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3201 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|) 112 T ELT))) -(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3283 ((-1185) (-1073) (-1073) (-1073))) (-15 -3284 ((-1185))) (-15 -3285 ((-1185) (-1073) (-1073) (-1073))) (-15 -3286 ((-1185))) (-15 -3199 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3200 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3200 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#3| (-85))) (-15 -3201 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3202 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3203 ((-85) |#4| |#5|)) (-15 -3203 ((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|)) (-15 -3204 ((-583 |#5|) |#4| |#5|)) (-15 -3205 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -984)) -((-3205 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3204 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3202 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3201 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3200 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *5 (-85)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *4 (-756)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1600 *9)))) (-5 *1 (-984 *6 *7 *4 *8 *9)))) (-3200 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3199 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3286 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3285 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3284 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3283 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3318 (((-1130) $) 14 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3206 (((-1049) $) 11 T ELT)) (-3946 (((-772) $) 21 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-985) (-13 (-995) (-10 -8 (-15 -3206 ((-1049) $)) (-15 -3318 ((-1130) $))))) (T -985)) -((-3206 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-985)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-985))))) -((-3266 (((-85) $ $) 7 T ELT))) -(((-986) (-13 (-1129) (-10 -8 (-15 -3266 ((-85) $ $))))) (T -986)) -((-3266 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-986))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3209 (($ $ (-583 (-1090)) (-1 (-85) (-583 |#3|))) 34 T ELT)) (-3210 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-583 (-1090))) 21 T ELT)) (-3528 ((|#3| $) 13 T ELT)) (-3157 (((-3 (-249 |#3|) "failed") $) 60 T ELT)) (-3156 (((-249 |#3|) $) NIL T ELT)) (-3207 (((-583 (-1090)) $) 16 T ELT)) (-3208 (((-800 |#1|) $) 11 T ELT)) (-3529 ((|#3| $) 12 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-830)) 41 T ELT)) (-3946 (((-772) $) 89 T ELT) (($ (-249 |#3|)) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 38 T ELT))) -(((-987 |#1| |#2| |#3|) (-13 (-1013) (-241 |#3| |#3|) (-950 (-249 |#3|)) (-10 -8 (-15 -3210 ($ |#3| |#3|)) (-15 -3210 ($ |#3| |#3| (-583 (-1090)))) (-15 -3209 ($ $ (-583 (-1090)) (-1 (-85) (-583 |#3|)))) (-15 -3208 ((-800 |#1|) $)) (-15 -3529 (|#3| $)) (-15 -3528 (|#3| $)) (-15 -3800 (|#3| $ |#3| (-830))) (-15 -3207 ((-583 (-1090)) $)))) (-1013) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-364 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -987)) -((-3210 (*1 *1 *2 *2) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))))) (-3210 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1090))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))))) (-3209 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-1 (-85) (-583 *6))) (-4 *6 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *6)))) (-3208 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 *2))) (-5 *2 (-800 *3)) (-5 *1 (-987 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-796 *3) (-553 *2))))) (-3529 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) (-3528 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) (-3800 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))))) (-3207 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *2 (-583 (-1090))) (-5 *1 (-987 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-796 *3) (-553 (-800 *3))))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3542 (((-1090) $) 8 T ELT)) (-3242 (((-1073) $) 17 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 14 T ELT))) -(((-988 |#1|) (-13 (-1013) (-10 -8 (-15 -3542 ((-1090) $)))) (-1090)) (T -988)) -((-3542 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-988 *3)) (-14 *3 *2)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3212 (($ (-583 (-987 |#1| |#2| |#3|))) 15 T ELT)) (-3211 (((-583 (-987 |#1| |#2| |#3|)) $) 22 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-830)) 28 T ELT)) (-3946 (((-772) $) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 21 T ELT))) -(((-989 |#1| |#2| |#3|) (-13 (-1013) (-241 |#3| |#3|) (-10 -8 (-15 -3212 ($ (-583 (-987 |#1| |#2| |#3|)))) (-15 -3211 ((-583 (-987 |#1| |#2| |#3|)) $)) (-15 -3800 (|#3| $ |#3| (-830))))) (-1013) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-364 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -989)) -((-3212 (*1 *1 *2) (-12 (-5 *2 (-583 (-987 *3 *4 *5))) (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-4 *5 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-989 *3 *4 *5)))) (-3211 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *2 (-583 (-987 *3 *4 *5))) (-5 *1 (-989 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))))) (-3800 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-989 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4))))))) -((-3213 (((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)) 88 T ELT) (((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|))) 92 T ELT) (((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85)) 90 T ELT))) -(((-990 |#1| |#2|) (-10 -7 (-15 -3213 ((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85))) (-15 -3213 ((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3213 ((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)))) (-13 (-258) (-120)) (-583 (-1090))) (T -990)) -((-3213 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-2 (|:| -1747 (-1085 *5)) (|:| -3224 (-583 (-857 *5)))))) (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090))))) (-3213 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-2 (|:| -1747 (-1085 *4)) (|:| -3224 (-583 (-857 *4)))))) (-5 *1 (-990 *4 *5)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1090))))) (-3213 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-2 (|:| -1747 (-1085 *5)) (|:| -3224 (-583 (-857 *5)))))) (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 132 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-312)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-1782 (((-630 |#1|) (-1179 $)) NIL T ELT) (((-630 |#1|)) 117 T ELT)) (-3330 ((|#1| $) 121 T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| |#1| (-299)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3136 (((-694)) 43 (|has| |#1| (-320)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-1792 (($ (-1179 |#1|) (-1179 $)) NIL T ELT) (($ (-1179 |#1|)) 46 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1781 (((-630 |#1|) $ (-1179 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 109 T ELT) (((-630 |#1|) (-630 $)) 104 T ELT)) (-3842 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-350 |#2|)) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3108 (((-830)) 80 T ELT)) (-2994 (($) 47 (|has| |#1| (-320)) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-2833 (($) NIL (|has| |#1| (-299)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1764 (($ $ (-694)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3772 (((-830) $) NIL (|has| |#1| (-299)) ELT) (((-743 (-830)) $) NIL (|has| |#1| (-299)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3132 ((|#1| $) NIL T ELT)) (-3445 (((-632 $) $) NIL (|has| |#1| (-299)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2014 ((|#2| $) 87 (|has| |#1| (-312)) ELT)) (-2010 (((-830) $) 140 (|has| |#1| (-320)) ELT)) (-3079 ((|#2| $) 59 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3446 (($) NIL (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) 131 (|has| |#1| (-320)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2409 (($) 123 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1676 (((-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-299)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3757 ((|#1| (-1179 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1765 (((-694) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3758 (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL (|has| |#1| (-312)) ELT)) (-2408 (((-630 |#1|) (-1179 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3185 ((|#2|) 77 T ELT)) (-1674 (($) NIL (|has| |#1| (-299)) ELT)) (-3224 (((-1179 |#1|) $ (-1179 $)) 92 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#1|) $) 72 T ELT) (((-630 |#1|) (-1179 $)) 88 T ELT)) (-3972 (((-1179 |#1|) $) NIL T ELT) (($ (-1179 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| |#1| (-299)) ELT)) (-3946 (((-772) $) 58 T ELT) (($ (-484)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2702 (($ $) NIL (|has| |#1| (-299)) ELT) (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-2449 ((|#2| $) 85 T ELT)) (-3126 (((-694)) 79 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) 84 T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 32 T CONST)) (-2666 (($) 19 T CONST)) (-2669 (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL (|has| |#1| (-312)) ELT)) (-3056 (((-85) $ $) 64 T ELT)) (-3949 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 66 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-312)) ELT))) -(((-991 |#1| |#2| |#3|) (-661 |#1| |#2|) (-146) (-1155 |#1|) |#2|) (T -991)) -NIL -((-3732 (((-348 |#3|) |#3|) 18 T ELT))) -(((-992 |#1| |#2| |#3|) (-10 -7 (-15 -3732 ((-348 |#3|) |#3|))) (-1155 (-350 (-484))) (-13 (-312) (-120) (-661 (-350 (-484)) |#1|)) (-1155 |#2|)) (T -992)) -((-3732 (*1 *2 *3) (-12 (-4 *4 (-1155 (-350 (-484)))) (-4 *5 (-13 (-312) (-120) (-661 (-350 (-484)) *4))) (-5 *2 (-348 *3)) (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1155 *5))))) -((-3732 (((-348 |#3|) |#3|) 19 T ELT))) -(((-993 |#1| |#2| |#3|) (-10 -7 (-15 -3732 ((-348 |#3|) |#3|))) (-1155 (-350 (-857 (-484)))) (-13 (-312) (-120) (-661 (-350 (-857 (-484))) |#1|)) (-1155 |#2|)) (T -993)) -((-3732 (*1 *2 *3) (-12 (-4 *4 (-1155 (-350 (-857 (-484))))) (-4 *5 (-13 (-312) (-120) (-661 (-350 (-857 (-484))) *4))) (-5 *2 (-348 *3)) (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1155 *5))))) -((-2568 (((-85) $ $) NIL T ELT)) (-2531 (($ $ $) 16 T ELT)) (-2857 (($ $ $) 17 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3214 (($) 6 T ELT)) (-3972 (((-1090) $) 20 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 15 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 9 T ELT))) -(((-994) (-13 (-756) (-553 (-1090)) (-10 -8 (-15 -3214 ($))))) (T -994)) -((-3214 (*1 *1) (-5 *1 (-994)))) -((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-1095)) 20 T ELT) (((-1095) $) 19 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) -(((-995) (-113)) (T -995)) +((-3099 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3096 (*1 *2) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3099 (|t#1| $)) (-15 -3098 (|t#1| $)) (-15 -3097 (|t#1| $)) (-15 -3096 (|t#1|) -3953))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3100 (($) 31 T CONST)) (-3725 (($) 23 T CONST)) (-3099 ((|#1| $) 29 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3098 ((|#1| $) 28 T ELT)) (-3096 ((|#1|) 26 T CONST)) (-3947 (((-773) $) 13 T ELT)) (-3097 ((|#1| $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT))) +(((-958 |#1|) (-113) (-23)) (T -958)) +((-3100 (*1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) +(-13 (-957 |t#1|) (-10 -8 (-15 -3100 ($) -3953))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-957 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3682 (((-584 (-2 (|:| -3862 $) (|:| -1703 (-584 (-704 |#1| (-774 |#2|)))))) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3683 (((-584 $) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85) (-85)) NIL T ELT)) (-3082 (((-584 (-774 |#2|)) $) NIL T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3776 (((-584 (-2 (|:| |val| (-704 |#1| (-774 |#2|))) (|:| -1601 $))) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ (-774 |#2|)) NIL T ELT)) (-3711 (($ (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 (-704 |#1| (-774 |#2|)) #1="failed") $ (-774 |#2|)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2905 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3690 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-2901 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| |#1| (-496)) ELT)) (-2902 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ #1#) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3157 (($ (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3800 (((-3 $ #1#) $) NIL T ELT)) (-3686 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT)) (-3407 (($ (-704 |#1| (-774 |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-704 |#1| (-774 |#2|))) (|:| |den| |#1|)) (-704 |#1| (-774 |#2|)) $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) (-704 |#1| (-774 |#2|)) $ (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3684 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3843 (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $ (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $ (-704 |#1| (-774 |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3697 (((-2 (|:| -3862 (-584 (-704 |#1| (-774 |#2|)))) (|:| -1703 (-584 (-704 |#1| (-774 |#2|))))) $) NIL T ELT)) (-3198 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3196 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3199 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-2890 (((-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3181 (((-774 |#2|) $) NIL T ELT)) (-2609 (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3246 (((-85) (-704 |#1| (-774 |#2|)) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-72)) ELT)) (-3327 (($ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-2915 (((-584 (-774 |#2|)) $) NIL T ELT)) (-2914 (((-85) (-774 |#2|) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3192 (((-3 (-704 |#1| (-774 |#2|)) (-584 $)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3191 (((-584 (-2 (|:| |val| (-704 |#1| (-774 |#2|))) (|:| -1601 $))) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3799 (((-3 (-704 |#1| (-774 |#2|)) #1#) $) NIL T ELT)) (-3193 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3195 (((-3 (-85) (-584 $)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3194 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3239 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT)) (-3441 (($ (-704 |#1| (-774 |#2|)) $) NIL T ELT) (($ (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3698 (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3692 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3700 (((-85) $ $) NIL T ELT)) (-2904 (((-2 (|:| |num| (-704 |#1| (-774 |#2|))) (|:| |den| |#1|)) (-704 |#1| (-774 |#2|)) $) NIL (|has| |#1| (-496)) ELT)) (-3693 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3802 (((-3 (-704 |#1| (-774 |#2|)) #1#) $) NIL T ELT)) (-1355 (((-3 (-704 |#1| (-774 |#2|)) #1#) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3680 (((-3 $ #1#) $ (-704 |#1| (-774 |#2|))) NIL T ELT)) (-3770 (($ $ (-704 |#1| (-774 |#2|))) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3769 (($ $ (-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|)))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ $ (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ $ (-249 (-704 |#1| (-774 |#2|)))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-704 |#1| (-774 |#2|))))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3949 (((-695) $) NIL T ELT)) (-1947 (((-695) (-704 |#1| (-774 |#2|)) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-554 (-474))) ELT)) (-3531 (($ (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-2911 (($ $ (-774 |#2|)) NIL T ELT)) (-2913 (($ $ (-774 |#2|)) NIL T ELT)) (-3685 (($ $) NIL T ELT)) (-2912 (($ $ (-774 |#2|)) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3679 (((-695) $) NIL (|has| (-774 |#2|) (-320)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 (-704 |#1| (-774 |#2|))))) #1#) (-584 (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 (-704 |#1| (-774 |#2|))))) #1#) (-584 (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3691 (((-85) $ (-1 (-85) (-704 |#1| (-774 |#2|)) (-584 (-704 |#1| (-774 |#2|))))) NIL T ELT)) (-3190 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3681 (((-584 (-774 |#2|)) $) NIL T ELT)) (-3197 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3934 (((-85) (-774 |#2|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-959 |#1| |#2|) (-13 (-984 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) (-10 -8 (-15 -3683 ((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85) (-85))))) (-392) (-584 (-1091))) (T -959)) +((-3683 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-959 *5 *6))))) +((-3101 (((-1 (-485)) (-1002 (-485))) 32 T ELT)) (-3105 (((-485) (-485) (-485) (-485) (-485)) 29 T ELT)) (-3103 (((-1 (-485)) |RationalNumber|) NIL T ELT)) (-3104 (((-1 (-485)) |RationalNumber|) NIL T ELT)) (-3102 (((-1 (-485)) (-485) |RationalNumber|) NIL T ELT))) +(((-960) (-10 -7 (-15 -3101 ((-1 (-485)) (-1002 (-485)))) (-15 -3102 ((-1 (-485)) (-485) |RationalNumber|)) (-15 -3103 ((-1 (-485)) |RationalNumber|)) (-15 -3104 ((-1 (-485)) |RationalNumber|)) (-15 -3105 ((-485) (-485) (-485) (-485) (-485))))) (T -960)) +((-3105 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-960)))) (-3104 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))) (-3103 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)) (-5 *3 (-485)))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-1002 (-485))) (-5 *2 (-1 (-485))) (-5 *1 (-960))))) +((-3947 (((-773) $) NIL T ELT) (($ (-485)) 10 T ELT))) +(((-961 |#1|) (-10 -7 (-15 -3947 (|#1| (-485))) (-15 -3947 ((-773) |#1|))) (-962)) (T -961)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-962) (-113)) (T -962)) +((-3127 (*1 *2) (-12 (-4 *1 (-962)) (-5 *2 (-695))))) +(-13 (-971) (-1062) (-591 $) (-556 (-485)) (-10 -7 (-15 -3127 ((-695)) -3953) (-6 -3993))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-3106 (((-350 (-858 |#2|)) (-584 |#2|) (-584 |#2|) (-695) (-695)) 55 T ELT))) +(((-963 |#1| |#2|) (-10 -7 (-15 -3106 ((-350 (-858 |#2|)) (-584 |#2|) (-584 |#2|) (-695) (-695)))) (-1091) (-312)) (T -963)) +((-3106 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-695)) (-4 *6 (-312)) (-5 *2 (-350 (-858 *6))) (-5 *1 (-963 *5 *6)) (-14 *5 (-1091))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) +(((-964 |#1|) (-113) (-1026)) (T -964)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1026))))) +(-13 (-1014) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-3121 (((-85) $) 38 T ELT)) (-3123 (((-85) $) 17 T ELT)) (-3115 (((-695) $) 13 T ELT)) (-3114 (((-695) $) 14 T ELT)) (-3122 (((-85) $) 30 T ELT)) (-3120 (((-85) $) 40 T ELT))) +(((-965 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3114 ((-695) |#1|)) (-15 -3115 ((-695) |#1|)) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|))) (-966 |#2| |#3| |#4| |#5| |#6|) (-695) (-695) (-962) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -965)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3121 (((-85) $) 62 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3123 (((-85) $) 64 T ELT)) (-3725 (($) 23 T CONST)) (-3110 (($ $) 45 (|has| |#3| (-258)) ELT)) (-3112 ((|#4| $ (-485)) 50 T ELT)) (-3109 (((-695) $) 44 (|has| |#3| (-496)) ELT)) (-3113 ((|#3| $ (-485) (-485)) 52 T ELT)) (-2890 (((-584 |#3|) $) 72 (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3108 (((-695) $) 43 (|has| |#3| (-496)) ELT)) (-3107 (((-584 |#5|) $) 42 (|has| |#3| (-496)) ELT)) (-3115 (((-695) $) 56 T ELT)) (-3114 (((-695) $) 55 T ELT)) (-3119 (((-485) $) 60 T ELT)) (-3117 (((-485) $) 58 T ELT)) (-2609 (((-584 |#3|) $) 81 T ELT)) (-3246 (((-85) |#3| $) 83 (|has| |#3| (-72)) ELT)) (-3118 (((-485) $) 59 T ELT)) (-3116 (((-485) $) 57 T ELT)) (-3124 (($ (-584 (-584 |#3|))) 65 T ELT)) (-3327 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 48 T ELT)) (-3595 (((-584 (-584 |#3|)) $) 54 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ |#3|) 47 (|has| |#3| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) 79 T ELT)) (-3769 (($ $ (-584 |#3|) (-584 |#3|)) 76 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) 75 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) 74 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 (-249 |#3|))) 73 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-85) $ $) 66 T ELT)) (-3404 (((-85) $) 69 T ELT)) (-3566 (($) 68 T ELT)) (-3801 ((|#3| $ (-485) (-485)) 53 T ELT) ((|#3| $ (-485) (-485) |#3|) 51 T ELT)) (-3122 (((-85) $) 63 T ELT)) (-1947 (((-695) |#3| $) 82 (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) 80 T ELT)) (-3401 (($ $) 67 T ELT)) (-3111 ((|#5| $ (-485)) 49 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1949 (((-85) (-1 (-85) |#3|) $) 78 T ELT)) (-3120 (((-85) $) 61 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#3|) 46 (|has| |#3| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#3| $) 33 T ELT) (($ $ |#3|) 37 T ELT)) (-3958 (((-695) $) 77 T ELT))) +(((-966 |#1| |#2| |#3| |#4| |#5|) (-113) (-695) (-695) (-962) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -966)) +((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *5))) (-4 *5 (-962)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-584 (-584 *5))))) (-3801 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))) (-3113 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))) (-3801 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-962)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-962)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-962)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3959 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3467 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-496)))) (-3950 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) (-3110 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-258)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-584 *7))))) +(-13 (-82 |t#3| |t#3|) (-318 |t#3|) (-10 -8 (IF (|has| |t#3| (-146)) (-6 (-655 |t#3|)) |%noBranch|) (-15 -3124 ($ (-584 (-584 |t#3|)))) (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3119 ((-485) $)) (-15 -3118 ((-485) $)) (-15 -3117 ((-485) $)) (-15 -3116 ((-485) $)) (-15 -3115 ((-695) $)) (-15 -3114 ((-695) $)) (-15 -3595 ((-584 (-584 |t#3|)) $)) (-15 -3801 (|t#3| $ (-485) (-485))) (-15 -3113 (|t#3| $ (-485) (-485))) (-15 -3801 (|t#3| $ (-485) (-485) |t#3|)) (-15 -3112 (|t#4| $ (-485))) (-15 -3111 (|t#5| $ (-485))) (-15 -3959 ($ (-1 |t#3| |t#3|) $)) (-15 -3959 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-496)) (-15 -3467 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-312)) (-15 -3950 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-258)) (-15 -3110 ($ $)) |%noBranch|) (IF (|has| |t#3| (-496)) (PROGN (-15 -3109 ((-695) $)) (-15 -3108 ((-695) $)) (-15 -3107 ((-584 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-553 (-773)) . T) ((-260 |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ((-318 |#3|) . T) ((-429 |#3|) . T) ((-456 |#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ((-13) . T) ((-589 (-485)) . T) ((-589 |#3|) . T) ((-591 |#3|) . T) ((-583 |#3|) |has| |#3| (-146)) ((-655 |#3|) |has| |#3| (-146)) ((-964 |#3|) . T) ((-969 |#3|) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3110 (($ $) 46 (|has| |#3| (-258)) ELT)) (-3112 (((-197 |#2| |#3|) $ (-485)) 35 T ELT)) (-3125 (($ (-631 |#3|)) 44 T ELT)) (-3109 (((-695) $) 48 (|has| |#3| (-496)) ELT)) (-3113 ((|#3| $ (-485) (-485)) NIL T ELT)) (-2890 (((-584 |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3108 (((-695) $) 50 (|has| |#3| (-496)) ELT)) (-3107 (((-584 (-197 |#1| |#3|)) $) 54 (|has| |#3| (-496)) ELT)) (-3115 (((-695) $) NIL T ELT)) (-3114 (((-695) $) NIL T ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-2609 (((-584 |#3|) $) NIL T ELT)) (-3246 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-3118 (((-485) $) NIL T ELT)) (-3116 (((-485) $) NIL T ELT)) (-3124 (($ (-584 (-584 |#3|))) 30 T ELT)) (-3327 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3595 (((-584 (-584 |#3|)) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3769 (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#3| $ (-485) (-485)) NIL T ELT) ((|#3| $ (-485) (-485) |#3|) NIL T ELT)) (-3912 (((-107)) 58 (|has| |#3| (-312)) ELT)) (-3122 (((-85) $) NIL T ELT)) (-1947 (((-695) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) 65 (|has| |#3| (-554 (-474))) ELT)) (-3111 (((-197 |#1| |#3|) $ (-485)) 39 T ELT)) (-3947 (((-773) $) 18 T ELT) (((-631 |#3|) $) 41 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-2661 (($) 15 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-967 |#1| |#2| |#3|) (-13 (-966 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-553 (-631 |#3|)) (-10 -8 (IF (|has| |#3| (-312)) (-6 (-1188 |#3|)) |%noBranch|) (IF (|has| |#3| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (-15 -3125 ($ (-631 |#3|))))) (-695) (-695) (-962)) (T -967)) +((-3125 (*1 *1 *2) (-12 (-5 *2 (-631 *5)) (-4 *5 (-962)) (-5 *1 (-967 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695))))) +((-3843 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3959 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) +(((-968 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3959 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3843 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-695) (-695) (-962) (-196 |#2| |#3|) (-196 |#1| |#3|) (-966 |#1| |#2| |#3| |#4| |#5|) (-962) (-196 |#2| |#7|) (-196 |#1| |#7|) (-966 |#1| |#2| |#7| |#8| |#9|)) (T -968)) +((-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962)) (-14 *5 (-695)) (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962)) (-14 *5 (-695)) (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-966 *5 *6 *10 *11 *12)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ |#1|) 33 T ELT))) +(((-969 |#1|) (-113) (-971)) (T -969)) +NIL +(-13 (-21) (-964 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-964 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-3126 (((-85) $ $) 10 T ELT))) +(((-970 |#1|) (-10 -7 (-15 -3126 ((-85) |#1| |#1|))) (-971)) (T -970)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-971) (-113)) (T -971)) +((-3126 (*1 *2 *1 *1) (-12 (-4 *1 (-971)) (-5 *2 (-85))))) +(-13 (-21) (-1026) (-10 -8 (-15 -3126 ((-85) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3832 (((-1091) $) 11 T ELT)) (-3737 ((|#1| $) 12 T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3227 (($ (-1091) |#1|) 10 T ELT)) (-3947 (((-773) $) 22 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3057 (((-85) $ $) 17 (|has| |#1| (-1014)) ELT))) +(((-972 |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -3227 ($ (-1091) |#1|)) (-15 -3832 ((-1091) $)) (-15 -3737 (|#1| $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1007 |#2|) (-1130)) (T -972)) +((-3227 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-4 *4 (-1130)) (-5 *1 (-972 *3 *4)) (-4 *3 (-1007 *4)))) (-3832 (*1 *2 *1) (-12 (-4 *4 (-1130)) (-5 *2 (-1091)) (-5 *1 (-972 *3 *4)) (-4 *3 (-1007 *4)))) (-3737 (*1 *2 *1) (-12 (-4 *2 (-1007 *3)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1130))))) +((-3772 (($ $) 17 T ELT)) (-3128 (($ $) 25 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 54 T ELT)) (-3133 (($ $) 27 T ELT)) (-3129 (($ $) 12 T ELT)) (-3131 (($ $) 40 T ELT)) (-3973 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-801 (-330)) $) 36 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 31 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) 31 T ELT)) (-3127 (((-695)) 9 T CONST)) (-3132 (($ $) 44 T ELT))) +(((-973 |#1|) (-10 -7 (-15 -3128 (|#1| |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -3133 (|#1| |#1|)) (-15 -2797 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -3973 ((-801 (-330)) |#1|)) (-15 -3947 (|#1| (-350 (-485)))) (-15 -3947 (|#1| (-485))) (-15 -3973 ((-179) |#1|)) (-15 -3973 ((-330) |#1|)) (-15 -3947 (|#1| (-350 (-485)))) (-15 -3947 (|#1| |#1|)) (-15 -3127 ((-695)) -3953) (-15 -3947 (|#1| (-485))) (-15 -3947 ((-773) |#1|))) (-974)) (T -973)) +((-3127 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-973 *3)) (-4 *3 (-974))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3130 (((-485) $) 108 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3772 (($ $) 106 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-3038 (($ $) 116 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3624 (((-485) $) 133 T ELT)) (-3725 (($) 23 T CONST)) (-3128 (($ $) 105 T ELT)) (-3158 (((-3 (-485) #1="failed") $) 121 T ELT) (((-3 (-350 (-485)) #1#) $) 118 T ELT)) (-3157 (((-485) $) 122 T ELT) (((-350 (-485)) $) 119 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-3187 (((-85) $) 131 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 112 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 115 T ELT)) (-3133 (($ $) 111 T ELT)) (-3188 (((-85) $) 132 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 68 T ELT)) (-2532 (($ $ $) 125 T ELT)) (-2858 (($ $ $) 126 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3129 (($ $) 107 T ELT)) (-3131 (($ $) 109 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-3973 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-801 (-330)) $) 113 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ (-485)) 120 T ELT) (($ (-350 (-485))) 117 T ELT)) (-3127 (((-695)) 40 T CONST)) (-3132 (($ $) 110 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3384 (($ $) 134 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 127 T ELT)) (-2568 (((-85) $ $) 129 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 128 T ELT)) (-2686 (((-85) $ $) 130 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 114 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT))) +(((-974) (-113)) (T -974)) +((-3133 (*1 *1 *1) (-4 *1 (-974))) (-3132 (*1 *1 *1) (-4 *1 (-974))) (-3131 (*1 *1 *1) (-4 *1 (-974))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-485)))) (-3129 (*1 *1 *1) (-4 *1 (-974))) (-3772 (*1 *1 *1) (-4 *1 (-974))) (-3128 (*1 *1 *1) (-4 *1 (-974)))) +(-13 (-312) (-756) (-934) (-951 (-485)) (-951 (-350 (-485))) (-916) (-554 (-801 (-330))) (-797 (-330)) (-120) (-10 -8 (-15 -3133 ($ $)) (-15 -3132 ($ $)) (-15 -3131 ($ $)) (-15 -3130 ((-485) $)) (-15 -3129 ($ $)) (-15 -3772 ($ $)) (-15 -3128 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-330)) . T) ((-554 (-801 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-330)) . T) ((-833) . T) ((-916) . T) ((-934) . T) ((-951 (-350 (-485))) . T) ((-951 (-485)) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) |#2| $) 26 T ELT)) (-3137 ((|#1| $) 10 T ELT)) (-3624 (((-485) |#2| $) 119 T ELT)) (-3184 (((-3 $ #1="failed") |#2| (-831)) 76 T ELT)) (-3138 ((|#1| $) 31 T ELT)) (-3183 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3135 (($ $) 28 T ELT)) (-3468 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3187 (((-85) |#2| $) NIL T ELT)) (-3188 (((-85) |#2| $) NIL T ELT)) (-3134 (((-85) |#2| $) 27 T ELT)) (-3136 ((|#1| $) 120 T ELT)) (-3139 ((|#1| $) 30 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3186 ((|#2| $) 104 T ELT)) (-3947 (((-773) $) 95 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3771 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3185 (((-584 $) |#2|) 78 T ELT)) (-3057 (((-85) $ $) 99 T ELT))) +(((-975 |#1| |#2|) (-13 (-981 |#1| |#2|) (-10 -8 (-15 -3139 (|#1| $)) (-15 -3138 (|#1| $)) (-15 -3137 (|#1| $)) (-15 -3136 (|#1| $)) (-15 -3135 ($ $)) (-15 -3134 ((-85) |#2| $)) (-15 -3183 (|#1| |#2| $ |#1|)))) (-13 (-756) (-312)) (-1156 |#1|)) (T -975)) +((-3183 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3139 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3138 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3137 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3136 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3135 (*1 *1 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3134 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-756) (-312))) (-5 *2 (-85)) (-5 *1 (-975 *4 *3)) (-4 *3 (-1156 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2043 (($ $ $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3624 (((-485) $) NIL T ELT)) (-2442 (($ $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3140 (($ (-1091)) 10 T ELT) (($ (-485)) 7 T ELT)) (-3158 (((-3 (-485) #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3024 (((-85) $) NIL T ELT)) (-3023 (((-350 (-485)) $) NIL T ELT)) (-2995 (($) NIL T ELT) (($ $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1370 (($ $ $) NIL T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2674 (((-85) $) NIL T ELT)) (-3446 (((-633 $) $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-3834 (($ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2040 (($ $ $) NIL T ELT)) (-3447 (($) NIL T CONST)) (-2047 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1368 (($ $) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2675 (((-85) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2046 (($ $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-485) $) 16 T ELT) (((-474) $) NIL T ELT) (((-801 (-485)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1091)) 9 T ELT)) (-3947 (((-773) $) 23 T ELT) (($ (-485)) 6 T ELT) (($ $) NIL T ELT) (($ (-485)) 6 T ELT)) (-3127 (((-695)) NIL T CONST)) (-2050 (((-85) $ $) NIL T ELT)) (-3102 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2695 (($) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2044 (($ $ $ $) NIL T ELT)) (-3384 (($ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3838 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT))) +(((-976) (-13 (-484) (-558 (-1091)) (-10 -8 (-6 -3983) (-6 -3988) (-6 -3984) (-15 -3140 ($ (-1091))) (-15 -3140 ($ (-485)))))) (T -976)) +((-3140 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-976)))) (-3140 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-976))))) +((-3798 (($ $) 46 T ELT)) (-3167 (((-85) $ $) 82 T ELT)) (-3158 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-858 (-350 (-485)))) 247 T ELT) (((-3 $ #1#) (-858 (-485))) 246 T ELT) (((-3 $ #1#) (-858 |#2|)) 249 T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-858 (-350 (-485)))) 235 T ELT) (($ (-858 (-485))) 231 T ELT) (($ (-858 |#2|)) 255 T ELT)) (-3960 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3695 (((-85) $ $) 131 T ELT) (((-85) $ (-584 $)) 135 T ELT)) (-3173 (((-85) $) 60 T ELT)) (-3753 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 125 T ELT)) (-3144 (($ $) 160 T ELT)) (-3155 (($ $) 156 T ELT)) (-3156 (($ $) 155 T ELT)) (-3166 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3165 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3696 (((-85) $ $) 143 T ELT) (((-85) $ (-584 $)) 144 T ELT)) (-3181 ((|#4| $) 32 T ELT)) (-3160 (($ $ $) 128 T ELT)) (-3174 (((-85) $) 59 T ELT)) (-3180 (((-695) $) 35 T ELT)) (-3141 (($ $) 174 T ELT)) (-3142 (($ $) 171 T ELT)) (-3169 (((-584 $) $) 72 T ELT)) (-3172 (($ $) 62 T ELT)) (-3143 (($ $) 167 T ELT)) (-3170 (((-584 $) $) 69 T ELT)) (-3171 (($ $) 64 T ELT)) (-3175 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3159 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3482 (-695))) $ $) 130 T ELT)) (-3161 (((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $) 126 T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $ |#4|) 127 T ELT)) (-3162 (((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $) 121 T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $ |#4|) 123 T ELT)) (-3164 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3163 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3177 (((-584 $) $) 54 T ELT)) (-3692 (((-85) $ $) 140 T ELT) (((-85) $ (-584 $)) 141 T ELT)) (-3687 (($ $ $) 116 T ELT)) (-3447 (($ $) 37 T ELT)) (-3700 (((-85) $ $) 80 T ELT)) (-3693 (((-85) $ $) 136 T ELT) (((-85) $ (-584 $)) 138 T ELT)) (-3688 (($ $ $) 112 T ELT)) (-3179 (($ $) 41 T ELT)) (-3145 ((|#2| |#2| $) 164 T ELT) (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3153 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3154 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3178 (($ $) 49 T ELT)) (-3176 (($ $) 55 T ELT)) (-3973 (((-801 (-330)) $) NIL T ELT) (((-801 (-485)) $) NIL T ELT) (((-474) $) NIL T ELT) (($ (-858 (-350 (-485)))) 237 T ELT) (($ (-858 (-485))) 233 T ELT) (($ (-858 |#2|)) 248 T ELT) (((-1074) $) 278 T ELT) (((-858 |#2|) $) 184 T ELT)) (-3947 (((-773) $) 29 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-858 |#2|) $) 185 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-3168 (((-3 (-85) #1#) $ $) 79 T ELT))) +(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3947 (|#1| |#1|)) (-15 -3145 (|#1| |#1| |#1|)) (-15 -3145 (|#1| (-584 |#1|))) (-15 -3947 (|#1| (-350 (-485)))) (-15 -3947 ((-858 |#2|) |#1|)) (-15 -3973 ((-858 |#2|) |#1|)) (-15 -3973 ((-1074) |#1|)) (-15 -3141 (|#1| |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -3144 (|#1| |#1|)) (-15 -3145 (|#2| |#2| |#1|)) (-15 -3153 (|#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| |#1|)) (-15 -3153 (|#1| |#1| |#2|)) (-15 -3154 (|#1| |#1| |#2|)) (-15 -3155 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3973 (|#1| (-858 |#2|))) (-15 -3157 (|#1| (-858 |#2|))) (-15 -3158 ((-3 |#1| #1="failed") (-858 |#2|))) (-15 -3973 (|#1| (-858 (-485)))) (-15 -3157 (|#1| (-858 (-485)))) (-15 -3158 ((-3 |#1| #1#) (-858 (-485)))) (-15 -3973 (|#1| (-858 (-350 (-485))))) (-15 -3157 (|#1| (-858 (-350 (-485))))) (-15 -3158 ((-3 |#1| #1#) (-858 (-350 (-485))))) (-15 -3687 (|#1| |#1| |#1|)) (-15 -3688 (|#1| |#1| |#1|)) (-15 -3159 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3482 (-695))) |#1| |#1|)) (-15 -3160 (|#1| |#1| |#1|)) (-15 -3753 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -3161 ((-2 (|:| -3955 |#1|) (|:| |gap| (-695)) (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1| |#4|)) (-15 -3161 ((-2 (|:| -3955 |#1|) (|:| |gap| (-695)) (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -3162 ((-2 (|:| -3955 |#1|) (|:| |gap| (-695)) (|:| -2903 |#1|)) |#1| |#1| |#4|)) (-15 -3162 ((-2 (|:| -3955 |#1|) (|:| |gap| (-695)) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -3163 (|#1| |#1| |#1| |#4|)) (-15 -3164 (|#1| |#1| |#1| |#4|)) (-15 -3163 (|#1| |#1| |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3165 (|#1| |#1| |#1| |#4|)) (-15 -3166 (|#1| |#1| |#1| |#4|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -3166 (|#1| |#1| |#1|)) (-15 -3696 ((-85) |#1| (-584 |#1|))) (-15 -3696 ((-85) |#1| |#1|)) (-15 -3692 ((-85) |#1| (-584 |#1|))) (-15 -3692 ((-85) |#1| |#1|)) (-15 -3693 ((-85) |#1| (-584 |#1|))) (-15 -3693 ((-85) |#1| |#1|)) (-15 -3695 ((-85) |#1| (-584 |#1|))) (-15 -3695 ((-85) |#1| |#1|)) (-15 -3167 ((-85) |#1| |#1|)) (-15 -3700 ((-85) |#1| |#1|)) (-15 -3168 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3169 ((-584 |#1|) |#1|)) (-15 -3170 ((-584 |#1|) |#1|)) (-15 -3171 (|#1| |#1|)) (-15 -3172 (|#1| |#1|)) (-15 -3173 ((-85) |#1|)) (-15 -3174 ((-85) |#1|)) (-15 -3960 (|#1| |#1| |#4|)) (-15 -3175 (|#1| |#1| |#4|)) (-15 -3176 (|#1| |#1|)) (-15 -3177 ((-584 |#1|) |#1|)) (-15 -3178 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3179 (|#1| |#1|)) (-15 -3447 (|#1| |#1|)) (-15 -3180 ((-695) |#1|)) (-15 -3181 (|#4| |#1|)) (-15 -3973 ((-474) |#1|)) (-15 -3973 ((-801 (-485)) |#1|)) (-15 -3973 ((-801 (-330)) |#1|)) (-15 -3947 (|#1| |#4|)) (-15 -3158 ((-3 |#4| #1#) |#1|)) (-15 -3157 (|#4| |#1|)) (-15 -3175 (|#2| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3947 (|#1| (-485))) (-15 -3947 ((-773) |#1|))) (-978 |#2| |#3| |#4|) (-962) (-718) (-757)) (T -977)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 |#3|) $) 123 T ELT)) (-3084 (((-1086 $) $ |#3|) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) 125 T ELT) (((-695) $ (-584 |#3|)) 124 T ELT)) (-3798 (($ $) 293 T ELT)) (-3167 (((-85) $ $) 279 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3756 (($ $ $) 238 (|has| |#1| (-496)) ELT)) (-3149 (((-584 $) $ $) 233 (|has| |#1| (-496)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-822)) ELT)) (-3776 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 $ "failed") (-858 (-350 (-485)))) 253 (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091)))) ELT) (((-3 $ "failed") (-858 (-485))) 250 (OR (-12 (-2561 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1091)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091))))) ELT) (((-3 $ "failed") (-858 |#1|)) 247 (OR (-12 (-2561 (|has| |#1| (-38 (-350 (-485))))) (-2561 (|has| |#1| (-38 (-485)))) (|has| |#3| (-554 (-1091)))) (-12 (-2561 (|has| |#1| (-484))) (-2561 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1091)))) (-12 (-2561 (|has| |#1| (-905 (-485)))) (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091))))) ELT)) (-3157 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) ((|#3| $) 154 T ELT) (($ (-858 (-350 (-485)))) 252 (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091)))) ELT) (($ (-858 (-485))) 249 (OR (-12 (-2561 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1091)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091))))) ELT) (($ (-858 |#1|)) 246 (OR (-12 (-2561 (|has| |#1| (-38 (-350 (-485))))) (-2561 (|has| |#1| (-38 (-485)))) (|has| |#3| (-554 (-1091)))) (-12 (-2561 (|has| |#1| (-484))) (-2561 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1091)))) (-12 (-2561 (|has| |#1| (-905 (-485)))) (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091))))) ELT)) (-3757 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT) (($ $ $) 234 (|has| |#1| (-496)) ELT)) (-3960 (($ $) 171 T ELT) (($ $ |#3|) 288 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3695 (((-85) $ $) 278 T ELT) (((-85) $ (-584 $)) 277 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3173 (((-85) $) 286 T ELT)) (-3753 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 258 T ELT)) (-3144 (($ $) 227 (|has| |#1| (-392)) ELT)) (-3504 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) 122 T ELT)) (-3724 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-3155 (($ $) 243 (|has| |#1| (-496)) ELT)) (-3156 (($ $) 244 (|has| |#1| (-496)) ELT)) (-3166 (($ $ $) 270 T ELT) (($ $ $ |#3|) 268 T ELT)) (-3165 (($ $ $) 269 T ELT) (($ $ $ |#3|) 267 T ELT)) (-1625 (($ $ |#1| |#2| $) 189 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| |#3| (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| |#3| (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3696 (((-85) $ $) 272 T ELT) (((-85) $ (-584 $)) 271 T ELT)) (-3146 (($ $ $ $ $) 229 (|has| |#1| (-496)) ELT)) (-3181 ((|#3| $) 297 T ELT)) (-3085 (($ (-1086 |#1|) |#3|) 130 T ELT) (($ (-1086 $) |#3|) 129 T ELT)) (-2822 (((-584 $) $) 139 T ELT)) (-3938 (((-85) $) 169 T ELT)) (-2894 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-695)) 132 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 131 T ELT)) (-3160 (($ $ $) 257 T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |#3|) 133 T ELT)) (-3174 (((-85) $) 287 T ELT)) (-2821 ((|#2| $) 187 T ELT) (((-695) $ |#3|) 135 T ELT) (((-584 (-695)) $ (-584 |#3|)) 134 T ELT)) (-3180 (((-695) $) 296 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3083 (((-3 |#3| #3="failed") $) 136 T ELT)) (-3141 (($ $) 224 (|has| |#1| (-392)) ELT)) (-3142 (($ $) 225 (|has| |#1| (-392)) ELT)) (-3169 (((-584 $) $) 282 T ELT)) (-3172 (($ $) 285 T ELT)) (-3143 (($ $) 226 (|has| |#1| (-392)) ELT)) (-3170 (((-584 $) $) 283 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-631 |#1|) (-1180 $)) 144 T ELT)) (-3171 (($ $) 284 T ELT)) (-2895 (($ $) 166 T ELT)) (-3175 ((|#1| $) 165 T ELT) (($ $ |#3|) 289 T ELT)) (-1892 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3159 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3482 (-695))) $ $) 256 T ELT)) (-3161 (((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $) 260 T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $ |#3|) 259 T ELT)) (-3162 (((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $) 262 T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $ |#3|) 261 T ELT)) (-3164 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-3163 (($ $ $) 265 T ELT) (($ $ $ |#3|) 263 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3191 (($ $ $) 232 (|has| |#1| (-496)) ELT)) (-3177 (((-584 $) $) 291 T ELT)) (-2824 (((-3 (-584 $) #3#) $) 127 T ELT)) (-2823 (((-3 (-584 $) #3#) $) 128 T ELT)) (-2825 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) #3#) $) 126 T ELT)) (-3692 (((-85) $ $) 274 T ELT) (((-85) $ (-584 $)) 273 T ELT)) (-3687 (($ $ $) 254 T ELT)) (-3447 (($ $) 295 T ELT)) (-3700 (((-85) $ $) 280 T ELT)) (-3693 (((-85) $ $) 276 T ELT) (((-85) $ (-584 $)) 275 T ELT)) (-3688 (($ $ $) 255 T ELT)) (-3179 (($ $) 294 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3150 (((-2 (|:| -3145 $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-496)) ELT)) (-3151 (((-2 (|:| -3145 $) (|:| |coef1| $)) $ $) 236 (|has| |#1| (-496)) ELT)) (-1798 (((-85) $) 183 T ELT)) (-1797 ((|#1| $) 184 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-392)) ELT)) (-3145 ((|#1| |#1| $) 228 (|has| |#1| (-392)) ELT) (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3733 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-3152 (((-2 (|:| -3145 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 237 (|has| |#1| (-496)) ELT)) (-3467 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-3153 (($ $ |#1|) 241 (|has| |#1| (-496)) ELT) (($ $ $) 239 (|has| |#1| (-496)) ELT)) (-3154 (($ $ |#1|) 242 (|has| |#1| (-496)) ELT) (($ $ $) 240 (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-584 |#3|) (-584 $)) 155 T ELT)) (-3758 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-584 |#3|) (-584 (-695))) 52 T ELT) (($ $ |#3| (-695)) 51 T ELT) (($ $ (-584 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3949 ((|#2| $) 167 T ELT) (((-695) $ |#3|) 143 T ELT) (((-584 (-695)) $ (-584 |#3|)) 142 T ELT)) (-3178 (($ $) 292 T ELT)) (-3176 (($ $) 290 T ELT)) (-3973 (((-801 (-330)) $) 95 (-12 (|has| |#3| (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| |#3| (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| |#3| (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT) (($ (-858 (-350 (-485)))) 251 (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091)))) ELT) (($ (-858 (-485))) 248 (OR (-12 (-2561 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1091)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091))))) ELT) (($ (-858 |#1|)) 245 (|has| |#3| (-554 (-1091))) ELT) (((-1074) $) 223 (-12 (|has| |#1| (-951 (-485))) (|has| |#3| (-554 (-1091)))) ELT) (((-858 |#1|) $) 222 (|has| |#3| (-554 (-1091))) ELT)) (-2818 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) 117 (-2563 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (((-858 |#1|) $) 221 (|has| |#3| (-554 (-1091))) ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT) (($ $) 98 (|has| |#1| (-496)) ELT)) (-3818 (((-584 |#1|) $) 185 T ELT)) (-3678 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-695)) 141 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 140 T ELT)) (-2703 (((-633 $) $) 92 (OR (-2563 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-3168 (((-3 (-85) "failed") $ $) 281 T ELT)) (-2667 (($) 45 T CONST)) (-3147 (($ $ $ $ (-695)) 230 (|has| |#1| (-496)) ELT)) (-3148 (($ $ $ (-695)) 231 (|has| |#1| (-496)) ELT)) (-2670 (($ $ (-584 |#3|) (-584 (-695))) 55 T ELT) (($ $ |#3| (-695)) 54 T ELT) (($ $ (-584 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-978 |#1| |#2| |#3|) (-113) (-962) (-718) (-757)) (T -978)) +((-3181 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-695)))) (-3447 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3179 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3177 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3176 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3960 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3172 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3171 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3170 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3169 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3168 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3700 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3167 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3695 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3696 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3696 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3166 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3165 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3166 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3165 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3163 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3164 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3163 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3162 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-695)) (|:| -2903 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3162 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-695)) (|:| -2903 *1))) (-4 *1 (-978 *4 *5 *3)))) (-3161 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3161 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-978 *4 *5 *3)))) (-3753 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3160 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3159 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3482 (-695)))) (-4 *1 (-978 *3 *4 *5)))) (-3688 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3687 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3158 (*1 *1 *2) (|partial| -12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3157 (*1 *1 *2) (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3158 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3157 (*1 *1 *2) (OR (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3973 (*1 *1 *2) (OR (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3158 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-858 *3)) (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-2561 (-4 *3 (-38 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2561 (-4 *3 (-484))) (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2561 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3157 (*1 *1 *2) (OR (-12 (-5 *2 (-858 *3)) (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-2561 (-4 *3 (-38 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2561 (-4 *3 (-484))) (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2561 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *5 (-554 (-1091))) (-4 *4 (-718)) (-4 *5 (-757)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3155 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3154 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3153 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3154 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3153 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3152 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3145 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3151 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3145 *1) (|:| |coef1| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3150 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3145 *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3757 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3149 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3191 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3148 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *3 (-496)))) (-3147 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *3 (-496)))) (-3146 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3145 (*1 *2 *2 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3144 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3142 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3141 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392))))) +(-13 (-862 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3181 (|t#3| $)) (-15 -3180 ((-695) $)) (-15 -3447 ($ $)) (-15 -3179 ($ $)) (-15 -3798 ($ $)) (-15 -3178 ($ $)) (-15 -3177 ((-584 $) $)) (-15 -3176 ($ $)) (-15 -3175 ($ $ |t#3|)) (-15 -3960 ($ $ |t#3|)) (-15 -3174 ((-85) $)) (-15 -3173 ((-85) $)) (-15 -3172 ($ $)) (-15 -3171 ($ $)) (-15 -3170 ((-584 $) $)) (-15 -3169 ((-584 $) $)) (-15 -3168 ((-3 (-85) "failed") $ $)) (-15 -3700 ((-85) $ $)) (-15 -3167 ((-85) $ $)) (-15 -3695 ((-85) $ $)) (-15 -3695 ((-85) $ (-584 $))) (-15 -3693 ((-85) $ $)) (-15 -3693 ((-85) $ (-584 $))) (-15 -3692 ((-85) $ $)) (-15 -3692 ((-85) $ (-584 $))) (-15 -3696 ((-85) $ $)) (-15 -3696 ((-85) $ (-584 $))) (-15 -3166 ($ $ $)) (-15 -3165 ($ $ $)) (-15 -3166 ($ $ $ |t#3|)) (-15 -3165 ($ $ $ |t#3|)) (-15 -3164 ($ $ $)) (-15 -3163 ($ $ $)) (-15 -3164 ($ $ $ |t#3|)) (-15 -3163 ($ $ $ |t#3|)) (-15 -3162 ((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $)) (-15 -3162 ((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -2903 $)) $ $ |t#3|)) (-15 -3161 ((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -3161 ((-2 (|:| -3955 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2903 $)) $ $ |t#3|)) (-15 -3753 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -3160 ($ $ $)) (-15 -3159 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3482 (-695))) $ $)) (-15 -3688 ($ $ $)) (-15 -3687 ($ $ $)) (IF (|has| |t#3| (-554 (-1091))) (PROGN (-6 (-553 (-858 |t#1|))) (-6 (-554 (-858 |t#1|))) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3158 ((-3 $ "failed") (-858 (-350 (-485))))) (-15 -3157 ($ (-858 (-350 (-485))))) (-15 -3973 ($ (-858 (-350 (-485))))) (-15 -3158 ((-3 $ "failed") (-858 (-485)))) (-15 -3157 ($ (-858 (-485)))) (-15 -3973 ($ (-858 (-485)))) (IF (|has| |t#1| (-905 (-485))) |%noBranch| (PROGN (-15 -3158 ((-3 $ "failed") (-858 |t#1|))) (-15 -3157 ($ (-858 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-485))) (IF (|has| |t#1| (-38 (-350 (-485)))) |%noBranch| (PROGN (-15 -3158 ((-3 $ "failed") (-858 (-485)))) (-15 -3157 ($ (-858 (-485)))) (-15 -3973 ($ (-858 (-485)))) (IF (|has| |t#1| (-484)) |%noBranch| (PROGN (-15 -3158 ((-3 $ "failed") (-858 |t#1|))) (-15 -3157 ($ (-858 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-485))) |%noBranch| (IF (|has| |t#1| (-38 (-350 (-485)))) |%noBranch| (PROGN (-15 -3158 ((-3 $ "failed") (-858 |t#1|))) (-15 -3157 ($ (-858 |t#1|)))))) (-15 -3973 ($ (-858 |t#1|))) (IF (|has| |t#1| (-951 (-485))) (-6 (-554 (-1074))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-15 -3156 ($ $)) (-15 -3155 ($ $)) (-15 -3154 ($ $ |t#1|)) (-15 -3153 ($ $ |t#1|)) (-15 -3154 ($ $ $)) (-15 -3153 ($ $ $)) (-15 -3756 ($ $ $)) (-15 -3152 ((-2 (|:| -3145 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3151 ((-2 (|:| -3145 $) (|:| |coef1| $)) $ $)) (-15 -3150 ((-2 (|:| -3145 $) (|:| |coef2| $)) $ $)) (-15 -3757 ($ $ $)) (-15 -3149 ((-584 $) $ $)) (-15 -3191 ($ $ $)) (-15 -3148 ($ $ $ (-695))) (-15 -3147 ($ $ $ $ (-695))) (-15 -3146 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -3145 (|t#1| |t#1| $)) (-15 -3144 ($ $)) (-15 -3143 ($ $)) (-15 -3142 ($ $)) (-15 -3141 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-553 (-773)) . T) ((-553 (-858 |#1|)) |has| |#3| (-554 (-1091))) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ((-554 (-858 |#1|)) |has| |#3| (-554 (-1091))) ((-554 (-1074)) -12 (|has| |#1| (-951 (-485))) (|has| |#3| (-554 (-1091)))) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392))) ((-456 |#3| |#1|) . T) ((-456 |#3| $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-664) . T) ((-807 $ |#3|) . T) ((-810 |#3|) . T) ((-812 |#3|) . T) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ((-862 |#1| |#2| |#3|) . T) ((-822) |has| |#1| (-822)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-951 |#3|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-822))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3182 (((-584 (-1050)) $) 18 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 27 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3234 (((-1050) $) 20 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-979) (-13 (-996) (-10 -8 (-15 -3182 ((-584 (-1050)) $)) (-15 -3234 ((-1050) $))))) (T -979)) +((-3182 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-979)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-979))))) +((-3189 (((-85) |#3| $) 15 T ELT)) (-3184 (((-3 $ #1="failed") |#3| (-831)) 29 T ELT)) (-3468 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3187 (((-85) |#3| $) 19 T ELT)) (-3188 (((-85) |#3| $) 17 T ELT))) +(((-980 |#1| |#2| |#3|) (-10 -7 (-15 -3184 ((-3 |#1| #1="failed") |#3| (-831))) (-15 -3468 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3187 ((-85) |#3| |#1|)) (-15 -3188 ((-85) |#3| |#1|)) (-15 -3189 ((-85) |#3| |#1|))) (-981 |#2| |#3|) (-13 (-756) (-312)) (-1156 |#2|)) (T -980)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) |#2| $) 25 T ELT)) (-3624 (((-485) |#2| $) 26 T ELT)) (-3184 (((-3 $ "failed") |#2| (-831)) 19 T ELT)) (-3183 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3468 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3187 (((-85) |#2| $) 23 T ELT)) (-3188 (((-85) |#2| $) 24 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3186 ((|#2| $) 21 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3771 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3185 (((-584 $) |#2|) 20 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) +(((-981 |#1| |#2|) (-113) (-13 (-756) (-312)) (-1156 |t#1|)) (T -981)) +((-3624 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-485)))) (-3189 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85)))) (-3187 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85)))) (-3468 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312))) (-4 *2 (-1156 *3)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312))) (-4 *2 (-1156 *3)))) (-3185 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-584 *1)) (-4 *1 (-981 *4 *3)))) (-3184 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-831)) (-4 *4 (-13 (-756) (-312))) (-4 *1 (-981 *4 *2)) (-4 *2 (-1156 *4)))) (-3771 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1156 *2)))) (-3183 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1156 *2))))) +(-13 (-1014) (-10 -8 (-15 -3624 ((-485) |t#2| $)) (-15 -3189 ((-85) |t#2| $)) (-15 -3188 ((-85) |t#2| $)) (-15 -3187 ((-85) |t#2| $)) (-15 -3468 ((-3 |t#2| "failed") |t#2| $)) (-15 -3186 (|t#2| $)) (-15 -3185 ((-584 $) |t#2|)) (-15 -3184 ((-3 $ "failed") |t#2| (-831))) (-15 -3771 (|t#1| |t#2| $ |t#1|)) (-15 -3183 (|t#1| |t#2| $ |t#1|)))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-3437 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695)) 114 T ELT)) (-3434 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 63 T ELT)) (-3438 (((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)) 99 T ELT)) (-3432 (((-695) (-584 |#4|) (-584 |#5|)) 30 T ELT)) (-3435 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 65 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-85)) 67 T ELT)) (-3436 (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85)) 87 T ELT)) (-3973 (((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 92 T ELT)) (-3433 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3431 (((-695) (-584 |#4|) (-584 |#5|)) 21 T ELT))) +(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3431 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3432 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3433 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-85))) (-15 -3434 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-15 -3434 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-85))) (-15 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-15 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3436 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3436 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3437 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695))) (-15 -3973 ((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-15 -3438 ((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -982)) +((-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074)) (-5 *1 (-982 *4 *5 *6 *7 *8)))) (-3437 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-584 *11)) (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11)))))) (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11)))) (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9)) (-4 *11 (-984 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-5 *1 (-982 *7 *8 *9 *10 *11)))) (-3436 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3436 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3435 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3435 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *7 *8 *9 *3 *4)) (-4 *4 (-984 *7 *8 *9 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9))))) +((-3198 (((-85) |#5| $) 26 T ELT)) (-3196 (((-85) |#5| $) 29 T ELT)) (-3199 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3239 (((-584 $) |#5| $) NIL T ELT) (((-584 $) (-584 |#5|) $) 94 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 92 T ELT) (((-584 $) |#5| (-584 $)) 95 T ELT)) (-3770 (($ $ |#5|) NIL T ELT) (((-584 $) |#5| $) NIL T ELT) (((-584 $) |#5| (-584 $)) 73 T ELT) (((-584 $) (-584 |#5|) $) 75 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 77 T ELT)) (-3190 (((-584 $) |#5| $) NIL T ELT) (((-584 $) |#5| (-584 $)) 64 T ELT) (((-584 $) (-584 |#5|) $) 69 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 71 T ELT)) (-3197 (((-85) |#5| $) 32 T ELT))) +(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3770 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3770 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3770 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3770 ((-584 |#1|) |#5| |#1|)) (-15 -3190 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3190 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3190 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3190 ((-584 |#1|) |#5| |#1|)) (-15 -3239 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3239 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3239 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3239 ((-584 |#1|) |#5| |#1|)) (-15 -3196 ((-85) |#5| |#1|)) (-15 -3199 ((-85) |#1|)) (-15 -3197 ((-85) |#5| |#1|)) (-15 -3198 ((-85) |#5| |#1|)) (-15 -3199 ((-85) |#5| |#1|)) (-15 -3770 (|#1| |#1| |#5|))) (-984 |#2| |#3| |#4| |#5|) (-392) (-718) (-757) (-978 |#2| |#3| |#4|)) (T -983)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3682 (((-584 (-2 (|:| -3862 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3683 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3082 (((-584 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3689 ((|#4| |#4| $) 98 T ELT)) (-3776 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 134 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3725 (($) 54 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3690 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3157 (($ (-584 |#4|)) 40 T ELT)) (-3800 (((-3 $ #1#) $) 88 T ELT)) (-3686 ((|#4| |#4| $) 95 T ELT)) (-1354 (($ $) 70 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#4| $) 69 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3996)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3684 ((|#4| |#4| $) 93 T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3697 (((-2 (|:| -3862 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 111 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT)) (-3196 (((-85) |#4| $) 141 T ELT)) (-3199 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2890 (((-584 |#4|) $) 57 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-584 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2915 (((-584 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3192 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3191 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 135 T ELT)) (-3799 (((-3 |#4| #1#) $) 89 T ELT)) (-3193 (((-584 $) |#4| $) 137 T ELT)) (-3195 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3194 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3239 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3441 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3698 (((-584 |#4|) $) 113 T ELT)) (-3692 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3687 ((|#4| |#4| $) 96 T ELT)) (-3700 (((-85) $ $) 116 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3688 ((|#4| |#4| $) 97 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3802 (((-3 |#4| #1#) $) 90 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3770 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3769 (($ $ (-584 |#4|) (-584 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 50 T ELT)) (-3404 (((-85) $) 53 T ELT)) (-3566 (($) 52 T ELT)) (-3949 (((-695) $) 112 T ELT)) (-1947 (((-695) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3401 (($ $) 51 T ELT)) (-3973 (((-474) $) 71 (|has| |#4| (-554 (-474))) ELT)) (-3531 (($ (-584 |#4|)) 62 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-3685 (($ $) 94 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3947 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3679 (((-695) $) 82 (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 104 T ELT)) (-3190 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3681 (((-584 |#3|) $) 87 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3934 (((-85) |#3| $) 86 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3958 (((-695) $) 43 T ELT))) +(((-984 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -984)) +((-3199 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3198 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3197 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 (-85) (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *1)))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3193 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3192 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 *3 (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3191 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1)))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3776 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1)))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3239 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3239 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) (-3239 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) (-3239 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3190 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) (-3190 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) (-3190 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) (-3441 (*1 *1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3441 (*1 *1 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)))) (-3770 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3770 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) (-3770 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) (-3770 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *5 *6 *7 *8))))) +(-13 (-1125 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3199 ((-85) |t#4| $)) (-15 -3198 ((-85) |t#4| $)) (-15 -3197 ((-85) |t#4| $)) (-15 -3199 ((-85) $)) (-15 -3196 ((-85) |t#4| $)) (-15 -3195 ((-3 (-85) (-584 $)) |t#4| $)) (-15 -3194 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |t#4| $)) (-15 -3194 ((-85) |t#4| $)) (-15 -3193 ((-584 $) |t#4| $)) (-15 -3192 ((-3 |t#4| (-584 $)) |t#4| |t#4| $)) (-15 -3191 ((-584 (-2 (|:| |val| |t#4|) (|:| -1601 $))) |t#4| |t#4| $)) (-15 -3776 ((-584 (-2 (|:| |val| |t#4|) (|:| -1601 $))) |t#4| $)) (-15 -3239 ((-584 $) |t#4| $)) (-15 -3239 ((-584 $) (-584 |t#4|) $)) (-15 -3239 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3239 ((-584 $) |t#4| (-584 $))) (-15 -3190 ((-584 $) |t#4| $)) (-15 -3190 ((-584 $) |t#4| (-584 $))) (-15 -3190 ((-584 $) (-584 |t#4|) $)) (-15 -3190 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3441 ($ |t#4| $)) (-15 -3441 ($ (-584 |t#4|) $)) (-15 -3770 ((-584 $) |t#4| $)) (-15 -3770 ((-584 $) |t#4| (-584 $))) (-15 -3770 ((-584 $) (-584 |t#4|) $)) (-15 -3770 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3683 ((-584 $) (-584 |t#4|) (-85))))) +(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T)) +((-3206 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 86 T ELT)) (-3203 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3205 (((-584 |#5|) |#4| |#5|) 74 T ELT)) (-3204 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3287 (((-1186)) 36 T ELT)) (-3285 (((-1186)) 25 T ELT)) (-3286 (((-1186) (-1074) (-1074) (-1074)) 32 T ELT)) (-3284 (((-1186) (-1074) (-1074) (-1074)) 21 T ELT)) (-3200 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3201 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-85)) 117 T ELT) (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3202 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 112 T ELT))) +(((-985 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3284 ((-1186) (-1074) (-1074) (-1074))) (-15 -3285 ((-1186))) (-15 -3286 ((-1186) (-1074) (-1074) (-1074))) (-15 -3287 ((-1186))) (-15 -3200 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3201 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3201 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-85))) (-15 -3202 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3203 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3204 ((-85) |#4| |#5|)) (-15 -3204 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3205 ((-584 |#5|) |#4| |#5|)) (-15 -3206 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -985)) +((-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3204 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3204 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3202 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *4 (-757)) (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9)))) (-5 *1 (-985 *6 *7 *4 *8 *9)))) (-3201 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3200 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3287 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3286 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3285 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3284 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3319 (((-1131) $) 14 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3207 (((-1050) $) 11 T ELT)) (-3947 (((-773) $) 21 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-986) (-13 (-996) (-10 -8 (-15 -3207 ((-1050) $)) (-15 -3319 ((-1131) $))))) (T -986)) +((-3207 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-986)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-986))))) +((-3267 (((-85) $ $) 7 T ELT))) +(((-987) (-13 (-1130) (-10 -8 (-15 -3267 ((-85) $ $))))) (T -987)) +((-3267 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-987))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3210 (($ $ (-584 (-1091)) (-1 (-85) (-584 |#3|))) 34 T ELT)) (-3211 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-584 (-1091))) 21 T ELT)) (-3529 ((|#3| $) 13 T ELT)) (-3158 (((-3 (-249 |#3|) "failed") $) 60 T ELT)) (-3157 (((-249 |#3|) $) NIL T ELT)) (-3208 (((-584 (-1091)) $) 16 T ELT)) (-3209 (((-801 |#1|) $) 11 T ELT)) (-3530 ((|#3| $) 12 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-831)) 41 T ELT)) (-3947 (((-773) $) 89 T ELT) (($ (-249 |#3|)) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 38 T ELT))) +(((-988 |#1| |#2| |#3|) (-13 (-1014) (-241 |#3| |#3|) (-951 (-249 |#3|)) (-10 -8 (-15 -3211 ($ |#3| |#3|)) (-15 -3211 ($ |#3| |#3| (-584 (-1091)))) (-15 -3210 ($ $ (-584 (-1091)) (-1 (-85) (-584 |#3|)))) (-15 -3209 ((-801 |#1|) $)) (-15 -3530 (|#3| $)) (-15 -3529 (|#3| $)) (-15 -3801 (|#3| $ |#3| (-831))) (-15 -3208 ((-584 (-1091)) $)))) (-1014) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-364 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -988)) +((-3211 (*1 *1 *2 *2) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-988 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))) (-3211 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) (-3210 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-1 (-85) (-584 *6))) (-4 *6 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *6)))) (-3209 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 *2))) (-5 *2 (-801 *3)) (-5 *1 (-988 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 *2))))) (-3530 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) (-3529 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) (-3801 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) (-3208 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *2 (-584 (-1091))) (-5 *1 (-988 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3))))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3543 (((-1091) $) 8 T ELT)) (-3243 (((-1074) $) 17 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 14 T ELT))) +(((-989 |#1|) (-13 (-1014) (-10 -8 (-15 -3543 ((-1091) $)))) (-1091)) (T -989)) +((-3543 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-989 *3)) (-14 *3 *2)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3213 (($ (-584 (-988 |#1| |#2| |#3|))) 15 T ELT)) (-3212 (((-584 (-988 |#1| |#2| |#3|)) $) 22 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-831)) 28 T ELT)) (-3947 (((-773) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 21 T ELT))) +(((-990 |#1| |#2| |#3|) (-13 (-1014) (-241 |#3| |#3|) (-10 -8 (-15 -3213 ($ (-584 (-988 |#1| |#2| |#3|)))) (-15 -3212 ((-584 (-988 |#1| |#2| |#3|)) $)) (-15 -3801 (|#3| $ |#3| (-831))))) (-1014) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-364 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -990)) +((-3213 (*1 *1 *2) (-12 (-5 *2 (-584 (-988 *3 *4 *5))) (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-990 *3 *4 *5)))) (-3212 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *2 (-584 (-988 *3 *4 *5))) (-5 *1 (-990 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))) (-3801 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-990 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4))))))) +((-3214 (((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)) 88 T ELT) (((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|))) 92 T ELT) (((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85)) 90 T ELT))) +(((-991 |#1| |#2|) (-10 -7 (-15 -3214 ((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85))) (-15 -3214 ((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3214 ((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)))) (-13 (-258) (-120)) (-584 (-1091))) (T -991)) +((-3214 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-2 (|:| -1748 (-1086 *5)) (|:| -3225 (-584 (-858 *5)))))) (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))))) (-3214 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-2 (|:| -1748 (-1086 *4)) (|:| -3225 (-584 (-858 *4)))))) (-5 *1 (-991 *4 *5)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1091))))) (-3214 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-2 (|:| -1748 (-1086 *5)) (|:| -3225 (-584 (-858 *5)))))) (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 132 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-312)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-1783 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) 117 T ELT)) (-3331 ((|#1| $) 121 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3137 (((-695)) 43 (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-1793 (($ (-1180 |#1|) (-1180 $)) NIL T ELT) (($ (-1180 |#1|)) 46 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1782 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 109 T ELT) (((-631 |#1|) (-631 $)) 104 T ELT)) (-3843 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-350 |#2|)) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3109 (((-831)) 80 T ELT)) (-2995 (($) 47 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-2834 (($) NIL (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1765 (($ $ (-695)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3773 (((-831) $) NIL (|has| |#1| (-299)) ELT) (((-744 (-831)) $) NIL (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3133 ((|#1| $) NIL T ELT)) (-3446 (((-633 $) $) NIL (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2015 ((|#2| $) 87 (|has| |#1| (-312)) ELT)) (-2011 (((-831) $) 140 (|has| |#1| (-320)) ELT)) (-3080 ((|#2| $) 59 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3447 (($) NIL (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) 131 (|has| |#1| (-320)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2410 (($) 123 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1677 (((-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-299)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1766 (((-695) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3759 (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL (|has| |#1| (-312)) ELT)) (-2409 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3186 ((|#2|) 77 T ELT)) (-1675 (($) NIL (|has| |#1| (-299)) ELT)) (-3225 (((-1180 |#1|) $ (-1180 $)) 92 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#1|) $) 72 T ELT) (((-631 |#1|) (-1180 $)) 88 T ELT)) (-3973 (((-1180 |#1|) $) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-299)) ELT)) (-3947 (((-773) $) 58 T ELT) (($ (-485)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2703 (($ $) NIL (|has| |#1| (-299)) ELT) (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-2450 ((|#2| $) 85 T ELT)) (-3127 (((-695)) 79 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 84 T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 32 T CONST)) (-2667 (($) 19 T CONST)) (-2670 (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL (|has| |#1| (-312)) ELT)) (-3057 (((-85) $ $) 64 T ELT)) (-3950 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 66 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-312)) ELT))) +(((-992 |#1| |#2| |#3|) (-662 |#1| |#2|) (-146) (-1156 |#1|) |#2|) (T -992)) +NIL +((-3733 (((-348 |#3|) |#3|) 18 T ELT))) +(((-993 |#1| |#2| |#3|) (-10 -7 (-15 -3733 ((-348 |#3|) |#3|))) (-1156 (-350 (-485))) (-13 (-312) (-120) (-662 (-350 (-485)) |#1|)) (-1156 |#2|)) (T -993)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-13 (-312) (-120) (-662 (-350 (-485)) *4))) (-5 *2 (-348 *3)) (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1156 *5))))) +((-3733 (((-348 |#3|) |#3|) 19 T ELT))) +(((-994 |#1| |#2| |#3|) (-10 -7 (-15 -3733 ((-348 |#3|) |#3|))) (-1156 (-350 (-858 (-485)))) (-13 (-312) (-120) (-662 (-350 (-858 (-485))) |#1|)) (-1156 |#2|)) (T -994)) +((-3733 (*1 *2 *3) (-12 (-4 *4 (-1156 (-350 (-858 (-485))))) (-4 *5 (-13 (-312) (-120) (-662 (-350 (-858 (-485))) *4))) (-5 *2 (-348 *3)) (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1156 *5))))) +((-2569 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) 16 T ELT)) (-2858 (($ $ $) 17 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3215 (($) 6 T ELT)) (-3973 (((-1091) $) 20 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 15 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 9 T ELT))) +(((-995) (-13 (-757) (-554 (-1091)) (-10 -8 (-15 -3215 ($))))) (T -995)) +((-3215 (*1 *1) (-5 *1 (-995)))) +((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-1096)) 20 T ELT) (((-1096) $) 19 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) +(((-996) (-113)) (T -996)) NIL (-13 (-64)) -(((-64) . T) ((-72) . T) ((-555 (-1095)) . T) ((-552 (-772)) . T) ((-552 (-1095)) . T) ((-430 (-1095)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-3217 ((|#1| |#1| (-1 (-484) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3215 (((-1185)) 21 T ELT)) (-3216 (((-583 |#1|)) 13 T ELT))) -(((-996 |#1|) (-10 -7 (-15 -3215 ((-1185))) (-15 -3216 ((-583 |#1|))) (-15 -3217 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3217 (|#1| |#1| (-1 (-484) |#1| |#1|)))) (-105)) (T -996)) -((-3217 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-484) *2 *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))) (-3217 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))) (-3216 (*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-996 *3)) (-4 *3 (-105)))) (-3215 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-996 *3)) (-4 *3 (-105))))) -((-3220 (($ (-78) $) 20 T ELT)) (-3221 (((-632 (-78)) (-446) $) 19 T ELT)) (-3565 (($) 7 T ELT)) (-3219 (($) 21 T ELT)) (-3218 (($) 22 T ELT)) (-3222 (((-583 (-149)) $) 10 T ELT)) (-3946 (((-772) $) 25 T ELT))) -(((-997) (-13 (-552 (-772)) (-10 -8 (-15 -3565 ($)) (-15 -3222 ((-583 (-149)) $)) (-15 -3221 ((-632 (-78)) (-446) $)) (-15 -3220 ($ (-78) $)) (-15 -3219 ($)) (-15 -3218 ($))))) (T -997)) -((-3565 (*1 *1) (-5 *1 (-997))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-583 (-149))) (-5 *1 (-997)))) (-3221 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-997)))) (-3220 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-997)))) (-3219 (*1 *1) (-5 *1 (-997))) (-3218 (*1 *1) (-5 *1 (-997)))) -((-3223 (((-1179 (-630 |#1|)) (-583 (-630 |#1|))) 45 T ELT) (((-1179 (-630 (-857 |#1|))) (-583 (-1090)) (-630 (-857 |#1|))) 75 T ELT) (((-1179 (-630 (-350 (-857 |#1|)))) (-583 (-1090)) (-630 (-350 (-857 |#1|)))) 92 T ELT)) (-3224 (((-1179 |#1|) (-630 |#1|) (-583 (-630 |#1|))) 39 T ELT))) -(((-998 |#1|) (-10 -7 (-15 -3223 ((-1179 (-630 (-350 (-857 |#1|)))) (-583 (-1090)) (-630 (-350 (-857 |#1|))))) (-15 -3223 ((-1179 (-630 (-857 |#1|))) (-583 (-1090)) (-630 (-857 |#1|)))) (-15 -3223 ((-1179 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3224 ((-1179 |#1|) (-630 |#1|) (-583 (-630 |#1|))))) (-312)) (T -998)) -((-3224 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-630 *5))) (-5 *3 (-630 *5)) (-4 *5 (-312)) (-5 *2 (-1179 *5)) (-5 *1 (-998 *5)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-5 *2 (-1179 (-630 *4))) (-5 *1 (-998 *4)))) (-3223 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1090))) (-4 *5 (-312)) (-5 *2 (-1179 (-630 (-857 *5)))) (-5 *1 (-998 *5)) (-5 *4 (-630 (-857 *5))))) (-3223 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1090))) (-4 *5 (-312)) (-5 *2 (-1179 (-630 (-350 (-857 *5))))) (-5 *1 (-998 *5)) (-5 *4 (-630 (-350 (-857 *5))))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1488 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ (-1090)) NIL T ELT)) (-1522 (((-694) $) NIL T ELT) (((-694) $ (-1090)) NIL T ELT)) (-3081 (((-583 (-1000 (-1090))) $) NIL T ELT)) (-3083 (((-1085 $) $ (-1000 (-1090))) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-1000 (-1090)))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-1484 (($ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-1000 (-1090)) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL T ELT) (((-3 (-1039 |#1| (-1090)) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-1000 (-1090)) $) NIL T ELT) (((-1090) $) NIL T ELT) (((-1039 |#1| (-1090)) $) NIL T ELT)) (-3756 (($ $ $ (-1000 (-1090))) NIL (|has| |#1| (-146)) ELT)) (-3959 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1000 (-1090))) NIL (|has| |#1| (-392)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-469 (-1000 (-1090))) $) NIL T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-1000 (-1090)) (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1000 (-1090)) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3772 (((-694) $ (-1090)) NIL T ELT) (((-694) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3084 (($ (-1085 |#1|) (-1000 (-1090))) NIL T ELT) (($ (-1085 $) (-1000 (-1090))) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-469 (-1000 (-1090)))) NIL T ELT) (($ $ (-1000 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1090))) (-583 (-694))) NIL T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-1000 (-1090))) NIL T ELT)) (-2820 (((-469 (-1000 (-1090))) $) NIL T ELT) (((-694) $ (-1000 (-1090))) NIL T ELT) (((-583 (-694)) $ (-583 (-1000 (-1090)))) NIL T ELT)) (-1625 (($ (-1 (-469 (-1000 (-1090))) (-469 (-1000 (-1090)))) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1523 (((-1 $ (-694)) (-1090)) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3082 (((-3 (-1000 (-1090)) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1486 (((-1000 (-1090)) $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1487 (((-85) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-1000 (-1090))) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-1485 (($ $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-1000 (-1090)) |#1|) NIL T ELT) (($ $ (-583 (-1000 (-1090))) (-583 |#1|)) NIL T ELT) (($ $ (-1000 (-1090)) $) NIL T ELT) (($ $ (-583 (-1000 (-1090))) (-583 $)) NIL T ELT) (($ $ (-1090) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1090)) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3757 (($ $ (-1000 (-1090))) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-583 (-1000 (-1090))) (-583 (-694))) NIL T ELT) (($ $ (-1000 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1090)))) NIL T ELT) (($ $ (-1000 (-1090))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1489 (((-583 (-1090)) $) NIL T ELT)) (-3948 (((-469 (-1000 (-1090))) $) NIL T ELT) (((-694) $ (-1000 (-1090))) NIL T ELT) (((-583 (-694)) $ (-583 (-1000 (-1090)))) NIL T ELT) (((-694) $ (-1090)) NIL T ELT)) (-3972 (((-800 (-330)) $) NIL (-12 (|has| (-1000 (-1090)) (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1000 (-1090)) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-1000 (-1090)) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1000 (-1090))) NIL (|has| |#1| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1000 (-1090))) NIL T ELT) (($ (-1090)) NIL T ELT) (($ (-1039 |#1| (-1090))) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3817 (((-583 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-469 (-1000 (-1090)))) NIL T ELT) (($ $ (-1000 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1090))) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-1000 (-1090))) (-583 (-694))) NIL T ELT) (($ $ (-1000 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1090)))) NIL T ELT) (($ $ (-1000 (-1090))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-999 |#1|) (-13 (-213 |#1| (-1090) (-1000 (-1090)) (-469 (-1000 (-1090)))) (-950 (-1039 |#1| (-1090)))) (-961)) (T -999)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-1522 (((-694) $) NIL T ELT)) (-3831 ((|#1| $) 10 T ELT)) (-3157 (((-3 |#1| "failed") $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT)) (-3772 (((-694) $) 11 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-1523 (($ |#1| (-694)) 9 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3758 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2669 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 16 T ELT))) -(((-1000 |#1|) (-228 |#1|) (-756)) (T -1000)) -NIL -((-2568 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3736 (($ |#1| |#1|) 16 T ELT)) (-3958 (((-583 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-755)) ELT)) (-3229 ((|#1| $) 12 T ELT)) (-3231 ((|#1| $) 11 T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3227 (((-484) $) 15 T ELT)) (-3228 ((|#1| $) 14 T ELT)) (-3230 ((|#1| $) 13 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3963 (((-583 |#1|) $) 42 (|has| |#1| (-755)) ELT) (((-583 |#1|) (-583 $)) 41 (|has| |#1| (-755)) ELT)) (-3972 (($ |#1|) 29 T ELT)) (-3946 (((-772) $) 28 (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3737 (($ |#1| |#1|) 10 T ELT)) (-3232 (($ $ (-484)) 17 T ELT)) (-3056 (((-85) $ $) 22 (|has| |#1| (-1013)) ELT))) -(((-1001 |#1|) (-13 (-1006 |#1|) (-10 -7 (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-1007 |#1| (-583 |#1|))) |%noBranch|))) (-1129)) (T -1001)) -NIL -((-3958 (((-583 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 27 (|has| |#1| (-755)) ELT) (((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 14 T ELT))) -(((-1002 |#1| |#2|) (-10 -7 (-15 -3958 ((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) (IF (|has| |#1| (-755)) (-15 -3958 ((-583 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) |%noBranch|)) (-1129) (-1129)) (T -1002)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-755)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-583 *6)) (-5 *1 (-1002 *5 *6)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1001 *6)) (-5 *1 (-1002 *5 *6))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 16 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3225 (((-583 (-1049)) $) 10 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1003) (-13 (-995) (-10 -8 (-15 -3225 ((-583 (-1049)) $))))) (T -1003)) -((-3225 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-1003))))) -((-2568 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3831 (((-1090) $) NIL T ELT)) (-3736 (((-1001 |#1|) $) NIL T ELT)) (-3242 (((-1073) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3226 (($ (-1090) (-1001 |#1|)) NIL T ELT)) (-3946 (((-772) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-1265 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3056 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT))) -(((-1004 |#1|) (-13 (-1129) (-10 -8 (-15 -3226 ($ (-1090) (-1001 |#1|))) (-15 -3831 ((-1090) $)) (-15 -3736 ((-1001 |#1|) $)) (IF (|has| (-1001 |#1|) (-1013)) (-6 (-1013)) |%noBranch|))) (-1129)) (T -1004)) -((-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1001 *4)) (-4 *4 (-1129)) (-5 *1 (-1004 *4)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1004 *3)) (-4 *3 (-1129)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1129))))) -((-3958 (((-1004 |#2|) (-1 |#2| |#1|) (-1004 |#1|)) 19 T ELT))) -(((-1005 |#1| |#2|) (-10 -7 (-15 -3958 ((-1004 |#2|) (-1 |#2| |#1|) (-1004 |#1|)))) (-1129) (-1129)) (T -1005)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1004 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1004 *6)) (-5 *1 (-1005 *5 *6))))) -((-3736 (($ |#1| |#1|) 8 T ELT)) (-3229 ((|#1| $) 11 T ELT)) (-3231 ((|#1| $) 13 T ELT)) (-3227 (((-484) $) 9 T ELT)) (-3228 ((|#1| $) 10 T ELT)) (-3230 ((|#1| $) 12 T ELT)) (-3972 (($ |#1|) 6 T ELT)) (-3737 (($ |#1| |#1|) 15 T ELT)) (-3232 (($ $ (-484)) 14 T ELT))) -(((-1006 |#1|) (-113) (-1129)) (T -1006)) -((-3737 (*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))) (-3232 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1006 *3)) (-4 *3 (-1129)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1129)) (-5 *2 (-484)))) (-3736 (*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129))))) -(-13 (-557 |t#1|) (-10 -8 (-15 -3737 ($ |t#1| |t#1|)) (-15 -3232 ($ $ (-484))) (-15 -3231 (|t#1| $)) (-15 -3230 (|t#1| $)) (-15 -3229 (|t#1| $)) (-15 -3228 (|t#1| $)) (-15 -3227 ((-484) $)) (-15 -3736 ($ |t#1| |t#1|)))) -(((-557 |#1|) . T)) -((-3736 (($ |#1| |#1|) 8 T ELT)) (-3958 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3229 ((|#1| $) 11 T ELT)) (-3231 ((|#1| $) 13 T ELT)) (-3227 (((-484) $) 9 T ELT)) (-3228 ((|#1| $) 10 T ELT)) (-3230 ((|#1| $) 12 T ELT)) (-3963 ((|#2| (-583 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3972 (($ |#1|) 6 T ELT)) (-3737 (($ |#1| |#1|) 15 T ELT)) (-3232 (($ $ (-484)) 14 T ELT))) -(((-1007 |#1| |#2|) (-113) (-755) (-1064 |t#1|)) (T -1007)) -((-3963 (*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755)) (-4 *2 (-1064 *4)))) (-3963 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *2)) (-4 *3 (-755)) (-4 *2 (-1064 *3)))) (-3958 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755)) (-4 *2 (-1064 *4))))) -(-13 (-1006 |t#1|) (-10 -8 (-15 -3963 (|t#2| (-583 $))) (-15 -3963 (|t#2| $)) (-15 -3958 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-557 |#1|) . T) ((-1006 |#1|) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3798 (((-1049) $) 14 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3233 (((-583 (-1049)) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1008) (-13 (-995) (-10 -8 (-15 -3233 ((-583 (-1049)) $)) (-15 -3798 ((-1049) $))))) (T -1008)) -((-3233 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-1008)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1008))))) -((-2568 (((-85) $ $) NIL T ELT)) (-1802 (($) NIL (|has| |#1| (-320)) ELT)) (-3234 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3236 (($ $ $) 81 T ELT)) (-3235 (((-85) $ $) 83 T ELT)) (-3136 (((-694)) NIL (|has| |#1| (-320)) ELT)) (-3239 (($ (-583 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-3405 (($ |#1| $) 75 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 (|has| $ (-6 -3995)) ELT)) (-2994 (($) NIL (|has| |#1| (-320)) ELT)) (-2889 (((-583 |#1|) $) 20 (|has| $ (-6 -3995)) ELT)) (-3241 (((-85) $ $) NIL T ELT)) (-2531 ((|#1| $) 56 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) 74 (|has| |#1| (-72)) ELT)) (-2857 ((|#1| $) 54 (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-320)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3238 (($ $ $) 79 T ELT)) (-1274 ((|#1| $) 26 T ELT)) (-3609 (($ |#1| $) 70 T ELT)) (-2400 (($ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1275 ((|#1| $) 28 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 22 T ELT)) (-3565 (($) 12 T ELT)) (-3237 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1466 (($) NIL T ELT) (($ (-583 |#1|)) NIL T ELT)) (-1946 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) 17 T ELT)) (-3972 (((-473) $) 51 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 63 T ELT)) (-1803 (($ $) NIL (|has| |#1| (-320)) ELT)) (-3946 (((-772) $) NIL T ELT)) (-1804 (((-694) $) NIL T ELT)) (-3240 (($ (-583 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1276 (($ (-583 |#1|)) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) 53 T ELT)) (-3957 (((-694) $) 11 T ELT))) -(((-1009 |#1|) (-369 |#1|) (-1013)) (T -1009)) -NIL -((-3234 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3236 (($ $ $) 10 T ELT)) (-3237 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) -(((-1010 |#1| |#2|) (-10 -7 (-15 -3234 (|#1| |#2| |#1|)) (-15 -3234 (|#1| |#1| |#2|)) (-15 -3234 (|#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1| |#2|)) (-15 -3237 (|#1| |#1| |#1|))) (-1011 |#2|) (-1013)) (T -1010)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3234 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3236 (($ $ $) 24 T ELT)) (-3235 (((-85) $ $) 23 T ELT)) (-3239 (($) 29 T ELT) (($ (-583 |#1|)) 28 T ELT)) (-3710 (($ (-1 (-85) |#1|) $) 57 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 37 T CONST)) (-1353 (($ $) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#1| $) 59 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 56 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -3995)) ELT)) (-2889 (((-583 |#1|) $) 44 (|has| $ (-6 -3995)) ELT)) (-3241 (((-85) $ $) 32 T ELT)) (-2608 (((-583 |#1|) $) 45 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 47 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3238 (($ $ $) 27 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 53 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 42 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 |#1|) (-583 |#1|)) 51 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 49 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 (-249 |#1|))) 48 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 33 T ELT)) (-3403 (((-85) $) 36 T ELT)) (-3565 (($) 35 T ELT)) (-3237 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-1946 (((-694) |#1| $) 46 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT) (((-694) (-1 (-85) |#1|) $) 43 (|has| $ (-6 -3995)) ELT)) (-3400 (($ $) 34 T ELT)) (-3972 (((-473) $) 61 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 52 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-3240 (($) 31 T ELT) (($ (-583 |#1|)) 30 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 41 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3957 (((-694) $) 38 (|has| $ (-6 -3995)) ELT))) -(((-1011 |#1|) (-113) (-1013)) (T -1011)) -((-3241 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3240 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-3239 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3239 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-3238 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3237 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3236 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3235 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3234 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3234 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3234 (*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) -(-13 (-1013) (-124 |t#1|) (-10 -8 (-6 -3985) (-15 -3241 ((-85) $ $)) (-15 -3240 ($)) (-15 -3240 ($ (-583 |t#1|))) (-15 -3239 ($)) (-15 -3239 ($ (-583 |t#1|))) (-15 -3238 ($ $ $)) (-15 -3237 ($ $ $)) (-15 -3237 ($ $ |t#1|)) (-15 -3236 ($ $ $)) (-15 -3235 ((-85) $ $)) (-15 -3234 ($ $ $)) (-15 -3234 ($ $ |t#1|)) (-15 -3234 ($ |t#1| $)))) -(((-34) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-3242 (((-1073) $) 10 T ELT)) (-3243 (((-1033) $) 8 T ELT))) -(((-1012 |#1|) (-10 -7 (-15 -3242 ((-1073) |#1|)) (-15 -3243 ((-1033) |#1|))) (-1013)) (T -1012)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) -(((-1013) (-113)) (T -1013)) -((-3243 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1033)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1073))))) -(-13 (-72) (-552 (-772)) (-10 -8 (-15 -3243 ((-1033) $)) (-15 -3242 ((-1073) $)))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) 36 T ELT)) (-3247 (($ (-583 (-830))) 70 T ELT)) (-3249 (((-3 $ #1="failed") $ (-830) (-830)) 81 T ELT)) (-2994 (($) 40 T ELT)) (-3245 (((-85) (-830) $) 42 T ELT)) (-2010 (((-830) $) 64 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 39 T ELT)) (-3250 (((-3 $ #1#) $ (-830)) 77 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3246 (((-1179 $)) 47 T ELT)) (-3248 (((-583 (-830)) $) 27 T ELT)) (-3244 (((-694) $ (-830) (-830)) 78 T ELT)) (-3946 (((-772) $) 32 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 24 T ELT))) -(((-1014 |#1| |#2|) (-13 (-320) (-10 -8 (-15 -3250 ((-3 $ #1="failed") $ (-830))) (-15 -3249 ((-3 $ #1#) $ (-830) (-830))) (-15 -3248 ((-583 (-830)) $)) (-15 -3247 ($ (-583 (-830)))) (-15 -3246 ((-1179 $))) (-15 -3245 ((-85) (-830) $)) (-15 -3244 ((-694) $ (-830) (-830))))) (-830) (-830)) (T -1014)) -((-3250 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3249 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3247 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3246 (*1 *2) (-12 (-5 *2 (-1179 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3245 (*1 *2 *3 *1) (-12 (-5 *3 (-830)) (-5 *2 (-85)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3244 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-694)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3256 (((-1090) $) NIL T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3535 (((-1073) $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3255 (((-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3258 (((-85) $) NIL T ELT)) (-3254 (((-179) $) NIL T ELT)) (-3253 (((-772) $) NIL T ELT)) (-3266 (((-85) $ $) NIL T ELT)) (-3800 (($ $ (-484)) NIL T ELT) (($ $ (-583 (-484))) NIL T ELT)) (-3257 (((-583 $) $) NIL T ELT)) (-3972 (($ (-1073)) NIL T ELT) (($ (-1090)) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-772)) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-3251 (($ $) NIL T ELT)) (-3252 (($ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3957 (((-484) $) NIL T ELT))) -(((-1015) (-1016 (-1073) (-1090) (-484) (-179) (-772))) (T -1015)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3260 (((-85) $) 36 T ELT)) (-3256 ((|#2| $) 31 T ELT)) (-3261 (((-85) $) 37 T ELT)) (-3535 ((|#1| $) 32 T ELT)) (-3263 (((-85) $) 39 T ELT)) (-3265 (((-85) $) 41 T ELT)) (-3262 (((-85) $) 38 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3259 (((-85) $) 35 T ELT)) (-3255 ((|#3| $) 30 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3258 (((-85) $) 34 T ELT)) (-3254 ((|#4| $) 29 T ELT)) (-3253 ((|#5| $) 28 T ELT)) (-3266 (((-85) $ $) 42 T ELT)) (-3800 (($ $ (-484)) 44 T ELT) (($ $ (-583 (-484))) 43 T ELT)) (-3257 (((-583 $) $) 33 T ELT)) (-3972 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-583 $)) 45 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-3251 (($ $) 26 T ELT)) (-3252 (($ $) 27 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3264 (((-85) $) 40 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3957 (((-484) $) 25 T ELT))) -(((-1016 |#1| |#2| |#3| |#4| |#5|) (-113) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1016)) -((-3266 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3257 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)))) (-3535 (*1 *2 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3252 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3251 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3957 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-484))))) -(-13 (-1013) (-557 |t#1|) (-557 |t#2|) (-557 |t#3|) (-557 |t#4|) (-557 |t#4|) (-557 |t#5|) (-557 (-583 $)) (-241 (-484) $) (-241 (-583 (-484)) $) (-10 -8 (-15 -3266 ((-85) $ $)) (-15 -3265 ((-85) $)) (-15 -3264 ((-85) $)) (-15 -3263 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -3259 ((-85) $)) (-15 -3258 ((-85) $)) (-15 -3257 ((-583 $) $)) (-15 -3535 (|t#1| $)) (-15 -3256 (|t#2| $)) (-15 -3255 (|t#3| $)) (-15 -3254 (|t#4| $)) (-15 -3253 (|t#5| $)) (-15 -3252 ($ $)) (-15 -3251 ($ $)) (-15 -3957 ((-484) $)))) -(((-72) . T) ((-552 (-772)) . T) ((-557 (-583 $)) . T) ((-557 |#1|) . T) ((-557 |#2|) . T) ((-557 |#3|) . T) ((-557 |#4|) . T) ((-557 |#5|) . T) ((-241 (-484) $) . T) ((-241 (-583 (-484)) $) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3260 (((-85) $) 45 T ELT)) (-3256 ((|#2| $) 48 T ELT)) (-3261 (((-85) $) 20 T ELT)) (-3535 ((|#1| $) 21 T ELT)) (-3263 (((-85) $) 42 T ELT)) (-3265 (((-85) $) 14 T ELT)) (-3262 (((-85) $) 44 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3259 (((-85) $) 46 T ELT)) (-3255 ((|#3| $) 50 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3258 (((-85) $) 47 T ELT)) (-3254 ((|#4| $) 49 T ELT)) (-3253 ((|#5| $) 51 T ELT)) (-3266 (((-85) $ $) 41 T ELT)) (-3800 (($ $ (-484)) 62 T ELT) (($ $ (-583 (-484))) 64 T ELT)) (-3257 (((-583 $) $) 27 T ELT)) (-3972 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-583 $)) 52 T ELT)) (-3946 (((-772) $) 28 T ELT)) (-3251 (($ $) 26 T ELT)) (-3252 (($ $) 58 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3264 (((-85) $) 23 T ELT)) (-3056 (((-85) $ $) 40 T ELT)) (-3957 (((-484) $) 60 T ELT))) -(((-1017 |#1| |#2| |#3| |#4| |#5|) (-1016 |#1| |#2| |#3| |#4| |#5|) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1017)) -NIL -((-3269 (((-85) |#5| |#5|) 44 T ELT)) (-3272 (((-85) |#5| |#5|) 59 T ELT)) (-3277 (((-85) |#5| (-583 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3273 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-3279 (((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) 70 T ELT)) (-3268 (((-1185)) 32 T ELT)) (-3267 (((-1185) (-1073) (-1073) (-1073)) 28 T ELT)) (-3278 (((-583 |#5|) (-583 |#5|)) 101 T ELT)) (-3280 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)))) 93 T ELT)) (-3281 (((-583 (-2 (|:| -3266 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85)) 123 T ELT)) (-3271 (((-85) |#5| |#5|) 53 T ELT)) (-3276 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3274 (((-85) (-583 |#4|) (-583 |#4|)) 64 T ELT)) (-3275 (((-85) (-583 |#4|) (-583 |#4|)) 66 T ELT)) (-3699 (((-85) (-583 |#4|) (-583 |#4|)) 67 T ELT)) (-3282 (((-3 (-2 (|:| -3266 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3270 (((-583 |#5|) (-583 |#5|)) 49 T ELT))) -(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3267 ((-1185) (-1073) (-1073) (-1073))) (-15 -3268 ((-1185))) (-15 -3269 ((-85) |#5| |#5|)) (-15 -3270 ((-583 |#5|) (-583 |#5|))) (-15 -3271 ((-85) |#5| |#5|)) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3274 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3275 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3699 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3276 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3277 ((-85) |#5| |#5|)) (-15 -3277 ((-85) |#5| (-583 |#5|))) (-15 -3278 ((-583 |#5|) (-583 |#5|))) (-15 -3279 ((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)))) (-15 -3280 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) (-15 -3281 ((-583 (-2 (|:| -3266 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3282 ((-3 (-2 (|:| -3266 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1018)) -((-3282 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| -3266 (-583 *9)) (|:| -1600 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-3281 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3266 (-583 *9)) (|:| -1600 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1600 *7)))) (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)))) (-3278 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1018 *5 *6 *7 *8 *3)))) (-3277 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3699 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3268 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3267 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -((-3297 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|) 106 T ELT)) (-3287 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3290 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3292 (((-583 |#5|) |#4| |#5|) 122 T ELT)) (-3294 (((-583 |#5|) |#4| |#5|) 129 T ELT)) (-3296 (((-583 |#5|) |#4| |#5|) 130 T ELT)) (-3291 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|) 107 T ELT)) (-3293 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|) 128 T ELT)) (-3295 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3288 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#3| (-85)) 91 T ELT) (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3289 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3286 (((-1185)) 36 T ELT)) (-3284 (((-1185)) 25 T ELT)) (-3285 (((-1185) (-1073) (-1073) (-1073)) 32 T ELT)) (-3283 (((-1185) (-1073) (-1073) (-1073)) 21 T ELT))) -(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3283 ((-1185) (-1073) (-1073) (-1073))) (-15 -3284 ((-1185))) (-15 -3285 ((-1185) (-1073) (-1073) (-1073))) (-15 -3286 ((-1185))) (-15 -3287 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3288 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3288 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#3| (-85))) (-15 -3289 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3290 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3295 ((-85) |#4| |#5|)) (-15 -3291 ((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|)) (-15 -3292 ((-583 |#5|) |#4| |#5|)) (-15 -3293 ((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|)) (-15 -3294 ((-583 |#5|) |#4| |#5|)) (-15 -3295 ((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|)) (-15 -3296 ((-583 |#5|) |#4| |#5|)) (-15 -3297 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1019)) -((-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3289 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3288 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *5 (-85)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *4 (-756)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1600 *9)))) (-5 *1 (-1019 *6 *7 *4 *8 *9)))) (-3288 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3287 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3286 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3285 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3284 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3283 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3681 (((-583 (-2 (|:| -3861 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) 91 T ELT)) (-3682 (((-583 $) (-583 |#4|)) 92 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT)) (-3081 (((-583 |#3|) $) 38 T ELT)) (-2908 (((-85) $) 31 T ELT)) (-2899 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3688 ((|#4| |#4| $) 98 T ELT)) (-3775 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 134 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3710 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3724 (($) 54 T CONST)) (-2904 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-3689 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3156 (($ (-583 |#4|)) 40 T ELT)) (-3799 (((-3 $ #1#) $) 88 T ELT)) (-3685 ((|#4| |#4| $) 95 T ELT)) (-1353 (($ $) 70 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#4| $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3995)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3683 ((|#4| |#4| $) 93 T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3696 (((-2 (|:| -3861 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) 111 T ELT)) (-3197 (((-85) |#4| $) 144 T ELT)) (-3195 (((-85) |#4| $) 141 T ELT)) (-3198 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2889 (((-583 |#4|) $) 57 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3180 ((|#3| $) 39 T ELT)) (-2608 (((-583 |#4|) $) 47 T ELT)) (-3245 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-3326 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2914 (((-583 |#3|) $) 37 T ELT)) (-2913 (((-85) |#3| $) 36 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) 136 T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 135 T ELT)) (-3798 (((-3 |#4| #1#) $) 89 T ELT)) (-3192 (((-583 $) |#4| $) 137 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) 140 T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3238 (((-583 $) |#4| $) 133 T ELT) (((-583 $) (-583 |#4|) $) 132 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 131 T ELT) (((-583 $) |#4| (-583 $)) 130 T ELT)) (-3440 (($ |#4| $) 125 T ELT) (($ (-583 |#4|) $) 124 T ELT)) (-3697 (((-583 |#4|) $) 113 T ELT)) (-3691 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3686 ((|#4| |#4| $) 96 T ELT)) (-3699 (((-85) $ $) 116 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3687 ((|#4| |#4| $) 97 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3801 (((-3 |#4| #1#) $) 90 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3679 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3769 (($ $ |#4|) 83 T ELT) (((-583 $) |#4| $) 123 T ELT) (((-583 $) |#4| (-583 $)) 122 T ELT) (((-583 $) (-583 |#4|) $) 121 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 120 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3768 (($ $ (-583 |#4|) (-583 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) 50 T ELT)) (-3403 (((-85) $) 53 T ELT)) (-3565 (($) 52 T ELT)) (-3948 (((-694) $) 112 T ELT)) (-1946 (((-694) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3400 (($ $) 51 T ELT)) (-3972 (((-473) $) 71 (|has| |#4| (-553 (-473))) ELT)) (-3530 (($ (-583 |#4|)) 62 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-2912 (($ $ |#3|) 35 T ELT)) (-3684 (($ $) 94 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3946 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-3678 (((-694) $) 82 (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 104 T ELT)) (-3189 (((-583 $) |#4| $) 129 T ELT) (((-583 $) |#4| (-583 $)) 128 T ELT) (((-583 $) (-583 |#4|) $) 127 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 126 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3680 (((-583 |#3|) $) 87 T ELT)) (-3196 (((-85) |#4| $) 143 T ELT)) (-3933 (((-85) |#3| $) 86 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3957 (((-694) $) 43 T ELT))) -(((-1020 |#1| |#2| |#3| |#4|) (-113) (-392) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -1020)) -NIL -(-13 (-983 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1124 |#1| |#2| |#3| |#4|) . T) ((-1129) . T)) -((-3308 (((-583 (-484)) (-484) (-484) (-484)) 40 T ELT)) (-3307 (((-583 (-484)) (-484) (-484) (-484)) 30 T ELT)) (-3306 (((-583 (-484)) (-484) (-484) (-484)) 35 T ELT)) (-3305 (((-484) (-484) (-484)) 22 T ELT)) (-3304 (((-1179 (-484)) (-583 (-484)) (-1179 (-484)) (-484)) 78 T ELT) (((-1179 (-484)) (-1179 (-484)) (-1179 (-484)) (-484)) 73 T ELT)) (-3303 (((-583 (-484)) (-583 (-830)) (-583 (-484)) (-85)) 56 T ELT)) (-3302 (((-630 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484))) 77 T ELT)) (-3301 (((-630 (-484)) (-583 (-830)) (-583 (-484))) 61 T ELT)) (-3300 (((-583 (-630 (-484))) (-583 (-830))) 66 T ELT)) (-3299 (((-583 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484))) 81 T ELT)) (-3298 (((-630 (-484)) (-583 (-484)) (-583 (-484)) (-583 (-484))) 91 T ELT))) -(((-1021) (-10 -7 (-15 -3298 ((-630 (-484)) (-583 (-484)) (-583 (-484)) (-583 (-484)))) (-15 -3299 ((-583 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484)))) (-15 -3300 ((-583 (-630 (-484))) (-583 (-830)))) (-15 -3301 ((-630 (-484)) (-583 (-830)) (-583 (-484)))) (-15 -3302 ((-630 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484)))) (-15 -3303 ((-583 (-484)) (-583 (-830)) (-583 (-484)) (-85))) (-15 -3304 ((-1179 (-484)) (-1179 (-484)) (-1179 (-484)) (-484))) (-15 -3304 ((-1179 (-484)) (-583 (-484)) (-1179 (-484)) (-484))) (-15 -3305 ((-484) (-484) (-484))) (-15 -3306 ((-583 (-484)) (-484) (-484) (-484))) (-15 -3307 ((-583 (-484)) (-484) (-484) (-484))) (-15 -3308 ((-583 (-484)) (-484) (-484) (-484))))) (T -1021)) -((-3308 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3307 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3306 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3305 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1021)))) (-3304 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1179 (-484))) (-5 *3 (-583 (-484))) (-5 *4 (-484)) (-5 *1 (-1021)))) (-3304 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1179 (-484))) (-5 *3 (-484)) (-5 *1 (-1021)))) (-3303 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-583 (-484))) (-5 *3 (-583 (-830))) (-5 *4 (-85)) (-5 *1 (-1021)))) (-3302 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-630 (-484))) (-5 *3 (-583 (-484))) (-5 *1 (-1021)))) (-3301 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-1021)))) (-3300 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-1021)))) (-3299 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *3 (-630 (-484))) (-5 *1 (-1021)))) (-3298 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-1021))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3309 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1022 |#1|) (-13 (-1023 |#1|) (-1013) (-10 -8 (-15 -3309 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1022)) -((-3309 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1022 *3))))) -((-3800 ((|#1| $ |#1| |#1|) 6 T ELT))) -(((-1023 |#1|) (-113) (-72)) (T -1023)) -NIL -(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3056 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|)))))))) -(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1129) . T)) -((** (($ $ (-830)) 10 T ELT))) -(((-1024 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-830)))) (-1025)) (T -1024)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT)) (* (($ $ $) 18 T ELT))) -(((-1025) (-113)) (T -1025)) -((* (*1 *1 *1 *1) (-4 *1 (-1025))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-830))))) -(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-830))))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3188 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3707 (($ (-830)) NIL (|has| |#3| (-961)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-2483 (($ $ $) NIL (|has| |#3| (-717)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3136 (((-694)) NIL (|has| |#3| (-320)) ELT)) (-3788 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1013)) ELT)) (-3156 (((-484) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-350 (-484)) $) NIL (-12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))) ELT) ((|#3| $) NIL (|has| |#3| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-630 $) (-1179 $)) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-630 $)) NIL (|has| |#3| (-961)) ELT)) (-3467 (((-3 $ #1#) $) NIL (|has| |#3| (-961)) ELT)) (-2994 (($) NIL (|has| |#3| (-320)) ELT)) (-1576 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#3| $ (-484)) 12 T ELT)) (-3186 (((-85) $) NIL (|has| |#3| (-717)) ELT)) (-2889 (((-583 |#3|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#3| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#3| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-2608 (((-583 |#3|) $) NIL T ELT)) (-3245 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-3326 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#3| (-320)) ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-1179 $) $) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-1179 $)) NIL (|has| |#3| (-961)) ELT)) (-3242 (((-1073) $) NIL (|has| |#3| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#3| (-320)) ELT)) (-3243 (((-1033) $) NIL (|has| |#3| (-1013)) ELT)) (-3801 ((|#3| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#3|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#3| (-1013))) ELT)) (-2205 (((-583 |#3|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#3| $ (-484) |#3|) NIL T ELT) ((|#3| $ (-484)) NIL T ELT)) (-3836 ((|#3| $ $) NIL (|has| |#3| (-961)) ELT)) (-1468 (($ (-1179 |#3|)) NIL T ELT)) (-3911 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3758 (($ $ (-694)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT)) (-1946 (((-694) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-694) (-1 (-85) |#3|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3946 (((-1179 |#3|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ELT) (($ (-350 (-484))) NIL (-12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))) ELT) (($ |#3|) NIL (|has| |#3| (-1013)) ELT) (((-772) $) NIL (|has| |#3| (-552 (-772))) ELT)) (-3126 (((-694)) NIL (|has| |#3| (-961)) CONST)) (-1265 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3125 (((-85) $ $) NIL (|has| |#3| (-961)) ELT)) (-2660 (($) NIL (|has| |#3| (-23)) CONST)) (-2666 (($) NIL (|has| |#3| (-961)) CONST)) (-2669 (($ $ (-694)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT)) (-2566 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2685 (((-85) $ $) 24 (|has| |#3| (-756)) ELT)) (-3949 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3837 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3839 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-830)) NIL (|has| |#3| (-961)) ELT)) (* (($ $ $) NIL (|has| |#3| (-961)) ELT) (($ $ |#3|) NIL (|has| |#3| (-663)) ELT) (($ |#3| $) NIL (|has| |#3| (-663)) ELT) (($ (-484) $) NIL (|has| |#3| (-21)) ELT) (($ (-694) $) NIL (|has| |#3| (-23)) ELT) (($ (-830) $) NIL (|has| |#3| (-25)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-1026 |#1| |#2| |#3|) (-196 |#1| |#3|) (-694) (-694) (-717)) (T -1026)) -NIL -((-3310 (((-583 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 50 T ELT)) (-3316 (((-484) (-1148 |#2| |#1|)) 95 (|has| |#1| (-392)) ELT)) (-3314 (((-484) (-1148 |#2| |#1|)) 79 T ELT)) (-3311 (((-583 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 58 T ELT)) (-3315 (((-484) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 81 (|has| |#1| (-392)) ELT)) (-3312 (((-583 |#1|) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 61 T ELT)) (-3313 (((-484) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 78 T ELT))) -(((-1027 |#1| |#2|) (-10 -7 (-15 -3310 ((-583 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3311 ((-583 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3312 ((-583 |#1|) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3313 ((-484) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3314 ((-484) (-1148 |#2| |#1|))) (IF (|has| |#1| (-392)) (PROGN (-15 -3315 ((-484) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3316 ((-484) (-1148 |#2| |#1|)))) |%noBranch|)) (-740) (-1090)) (T -1027)) -((-3316 (*1 *2 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-392)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3315 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-392)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3313 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3312 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-583 *4)) (-5 *1 (-1027 *4 *5)))) (-3311 (*1 *2 *3 *3) (-12 (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-583 (-1148 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1148 *5 *4)))) (-3310 (*1 *2 *3 *3) (-12 (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-583 (-1148 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1148 *5 *4))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3318 (((-1095) $) 12 T ELT)) (-3317 (((-583 (-1095)) $) 14 T ELT)) (-3319 (($ (-583 (-1095)) (-1095)) 10 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 29 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 17 T ELT))) -(((-1028) (-13 (-1013) (-10 -8 (-15 -3319 ($ (-583 (-1095)) (-1095))) (-15 -3318 ((-1095) $)) (-15 -3317 ((-583 (-1095)) $))))) (T -1028)) -((-3319 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1095))) (-5 *3 (-1095)) (-5 *1 (-1028)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1028)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-1028))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3320 (($ (-446) (-1028)) 14 T ELT)) (-3319 (((-1028) $) 20 T ELT)) (-3542 (((-446) $) 17 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 27 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1029) (-13 (-995) (-10 -8 (-15 -3320 ($ (-446) (-1028))) (-15 -3542 ((-446) $)) (-15 -3319 ((-1028) $))))) (T -1029)) -((-3320 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-1029)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1029)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-1029))))) -((-3623 (((-3 (-484) #1="failed") |#2| (-1090) |#2| (-1073)) 19 T ELT) (((-3 (-484) #1#) |#2| (-1090) (-750 |#2|)) 17 T ELT) (((-3 (-484) #1#) |#2|) 60 T ELT))) -(((-1030 |#1| |#2|) (-10 -7 (-15 -3623 ((-3 (-484) #1="failed") |#2|)) (-15 -3623 ((-3 (-484) #1#) |#2| (-1090) (-750 |#2|))) (-15 -3623 ((-3 (-484) #1#) |#2| (-1090) |#2| (-1073)))) (-13 (-495) (-950 (-484)) (-580 (-484)) (-392)) (-13 (-27) (-1115) (-364 |#1|))) (T -1030)) -((-3623 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-1073)) (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-392))) (-5 *2 (-484)) (-5 *1 (-1030 *6 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))))) (-3623 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-750 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-392))) (-5 *2 (-484)) (-5 *1 (-1030 *6 *3)))) (-3623 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-950 *2) (-580 *2) (-392))) (-5 *2 (-484)) (-5 *1 (-1030 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4)))))) -((-3623 (((-3 (-484) #1="failed") (-350 (-857 |#1|)) (-1090) (-350 (-857 |#1|)) (-1073)) 38 T ELT) (((-3 (-484) #1#) (-350 (-857 |#1|)) (-1090) (-750 (-350 (-857 |#1|)))) 33 T ELT) (((-3 (-484) #1#) (-350 (-857 |#1|))) 14 T ELT))) -(((-1031 |#1|) (-10 -7 (-15 -3623 ((-3 (-484) #1="failed") (-350 (-857 |#1|)))) (-15 -3623 ((-3 (-484) #1#) (-350 (-857 |#1|)) (-1090) (-750 (-350 (-857 |#1|))))) (-15 -3623 ((-3 (-484) #1#) (-350 (-857 |#1|)) (-1090) (-350 (-857 |#1|)) (-1073)))) (-392)) (T -1031)) -((-3623 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-350 (-857 *6))) (-5 *4 (-1090)) (-5 *5 (-1073)) (-4 *6 (-392)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) (-3623 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-750 (-350 (-857 *6)))) (-5 *3 (-350 (-857 *6))) (-4 *6 (-392)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) (-3623 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-392)) (-5 *2 (-484)) (-5 *1 (-1031 *4))))) -((-3649 (((-265 (-484)) (-48)) 12 T ELT))) -(((-1032) (-10 -7 (-15 -3649 ((-265 (-484)) (-48))))) (T -1032)) -((-3649 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-484))) (-5 *1 (-1032))))) -((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 22 T ELT)) (-3188 (((-85) $) 49 T ELT)) (-3321 (($ $ $) 28 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 75 T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2047 (($ $ $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2042 (($ $ $ $) 59 T ELT)) (-3775 (($ $) NIL T ELT)) (-3971 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) 61 T ELT)) (-3623 (((-484) $) NIL T ELT)) (-2441 (($ $ $) 56 T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL T ELT)) (-2564 (($ $ $) 42 T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 70 T ELT) (((-630 (-484)) (-630 $)) 8 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3024 (((-3 (-350 (-484)) #1#) $) NIL T ELT)) (-3023 (((-85) $) NIL T ELT)) (-3022 (((-350 (-484)) $) NIL T ELT)) (-2994 (($) 73 T ELT) (($ $) 72 T ELT)) (-2563 (($ $ $) 41 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3723 (((-85) $) NIL T ELT)) (-2040 (($ $ $ $) NIL T ELT)) (-2048 (($ $ $) 71 T ELT)) (-3186 (((-85) $) 76 T ELT)) (-1369 (($ $ $) NIL T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL T ELT)) (-2561 (($ $ $) 27 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 50 T ELT)) (-2673 (((-85) $) 47 T ELT)) (-2560 (($ $) 23 T ELT)) (-3445 (((-632 $) $) NIL T ELT)) (-3187 (((-85) $) 60 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2041 (($ $ $ $) 57 T ELT)) (-2531 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2857 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2044 (($ $) NIL T ELT)) (-2010 (((-830) $) 66 T ELT)) (-3833 (($ $) 55 T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT)) (-1891 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2039 (($ $ $) NIL T ELT)) (-3446 (($) NIL T CONST)) (-2400 (($ (-830)) 65 T ELT)) (-2046 (($ $) 33 T ELT)) (-3243 (((-1033) $) 54 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3144 (($ $ $) 45 T ELT) (($ (-583 $)) NIL T ELT)) (-1367 (($ $) NIL T ELT)) (-3732 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2674 (((-85) $) 48 T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 44 T ELT)) (-3758 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2045 (($ $) 34 T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-484) $) 12 T ELT) (((-473) $) NIL T ELT) (((-800 (-484)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3946 (((-772) $) 11 T ELT) (($ (-484)) 13 T ELT) (($ $) NIL T ELT) (($ (-484)) 13 T ELT)) (-3126 (((-694)) NIL T CONST)) (-2049 (((-85) $ $) NIL T ELT)) (-3101 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2694 (($) 17 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2562 (($ $ $) 26 T ELT)) (-2043 (($ $ $ $) 58 T ELT)) (-3383 (($ $) 46 T ELT)) (-2311 (($ $ $) 25 T ELT)) (-2660 (($) 15 T CONST)) (-2666 (($) 16 T CONST)) (-2669 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2566 (((-85) $ $) 32 T ELT)) (-2567 (((-85) $ $) 30 T ELT)) (-3056 (((-85) $ $) 21 T ELT)) (-2684 (((-85) $ $) 31 T ELT)) (-2685 (((-85) $ $) 29 T ELT)) (-2312 (($ $ $) 24 T ELT)) (-3837 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3839 (($ $ $) 36 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 40 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-484) $) 14 T ELT))) -(((-1033) (-13 (-483) (-752) (-84) (-10 -8 (-6 -3982) (-6 -3987) (-6 -3983) (-15 -3321 ($ $ $))))) (T -1033)) -((-3321 (*1 *1 *1 *1) (-5 *1 (-1033)))) -((-484) (|%ismall?| |#1|)) -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3323 ((|#1| $) 49 T ELT)) (-3724 (($) 7 T CONST)) (-3325 ((|#1| |#1| $) 51 T ELT)) (-3324 ((|#1| $) 50 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 43 T ELT)) (-3609 (($ |#1| $) 44 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1275 ((|#1| $) 45 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3322 (((-694) $) 48 T ELT)) (-1946 (((-694) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 31 T ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 46 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-1034 |#1|) (-113) (-1129)) (T -1034)) -((-3325 (*1 *2 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1129)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1129)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1129)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1129)) (-5 *2 (-694))))) -(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3325 (|t#1| |t#1| $)) (-15 -3324 (|t#1| $)) (-15 -3323 (|t#1| $)) (-15 -3322 ((-694) $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3724 (($) 7 T CONST)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-1035 |#1|) (-113) (-1129)) (T -1035)) -((-3326 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-1129))))) -(-13 (-429 |t#1|) (-10 -8 (-6 -3996) (-15 -3326 ($ (-1 |t#1| |t#1|) $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T)) -((-3330 ((|#3| $) 87 T ELT)) (-3157 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3156 (((-484) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-630 $) (-1179 $)) 84 T ELT) (((-630 |#3|) (-630 $)) 76 T ELT)) (-3758 (($ $ (-1 |#3| |#3|) (-694)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT)) (-3329 ((|#3| $) 89 T ELT)) (-3331 ((|#4| $) 43 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 24 T ELT) (($ $ (-484)) 95 T ELT))) -(((-1036 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3758 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3758 (|#1| |#1| (-1090) (-694))) (-15 -3758 (|#1| |#1| (-583 (-1090)))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3758 (|#1| |#1| (-694))) (-15 -3758 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3329 (|#3| |#1|)) (-15 -3330 (|#3| |#1|)) (-15 -3331 (|#4| |#1|)) (-15 -2279 ((-630 |#3|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3946 (|#1| |#3|)) (-15 -3157 ((-3 |#3| #1="failed") |#1|)) (-15 -3156 (|#3| |#1|)) (-15 -3156 ((-350 (-484)) |#1|)) (-15 -3157 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3946 (|#1| (-350 (-484)))) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3758 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3758 (|#1| |#1| (-1 |#3| |#3|) (-694))) (-15 -3946 (|#1| (-484))) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830))) (-15 -3946 ((-772) |#1|))) (-1037 |#2| |#3| |#4| |#5|) (-694) (-961) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1036)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3330 ((|#2| $) 90 T ELT)) (-3120 (((-85) $) 131 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3122 (((-85) $) 129 T ELT)) (-3333 (($ |#2|) 93 T ELT)) (-3724 (($) 23 T CONST)) (-3109 (($ $) 148 (|has| |#2| (-258)) ELT)) (-3111 ((|#3| $ (-484)) 143 T ELT)) (-3157 (((-3 (-484) #1="failed") $) 109 (|has| |#2| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 106 (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 |#2| #1#) $) 103 T ELT)) (-3156 (((-484) $) 108 (|has| |#2| (-950 (-484))) ELT) (((-350 (-484)) $) 105 (|has| |#2| (-950 (-350 (-484)))) ELT) ((|#2| $) 104 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 99 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 98 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) 97 T ELT) (((-630 |#2|) (-630 $)) 96 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3108 (((-694) $) 149 (|has| |#2| (-495)) ELT)) (-3112 ((|#2| $ (-484) (-484)) 141 T ELT)) (-2889 (((-583 |#2|) $) 121 (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3107 (((-694) $) 150 (|has| |#2| (-495)) ELT)) (-3106 (((-583 |#4|) $) 151 (|has| |#2| (-495)) ELT)) (-3114 (((-694) $) 137 T ELT)) (-3113 (((-694) $) 138 T ELT)) (-3327 ((|#2| $) 85 (|has| |#2| (-6 (-3997 #2="*"))) ELT)) (-3118 (((-484) $) 133 T ELT)) (-3116 (((-484) $) 135 T ELT)) (-2608 (((-583 |#2|) $) 112 T ELT)) (-3245 (((-85) |#2| $) 110 (|has| |#2| (-72)) ELT)) (-3117 (((-484) $) 134 T ELT)) (-3115 (((-484) $) 136 T ELT)) (-3123 (($ (-583 (-583 |#2|))) 128 T ELT)) (-3326 (($ (-1 |#2| |#2|) $) 122 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2| |#2|) $ $) 145 T ELT) (($ (-1 |#2| |#2|) $) 123 T ELT)) (-3594 (((-583 (-583 |#2|)) $) 139 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 101 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 100 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) 95 T ELT) (((-630 |#2|) (-1179 $)) 94 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3590 (((-3 $ "failed") $) 84 (|has| |#2| (-312)) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3466 (((-3 $ "failed") $ |#2|) 146 (|has| |#2| (-495)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) 114 T ELT)) (-3768 (($ $ (-583 (-249 |#2|))) 120 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 119 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 118 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 117 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) 127 T ELT)) (-3403 (((-85) $) 124 T ELT)) (-3565 (($) 125 T ELT)) (-3800 ((|#2| $ (-484) (-484) |#2|) 142 T ELT) ((|#2| $ (-484) (-484)) 140 T ELT)) (-3758 (($ $ (-1 |#2| |#2|) (-694)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 55 (|has| |#2| (-189)) ELT) (($ $ (-694)) 53 (|has| |#2| (-189)) ELT) (($ $ (-1090)) 63 (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 61 (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 60 (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 59 (|has| |#2| (-811 (-1090))) ELT)) (-3329 ((|#2| $) 89 T ELT)) (-3332 (($ (-583 |#2|)) 92 T ELT)) (-3121 (((-85) $) 130 T ELT)) (-3331 ((|#3| $) 91 T ELT)) (-3328 ((|#2| $) 86 (|has| |#2| (-6 (-3997 #2#))) ELT)) (-1946 (((-694) (-1 (-85) |#2|) $) 113 T ELT) (((-694) |#2| $) 111 (|has| |#2| (-72)) ELT)) (-3400 (($ $) 126 T ELT)) (-3110 ((|#4| $ (-484)) 144 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 107 (|has| |#2| (-950 (-350 (-484)))) ELT) (($ |#2|) 102 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 115 T ELT)) (-3119 (((-85) $) 132 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) 67 T ELT) (($ $ (-1 |#2| |#2|)) 66 T ELT) (($ $) 54 (|has| |#2| (-189)) ELT) (($ $ (-694)) 52 (|has| |#2| (-189)) ELT) (($ $ (-1090)) 62 (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 58 (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 57 (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 56 (|has| |#2| (-811 (-1090))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#2|) 147 (|has| |#2| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 83 (|has| |#2| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#2|) 153 T ELT) (($ |#2| $) 152 T ELT) ((|#4| $ |#4|) 88 T ELT) ((|#3| |#3| $) 87 T ELT)) (-3957 (((-694) $) 116 T ELT))) -(((-1037 |#1| |#2| |#3| |#4|) (-113) (-694) (-961) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1037)) -((-3333 (*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3332 (*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-961)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-961)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3997 #1="*"))) (-4 *2 (-961)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3997 #1#))) (-4 *2 (-961)))) (-3590 (*1 *1 *1) (|partial| -12 (-4 *1 (-1037 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312))))) -(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-965 |t#1| |t#1| |t#2| |t#3| |t#4|) (-355 |t#2|) (-329 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-654 |t#2|)) |%noBranch|) (-15 -3333 ($ |t#2|)) (-15 -3332 ($ (-583 |t#2|))) (-15 -3331 (|t#3| $)) (-15 -3330 (|t#2| $)) (-15 -3329 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3997 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3328 (|t#2| $)) (-15 -3327 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-312)) (PROGN (-15 -3590 ((-3 $ "failed") $)) (-15 ** ($ $ (-484)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3997 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-350 (-484))) |has| |#2| (-950 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-318 |#2|) . T) ((-329 |#2|) . T) ((-355 |#2|) . T) ((-429 |#2|) . T) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 (-484)) |has| |#2| (-580 (-484))) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3997 #1#)))) ((-580 (-484)) |has| |#2| (-580 (-484))) ((-580 |#2|) . T) ((-654 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3997 #1#)))) ((-663) . T) ((-806 $ (-1090)) OR (|has| |#2| (-811 (-1090))) (|has| |#2| (-809 (-1090)))) ((-809 (-1090)) |has| |#2| (-809 (-1090))) ((-811 (-1090)) OR (|has| |#2| (-811 (-1090))) (|has| |#2| (-809 (-1090)))) ((-965 |#1| |#1| |#2| |#3| |#4|) . T) ((-950 (-350 (-484))) |has| |#2| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#2| (-950 (-484))) ((-950 |#2|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-3336 ((|#4| |#4|) 81 T ELT)) (-3334 ((|#4| |#4|) 76 T ELT)) (-3338 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2012 (-583 |#3|))) |#4| |#3|) 91 T ELT)) (-3337 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3335 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) -(((-1038 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3334 (|#4| |#4|)) (-15 -3335 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3336 (|#4| |#4|)) (-15 -3337 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3338 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2012 (-583 |#3|))) |#4| |#3|))) (-258) (-324 |#1|) (-324 |#1|) (-627 |#1| |#2| |#3|)) (T -1038)) -((-3338 (*1 *2 *3 *4) (-12 (-4 *5 (-258)) (-4 *6 (-324 *5)) (-4 *4 (-324 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-1038 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-3337 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3336 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3335 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3334 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 18 T ELT)) (-3081 (((-583 |#2|) $) 174 T ELT)) (-3083 (((-1085 $) $ |#2|) 60 T ELT) (((-1085 |#1|) $) 49 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 116 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 118 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 120 (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 |#2|)) 214 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3156 ((|#1| $) 165 T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) ((|#2| $) NIL T ELT)) (-3756 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3959 (($ $) 218 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) 90 T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-469 |#2|) $) NIL T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| |#1| (-796 (-330))) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 20 T ELT)) (-2420 (((-694) $) 30 T ELT)) (-3084 (($ (-1085 |#1|) |#2|) 54 T ELT) (($ (-1085 $) |#2|) 71 T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) 38 T ELT)) (-2893 (($ |#1| (-469 |#2|)) 78 T ELT) (($ $ |#2| (-694)) 58 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ |#2|) NIL T ELT)) (-2820 (((-469 |#2|) $) 205 T ELT) (((-694) $ |#2|) 206 T ELT) (((-583 (-694)) $ (-583 |#2|)) 207 T ELT)) (-1625 (($ (-1 (-469 |#2|) (-469 |#2|)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3082 (((-3 |#2| #1#) $) 177 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2894 (($ $) 217 T ELT)) (-3174 ((|#1| $) 43 T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) 39 T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 148 (|has| |#1| (-392)) ELT)) (-3144 (($ (-583 $)) 153 (|has| |#1| (-392)) ELT) (($ $ $) 138 (|has| |#1| (-392)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-495)) ELT)) (-3768 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-583 |#2|) (-583 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-583 |#2|) (-583 $)) 194 T ELT)) (-3757 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3948 (((-469 |#2|) $) 201 T ELT) (((-694) $ |#2|) 196 T ELT) (((-583 (-694)) $ (-583 |#2|)) 199 T ELT)) (-3972 (((-800 (-330)) $) NIL (-12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#1| $) 134 (|has| |#1| (-392)) ELT) (($ $ |#2|) 137 (|has| |#1| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3946 (((-772) $) 159 T ELT) (($ (-484)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3817 (((-583 |#1|) $) 162 T ELT)) (-3677 ((|#1| $ (-469 |#2|)) 80 T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 87 T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) 123 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 12 T CONST)) (-2666 (($) 14 T CONST)) (-2669 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3056 (((-85) $ $) 106 T ELT)) (-3949 (($ $ |#1|) 132 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3839 (($ $ $) 55 T ELT)) (** (($ $ (-830)) 110 T ELT) (($ $ (-694)) 109 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1039 |#1| |#2|) (-861 |#1| (-469 |#2|) |#2|) (-961) (-756)) (T -1039)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3492 (($ $) 149 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 125 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) 145 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 121 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) 153 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 129 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3814 (((-857 |#1|) $ (-694)) NIL T ELT) (((-857 |#1|) $ (-694) (-694)) NIL T ELT)) (-2892 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3772 (((-694) $ |#2|) NIL T ELT) (((-694) $ |#2| (-694)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ $ (-583 |#2|) (-583 (-469 |#2|))) NIL T ELT) (($ $ |#2| (-469 |#2|)) NIL T ELT) (($ |#1| (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 63 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ $) 119 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3812 (($ $ |#2|) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3676 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (($ $ (-694)) 17 T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3943 (($ $) 117 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (($ $ |#2| $) 104 T ELT) (($ $ (-583 |#2|) (-583 $)) 99 T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT)) (-3758 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3948 (((-469 |#2|) $) NIL T ELT)) (-3339 (((-1 (-1069 |#3|) |#3|) (-583 |#2|) (-583 (-1069 |#3|))) 87 T ELT)) (-3495 (($ $) 155 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 131 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) 151 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 127 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) 123 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2891 (($ $) 19 T ELT)) (-3946 (((-772) $) 194 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3677 ((|#1| $ (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) ((|#3| $ (-694)) 43 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 137 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3496 (($ $) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) 133 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 141 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 143 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) 163 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 139 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 135 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2660 (($) 52 T CONST)) (-2666 (($) 62 T CONST)) (-2669 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) 196 (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 66 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 109 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-350 (-484))) 114 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) 112 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) -(((-1040 |#1| |#2| |#3|) (-13 (-679 |#1| |#2|) (-10 -8 (-15 -3677 (|#3| $ (-694))) (-15 -3946 ($ |#2|)) (-15 -3946 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3339 ((-1 (-1069 |#3|) |#3|) (-583 |#2|) (-583 (-1069 |#3|)))) (IF (|has| |#1| (-38 (-350 (-484)))) (PROGN (-15 -3812 ($ $ |#2| |#1|)) (-15 -3676 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-961) (-756) (-861 |#1| (-469 |#2|) |#2|)) (T -1040)) -((-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *2 (-861 *4 (-469 *5) *5)) (-5 *1 (-1040 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3946 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-861 *3 (-469 *2) *2)))) (-3946 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1040 *3 *4 *2)) (-4 *2 (-861 *3 (-469 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1040 *3 *4 *2)) (-4 *2 (-861 *3 (-469 *4) *4)))) (-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1069 *7))) (-4 *6 (-756)) (-4 *7 (-861 *5 (-469 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1069 *7) *7)) (-5 *1 (-1040 *5 *6 *7)))) (-3812 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-861 *3 (-469 *2) *2)))) (-3676 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1040 *4 *3 *5))) (-4 *4 (-38 (-350 (-484)))) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *1 (-1040 *4 *3 *5)) (-4 *5 (-861 *4 (-469 *3) *3))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3681 (((-583 (-2 (|:| -3861 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) 91 T ELT)) (-3682 (((-583 $) (-583 |#4|)) 92 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT)) (-3081 (((-583 |#3|) $) 38 T ELT)) (-2908 (((-85) $) 31 T ELT)) (-2899 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3688 ((|#4| |#4| $) 98 T ELT)) (-3775 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 134 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3710 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3724 (($) 54 T CONST)) (-2904 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-3689 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3156 (($ (-583 |#4|)) 40 T ELT)) (-3799 (((-3 $ #1#) $) 88 T ELT)) (-3685 ((|#4| |#4| $) 95 T ELT)) (-1353 (($ $) 70 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#4| $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3995)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3683 ((|#4| |#4| $) 93 T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3696 (((-2 (|:| -3861 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) 111 T ELT)) (-3197 (((-85) |#4| $) 144 T ELT)) (-3195 (((-85) |#4| $) 141 T ELT)) (-3198 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2889 (((-583 |#4|) $) 57 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3180 ((|#3| $) 39 T ELT)) (-2608 (((-583 |#4|) $) 47 T ELT)) (-3245 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-3326 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2914 (((-583 |#3|) $) 37 T ELT)) (-2913 (((-85) |#3| $) 36 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) 136 T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 135 T ELT)) (-3798 (((-3 |#4| #1#) $) 89 T ELT)) (-3192 (((-583 $) |#4| $) 137 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) 140 T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3238 (((-583 $) |#4| $) 133 T ELT) (((-583 $) (-583 |#4|) $) 132 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 131 T ELT) (((-583 $) |#4| (-583 $)) 130 T ELT)) (-3440 (($ |#4| $) 125 T ELT) (($ (-583 |#4|) $) 124 T ELT)) (-3697 (((-583 |#4|) $) 113 T ELT)) (-3691 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3686 ((|#4| |#4| $) 96 T ELT)) (-3699 (((-85) $ $) 116 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3687 ((|#4| |#4| $) 97 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3801 (((-3 |#4| #1#) $) 90 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3679 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3769 (($ $ |#4|) 83 T ELT) (((-583 $) |#4| $) 123 T ELT) (((-583 $) |#4| (-583 $)) 122 T ELT) (((-583 $) (-583 |#4|) $) 121 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 120 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3768 (($ $ (-583 |#4|) (-583 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) 50 T ELT)) (-3403 (((-85) $) 53 T ELT)) (-3565 (($) 52 T ELT)) (-3948 (((-694) $) 112 T ELT)) (-1946 (((-694) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3400 (($ $) 51 T ELT)) (-3972 (((-473) $) 71 (|has| |#4| (-553 (-473))) ELT)) (-3530 (($ (-583 |#4|)) 62 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-2912 (($ $ |#3|) 35 T ELT)) (-3684 (($ $) 94 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3946 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-3678 (((-694) $) 82 (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 104 T ELT)) (-3189 (((-583 $) |#4| $) 129 T ELT) (((-583 $) |#4| (-583 $)) 128 T ELT) (((-583 $) (-583 |#4|) $) 127 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 126 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3680 (((-583 |#3|) $) 87 T ELT)) (-3196 (((-85) |#4| $) 143 T ELT)) (-3933 (((-85) |#3| $) 86 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3957 (((-694) $) 43 T ELT))) -(((-1041 |#1| |#2| |#3| |#4|) (-113) (-392) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -1041)) -NIL -(-13 (-1020 |t#1| |t#2| |t#3| |t#4|) (-707 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-707 |#1| |#2| |#3| |#4|) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1020 |#1| |#2| |#3| |#4|) . T) ((-1124 |#1| |#2| |#3| |#4|) . T) ((-1129) . T)) -((-3573 (((-583 |#2|) |#1|) 15 T ELT)) (-3345 (((-583 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-583 |#2|) |#1|) 61 T ELT)) (-3343 (((-583 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-583 |#2|) |#1|) 59 T ELT)) (-3340 ((|#2| |#1|) 54 T ELT)) (-3341 (((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3342 (((-583 |#2|) |#2| |#2|) 42 T ELT) (((-583 |#2|) |#1|) 58 T ELT)) (-3344 (((-583 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-583 |#2|) |#1|) 60 T ELT)) (-3349 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3347 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3346 ((|#2| |#2| |#2|) 50 T ELT)) (-3348 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) -(((-1042 |#1| |#2|) (-10 -7 (-15 -3573 ((-583 |#2|) |#1|)) (-15 -3340 (|#2| |#1|)) (-15 -3341 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3342 ((-583 |#2|) |#1|)) (-15 -3343 ((-583 |#2|) |#1|)) (-15 -3344 ((-583 |#2|) |#1|)) (-15 -3345 ((-583 |#2|) |#1|)) (-15 -3342 ((-583 |#2|) |#2| |#2|)) (-15 -3343 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -3344 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3345 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3346 (|#2| |#2| |#2|)) (-15 -3347 (|#2| |#2| |#2| |#2|)) (-15 -3348 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3349 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1155 |#2|) (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (T -1042)) -((-3349 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))) (-3348 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))) (-3347 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))) (-3346 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))) (-3345 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))) (-3344 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))) (-3343 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))) (-3342 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))) (-3345 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) (-3344 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) (-3342 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) (-3341 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1042 *3 *5)) (-4 *3 (-1155 *5)))) (-3340 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))) (-3573 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4))))) -((-3350 (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-350 (-857 |#1|))))) 119 T ELT) (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-350 (-857 |#1|)))) (-583 (-1090))) 118 T ELT) (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-350 (-857 |#1|)))) 116 T ELT) (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-350 (-857 |#1|))) (-583 (-1090))) 113 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-350 (-857 |#1|)))) 97 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-350 (-857 |#1|))) (-1090)) 98 T ELT) (((-583 (-249 (-265 |#1|))) (-350 (-857 |#1|))) 92 T ELT) (((-583 (-249 (-265 |#1|))) (-350 (-857 |#1|)) (-1090)) 82 T ELT)) (-3351 (((-583 (-583 (-265 |#1|))) (-583 (-350 (-857 |#1|))) (-583 (-1090))) 111 T ELT) (((-583 (-265 |#1|)) (-350 (-857 |#1|)) (-1090)) 54 T ELT)) (-3352 (((-1080 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-350 (-857 |#1|)) (-1090)) 123 T ELT) (((-1080 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-249 (-350 (-857 |#1|))) (-1090)) 122 T ELT))) -(((-1043 |#1|) (-10 -7 (-15 -3350 ((-583 (-249 (-265 |#1|))) (-350 (-857 |#1|)) (-1090))) (-15 -3350 ((-583 (-249 (-265 |#1|))) (-350 (-857 |#1|)))) (-15 -3350 ((-583 (-249 (-265 |#1|))) (-249 (-350 (-857 |#1|))) (-1090))) (-15 -3350 ((-583 (-249 (-265 |#1|))) (-249 (-350 (-857 |#1|))))) (-15 -3350 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-350 (-857 |#1|))) (-583 (-1090)))) (-15 -3350 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-350 (-857 |#1|))))) (-15 -3350 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-350 (-857 |#1|)))) (-583 (-1090)))) (-15 -3350 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-350 (-857 |#1|)))))) (-15 -3351 ((-583 (-265 |#1|)) (-350 (-857 |#1|)) (-1090))) (-15 -3351 ((-583 (-583 (-265 |#1|))) (-583 (-350 (-857 |#1|))) (-583 (-1090)))) (-15 -3352 ((-1080 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-249 (-350 (-857 |#1|))) (-1090))) (-15 -3352 ((-1080 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-350 (-857 |#1|)) (-1090)))) (-13 (-258) (-120))) (T -1043)) -((-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1080 (-583 (-265 *5)) (-583 (-249 (-265 *5))))) (-5 *1 (-1043 *5)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-857 *5)))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1080 (-583 (-265 *5)) (-583 (-249 (-265 *5))))) (-5 *1 (-1043 *5)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-265 *5)))) (-5 *1 (-1043 *5)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-265 *5))) (-5 *1 (-1043 *5)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-583 (-249 (-350 (-857 *4))))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1043 *4)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-249 (-350 (-857 *5))))) (-5 *4 (-583 (-1090))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1043 *5)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-583 (-350 (-857 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1043 *4)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1043 *5)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-249 (-350 (-857 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1043 *4)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-857 *5)))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1043 *5)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1043 *4)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1043 *5))))) -((-3354 (((-350 (-1085 (-265 |#1|))) (-1179 (-265 |#1|)) (-350 (-1085 (-265 |#1|))) (-484)) 36 T ELT)) (-3353 (((-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|)))) 48 T ELT))) -(((-1044 |#1|) (-10 -7 (-15 -3353 ((-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|))))) (-15 -3354 ((-350 (-1085 (-265 |#1|))) (-1179 (-265 |#1|)) (-350 (-1085 (-265 |#1|))) (-484)))) (-495)) (T -1044)) -((-3354 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-350 (-1085 (-265 *5)))) (-5 *3 (-1179 (-265 *5))) (-5 *4 (-484)) (-4 *5 (-495)) (-5 *1 (-1044 *5)))) (-3353 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-350 (-1085 (-265 *3)))) (-4 *3 (-495)) (-5 *1 (-1044 *3))))) -((-3573 (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-265 |#1|))) (-583 (-1090))) 244 T ELT) (((-583 (-249 (-265 |#1|))) (-265 |#1|) (-1090)) 23 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1090)) 29 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|))) 28 T ELT) (((-583 (-249 (-265 |#1|))) (-265 |#1|)) 24 T ELT))) -(((-1045 |#1|) (-10 -7 (-15 -3573 ((-583 (-249 (-265 |#1|))) (-265 |#1|))) (-15 -3573 ((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|)))) (-15 -3573 ((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1090))) (-15 -3573 ((-583 (-249 (-265 |#1|))) (-265 |#1|) (-1090))) (-15 -3573 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-265 |#1|))) (-583 (-1090))))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (T -1045)) -((-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1090))) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1045 *5)) (-5 *3 (-583 (-249 (-265 *5)))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-265 *5)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-249 (-265 *5))))) (-3573 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-249 (-265 *4))))) (-3573 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-265 *4))))) -((-3356 ((|#2| |#2|) 28 (|has| |#1| (-756)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3355 ((|#2| |#2|) 27 (|has| |#1| (-756)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT))) -(((-1046 |#1| |#2|) (-10 -7 (-15 -3355 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3356 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-756)) (PROGN (-15 -3355 (|#2| |#2|)) (-15 -3356 (|#2| |#2|))) |%noBranch|)) (-1129) (-13 (-538 (-484) |#1|) (-318 |#1|) (-10 -7 (-6 -3996)))) (T -1046)) -((-3356 (*1 *2 *2) (-12 (-4 *3 (-756)) (-4 *3 (-1129)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-13 (-538 (-484) *3) (-318 *3) (-10 -7 (-6 -3996)))))) (-3355 (*1 *2 *2) (-12 (-4 *3 (-756)) (-4 *3 (-1129)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-13 (-538 (-484) *3) (-318 *3) (-10 -7 (-6 -3996)))))) (-3356 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-1046 *4 *2)) (-4 *2 (-13 (-538 (-484) *4) (-318 *4) (-10 -7 (-6 -3996)))))) (-3355 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-1046 *4 *2)) (-4 *2 (-13 (-538 (-484) *4) (-318 *4) (-10 -7 (-6 -3996))))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3888 (((-1079 3 |#1|) $) 141 T ELT)) (-3366 (((-85) $) 101 T ELT)) (-3367 (($ $ (-583 (-854 |#1|))) 44 T ELT) (($ $ (-583 (-583 |#1|))) 104 T ELT) (($ (-583 (-854 |#1|))) 103 T ELT) (((-583 (-854 |#1|)) $) 102 T ELT)) (-3372 (((-85) $) 72 T ELT)) (-3706 (($ $ (-854 |#1|)) 76 T ELT) (($ $ (-583 |#1|)) 81 T ELT) (($ $ (-694)) 83 T ELT) (($ (-854 |#1|)) 77 T ELT) (((-854 |#1|) $) 75 T ELT)) (-3358 (((-2 (|:| -3850 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $) 139 T ELT)) (-3376 (((-694) $) 53 T ELT)) (-3377 (((-694) $) 52 T ELT)) (-3887 (($ $ (-694) (-854 |#1|)) 67 T ELT)) (-3364 (((-85) $) 111 T ELT)) (-3365 (($ $ (-583 (-583 (-854 |#1|))) (-583 (-145)) (-145)) 118 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-145)) (-145)) 120 T ELT) (($ $ (-583 (-583 (-854 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-85) (-85)) 127 T ELT) (($ (-583 (-583 (-854 |#1|)))) 116 T ELT) (($ (-583 (-583 (-854 |#1|))) (-85) (-85)) 117 T ELT) (((-583 (-583 (-854 |#1|))) $) 114 T ELT)) (-3518 (($ (-583 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3359 (((-583 (-145)) $) 133 T ELT)) (-3363 (((-583 (-854 |#1|)) $) 130 T ELT)) (-3360 (((-583 (-583 (-145))) $) 132 T ELT)) (-3361 (((-583 (-583 (-583 (-854 |#1|)))) $) NIL T ELT)) (-3362 (((-583 (-583 (-583 (-694)))) $) 131 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3373 (((-694) $ (-583 (-854 |#1|))) 65 T ELT)) (-3370 (((-85) $) 84 T ELT)) (-3371 (($ $ (-583 (-854 |#1|))) 86 T ELT) (($ $ (-583 (-583 |#1|))) 92 T ELT) (($ (-583 (-854 |#1|))) 87 T ELT) (((-583 (-854 |#1|)) $) 85 T ELT)) (-3378 (($) 48 T ELT) (($ (-1079 3 |#1|)) 49 T ELT)) (-3400 (($ $) 63 T ELT)) (-3374 (((-583 $) $) 62 T ELT)) (-3754 (($ (-583 $)) 59 T ELT)) (-3375 (((-583 $) $) 61 T ELT)) (-3946 (((-772) $) 146 T ELT)) (-3368 (((-85) $) 94 T ELT)) (-3369 (($ $ (-583 (-854 |#1|))) 96 T ELT) (($ $ (-583 (-583 |#1|))) 99 T ELT) (($ (-583 (-854 |#1|))) 97 T ELT) (((-583 (-854 |#1|)) $) 95 T ELT)) (-3357 (($ $) 140 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1047 |#1|) (-1048 |#1|) (-961)) (T -1047)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3888 (((-1079 3 |#1|) $) 17 T ELT)) (-3366 (((-85) $) 33 T ELT)) (-3367 (($ $ (-583 (-854 |#1|))) 37 T ELT) (($ $ (-583 (-583 |#1|))) 36 T ELT) (($ (-583 (-854 |#1|))) 35 T ELT) (((-583 (-854 |#1|)) $) 34 T ELT)) (-3372 (((-85) $) 48 T ELT)) (-3706 (($ $ (-854 |#1|)) 53 T ELT) (($ $ (-583 |#1|)) 52 T ELT) (($ $ (-694)) 51 T ELT) (($ (-854 |#1|)) 50 T ELT) (((-854 |#1|) $) 49 T ELT)) (-3358 (((-2 (|:| -3850 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $) 19 T ELT)) (-3376 (((-694) $) 62 T ELT)) (-3377 (((-694) $) 63 T ELT)) (-3887 (($ $ (-694) (-854 |#1|)) 54 T ELT)) (-3364 (((-85) $) 25 T ELT)) (-3365 (($ $ (-583 (-583 (-854 |#1|))) (-583 (-145)) (-145)) 32 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-145)) (-145)) 31 T ELT) (($ $ (-583 (-583 (-854 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-85) (-85)) 29 T ELT) (($ (-583 (-583 (-854 |#1|)))) 28 T ELT) (($ (-583 (-583 (-854 |#1|))) (-85) (-85)) 27 T ELT) (((-583 (-583 (-854 |#1|))) $) 26 T ELT)) (-3518 (($ (-583 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3359 (((-583 (-145)) $) 20 T ELT)) (-3363 (((-583 (-854 |#1|)) $) 24 T ELT)) (-3360 (((-583 (-583 (-145))) $) 21 T ELT)) (-3361 (((-583 (-583 (-583 (-854 |#1|)))) $) 22 T ELT)) (-3362 (((-583 (-583 (-583 (-694)))) $) 23 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3373 (((-694) $ (-583 (-854 |#1|))) 55 T ELT)) (-3370 (((-85) $) 43 T ELT)) (-3371 (($ $ (-583 (-854 |#1|))) 47 T ELT) (($ $ (-583 (-583 |#1|))) 46 T ELT) (($ (-583 (-854 |#1|))) 45 T ELT) (((-583 (-854 |#1|)) $) 44 T ELT)) (-3378 (($) 65 T ELT) (($ (-1079 3 |#1|)) 64 T ELT)) (-3400 (($ $) 56 T ELT)) (-3374 (((-583 $) $) 57 T ELT)) (-3754 (($ (-583 $)) 59 T ELT)) (-3375 (((-583 $) $) 58 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-3368 (((-85) $) 38 T ELT)) (-3369 (($ $ (-583 (-854 |#1|))) 42 T ELT) (($ $ (-583 (-583 |#1|))) 41 T ELT) (($ (-583 (-854 |#1|))) 40 T ELT) (((-583 (-854 |#1|)) $) 39 T ELT)) (-3357 (($ $) 18 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) -(((-1048 |#1|) (-113) (-961)) (T -1048)) -((-3946 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-772)))) (-3378 (*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961)))) (-3378 (*1 *1 *2) (-12 (-5 *2 (-1079 3 *3)) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3518 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3518 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3375 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1048 *3)))) (-3374 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1048 *3)))) (-3400 (*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961)))) (-3373 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-854 *4))) (-4 *1 (-1048 *4)) (-4 *4 (-961)) (-5 *2 (-694)))) (-3887 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-854 *4)) (-4 *1 (-1048 *4)) (-4 *4 (-961)))) (-3706 (*1 *1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3706 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3706 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3706 (*1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-854 *3)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3371 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3371 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3371 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3369 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3367 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3367 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3365 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-854 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) (-4 *1 (-1048 *5)) (-4 *5 (-961)))) (-3365 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) (-4 *1 (-1048 *5)) (-4 *5 (-961)))) (-3365 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *1 (-1048 *4)) (-4 *4 (-961)))) (-3365 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-85)) (-4 *1 (-1048 *4)) (-4 *4 (-961)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 *3)))) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) (-3365 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *4 (-961)) (-4 *1 (-1048 *4)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-854 *3)))))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-694))))))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-854 *3))))))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-145)))))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-145))))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3850 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694)))))) (-3357 (*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961)))) (-3888 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-1079 3 *3))))) -(-13 (-1013) (-10 -8 (-15 -3378 ($)) (-15 -3378 ($ (-1079 3 |t#1|))) (-15 -3377 ((-694) $)) (-15 -3376 ((-694) $)) (-15 -3518 ($ (-583 $))) (-15 -3518 ($ $ $)) (-15 -3754 ($ (-583 $))) (-15 -3375 ((-583 $) $)) (-15 -3374 ((-583 $) $)) (-15 -3400 ($ $)) (-15 -3373 ((-694) $ (-583 (-854 |t#1|)))) (-15 -3887 ($ $ (-694) (-854 |t#1|))) (-15 -3706 ($ $ (-854 |t#1|))) (-15 -3706 ($ $ (-583 |t#1|))) (-15 -3706 ($ $ (-694))) (-15 -3706 ($ (-854 |t#1|))) (-15 -3706 ((-854 |t#1|) $)) (-15 -3372 ((-85) $)) (-15 -3371 ($ $ (-583 (-854 |t#1|)))) (-15 -3371 ($ $ (-583 (-583 |t#1|)))) (-15 -3371 ($ (-583 (-854 |t#1|)))) (-15 -3371 ((-583 (-854 |t#1|)) $)) (-15 -3370 ((-85) $)) (-15 -3369 ($ $ (-583 (-854 |t#1|)))) (-15 -3369 ($ $ (-583 (-583 |t#1|)))) (-15 -3369 ($ (-583 (-854 |t#1|)))) (-15 -3369 ((-583 (-854 |t#1|)) $)) (-15 -3368 ((-85) $)) (-15 -3367 ($ $ (-583 (-854 |t#1|)))) (-15 -3367 ($ $ (-583 (-583 |t#1|)))) (-15 -3367 ($ (-583 (-854 |t#1|)))) (-15 -3367 ((-583 (-854 |t#1|)) $)) (-15 -3366 ((-85) $)) (-15 -3365 ($ $ (-583 (-583 (-854 |t#1|))) (-583 (-145)) (-145))) (-15 -3365 ($ $ (-583 (-583 (-583 |t#1|))) (-583 (-145)) (-145))) (-15 -3365 ($ $ (-583 (-583 (-854 |t#1|))) (-85) (-85))) (-15 -3365 ($ $ (-583 (-583 (-583 |t#1|))) (-85) (-85))) (-15 -3365 ($ (-583 (-583 (-854 |t#1|))))) (-15 -3365 ($ (-583 (-583 (-854 |t#1|))) (-85) (-85))) (-15 -3365 ((-583 (-583 (-854 |t#1|))) $)) (-15 -3364 ((-85) $)) (-15 -3363 ((-583 (-854 |t#1|)) $)) (-15 -3362 ((-583 (-583 (-583 (-694)))) $)) (-15 -3361 ((-583 (-583 (-583 (-854 |t#1|)))) $)) (-15 -3360 ((-583 (-583 (-145))) $)) (-15 -3359 ((-583 (-145)) $)) (-15 -3358 ((-2 (|:| -3850 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $)) (-15 -3357 ($ $)) (-15 -3888 ((-1079 3 |t#1|) $)) (-15 -3946 ((-772) $)))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 185 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) 7 T ELT)) (-3566 (((-85) $ (|[\|\|]| (-462))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-617))) 27 T ELT) (((-85) $ (|[\|\|]| (-1190))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-539))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1029))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-622))) 55 T ELT) (((-85) $ (|[\|\|]| (-458))) 59 T ELT) (((-85) $ (|[\|\|]| (-978))) 63 T ELT) (((-85) $ (|[\|\|]| (-1191))) 67 T ELT) (((-85) $ (|[\|\|]| (-463))) 71 T ELT) (((-85) $ (|[\|\|]| (-1067))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-613))) 83 T ELT) (((-85) $ (|[\|\|]| (-263))) 87 T ELT) (((-85) $ (|[\|\|]| (-948))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-883))) 99 T ELT) (((-85) $ (|[\|\|]| (-985))) 103 T ELT) (((-85) $ (|[\|\|]| (-1003))) 107 T ELT) (((-85) $ (|[\|\|]| (-1008))) 111 T ELT) (((-85) $ (|[\|\|]| (-565))) 116 T ELT) (((-85) $ (|[\|\|]| (-1081))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-418))) 132 T ELT) (((-85) $ (|[\|\|]| (-528))) 136 T ELT) (((-85) $ (|[\|\|]| (-446))) 140 T ELT) (((-85) $ (|[\|\|]| (-1073))) 144 T ELT) (((-85) $ (|[\|\|]| (-484))) 148 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3572 (((-462) $) 20 T ELT) (((-172) $) 24 T ELT) (((-617) $) 28 T ELT) (((-1190) $) 32 T ELT) (((-111) $) 36 T ELT) (((-539) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1029) $) 48 T ELT) (((-67) $) 52 T ELT) (((-622) $) 56 T ELT) (((-458) $) 60 T ELT) (((-978) $) 64 T ELT) (((-1191) $) 68 T ELT) (((-463) $) 72 T ELT) (((-1067) $) 76 T ELT) (((-127) $) 80 T ELT) (((-613) $) 84 T ELT) (((-263) $) 88 T ELT) (((-948) $) 92 T ELT) (((-154) $) 96 T ELT) (((-883) $) 100 T ELT) (((-985) $) 104 T ELT) (((-1003) $) 108 T ELT) (((-1008) $) 112 T ELT) (((-565) $) 117 T ELT) (((-1081) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-418) $) 133 T ELT) (((-528) $) 137 T ELT) (((-446) $) 141 T ELT) (((-1073) $) 145 T ELT) (((-484) $) 149 T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1049) (-1051)) (T -1049)) -NIL -((-3379 (((-583 (-1095)) (-1073)) 9 T ELT))) -(((-1050) (-10 -7 (-15 -3379 ((-583 (-1095)) (-1073))))) (T -1050)) -((-3379 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-583 (-1095))) (-5 *1 (-1050))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-1095)) 20 T ELT) (((-1095) $) 19 T ELT)) (-3566 (((-85) $ (|[\|\|]| (-462))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-617))) 84 T ELT) (((-85) $ (|[\|\|]| (-1190))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-539))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1029))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-622))) 70 T ELT) (((-85) $ (|[\|\|]| (-458))) 68 T ELT) (((-85) $ (|[\|\|]| (-978))) 66 T ELT) (((-85) $ (|[\|\|]| (-1191))) 64 T ELT) (((-85) $ (|[\|\|]| (-463))) 62 T ELT) (((-85) $ (|[\|\|]| (-1067))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-613))) 56 T ELT) (((-85) $ (|[\|\|]| (-263))) 54 T ELT) (((-85) $ (|[\|\|]| (-948))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-883))) 48 T ELT) (((-85) $ (|[\|\|]| (-985))) 46 T ELT) (((-85) $ (|[\|\|]| (-1003))) 44 T ELT) (((-85) $ (|[\|\|]| (-1008))) 42 T ELT) (((-85) $ (|[\|\|]| (-565))) 40 T ELT) (((-85) $ (|[\|\|]| (-1081))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-418))) 32 T ELT) (((-85) $ (|[\|\|]| (-528))) 30 T ELT) (((-85) $ (|[\|\|]| (-446))) 28 T ELT) (((-85) $ (|[\|\|]| (-1073))) 26 T ELT) (((-85) $ (|[\|\|]| (-484))) 24 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3572 (((-462) $) 87 T ELT) (((-172) $) 85 T ELT) (((-617) $) 83 T ELT) (((-1190) $) 81 T ELT) (((-111) $) 79 T ELT) (((-539) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1029) $) 73 T ELT) (((-67) $) 71 T ELT) (((-622) $) 69 T ELT) (((-458) $) 67 T ELT) (((-978) $) 65 T ELT) (((-1191) $) 63 T ELT) (((-463) $) 61 T ELT) (((-1067) $) 59 T ELT) (((-127) $) 57 T ELT) (((-613) $) 55 T ELT) (((-263) $) 53 T ELT) (((-948) $) 51 T ELT) (((-154) $) 49 T ELT) (((-883) $) 47 T ELT) (((-985) $) 45 T ELT) (((-1003) $) 43 T ELT) (((-1008) $) 41 T ELT) (((-565) $) 39 T ELT) (((-1081) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-418) $) 31 T ELT) (((-528) $) 29 T ELT) (((-446) $) 27 T ELT) (((-1073) $) 25 T ELT) (((-484) $) 23 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) -(((-1051) (-113)) (T -1051)) -((-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-462)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-172)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-617)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1190))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1190)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-111)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-539)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-106)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1029)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-67)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-622)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-458))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-458)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-978)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1191)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-463)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1067)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-127)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-613)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-263)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-948))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-948)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-154)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-883))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-883)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-985)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1003))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1003)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1008))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1008)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-565))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-565)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1081)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-129)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-110)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-418))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-418)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-528)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-446)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1073)))) (-3566 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-484))))) -(-13 (-995) (-1175) (-10 -8 (-15 -3566 ((-85) $ (|[\|\|]| (-462)))) (-15 -3572 ((-462) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-172)))) (-15 -3572 ((-172) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-617)))) (-15 -3572 ((-617) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1190)))) (-15 -3572 ((-1190) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-111)))) (-15 -3572 ((-111) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-539)))) (-15 -3572 ((-539) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-106)))) (-15 -3572 ((-106) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1029)))) (-15 -3572 ((-1029) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-67)))) (-15 -3572 ((-67) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-622)))) (-15 -3572 ((-622) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-458)))) (-15 -3572 ((-458) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-978)))) (-15 -3572 ((-978) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1191)))) (-15 -3572 ((-1191) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-463)))) (-15 -3572 ((-463) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1067)))) (-15 -3572 ((-1067) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-127)))) (-15 -3572 ((-127) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-613)))) (-15 -3572 ((-613) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-263)))) (-15 -3572 ((-263) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-948)))) (-15 -3572 ((-948) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-154)))) (-15 -3572 ((-154) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-883)))) (-15 -3572 ((-883) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-985)))) (-15 -3572 ((-985) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1003)))) (-15 -3572 ((-1003) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1008)))) (-15 -3572 ((-1008) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-565)))) (-15 -3572 ((-565) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1081)))) (-15 -3572 ((-1081) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-129)))) (-15 -3572 ((-129) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-110)))) (-15 -3572 ((-110) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-418)))) (-15 -3572 ((-418) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-528)))) (-15 -3572 ((-528) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-446)))) (-15 -3572 ((-446) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-1073)))) (-15 -3572 ((-1073) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-484)))) (-15 -3572 ((-484) $)))) -(((-64) . T) ((-72) . T) ((-555 (-1095)) . T) ((-552 (-772)) . T) ((-552 (-1095)) . T) ((-430 (-1095)) . T) ((-13) . T) ((-1013) . T) ((-995) . T) ((-1129) . T) ((-1175) . T)) -((-3382 (((-1185) (-583 (-772))) 22 T ELT) (((-1185) (-772)) 21 T ELT)) (-3381 (((-1185) (-583 (-772))) 20 T ELT) (((-1185) (-772)) 19 T ELT)) (-3380 (((-1185) (-583 (-772))) 18 T ELT) (((-1185) (-772)) 10 T ELT) (((-1185) (-1073) (-772)) 16 T ELT))) -(((-1052) (-10 -7 (-15 -3380 ((-1185) (-1073) (-772))) (-15 -3380 ((-1185) (-772))) (-15 -3381 ((-1185) (-772))) (-15 -3382 ((-1185) (-772))) (-15 -3380 ((-1185) (-583 (-772)))) (-15 -3381 ((-1185) (-583 (-772)))) (-15 -3382 ((-1185) (-583 (-772)))))) (T -1052)) -((-3382 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3380 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052))))) -((-3386 (($ $ $) 10 T ELT)) (-3385 (($ $) 9 T ELT)) (-3389 (($ $ $) 13 T ELT)) (-3391 (($ $ $) 15 T ELT)) (-3388 (($ $ $) 12 T ELT)) (-3390 (($ $ $) 14 T ELT)) (-3393 (($ $) 17 T ELT)) (-3392 (($ $) 16 T ELT)) (-3383 (($ $) 6 T ELT)) (-3387 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3384 (($ $ $) 8 T ELT))) -(((-1053) (-113)) (T -1053)) -((-3393 (*1 *1 *1) (-4 *1 (-1053))) (-3392 (*1 *1 *1) (-4 *1 (-1053))) (-3391 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3390 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3389 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3388 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3387 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3386 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3385 (*1 *1 *1) (-4 *1 (-1053))) (-3384 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3387 (*1 *1 *1) (-4 *1 (-1053))) (-3383 (*1 *1 *1) (-4 *1 (-1053)))) -(-13 (-10 -8 (-15 -3383 ($ $)) (-15 -3387 ($ $)) (-15 -3384 ($ $ $)) (-15 -3385 ($ $)) (-15 -3386 ($ $ $)) (-15 -3387 ($ $ $)) (-15 -3388 ($ $ $)) (-15 -3389 ($ $ $)) (-15 -3390 ($ $ $)) (-15 -3391 ($ $ $)) (-15 -3392 ($ $)) (-15 -3393 ($ $)))) -((-2568 (((-85) $ $) 44 T ELT)) (-3402 ((|#1| $) 17 T ELT)) (-3394 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3401 (((-85) $) 19 T ELT)) (-3399 (($ $ |#1|) 30 T ELT)) (-3397 (($ $ (-85)) 32 T ELT)) (-3396 (($ $) 33 T ELT)) (-3398 (($ $ |#2|) 31 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3395 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3403 (((-85) $) 16 T ELT)) (-3565 (($) 13 T ELT)) (-3400 (($ $) 29 T ELT)) (-3530 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1600 |#2|))) 23 T ELT) (((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -1600 |#2|)))) 26 T ELT) (((-583 $) |#1| (-583 |#2|)) 28 T ELT)) (-3922 ((|#2| $) 18 T ELT)) (-3946 (((-772) $) 53 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 42 T ELT))) -(((-1054 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3565 ($)) (-15 -3403 ((-85) $)) (-15 -3402 (|#1| $)) (-15 -3922 (|#2| $)) (-15 -3401 ((-85) $)) (-15 -3530 ($ |#1| |#2| (-85))) (-15 -3530 ($ |#1| |#2|)) (-15 -3530 ($ (-2 (|:| |val| |#1|) (|:| -1600 |#2|)))) (-15 -3530 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -1600 |#2|))))) (-15 -3530 ((-583 $) |#1| (-583 |#2|))) (-15 -3400 ($ $)) (-15 -3399 ($ $ |#1|)) (-15 -3398 ($ $ |#2|)) (-15 -3397 ($ $ (-85))) (-15 -3396 ($ $)) (-15 -3395 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3394 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1013) (-34)) (-13 (-1013) (-34))) (T -1054)) -((-3565 (*1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3402 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-13 (-1013) (-34))))) (-3922 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-13 (-1013) (-34))))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3530 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3530 (*1 *1 *2 *3) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1600 *4))) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -1600 *5)))) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-583 (-1054 *4 *5))) (-5 *1 (-1054 *4 *5)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-583 (-1054 *3 *5))) (-5 *1 (-1054 *3 *5)) (-4 *3 (-13 (-1013) (-34))))) (-3400 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3399 (*1 *1 *1 *2) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3398 (*1 *1 *1 *2) (-12 (-5 *1 (-1054 *3 *2)) (-4 *3 (-13 (-1013) (-34))) (-4 *2 (-13 (-1013) (-34))))) (-3397 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3396 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3395 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *5 *6)))) (-3394 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *4 *5)) (-4 *4 (-13 (-1013) (-34)))))) -((-2568 (((-85) $ $) NIL (|has| (-1054 |#1| |#2|) (-72)) ELT)) (-3402 (((-1054 |#1| |#2|) $) 27 T ELT)) (-3411 (($ $) 91 T ELT)) (-3407 (((-85) (-1054 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3404 (($ $ $ (-583 (-1054 |#1| |#2|))) 108 T ELT) (($ $ $ (-583 (-1054 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3025 (((-1054 |#1| |#2|) $ (-1054 |#1| |#2|)) 46 (|has| $ (-6 -3996)) ELT)) (-3788 (((-1054 |#1| |#2|) $ #1="value" (-1054 |#1| |#2|)) NIL (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) 44 (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-3409 (((-583 (-2 (|:| |val| |#1|) (|:| -1600 |#2|))) $) 95 T ELT)) (-3405 (($ (-1054 |#1| |#2|) $) 42 T ELT)) (-3406 (($ (-1054 |#1| |#2|) $) 34 T ELT)) (-2889 (((-583 (-1054 |#1| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3408 (((-85) (-1054 |#1| |#2|) $) 97 T ELT)) (-3027 (((-85) $ $) NIL (|has| (-1054 |#1| |#2|) (-1013)) ELT)) (-2608 (((-583 (-1054 |#1| |#2|)) $) 58 T ELT)) (-3245 (((-85) (-1054 |#1| |#2|) $) NIL (|has| (-1054 |#1| |#2|) (-72)) ELT)) (-3326 (($ (-1 (-1054 |#1| |#2|) (-1054 |#1| |#2|)) $) 50 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-1054 |#1| |#2|) (-1054 |#1| |#2|)) $) 49 T ELT)) (-3030 (((-583 (-1054 |#1| |#2|)) $) 56 T ELT)) (-3527 (((-85) $) 45 T ELT)) (-3242 (((-1073) $) NIL (|has| (-1054 |#1| |#2|) (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| (-1054 |#1| |#2|) (-1013)) ELT)) (-3412 (((-3 $ "failed") $) 89 T ELT)) (-1947 (((-85) (-1 (-85) (-1054 |#1| |#2|)) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 (-1054 |#1| |#2|)))) NIL (-12 (|has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1013))) ELT) (($ $ (-249 (-1054 |#1| |#2|))) NIL (-12 (|has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1013))) ELT) (($ $ (-1054 |#1| |#2|) (-1054 |#1| |#2|)) NIL (-12 (|has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1013))) ELT) (($ $ (-583 (-1054 |#1| |#2|)) (-583 (-1054 |#1| |#2|))) NIL (-12 (|has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1013))) ELT)) (-1222 (((-85) $ $) 53 T ELT)) (-3403 (((-85) $) 24 T ELT)) (-3565 (($) 26 T ELT)) (-3800 (((-1054 |#1| |#2|) $ #1#) NIL T ELT)) (-3029 (((-484) $ $) NIL T ELT)) (-3633 (((-85) $) 47 T ELT)) (-1946 (((-694) (-1054 |#1| |#2|) $) NIL (|has| (-1054 |#1| |#2|) (-72)) ELT) (((-694) (-1 (-85) (-1054 |#1| |#2|)) $) NIL T ELT)) (-3400 (($ $) 52 T ELT)) (-3530 (($ (-1054 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-583 $)) 13 T ELT) (($ |#1| |#2| (-583 (-1054 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-583 |#2|)) 18 T ELT)) (-3410 (((-583 |#2|) $) 96 T ELT)) (-3946 (((-772) $) 87 (|has| (-1054 |#1| |#2|) (-552 (-772))) ELT)) (-3522 (((-583 $) $) 31 T ELT)) (-3028 (((-85) $ $) NIL (|has| (-1054 |#1| |#2|) (-1013)) ELT)) (-1265 (((-85) $ $) NIL (|has| (-1054 |#1| |#2|) (-72)) ELT)) (-1948 (((-85) (-1 (-85) (-1054 |#1| |#2|)) $) NIL T ELT)) (-3056 (((-85) $ $) 70 (|has| (-1054 |#1| |#2|) (-72)) ELT)) (-3957 (((-694) $) 64 T ELT))) -(((-1055 |#1| |#2|) (-13 (-923 (-1054 |#1| |#2|)) (-318 (-1054 |#1| |#2|)) (-10 -8 (-6 -3996) (-15 -3412 ((-3 $ "failed") $)) (-15 -3411 ($ $)) (-15 -3530 ($ (-1054 |#1| |#2|))) (-15 -3530 ($ |#1| |#2| (-583 $))) (-15 -3530 ($ |#1| |#2| (-583 (-1054 |#1| |#2|)))) (-15 -3530 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -3410 ((-583 |#2|) $)) (-15 -3409 ((-583 (-2 (|:| |val| |#1|) (|:| -1600 |#2|))) $)) (-15 -3408 ((-85) (-1054 |#1| |#2|) $)) (-15 -3407 ((-85) (-1054 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3406 ($ (-1054 |#1| |#2|) $)) (-15 -3405 ($ (-1054 |#1| |#2|) $)) (-15 -3404 ($ $ $ (-583 (-1054 |#1| |#2|)))) (-15 -3404 ($ $ $ (-583 (-1054 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1013) (-34)) (-13 (-1013) (-34))) (T -1055)) -((-3412 (*1 *1 *1) (|partial| -12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3411 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4)))) (-3530 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1055 *2 *3))) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3530 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1054 *2 *3))) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1055 *2 *3)))) (-3530 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1013) (-34))))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3408 (*1 *2 *3 *1) (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *4 *5)))) (-3407 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1054 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *5 *6)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4)))) (-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4)))) (-3404 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1054 *3 *4))) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4)))) (-3404 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1054 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *1 (-1055 *4 *5))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3414 (($ $) NIL T ELT)) (-3330 ((|#2| $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3413 (($ (-630 |#2|)) 53 T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3333 (($ |#2|) 14 T ELT)) (-3724 (($) NIL T CONST)) (-3109 (($ $) 66 (|has| |#2| (-258)) ELT)) (-3111 (((-197 |#1| |#2|) $ (-484)) 40 T ELT)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) 80 T ELT)) (-3108 (((-694) $) 68 (|has| |#2| (-495)) ELT)) (-3112 ((|#2| $ (-484) (-484)) NIL T ELT)) (-2889 (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3107 (((-694) $) 70 (|has| |#2| (-495)) ELT)) (-3106 (((-583 (-197 |#1| |#2|)) $) 74 (|has| |#2| (-495)) ELT)) (-3114 (((-694) $) NIL T ELT)) (-3614 (($ |#2|) 23 T ELT)) (-3113 (((-694) $) NIL T ELT)) (-3327 ((|#2| $) 64 (|has| |#2| (-6 (-3997 #2="*"))) ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-2608 (((-583 |#2|) $) NIL T ELT)) (-3245 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3117 (((-484) $) NIL T ELT)) (-3115 (((-484) $) NIL T ELT)) (-3123 (($ (-583 (-583 |#2|))) 35 T ELT)) (-3326 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3594 (((-583 (-583 |#2|)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3590 (((-3 $ #1#) $) 77 (|has| |#2| (-312)) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-1947 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) ((|#2| $ (-484) (-484)) NIL T ELT)) (-3758 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3329 ((|#2| $) NIL T ELT)) (-3332 (($ (-583 |#2|)) 48 T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3331 (((-197 |#1| |#2|) $) NIL T ELT)) (-3328 ((|#2| $) 62 (|has| |#2| (-6 (-3997 #2#))) ELT)) (-1946 (((-694) (-1 (-85) |#2|) $) NIL T ELT) (((-694) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) 87 (|has| |#2| (-553 (-473))) ELT)) (-3110 (((-197 |#1| |#2|) $ (-484)) 42 T ELT)) (-3946 (((-772) $) 45 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (($ |#2|) NIL T ELT) (((-630 |#2|) $) 50 T ELT)) (-3126 (((-694)) 21 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 15 T CONST)) (-2666 (($) 19 T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 60 T ELT) (($ $ (-484)) 79 (|has| |#2| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 56 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 58 T ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-1056 |#1| |#2|) (-13 (-1037 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-552 (-630 |#2|)) (-10 -8 (-15 -3614 ($ |#2|)) (-15 -3414 ($ $)) (-15 -3413 ($ (-630 |#2|))) (IF (|has| |#2| (-6 (-3997 #1="*"))) (-6 -3984) |%noBranch|) (IF (|has| |#2| (-6 (-3997 #1#))) (IF (|has| |#2| (-6 -3992)) (-6 -3992) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|))) (-694) (-961)) (T -1056)) -((-3614 (*1 *1 *2) (-12 (-5 *1 (-1056 *3 *2)) (-14 *3 (-694)) (-4 *2 (-961)))) (-3414 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-14 *2 (-694)) (-4 *3 (-961)))) (-3413 (*1 *1 *2) (-12 (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-1056 *3 *4)) (-14 *3 (-694))))) -((-3427 (($ $) 19 T ELT)) (-3417 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3425 (((-85) $ $) 24 T ELT)) (-3429 (($ $) 17 T ELT)) (-3800 (((-117) $ (-484) (-117)) NIL T ELT) (((-117) $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT) (($ $ $) 31 T ELT)) (-3946 (($ (-117)) 29 T ELT) (((-772) $) NIL T ELT))) -(((-1057 |#1|) (-10 -7 (-15 -3946 ((-772) |#1|)) (-15 -3800 (|#1| |#1| |#1|)) (-15 -3417 (|#1| |#1| (-114))) (-15 -3417 (|#1| |#1| (-117))) (-15 -3946 (|#1| (-117))) (-15 -3425 ((-85) |#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -3429 (|#1| |#1|)) (-15 -3800 (|#1| |#1| (-1146 (-484)))) (-15 -3800 ((-117) |#1| (-484))) (-15 -3800 ((-117) |#1| (-484) (-117)))) (-1058)) (T -1057)) -NIL -((-2568 (((-85) $ $) 19 (|has| (-117) (-72)) ELT)) (-3426 (($ $) 131 T ELT)) (-3427 (($ $) 132 T ELT)) (-3417 (($ $ (-117)) 119 T ELT) (($ $ (-114)) 118 T ELT)) (-2198 (((-1185) $ (-484) (-484)) 44 (|has| $ (-6 -3996)) ELT)) (-3424 (((-85) $ $) 129 T ELT)) (-3423 (((-85) $ $ (-484)) 128 T ELT)) (-3418 (((-583 $) $ (-117)) 121 T ELT) (((-583 $) $ (-114)) 120 T ELT)) (-1732 (((-85) (-1 (-85) (-117) (-117)) $) 108 T ELT) (((-85) $) 102 (|has| (-117) (-756)) ELT)) (-1730 (($ (-1 (-85) (-117) (-117)) $) 99 (|has| $ (-6 -3996)) ELT) (($ $) 98 (-12 (|has| (-117) (-756)) (|has| $ (-6 -3996))) ELT)) (-2909 (($ (-1 (-85) (-117) (-117)) $) 109 T ELT) (($ $) 103 (|has| (-117) (-756)) ELT)) (-3788 (((-117) $ (-484) (-117)) 56 (|has| $ (-6 -3996)) ELT) (((-117) $ (-1146 (-484)) (-117)) 64 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) (-117)) $) 81 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-3415 (($ $ (-117)) 115 T ELT) (($ $ (-114)) 114 T ELT)) (-2297 (($ $) 100 (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) 110 T ELT)) (-3420 (($ $ (-1146 (-484)) $) 125 T ELT)) (-1353 (($ $) 84 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ (-117) $) 83 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) (-117)) $) 80 (|has| $ (-6 -3995)) ELT)) (-3842 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 82 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3995))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 79 (|has| $ (-6 -3995)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) 78 (|has| $ (-6 -3995)) ELT)) (-1576 (((-117) $ (-484) (-117)) 57 (|has| $ (-6 -3996)) ELT)) (-3112 (((-117) $ (-484)) 55 T ELT)) (-3425 (((-85) $ $) 130 T ELT)) (-3419 (((-484) (-1 (-85) (-117)) $) 107 T ELT) (((-484) (-117) $) 106 (|has| (-117) (-1013)) ELT) (((-484) (-117) $ (-484)) 105 (|has| (-117) (-1013)) ELT) (((-484) $ $ (-484)) 124 T ELT) (((-484) (-114) $ (-484)) 123 T ELT)) (-2889 (((-583 (-117)) $) 30 (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-694) (-117)) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 92 (|has| (-117) (-756)) ELT)) (-3518 (($ (-1 (-85) (-117) (-117)) $ $) 111 T ELT) (($ $ $) 104 (|has| (-117) (-756)) ELT)) (-2608 (((-583 (-117)) $) 29 T ELT)) (-3245 (((-85) (-117) $) 27 (|has| (-117) (-72)) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 93 (|has| (-117) (-756)) ELT)) (-3421 (((-85) $ $ (-117)) 126 T ELT)) (-3422 (((-694) $ $ (-117)) 127 T ELT)) (-3326 (($ (-1 (-117) (-117)) $) 34 T ELT)) (-3958 (($ (-1 (-117) (-117)) $) 35 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 69 T ELT)) (-3428 (($ $) 133 T ELT)) (-3429 (($ $) 134 T ELT)) (-3416 (($ $ (-117)) 117 T ELT) (($ $ (-114)) 116 T ELT)) (-3242 (((-1073) $) 22 (|has| (-117) (-1013)) ELT)) (-2304 (($ (-117) $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| (-117) (-1013)) ELT)) (-3801 (((-117) $) 46 (|has| (-484) (-756)) ELT)) (-1354 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 77 T ELT)) (-2199 (($ $ (-117)) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) (-117)) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 (-117)))) 26 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-249 (-117))) 25 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) 24 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-583 (-117)) (-583 (-117))) 23 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2202 (((-85) (-117) $) 49 (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1013))) ELT)) (-2205 (((-583 (-117)) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 (((-117) $ (-484) (-117)) 54 T ELT) (((-117) $ (-484)) 53 T ELT) (($ $ (-1146 (-484))) 75 T ELT) (($ $ $) 113 T ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1146 (-484))) 67 T ELT)) (-1946 (((-694) (-1 (-85) (-117)) $) 31 T ELT) (((-694) (-117) $) 28 (|has| (-117) (-72)) ELT)) (-1731 (($ $ $ (-484)) 101 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 85 (|has| (-117) (-553 (-473))) ELT)) (-3530 (($ (-583 (-117))) 76 T ELT)) (-3802 (($ $ (-117)) 73 T ELT) (($ (-117) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3946 (($ (-117)) 122 T ELT) (((-772) $) 17 (|has| (-117) (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| (-117) (-72)) ELT)) (-1948 (((-85) (-1 (-85) (-117)) $) 33 T ELT)) (-2566 (((-85) $ $) 94 (|has| (-117) (-756)) ELT)) (-2567 (((-85) $ $) 96 (|has| (-117) (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-2684 (((-85) $ $) 95 (|has| (-117) (-756)) ELT)) (-2685 (((-85) $ $) 97 (|has| (-117) (-756)) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-1058) (-113)) (T -1058)) -((-3429 (*1 *1 *1) (-4 *1 (-1058))) (-3428 (*1 *1 *1) (-4 *1 (-1058))) (-3427 (*1 *1 *1) (-4 *1 (-1058))) (-3426 (*1 *1 *1) (-4 *1 (-1058))) (-3425 (*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-85)))) (-3424 (*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-85)))) (-3423 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-484)) (-5 *2 (-85)))) (-3422 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-117)) (-5 *2 (-694)))) (-3421 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3420 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-1146 (-484))))) (-3419 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-484)))) (-3419 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-484)) (-5 *3 (-114)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1058)))) (-3418 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-583 *1)) (-4 *1 (-1058)))) (-3418 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-583 *1)) (-4 *1 (-1058)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114)))) (-3415 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117)))) (-3415 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114)))) (-3800 (*1 *1 *1 *1) (-4 *1 (-1058)))) -(-13 (-19 (-117)) (-10 -8 (-15 -3429 ($ $)) (-15 -3428 ($ $)) (-15 -3427 ($ $)) (-15 -3426 ($ $)) (-15 -3425 ((-85) $ $)) (-15 -3424 ((-85) $ $)) (-15 -3423 ((-85) $ $ (-484))) (-15 -3422 ((-694) $ $ (-117))) (-15 -3421 ((-85) $ $ (-117))) (-15 -3420 ($ $ (-1146 (-484)) $)) (-15 -3419 ((-484) $ $ (-484))) (-15 -3419 ((-484) (-114) $ (-484))) (-15 -3946 ($ (-117))) (-15 -3418 ((-583 $) $ (-117))) (-15 -3418 ((-583 $) $ (-114))) (-15 -3417 ($ $ (-117))) (-15 -3417 ($ $ (-114))) (-15 -3416 ($ $ (-117))) (-15 -3416 ($ $ (-114))) (-15 -3415 ($ $ (-117))) (-15 -3415 ($ $ (-114))) (-15 -3800 ($ $ $)))) -(((-34) . T) ((-72) OR (|has| (-117) (-1013)) (|has| (-117) (-756)) (|has| (-117) (-72))) ((-552 (-772)) OR (|has| (-117) (-1013)) (|has| (-117) (-756)) (|has| (-117) (-552 (-772)))) ((-124 (-117)) . T) ((-553 (-473)) |has| (-117) (-553 (-473))) ((-241 (-484) (-117)) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) (-117)) . T) ((-260 (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ((-318 (-117)) . T) ((-324 (-117)) . T) ((-429 (-117)) . T) ((-538 (-484) (-117)) . T) ((-455 (-117) (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ((-13) . T) ((-593 (-117)) . T) ((-19 (-117)) . T) ((-756) |has| (-117) (-756)) ((-759) |has| (-117) (-756)) ((-1013) OR (|has| (-117) (-1013)) (|has| (-117) (-756))) ((-1035 (-117)) . T) ((-1129) . T)) -((-3436 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) (-694)) 112 T ELT)) (-3433 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694)) 61 T ELT)) (-3437 (((-1185) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-694)) 97 T ELT)) (-3431 (((-694) (-583 |#4|) (-583 |#5|)) 30 T ELT)) (-3434 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694)) 63 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694) (-85)) 65 T ELT)) (-3435 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85)) 85 T ELT)) (-3972 (((-1073) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) 90 T ELT)) (-3432 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|) 60 T ELT)) (-3430 (((-694) (-583 |#4|) (-583 |#5|)) 21 T ELT))) -(((-1059 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3430 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3431 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3432 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|)) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694))) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|)) (-15 -3434 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694) (-85))) (-15 -3434 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694))) (-15 -3434 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|)) (-15 -3435 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3435 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3436 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) (-694))) (-15 -3972 ((-1073) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)))) (-15 -3437 ((-1185) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-694)))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-1020 |#1| |#2| |#3| |#4|)) (T -1059)) -((-3437 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *4 (-694)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1185)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-1020 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1073)) (-5 *1 (-1059 *4 *5 *6 *7 *8)))) (-3436 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1600 *11)))))) (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1600 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9)) (-4 *11 (-1020 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-717)) (-4 *9 (-756)) (-5 *1 (-1059 *7 *8 *9 *10 *11)))) (-3435 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-3435 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) (-3434 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-717)) (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *7 *8 *9 *3 *4)) (-4 *4 (-1020 *7 *8 *9 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-3430 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-1059 *5 *6 *7 *8 *9))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3681 (((-583 (-2 (|:| -3861 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3682 (((-583 $) (-583 |#4|)) 118 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT) (((-583 $) (-583 |#4|) (-85) (-85)) 117 T ELT) (((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85)) 120 T ELT)) (-3081 (((-583 |#3|) $) NIL T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3775 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 91 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3710 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) 70 T ELT)) (-3724 (($) NIL T CONST)) (-2904 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3689 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3156 (($ (-583 |#4|)) NIL T ELT)) (-3799 (((-3 $ #1#) $) 45 T ELT)) (-3685 ((|#4| |#4| $) 73 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT)) (-3406 (($ |#4| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3696 (((-2 (|:| -3861 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3195 (((-85) |#4| $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3438 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85)) 133 T ELT)) (-2889 (((-583 |#4|) $) 18 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3180 ((|#3| $) 38 T ELT)) (-2608 (((-583 |#4|) $) 19 T ELT)) (-3245 (((-85) |#4| $) 27 (|has| |#4| (-72)) ELT)) (-3326 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2914 (((-583 |#3|) $) NIL T ELT)) (-2913 (((-85) |#3| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3191 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL T ELT)) (-3190 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 111 T ELT)) (-3798 (((-3 |#4| #1#) $) 42 T ELT)) (-3192 (((-583 $) |#4| $) 96 T ELT)) (-3194 (((-3 (-85) (-583 $)) |#4| $) NIL T ELT)) (-3193 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 106 T ELT) (((-85) |#4| $) 62 T ELT)) (-3238 (((-583 $) |#4| $) 115 T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 116 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT)) (-3439 (((-583 $) (-583 |#4|) (-85) (-85) (-85)) 128 T ELT)) (-3440 (($ |#4| $) 82 T ELT) (($ (-583 |#4|) $) 83 T ELT) (((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 81 T ELT)) (-3697 (((-583 |#4|) $) NIL T ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-3699 (((-85) $ $) NIL T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3801 (((-3 |#4| #1#) $) 40 T ELT)) (-1354 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3679 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3769 (($ $ |#4|) NIL T ELT) (((-583 $) |#4| $) 98 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 93 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3768 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 17 T ELT)) (-3565 (($) 14 T ELT)) (-3948 (((-694) $) NIL T ELT)) (-1946 (((-694) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3400 (($ $) 13 T ELT)) (-3972 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3530 (($ (-583 |#4|)) 22 T ELT)) (-2910 (($ $ |#3|) 49 T ELT)) (-2912 (($ $ |#3|) 51 T ELT)) (-3684 (($ $) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3946 (((-772) $) 35 T ELT) (((-583 |#4|) $) 46 T ELT)) (-3678 (((-694) $) NIL (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-3189 (((-583 $) |#4| $) 63 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-583 |#3|) $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT)) (-3933 (((-85) |#3| $) 69 T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-1060 |#1| |#2| |#3| |#4|) (-13 (-1020 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3440 ((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3682 ((-583 $) (-583 |#4|) (-85) (-85))) (-15 -3682 ((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85))) (-15 -3439 ((-583 $) (-583 |#4|) (-85) (-85) (-85))) (-15 -3438 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85))))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -1060)) -((-3440 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1060 *5 *6 *7 *3))) (-5 *1 (-1060 *5 *6 *7 *3)) (-4 *3 (-977 *5 *6 *7)))) (-3682 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1060 *5 *6 *7 *8))) (-5 *1 (-1060 *5 *6 *7 *8)))) (-3682 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1060 *5 *6 *7 *8))) (-5 *1 (-1060 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1060 *5 *6 *7 *8))) (-5 *1 (-1060 *5 *6 *7 *8)))) (-3438 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1060 *5 *6 *7 *8))))) (-5 *1 (-1060 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 32 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 30 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 29 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-694)) 31 T ELT) (($ $ (-830)) 28 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ $ $) 27 T ELT))) -(((-1061) (-113)) (T -1061)) -NIL -(-13 (-23) (-663)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-1025) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3323 ((|#1| $) 38 T ELT)) (-3441 (($ (-583 |#1|)) 46 T ELT)) (-3724 (($) NIL T CONST)) (-3325 ((|#1| |#1| $) 41 T ELT)) (-3324 ((|#1| $) 36 T ELT)) (-2889 (((-583 |#1|) $) 19 (|has| $ (-6 -3995)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 39 T ELT)) (-3609 (($ |#1| $) 42 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1275 ((|#1| $) 37 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 33 T ELT)) (-3565 (($) 44 T ELT)) (-3322 (((-694) $) 31 T ELT)) (-1946 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ $) 28 T ELT)) (-3946 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 32 T ELT))) -(((-1062 |#1|) (-13 (-1034 |#1|) (-10 -8 (-15 -3441 ($ (-583 |#1|))))) (-1129)) (T -1062)) -((-3441 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-1062 *3))))) -((-3788 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1146 (-484)) |#2|) 53 T ELT) ((|#2| $ (-484) |#2|) 50 T ELT)) (-3443 (((-85) $) 12 T ELT)) (-3326 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3801 ((|#2| $) NIL T ELT) (($ $ (-694)) 17 T ELT)) (-2199 (($ $ |#2|) 49 T ELT)) (-3444 (((-85) $) 11 T ELT)) (-3800 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1146 (-484))) 36 T ELT) ((|#2| $ (-484)) 25 T ELT) ((|#2| $ (-484) |#2|) NIL T ELT)) (-3791 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3802 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-583 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) -(((-1063 |#1| |#2|) (-10 -7 (-15 -3443 ((-85) |#1|)) (-15 -3444 ((-85) |#1|)) (-15 -3788 (|#2| |#1| (-484) |#2|)) (-15 -3800 (|#2| |#1| (-484) |#2|)) (-15 -3800 (|#2| |#1| (-484))) (-15 -2199 (|#1| |#1| |#2|)) (-15 -3800 (|#1| |#1| (-1146 (-484)))) (-15 -3802 (|#1| |#1| |#2|)) (-15 -3802 (|#1| (-583 |#1|))) (-15 -3788 (|#2| |#1| (-1146 (-484)) |#2|)) (-15 -3788 (|#2| |#1| #1="last" |#2|)) (-15 -3788 (|#1| |#1| #2="rest" |#1|)) (-15 -3788 (|#2| |#1| #3="first" |#2|)) (-15 -3791 (|#1| |#1| |#2|)) (-15 -3791 (|#1| |#1| |#1|)) (-15 -3800 (|#2| |#1| #1#)) (-15 -3800 (|#1| |#1| #2#)) (-15 -3801 (|#1| |#1| (-694))) (-15 -3800 (|#2| |#1| #3#)) (-15 -3801 (|#2| |#1|)) (-15 -3802 (|#1| |#2| |#1|)) (-15 -3802 (|#1| |#1| |#1|)) (-15 -3788 (|#2| |#1| #4="value" |#2|)) (-15 -3800 (|#2| |#1| #4#)) (-15 -3326 (|#1| (-1 |#2| |#2|) |#1|))) (-1064 |#2|) (-1129)) (T -1063)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3795 ((|#1| $) 71 T ELT)) (-3797 (($ $) 73 T ELT)) (-2198 (((-1185) $ (-484) (-484)) 107 (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-484)) 58 (|has| $ (-6 -3996)) ELT)) (-3442 (((-85) $ (-694)) 90 T ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 62 (|has| $ (-6 -3996)) ELT)) (-3786 ((|#1| $ |#1|) 60 (|has| $ (-6 -3996)) ELT)) (-3789 ((|#1| $ |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3996)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3996)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3996)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 127 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-484) |#1|) 96 (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3995)) ELT)) (-3796 ((|#1| $) 72 T ELT)) (-3724 (($) 7 T CONST)) (-3799 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-1353 (($ $) 109 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3995)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-1576 ((|#1| $ (-484) |#1|) 95 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) 97 T ELT)) (-3443 (((-85) $) 93 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-3614 (($ (-694) |#1|) 119 T ELT)) (-3719 (((-85) $ (-694)) 91 T ELT)) (-2200 (((-484) $) 105 (|has| (-484) (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-2201 (((-484) $) 104 (|has| (-484) (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3716 (((-85) $ (-694)) 92 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-2304 (($ $ $ (-484)) 126 T ELT) (($ |#1| $ (-484)) 125 T ELT)) (-2203 (((-583 (-484)) $) 102 T ELT)) (-2204 (((-85) (-484) $) 101 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2199 (($ $ |#1|) 106 (|has| $ (-6 -3996)) ELT)) (-3444 (((-85) $) 94 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 100 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1146 (-484))) 118 T ELT) ((|#1| $ (-484)) 99 T ELT) ((|#1| $ (-484) |#1|) 98 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-2305 (($ $ (-1146 (-484))) 124 T ELT) (($ $ (-484)) 123 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-3792 (($ $) 68 T ELT)) (-3790 (($ $) 65 (|has| $ (-6 -3996)) ELT)) (-3793 (((-694) $) 69 T ELT)) (-3794 (($ $) 70 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 108 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 117 T ELT)) (-3791 (($ $ $) 67 (|has| $ (-6 -3996)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3996)) ELT)) (-3802 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-583 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-1064 |#1|) (-113) (-1129)) (T -1064)) -((-3444 (*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-3443 (*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-3716 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-3719 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-3442 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85))))) -(-13 (-1168 |t#1|) (-593 |t#1|) (-10 -8 (-15 -3444 ((-85) $)) (-15 -3443 ((-85) $)) (-15 -3716 ((-85) $ (-694))) (-15 -3719 ((-85) $ (-694))) (-15 -3442 ((-85) $ (-694))))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T) ((-1168 |#1|) . T)) -((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3801 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3530 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3946 (((-772) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-1065 |#1| |#2| |#3|) (-1107 |#1| |#2|) (-1013) (-1013) |#2|) (T -1065)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3445 (((-632 $) $) 17 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3446 (($) 18 T CONST)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3056 (((-85) $ $) 8 T ELT))) -(((-1066) (-113)) (T -1066)) -((-3446 (*1 *1) (-4 *1 (-1066))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-1066))))) -(-13 (-1013) (-10 -8 (-15 -3446 ($) -3952) (-15 -3445 ((-632 $) $)))) -(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3448 (((-632 (-1049)) $) 28 T ELT)) (-3447 (((-1049) $) 16 T ELT)) (-3449 (((-1049) $) 18 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3450 (((-446) $) 14 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 38 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1067) (-13 (-995) (-10 -8 (-15 -3450 ((-446) $)) (-15 -3449 ((-1049) $)) (-15 -3448 ((-632 (-1049)) $)) (-15 -3447 ((-1049) $))))) (T -1067)) -((-3450 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1067)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1067)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-632 (-1049))) (-5 *1 (-1067)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1067))))) -((-3453 (((-1069 |#1|) (-1069 |#1|)) 17 T ELT)) (-3451 (((-1069 |#1|) (-1069 |#1|)) 13 T ELT)) (-3454 (((-1069 |#1|) (-1069 |#1|) (-484) (-484)) 20 T ELT)) (-3452 (((-1069 |#1|) (-1069 |#1|)) 15 T ELT))) -(((-1068 |#1|) (-10 -7 (-15 -3451 ((-1069 |#1|) (-1069 |#1|))) (-15 -3452 ((-1069 |#1|) (-1069 |#1|))) (-15 -3453 ((-1069 |#1|) (-1069 |#1|))) (-15 -3454 ((-1069 |#1|) (-1069 |#1|) (-484) (-484)))) (-13 (-495) (-120))) (T -1068)) -((-3454 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1068 *4)))) (-3453 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1068 *3)))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1068 *3)))) (-3451 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1068 *3))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) NIL T ELT)) (-3795 ((|#1| $) NIL T ELT)) (-3797 (($ $) 60 T ELT)) (-2198 (((-1185) $ (-484) (-484)) 93 (|has| $ (-6 -3996)) ELT)) (-3785 (($ $ (-484)) 122 (|has| $ (-6 -3996)) ELT)) (-3442 (((-85) $ (-694)) NIL T ELT)) (-3459 (((-772) $) 46 (|has| |#1| (-1013)) ELT)) (-3458 (((-85)) 49 (|has| |#1| (-1013)) ELT)) (-3025 ((|#1| $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 109 (|has| $ (-6 -3996)) ELT) (($ $ (-484) $) 135 T ELT)) (-3786 ((|#1| $ |#1|) 119 (|has| $ (-6 -3996)) ELT)) (-3789 ((|#1| $ |#1|) 114 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-6 -3996)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-6 -3996)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 106 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-484) |#1|) 72 (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3796 ((|#1| $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2323 (($ $) 11 T ELT)) (-3799 (($ $) 35 T ELT) (($ $ (-694)) 105 T ELT)) (-3464 (((-85) (-583 |#1|) $) 128 (|has| |#1| (-1013)) ELT)) (-3465 (($ (-583 |#1|)) 124 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3443 (((-85) $) NIL T ELT)) (-2889 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3460 (((-1185) (-484) $) 133 (|has| |#1| (-1013)) ELT)) (-2322 (((-694) $) 131 T ELT)) (-3031 (((-583 $) $) NIL T ELT)) (-3027 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3614 (($ (-694) |#1|) NIL T ELT)) (-3719 (((-85) $ (-694)) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 89 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3716 (((-85) $ (-694)) NIL T ELT)) (-3030 (((-583 |#1|) $) NIL T ELT)) (-3527 (((-85) $) NIL T ELT)) (-2325 (($ $) 107 T ELT)) (-2326 (((-85) $) 10 T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) 90 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3457 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2324 ((|#1| $) 7 T ELT)) (-3801 ((|#1| $) 34 T ELT) (($ $ (-694)) 58 T ELT)) (-3463 (((-2 (|:| |cycle?| (-85)) (|:| -2595 (-694)) (|:| |period| (-694))) (-694) $) 29 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3456 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3455 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2199 (($ $ |#1|) 85 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-484)) 40 T ELT)) (-3444 (((-85) $) 88 T ELT)) (-2327 (((-85) $) 9 T ELT)) (-2328 (((-85) $) 130 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 25 T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3403 (((-85) $) 14 T ELT)) (-3565 (($) 53 T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT) ((|#1| $ (-484)) 70 T ELT) ((|#1| $ (-484) |#1|) NIL T ELT)) (-3029 (((-484) $ $) 57 T ELT)) (-2305 (($ $ (-1146 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-3462 (($ (-1 $)) 56 T ELT)) (-3633 (((-85) $) 86 T ELT)) (-3792 (($ $) 87 T ELT)) (-3790 (($ $) 110 (|has| $ (-6 -3996)) ELT)) (-3793 (((-694) $) NIL T ELT)) (-3794 (($ $) NIL T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT)) (-3400 (($ $) 52 T ELT)) (-3972 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 68 T ELT)) (-3461 (($ |#1| $) 108 T ELT)) (-3791 (($ $ $) 112 (|has| $ (-6 -3996)) ELT) (($ $ |#1|) 113 (|has| $ (-6 -3996)) ELT)) (-3802 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-583 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2891 (($ $) 59 T ELT)) (-3946 (($ (-583 |#1|)) 123 T ELT) (((-772) $) 50 (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 126 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) NIL (|has| $ (-6 -3995)) ELT))) -(((-1069 |#1|) (-13 (-616 |#1|) (-555 (-583 |#1|)) (-10 -8 (-6 -3996) (-15 -3465 ($ (-583 |#1|))) (IF (|has| |#1| (-1013)) (-15 -3464 ((-85) (-583 |#1|) $)) |%noBranch|) (-15 -3463 ((-2 (|:| |cycle?| (-85)) (|:| -2595 (-694)) (|:| |period| (-694))) (-694) $)) (-15 -3462 ($ (-1 $))) (-15 -3461 ($ |#1| $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -3460 ((-1185) (-484) $)) (-15 -3459 ((-772) $)) (-15 -3458 ((-85)))) |%noBranch|) (-15 -3787 ($ $ (-484) $)) (-15 -3457 ($ (-1 |#1|))) (-15 -3457 ($ (-1 |#1| |#1|) |#1|)) (-15 -3456 ($ (-1 (-85) |#1|) $)) (-15 -3455 ($ (-1 (-85) |#1|) $)))) (-1129)) (T -1069)) -((-3465 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))) (-3464 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-4 *4 (-1129)) (-5 *2 (-85)) (-5 *1 (-1069 *4)))) (-3463 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2595 (-694)) (|:| |period| (-694)))) (-5 *1 (-1069 *4)) (-4 *4 (-1129)) (-5 *3 (-694)))) (-3462 (*1 *1 *2) (-12 (-5 *2 (-1 (-1069 *3))) (-5 *1 (-1069 *3)) (-4 *3 (-1129)))) (-3461 (*1 *1 *2 *1) (-12 (-5 *1 (-1069 *2)) (-4 *2 (-1129)))) (-3460 (*1 *2 *3 *1) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-1069 *4)) (-4 *4 (-1013)) (-4 *4 (-1129)))) (-3459 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1069 *3)) (-4 *3 (-1013)) (-4 *3 (-1129)))) (-3458 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1069 *3)) (-4 *3 (-1013)) (-4 *3 (-1129)))) (-3787 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1069 *3)) (-4 *3 (-1129)))) (-3457 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))) (-3457 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))) (-3456 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))) (-3455 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3))))) -((-3802 (((-1069 |#1|) (-1069 (-1069 |#1|))) 15 T ELT))) -(((-1070 |#1|) (-10 -7 (-15 -3802 ((-1069 |#1|) (-1069 (-1069 |#1|))))) (-1129)) (T -1070)) -((-3802 (*1 *2 *3) (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1070 *4)) (-4 *4 (-1129))))) -((-3841 (((-1069 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1069 |#1|)) 25 T ELT)) (-3842 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1069 |#1|)) 26 T ELT)) (-3958 (((-1069 |#2|) (-1 |#2| |#1|) (-1069 |#1|)) 16 T ELT))) -(((-1071 |#1| |#2|) (-10 -7 (-15 -3958 ((-1069 |#2|) (-1 |#2| |#1|) (-1069 |#1|))) (-15 -3841 ((-1069 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1069 |#1|))) (-15 -3842 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1069 |#1|)))) (-1129) (-1129)) (T -1071)) -((-3842 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1069 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-1071 *5 *2)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1069 *6)) (-4 *6 (-1129)) (-4 *3 (-1129)) (-5 *2 (-1069 *3)) (-5 *1 (-1071 *6 *3)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1069 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1069 *6)) (-5 *1 (-1071 *5 *6))))) -((-3958 (((-1069 |#3|) (-1 |#3| |#1| |#2|) (-1069 |#1|) (-1069 |#2|)) 21 T ELT))) -(((-1072 |#1| |#2| |#3|) (-10 -7 (-15 -3958 ((-1069 |#3|) (-1 |#3| |#1| |#2|) (-1069 |#1|) (-1069 |#2|)))) (-1129) (-1129) (-1129)) (T -1072)) -((-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1069 *6)) (-5 *5 (-1069 *7)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8)) (-5 *1 (-1072 *6 *7 *8))))) -((-2568 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3426 (($ $) 42 T ELT)) (-3427 (($ $) NIL T ELT)) (-3417 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-3424 (((-85) $ $) 67 T ELT)) (-3423 (((-85) $ $ (-484)) 62 T ELT)) (-3535 (($ (-484)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-446)) 11 T ELT)) (-3418 (((-583 $) $ (-117)) 76 T ELT) (((-583 $) $ (-114)) 77 T ELT)) (-1732 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-756)) ELT)) (-1730 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-756))) ELT)) (-2909 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-756)) ELT)) (-3788 (((-117) $ (-484) (-117)) 59 (|has| $ (-6 -3996)) ELT) (((-117) $ (-1146 (-484)) (-117)) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-3415 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2297 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) NIL T ELT)) (-3420 (($ $ (-1146 (-484)) $) 57 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1013))) ELT)) (-3406 (($ (-117) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1013))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1013))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3995)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 (((-117) $ (-484) (-117)) NIL (|has| $ (-6 -3996)) ELT)) (-3112 (((-117) $ (-484)) NIL T ELT)) (-3425 (((-85) $ $) 91 T ELT)) (-3419 (((-484) (-1 (-85) (-117)) $) NIL T ELT) (((-484) (-117) $) NIL (|has| (-117) (-1013)) ELT) (((-484) (-117) $ (-484)) 64 (|has| (-117) (-1013)) ELT) (((-484) $ $ (-484)) 63 T ELT) (((-484) (-114) $ (-484)) 66 T ELT)) (-2889 (((-583 (-117)) $) NIL (|has| $ (-6 -3995)) ELT)) (-3614 (($ (-694) (-117)) 14 T ELT)) (-2200 (((-484) $) 36 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-3518 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-2608 (((-583 (-117)) $) NIL T ELT)) (-3245 (((-85) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-2201 (((-484) $) 50 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-3421 (((-85) $ $ (-117)) 92 T ELT)) (-3422 (((-694) $ $ (-117)) 88 T ELT)) (-3326 (($ (-1 (-117) (-117)) $) 41 T ELT)) (-3958 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3428 (($ $) 45 T ELT)) (-3429 (($ $) NIL T ELT)) (-3416 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3242 (((-1073) $) 46 (|has| (-117) (-1013)) ELT)) (-2304 (($ (-117) $ (-484)) NIL T ELT) (($ $ $ (-484)) 31 T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) 87 (|has| (-117) (-1013)) ELT)) (-3801 (((-117) $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2199 (($ $ (-117)) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-583 (-117)) (-583 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-117) (-1013))) ELT)) (-2205 (((-583 (-117)) $) NIL T ELT)) (-3403 (((-85) $) 19 T ELT)) (-3565 (($) 16 T ELT)) (-3800 (((-117) $ (-484) (-117)) NIL T ELT) (((-117) $ (-484)) 69 T ELT) (($ $ (-1146 (-484))) 29 T ELT) (($ $ $) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1946 (((-694) (-1 (-85) (-117)) $) NIL T ELT) (((-694) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-1731 (($ $ $ (-484)) 83 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 24 T ELT)) (-3972 (((-473) $) NIL (|has| (-117) (-553 (-473))) ELT)) (-3530 (($ (-583 (-117))) NIL T ELT)) (-3802 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-583 $)) 84 T ELT)) (-3946 (($ (-117)) NIL T ELT) (((-772) $) 35 (|has| (-117) (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1948 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-3056 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-2685 (((-85) $ $) 22 (|has| (-117) (-756)) ELT)) (-3957 (((-694) $) 20 T ELT))) -(((-1073) (-13 (-1058) (-10 -8 (-15 -3535 ($ (-484))) (-15 -3535 ($ (-179))) (-15 -3535 ($ (-446)))))) (T -1073)) -((-3535 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1073)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1073)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-1073))))) -((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-2198 (((-1185) $ (-1073) (-1073)) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ (-1073) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2231 (((-3 |#1| #1="failed") (-1073) $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT)) (-3405 (($ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#1| #1#) (-1073) $) NIL T ELT)) (-3406 (($ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-1073) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-1073)) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2200 (((-1073) $) NIL (|has| (-1073) (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72))) ELT) (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT) (((-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72)) ELT)) (-2201 (((-1073) $) NIL (|has| (-1073) (-756)) ELT)) (-3326 (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL (OR (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013)) (|has| |#1| (-1013))) ELT)) (-2232 (((-583 (-1073)) $) NIL T ELT)) (-2233 (((-85) (-1073) $) NIL T ELT)) (-1274 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2203 (((-583 (-1073)) $) NIL T ELT)) (-2204 (((-85) (-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013)) (|has| |#1| (-1013))) ELT)) (-3801 ((|#1| $) NIL (|has| (-1073) (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-1073)) NIL T ELT) ((|#1| $ (-1073) |#1|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-1946 (((-694) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72))) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-72))) ELT) (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-553 (-473))) ELT)) (-3530 (($ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-3946 (((-772) $) NIL (OR (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-552 (-772))) (|has| |#1| (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-1074 |#1|) (-1107 (-1073) |#1|) (-1013)) (T -1074)) -NIL -((-3805 (((-1069 |#1|) (-1069 |#1|)) 83 T ELT)) (-3467 (((-3 (-1069 |#1|) #1="failed") (-1069 |#1|)) 39 T ELT)) (-3478 (((-1069 |#1|) (-350 (-484)) (-1069 |#1|)) 131 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3481 (((-1069 |#1|) |#1| (-1069 |#1|)) 135 (|has| |#1| (-312)) ELT)) (-3808 (((-1069 |#1|) (-1069 |#1|)) 97 T ELT)) (-3469 (((-1069 (-484)) (-484)) 63 T ELT)) (-3477 (((-1069 |#1|) (-1069 (-1069 |#1|))) 116 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3804 (((-1069 |#1|) (-484) (-484) (-1069 |#1|)) 103 T ELT)) (-3938 (((-1069 |#1|) |#1| (-484)) 51 T ELT)) (-3471 (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 66 T ELT)) (-3479 (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 133 (|has| |#1| (-312)) ELT)) (-3476 (((-1069 |#1|) |#1| (-1 (-1069 |#1|))) 115 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3480 (((-1069 |#1|) (-1 |#1| (-484)) |#1| (-1 (-1069 |#1|))) 134 (|has| |#1| (-312)) ELT)) (-3809 (((-1069 |#1|) (-1069 |#1|)) 96 T ELT)) (-3810 (((-1069 |#1|) (-1069 |#1|)) 82 T ELT)) (-3803 (((-1069 |#1|) (-484) (-484) (-1069 |#1|)) 104 T ELT)) (-3812 (((-1069 |#1|) |#1| (-1069 |#1|)) 113 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3468 (((-1069 (-484)) (-484)) 62 T ELT)) (-3470 (((-1069 |#1|) |#1|) 65 T ELT)) (-3806 (((-1069 |#1|) (-1069 |#1|) (-484) (-484)) 100 T ELT)) (-3473 (((-1069 |#1|) (-1 |#1| (-484)) (-1069 |#1|)) 72 T ELT)) (-3466 (((-3 (-1069 |#1|) #1#) (-1069 |#1|) (-1069 |#1|)) 37 T ELT)) (-3807 (((-1069 |#1|) (-1069 |#1|)) 98 T ELT)) (-3768 (((-1069 |#1|) (-1069 |#1|) |#1|) 77 T ELT)) (-3472 (((-1069 |#1|) (-1069 |#1|)) 68 T ELT)) (-3474 (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 78 T ELT)) (-3946 (((-1069 |#1|) |#1|) 73 T ELT)) (-3475 (((-1069 |#1|) (-1069 (-1069 |#1|))) 88 T ELT)) (-3949 (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 38 T ELT)) (-3837 (((-1069 |#1|) (-1069 |#1|)) 21 T ELT) (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 23 T ELT)) (-3839 (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 17 T ELT)) (* (((-1069 |#1|) (-1069 |#1|) |#1|) 29 T ELT) (((-1069 |#1|) |#1| (-1069 |#1|)) 26 T ELT) (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 27 T ELT))) -(((-1075 |#1|) (-10 -7 (-15 -3839 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3837 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3837 ((-1069 |#1|) (-1069 |#1|))) (-15 * ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 * ((-1069 |#1|) |#1| (-1069 |#1|))) (-15 * ((-1069 |#1|) (-1069 |#1|) |#1|)) (-15 -3466 ((-3 (-1069 |#1|) #1="failed") (-1069 |#1|) (-1069 |#1|))) (-15 -3949 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3467 ((-3 (-1069 |#1|) #1#) (-1069 |#1|))) (-15 -3938 ((-1069 |#1|) |#1| (-484))) (-15 -3468 ((-1069 (-484)) (-484))) (-15 -3469 ((-1069 (-484)) (-484))) (-15 -3470 ((-1069 |#1|) |#1|)) (-15 -3471 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3472 ((-1069 |#1|) (-1069 |#1|))) (-15 -3473 ((-1069 |#1|) (-1 |#1| (-484)) (-1069 |#1|))) (-15 -3946 ((-1069 |#1|) |#1|)) (-15 -3768 ((-1069 |#1|) (-1069 |#1|) |#1|)) (-15 -3474 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3810 ((-1069 |#1|) (-1069 |#1|))) (-15 -3805 ((-1069 |#1|) (-1069 |#1|))) (-15 -3475 ((-1069 |#1|) (-1069 (-1069 |#1|)))) (-15 -3809 ((-1069 |#1|) (-1069 |#1|))) (-15 -3808 ((-1069 |#1|) (-1069 |#1|))) (-15 -3807 ((-1069 |#1|) (-1069 |#1|))) (-15 -3806 ((-1069 |#1|) (-1069 |#1|) (-484) (-484))) (-15 -3804 ((-1069 |#1|) (-484) (-484) (-1069 |#1|))) (-15 -3803 ((-1069 |#1|) (-484) (-484) (-1069 |#1|))) (IF (|has| |#1| (-38 (-350 (-484)))) (PROGN (-15 -3812 ((-1069 |#1|) |#1| (-1069 |#1|))) (-15 -3476 ((-1069 |#1|) |#1| (-1 (-1069 |#1|)))) (-15 -3477 ((-1069 |#1|) (-1069 (-1069 |#1|)))) (-15 -3478 ((-1069 |#1|) (-350 (-484)) (-1069 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3479 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3480 ((-1069 |#1|) (-1 |#1| (-484)) |#1| (-1 (-1069 |#1|)))) (-15 -3481 ((-1069 |#1|) |#1| (-1069 |#1|)))) |%noBranch|)) (-961)) (T -1075)) -((-3481 (*1 *2 *3 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3480 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-484))) (-5 *5 (-1 (-1069 *4))) (-4 *4 (-312)) (-4 *4 (-961)) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4)))) (-3479 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3478 (*1 *2 *3 *2) (-12 (-5 *2 (-1069 *4)) (-4 *4 (-38 *3)) (-4 *4 (-961)) (-5 *3 (-350 (-484))) (-5 *1 (-1075 *4)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4)) (-4 *4 (-38 (-350 (-484)))) (-4 *4 (-961)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1069 *3))) (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)))) (-3812 (*1 *2 *3 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3803 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1075 *4)))) (-3804 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1075 *4)))) (-3806 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1075 *4)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3475 (*1 *2 *3) (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4)) (-4 *4 (-961)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3474 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3768 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3946 (*1 *2 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961)))) (-3473 (*1 *2 *3 *2) (-12 (-5 *2 (-1069 *4)) (-5 *3 (-1 *4 (-484))) (-4 *4 (-961)) (-5 *1 (-1075 *4)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3471 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3470 (*1 *2 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961)))) (-3469 (*1 *2 *3) (-12 (-5 *2 (-1069 (-484))) (-5 *1 (-1075 *4)) (-4 *4 (-961)) (-5 *3 (-484)))) (-3468 (*1 *2 *3) (-12 (-5 *2 (-1069 (-484))) (-5 *1 (-1075 *4)) (-4 *4 (-961)) (-5 *3 (-484)))) (-3938 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961)))) (-3467 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3949 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3466 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3837 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3839 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))) -((-3492 (((-1069 |#1|) (-1069 |#1|)) 102 T ELT)) (-3639 (((-1069 |#1|) (-1069 |#1|)) 59 T ELT)) (-3483 (((-2 (|:| -3490 (-1069 |#1|)) (|:| -3491 (-1069 |#1|))) (-1069 |#1|)) 98 T ELT)) (-3490 (((-1069 |#1|) (-1069 |#1|)) 99 T ELT)) (-3482 (((-2 (|:| -3638 (-1069 |#1|)) (|:| -3634 (-1069 |#1|))) (-1069 |#1|)) 54 T ELT)) (-3638 (((-1069 |#1|) (-1069 |#1|)) 55 T ELT)) (-3494 (((-1069 |#1|) (-1069 |#1|)) 104 T ELT)) (-3637 (((-1069 |#1|) (-1069 |#1|)) 66 T ELT)) (-3942 (((-1069 |#1|) (-1069 |#1|)) 40 T ELT)) (-3943 (((-1069 |#1|) (-1069 |#1|)) 37 T ELT)) (-3495 (((-1069 |#1|) (-1069 |#1|)) 105 T ELT)) (-3636 (((-1069 |#1|) (-1069 |#1|)) 67 T ELT)) (-3493 (((-1069 |#1|) (-1069 |#1|)) 103 T ELT)) (-3635 (((-1069 |#1|) (-1069 |#1|)) 62 T ELT)) (-3491 (((-1069 |#1|) (-1069 |#1|)) 100 T ELT)) (-3634 (((-1069 |#1|) (-1069 |#1|)) 56 T ELT)) (-3498 (((-1069 |#1|) (-1069 |#1|)) 113 T ELT)) (-3486 (((-1069 |#1|) (-1069 |#1|)) 88 T ELT)) (-3496 (((-1069 |#1|) (-1069 |#1|)) 107 T ELT)) (-3484 (((-1069 |#1|) (-1069 |#1|)) 84 T ELT)) (-3500 (((-1069 |#1|) (-1069 |#1|)) 117 T ELT)) (-3488 (((-1069 |#1|) (-1069 |#1|)) 92 T ELT)) (-3501 (((-1069 |#1|) (-1069 |#1|)) 119 T ELT)) (-3489 (((-1069 |#1|) (-1069 |#1|)) 94 T ELT)) (-3499 (((-1069 |#1|) (-1069 |#1|)) 115 T ELT)) (-3487 (((-1069 |#1|) (-1069 |#1|)) 90 T ELT)) (-3497 (((-1069 |#1|) (-1069 |#1|)) 109 T ELT)) (-3485 (((-1069 |#1|) (-1069 |#1|)) 86 T ELT)) (** (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 41 T ELT))) -(((-1076 |#1|) (-10 -7 (-15 -3943 ((-1069 |#1|) (-1069 |#1|))) (-15 -3942 ((-1069 |#1|) (-1069 |#1|))) (-15 ** ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3482 ((-2 (|:| -3638 (-1069 |#1|)) (|:| -3634 (-1069 |#1|))) (-1069 |#1|))) (-15 -3638 ((-1069 |#1|) (-1069 |#1|))) (-15 -3634 ((-1069 |#1|) (-1069 |#1|))) (-15 -3639 ((-1069 |#1|) (-1069 |#1|))) (-15 -3635 ((-1069 |#1|) (-1069 |#1|))) (-15 -3637 ((-1069 |#1|) (-1069 |#1|))) (-15 -3636 ((-1069 |#1|) (-1069 |#1|))) (-15 -3484 ((-1069 |#1|) (-1069 |#1|))) (-15 -3485 ((-1069 |#1|) (-1069 |#1|))) (-15 -3486 ((-1069 |#1|) (-1069 |#1|))) (-15 -3487 ((-1069 |#1|) (-1069 |#1|))) (-15 -3488 ((-1069 |#1|) (-1069 |#1|))) (-15 -3489 ((-1069 |#1|) (-1069 |#1|))) (-15 -3483 ((-2 (|:| -3490 (-1069 |#1|)) (|:| -3491 (-1069 |#1|))) (-1069 |#1|))) (-15 -3490 ((-1069 |#1|) (-1069 |#1|))) (-15 -3491 ((-1069 |#1|) (-1069 |#1|))) (-15 -3492 ((-1069 |#1|) (-1069 |#1|))) (-15 -3493 ((-1069 |#1|) (-1069 |#1|))) (-15 -3494 ((-1069 |#1|) (-1069 |#1|))) (-15 -3495 ((-1069 |#1|) (-1069 |#1|))) (-15 -3496 ((-1069 |#1|) (-1069 |#1|))) (-15 -3497 ((-1069 |#1|) (-1069 |#1|))) (-15 -3498 ((-1069 |#1|) (-1069 |#1|))) (-15 -3499 ((-1069 |#1|) (-1069 |#1|))) (-15 -3500 ((-1069 |#1|) (-1069 |#1|))) (-15 -3501 ((-1069 |#1|) (-1069 |#1|)))) (-38 (-350 (-484)))) (T -1076)) -((-3501 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3483 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-484)))) (-5 *2 (-2 (|:| -3490 (-1069 *4)) (|:| -3491 (-1069 *4)))) (-5 *1 (-1076 *4)) (-5 *3 (-1069 *4)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3482 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-484)))) (-5 *2 (-2 (|:| -3638 (-1069 *4)) (|:| -3634 (-1069 *4)))) (-5 *1 (-1076 *4)) (-5 *3 (-1069 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3942 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))) -((-3492 (((-1069 |#1|) (-1069 |#1|)) 60 T ELT)) (-3639 (((-1069 |#1|) (-1069 |#1|)) 42 T ELT)) (-3490 (((-1069 |#1|) (-1069 |#1|)) 56 T ELT)) (-3638 (((-1069 |#1|) (-1069 |#1|)) 38 T ELT)) (-3494 (((-1069 |#1|) (-1069 |#1|)) 63 T ELT)) (-3637 (((-1069 |#1|) (-1069 |#1|)) 45 T ELT)) (-3942 (((-1069 |#1|) (-1069 |#1|)) 34 T ELT)) (-3943 (((-1069 |#1|) (-1069 |#1|)) 29 T ELT)) (-3495 (((-1069 |#1|) (-1069 |#1|)) 64 T ELT)) (-3636 (((-1069 |#1|) (-1069 |#1|)) 46 T ELT)) (-3493 (((-1069 |#1|) (-1069 |#1|)) 61 T ELT)) (-3635 (((-1069 |#1|) (-1069 |#1|)) 43 T ELT)) (-3491 (((-1069 |#1|) (-1069 |#1|)) 58 T ELT)) (-3634 (((-1069 |#1|) (-1069 |#1|)) 40 T ELT)) (-3498 (((-1069 |#1|) (-1069 |#1|)) 68 T ELT)) (-3486 (((-1069 |#1|) (-1069 |#1|)) 50 T ELT)) (-3496 (((-1069 |#1|) (-1069 |#1|)) 66 T ELT)) (-3484 (((-1069 |#1|) (-1069 |#1|)) 48 T ELT)) (-3500 (((-1069 |#1|) (-1069 |#1|)) 71 T ELT)) (-3488 (((-1069 |#1|) (-1069 |#1|)) 53 T ELT)) (-3501 (((-1069 |#1|) (-1069 |#1|)) 72 T ELT)) (-3489 (((-1069 |#1|) (-1069 |#1|)) 54 T ELT)) (-3499 (((-1069 |#1|) (-1069 |#1|)) 70 T ELT)) (-3487 (((-1069 |#1|) (-1069 |#1|)) 52 T ELT)) (-3497 (((-1069 |#1|) (-1069 |#1|)) 69 T ELT)) (-3485 (((-1069 |#1|) (-1069 |#1|)) 51 T ELT)) (** (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 36 T ELT))) -(((-1077 |#1|) (-10 -7 (-15 -3943 ((-1069 |#1|) (-1069 |#1|))) (-15 -3942 ((-1069 |#1|) (-1069 |#1|))) (-15 ** ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3638 ((-1069 |#1|) (-1069 |#1|))) (-15 -3634 ((-1069 |#1|) (-1069 |#1|))) (-15 -3639 ((-1069 |#1|) (-1069 |#1|))) (-15 -3635 ((-1069 |#1|) (-1069 |#1|))) (-15 -3637 ((-1069 |#1|) (-1069 |#1|))) (-15 -3636 ((-1069 |#1|) (-1069 |#1|))) (-15 -3484 ((-1069 |#1|) (-1069 |#1|))) (-15 -3485 ((-1069 |#1|) (-1069 |#1|))) (-15 -3486 ((-1069 |#1|) (-1069 |#1|))) (-15 -3487 ((-1069 |#1|) (-1069 |#1|))) (-15 -3488 ((-1069 |#1|) (-1069 |#1|))) (-15 -3489 ((-1069 |#1|) (-1069 |#1|))) (-15 -3490 ((-1069 |#1|) (-1069 |#1|))) (-15 -3491 ((-1069 |#1|) (-1069 |#1|))) (-15 -3492 ((-1069 |#1|) (-1069 |#1|))) (-15 -3493 ((-1069 |#1|) (-1069 |#1|))) (-15 -3494 ((-1069 |#1|) (-1069 |#1|))) (-15 -3495 ((-1069 |#1|) (-1069 |#1|))) (-15 -3496 ((-1069 |#1|) (-1069 |#1|))) (-15 -3497 ((-1069 |#1|) (-1069 |#1|))) (-15 -3498 ((-1069 |#1|) (-1069 |#1|))) (-15 -3499 ((-1069 |#1|) (-1069 |#1|))) (-15 -3500 ((-1069 |#1|) (-1069 |#1|))) (-15 -3501 ((-1069 |#1|) (-1069 |#1|)))) (-38 (-350 (-484)))) (T -1077)) -((-3501 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3942 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) -((-3502 (((-869 |#2|) |#2| |#2|) 51 T ELT)) (-3503 ((|#2| |#2| |#1|) 19 (|has| |#1| (-258)) ELT))) -(((-1078 |#1| |#2|) (-10 -7 (-15 -3502 ((-869 |#2|) |#2| |#2|)) (IF (|has| |#1| (-258)) (-15 -3503 (|#2| |#2| |#1|)) |%noBranch|)) (-495) (-1155 |#1|)) (T -1078)) -((-3503 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-4 *3 (-495)) (-5 *1 (-1078 *3 *2)) (-4 *2 (-1155 *3)))) (-3502 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-869 *3)) (-5 *1 (-1078 *4 *3)) (-4 *3 (-1155 *4))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3511 (($ $ (-583 (-694))) 79 T ELT)) (-3888 (($) 33 T ELT)) (-3520 (($ $) 51 T ELT)) (-3751 (((-583 $) $) 60 T ELT)) (-3526 (((-85) $) 19 T ELT)) (-3504 (((-583 (-854 |#2|)) $) 86 T ELT)) (-3505 (($ $) 80 T ELT)) (-3521 (((-694) $) 47 T ELT)) (-3614 (($) 32 T ELT)) (-3514 (($ $ (-583 (-694)) (-854 |#2|)) 72 T ELT) (($ $ (-583 (-694)) (-694)) 73 T ELT) (($ $ (-694) (-854 |#2|)) 75 T ELT)) (-3518 (($ $ $) 57 T ELT) (($ (-583 $)) 59 T ELT)) (-3506 (((-694) $) 87 T ELT)) (-3527 (((-85) $) 15 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3525 (((-85) $) 22 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3507 (((-145) $) 85 T ELT)) (-3510 (((-854 |#2|) $) 81 T ELT)) (-3509 (((-694) $) 82 T ELT)) (-3508 (((-85) $) 84 T ELT)) (-3512 (($ $ (-583 (-694)) (-145)) 78 T ELT)) (-3519 (($ $) 52 T ELT)) (-3946 (((-772) $) 99 T ELT)) (-3513 (($ $ (-583 (-694)) (-85)) 77 T ELT)) (-3522 (((-583 $) $) 11 T ELT)) (-3523 (($ $ (-694)) 46 T ELT)) (-3524 (($ $) 43 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3515 (($ $ $ (-854 |#2|) (-694)) 68 T ELT)) (-3516 (($ $ (-854 |#2|)) 67 T ELT)) (-3517 (($ $ (-583 (-694)) (-854 |#2|)) 66 T ELT) (($ $ (-583 (-694)) (-694)) 70 T ELT) (((-694) $ (-854 |#2|)) 71 T ELT)) (-3056 (((-85) $ $) 92 T ELT))) -(((-1079 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3527 ((-85) $)) (-15 -3526 ((-85) $)) (-15 -3525 ((-85) $)) (-15 -3614 ($)) (-15 -3888 ($)) (-15 -3524 ($ $)) (-15 -3523 ($ $ (-694))) (-15 -3522 ((-583 $) $)) (-15 -3521 ((-694) $)) (-15 -3520 ($ $)) (-15 -3519 ($ $)) (-15 -3518 ($ $ $)) (-15 -3518 ($ (-583 $))) (-15 -3751 ((-583 $) $)) (-15 -3517 ($ $ (-583 (-694)) (-854 |#2|))) (-15 -3516 ($ $ (-854 |#2|))) (-15 -3515 ($ $ $ (-854 |#2|) (-694))) (-15 -3514 ($ $ (-583 (-694)) (-854 |#2|))) (-15 -3517 ($ $ (-583 (-694)) (-694))) (-15 -3514 ($ $ (-583 (-694)) (-694))) (-15 -3517 ((-694) $ (-854 |#2|))) (-15 -3514 ($ $ (-694) (-854 |#2|))) (-15 -3513 ($ $ (-583 (-694)) (-85))) (-15 -3512 ($ $ (-583 (-694)) (-145))) (-15 -3511 ($ $ (-583 (-694)))) (-15 -3510 ((-854 |#2|) $)) (-15 -3509 ((-694) $)) (-15 -3508 ((-85) $)) (-15 -3507 ((-145) $)) (-15 -3506 ((-694) $)) (-15 -3505 ($ $)) (-15 -3504 ((-583 (-854 |#2|)) $)))) (-830) (-961)) (T -1079)) -((-3527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3614 (*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3888 (*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3524 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-583 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3520 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3519 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3518 (*1 *1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3518 (*1 *1 *2) (-12 (-5 *2 (-583 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3751 (*1 *2 *1) (-12 (-5 *2 (-583 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)))) (-3516 (*1 *1 *1 *2) (-12 (-5 *2 (-854 *4)) (-4 *4 (-961)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)))) (-3515 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-854 *5)) (-5 *3 (-694)) (-4 *5 (-961)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3517 (*1 *2 *1 *3) (-12 (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *2 (-694)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)))) (-3513 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-85)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3512 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-145)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3511 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-854 *4)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3505 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-583 (-854 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3528 ((|#2| $) 11 T ELT)) (-3529 ((|#1| $) 10 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3530 (($ |#1| |#2|) 9 T ELT)) (-3946 (((-772) $) 16 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1080 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3530 ($ |#1| |#2|)) (-15 -3529 (|#1| $)) (-15 -3528 (|#2| $)))) (-1013) (-1013)) (T -1080)) -((-3530 (*1 *1 *2 *3) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3529 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1013)))) (-3528 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1080 *3 *2)) (-4 *3 (-1013))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3531 (((-1049) $) 10 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 16 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1081) (-13 (-995) (-10 -8 (-15 -3531 ((-1049) $))))) (T -1081)) -((-3531 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1081))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-1089 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3831 (((-1090) $) 11 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2063 (($ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2061 (((-85) $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3771 (($ $ (-484)) NIL T ELT) (($ $ (-484) (-484)) 75 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) NIL T ELT)) (-3731 (((-1089 |#1| |#2| |#3|) $) 42 T ELT)) (-3728 (((-3 (-1089 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3729 (((-1089 |#1| |#2| |#3|) $) 33 T ELT)) (-3492 (($ $) 116 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 92 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) 112 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 88 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3623 (((-484) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) NIL T ELT)) (-3494 (($ $) 120 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 96 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-1089 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1090) #1#) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-1090))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3156 (((-1089 |#1| |#2| |#3|) $) 140 T ELT) (((-1090) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-1090))) (|has| |#1| (-312))) ELT) (((-350 (-484)) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-484) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3730 (($ $) 37 T ELT) (($ (-484) $) 38 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-2279 (((-630 (-1089 |#1| |#2| |#3|)) (-630 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1089 |#1| |#2| |#3|))) (|:| |vec| (-1179 (-1089 |#1| |#2| |#3|)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-3467 (((-3 $ #1#) $) 54 T ELT)) (-3727 (((-350 (-857 |#1|)) $ (-484)) 74 (|has| |#1| (-495)) ELT) (((-350 (-857 |#1|)) $ (-484) (-484)) 76 (|has| |#1| (-495)) ELT)) (-2994 (($) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3186 (((-85) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2892 (((-85) $) 28 T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-796 (-330))) (|has| |#1| (-312))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-796 (-484))) (|has| |#1| (-312))) ELT)) (-3772 (((-484) $) NIL T ELT) (((-484) $ (-484)) 26 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 (((-1089 |#1| |#2| |#3|) $) 44 (|has| |#1| (-312)) ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3445 (((-632 $) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-312))) ELT)) (-3187 (((-85) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3777 (($ $ (-830)) NIL T ELT)) (-3815 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-484)) 19 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-2531 (($ $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2857 (($ $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) 81 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2280 (((-630 (-1089 |#1| |#2| |#3|)) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1089 |#1| |#2| |#3|))) (|:| |vec| (-1179 (-1089 |#1| |#2| |#3|)))) (-1179 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-1179 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3779 (($ (-484) (-1089 |#1| |#2| |#3|)) 36 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3812 (($ $) 79 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3081 ((-583 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 80 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3446 (($) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-312))) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3128 (($ $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3130 (((-1089 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-484)) 158 T ELT)) (-3466 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) 82 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1090) (-1089 |#1| |#2| |#3|)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-455 (-1090) (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1090)) (-583 (-1089 |#1| |#2| |#3|))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-455 (-1090) (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-249 (-1089 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1089 |#1| |#2| |#3|))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1089 |#1| |#2| |#3|)) (-583 (-1089 |#1| |#2| |#3|))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-484)) NIL T ELT) (($ $ $) 61 (|has| (-484) (-1025)) ELT) (($ $ (-1089 |#1| |#2| |#3|)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-241 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1176 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2995 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2997 (((-1089 |#1| |#2| |#3|) $) 46 (|has| |#1| (-312)) ELT)) (-3948 (((-484) $) 43 T ELT)) (-3495 (($ $) 122 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 98 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) 118 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 94 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) 114 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) 90 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3972 (((-473) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-553 (-473))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-800 (-330)) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-553 (-800 (-330)))) (|has| |#1| (-312))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-553 (-800 (-484)))) (|has| |#1| (-312))) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2891 (($ $) NIL T ELT)) (-3946 (((-772) $) 162 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1089 |#1| |#2| |#3|)) 30 T ELT) (($ (-1176 |#2|)) 25 T ELT) (($ (-1090)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-1090))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT) (($ (-350 (-484))) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-484))))) ELT)) (-3677 ((|#1| $ (-484)) 77 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3773 ((|#1| $) 12 T ELT)) (-3131 (((-1089 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 128 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 104 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3496 (($ $) 124 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) 100 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 132 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 108 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 134 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 110 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) 130 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 106 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) 126 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 102 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3383 (($ $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 16 T CONST)) (-2669 (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1176 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2566 (((-85) $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2685 (((-85) $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 49 (|has| |#1| (-312)) ELT) (($ (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) 50 (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 23 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 60 T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 137 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1089 |#1| |#2| |#3|)) 48 (|has| |#1| (-312)) ELT) (($ (-1089 |#1| |#2| |#3|) $) 47 (|has| |#1| (-312)) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-1082 |#1| |#2| |#3|) (-13 (-1143 |#1| (-1089 |#1| |#2| |#3|)) (-806 $ (-1176 |#2|)) (-10 -8 (-15 -3946 ($ (-1176 |#2|))) (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3812 ($ $ (-1176 |#2|))) |%noBranch|))) (-961) (-1090) |#1|) (T -1082)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))) -((-3532 ((|#2| |#2| (-1004 |#2|)) 26 T ELT) ((|#2| |#2| (-1090)) 28 T ELT))) -(((-1083 |#1| |#2|) (-10 -7 (-15 -3532 (|#2| |#2| (-1090))) (-15 -3532 (|#2| |#2| (-1004 |#2|)))) (-13 (-495) (-950 (-484)) (-580 (-484))) (-13 (-364 |#1|) (-133) (-27) (-1115))) (T -1083)) -((-3532 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1115))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1083 *4 *2)))) (-3532 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1083 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1115)))))) -((-3532 (((-3 (-350 (-857 |#1|)) (-265 |#1|)) (-350 (-857 |#1|)) (-1004 (-350 (-857 |#1|)))) 31 T ELT) (((-350 (-857 |#1|)) (-857 |#1|) (-1004 (-857 |#1|))) 44 T ELT) (((-3 (-350 (-857 |#1|)) (-265 |#1|)) (-350 (-857 |#1|)) (-1090)) 33 T ELT) (((-350 (-857 |#1|)) (-857 |#1|) (-1090)) 36 T ELT))) -(((-1084 |#1|) (-10 -7 (-15 -3532 ((-350 (-857 |#1|)) (-857 |#1|) (-1090))) (-15 -3532 ((-3 (-350 (-857 |#1|)) (-265 |#1|)) (-350 (-857 |#1|)) (-1090))) (-15 -3532 ((-350 (-857 |#1|)) (-857 |#1|) (-1004 (-857 |#1|)))) (-15 -3532 ((-3 (-350 (-857 |#1|)) (-265 |#1|)) (-350 (-857 |#1|)) (-1004 (-350 (-857 |#1|)))))) (-13 (-495) (-950 (-484)))) (T -1084)) -((-3532 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-350 (-857 *5)))) (-5 *3 (-350 (-857 *5))) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-3 *3 (-265 *5))) (-5 *1 (-1084 *5)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-857 *5))) (-5 *3 (-857 *5)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-350 *3)) (-5 *1 (-1084 *5)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-3 (-350 (-857 *5)) (-265 *5))) (-5 *1 (-1084 *5)) (-5 *3 (-350 (-857 *5))))) (-3532 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-350 (-857 *5))) (-5 *1 (-1084 *5)) (-5 *3 (-857 *5))))) -((-2568 (((-85) $ $) 172 T ELT)) (-3188 (((-85) $) 44 T ELT)) (-3767 (((-1179 |#1|) $ (-694)) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3765 (($ (-1085 |#1|)) NIL T ELT)) (-3083 (((-1085 $) $ (-994)) 83 T ELT) (((-1085 |#1|) $) 72 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) 166 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3755 (($ $ $) 160 (|has| |#1| (-495)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 97 (|has| |#1| (-821)) ELT)) (-3775 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) 117 (|has| |#1| (-821)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-694)) 62 T ELT)) (-3760 (($ $ (-694)) 64 T ELT)) (-3751 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3156 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-994) $) NIL T ELT)) (-3756 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) 81 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ $) 133 T ELT)) (-3753 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3752 (((-2 (|:| -3954 |#1|) (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3503 (($ $) 167 (|has| |#1| (-392)) ELT) (($ $ (-994)) NIL (|has| |#1| (-392)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-694) $) 70 T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-994) (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3533 (((-772) $ (-772)) 150 T ELT)) (-3772 (((-694) $ $) NIL (|has| |#1| (-495)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 49 T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3445 (((-632 $) $) NIL (|has| |#1| (-1066)) ELT)) (-3084 (($ (-1085 |#1|) (-994)) 74 T ELT) (($ (-1085 $) (-994)) 91 T ELT)) (-3777 (($ $ (-694)) 52 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) 89 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 155 T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1625 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3766 (((-1085 |#1|) $) NIL T ELT)) (-3082 (((-3 (-994) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) 77 T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) 61 T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3812 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3446 (($) NIL (|has| |#1| (-1066)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) 51 T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 105 (|has| |#1| (-392)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) 169 (|has| |#1| (-392)) ELT)) (-3738 (($ $ (-694) |#1| $) 125 T ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) 103 (|has| |#1| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 102 (|has| |#1| (-821)) ELT)) (-3732 (((-348 $) $) 110 (|has| |#1| (-821)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-495)) ELT)) (-3764 (((-3 $ #1#) $ (-694)) 55 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 173 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3948 (((-694) $) 79 T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3972 (((-800 (-330)) $) NIL (-12 (|has| (-994) (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) 164 (|has| |#1| (-392)) ELT) (($ $ (-994)) NIL (|has| |#1| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3754 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-495)) ELT)) (-3946 (((-772) $) 151 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-994)) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3817 (((-583 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) 42 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 18 T CONST)) (-2666 (($) 20 T CONST)) (-2669 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3056 (((-85) $ $) 122 T ELT)) (-3949 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 92 T ELT)) (** (($ $ (-830)) 14 T ELT) (($ $ (-694)) 12 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1085 |#1|) (-13 (-1155 |#1|) (-10 -8 (-15 -3533 ((-772) $ (-772))) (-15 -3738 ($ $ (-694) |#1| $)))) (-961)) (T -1085)) -((-3533 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1085 *3)) (-4 *3 (-961)))) (-3738 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1085 *3)) (-4 *3 (-961))))) -((-3958 (((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)) 13 T ELT))) -(((-1086 |#1| |#2|) (-10 -7 (-15 -3958 ((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)))) (-961) (-961)) (T -1086)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1085 *6)) (-5 *1 (-1086 *5 *6))))) -((-3971 (((-348 (-1085 (-350 |#4|))) (-1085 (-350 |#4|))) 51 T ELT)) (-3732 (((-348 (-1085 (-350 |#4|))) (-1085 (-350 |#4|))) 52 T ELT))) -(((-1087 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3732 ((-348 (-1085 (-350 |#4|))) (-1085 (-350 |#4|)))) (-15 -3971 ((-348 (-1085 (-350 |#4|))) (-1085 (-350 |#4|))))) (-717) (-756) (-392) (-861 |#3| |#1| |#2|)) (T -1087)) -((-3971 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-392)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-348 (-1085 (-350 *7)))) (-5 *1 (-1087 *4 *5 *6 *7)) (-5 *3 (-1085 (-350 *7))))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-392)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-348 (-1085 (-350 *7)))) (-5 *1 (-1087 *4 *5 *6 *7)) (-5 *3 (-1085 (-350 *7)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3831 (((-1090) $) 11 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3771 (($ $ (-350 (-484))) NIL T ELT) (($ $ (-350 (-484)) (-350 (-484))) NIL T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3818 (($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-1082 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1089 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3156 (((-1082 |#1| |#2| |#3|) $) NIL T ELT) (((-1089 |#1| |#2| |#3|) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3781 (((-350 (-484)) $) 59 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (($ (-350 (-484)) (-1082 |#1| |#2| |#3|)) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3772 (((-350 (-484)) $) NIL T ELT) (((-350 (-484)) $ (-350 (-484))) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3777 (($ $ (-830)) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-350 (-484))) 20 T ELT) (($ $ (-994) (-350 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-350 (-484)))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (((-1082 |#1| |#2| |#3|) $) 41 T ELT)) (-3778 (((-3 (-1082 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3779 (((-1082 |#1| |#2| |#3|) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3812 (($ $) 39 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3081 ((-583 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 40 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-350 (-484))) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-350 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-1176 |#2|)) 38 T ELT)) (-3948 (((-350 (-484)) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2891 (($ $) NIL T ELT)) (-3946 (((-772) $) 62 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1082 |#1| |#2| |#3|)) 30 T ELT) (($ (-1089 |#1| |#2| |#3|)) 31 T ELT) (($ (-1176 |#2|)) 26 T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3677 ((|#1| $ (-350 (-484))) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3773 ((|#1| $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 ((|#1| $ (-350 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2660 (($) 22 T CONST)) (-2666 (($) 16 T CONST)) (-2669 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-1176 |#2|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 24 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-1088 |#1| |#2| |#3|) (-13 (-1164 |#1| (-1082 |#1| |#2| |#3|)) (-806 $ (-1176 |#2|)) (-950 (-1089 |#1| |#2| |#3|)) (-555 (-1176 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3812 ($ $ (-1176 |#2|))) |%noBranch|))) (-961) (-1090) |#1|) (T -1088)) -((-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 129 T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3831 (((-1090) $) 119 T ELT)) (-3811 (((-1148 |#2| |#1|) $ (-694)) 69 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3771 (($ $ (-694)) 85 T ELT) (($ $ (-694) (-694)) 82 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 105 T ELT)) (-3492 (($ $) 173 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 149 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) 169 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 145 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1069 |#1|)) 113 T ELT)) (-3494 (($ $) 177 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 153 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 25 T ELT)) (-3816 (($ $) 28 T ELT)) (-3814 (((-857 |#1|) $ (-694)) 81 T ELT) (((-857 |#1|) $ (-694) (-694)) 83 T ELT)) (-2892 (((-85) $) 124 T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3772 (((-694) $) 126 T ELT) (((-694) $ (-694)) 128 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3777 (($ $ (-830)) NIL T ELT)) (-3815 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) 13 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ $) 135 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3812 (($ $) 133 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3081 ((-583 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 134 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3769 (($ $ (-694)) 15 T ELT)) (-3466 (((-3 $ #1#) $ $) 26 (|has| |#1| (-495)) ELT)) (-3943 (($ $) 137 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3800 ((|#1| $ (-694)) 122 T ELT) (($ $ $) 132 (|has| (-694) (-1025)) ELT)) (-3758 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1176 |#2|)) 31 T ELT)) (-3948 (((-694) $) NIL T ELT)) (-3495 (($ $) 179 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 155 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) 175 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2891 (($ $) NIL T ELT)) (-3946 (((-772) $) 206 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1148 |#2| |#1|)) 55 T ELT) (($ (-1176 |#2|)) 36 T ELT)) (-3817 (((-1069 |#1|) $) 101 T ELT)) (-3677 ((|#1| $ (-694)) 121 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3773 ((|#1| $) 58 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 185 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3496 (($ $) 181 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 189 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 ((|#1| $ (-694)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 191 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) 187 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 163 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) 183 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2660 (($) 17 T CONST)) (-2666 (($) 20 T CONST)) (-2669 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1176 |#2|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3839 (($ $ $) 35 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-312)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 141 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-1089 |#1| |#2| |#3|) (-13 (-1172 |#1|) (-806 $ (-1176 |#2|)) (-10 -8 (-15 -3946 ($ (-1148 |#2| |#1|))) (-15 -3811 ((-1148 |#2| |#1|) $ (-694))) (-15 -3946 ($ (-1176 |#2|))) (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3812 ($ $ (-1176 |#2|))) |%noBranch|))) (-961) (-1090) |#1|) (T -1089)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-1089 *3 *4 *5)))) (-3811 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1089 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1090)) (-14 *6 *4))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3537 (($ $ (-583 (-772))) 48 T ELT)) (-3538 (($ $ (-583 (-772))) 46 T ELT)) (-3535 (((-1073) $) 88 T ELT)) (-3540 (((-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772)))) $) 95 T ELT)) (-3541 (((-85) $) 86 T ELT)) (-3539 (($ $ (-583 (-583 (-772)))) 45 T ELT) (($ $ (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772))))) 85 T ELT)) (-3724 (($) 151 T CONST)) (-3157 (((-3 (-446) "failed") $) 155 T ELT)) (-3156 (((-446) $) NIL T ELT)) (-3543 (((-1185)) 123 T ELT)) (-2796 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 55 T ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 62 T ELT)) (-3614 (($) 109 T ELT) (($ $) 118 T ELT)) (-3542 (($ $) 87 T ELT)) (-2531 (($ $ $) NIL T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3534 (((-583 $) $) 124 T ELT)) (-3242 (((-1073) $) 101 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3800 (($ $ (-583 (-772))) 47 T ELT)) (-3972 (((-473) $) 33 T ELT) (((-1090) $) 34 T ELT) (((-800 (-484)) $) 66 T ELT) (((-800 (-330)) $) 64 T ELT)) (-3946 (((-772) $) 41 T ELT) (($ (-1073)) 35 T ELT) (($ (-446)) 153 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3536 (($ $ (-583 (-772))) 49 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 37 T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) 38 T ELT))) -(((-1090) (-13 (-756) (-553 (-473)) (-553 (-1090)) (-555 (-1073)) (-950 (-446)) (-553 (-800 (-484))) (-553 (-800 (-330))) (-796 (-484)) (-796 (-330)) (-10 -8 (-15 -3614 ($)) (-15 -3614 ($ $)) (-15 -3543 ((-1185))) (-15 -3542 ($ $)) (-15 -3541 ((-85) $)) (-15 -3540 ((-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772)))) $)) (-15 -3539 ($ $ (-583 (-583 (-772))))) (-15 -3539 ($ $ (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772)))))) (-15 -3538 ($ $ (-583 (-772)))) (-15 -3537 ($ $ (-583 (-772)))) (-15 -3536 ($ $ (-583 (-772)))) (-15 -3800 ($ $ (-583 (-772)))) (-15 -3535 ((-1073) $)) (-15 -3534 ((-583 $) $)) (-15 -3724 ($) -3952)))) (T -1090)) -((-3614 (*1 *1) (-5 *1 (-1090))) (-3614 (*1 *1 *1) (-5 *1 (-1090))) (-3543 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1090)))) (-3542 (*1 *1 *1) (-5 *1 (-1090))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1090)))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772))))) (-5 *1 (-1090)))) (-3539 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-1090)))) (-3539 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) (|:| |args| (-583 (-772))))) (-5 *1 (-1090)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090)))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1090)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1090)))) (-3724 (*1 *1) (-5 *1 (-1090)))) -((-3544 (((-1179 |#1|) |#1| (-830)) 18 T ELT) (((-1179 |#1|) (-583 |#1|)) 25 T ELT))) -(((-1091 |#1|) (-10 -7 (-15 -3544 ((-1179 |#1|) (-583 |#1|))) (-15 -3544 ((-1179 |#1|) |#1| (-830)))) (-961)) (T -1091)) -((-3544 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-1179 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-961)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1179 *4)) (-5 *1 (-1091 *4))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3156 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1624 (($ $ |#1| (-884) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 18 T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-884)) NIL T ELT)) (-2820 (((-884) $) NIL T ELT)) (-1625 (($ (-1 (-884) (-884)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#1| $) NIL T ELT)) (-3738 (($ $ (-884) |#1| $) NIL (-12 (|has| (-884) (-104)) (|has| |#1| (-495))) ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3948 (((-884) $) NIL T ELT)) (-2817 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3817 (((-583 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-884)) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 13 T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 22 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-1092 |#1|) (-13 (-277 |#1| (-884)) (-10 -8 (IF (|has| |#1| (-495)) (IF (|has| (-884) (-104)) (-15 -3738 ($ $ (-884) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3993)) (-6 -3993) |%noBranch|))) (-961)) (T -1092)) -((-3738 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-884)) (-4 *2 (-104)) (-5 *1 (-1092 *3)) (-4 *3 (-495)) (-4 *3 (-961))))) -((-3545 (((-1094) (-1090) $) 26 T ELT)) (-3555 (($) 30 T ELT)) (-3547 (((-3 (|:| |fst| (-377)) (|:| -3910 #1="void")) (-1090) $) 23 T ELT)) (-3549 (((-1185) (-1090) (-3 (|:| |fst| (-377)) (|:| -3910 #1#)) $) 42 T ELT) (((-1185) (-1090) (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) 43 T ELT) (((-1185) (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) 44 T ELT)) (-3557 (((-1185) (-1090)) 59 T ELT)) (-3548 (((-1185) (-1090) $) 56 T ELT) (((-1185) (-1090)) 57 T ELT) (((-1185)) 58 T ELT)) (-3553 (((-1185) (-1090)) 38 T ELT)) (-3551 (((-1090)) 37 T ELT)) (-3565 (($) 35 T ELT)) (-3564 (((-379) (-1090) (-379) (-1090) $) 46 T ELT) (((-379) (-583 (-1090)) (-379) (-1090) $) 50 T ELT) (((-379) (-1090) (-379)) 47 T ELT) (((-379) (-1090) (-379) (-1090)) 51 T ELT)) (-3552 (((-1090)) 36 T ELT)) (-3946 (((-772) $) 29 T ELT)) (-3554 (((-1185)) 31 T ELT) (((-1185) (-1090)) 34 T ELT)) (-3546 (((-583 (-1090)) (-1090) $) 25 T ELT)) (-3550 (((-1185) (-1090) (-583 (-1090)) $) 39 T ELT) (((-1185) (-1090) (-583 (-1090))) 40 T ELT) (((-1185) (-583 (-1090))) 41 T ELT))) -(((-1093) (-13 (-552 (-772)) (-10 -8 (-15 -3555 ($)) (-15 -3554 ((-1185))) (-15 -3554 ((-1185) (-1090))) (-15 -3564 ((-379) (-1090) (-379) (-1090) $)) (-15 -3564 ((-379) (-583 (-1090)) (-379) (-1090) $)) (-15 -3564 ((-379) (-1090) (-379))) (-15 -3564 ((-379) (-1090) (-379) (-1090))) (-15 -3553 ((-1185) (-1090))) (-15 -3552 ((-1090))) (-15 -3551 ((-1090))) (-15 -3550 ((-1185) (-1090) (-583 (-1090)) $)) (-15 -3550 ((-1185) (-1090) (-583 (-1090)))) (-15 -3550 ((-1185) (-583 (-1090)))) (-15 -3549 ((-1185) (-1090) (-3 (|:| |fst| (-377)) (|:| -3910 #1="void")) $)) (-15 -3549 ((-1185) (-1090) (-3 (|:| |fst| (-377)) (|:| -3910 #1#)))) (-15 -3549 ((-1185) (-3 (|:| |fst| (-377)) (|:| -3910 #1#)))) (-15 -3548 ((-1185) (-1090) $)) (-15 -3548 ((-1185) (-1090))) (-15 -3548 ((-1185))) (-15 -3557 ((-1185) (-1090))) (-15 -3565 ($)) (-15 -3547 ((-3 (|:| |fst| (-377)) (|:| -3910 #1#)) (-1090) $)) (-15 -3546 ((-583 (-1090)) (-1090) $)) (-15 -3545 ((-1094) (-1090) $))))) (T -1093)) -((-3555 (*1 *1) (-5 *1 (-1093))) (-3554 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3564 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093)))) (-3564 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-379)) (-5 *3 (-583 (-1090))) (-5 *4 (-1090)) (-5 *1 (-1093)))) (-3564 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093)))) (-3564 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3552 (*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))) (-3551 (*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))) (-3550 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3550 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-583 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3549 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3910 #1="void"))) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3548 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3548 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3565 (*1 *1) (-5 *1 (-1093))) (-3547 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) (-5 *1 (-1093)))) (-3546 (*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1093)) (-5 *3 (-1090)))) (-3545 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1094)) (-5 *1 (-1093))))) -((-3559 (((-583 (-583 (-3 (|:| -3542 (-1090)) (|:| -3225 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484))))))))) $) 66 T ELT)) (-3561 (((-583 (-3 (|:| -3542 (-1090)) (|:| -3225 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484)))))))) (-377) $) 47 T ELT)) (-3556 (($ (-583 (-2 (|:| -3860 (-1090)) (|:| |entry| (-379))))) 17 T ELT)) (-3557 (((-1185) $) 73 T ELT)) (-3562 (((-583 (-1090)) $) 22 T ELT)) (-3558 (((-1015) $) 60 T ELT)) (-3563 (((-379) (-1090) $) 27 T ELT)) (-3560 (((-583 (-1090)) $) 30 T ELT)) (-3565 (($) 19 T ELT)) (-3564 (((-379) (-583 (-1090)) (-379) $) 25 T ELT) (((-379) (-1090) (-379) $) 24 T ELT)) (-3946 (((-772) $) 12 T ELT) (((-1102 (-1090) (-379)) $) 13 T ELT))) -(((-1094) (-13 (-552 (-772)) (-10 -8 (-15 -3946 ((-1102 (-1090) (-379)) $)) (-15 -3565 ($)) (-15 -3564 ((-379) (-583 (-1090)) (-379) $)) (-15 -3564 ((-379) (-1090) (-379) $)) (-15 -3563 ((-379) (-1090) $)) (-15 -3562 ((-583 (-1090)) $)) (-15 -3561 ((-583 (-3 (|:| -3542 (-1090)) (|:| -3225 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484)))))))) (-377) $)) (-15 -3560 ((-583 (-1090)) $)) (-15 -3559 ((-583 (-583 (-3 (|:| -3542 (-1090)) (|:| -3225 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484))))))))) $)) (-15 -3558 ((-1015) $)) (-15 -3557 ((-1185) $)) (-15 -3556 ($ (-583 (-2 (|:| -3860 (-1090)) (|:| |entry| (-379))))))))) (T -1094)) -((-3946 (*1 *2 *1) (-12 (-5 *2 (-1102 (-1090) (-379))) (-5 *1 (-1094)))) (-3565 (*1 *1) (-5 *1 (-1094))) (-3564 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-583 (-1090))) (-5 *1 (-1094)))) (-3564 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1094)))) (-3563 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-379)) (-5 *1 (-1094)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1094)))) (-3561 (*1 *2 *3 *1) (-12 (-5 *3 (-377)) (-5 *2 (-583 (-3 (|:| -3542 (-1090)) (|:| -3225 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484))))))))) (-5 *1 (-1094)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1094)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -3542 (-1090)) (|:| -3225 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484)))))))))) (-5 *1 (-1094)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1094)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1094)))) (-3556 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3860 (-1090)) (|:| |entry| (-379))))) (-5 *1 (-1094))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3157 (((-3 (-484) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-446) #1#) $) 43 T ELT) (((-3 (-1073) #1#) $) 47 T ELT)) (-3156 (((-484) $) 30 T ELT) (((-179) $) 36 T ELT) (((-446) $) 40 T ELT) (((-1073) $) 48 T ELT)) (-3570 (((-85) $) 53 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3569 (((-3 (-484) (-179) (-446) (-1073) $) $) 56 T ELT)) (-3568 (((-583 $) $) 58 T ELT)) (-3972 (((-1015) $) 24 T ELT) (($ (-1015)) 25 T ELT)) (-3567 (((-85) $) 57 T ELT)) (-3946 (((-772) $) 23 T ELT) (($ (-484)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-446)) 38 T ELT) (($ (-1073)) 44 T ELT) (((-473) $) 60 T ELT) (((-484) $) 31 T ELT) (((-179) $) 37 T ELT) (((-446) $) 41 T ELT) (((-1073) $) 49 T ELT)) (-3566 (((-85) $ (|[\|\|]| (-484))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-446))) 19 T ELT) (((-85) $ (|[\|\|]| (-1073))) 16 T ELT)) (-3571 (($ (-446) (-583 $)) 51 T ELT) (($ $ (-583 $)) 52 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3572 (((-484) $) 27 T ELT) (((-179) $) 33 T ELT) (((-446) $) 39 T ELT) (((-1073) $) 45 T ELT)) (-3056 (((-85) $ $) 7 T ELT))) -(((-1095) (-13 (-1175) (-1013) (-950 (-484)) (-950 (-179)) (-950 (-446)) (-950 (-1073)) (-552 (-473)) (-10 -8 (-15 -3972 ((-1015) $)) (-15 -3972 ($ (-1015))) (-15 -3946 ((-484) $)) (-15 -3572 ((-484) $)) (-15 -3946 ((-179) $)) (-15 -3572 ((-179) $)) (-15 -3946 ((-446) $)) (-15 -3572 ((-446) $)) (-15 -3946 ((-1073) $)) (-15 -3572 ((-1073) $)) (-15 -3571 ($ (-446) (-583 $))) (-15 -3571 ($ $ (-583 $))) (-15 -3570 ((-85) $)) (-15 -3569 ((-3 (-484) (-179) (-446) (-1073) $) $)) (-15 -3568 ((-583 $) $)) (-15 -3567 ((-85) $)) (-15 -3566 ((-85) $ (|[\|\|]| (-484)))) (-15 -3566 ((-85) $ (|[\|\|]| (-179)))) (-15 -3566 ((-85) $ (|[\|\|]| (-446)))) (-15 -3566 ((-85) $ (|[\|\|]| (-1073))))))) (T -1095)) -((-3972 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1095)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-1095)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1095)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1095)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1095)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1095)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1095)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1095)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) (-3571 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-1095))) (-5 *1 (-1095)))) (-3571 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-1095)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1095)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-3 (-484) (-179) (-446) (-1073) (-1095))) (-5 *1 (-1095)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-1095)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1095)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)) (-5 *1 (-1095)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1095)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-1095)))) (-3566 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)) (-5 *1 (-1095))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3136 (((-694)) 21 T ELT)) (-3724 (($) 10 T CONST)) (-2994 (($) 25 T ELT)) (-2531 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2857 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2010 (((-830) $) 23 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 22 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT))) -(((-1096 |#1|) (-13 (-752) (-10 -8 (-15 -3724 ($) -3952))) (-830)) (T -1096)) -((-3724 (*1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830))))) -((-484) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 24 T ELT)) (-3136 (((-694)) NIL T ELT)) (-3724 (($) 18 T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2857 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-3725 (($ $ $) 20 T ELT)) (-3726 (($ $ $) 19 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) 22 T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 21 T ELT))) -(((-1097 |#1|) (-13 (-752) (-604) (-10 -8 (-15 -3726 ($ $ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($) -3952))) (-830)) (T -1097)) -((-3726 (*1 *1 *1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-830)))) (-3725 (*1 *1 *1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-830)))) (-3724 (*1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-830))))) -((-694) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 9 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 7 T ELT))) -(((-1098) (-1013)) (T -1098)) -NIL -((-3574 (((-583 (-583 (-857 |#1|))) (-583 (-350 (-857 |#1|))) (-583 (-1090))) 69 T ELT)) (-3573 (((-583 (-249 (-350 (-857 |#1|)))) (-249 (-350 (-857 |#1|)))) 81 T ELT) (((-583 (-249 (-350 (-857 |#1|)))) (-350 (-857 |#1|))) 77 T ELT) (((-583 (-249 (-350 (-857 |#1|)))) (-249 (-350 (-857 |#1|))) (-1090)) 82 T ELT) (((-583 (-249 (-350 (-857 |#1|)))) (-350 (-857 |#1|)) (-1090)) 76 T ELT) (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-249 (-350 (-857 |#1|))))) 108 T ELT) (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-350 (-857 |#1|)))) 107 T ELT) (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-249 (-350 (-857 |#1|)))) (-583 (-1090))) 109 T ELT) (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-350 (-857 |#1|))) (-583 (-1090))) 106 T ELT))) -(((-1099 |#1|) (-10 -7 (-15 -3573 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-350 (-857 |#1|))) (-583 (-1090)))) (-15 -3573 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-249 (-350 (-857 |#1|)))) (-583 (-1090)))) (-15 -3573 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-350 (-857 |#1|))))) (-15 -3573 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-249 (-350 (-857 |#1|)))))) (-15 -3573 ((-583 (-249 (-350 (-857 |#1|)))) (-350 (-857 |#1|)) (-1090))) (-15 -3573 ((-583 (-249 (-350 (-857 |#1|)))) (-249 (-350 (-857 |#1|))) (-1090))) (-15 -3573 ((-583 (-249 (-350 (-857 |#1|)))) (-350 (-857 |#1|)))) (-15 -3573 ((-583 (-249 (-350 (-857 |#1|)))) (-249 (-350 (-857 |#1|))))) (-15 -3574 ((-583 (-583 (-857 |#1|))) (-583 (-350 (-857 |#1|))) (-583 (-1090))))) (-495)) (T -1099)) -((-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-857 *5)))) (-5 *1 (-1099 *5)))) (-3573 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *4))))) (-5 *1 (-1099 *4)) (-5 *3 (-249 (-350 (-857 *4)))))) (-3573 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *4))))) (-5 *1 (-1099 *4)) (-5 *3 (-350 (-857 *4))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *5))))) (-5 *1 (-1099 *5)) (-5 *3 (-249 (-350 (-857 *5)))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *5))))) (-5 *1 (-1099 *5)) (-5 *3 (-350 (-857 *5))))) (-3573 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *4)))))) (-5 *1 (-1099 *4)) (-5 *3 (-583 (-249 (-350 (-857 *4))))))) (-3573 (*1 *2 *3) (-12 (-5 *3 (-583 (-350 (-857 *4)))) (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *4)))))) (-5 *1 (-1099 *4)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1090))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-1099 *5)) (-5 *3 (-583 (-249 (-350 (-857 *5))))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-1099 *5))))) -((-3579 (((-1073)) 7 T ELT)) (-3576 (((-1073)) 11 T CONST)) (-3575 (((-1185) (-1073)) 13 T ELT)) (-3578 (((-1073)) 8 T CONST)) (-3577 (((-103)) 10 T CONST))) -(((-1100) (-13 (-1129) (-10 -7 (-15 -3579 ((-1073))) (-15 -3578 ((-1073)) -3952) (-15 -3577 ((-103)) -3952) (-15 -3576 ((-1073)) -3952) (-15 -3575 ((-1185) (-1073)))))) (T -1100)) -((-3579 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100)))) (-3578 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100)))) (-3577 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1100)))) (-3576 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1100))))) -((-3583 (((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 56 T ELT)) (-3586 (((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|))) 38 T ELT)) (-3587 (((-1103 (-583 |#1|)) (-583 |#1|)) 49 T ELT)) (-3589 (((-583 (-583 |#1|)) (-583 |#1|)) 45 T ELT)) (-3592 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))) 53 T ELT)) (-3591 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|)))) 52 T ELT)) (-3588 (((-583 (-583 |#1|)) (-583 (-583 |#1|))) 43 T ELT)) (-3590 (((-583 |#1|) (-583 |#1|)) 46 T ELT)) (-3582 (((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 32 T ELT)) (-3581 (((-583 (-583 (-583 |#1|))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 29 T ELT)) (-3580 (((-2 (|:| |fs| (-85)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|))) 24 T ELT)) (-3584 (((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 58 T ELT)) (-3585 (((-583 (-583 |#1|)) (-1103 (-583 |#1|))) 60 T ELT))) -(((-1101 |#1|) (-10 -7 (-15 -3580 ((-2 (|:| |fs| (-85)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -3581 ((-583 (-583 (-583 |#1|))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3582 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3583 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3584 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3585 ((-583 (-583 |#1|)) (-1103 (-583 |#1|)))) (-15 -3586 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -3587 ((-1103 (-583 |#1|)) (-583 |#1|))) (-15 -3588 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3589 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -3590 ((-583 |#1|) (-583 |#1|))) (-15 -3591 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -3592 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) (-756)) (T -1101)) -((-3592 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1101 *4)) (-5 *3 (-583 (-583 (-583 *4)))))) (-3591 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-756)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1101 *6)) (-5 *4 (-583 *5)))) (-3590 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-1101 *3)))) (-3589 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1101 *4)) (-5 *3 (-583 *4)))) (-3588 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-756)) (-5 *1 (-1101 *3)))) (-3587 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-1103 (-583 *4))) (-5 *1 (-1101 *4)) (-5 *3 (-583 *4)))) (-3586 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1101 *4)) (-5 *3 (-583 (-583 *4))))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-1103 (-583 *4))) (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1101 *4)))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1101 *4)) (-4 *4 (-756)))) (-3583 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-756)) (-5 *1 (-1101 *4)))) (-3582 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *1 (-1101 *4)))) (-3581 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-756)) (-5 *1 (-1101 *5)))) (-3580 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-756)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1101 *6)) (-5 *5 (-583 *4))))) -((-2568 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3599 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ |#1|) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3245 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3243 (((-1033) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3801 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3995)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#2| (-72))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3530 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3946 (((-772) $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3056 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-1102 |#1| |#2|) (-1107 |#1| |#2|) (-1013) (-1013)) (T -1102)) -NIL -((-3593 (($ (-583 (-583 |#1|))) 10 T ELT)) (-3594 (((-583 (-583 |#1|)) $) 11 T ELT)) (-3946 (((-772) $) 33 T ELT))) -(((-1103 |#1|) (-10 -8 (-15 -3593 ($ (-583 (-583 |#1|)))) (-15 -3594 ((-583 (-583 |#1|)) $)) (-15 -3946 ((-772) $))) (-1013)) (T -1103)) -((-3946 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1103 *3)) (-4 *3 (-1013)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1103 *3)) (-4 *3 (-1013)))) (-3593 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-1103 *3))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3595 (($ |#1| (-55)) 11 T ELT)) (-3542 ((|#1| $) 13 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2633 (((-85) $ |#1|) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2521 (((-55) $) 15 T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1104 |#1|) (-13 (-747 |#1|) (-10 -8 (-15 -3595 ($ |#1| (-55))))) (-1013)) (T -1104)) -((-3595 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1104 *2)) (-4 *2 (-1013))))) -((-3596 ((|#1| (-583 |#1|)) 46 T ELT)) (-3598 ((|#1| |#1| (-484)) 24 T ELT)) (-3597 (((-1085 |#1|) |#1| (-830)) 20 T ELT))) -(((-1105 |#1|) (-10 -7 (-15 -3596 (|#1| (-583 |#1|))) (-15 -3597 ((-1085 |#1|) |#1| (-830))) (-15 -3598 (|#1| |#1| (-484)))) (-312)) (T -1105)) -((-3598 (*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-1105 *2)) (-4 *2 (-312)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-1085 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-312)))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1105 *2)) (-4 *2 (-312))))) -((-3599 (($) 10 T ELT) (($ (-583 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3405 (($ (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) $) 65 T ELT) (($ (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2889 (((-583 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) 35 T ELT) (((-583 |#3|) $) 37 T ELT) (((-583 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) 35 T ELT)) (-3326 (($ (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) 55 T ELT) (($ (-1 |#3| |#3|) $) 29 T ELT) (($ (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) 55 T ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) 51 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) 51 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 34 T ELT)) (-1274 (((-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) $) 58 T ELT)) (-3609 (($ (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2203 (((-583 |#2|) $) 19 T ELT)) (-2204 (((-85) |#2| $) 63 T ELT)) (-1354 (((-3 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) 62 T ELT)) (-1275 (((-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) $) 67 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 71 T ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-2205 (((-583 |#3|) $) 39 T ELT)) (-1946 (((-694) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-694) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-694) |#3| $) NIL T ELT) (((-694) (-1 (-85) |#3|) $) 77 T ELT) (((-694) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-694) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-3946 (((-772) $) 27 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 69 T ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-3056 (((-85) $ $) 49 T ELT))) -(((-1106 |#1| |#2| |#3|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3946 ((-772) |#1|)) (-15 -3958 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3599 (|#1| (-583 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))))) (-15 -3599 (|#1|)) (-15 -3958 (|#1| (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3326 (|#1| (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2889 ((-583 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1948 ((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1946 ((-694) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1946 ((-694) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3405 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3958 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3326 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1947 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1946 ((-694) (-1 (-85) |#3|) |#1|)) (-15 -2889 ((-583 |#3|) |#1|)) (-15 -1946 ((-694) |#3| |#1|)) (-15 -2205 ((-583 |#3|) |#1|)) (-15 -2204 ((-85) |#2| |#1|)) (-15 -2203 ((-583 |#2|) |#1|)) (-15 -3405 (|#1| (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3405 (|#1| (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1354 ((-3 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1274 ((-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3609 (|#1| (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1275 ((-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3326 (|#1| (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1946 ((-694) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2889 ((-583 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1946 ((-694) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1948 ((-85) (-1 (-85) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3958 (|#1| (-1 (-2 (|:| -3860 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3860 |#2|) (|:| |entry| |#3|))) |#1|))) (-1107 |#2| |#3|) (-1013) (-1013)) (T -1106)) -NIL -((-2568 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3599 (($) 110 T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 109 T ELT)) (-2198 (((-1185) $ |#1| |#1|) 98 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#2| $ |#1| |#2|) 86 (|has| $ (-6 -3996)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3995)) ELT)) (-3710 (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3995)) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) 68 T ELT)) (-3724 (($) 7 T CONST)) (-1353 (($ $) 62 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3995))) ELT)) (-3405 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3995)) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3995)) ELT) (((-3 |#2| #1#) |#1| $) 69 T ELT)) (-3406 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3995)) ELT)) (-3842 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3995))) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3995)) ELT) (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#2| $ |#1| |#2|) 85 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#2| $ |#1|) 87 T ELT)) (-2889 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) 77 (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 113 (|has| $ (-6 -3995)) ELT)) (-2200 ((|#1| $) 95 (|has| |#1| (-756)) ELT)) (-2608 (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3995)) ELT) (((-583 |#2|) $) 78 (|has| $ (-6 -3995)) ELT) (((-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 121 T ELT)) (-3245 (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3995))) ELT) (((-85) |#2| $) 80 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT) (((-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 123 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) 94 (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 34 T ELT) (($ (-1 |#2| |#2|) $) 73 (|has| $ (-6 -3996)) ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 112 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 72 T ELT) (($ (-1 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 111 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 108 T ELT)) (-3242 (((-1073) $) 22 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2232 (((-583 |#1|) $) 70 T ELT)) (-2233 (((-85) |#1| $) 71 T ELT)) (-1274 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3609 (($ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2203 (((-583 |#1|) $) 92 T ELT)) (-2204 (((-85) |#1| $) 91 T ELT)) (-3243 (((-1033) $) 21 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3801 ((|#2| $) 96 (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2199 (($ $ |#2|) 97 (|has| $ (-6 -3996)) ELT)) (-1275 (((-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1947 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) 75 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 119 T ELT)) (-3768 (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 84 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 83 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 82 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) 81 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 117 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) 116 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 115 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))))) 114 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#2| $) 93 (-12 (|has| $ (-6 -3995)) (|has| |#2| (-1013))) ELT)) (-2205 (((-583 |#2|) $) 90 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#2| $ |#1|) 89 T ELT) ((|#2| $ |#1| |#2|) 88 T ELT)) (-1466 (($) 53 T ELT) (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1946 (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3995))) ELT) (((-694) |#2| $) 79 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3995))) ELT) (((-694) (-1 (-85) |#2|) $) 76 (|has| $ (-6 -3995)) ELT) (((-694) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) $) 122 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 120 T ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 63 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3530 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3946 (((-772) $) 17 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ELT)) (-1265 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) |#2|) $) 74 (|has| $ (-6 -3995)) ELT) (((-85) (-1 (-85) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) $) 118 T ELT)) (-3056 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-1107 |#1| |#2|) (-113) (-1013) (-1013)) (T -1107)) -((-3599 (*1 *1) (-12 (-4 *1 (-1107 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3599 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3860 *3) (|:| |entry| *4)))) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *1 (-1107 *3 *4)))) (-3958 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) -(-13 (-549 |t#1| |t#2|) (-318 (-2 (|:| -3860 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -3599 ($)) (-15 -3599 ($ (-583 (-2 (|:| -3860 |t#1|) (|:| |entry| |t#2|))))) (-15 -3958 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-76 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-1013)) (|has| |#2| (-552 (-772)))) ((-124 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-473)) |has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ((-183 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-318 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-429 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-538 |#1| |#2|) . T) ((-455 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013))) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-549 |#1| |#2|) . T) ((-1013) OR (|has| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ((-1035 (-2 (|:| -3860 |#1|) (|:| |entry| |#2|))) . T) ((-1129) . T)) -((-3605 (((-85)) 29 T ELT)) (-3602 (((-1185) (-1073)) 31 T ELT)) (-3606 (((-85)) 41 T ELT)) (-3603 (((-1185)) 39 T ELT)) (-3601 (((-1185) (-1073) (-1073)) 30 T ELT)) (-3607 (((-85)) 42 T ELT)) (-3609 (((-1185) |#1| |#2|) 53 T ELT)) (-3600 (((-1185)) 26 T ELT)) (-3608 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3604 (((-1185)) 40 T ELT))) -(((-1108 |#1| |#2|) (-10 -7 (-15 -3600 ((-1185))) (-15 -3601 ((-1185) (-1073) (-1073))) (-15 -3602 ((-1185) (-1073))) (-15 -3603 ((-1185))) (-15 -3604 ((-1185))) (-15 -3605 ((-85))) (-15 -3606 ((-85))) (-15 -3607 ((-85))) (-15 -3608 ((-3 |#2| "failed") |#1|)) (-15 -3609 ((-1185) |#1| |#2|))) (-1013) (-1013)) (T -1108)) -((-3609 (*1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3608 (*1 *2 *3) (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1013)))) (-3607 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3606 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3605 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3604 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3603 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1108 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-3601 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1108 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-3600 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3615 (((-583 (-1073)) $) 37 T ELT)) (-3611 (((-583 (-1073)) $ (-583 (-1073))) 40 T ELT)) (-3610 (((-583 (-1073)) $ (-583 (-1073))) 39 T ELT)) (-3612 (((-583 (-1073)) $ (-583 (-1073))) 41 T ELT)) (-3613 (((-583 (-1073)) $) 36 T ELT)) (-3614 (($) 26 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3616 (((-583 (-1073)) $) 38 T ELT)) (-3617 (((-1185) $ (-484)) 33 T ELT) (((-1185) $) 34 T ELT)) (-3972 (($ (-772) (-484)) 31 T ELT) (($ (-772) (-484) (-772)) NIL T ELT)) (-3946 (((-772) $) 47 T ELT) (($ (-772)) 30 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1109) (-13 (-1013) (-555 (-772)) (-10 -8 (-15 -3972 ($ (-772) (-484))) (-15 -3972 ($ (-772) (-484) (-772))) (-15 -3617 ((-1185) $ (-484))) (-15 -3617 ((-1185) $)) (-15 -3616 ((-583 (-1073)) $)) (-15 -3615 ((-583 (-1073)) $)) (-15 -3614 ($)) (-15 -3613 ((-583 (-1073)) $)) (-15 -3612 ((-583 (-1073)) $ (-583 (-1073)))) (-15 -3611 ((-583 (-1073)) $ (-583 (-1073)))) (-15 -3610 ((-583 (-1073)) $ (-583 (-1073))))))) (T -1109)) -((-3972 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1109)))) (-3972 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1109)))) (-3617 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-1109)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1109)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))) (-3614 (*1 *1) (-5 *1 (-1109))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))) (-3612 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))) (-3611 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))) (-3610 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109))))) -((-3946 (((-1109) |#1|) 11 T ELT))) -(((-1110 |#1|) (-10 -7 (-15 -3946 ((-1109) |#1|))) (-1013)) (T -1110)) -((-3946 (*1 *2 *3) (-12 (-5 *2 (-1109)) (-5 *1 (-1110 *3)) (-4 *3 (-1013))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3622 (((-1073) $ (-1073)) 21 T ELT) (((-1073) $) 20 T ELT)) (-1697 (((-1073) $ (-1073)) 19 T ELT)) (-1701 (($ $ (-1073)) NIL T ELT)) (-3620 (((-3 (-1073) #1="failed") $) 11 T ELT)) (-3621 (((-1073) $) 8 T ELT)) (-3619 (((-3 (-1073) #1#) $) 12 T ELT)) (-1698 (((-1073) $) 9 T ELT)) (-1702 (($ (-338)) NIL T ELT) (($ (-338) (-1073)) NIL T ELT)) (-3542 (((-338) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-1699 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3618 (((-85) $) 25 T ELT)) (-3946 (((-772) $) NIL T ELT)) (-1700 (($ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1111) (-13 (-314 (-338) (-1073)) (-10 -8 (-15 -3622 ((-1073) $ (-1073))) (-15 -3622 ((-1073) $)) (-15 -3621 ((-1073) $)) (-15 -3620 ((-3 (-1073) #1="failed") $)) (-15 -3619 ((-3 (-1073) #1#) $)) (-15 -3618 ((-85) $))))) (T -1111)) -((-3622 (*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1111)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1111)))) (-3621 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1111)))) (-3620 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1111)))) (-3619 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1111)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1111))))) -((-3623 (((-3 (-484) #1="failed") |#1|) 19 T ELT)) (-3624 (((-3 (-484) #1#) |#1|) 14 T ELT)) (-3625 (((-484) (-1073)) 33 T ELT))) -(((-1112 |#1|) (-10 -7 (-15 -3623 ((-3 (-484) #1="failed") |#1|)) (-15 -3624 ((-3 (-484) #1#) |#1|)) (-15 -3625 ((-484) (-1073)))) (-961)) (T -1112)) -((-3625 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-484)) (-5 *1 (-1112 *4)) (-4 *4 (-961)))) (-3624 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1112 *3)) (-4 *3 (-961)))) (-3623 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1112 *3)) (-4 *3 (-961))))) -((-3626 (((-1047 (-179))) 9 T ELT))) -(((-1113) (-10 -7 (-15 -3626 ((-1047 (-179)))))) (T -1113)) -((-3626 (*1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1113))))) -((-3627 (($) 12 T ELT)) (-3498 (($ $) 36 T ELT)) (-3496 (($ $) 34 T ELT)) (-3484 (($ $) 26 T ELT)) (-3500 (($ $) 18 T ELT)) (-3501 (($ $) 16 T ELT)) (-3499 (($ $) 20 T ELT)) (-3487 (($ $) 31 T ELT)) (-3497 (($ $) 35 T ELT)) (-3485 (($ $) 30 T ELT))) -(((-1114 |#1|) (-10 -7 (-15 -3627 (|#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3485 (|#1| |#1|))) (-1115)) (T -1114)) -NIL -((-3492 (($ $) 26 T ELT)) (-3639 (($ $) 11 T ELT)) (-3490 (($ $) 27 T ELT)) (-3638 (($ $) 10 T ELT)) (-3494 (($ $) 28 T ELT)) (-3637 (($ $) 9 T ELT)) (-3627 (($) 16 T ELT)) (-3942 (($ $) 19 T ELT)) (-3943 (($ $) 18 T ELT)) (-3495 (($ $) 29 T ELT)) (-3636 (($ $) 8 T ELT)) (-3493 (($ $) 30 T ELT)) (-3635 (($ $) 7 T ELT)) (-3491 (($ $) 31 T ELT)) (-3634 (($ $) 6 T ELT)) (-3498 (($ $) 20 T ELT)) (-3486 (($ $) 32 T ELT)) (-3496 (($ $) 21 T ELT)) (-3484 (($ $) 33 T ELT)) (-3500 (($ $) 22 T ELT)) (-3488 (($ $) 34 T ELT)) (-3501 (($ $) 23 T ELT)) (-3489 (($ $) 35 T ELT)) (-3499 (($ $) 24 T ELT)) (-3487 (($ $) 36 T ELT)) (-3497 (($ $) 25 T ELT)) (-3485 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) -(((-1115) (-113)) (T -1115)) -((-3627 (*1 *1) (-4 *1 (-1115)))) -(-13 (-1118) (-66) (-433) (-35) (-239) (-10 -8 (-15 -3627 ($)))) -(((-35) . T) ((-66) . T) ((-239) . T) ((-433) . T) ((-1118) . T)) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 19 T ELT)) (-3632 (($ |#1| (-583 $)) 28 T ELT) (($ (-583 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3025 ((|#1| $ |#1|) 14 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) 13 (|has| $ (-6 -3996)) ELT)) (-3724 (($) NIL T CONST)) (-2889 (((-583 |#1|) $) 70 (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) 59 T ELT)) (-3027 (((-85) $ $) 50 (|has| |#1| (-1013)) ELT)) (-2608 (((-583 |#1|) $) 71 T ELT)) (-3245 (((-85) |#1| $) 69 (|has| |#1| (-72)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3030 (((-583 |#1|) $) 55 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 67 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 102 T ELT)) (-3403 (((-85) $) 9 T ELT)) (-3565 (($) 10 T ELT)) (-3800 ((|#1| $ #1#) NIL T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3628 (((-583 $) $) 84 T ELT)) (-3629 (((-85) $ $) 105 T ELT)) (-3630 (((-583 $) $) 100 T ELT)) (-3631 (($ $) 101 T ELT)) (-3633 (((-85) $) 77 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 25 T ELT) (((-694) |#1| $) 17 (|has| |#1| (-72)) ELT)) (-3400 (($ $) 83 T ELT)) (-3946 (((-772) $) 86 (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) 12 T ELT)) (-3028 (((-85) $ $) 39 (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 66 T ELT)) (-3056 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 81 T ELT))) -(((-1116 |#1|) (-13 (-923 |#1|) (-318 |#1|) (-1035 |#1|) (-10 -8 (-15 -3632 ($ |#1| (-583 $))) (-15 -3632 ($ (-583 |#1|))) (-15 -3632 ($ |#1|)) (-15 -3633 ((-85) $)) (-15 -3631 ($ $)) (-15 -3630 ((-583 $) $)) (-15 -3629 ((-85) $ $)) (-15 -3628 ((-583 $) $)))) (-1013)) (T -1116)) -((-3633 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1116 *3)) (-4 *3 (-1013)))) (-3632 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1116 *2))) (-5 *1 (-1116 *2)) (-4 *2 (-1013)))) (-3632 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-1116 *3)))) (-3632 (*1 *1 *2) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1013)))) (-3631 (*1 *1 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1013)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-583 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1013)))) (-3629 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1116 *3)) (-4 *3 (-1013)))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-583 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1013))))) -((-3639 (($ $) 15 T ELT)) (-3637 (($ $) 12 T ELT)) (-3636 (($ $) 10 T ELT)) (-3635 (($ $) 17 T ELT))) -(((-1117 |#1|) (-10 -7 (-15 -3635 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3639 (|#1| |#1|))) (-1118)) (T -1117)) -NIL -((-3639 (($ $) 11 T ELT)) (-3638 (($ $) 10 T ELT)) (-3637 (($ $) 9 T ELT)) (-3636 (($ $) 8 T ELT)) (-3635 (($ $) 7 T ELT)) (-3634 (($ $) 6 T ELT))) -(((-1118) (-113)) (T -1118)) -((-3639 (*1 *1 *1) (-4 *1 (-1118))) (-3638 (*1 *1 *1) (-4 *1 (-1118))) (-3637 (*1 *1 *1) (-4 *1 (-1118))) (-3636 (*1 *1 *1) (-4 *1 (-1118))) (-3635 (*1 *1 *1) (-4 *1 (-1118))) (-3634 (*1 *1 *1) (-4 *1 (-1118)))) -(-13 (-10 -8 (-15 -3634 ($ $)) (-15 -3635 ($ $)) (-15 -3636 ($ $)) (-15 -3637 ($ $)) (-15 -3638 ($ $)) (-15 -3639 ($ $)))) -((-3642 ((|#2| |#2|) 95 T ELT)) (-3645 (((-85) |#2|) 29 T ELT)) (-3643 ((|#2| |#2|) 33 T ELT)) (-3644 ((|#2| |#2|) 35 T ELT)) (-3640 ((|#2| |#2| (-1090)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3646 (((-142 |#2|) |#2|) 31 T ELT)) (-3641 ((|#2| |#2| (-1090)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) -(((-1119 |#1| |#2|) (-10 -7 (-15 -3640 (|#2| |#2|)) (-15 -3640 (|#2| |#2| (-1090))) (-15 -3641 (|#2| |#2|)) (-15 -3641 (|#2| |#2| (-1090))) (-15 -3642 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3645 ((-85) |#2|)) (-15 -3646 ((-142 |#2|) |#2|))) (-13 (-392) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|))) (T -1119)) -((-3646 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-142 *3)) (-5 *1 (-1119 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3645 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-85)) (-5 *1 (-1119 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))) (-3641 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))) (-3640 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3)))))) -((-3647 ((|#4| |#4| |#1|) 31 T ELT)) (-3648 ((|#4| |#4| |#1|) 32 T ELT))) -(((-1120 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3647 (|#4| |#4| |#1|)) (-15 -3648 (|#4| |#4| |#1|))) (-495) (-324 |#1|) (-324 |#1|) (-627 |#1| |#2| |#3|)) (T -1120)) -((-3648 (*1 *2 *2 *3) (-12 (-4 *3 (-495)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1120 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3647 (*1 *2 *2 *3) (-12 (-4 *3 (-495)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1120 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) -((-3666 ((|#2| |#2|) 148 T ELT)) (-3668 ((|#2| |#2|) 145 T ELT)) (-3665 ((|#2| |#2|) 136 T ELT)) (-3667 ((|#2| |#2|) 133 T ELT)) (-3664 ((|#2| |#2|) 141 T ELT)) (-3663 ((|#2| |#2|) 129 T ELT)) (-3652 ((|#2| |#2|) 44 T ELT)) (-3651 ((|#2| |#2|) 105 T ELT)) (-3649 ((|#2| |#2|) 88 T ELT)) (-3662 ((|#2| |#2|) 143 T ELT)) (-3661 ((|#2| |#2|) 131 T ELT)) (-3674 ((|#2| |#2|) 153 T ELT)) (-3672 ((|#2| |#2|) 151 T ELT)) (-3673 ((|#2| |#2|) 152 T ELT)) (-3671 ((|#2| |#2|) 150 T ELT)) (-3650 ((|#2| |#2|) 163 T ELT)) (-3675 ((|#2| |#2|) 30 (-12 (|has| |#2| (-553 (-800 |#1|))) (|has| |#2| (-796 |#1|)) (|has| |#1| (-553 (-800 |#1|))) (|has| |#1| (-796 |#1|))) ELT)) (-3653 ((|#2| |#2|) 89 T ELT)) (-3654 ((|#2| |#2|) 154 T ELT)) (-3963 ((|#2| |#2|) 155 T ELT)) (-3660 ((|#2| |#2|) 142 T ELT)) (-3659 ((|#2| |#2|) 130 T ELT)) (-3658 ((|#2| |#2|) 149 T ELT)) (-3670 ((|#2| |#2|) 147 T ELT)) (-3657 ((|#2| |#2|) 137 T ELT)) (-3669 ((|#2| |#2|) 135 T ELT)) (-3656 ((|#2| |#2|) 139 T ELT)) (-3655 ((|#2| |#2|) 127 T ELT))) -(((-1121 |#1| |#2|) (-10 -7 (-15 -3963 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (IF (|has| |#1| (-796 |#1|)) (IF (|has| |#1| (-553 (-800 |#1|))) (IF (|has| |#2| (-553 (-800 |#1|))) (IF (|has| |#2| (-796 |#1|)) (-15 -3675 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-392) (-13 (-364 |#1|) (-1115))) (T -1121)) -((-3675 (*1 *2 *2) (-12 (-4 *3 (-553 (-800 *3))) (-4 *3 (-796 *3)) (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-553 (-800 *3))) (-4 *2 (-796 *3)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-1090)) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) NIL T CONST)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3814 (((-857 |#1|) $ (-694)) 18 T ELT) (((-857 |#1|) $ (-694) (-694)) NIL T ELT)) (-2892 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3772 (((-694) $ (-1090)) NIL T ELT) (((-694) $ (-1090) (-694)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ $ (-583 (-1090)) (-583 (-469 (-1090)))) NIL T ELT) (($ $ (-1090) (-469 (-1090))) NIL T ELT) (($ |#1| (-469 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3812 (($ $ (-1090)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3676 (($ (-1 $) (-1090) |#1|) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (($ $ (-694)) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (($ $ (-1090) $) NIL T ELT) (($ $ (-583 (-1090)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT)) (-3758 (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT)) (-3948 (((-469 (-1090)) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2891 (($ $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-1090)) NIL T ELT) (($ (-857 |#1|)) NIL T ELT)) (-3677 ((|#1| $ (-469 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (((-857 |#1|) $ (-694)) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-2669 (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1122 |#1|) (-13 (-679 |#1| (-1090)) (-10 -8 (-15 -3677 ((-857 |#1|) $ (-694))) (-15 -3946 ($ (-1090))) (-15 -3946 ($ (-857 |#1|))) (IF (|has| |#1| (-38 (-350 (-484)))) (PROGN (-15 -3812 ($ $ (-1090) |#1|)) (-15 -3676 ($ (-1 $) (-1090) |#1|))) |%noBranch|))) (-961)) (T -1122)) -((-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-857 *4)) (-5 *1 (-1122 *4)) (-4 *4 (-961)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1122 *3)) (-4 *3 (-961)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-5 *1 (-1122 *3)))) (-3812 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *1 (-1122 *3)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)))) (-3676 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1122 *4))) (-5 *3 (-1090)) (-5 *1 (-1122 *4)) (-4 *4 (-38 (-350 (-484)))) (-4 *4 (-961))))) -((-3693 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3688 ((|#5| |#5| $) 83 T ELT)) (-3710 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3689 (((-583 |#5|) (-583 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3157 (((-3 $ #1#) (-583 |#5|)) 134 T ELT)) (-3799 (((-3 $ #1#) $) 119 T ELT)) (-3685 ((|#5| |#5| $) 101 T ELT)) (-3694 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3683 ((|#5| |#5| $) 105 T ELT)) (-3842 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3696 (((-2 (|:| -3861 (-583 |#5|)) (|:| -1702 (-583 |#5|))) $) 63 T ELT)) (-3695 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3180 ((|#4| $) 115 T ELT)) (-3798 (((-3 |#5| #1#) $) 117 T ELT)) (-3697 (((-583 |#5|) $) 55 T ELT)) (-3691 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3686 ((|#5| |#5| $) 89 T ELT)) (-3699 (((-85) $ $) 29 T ELT)) (-3692 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3687 ((|#5| |#5| $) 86 T ELT)) (-3801 (((-3 |#5| #1#) $) 116 T ELT)) (-3769 (($ $ |#5|) 135 T ELT)) (-3948 (((-694) $) 60 T ELT)) (-3530 (($ (-583 |#5|)) 132 T ELT)) (-2910 (($ $ |#4|) 130 T ELT)) (-2912 (($ $ |#4|) 128 T ELT)) (-3684 (($ $) 127 T ELT)) (-3946 (((-772) $) NIL T ELT) (((-583 |#5|) $) 120 T ELT)) (-3678 (((-694) $) 139 T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3690 (((-85) $ (-1 (-85) |#5| (-583 |#5|))) 107 T ELT)) (-3680 (((-583 |#4|) $) 122 T ELT)) (-3933 (((-85) |#4| $) 125 T ELT)) (-3056 (((-85) $ $) 20 T ELT))) -(((-1123 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3678 ((-694) |#1|)) (-15 -3769 (|#1| |#1| |#5|)) (-15 -3710 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3933 ((-85) |#4| |#1|)) (-15 -3680 ((-583 |#4|) |#1|)) (-15 -3799 ((-3 |#1| #1#) |#1|)) (-15 -3798 ((-3 |#5| #1#) |#1|)) (-15 -3801 ((-3 |#5| #1#) |#1|)) (-15 -3683 (|#5| |#5| |#1|)) (-15 -3684 (|#1| |#1|)) (-15 -3685 (|#5| |#5| |#1|)) (-15 -3686 (|#5| |#5| |#1|)) (-15 -3687 (|#5| |#5| |#1|)) (-15 -3688 (|#5| |#5| |#1|)) (-15 -3689 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3842 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3691 ((-85) |#1|)) (-15 -3692 ((-85) |#1|)) (-15 -3693 ((-85) |#1|)) (-15 -3690 ((-85) |#1| (-1 (-85) |#5| (-583 |#5|)))) (-15 -3691 ((-85) |#5| |#1|)) (-15 -3692 ((-85) |#5| |#1|)) (-15 -3693 ((-85) |#5| |#1|)) (-15 -3694 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3695 ((-85) |#1|)) (-15 -3695 ((-85) |#5| |#1|)) (-15 -3696 ((-2 (|:| -3861 (-583 |#5|)) (|:| -1702 (-583 |#5|))) |#1|)) (-15 -3948 ((-694) |#1|)) (-15 -3697 ((-583 |#5|) |#1|)) (-15 -3698 ((-3 (-2 (|:| |bas| |#1|) (|:| -3323 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3698 ((-3 (-2 (|:| |bas| |#1|) (|:| -3323 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3699 ((-85) |#1| |#1|)) (-15 -2910 (|#1| |#1| |#4|)) (-15 -2912 (|#1| |#1| |#4|)) (-15 -3180 (|#4| |#1|)) (-15 -3157 ((-3 |#1| #1#) (-583 |#5|))) (-15 -3946 ((-583 |#5|) |#1|)) (-15 -3530 (|#1| (-583 |#5|))) (-15 -3842 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3842 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3710 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3842 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3946 ((-772) |#1|)) (-15 -3056 ((-85) |#1| |#1|))) (-1124 |#2| |#3| |#4| |#5|) (-495) (-717) (-756) (-977 |#2| |#3| |#4|)) (T -1123)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3681 (((-583 (-2 (|:| -3861 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) 91 T ELT)) (-3682 (((-583 $) (-583 |#4|)) 92 T ELT)) (-3081 (((-583 |#3|) $) 38 T ELT)) (-2908 (((-85) $) 31 T ELT)) (-2899 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3688 ((|#4| |#4| $) 98 T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3710 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3995)) ELT) (((-3 |#4| "failed") $ |#3|) 85 T ELT)) (-3724 (($) 54 T CONST)) (-2904 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-3689 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3156 (($ (-583 |#4|)) 40 T ELT)) (-3799 (((-3 $ "failed") $) 88 T ELT)) (-3685 ((|#4| |#4| $) 95 T ELT)) (-1353 (($ $) 70 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#4| $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3995)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3683 ((|#4| |#4| $) 93 T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3696 (((-2 (|:| -3861 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) 111 T ELT)) (-2889 (((-583 |#4|) $) 57 (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3180 ((|#3| $) 39 T ELT)) (-2608 (((-583 |#4|) $) 47 T ELT)) (-3245 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-3326 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2914 (((-583 |#3|) $) 37 T ELT)) (-2913 (((-85) |#3| $) 36 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3798 (((-3 |#4| "failed") $) 89 T ELT)) (-3697 (((-583 |#4|) $) 113 T ELT)) (-3691 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3686 ((|#4| |#4| $) 96 T ELT)) (-3699 (((-85) $ $) 116 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3687 ((|#4| |#4| $) 97 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3801 (((-3 |#4| "failed") $) 90 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3679 (((-3 $ "failed") $ |#4|) 84 T ELT)) (-3769 (($ $ |#4|) 83 T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3768 (($ $ (-583 |#4|) (-583 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) 50 T ELT)) (-3403 (((-85) $) 53 T ELT)) (-3565 (($) 52 T ELT)) (-3948 (((-694) $) 112 T ELT)) (-1946 (((-694) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3400 (($ $) 51 T ELT)) (-3972 (((-473) $) 71 (|has| |#4| (-553 (-473))) ELT)) (-3530 (($ (-583 |#4|)) 62 T ELT)) (-2910 (($ $ |#3|) 33 T ELT)) (-2912 (($ $ |#3|) 35 T ELT)) (-3684 (($ $) 94 T ELT)) (-2911 (($ $ |#3|) 34 T ELT)) (-3946 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-3678 (((-694) $) 82 (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 104 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3680 (((-583 |#3|) $) 87 T ELT)) (-3933 (((-85) |#3| $) 86 T ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3957 (((-694) $) 43 T ELT))) -(((-1124 |#1| |#2| |#3| |#4|) (-113) (-495) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -1124)) -((-3699 (*1 *2 *1 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3698 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3323 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1124 *5 *6 *7 *8)))) (-3698 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3323 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1124 *6 *7 *8 *9)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *6)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-694)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-2 (|:| -3861 (-583 *6)) (|:| -1702 (-583 *6)))))) (-3695 (*1 *2 *3 *1) (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3694 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1124 *5 *6 *7 *3)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)))) (-3693 (*1 *2 *3 *1) (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3692 (*1 *2 *3 *1) (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3691 (*1 *2 *3 *1) (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3690 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-583 *7))) (-4 *1 (-1124 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3842 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1124 *5 *6 *7 *2)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *2 (-977 *5 *6 *7)))) (-3689 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1124 *5 *6 *7 *8)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)))) (-3688 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3687 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3686 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3685 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3684 (*1 *1 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-977 *2 *3 *4)))) (-3683 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3682 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-1124 *4 *5 *6 *7)))) (-3681 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -3861 *1) (|:| -1702 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1124 *4 *5 *6 *7)))) (-3801 (*1 *2 *1) (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3798 (*1 *2 *1) (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3799 (*1 *1 *1) (|partial| -12 (-4 *1 (-1124 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-977 *2 *3 *4)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) (-3933 (*1 *2 *3 *1) (-12 (-4 *1 (-1124 *4 *5 *3 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))) (-3710 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1124 *4 *5 *3 *2)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *2 (-977 *4 *5 *3)))) (-3679 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3769 (*1 *1 *1 *2) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-694))))) -(-13 (-889 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -3996) (-15 -3699 ((-85) $ $)) (-15 -3698 ((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3698 ((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3697 ((-583 |t#4|) $)) (-15 -3948 ((-694) $)) (-15 -3696 ((-2 (|:| -3861 (-583 |t#4|)) (|:| -1702 (-583 |t#4|))) $)) (-15 -3695 ((-85) |t#4| $)) (-15 -3695 ((-85) $)) (-15 -3694 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3693 ((-85) |t#4| $)) (-15 -3692 ((-85) |t#4| $)) (-15 -3691 ((-85) |t#4| $)) (-15 -3690 ((-85) $ (-1 (-85) |t#4| (-583 |t#4|)))) (-15 -3693 ((-85) $)) (-15 -3692 ((-85) $)) (-15 -3691 ((-85) $)) (-15 -3842 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3689 ((-583 |t#4|) (-583 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3688 (|t#4| |t#4| $)) (-15 -3687 (|t#4| |t#4| $)) (-15 -3686 (|t#4| |t#4| $)) (-15 -3685 (|t#4| |t#4| $)) (-15 -3684 ($ $)) (-15 -3683 (|t#4| |t#4| $)) (-15 -3682 ((-583 $) (-583 |t#4|))) (-15 -3681 ((-583 (-2 (|:| -3861 $) (|:| -1702 (-583 |t#4|)))) (-583 |t#4|))) (-15 -3801 ((-3 |t#4| "failed") $)) (-15 -3798 ((-3 |t#4| "failed") $)) (-15 -3799 ((-3 $ "failed") $)) (-15 -3680 ((-583 |t#3|) $)) (-15 -3933 ((-85) |t#3| $)) (-15 -3710 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3679 ((-3 $ "failed") $ |t#4|)) (-15 -3769 ($ $ |t#4|)) (IF (|has| |t#3| (-320)) (-15 -3678 ((-694) $)) |%noBranch|))) -(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1129) . T)) -((-3705 (($ |#1| (-583 (-583 (-854 (-179)))) (-85)) 19 T ELT)) (-3704 (((-85) $ (-85)) 18 T ELT)) (-3703 (((-85) $) 17 T ELT)) (-3701 (((-583 (-583 (-854 (-179)))) $) 13 T ELT)) (-3700 ((|#1| $) 8 T ELT)) (-3702 (((-85) $) 15 T ELT))) -(((-1125 |#1|) (-10 -8 (-15 -3700 (|#1| $)) (-15 -3701 ((-583 (-583 (-854 (-179)))) $)) (-15 -3702 ((-85) $)) (-15 -3703 ((-85) $)) (-15 -3704 ((-85) $ (-85))) (-15 -3705 ($ |#1| (-583 (-583 (-854 (-179)))) (-85)))) (-887)) (T -1125)) -((-3705 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-85)) (-5 *1 (-1125 *2)) (-4 *2 (-887)))) (-3704 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-887)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-887)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-887)))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-1125 *3)) (-4 *3 (-887)))) (-3700 (*1 *2 *1) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-887))))) -((-3707 (((-854 (-179)) (-854 (-179))) 31 T ELT)) (-3706 (((-854 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3709 (((-583 (-854 (-179))) (-854 (-179)) (-854 (-179)) (-854 (-179)) (-179) (-583 (-583 (-179)))) 57 T ELT)) (-3836 (((-179) (-854 (-179)) (-854 (-179))) 27 T ELT)) (-3834 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 28 T ELT)) (-3708 (((-583 (-583 (-179))) (-484)) 45 T ELT)) (-3837 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 26 T ELT)) (-3839 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 24 T ELT)) (* (((-854 (-179)) (-179) (-854 (-179))) 22 T ELT))) -(((-1126) (-10 -7 (-15 -3706 ((-854 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-854 (-179)) (-179) (-854 (-179)))) (-15 -3839 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3837 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3836 ((-179) (-854 (-179)) (-854 (-179)))) (-15 -3834 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3707 ((-854 (-179)) (-854 (-179)))) (-15 -3708 ((-583 (-583 (-179))) (-484))) (-15 -3709 ((-583 (-854 (-179))) (-854 (-179)) (-854 (-179)) (-854 (-179)) (-179) (-583 (-583 (-179))))))) (T -1126)) -((-3709 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-179)))) (-5 *4 (-179)) (-5 *2 (-583 (-854 *4))) (-5 *1 (-1126)) (-5 *3 (-854 *4)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-1126)))) (-3707 (*1 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)))) (-3834 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)))) (-3836 (*1 *2 *3 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-179)) (-5 *1 (-1126)))) (-3837 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)))) (-3839 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-854 (-179))) (-5 *3 (-179)) (-5 *1 (-1126)))) (-3706 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)) (-5 *3 (-179))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3710 ((|#1| $ (-694)) 18 T ELT)) (-3833 (((-694) $) 13 T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3946 (((-869 |#1|) $) 12 T ELT) (($ (-869 |#1|)) 11 T ELT) (((-772) $) 29 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3056 (((-85) $ $) 22 (|has| |#1| (-1013)) ELT))) -(((-1127 |#1|) (-13 (-430 (-869 |#1|)) (-10 -8 (-15 -3710 (|#1| $ (-694))) (-15 -3833 ((-694) $)) (IF (|has| |#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1129)) (T -1127)) -((-3710 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-1127 *2)) (-4 *2 (-1129)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1127 *3)) (-4 *3 (-1129))))) -((-3713 (((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)) (-484)) 92 T ELT)) (-3711 (((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|))) 84 T ELT)) (-3712 (((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|))) 68 T ELT))) -(((-1128 |#1|) (-10 -7 (-15 -3711 ((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)))) (-15 -3712 ((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)))) (-15 -3713 ((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)) (-484)))) (-299)) (T -1128)) -((-3713 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *5 (-299)) (-5 *2 (-348 (-1085 (-1085 *5)))) (-5 *1 (-1128 *5)) (-5 *3 (-1085 (-1085 *5))))) (-3712 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1085 (-1085 *4)))) (-5 *1 (-1128 *4)) (-5 *3 (-1085 (-1085 *4))))) (-3711 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1085 (-1085 *4)))) (-5 *1 (-1128 *4)) (-5 *3 (-1085 (-1085 *4)))))) -NIL -(((-1129) (-113)) (T -1129)) +(((-64) . T) ((-72) . T) ((-556 (-1096)) . T) ((-553 (-773)) . T) ((-553 (-1096)) . T) ((-430 (-1096)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-3218 ((|#1| |#1| (-1 (-485) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3216 (((-1186)) 21 T ELT)) (-3217 (((-584 |#1|)) 13 T ELT))) +(((-997 |#1|) (-10 -7 (-15 -3216 ((-1186))) (-15 -3217 ((-584 |#1|))) (-15 -3218 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3218 (|#1| |#1| (-1 (-485) |#1| |#1|)))) (-105)) (T -997)) +((-3218 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-485) *2 *2)) (-4 *2 (-105)) (-5 *1 (-997 *2)))) (-3218 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-997 *2)))) (-3217 (*1 *2) (-12 (-5 *2 (-584 *3)) (-5 *1 (-997 *3)) (-4 *3 (-105)))) (-3216 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-997 *3)) (-4 *3 (-105))))) +((-3221 (($ (-78) $) 20 T ELT)) (-3222 (((-633 (-78)) (-447) $) 19 T ELT)) (-3566 (($) 7 T ELT)) (-3220 (($) 21 T ELT)) (-3219 (($) 22 T ELT)) (-3223 (((-584 (-149)) $) 10 T ELT)) (-3947 (((-773) $) 25 T ELT))) +(((-998) (-13 (-553 (-773)) (-10 -8 (-15 -3566 ($)) (-15 -3223 ((-584 (-149)) $)) (-15 -3222 ((-633 (-78)) (-447) $)) (-15 -3221 ($ (-78) $)) (-15 -3220 ($)) (-15 -3219 ($))))) (T -998)) +((-3566 (*1 *1) (-5 *1 (-998))) (-3223 (*1 *2 *1) (-12 (-5 *2 (-584 (-149))) (-5 *1 (-998)))) (-3222 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-998)))) (-3221 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-998)))) (-3220 (*1 *1) (-5 *1 (-998))) (-3219 (*1 *1) (-5 *1 (-998)))) +((-3224 (((-1180 (-631 |#1|)) (-584 (-631 |#1|))) 45 T ELT) (((-1180 (-631 (-858 |#1|))) (-584 (-1091)) (-631 (-858 |#1|))) 75 T ELT) (((-1180 (-631 (-350 (-858 |#1|)))) (-584 (-1091)) (-631 (-350 (-858 |#1|)))) 92 T ELT)) (-3225 (((-1180 |#1|) (-631 |#1|) (-584 (-631 |#1|))) 39 T ELT))) +(((-999 |#1|) (-10 -7 (-15 -3224 ((-1180 (-631 (-350 (-858 |#1|)))) (-584 (-1091)) (-631 (-350 (-858 |#1|))))) (-15 -3224 ((-1180 (-631 (-858 |#1|))) (-584 (-1091)) (-631 (-858 |#1|)))) (-15 -3224 ((-1180 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3225 ((-1180 |#1|) (-631 |#1|) (-584 (-631 |#1|))))) (-312)) (T -999)) +((-3225 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-312)) (-5 *2 (-1180 *5)) (-5 *1 (-999 *5)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-999 *4)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1091))) (-4 *5 (-312)) (-5 *2 (-1180 (-631 (-858 *5)))) (-5 *1 (-999 *5)) (-5 *4 (-631 (-858 *5))))) (-3224 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1091))) (-4 *5 (-312)) (-5 *2 (-1180 (-631 (-350 (-858 *5))))) (-5 *1 (-999 *5)) (-5 *4 (-631 (-350 (-858 *5))))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1489 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ (-1091)) NIL T ELT)) (-1523 (((-695) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3082 (((-584 (-1001 (-1091))) $) NIL T ELT)) (-3084 (((-1086 $) $ (-1001 (-1091))) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-1001 (-1091)))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1485 (($ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-1001 (-1091)) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 (-1040 |#1| (-1091)) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-1001 (-1091)) $) NIL T ELT) (((-1091) $) NIL T ELT) (((-1040 |#1| (-1091)) $) NIL T ELT)) (-3757 (($ $ $ (-1001 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3960 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1001 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 (-1001 (-1091))) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1001 (-1091)) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1001 (-1091)) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3773 (((-695) $ (-1091)) NIL T ELT) (((-695) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3085 (($ (-1086 |#1|) (-1001 (-1091))) NIL T ELT) (($ (-1086 $) (-1001 (-1091))) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-470 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-1001 (-1091))) NIL T ELT)) (-2821 (((-470 (-1001 (-1091))) $) NIL T ELT) (((-695) $ (-1001 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-1001 (-1091)))) NIL T ELT)) (-1626 (($ (-1 (-470 (-1001 (-1091))) (-470 (-1001 (-1091)))) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-695)) (-1091)) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3083 (((-3 (-1001 (-1091)) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1487 (((-1001 (-1091)) $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1488 (((-85) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-1001 (-1091))) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-1001 (-1091)) |#1|) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 |#1|)) NIL T ELT) (($ $ (-1001 (-1091)) $) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 $)) NIL T ELT) (($ $ (-1091) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1091)) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3758 (($ $ (-1001 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1490 (((-584 (-1091)) $) NIL T ELT)) (-3949 (((-470 (-1001 (-1091))) $) NIL T ELT) (((-695) $ (-1001 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-1001 (-1091)))) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3973 (((-801 (-330)) $) NIL (-12 (|has| (-1001 (-1091)) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1001 (-1091)) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-1001 (-1091)) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1001 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1001 (-1091))) NIL T ELT) (($ (-1091)) NIL T ELT) (($ (-1040 |#1| (-1091))) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-584 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-470 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1000 |#1|) (-13 (-213 |#1| (-1091) (-1001 (-1091)) (-470 (-1001 (-1091)))) (-951 (-1040 |#1| (-1091)))) (-962)) (T -1000)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-1523 (((-695) $) NIL T ELT)) (-3832 ((|#1| $) 10 T ELT)) (-3158 (((-3 |#1| "failed") $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3773 (((-695) $) 11 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-1524 (($ |#1| (-695)) 9 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3759 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2670 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 16 T ELT))) +(((-1001 |#1|) (-228 |#1|) (-757)) (T -1001)) +NIL +((-2569 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3737 (($ |#1| |#1|) 16 T ELT)) (-3959 (((-584 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-756)) ELT)) (-3230 ((|#1| $) 12 T ELT)) (-3232 ((|#1| $) 11 T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3228 (((-485) $) 15 T ELT)) (-3229 ((|#1| $) 14 T ELT)) (-3231 ((|#1| $) 13 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3964 (((-584 |#1|) $) 42 (|has| |#1| (-756)) ELT) (((-584 |#1|) (-584 $)) 41 (|has| |#1| (-756)) ELT)) (-3973 (($ |#1|) 29 T ELT)) (-3947 (((-773) $) 28 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3738 (($ |#1| |#1|) 10 T ELT)) (-3233 (($ $ (-485)) 17 T ELT)) (-3057 (((-85) $ $) 22 (|has| |#1| (-1014)) ELT))) +(((-1002 |#1|) (-13 (-1007 |#1|) (-10 -7 (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-1008 |#1| (-584 |#1|))) |%noBranch|))) (-1130)) (T -1002)) +NIL +((-3959 (((-584 |#2|) (-1 |#2| |#1|) (-1002 |#1|)) 27 (|has| |#1| (-756)) ELT) (((-1002 |#2|) (-1 |#2| |#1|) (-1002 |#1|)) 14 T ELT))) +(((-1003 |#1| |#2|) (-10 -7 (-15 -3959 ((-1002 |#2|) (-1 |#2| |#1|) (-1002 |#1|))) (IF (|has| |#1| (-756)) (-15 -3959 ((-584 |#2|) (-1 |#2| |#1|) (-1002 |#1|))) |%noBranch|)) (-1130) (-1130)) (T -1003)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-756)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-584 *6)) (-5 *1 (-1003 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1002 *6)) (-5 *1 (-1003 *5 *6))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3226 (((-584 (-1050)) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1004) (-13 (-996) (-10 -8 (-15 -3226 ((-584 (-1050)) $))))) (T -1004)) +((-3226 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-1004))))) +((-2569 (((-85) $ $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3832 (((-1091) $) NIL T ELT)) (-3737 (((-1002 |#1|) $) NIL T ELT)) (-3243 (((-1074) $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3227 (($ (-1091) (-1002 |#1|)) NIL T ELT)) (-3947 (((-773) $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3057 (((-85) $ $) NIL (|has| (-1002 |#1|) (-1014)) ELT))) +(((-1005 |#1|) (-13 (-1130) (-10 -8 (-15 -3227 ($ (-1091) (-1002 |#1|))) (-15 -3832 ((-1091) $)) (-15 -3737 ((-1002 |#1|) $)) (IF (|has| (-1002 |#1|) (-1014)) (-6 (-1014)) |%noBranch|))) (-1130)) (T -1005)) +((-3227 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1002 *4)) (-4 *4 (-1130)) (-5 *1 (-1005 *4)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1005 *3)) (-4 *3 (-1130)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-1002 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1130))))) +((-3959 (((-1005 |#2|) (-1 |#2| |#1|) (-1005 |#1|)) 19 T ELT))) +(((-1006 |#1| |#2|) (-10 -7 (-15 -3959 ((-1005 |#2|) (-1 |#2| |#1|) (-1005 |#1|)))) (-1130) (-1130)) (T -1006)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1005 *6)) (-5 *1 (-1006 *5 *6))))) +((-3737 (($ |#1| |#1|) 8 T ELT)) (-3230 ((|#1| $) 11 T ELT)) (-3232 ((|#1| $) 13 T ELT)) (-3228 (((-485) $) 9 T ELT)) (-3229 ((|#1| $) 10 T ELT)) (-3231 ((|#1| $) 12 T ELT)) (-3973 (($ |#1|) 6 T ELT)) (-3738 (($ |#1| |#1|) 15 T ELT)) (-3233 (($ $ (-485)) 14 T ELT))) +(((-1007 |#1|) (-113) (-1130)) (T -1007)) +((-3738 (*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3233 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1007 *3)) (-4 *3 (-1130)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1130)) (-5 *2 (-485)))) (-3737 (*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130))))) +(-13 (-558 |t#1|) (-10 -8 (-15 -3738 ($ |t#1| |t#1|)) (-15 -3233 ($ $ (-485))) (-15 -3232 (|t#1| $)) (-15 -3231 (|t#1| $)) (-15 -3230 (|t#1| $)) (-15 -3229 (|t#1| $)) (-15 -3228 ((-485) $)) (-15 -3737 ($ |t#1| |t#1|)))) +(((-558 |#1|) . T)) +((-3737 (($ |#1| |#1|) 8 T ELT)) (-3959 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3230 ((|#1| $) 11 T ELT)) (-3232 ((|#1| $) 13 T ELT)) (-3228 (((-485) $) 9 T ELT)) (-3229 ((|#1| $) 10 T ELT)) (-3231 ((|#1| $) 12 T ELT)) (-3964 ((|#2| (-584 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3973 (($ |#1|) 6 T ELT)) (-3738 (($ |#1| |#1|) 15 T ELT)) (-3233 (($ $ (-485)) 14 T ELT))) +(((-1008 |#1| |#2|) (-113) (-756) (-1065 |t#1|)) (T -1008)) +((-3964 (*1 *2 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756)) (-4 *2 (-1065 *4)))) (-3964 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-756)) (-4 *2 (-1065 *3)))) (-3959 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756)) (-4 *2 (-1065 *4))))) +(-13 (-1007 |t#1|) (-10 -8 (-15 -3964 (|t#2| (-584 $))) (-15 -3964 (|t#2| $)) (-15 -3959 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-558 |#1|) . T) ((-1007 |#1|) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3799 (((-1050) $) 14 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3234 (((-584 (-1050)) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1009) (-13 (-996) (-10 -8 (-15 -3234 ((-584 (-1050)) $)) (-15 -3799 ((-1050) $))))) (T -1009)) +((-3234 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-1009)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1009))))) +((-2569 (((-85) $ $) NIL T ELT)) (-1803 (($) NIL (|has| |#1| (-320)) ELT)) (-3235 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3237 (($ $ $) 81 T ELT)) (-3236 (((-85) $ $) 83 T ELT)) (-3137 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3240 (($ (-584 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-3406 (($ |#1| $) 75 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 (|has| $ (-6 -3996)) ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-2890 (((-584 |#1|) $) 20 (|has| $ (-6 -3996)) ELT)) (-3242 (((-85) $ $) NIL T ELT)) (-2532 ((|#1| $) 56 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) 74 (|has| |#1| (-72)) ELT)) (-2858 ((|#1| $) 54 (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3239 (($ $ $) 79 T ELT)) (-1275 ((|#1| $) 26 T ELT)) (-3610 (($ |#1| $) 70 T ELT)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1276 ((|#1| $) 28 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 22 T ELT)) (-3566 (($) 12 T ELT)) (-3238 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1467 (($) NIL T ELT) (($ (-584 |#1|)) NIL T ELT)) (-1947 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) 17 T ELT)) (-3973 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 63 T ELT)) (-1804 (($ $) NIL (|has| |#1| (-320)) ELT)) (-3947 (((-773) $) NIL T ELT)) (-1805 (((-695) $) NIL T ELT)) (-3241 (($ (-584 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 53 T ELT)) (-3958 (((-695) $) 11 T ELT))) +(((-1010 |#1|) (-369 |#1|) (-1014)) (T -1010)) +NIL +((-3235 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3237 (($ $ $) 10 T ELT)) (-3238 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) +(((-1011 |#1| |#2|) (-10 -7 (-15 -3235 (|#1| |#2| |#1|)) (-15 -3235 (|#1| |#1| |#2|)) (-15 -3235 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1| |#2|)) (-15 -3238 (|#1| |#1| |#1|))) (-1012 |#2|) (-1014)) (T -1011)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3235 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3237 (($ $ $) 24 T ELT)) (-3236 (((-85) $ $) 23 T ELT)) (-3240 (($) 29 T ELT) (($ (-584 |#1|)) 28 T ELT)) (-3711 (($ (-1 (-85) |#1|) $) 57 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 37 T CONST)) (-1354 (($ $) 60 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#1| $) 59 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 56 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -3996)) ELT)) (-2890 (((-584 |#1|) $) 44 (|has| $ (-6 -3996)) ELT)) (-3242 (((-85) $ $) 32 T ELT)) (-2609 (((-584 |#1|) $) 45 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 47 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3239 (($ $ $) 27 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 53 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 42 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 |#1|) (-584 |#1|)) 51 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 49 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-249 |#1|))) 48 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 33 T ELT)) (-3404 (((-85) $) 36 T ELT)) (-3566 (($) 35 T ELT)) (-3238 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-1947 (((-695) |#1| $) 46 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT) (((-695) (-1 (-85) |#1|) $) 43 (|has| $ (-6 -3996)) ELT)) (-3401 (($ $) 34 T ELT)) (-3973 (((-474) $) 61 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 52 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-3241 (($) 31 T ELT) (($ (-584 |#1|)) 30 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 41 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3958 (((-695) $) 38 (|has| $ (-6 -3996)) ELT))) +(((-1012 |#1|) (-113) (-1014)) (T -1012)) +((-3242 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-3241 (*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) (-3240 (*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) (-3239 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3238 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3238 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3236 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-3235 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3235 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3235 (*1 *1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) +(-13 (-1014) (-124 |t#1|) (-10 -8 (-6 -3986) (-15 -3242 ((-85) $ $)) (-15 -3241 ($)) (-15 -3241 ($ (-584 |t#1|))) (-15 -3240 ($)) (-15 -3240 ($ (-584 |t#1|))) (-15 -3239 ($ $ $)) (-15 -3238 ($ $ $)) (-15 -3238 ($ $ |t#1|)) (-15 -3237 ($ $ $)) (-15 -3236 ((-85) $ $)) (-15 -3235 ($ $ $)) (-15 -3235 ($ $ |t#1|)) (-15 -3235 ($ |t#1| $)))) +(((-34) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-3243 (((-1074) $) 10 T ELT)) (-3244 (((-1034) $) 8 T ELT))) +(((-1013 |#1|) (-10 -7 (-15 -3243 ((-1074) |#1|)) (-15 -3244 ((-1034) |#1|))) (-1014)) (T -1013)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) +(((-1014) (-113)) (T -1014)) +((-3244 (*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1034)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1074))))) +(-13 (-72) (-553 (-773)) (-10 -8 (-15 -3244 ((-1034) $)) (-15 -3243 ((-1074) $)))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) 36 T ELT)) (-3248 (($ (-584 (-831))) 70 T ELT)) (-3250 (((-3 $ #1="failed") $ (-831) (-831)) 81 T ELT)) (-2995 (($) 40 T ELT)) (-3246 (((-85) (-831) $) 42 T ELT)) (-2011 (((-831) $) 64 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 39 T ELT)) (-3251 (((-3 $ #1#) $ (-831)) 77 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3247 (((-1180 $)) 47 T ELT)) (-3249 (((-584 (-831)) $) 27 T ELT)) (-3245 (((-695) $ (-831) (-831)) 78 T ELT)) (-3947 (((-773) $) 32 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 24 T ELT))) +(((-1015 |#1| |#2|) (-13 (-320) (-10 -8 (-15 -3251 ((-3 $ #1="failed") $ (-831))) (-15 -3250 ((-3 $ #1#) $ (-831) (-831))) (-15 -3249 ((-584 (-831)) $)) (-15 -3248 ($ (-584 (-831)))) (-15 -3247 ((-1180 $))) (-15 -3246 ((-85) (-831) $)) (-15 -3245 ((-695) $ (-831) (-831))))) (-831) (-831)) (T -1015)) +((-3251 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3250 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3248 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3247 (*1 *2) (-12 (-5 *2 (-1180 (-1015 *3 *4))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3246 (*1 *2 *3 *1) (-12 (-5 *3 (-831)) (-5 *2 (-85)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3245 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-695)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3257 (((-1091) $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3536 (((-1074) $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3266 (((-85) $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3256 (((-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3255 (((-179) $) NIL T ELT)) (-3254 (((-773) $) NIL T ELT)) (-3267 (((-85) $ $) NIL T ELT)) (-3801 (($ $ (-485)) NIL T ELT) (($ $ (-584 (-485))) NIL T ELT)) (-3258 (((-584 $) $) NIL T ELT)) (-3973 (($ (-1074)) NIL T ELT) (($ (-1091)) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-773)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-3252 (($ $) NIL T ELT)) (-3253 (($ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3958 (((-485) $) NIL T ELT))) +(((-1016) (-1017 (-1074) (-1091) (-485) (-179) (-773))) (T -1016)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3261 (((-85) $) 36 T ELT)) (-3257 ((|#2| $) 31 T ELT)) (-3262 (((-85) $) 37 T ELT)) (-3536 ((|#1| $) 32 T ELT)) (-3264 (((-85) $) 39 T ELT)) (-3266 (((-85) $) 41 T ELT)) (-3263 (((-85) $) 38 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3260 (((-85) $) 35 T ELT)) (-3256 ((|#3| $) 30 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3259 (((-85) $) 34 T ELT)) (-3255 ((|#4| $) 29 T ELT)) (-3254 ((|#5| $) 28 T ELT)) (-3267 (((-85) $ $) 42 T ELT)) (-3801 (($ $ (-485)) 44 T ELT) (($ $ (-584 (-485))) 43 T ELT)) (-3258 (((-584 $) $) 33 T ELT)) (-3973 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-584 $)) 45 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-3252 (($ $) 26 T ELT)) (-3253 (($ $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3265 (((-85) $) 40 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3958 (((-485) $) 25 T ELT))) +(((-1017 |#1| |#2| |#3| |#4| |#5|) (-113) (-1014) (-1014) (-1014) (-1014) (-1014)) (T -1017)) +((-3267 (*1 *2 *1 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3258 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3253 (*1 *1 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3252 (*1 *1 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3958 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-485))))) +(-13 (-1014) (-558 |t#1|) (-558 |t#2|) (-558 |t#3|) (-558 |t#4|) (-558 |t#4|) (-558 |t#5|) (-558 (-584 $)) (-241 (-485) $) (-241 (-584 (-485)) $) (-10 -8 (-15 -3267 ((-85) $ $)) (-15 -3266 ((-85) $)) (-15 -3265 ((-85) $)) (-15 -3264 ((-85) $)) (-15 -3263 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -3259 ((-85) $)) (-15 -3258 ((-584 $) $)) (-15 -3536 (|t#1| $)) (-15 -3257 (|t#2| $)) (-15 -3256 (|t#3| $)) (-15 -3255 (|t#4| $)) (-15 -3254 (|t#5| $)) (-15 -3253 ($ $)) (-15 -3252 ($ $)) (-15 -3958 ((-485) $)))) +(((-72) . T) ((-553 (-773)) . T) ((-558 (-584 $)) . T) ((-558 |#1|) . T) ((-558 |#2|) . T) ((-558 |#3|) . T) ((-558 |#4|) . T) ((-558 |#5|) . T) ((-241 (-485) $) . T) ((-241 (-584 (-485)) $) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3261 (((-85) $) 45 T ELT)) (-3257 ((|#2| $) 48 T ELT)) (-3262 (((-85) $) 20 T ELT)) (-3536 ((|#1| $) 21 T ELT)) (-3264 (((-85) $) 42 T ELT)) (-3266 (((-85) $) 14 T ELT)) (-3263 (((-85) $) 44 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3260 (((-85) $) 46 T ELT)) (-3256 ((|#3| $) 50 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3259 (((-85) $) 47 T ELT)) (-3255 ((|#4| $) 49 T ELT)) (-3254 ((|#5| $) 51 T ELT)) (-3267 (((-85) $ $) 41 T ELT)) (-3801 (($ $ (-485)) 62 T ELT) (($ $ (-584 (-485))) 64 T ELT)) (-3258 (((-584 $) $) 27 T ELT)) (-3973 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-584 $)) 52 T ELT)) (-3947 (((-773) $) 28 T ELT)) (-3252 (($ $) 26 T ELT)) (-3253 (($ $) 58 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3265 (((-85) $) 23 T ELT)) (-3057 (((-85) $ $) 40 T ELT)) (-3958 (((-485) $) 60 T ELT))) +(((-1018 |#1| |#2| |#3| |#4| |#5|) (-1017 |#1| |#2| |#3| |#4| |#5|) (-1014) (-1014) (-1014) (-1014) (-1014)) (T -1018)) +NIL +((-3270 (((-85) |#5| |#5|) 44 T ELT)) (-3273 (((-85) |#5| |#5|) 59 T ELT)) (-3278 (((-85) |#5| (-584 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3274 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-3280 (((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 70 T ELT)) (-3269 (((-1186)) 32 T ELT)) (-3268 (((-1186) (-1074) (-1074) (-1074)) 28 T ELT)) (-3279 (((-584 |#5|) (-584 |#5|)) 101 T ELT)) (-3281 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) 93 T ELT)) (-3282 (((-584 (-2 (|:| -3267 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85)) 123 T ELT)) (-3272 (((-85) |#5| |#5|) 53 T ELT)) (-3277 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3275 (((-85) (-584 |#4|) (-584 |#4|)) 64 T ELT)) (-3276 (((-85) (-584 |#4|) (-584 |#4|)) 66 T ELT)) (-3700 (((-85) (-584 |#4|) (-584 |#4|)) 67 T ELT)) (-3283 (((-3 (-2 (|:| -3267 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3271 (((-584 |#5|) (-584 |#5|)) 49 T ELT))) +(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3268 ((-1186) (-1074) (-1074) (-1074))) (-15 -3269 ((-1186))) (-15 -3270 ((-85) |#5| |#5|)) (-15 -3271 ((-584 |#5|) (-584 |#5|))) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-85) |#5| |#5|)) (-15 -3274 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3275 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3276 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3700 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3277 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3278 ((-85) |#5| |#5|)) (-15 -3278 ((-85) |#5| (-584 |#5|))) (-15 -3279 ((-584 |#5|) (-584 |#5|))) (-15 -3280 ((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-15 -3281 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-15 -3282 ((-584 (-2 (|:| -3267 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3283 ((-3 (-2 (|:| -3267 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -1019)) +((-3283 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| -3267 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9)))) (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-984 *6 *7 *8 *9)))) (-3282 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| -3267 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9))))) (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) (-3281 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7)))) (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3280 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)))) (-3279 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *8 *3)))) (-3278 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3700 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3271 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3269 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3268 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7))))) +((-3298 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 106 T ELT)) (-3288 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3291 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3293 (((-584 |#5|) |#4| |#5|) 122 T ELT)) (-3295 (((-584 |#5|) |#4| |#5|) 129 T ELT)) (-3297 (((-584 |#5|) |#4| |#5|) 130 T ELT)) (-3292 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 107 T ELT)) (-3294 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 128 T ELT)) (-3296 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3289 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-85)) 91 T ELT) (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3290 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3287 (((-1186)) 36 T ELT)) (-3285 (((-1186)) 25 T ELT)) (-3286 (((-1186) (-1074) (-1074) (-1074)) 32 T ELT)) (-3284 (((-1186) (-1074) (-1074) (-1074)) 21 T ELT))) +(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3284 ((-1186) (-1074) (-1074) (-1074))) (-15 -3285 ((-1186))) (-15 -3286 ((-1186) (-1074) (-1074) (-1074))) (-15 -3287 ((-1186))) (-15 -3288 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3289 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3289 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-85))) (-15 -3290 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3291 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3296 ((-85) |#4| |#5|)) (-15 -3292 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3293 ((-584 |#5|) |#4| |#5|)) (-15 -3294 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3295 ((-584 |#5|) |#4| |#5|)) (-15 -3296 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3297 ((-584 |#5|) |#4| |#5|)) (-15 -3298 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -1020)) +((-3298 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3289 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *4 (-757)) (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9)))) (-5 *1 (-1020 *6 *7 *4 *8 *9)))) (-3289 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3288 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3287 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3286 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3285 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3284 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3682 (((-584 (-2 (|:| -3862 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3683 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3082 (((-584 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3689 ((|#4| |#4| $) 98 T ELT)) (-3776 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 134 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3725 (($) 54 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3690 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3157 (($ (-584 |#4|)) 40 T ELT)) (-3800 (((-3 $ #1#) $) 88 T ELT)) (-3686 ((|#4| |#4| $) 95 T ELT)) (-1354 (($ $) 70 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#4| $) 69 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3996)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3684 ((|#4| |#4| $) 93 T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3697 (((-2 (|:| -3862 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 111 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT)) (-3196 (((-85) |#4| $) 141 T ELT)) (-3199 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2890 (((-584 |#4|) $) 57 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-584 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2915 (((-584 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3192 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3191 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 135 T ELT)) (-3799 (((-3 |#4| #1#) $) 89 T ELT)) (-3193 (((-584 $) |#4| $) 137 T ELT)) (-3195 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3194 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3239 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3441 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3698 (((-584 |#4|) $) 113 T ELT)) (-3692 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3687 ((|#4| |#4| $) 96 T ELT)) (-3700 (((-85) $ $) 116 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3688 ((|#4| |#4| $) 97 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3802 (((-3 |#4| #1#) $) 90 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3770 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3769 (($ $ (-584 |#4|) (-584 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 50 T ELT)) (-3404 (((-85) $) 53 T ELT)) (-3566 (($) 52 T ELT)) (-3949 (((-695) $) 112 T ELT)) (-1947 (((-695) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3401 (($ $) 51 T ELT)) (-3973 (((-474) $) 71 (|has| |#4| (-554 (-474))) ELT)) (-3531 (($ (-584 |#4|)) 62 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-3685 (($ $) 94 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3947 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3679 (((-695) $) 82 (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 104 T ELT)) (-3190 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3681 (((-584 |#3|) $) 87 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3934 (((-85) |#3| $) 86 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3958 (((-695) $) 43 T ELT))) +(((-1021 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -1021)) +NIL +(-13 (-984 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T)) +((-3309 (((-584 (-485)) (-485) (-485) (-485)) 40 T ELT)) (-3308 (((-584 (-485)) (-485) (-485) (-485)) 30 T ELT)) (-3307 (((-584 (-485)) (-485) (-485) (-485)) 35 T ELT)) (-3306 (((-485) (-485) (-485)) 22 T ELT)) (-3305 (((-1180 (-485)) (-584 (-485)) (-1180 (-485)) (-485)) 78 T ELT) (((-1180 (-485)) (-1180 (-485)) (-1180 (-485)) (-485)) 73 T ELT)) (-3304 (((-584 (-485)) (-584 (-831)) (-584 (-485)) (-85)) 56 T ELT)) (-3303 (((-631 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485))) 77 T ELT)) (-3302 (((-631 (-485)) (-584 (-831)) (-584 (-485))) 61 T ELT)) (-3301 (((-584 (-631 (-485))) (-584 (-831))) 66 T ELT)) (-3300 (((-584 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485))) 81 T ELT)) (-3299 (((-631 (-485)) (-584 (-485)) (-584 (-485)) (-584 (-485))) 91 T ELT))) +(((-1022) (-10 -7 (-15 -3299 ((-631 (-485)) (-584 (-485)) (-584 (-485)) (-584 (-485)))) (-15 -3300 ((-584 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485)))) (-15 -3301 ((-584 (-631 (-485))) (-584 (-831)))) (-15 -3302 ((-631 (-485)) (-584 (-831)) (-584 (-485)))) (-15 -3303 ((-631 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485)))) (-15 -3304 ((-584 (-485)) (-584 (-831)) (-584 (-485)) (-85))) (-15 -3305 ((-1180 (-485)) (-1180 (-485)) (-1180 (-485)) (-485))) (-15 -3305 ((-1180 (-485)) (-584 (-485)) (-1180 (-485)) (-485))) (-15 -3306 ((-485) (-485) (-485))) (-15 -3307 ((-584 (-485)) (-485) (-485) (-485))) (-15 -3308 ((-584 (-485)) (-485) (-485) (-485))) (-15 -3309 ((-584 (-485)) (-485) (-485) (-485))))) (T -1022)) +((-3309 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))) (-3308 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))) (-3307 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))) (-3306 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1022)))) (-3305 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-584 (-485))) (-5 *4 (-485)) (-5 *1 (-1022)))) (-3305 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-485)) (-5 *1 (-1022)))) (-3304 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-584 (-485))) (-5 *3 (-584 (-831))) (-5 *4 (-85)) (-5 *1 (-1022)))) (-3303 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-631 (-485))) (-5 *3 (-584 (-485))) (-5 *1 (-1022)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-1022)))) (-3301 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-1022)))) (-3300 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *3 (-631 (-485))) (-5 *1 (-1022)))) (-3299 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-1022))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3310 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1023 |#1|) (-13 (-1024 |#1|) (-1014) (-10 -8 (-15 -3310 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1023)) +((-3310 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1023 *3))))) +((-3801 ((|#1| $ |#1| |#1|) 6 T ELT))) +(((-1024 |#1|) (-113) (-72)) (T -1024)) +NIL +(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3057 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|)))))))) +(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T)) +((** (($ $ (-831)) 10 T ELT))) +(((-1025 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-831)))) (-1026)) (T -1025)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT)) (* (($ $ $) 18 T ELT))) +(((-1026) (-113)) (T -1026)) +((* (*1 *1 *1 *1) (-4 *1 (-1026))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-831))))) +(-13 (-1014) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-831))))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3189 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3708 (($ (-831)) NIL (|has| |#3| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-2484 (($ $ $) NIL (|has| |#3| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3137 (((-695)) NIL (|has| |#3| (-320)) ELT)) (-3789 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1014)) ELT)) (-3157 (((-485) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT) ((|#3| $) NIL (|has| |#3| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-962)) ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#3| (-962)) ELT)) (-2995 (($) NIL (|has| |#3| (-320)) ELT)) (-1577 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#3| $ (-485)) 12 T ELT)) (-3187 (((-85) $) NIL (|has| |#3| (-718)) ELT)) (-2890 (((-584 |#3|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#3| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#3| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-2609 (((-584 |#3|) $) NIL T ELT)) (-3246 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-3327 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#3| (-320)) ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-1180 $) $) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-1180 $)) NIL (|has| |#3| (-962)) ELT)) (-3243 (((-1074) $) NIL (|has| |#3| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#3| (-320)) ELT)) (-3244 (((-1034) $) NIL (|has| |#3| (-1014)) ELT)) (-3802 ((|#3| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#3| (-1014))) ELT)) (-2206 (((-584 |#3|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#3| $ (-485) |#3|) NIL T ELT) ((|#3| $ (-485)) NIL T ELT)) (-3837 ((|#3| $ $) NIL (|has| |#3| (-962)) ELT)) (-1469 (($ (-1180 |#3|)) NIL T ELT)) (-3912 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3759 (($ $ (-695)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT)) (-1947 (((-695) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1180 |#3|) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT) (($ |#3|) NIL (|has| |#3| (-1014)) ELT) (((-773) $) NIL (|has| |#3| (-553 (-773))) ELT)) (-3127 (((-695)) NIL (|has| |#3| (-962)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#3| (-962)) ELT)) (-2661 (($) NIL (|has| |#3| (-23)) CONST)) (-2667 (($) NIL (|has| |#3| (-962)) CONST)) (-2670 (($ $ (-695)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2686 (((-85) $ $) 24 (|has| |#3| (-757)) ELT)) (-3950 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3838 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-831)) NIL (|has| |#3| (-962)) ELT)) (* (($ $ $) NIL (|has| |#3| (-962)) ELT) (($ $ |#3|) NIL (|has| |#3| (-664)) ELT) (($ |#3| $) NIL (|has| |#3| (-664)) ELT) (($ (-485) $) NIL (|has| |#3| (-21)) ELT) (($ (-695) $) NIL (|has| |#3| (-23)) ELT) (($ (-831) $) NIL (|has| |#3| (-25)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-1027 |#1| |#2| |#3|) (-196 |#1| |#3|) (-695) (-695) (-718)) (T -1027)) +NIL +((-3311 (((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 50 T ELT)) (-3317 (((-485) (-1149 |#2| |#1|)) 95 (|has| |#1| (-392)) ELT)) (-3315 (((-485) (-1149 |#2| |#1|)) 79 T ELT)) (-3312 (((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 58 T ELT)) (-3316 (((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 81 (|has| |#1| (-392)) ELT)) (-3313 (((-584 |#1|) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 61 T ELT)) (-3314 (((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 78 T ELT))) +(((-1028 |#1| |#2|) (-10 -7 (-15 -3311 ((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3312 ((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3313 ((-584 |#1|) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3314 ((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3315 ((-485) (-1149 |#2| |#1|))) (IF (|has| |#1| (-392)) (PROGN (-15 -3316 ((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3317 ((-485) (-1149 |#2| |#1|)))) |%noBranch|)) (-741) (-1091)) (T -1028)) +((-3317 (*1 *2 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3316 (*1 *2 *3 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3314 (*1 *2 *3 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3313 (*1 *2 *3 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 *4)) (-5 *1 (-1028 *4 *5)))) (-3312 (*1 *2 *3 *3) (-12 (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4)))) (-3311 (*1 *2 *3 *3) (-12 (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3319 (((-1096) $) 12 T ELT)) (-3318 (((-584 (-1096)) $) 14 T ELT)) (-3320 (($ (-584 (-1096)) (-1096)) 10 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 29 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 17 T ELT))) +(((-1029) (-13 (-1014) (-10 -8 (-15 -3320 ($ (-584 (-1096)) (-1096))) (-15 -3319 ((-1096) $)) (-15 -3318 ((-584 (-1096)) $))))) (T -1029)) +((-3320 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1096))) (-5 *3 (-1096)) (-5 *1 (-1029)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1029)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1029))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3321 (($ (-447) (-1029)) 14 T ELT)) (-3320 (((-1029) $) 20 T ELT)) (-3543 (((-447) $) 17 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 27 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1030) (-13 (-996) (-10 -8 (-15 -3321 ($ (-447) (-1029))) (-15 -3543 ((-447) $)) (-15 -3320 ((-1029) $))))) (T -1030)) +((-3321 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-1030)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1030)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-1030))))) +((-3624 (((-3 (-485) #1="failed") |#2| (-1091) |#2| (-1074)) 19 T ELT) (((-3 (-485) #1#) |#2| (-1091) (-751 |#2|)) 17 T ELT) (((-3 (-485) #1#) |#2|) 60 T ELT))) +(((-1031 |#1| |#2|) (-10 -7 (-15 -3624 ((-3 (-485) #1="failed") |#2|)) (-15 -3624 ((-3 (-485) #1#) |#2| (-1091) (-751 |#2|))) (-15 -3624 ((-3 (-485) #1#) |#2| (-1091) |#2| (-1074)))) (-13 (-496) (-951 (-485)) (-581 (-485)) (-392)) (-13 (-27) (-1116) (-364 |#1|))) (T -1031)) +((-3624 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-1074)) (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) (-5 *1 (-1031 *6 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))))) (-3624 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-751 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) (-5 *1 (-1031 *6 *3)))) (-3624 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) (-5 *1 (-1031 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4)))))) +((-3624 (((-3 (-485) #1="failed") (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|)) (-1074)) 38 T ELT) (((-3 (-485) #1#) (-350 (-858 |#1|)) (-1091) (-751 (-350 (-858 |#1|)))) 33 T ELT) (((-3 (-485) #1#) (-350 (-858 |#1|))) 14 T ELT))) +(((-1032 |#1|) (-10 -7 (-15 -3624 ((-3 (-485) #1="failed") (-350 (-858 |#1|)))) (-15 -3624 ((-3 (-485) #1#) (-350 (-858 |#1|)) (-1091) (-751 (-350 (-858 |#1|))))) (-15 -3624 ((-3 (-485) #1#) (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|)) (-1074)))) (-392)) (T -1032)) +((-3624 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1091)) (-5 *5 (-1074)) (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6)))) (-3624 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-751 (-350 (-858 *6)))) (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6)))) (-3624 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *4))))) +((-3650 (((-265 (-485)) (-48)) 12 T ELT))) +(((-1033) (-10 -7 (-15 -3650 ((-265 (-485)) (-48))))) (T -1033)) +((-3650 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-485))) (-5 *1 (-1033))))) +((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 22 T ELT)) (-3189 (((-85) $) 49 T ELT)) (-3322 (($ $ $) 28 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 75 T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2043 (($ $ $ $) 59 T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) 61 T ELT)) (-3624 (((-485) $) NIL T ELT)) (-2442 (($ $ $) 56 T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL T ELT)) (-2565 (($ $ $) 42 T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 70 T ELT) (((-631 (-485)) (-631 $)) 8 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3025 (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3024 (((-85) $) NIL T ELT)) (-3023 (((-350 (-485)) $) NIL T ELT)) (-2995 (($) 73 T ELT) (($ $) 72 T ELT)) (-2564 (($ $ $) 41 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2049 (($ $ $) 71 T ELT)) (-3187 (((-85) $) 76 T ELT)) (-1370 (($ $ $) NIL T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL T ELT)) (-2562 (($ $ $) 27 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 50 T ELT)) (-2674 (((-85) $) 47 T ELT)) (-2561 (($ $) 23 T ELT)) (-3446 (((-633 $) $) NIL T ELT)) (-3188 (((-85) $) 60 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2042 (($ $ $ $) 57 T ELT)) (-2532 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2858 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2045 (($ $) NIL T ELT)) (-2011 (((-831) $) 66 T ELT)) (-3834 (($ $) 55 T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1892 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2040 (($ $ $) NIL T ELT)) (-3447 (($) NIL T CONST)) (-2401 (($ (-831)) 65 T ELT)) (-2047 (($ $) 33 T ELT)) (-3244 (((-1034) $) 54 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3145 (($ $ $) 45 T ELT) (($ (-584 $)) NIL T ELT)) (-1368 (($ $) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2675 (((-85) $) 48 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 44 T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2046 (($ $) 34 T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-485) $) 12 T ELT) (((-474) $) NIL T ELT) (((-801 (-485)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3947 (((-773) $) 11 T ELT) (($ (-485)) 13 T ELT) (($ $) NIL T ELT) (($ (-485)) 13 T ELT)) (-3127 (((-695)) NIL T CONST)) (-2050 (((-85) $ $) NIL T ELT)) (-3102 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2695 (($) 17 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2563 (($ $ $) 26 T ELT)) (-2044 (($ $ $ $) 58 T ELT)) (-3384 (($ $) 46 T ELT)) (-2312 (($ $ $) 25 T ELT)) (-2661 (($) 15 T CONST)) (-2667 (($) 16 T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2567 (((-85) $ $) 32 T ELT)) (-2568 (((-85) $ $) 30 T ELT)) (-3057 (((-85) $ $) 21 T ELT)) (-2685 (((-85) $ $) 31 T ELT)) (-2686 (((-85) $ $) 29 T ELT)) (-2313 (($ $ $) 24 T ELT)) (-3838 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3840 (($ $ $) 36 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 40 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-485) $) 14 T ELT))) +(((-1034) (-13 (-484) (-753) (-84) (-10 -8 (-6 -3983) (-6 -3988) (-6 -3984) (-15 -3322 ($ $ $))))) (T -1034)) +((-3322 (*1 *1 *1 *1) (-5 *1 (-1034)))) +((-485) (|%ismall?| |#1|)) +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3324 ((|#1| $) 49 T ELT)) (-3725 (($) 7 T CONST)) (-3326 ((|#1| |#1| $) 51 T ELT)) (-3325 ((|#1| $) 50 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 43 T ELT)) (-3610 (($ |#1| $) 44 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 45 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3323 (((-695) $) 48 T ELT)) (-1947 (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 31 T ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 46 T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-1035 |#1|) (-113) (-1130)) (T -1035)) +((-3326 (*1 *2 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1130)) (-5 *2 (-695))))) +(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3326 (|t#1| |t#1| $)) (-15 -3325 (|t#1| $)) (-15 -3324 (|t#1| $)) (-15 -3323 ((-695) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3725 (($) 7 T CONST)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-1036 |#1|) (-113) (-1130)) (T -1036)) +((-3327 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1036 *3)) (-4 *3 (-1130))))) +(-13 (-429 |t#1|) (-10 -8 (-6 -3997) (-15 -3327 ($ (-1 |t#1| |t#1|) $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) +((-3331 ((|#3| $) 87 T ELT)) (-3158 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3157 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) 84 T ELT) (((-631 |#3|) (-631 $)) 76 T ELT)) (-3759 (($ $ (-1 |#3| |#3|) (-695)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3330 ((|#3| $) 89 T ELT)) (-3332 ((|#4| $) 43 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 24 T ELT) (($ $ (-485)) 95 T ELT))) +(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3759 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3759 (|#1| |#1| (-1091) (-695))) (-15 -3759 (|#1| |#1| (-584 (-1091)))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3759 (|#1| |#1| (-695))) (-15 -3759 (|#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3330 (|#3| |#1|)) (-15 -3331 (|#3| |#1|)) (-15 -3332 (|#4| |#1|)) (-15 -2280 ((-631 |#3|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3947 (|#1| |#3|)) (-15 -3158 ((-3 |#3| #1="failed") |#1|)) (-15 -3157 (|#3| |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3947 (|#1| (-350 (-485)))) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3759 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3759 (|#1| |#1| (-1 |#3| |#3|) (-695))) (-15 -3947 (|#1| (-485))) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831))) (-15 -3947 ((-773) |#1|))) (-1038 |#2| |#3| |#4| |#5|) (-695) (-962) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1037)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3331 ((|#2| $) 90 T ELT)) (-3121 (((-85) $) 131 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3123 (((-85) $) 129 T ELT)) (-3334 (($ |#2|) 93 T ELT)) (-3725 (($) 23 T CONST)) (-3110 (($ $) 148 (|has| |#2| (-258)) ELT)) (-3112 ((|#3| $ (-485)) 143 T ELT)) (-3158 (((-3 (-485) #1="failed") $) 109 (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 106 (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) 103 T ELT)) (-3157 (((-485) $) 108 (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) 105 (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) 104 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 99 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 98 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 97 T ELT) (((-631 |#2|) (-631 $)) 96 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3109 (((-695) $) 149 (|has| |#2| (-496)) ELT)) (-3113 ((|#2| $ (-485) (-485)) 141 T ELT)) (-2890 (((-584 |#2|) $) 121 (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3108 (((-695) $) 150 (|has| |#2| (-496)) ELT)) (-3107 (((-584 |#4|) $) 151 (|has| |#2| (-496)) ELT)) (-3115 (((-695) $) 137 T ELT)) (-3114 (((-695) $) 138 T ELT)) (-3328 ((|#2| $) 85 (|has| |#2| (-6 (-3998 #2="*"))) ELT)) (-3119 (((-485) $) 133 T ELT)) (-3117 (((-485) $) 135 T ELT)) (-2609 (((-584 |#2|) $) 112 T ELT)) (-3246 (((-85) |#2| $) 110 (|has| |#2| (-72)) ELT)) (-3118 (((-485) $) 134 T ELT)) (-3116 (((-485) $) 136 T ELT)) (-3124 (($ (-584 (-584 |#2|))) 128 T ELT)) (-3327 (($ (-1 |#2| |#2|) $) 122 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2| |#2|) $ $) 145 T ELT) (($ (-1 |#2| |#2|) $) 123 T ELT)) (-3595 (((-584 (-584 |#2|)) $) 139 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 101 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 100 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) 95 T ELT) (((-631 |#2|) (-1180 $)) 94 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3591 (((-3 $ "failed") $) 84 (|has| |#2| (-312)) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ |#2|) 146 (|has| |#2| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 114 T ELT)) (-3769 (($ $ (-584 (-249 |#2|))) 120 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 119 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 118 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 117 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) 127 T ELT)) (-3404 (((-85) $) 124 T ELT)) (-3566 (($) 125 T ELT)) (-3801 ((|#2| $ (-485) (-485) |#2|) 142 T ELT) ((|#2| $ (-485) (-485)) 140 T ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-695)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 55 (|has| |#2| (-189)) ELT) (($ $ (-695)) 53 (|has| |#2| (-189)) ELT) (($ $ (-1091)) 63 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 61 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 60 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 59 (|has| |#2| (-812 (-1091))) ELT)) (-3330 ((|#2| $) 89 T ELT)) (-3333 (($ (-584 |#2|)) 92 T ELT)) (-3122 (((-85) $) 130 T ELT)) (-3332 ((|#3| $) 91 T ELT)) (-3329 ((|#2| $) 86 (|has| |#2| (-6 (-3998 #2#))) ELT)) (-1947 (((-695) (-1 (-85) |#2|) $) 113 T ELT) (((-695) |#2| $) 111 (|has| |#2| (-72)) ELT)) (-3401 (($ $) 126 T ELT)) (-3111 ((|#4| $ (-485)) 144 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 107 (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) 102 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 115 T ELT)) (-3120 (((-85) $) 132 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-695)) 67 T ELT) (($ $ (-1 |#2| |#2|)) 66 T ELT) (($ $) 54 (|has| |#2| (-189)) ELT) (($ $ (-695)) 52 (|has| |#2| (-189)) ELT) (($ $ (-1091)) 62 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 58 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 57 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 56 (|has| |#2| (-812 (-1091))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#2|) 147 (|has| |#2| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 83 (|has| |#2| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#2|) 153 T ELT) (($ |#2| $) 152 T ELT) ((|#4| $ |#4|) 88 T ELT) ((|#3| |#3| $) 87 T ELT)) (-3958 (((-695) $) 116 T ELT))) +(((-1038 |#1| |#2| |#3| |#4|) (-113) (-695) (-962) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1038)) +((-3334 (*1 *1 *2) (-12 (-4 *2 (-962)) (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-584 *4)) (-4 *4 (-962)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-962)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-962)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3998 #1="*"))) (-4 *2 (-962)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3998 #1#))) (-4 *2 (-962)))) (-3591 (*1 *1 *1) (|partial| -12 (-4 *1 (-1038 *2 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312))))) +(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-966 |t#1| |t#1| |t#2| |t#3| |t#4|) (-355 |t#2|) (-329 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-655 |t#2|)) |%noBranch|) (-15 -3334 ($ |t#2|)) (-15 -3333 ($ (-584 |t#2|))) (-15 -3332 (|t#3| $)) (-15 -3331 (|t#2| $)) (-15 -3330 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3998 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3329 (|t#2| $)) (-15 -3328 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-312)) (PROGN (-15 -3591 ((-3 $ "failed") $)) (-15 ** ($ $ (-485)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3998 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-350 (-485))) |has| |#2| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-318 |#2|) . T) ((-329 |#2|) . T) ((-355 |#2|) . T) ((-429 |#2|) . T) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 (-485)) |has| |#2| (-581 (-485))) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3998 #1#)))) ((-581 (-485)) |has| |#2| (-581 (-485))) ((-581 |#2|) . T) ((-655 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3998 #1#)))) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#2| (-812 (-1091))) (|has| |#2| (-810 (-1091)))) ((-810 (-1091)) |has| |#2| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#2| (-812 (-1091))) (|has| |#2| (-810 (-1091)))) ((-966 |#1| |#1| |#2| |#3| |#4|) . T) ((-951 (-350 (-485))) |has| |#2| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#2| (-951 (-485))) ((-951 |#2|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-3337 ((|#4| |#4|) 81 T ELT)) (-3335 ((|#4| |#4|) 76 T ELT)) (-3339 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2013 (-584 |#3|))) |#4| |#3|) 91 T ELT)) (-3338 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3336 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) +(((-1039 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3335 (|#4| |#4|)) (-15 -3336 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3337 (|#4| |#4|)) (-15 -3338 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3339 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2013 (-584 |#3|))) |#4| |#3|))) (-258) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -1039)) +((-3339 (*1 *2 *3 *4) (-12 (-4 *5 (-258)) (-4 *6 (-324 *5)) (-4 *4 (-324 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-1039 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-3338 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1039 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3337 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3336 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1039 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3335 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 18 T ELT)) (-3082 (((-584 |#2|) $) 174 T ELT)) (-3084 (((-1086 $) $ |#2|) 60 T ELT) (((-1086 |#1|) $) 49 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 116 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 118 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 120 (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 |#2|)) 214 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3157 ((|#1| $) 165 T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) ((|#2| $) NIL T ELT)) (-3757 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3960 (($ $) 218 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) 90 T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 |#2|) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 20 T ELT)) (-2421 (((-695) $) 30 T ELT)) (-3085 (($ (-1086 |#1|) |#2|) 54 T ELT) (($ (-1086 $) |#2|) 71 T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) 38 T ELT)) (-2894 (($ |#1| (-470 |#2|)) 78 T ELT) (($ $ |#2| (-695)) 58 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ |#2|) NIL T ELT)) (-2821 (((-470 |#2|) $) 205 T ELT) (((-695) $ |#2|) 206 T ELT) (((-584 (-695)) $ (-584 |#2|)) 207 T ELT)) (-1626 (($ (-1 (-470 |#2|) (-470 |#2|)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3083 (((-3 |#2| #1#) $) 177 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2895 (($ $) 217 T ELT)) (-3175 ((|#1| $) 43 T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) 39 T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 148 (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) 153 (|has| |#1| (-392)) ELT) (($ $ $) 138 (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-496)) ELT)) (-3769 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-584 |#2|) (-584 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-584 |#2|) (-584 $)) 194 T ELT)) (-3758 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3949 (((-470 |#2|) $) 201 T ELT) (((-695) $ |#2|) 196 T ELT) (((-584 (-695)) $ (-584 |#2|)) 199 T ELT)) (-3973 (((-801 (-330)) $) NIL (-12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2818 ((|#1| $) 134 (|has| |#1| (-392)) ELT) (($ $ |#2|) 137 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3947 (((-773) $) 159 T ELT) (($ (-485)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3818 (((-584 |#1|) $) 162 T ELT)) (-3678 ((|#1| $ (-470 |#2|)) 80 T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) 87 T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) 123 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 12 T CONST)) (-2667 (($) 14 T CONST)) (-2670 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3057 (((-85) $ $) 106 T ELT)) (-3950 (($ $ |#1|) 132 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3840 (($ $ $) 55 T ELT)) (** (($ $ (-831)) 110 T ELT) (($ $ (-695)) 109 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1040 |#1| |#2|) (-862 |#1| (-470 |#2|) |#2|) (-962) (-757)) (T -1040)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3493 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 125 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 121 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 129 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3815 (((-858 |#1|) $ (-695)) NIL T ELT) (((-858 |#1|) $ (-695) (-695)) NIL T ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3773 (((-695) $ |#2|) NIL T ELT) (((-695) $ |#2| (-695)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ $ (-584 |#2|) (-584 (-470 |#2|))) NIL T ELT) (($ $ |#2| (-470 |#2|)) NIL T ELT) (($ |#1| (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 63 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) 119 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3813 (($ $ |#2|) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3677 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (($ $ (-695)) 17 T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3944 (($ $) 117 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (($ $ |#2| $) 104 T ELT) (($ $ (-584 |#2|) (-584 $)) 99 T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT)) (-3759 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3949 (((-470 |#2|) $) NIL T ELT)) (-3340 (((-1 (-1070 |#3|) |#3|) (-584 |#2|) (-584 (-1070 |#3|))) 87 T ELT)) (-3496 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 131 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 127 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 123 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 19 T ELT)) (-3947 (((-773) $) 194 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3678 ((|#1| $ (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) ((|#3| $ (-695)) 43 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 137 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 133 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 141 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 139 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 135 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 52 T CONST)) (-2667 (($) 62 T CONST)) (-2670 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) 196 (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 66 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 109 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-350 (-485))) 114 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 112 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) +(((-1041 |#1| |#2| |#3|) (-13 (-680 |#1| |#2|) (-10 -8 (-15 -3678 (|#3| $ (-695))) (-15 -3947 ($ |#2|)) (-15 -3947 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3340 ((-1 (-1070 |#3|) |#3|) (-584 |#2|) (-584 (-1070 |#3|)))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3813 ($ $ |#2| |#1|)) (-15 -3677 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-962) (-757) (-862 |#1| (-470 |#2|) |#2|)) (T -1041)) +((-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *2 (-862 *4 (-470 *5) *5)) (-5 *1 (-1041 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3947 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1041 *3 *2 *4)) (-4 *4 (-862 *3 (-470 *2) *2)))) (-3947 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2)) (-4 *2 (-862 *3 (-470 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2)) (-4 *2 (-862 *3 (-470 *4) *4)))) (-3340 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1070 *7))) (-4 *6 (-757)) (-4 *7 (-862 *5 (-470 *6) *6)) (-4 *5 (-962)) (-5 *2 (-1 (-1070 *7) *7)) (-5 *1 (-1041 *5 *6 *7)))) (-3813 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1041 *3 *2 *4)) (-4 *4 (-862 *3 (-470 *2) *2)))) (-3677 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1041 *4 *3 *5))) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *1 (-1041 *4 *3 *5)) (-4 *5 (-862 *4 (-470 *3) *3))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3682 (((-584 (-2 (|:| -3862 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3683 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3082 (((-584 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3689 ((|#4| |#4| $) 98 T ELT)) (-3776 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 134 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3725 (($) 54 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3690 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3157 (($ (-584 |#4|)) 40 T ELT)) (-3800 (((-3 $ #1#) $) 88 T ELT)) (-3686 ((|#4| |#4| $) 95 T ELT)) (-1354 (($ $) 70 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#4| $) 69 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3996)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3684 ((|#4| |#4| $) 93 T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3697 (((-2 (|:| -3862 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 111 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT)) (-3196 (((-85) |#4| $) 141 T ELT)) (-3199 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-2890 (((-584 |#4|) $) 57 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-584 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2915 (((-584 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3192 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3191 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 135 T ELT)) (-3799 (((-3 |#4| #1#) $) 89 T ELT)) (-3193 (((-584 $) |#4| $) 137 T ELT)) (-3195 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3194 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3239 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3441 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3698 (((-584 |#4|) $) 113 T ELT)) (-3692 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3687 ((|#4| |#4| $) 96 T ELT)) (-3700 (((-85) $ $) 116 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3688 ((|#4| |#4| $) 97 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3802 (((-3 |#4| #1#) $) 90 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3770 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3769 (($ $ (-584 |#4|) (-584 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 50 T ELT)) (-3404 (((-85) $) 53 T ELT)) (-3566 (($) 52 T ELT)) (-3949 (((-695) $) 112 T ELT)) (-1947 (((-695) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3401 (($ $) 51 T ELT)) (-3973 (((-474) $) 71 (|has| |#4| (-554 (-474))) ELT)) (-3531 (($ (-584 |#4|)) 62 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-3685 (($ $) 94 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3947 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3679 (((-695) $) 82 (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 104 T ELT)) (-3190 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3681 (((-584 |#3|) $) 87 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3934 (((-85) |#3| $) 86 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3958 (((-695) $) 43 T ELT))) +(((-1042 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -1042)) +NIL +(-13 (-1021 |t#1| |t#2| |t#3| |t#4|) (-708 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-708 |#1| |#2| |#3| |#4|) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1021 |#1| |#2| |#3| |#4|) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T)) +((-3574 (((-584 |#2|) |#1|) 15 T ELT)) (-3346 (((-584 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-584 |#2|) |#1|) 61 T ELT)) (-3344 (((-584 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-584 |#2|) |#1|) 59 T ELT)) (-3341 ((|#2| |#1|) 54 T ELT)) (-3342 (((-2 (|:| |solns| (-584 |#2|)) (|:| |maps| (-584 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3343 (((-584 |#2|) |#2| |#2|) 42 T ELT) (((-584 |#2|) |#1|) 58 T ELT)) (-3345 (((-584 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-584 |#2|) |#1|) 60 T ELT)) (-3350 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3348 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3347 ((|#2| |#2| |#2|) 50 T ELT)) (-3349 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) +(((-1043 |#1| |#2|) (-10 -7 (-15 -3574 ((-584 |#2|) |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -3342 ((-2 (|:| |solns| (-584 |#2|)) (|:| |maps| (-584 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3343 ((-584 |#2|) |#1|)) (-15 -3344 ((-584 |#2|) |#1|)) (-15 -3345 ((-584 |#2|) |#1|)) (-15 -3346 ((-584 |#2|) |#1|)) (-15 -3343 ((-584 |#2|) |#2| |#2|)) (-15 -3344 ((-584 |#2|) |#2| |#2| |#2|)) (-15 -3345 ((-584 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3346 ((-584 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3347 (|#2| |#2| |#2|)) (-15 -3348 (|#2| |#2| |#2| |#2|)) (-15 -3349 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3350 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1156 |#2|) (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (T -1043)) +((-3350 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3349 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3348 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3347 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3346 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3345 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3344 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3343 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3346 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3345 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3344 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-2 (|:| |solns| (-584 *5)) (|:| |maps| (-584 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1043 *3 *5)) (-4 *3 (-1156 *5)))) (-3341 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4))))) +((-3351 (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|))))) 119 T ELT) (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1091))) 118 T ELT) (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|)))) 116 T ELT) (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|))) (-584 (-1091))) 113 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|)))) 97 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|))) (-1091)) 98 T ELT) (((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|))) 92 T ELT) (((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|)) (-1091)) 82 T ELT)) (-3352 (((-584 (-584 (-265 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1091))) 111 T ELT) (((-584 (-265 |#1|)) (-350 (-858 |#1|)) (-1091)) 54 T ELT)) (-3353 (((-1081 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-350 (-858 |#1|)) (-1091)) 123 T ELT) (((-1081 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-249 (-350 (-858 |#1|))) (-1091)) 122 T ELT))) +(((-1044 |#1|) (-10 -7 (-15 -3351 ((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|)) (-1091))) (-15 -3351 ((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|)))) (-15 -3351 ((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|))) (-1091))) (-15 -3351 ((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|))))) (-15 -3351 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|))) (-584 (-1091)))) (-15 -3351 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|))))) (-15 -3351 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1091)))) (-15 -3351 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|)))))) (-15 -3352 ((-584 (-265 |#1|)) (-350 (-858 |#1|)) (-1091))) (-15 -3352 ((-584 (-584 (-265 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1091)))) (-15 -3353 ((-1081 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-249 (-350 (-858 |#1|))) (-1091))) (-15 -3353 ((-1081 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-350 (-858 |#1|)) (-1091)))) (-13 (-258) (-120))) (T -1044)) +((-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1081 (-584 (-265 *5)) (-584 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1081 (-584 (-265 *5)) (-584 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-265 *5)))) (-5 *1 (-1044 *5)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-265 *5))) (-5 *1 (-1044 *5)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1044 *4)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-249 (-350 (-858 *5))))) (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1044 *4)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1044 *4)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1044 *5)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1044 *4)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1044 *5))))) +((-3355 (((-350 (-1086 (-265 |#1|))) (-1180 (-265 |#1|)) (-350 (-1086 (-265 |#1|))) (-485)) 36 T ELT)) (-3354 (((-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|)))) 48 T ELT))) +(((-1045 |#1|) (-10 -7 (-15 -3354 ((-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|))))) (-15 -3355 ((-350 (-1086 (-265 |#1|))) (-1180 (-265 |#1|)) (-350 (-1086 (-265 |#1|))) (-485)))) (-496)) (T -1045)) +((-3355 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-350 (-1086 (-265 *5)))) (-5 *3 (-1180 (-265 *5))) (-5 *4 (-485)) (-4 *5 (-496)) (-5 *1 (-1045 *5)))) (-3354 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-350 (-1086 (-265 *3)))) (-4 *3 (-496)) (-5 *1 (-1045 *3))))) +((-3574 (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-265 |#1|))) (-584 (-1091))) 244 T ELT) (((-584 (-249 (-265 |#1|))) (-265 |#1|) (-1091)) 23 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1091)) 29 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|))) 28 T ELT) (((-584 (-249 (-265 |#1|))) (-265 |#1|)) 24 T ELT))) +(((-1046 |#1|) (-10 -7 (-15 -3574 ((-584 (-249 (-265 |#1|))) (-265 |#1|))) (-15 -3574 ((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|)))) (-15 -3574 ((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1091))) (-15 -3574 ((-584 (-249 (-265 |#1|))) (-265 |#1|) (-1091))) (-15 -3574 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-265 |#1|))) (-584 (-1091))))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (T -1046)) +((-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1046 *5)) (-5 *3 (-584 (-249 (-265 *5)))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-265 *5)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-249 (-265 *5))))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-249 (-265 *4))))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-265 *4))))) +((-3357 ((|#2| |#2|) 28 (|has| |#1| (-757)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3356 ((|#2| |#2|) 27 (|has| |#1| (-757)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT))) +(((-1047 |#1| |#2|) (-10 -7 (-15 -3356 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3357 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-757)) (PROGN (-15 -3356 (|#2| |#2|)) (-15 -3357 (|#2| |#2|))) |%noBranch|)) (-1130) (-13 (-539 (-485) |#1|) (-318 |#1|) (-10 -7 (-6 -3997)))) (T -1047)) +((-3357 (*1 *2 *2) (-12 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-10 -7 (-6 -3997)))))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-10 -7 (-6 -3997)))))) (-3357 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-10 -7 (-6 -3997)))))) (-3356 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-10 -7 (-6 -3997))))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3889 (((-1080 3 |#1|) $) 141 T ELT)) (-3367 (((-85) $) 101 T ELT)) (-3368 (($ $ (-584 (-855 |#1|))) 44 T ELT) (($ $ (-584 (-584 |#1|))) 104 T ELT) (($ (-584 (-855 |#1|))) 103 T ELT) (((-584 (-855 |#1|)) $) 102 T ELT)) (-3373 (((-85) $) 72 T ELT)) (-3707 (($ $ (-855 |#1|)) 76 T ELT) (($ $ (-584 |#1|)) 81 T ELT) (($ $ (-695)) 83 T ELT) (($ (-855 |#1|)) 77 T ELT) (((-855 |#1|) $) 75 T ELT)) (-3359 (((-2 (|:| -3851 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $) 139 T ELT)) (-3377 (((-695) $) 53 T ELT)) (-3378 (((-695) $) 52 T ELT)) (-3888 (($ $ (-695) (-855 |#1|)) 67 T ELT)) (-3365 (((-85) $) 111 T ELT)) (-3366 (($ $ (-584 (-584 (-855 |#1|))) (-584 (-145)) (-145)) 118 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-584 (-145)) (-145)) 120 T ELT) (($ $ (-584 (-584 (-855 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-85) (-85)) 127 T ELT) (($ (-584 (-584 (-855 |#1|)))) 116 T ELT) (($ (-584 (-584 (-855 |#1|))) (-85) (-85)) 117 T ELT) (((-584 (-584 (-855 |#1|))) $) 114 T ELT)) (-3519 (($ (-584 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3360 (((-584 (-145)) $) 133 T ELT)) (-3364 (((-584 (-855 |#1|)) $) 130 T ELT)) (-3361 (((-584 (-584 (-145))) $) 132 T ELT)) (-3362 (((-584 (-584 (-584 (-855 |#1|)))) $) NIL T ELT)) (-3363 (((-584 (-584 (-584 (-695)))) $) 131 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3374 (((-695) $ (-584 (-855 |#1|))) 65 T ELT)) (-3371 (((-85) $) 84 T ELT)) (-3372 (($ $ (-584 (-855 |#1|))) 86 T ELT) (($ $ (-584 (-584 |#1|))) 92 T ELT) (($ (-584 (-855 |#1|))) 87 T ELT) (((-584 (-855 |#1|)) $) 85 T ELT)) (-3379 (($) 48 T ELT) (($ (-1080 3 |#1|)) 49 T ELT)) (-3401 (($ $) 63 T ELT)) (-3375 (((-584 $) $) 62 T ELT)) (-3755 (($ (-584 $)) 59 T ELT)) (-3376 (((-584 $) $) 61 T ELT)) (-3947 (((-773) $) 146 T ELT)) (-3369 (((-85) $) 94 T ELT)) (-3370 (($ $ (-584 (-855 |#1|))) 96 T ELT) (($ $ (-584 (-584 |#1|))) 99 T ELT) (($ (-584 (-855 |#1|))) 97 T ELT) (((-584 (-855 |#1|)) $) 95 T ELT)) (-3358 (($ $) 140 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1048 |#1|) (-1049 |#1|) (-962)) (T -1048)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3889 (((-1080 3 |#1|) $) 17 T ELT)) (-3367 (((-85) $) 33 T ELT)) (-3368 (($ $ (-584 (-855 |#1|))) 37 T ELT) (($ $ (-584 (-584 |#1|))) 36 T ELT) (($ (-584 (-855 |#1|))) 35 T ELT) (((-584 (-855 |#1|)) $) 34 T ELT)) (-3373 (((-85) $) 48 T ELT)) (-3707 (($ $ (-855 |#1|)) 53 T ELT) (($ $ (-584 |#1|)) 52 T ELT) (($ $ (-695)) 51 T ELT) (($ (-855 |#1|)) 50 T ELT) (((-855 |#1|) $) 49 T ELT)) (-3359 (((-2 (|:| -3851 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $) 19 T ELT)) (-3377 (((-695) $) 62 T ELT)) (-3378 (((-695) $) 63 T ELT)) (-3888 (($ $ (-695) (-855 |#1|)) 54 T ELT)) (-3365 (((-85) $) 25 T ELT)) (-3366 (($ $ (-584 (-584 (-855 |#1|))) (-584 (-145)) (-145)) 32 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-584 (-145)) (-145)) 31 T ELT) (($ $ (-584 (-584 (-855 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-85) (-85)) 29 T ELT) (($ (-584 (-584 (-855 |#1|)))) 28 T ELT) (($ (-584 (-584 (-855 |#1|))) (-85) (-85)) 27 T ELT) (((-584 (-584 (-855 |#1|))) $) 26 T ELT)) (-3519 (($ (-584 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3360 (((-584 (-145)) $) 20 T ELT)) (-3364 (((-584 (-855 |#1|)) $) 24 T ELT)) (-3361 (((-584 (-584 (-145))) $) 21 T ELT)) (-3362 (((-584 (-584 (-584 (-855 |#1|)))) $) 22 T ELT)) (-3363 (((-584 (-584 (-584 (-695)))) $) 23 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3374 (((-695) $ (-584 (-855 |#1|))) 55 T ELT)) (-3371 (((-85) $) 43 T ELT)) (-3372 (($ $ (-584 (-855 |#1|))) 47 T ELT) (($ $ (-584 (-584 |#1|))) 46 T ELT) (($ (-584 (-855 |#1|))) 45 T ELT) (((-584 (-855 |#1|)) $) 44 T ELT)) (-3379 (($) 65 T ELT) (($ (-1080 3 |#1|)) 64 T ELT)) (-3401 (($ $) 56 T ELT)) (-3375 (((-584 $) $) 57 T ELT)) (-3755 (($ (-584 $)) 59 T ELT)) (-3376 (((-584 $) $) 58 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-3369 (((-85) $) 38 T ELT)) (-3370 (($ $ (-584 (-855 |#1|))) 42 T ELT) (($ $ (-584 (-584 |#1|))) 41 T ELT) (($ (-584 (-855 |#1|))) 40 T ELT) (((-584 (-855 |#1|)) $) 39 T ELT)) (-3358 (($ $) 18 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) +(((-1049 |#1|) (-113) (-962)) (T -1049)) +((-3947 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-773)))) (-3379 (*1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3379 (*1 *1 *2) (-12 (-5 *2 (-1080 3 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3519 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3519 (*1 *1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3376 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)))) (-3375 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)))) (-3401 (*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3374 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-855 *4))) (-4 *1 (-1049 *4)) (-4 *4 (-962)) (-5 *2 (-695)))) (-3888 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-855 *4)) (-4 *1 (-1049 *4)) (-4 *4 (-962)))) (-3707 (*1 *1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3707 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3707 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3707 (*1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-855 *3)))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3372 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3372 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3372 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3370 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3366 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-584 (-855 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) (-4 *1 (-1049 *5)) (-4 *5 (-962)))) (-3366 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) (-4 *1 (-1049 *5)) (-4 *5 (-962)))) (-3366 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4)) (-4 *4 (-962)))) (-3366 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4)) (-4 *4 (-962)))) (-3366 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 *3)))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3366 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *4 (-962)) (-4 *1 (-1049 *4)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-855 *3)))))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-695))))))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-855 *3))))))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-145)))))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-145))))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -3851 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695)))))) (-3358 (*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-1080 3 *3))))) +(-13 (-1014) (-10 -8 (-15 -3379 ($)) (-15 -3379 ($ (-1080 3 |t#1|))) (-15 -3378 ((-695) $)) (-15 -3377 ((-695) $)) (-15 -3519 ($ (-584 $))) (-15 -3519 ($ $ $)) (-15 -3755 ($ (-584 $))) (-15 -3376 ((-584 $) $)) (-15 -3375 ((-584 $) $)) (-15 -3401 ($ $)) (-15 -3374 ((-695) $ (-584 (-855 |t#1|)))) (-15 -3888 ($ $ (-695) (-855 |t#1|))) (-15 -3707 ($ $ (-855 |t#1|))) (-15 -3707 ($ $ (-584 |t#1|))) (-15 -3707 ($ $ (-695))) (-15 -3707 ($ (-855 |t#1|))) (-15 -3707 ((-855 |t#1|) $)) (-15 -3373 ((-85) $)) (-15 -3372 ($ $ (-584 (-855 |t#1|)))) (-15 -3372 ($ $ (-584 (-584 |t#1|)))) (-15 -3372 ($ (-584 (-855 |t#1|)))) (-15 -3372 ((-584 (-855 |t#1|)) $)) (-15 -3371 ((-85) $)) (-15 -3370 ($ $ (-584 (-855 |t#1|)))) (-15 -3370 ($ $ (-584 (-584 |t#1|)))) (-15 -3370 ($ (-584 (-855 |t#1|)))) (-15 -3370 ((-584 (-855 |t#1|)) $)) (-15 -3369 ((-85) $)) (-15 -3368 ($ $ (-584 (-855 |t#1|)))) (-15 -3368 ($ $ (-584 (-584 |t#1|)))) (-15 -3368 ($ (-584 (-855 |t#1|)))) (-15 -3368 ((-584 (-855 |t#1|)) $)) (-15 -3367 ((-85) $)) (-15 -3366 ($ $ (-584 (-584 (-855 |t#1|))) (-584 (-145)) (-145))) (-15 -3366 ($ $ (-584 (-584 (-584 |t#1|))) (-584 (-145)) (-145))) (-15 -3366 ($ $ (-584 (-584 (-855 |t#1|))) (-85) (-85))) (-15 -3366 ($ $ (-584 (-584 (-584 |t#1|))) (-85) (-85))) (-15 -3366 ($ (-584 (-584 (-855 |t#1|))))) (-15 -3366 ($ (-584 (-584 (-855 |t#1|))) (-85) (-85))) (-15 -3366 ((-584 (-584 (-855 |t#1|))) $)) (-15 -3365 ((-85) $)) (-15 -3364 ((-584 (-855 |t#1|)) $)) (-15 -3363 ((-584 (-584 (-584 (-695)))) $)) (-15 -3362 ((-584 (-584 (-584 (-855 |t#1|)))) $)) (-15 -3361 ((-584 (-584 (-145))) $)) (-15 -3360 ((-584 (-145)) $)) (-15 -3359 ((-2 (|:| -3851 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $)) (-15 -3358 ($ $)) (-15 -3889 ((-1080 3 |t#1|) $)) (-15 -3947 ((-773) $)))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 185 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) 7 T ELT)) (-3567 (((-85) $ (|[\|\|]| (-463))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-618))) 27 T ELT) (((-85) $ (|[\|\|]| (-1191))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-540))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1030))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-623))) 55 T ELT) (((-85) $ (|[\|\|]| (-459))) 59 T ELT) (((-85) $ (|[\|\|]| (-979))) 63 T ELT) (((-85) $ (|[\|\|]| (-1192))) 67 T ELT) (((-85) $ (|[\|\|]| (-464))) 71 T ELT) (((-85) $ (|[\|\|]| (-1068))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-614))) 83 T ELT) (((-85) $ (|[\|\|]| (-263))) 87 T ELT) (((-85) $ (|[\|\|]| (-949))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-884))) 99 T ELT) (((-85) $ (|[\|\|]| (-986))) 103 T ELT) (((-85) $ (|[\|\|]| (-1004))) 107 T ELT) (((-85) $ (|[\|\|]| (-1009))) 111 T ELT) (((-85) $ (|[\|\|]| (-566))) 116 T ELT) (((-85) $ (|[\|\|]| (-1082))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-418))) 132 T ELT) (((-85) $ (|[\|\|]| (-529))) 136 T ELT) (((-85) $ (|[\|\|]| (-447))) 140 T ELT) (((-85) $ (|[\|\|]| (-1074))) 144 T ELT) (((-85) $ (|[\|\|]| (-485))) 148 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3573 (((-463) $) 20 T ELT) (((-172) $) 24 T ELT) (((-618) $) 28 T ELT) (((-1191) $) 32 T ELT) (((-111) $) 36 T ELT) (((-540) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1030) $) 48 T ELT) (((-67) $) 52 T ELT) (((-623) $) 56 T ELT) (((-459) $) 60 T ELT) (((-979) $) 64 T ELT) (((-1192) $) 68 T ELT) (((-464) $) 72 T ELT) (((-1068) $) 76 T ELT) (((-127) $) 80 T ELT) (((-614) $) 84 T ELT) (((-263) $) 88 T ELT) (((-949) $) 92 T ELT) (((-154) $) 96 T ELT) (((-884) $) 100 T ELT) (((-986) $) 104 T ELT) (((-1004) $) 108 T ELT) (((-1009) $) 112 T ELT) (((-566) $) 117 T ELT) (((-1082) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-418) $) 133 T ELT) (((-529) $) 137 T ELT) (((-447) $) 141 T ELT) (((-1074) $) 145 T ELT) (((-485) $) 149 T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1050) (-1052)) (T -1050)) +NIL +((-3380 (((-584 (-1096)) (-1074)) 9 T ELT))) +(((-1051) (-10 -7 (-15 -3380 ((-584 (-1096)) (-1074))))) (T -1051)) +((-3380 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-1051))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-1096)) 20 T ELT) (((-1096) $) 19 T ELT)) (-3567 (((-85) $ (|[\|\|]| (-463))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-618))) 84 T ELT) (((-85) $ (|[\|\|]| (-1191))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-540))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1030))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-623))) 70 T ELT) (((-85) $ (|[\|\|]| (-459))) 68 T ELT) (((-85) $ (|[\|\|]| (-979))) 66 T ELT) (((-85) $ (|[\|\|]| (-1192))) 64 T ELT) (((-85) $ (|[\|\|]| (-464))) 62 T ELT) (((-85) $ (|[\|\|]| (-1068))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-614))) 56 T ELT) (((-85) $ (|[\|\|]| (-263))) 54 T ELT) (((-85) $ (|[\|\|]| (-949))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-884))) 48 T ELT) (((-85) $ (|[\|\|]| (-986))) 46 T ELT) (((-85) $ (|[\|\|]| (-1004))) 44 T ELT) (((-85) $ (|[\|\|]| (-1009))) 42 T ELT) (((-85) $ (|[\|\|]| (-566))) 40 T ELT) (((-85) $ (|[\|\|]| (-1082))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-418))) 32 T ELT) (((-85) $ (|[\|\|]| (-529))) 30 T ELT) (((-85) $ (|[\|\|]| (-447))) 28 T ELT) (((-85) $ (|[\|\|]| (-1074))) 26 T ELT) (((-85) $ (|[\|\|]| (-485))) 24 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3573 (((-463) $) 87 T ELT) (((-172) $) 85 T ELT) (((-618) $) 83 T ELT) (((-1191) $) 81 T ELT) (((-111) $) 79 T ELT) (((-540) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1030) $) 73 T ELT) (((-67) $) 71 T ELT) (((-623) $) 69 T ELT) (((-459) $) 67 T ELT) (((-979) $) 65 T ELT) (((-1192) $) 63 T ELT) (((-464) $) 61 T ELT) (((-1068) $) 59 T ELT) (((-127) $) 57 T ELT) (((-614) $) 55 T ELT) (((-263) $) 53 T ELT) (((-949) $) 51 T ELT) (((-154) $) 49 T ELT) (((-884) $) 47 T ELT) (((-986) $) 45 T ELT) (((-1004) $) 43 T ELT) (((-1009) $) 41 T ELT) (((-566) $) 39 T ELT) (((-1082) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-418) $) 31 T ELT) (((-529) $) 29 T ELT) (((-447) $) 27 T ELT) (((-1074) $) 25 T ELT) (((-485) $) 23 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) +(((-1052) (-113)) (T -1052)) +((-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-463)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-172)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-618)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1191)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-111)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-540))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-540)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-106)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1030))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1030)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-67)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-623)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-459))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-459)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-979)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1192))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1192)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-464)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1068)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-127)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-614)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-263)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-949)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-154)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-884))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-884)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-986))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-986)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1004))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1004)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1009))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1009)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-566)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1082)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-129)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-110)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-418))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-418)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-529)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-447)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1074)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-485))))) +(-13 (-996) (-1176) (-10 -8 (-15 -3567 ((-85) $ (|[\|\|]| (-463)))) (-15 -3573 ((-463) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-172)))) (-15 -3573 ((-172) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-618)))) (-15 -3573 ((-618) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1191)))) (-15 -3573 ((-1191) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-111)))) (-15 -3573 ((-111) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-540)))) (-15 -3573 ((-540) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-106)))) (-15 -3573 ((-106) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1030)))) (-15 -3573 ((-1030) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-67)))) (-15 -3573 ((-67) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-623)))) (-15 -3573 ((-623) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-459)))) (-15 -3573 ((-459) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-979)))) (-15 -3573 ((-979) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1192)))) (-15 -3573 ((-1192) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-464)))) (-15 -3573 ((-464) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1068)))) (-15 -3573 ((-1068) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-127)))) (-15 -3573 ((-127) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-614)))) (-15 -3573 ((-614) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-263)))) (-15 -3573 ((-263) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-949)))) (-15 -3573 ((-949) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-154)))) (-15 -3573 ((-154) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-884)))) (-15 -3573 ((-884) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-986)))) (-15 -3573 ((-986) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1004)))) (-15 -3573 ((-1004) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1009)))) (-15 -3573 ((-1009) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-566)))) (-15 -3573 ((-566) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1082)))) (-15 -3573 ((-1082) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-129)))) (-15 -3573 ((-129) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-110)))) (-15 -3573 ((-110) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-418)))) (-15 -3573 ((-418) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-529)))) (-15 -3573 ((-529) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-447)))) (-15 -3573 ((-447) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1074)))) (-15 -3573 ((-1074) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-485)))) (-15 -3573 ((-485) $)))) +(((-64) . T) ((-72) . T) ((-556 (-1096)) . T) ((-553 (-773)) . T) ((-553 (-1096)) . T) ((-430 (-1096)) . T) ((-13) . T) ((-1014) . T) ((-996) . T) ((-1130) . T) ((-1176) . T)) +((-3383 (((-1186) (-584 (-773))) 22 T ELT) (((-1186) (-773)) 21 T ELT)) (-3382 (((-1186) (-584 (-773))) 20 T ELT) (((-1186) (-773)) 19 T ELT)) (-3381 (((-1186) (-584 (-773))) 18 T ELT) (((-1186) (-773)) 10 T ELT) (((-1186) (-1074) (-773)) 16 T ELT))) +(((-1053) (-10 -7 (-15 -3381 ((-1186) (-1074) (-773))) (-15 -3381 ((-1186) (-773))) (-15 -3382 ((-1186) (-773))) (-15 -3383 ((-1186) (-773))) (-15 -3381 ((-1186) (-584 (-773)))) (-15 -3382 ((-1186) (-584 (-773)))) (-15 -3383 ((-1186) (-584 (-773)))))) (T -1053)) +((-3383 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053))))) +((-3387 (($ $ $) 10 T ELT)) (-3386 (($ $) 9 T ELT)) (-3390 (($ $ $) 13 T ELT)) (-3392 (($ $ $) 15 T ELT)) (-3389 (($ $ $) 12 T ELT)) (-3391 (($ $ $) 14 T ELT)) (-3394 (($ $) 17 T ELT)) (-3393 (($ $) 16 T ELT)) (-3384 (($ $) 6 T ELT)) (-3388 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3385 (($ $ $) 8 T ELT))) +(((-1054) (-113)) (T -1054)) +((-3394 (*1 *1 *1) (-4 *1 (-1054))) (-3393 (*1 *1 *1) (-4 *1 (-1054))) (-3392 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3391 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3390 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3389 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3388 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3387 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3386 (*1 *1 *1) (-4 *1 (-1054))) (-3385 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3388 (*1 *1 *1) (-4 *1 (-1054))) (-3384 (*1 *1 *1) (-4 *1 (-1054)))) +(-13 (-10 -8 (-15 -3384 ($ $)) (-15 -3388 ($ $)) (-15 -3385 ($ $ $)) (-15 -3386 ($ $)) (-15 -3387 ($ $ $)) (-15 -3388 ($ $ $)) (-15 -3389 ($ $ $)) (-15 -3390 ($ $ $)) (-15 -3391 ($ $ $)) (-15 -3392 ($ $ $)) (-15 -3393 ($ $)) (-15 -3394 ($ $)))) +((-2569 (((-85) $ $) 44 T ELT)) (-3403 ((|#1| $) 17 T ELT)) (-3395 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3402 (((-85) $) 19 T ELT)) (-3400 (($ $ |#1|) 30 T ELT)) (-3398 (($ $ (-85)) 32 T ELT)) (-3397 (($ $) 33 T ELT)) (-3399 (($ $ |#2|) 31 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3396 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3404 (((-85) $) 16 T ELT)) (-3566 (($) 13 T ELT)) (-3401 (($ $) 29 T ELT)) (-3531 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) 23 T ELT) (((-584 $) (-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|)))) 26 T ELT) (((-584 $) |#1| (-584 |#2|)) 28 T ELT)) (-3923 ((|#2| $) 18 T ELT)) (-3947 (((-773) $) 53 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 42 T ELT))) +(((-1055 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3566 ($)) (-15 -3404 ((-85) $)) (-15 -3403 (|#1| $)) (-15 -3923 (|#2| $)) (-15 -3402 ((-85) $)) (-15 -3531 ($ |#1| |#2| (-85))) (-15 -3531 ($ |#1| |#2|)) (-15 -3531 ($ (-2 (|:| |val| |#1|) (|:| -1601 |#2|)))) (-15 -3531 ((-584 $) (-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))))) (-15 -3531 ((-584 $) |#1| (-584 |#2|))) (-15 -3401 ($ $)) (-15 -3400 ($ $ |#1|)) (-15 -3399 ($ $ |#2|)) (-15 -3398 ($ $ (-85))) (-15 -3397 ($ $)) (-15 -3396 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3395 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1014) (-34)) (-13 (-1014) (-34))) (T -1055)) +((-3566 (*1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3403 (*1 *2 *1) (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-13 (-1014) (-34))))) (-3923 (*1 *2 *1) (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1014) (-34))))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3531 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3531 (*1 *1 *2 *3) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1601 *4))) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *4)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |val| *4) (|:| -1601 *5)))) (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-584 (-1055 *4 *5))) (-5 *1 (-1055 *4 *5)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *5)) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-584 (-1055 *3 *5))) (-5 *1 (-1055 *3 *5)) (-4 *3 (-13 (-1014) (-34))))) (-3401 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3400 (*1 *1 *1 *2) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3399 (*1 *1 *1 *2) (-12 (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1014) (-34))) (-4 *2 (-13 (-1014) (-34))))) (-3398 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3397 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3396 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *5 *6)))) (-3395 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *4 *5)) (-4 *4 (-13 (-1014) (-34)))))) +((-2569 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-3403 (((-1055 |#1| |#2|) $) 27 T ELT)) (-3412 (($ $) 91 T ELT)) (-3408 (((-85) (-1055 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3405 (($ $ $ (-584 (-1055 |#1| |#2|))) 108 T ELT) (($ $ $ (-584 (-1055 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3026 (((-1055 |#1| |#2|) $ (-1055 |#1| |#2|)) 46 (|has| $ (-6 -3997)) ELT)) (-3789 (((-1055 |#1| |#2|) $ #1="value" (-1055 |#1| |#2|)) NIL (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) 44 (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3410 (((-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) $) 95 T ELT)) (-3406 (($ (-1055 |#1| |#2|) $) 42 T ELT)) (-3407 (($ (-1055 |#1| |#2|) $) 34 T ELT)) (-2890 (((-584 (-1055 |#1| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3409 (((-85) (-1055 |#1| |#2|) $) 97 T ELT)) (-3028 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-1014)) ELT)) (-2609 (((-584 (-1055 |#1| |#2|)) $) 58 T ELT)) (-3246 (((-85) (-1055 |#1| |#2|) $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-3327 (($ (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) 50 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) 49 T ELT)) (-3031 (((-584 (-1055 |#1| |#2|)) $) 56 T ELT)) (-3528 (((-85) $) 45 T ELT)) (-3243 (((-1074) $) NIL (|has| (-1055 |#1| |#2|) (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| (-1055 |#1| |#2|) (-1014)) ELT)) (-3413 (((-3 $ "failed") $) 89 T ELT)) (-1948 (((-85) (-1 (-85) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 (-1055 |#1| |#2|)))) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT) (($ $ (-249 (-1055 |#1| |#2|))) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT) (($ $ (-1055 |#1| |#2|) (-1055 |#1| |#2|)) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT) (($ $ (-584 (-1055 |#1| |#2|)) (-584 (-1055 |#1| |#2|))) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3404 (((-85) $) 24 T ELT)) (-3566 (($) 26 T ELT)) (-3801 (((-1055 |#1| |#2|) $ #1#) NIL T ELT)) (-3030 (((-485) $ $) NIL T ELT)) (-3634 (((-85) $) 47 T ELT)) (-1947 (((-695) (-1055 |#1| |#2|) $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT) (((-695) (-1 (-85) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3401 (($ $) 52 T ELT)) (-3531 (($ (-1055 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-584 $)) 13 T ELT) (($ |#1| |#2| (-584 (-1055 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-584 |#2|)) 18 T ELT)) (-3411 (((-584 |#2|) $) 96 T ELT)) (-3947 (((-773) $) 87 (|has| (-1055 |#1| |#2|) (-553 (-773))) ELT)) (-3523 (((-584 $) $) 31 T ELT)) (-3029 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-1949 (((-85) (-1 (-85) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3057 (((-85) $ $) 70 (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-3958 (((-695) $) 64 T ELT))) +(((-1056 |#1| |#2|) (-13 (-924 (-1055 |#1| |#2|)) (-318 (-1055 |#1| |#2|)) (-10 -8 (-6 -3997) (-15 -3413 ((-3 $ "failed") $)) (-15 -3412 ($ $)) (-15 -3531 ($ (-1055 |#1| |#2|))) (-15 -3531 ($ |#1| |#2| (-584 $))) (-15 -3531 ($ |#1| |#2| (-584 (-1055 |#1| |#2|)))) (-15 -3531 ($ |#1| |#2| |#1| (-584 |#2|))) (-15 -3411 ((-584 |#2|) $)) (-15 -3410 ((-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) $)) (-15 -3409 ((-85) (-1055 |#1| |#2|) $)) (-15 -3408 ((-85) (-1055 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3407 ($ (-1055 |#1| |#2|) $)) (-15 -3406 ($ (-1055 |#1| |#2|) $)) (-15 -3405 ($ $ $ (-584 (-1055 |#1| |#2|)))) (-15 -3405 ($ $ $ (-584 (-1055 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1014) (-34)) (-13 (-1014) (-34))) (T -1056)) +((-3413 (*1 *1 *1) (|partial| -12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3412 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))) (-3531 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-584 (-1056 *2 *3))) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3531 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-584 (-1055 *2 *3))) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1056 *2 *3)))) (-3531 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-584 *4)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3409 (*1 *2 *3 *1) (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *4 *5)))) (-3408 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1055 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *5 *6)))) (-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))) (-3405 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-584 (-1055 *3 *4))) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))) (-3405 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1055 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) (-5 *1 (-1056 *4 *5))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3415 (($ $) NIL T ELT)) (-3331 ((|#2| $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3414 (($ (-631 |#2|)) 53 T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3334 (($ |#2|) 14 T ELT)) (-3725 (($) NIL T CONST)) (-3110 (($ $) 66 (|has| |#2| (-258)) ELT)) (-3112 (((-197 |#1| |#2|) $ (-485)) 40 T ELT)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) 80 T ELT)) (-3109 (((-695) $) 68 (|has| |#2| (-496)) ELT)) (-3113 ((|#2| $ (-485) (-485)) NIL T ELT)) (-2890 (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3108 (((-695) $) 70 (|has| |#2| (-496)) ELT)) (-3107 (((-584 (-197 |#1| |#2|)) $) 74 (|has| |#2| (-496)) ELT)) (-3115 (((-695) $) NIL T ELT)) (-3615 (($ |#2|) 23 T ELT)) (-3114 (((-695) $) NIL T ELT)) (-3328 ((|#2| $) 64 (|has| |#2| (-6 (-3998 #2="*"))) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-2609 (((-584 |#2|) $) NIL T ELT)) (-3246 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3118 (((-485) $) NIL T ELT)) (-3116 (((-485) $) NIL T ELT)) (-3124 (($ (-584 (-584 |#2|))) 35 T ELT)) (-3327 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3595 (((-584 (-584 |#2|)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3591 (((-3 $ #1#) $) 77 (|has| |#2| (-312)) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) ((|#2| $ (-485) (-485)) NIL T ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3330 ((|#2| $) NIL T ELT)) (-3333 (($ (-584 |#2|)) 48 T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3332 (((-197 |#1| |#2|) $) NIL T ELT)) (-3329 ((|#2| $) 62 (|has| |#2| (-6 (-3998 #2#))) ELT)) (-1947 (((-695) (-1 (-85) |#2|) $) NIL T ELT) (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) 87 (|has| |#2| (-554 (-474))) ELT)) (-3111 (((-197 |#1| |#2|) $ (-485)) 42 T ELT)) (-3947 (((-773) $) 45 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) NIL T ELT) (((-631 |#2|) $) 50 T ELT)) (-3127 (((-695)) 21 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 15 T CONST)) (-2667 (($) 19 T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 60 T ELT) (($ $ (-485)) 79 (|has| |#2| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 56 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 58 T ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-1057 |#1| |#2|) (-13 (-1038 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-553 (-631 |#2|)) (-10 -8 (-15 -3615 ($ |#2|)) (-15 -3415 ($ $)) (-15 -3414 ($ (-631 |#2|))) (IF (|has| |#2| (-6 (-3998 #1="*"))) (-6 -3985) |%noBranch|) (IF (|has| |#2| (-6 (-3998 #1#))) (IF (|has| |#2| (-6 -3993)) (-6 -3993) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|))) (-695) (-962)) (T -1057)) +((-3615 (*1 *1 *2) (-12 (-5 *1 (-1057 *3 *2)) (-14 *3 (-695)) (-4 *2 (-962)))) (-3415 (*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-14 *2 (-695)) (-4 *3 (-962)))) (-3414 (*1 *1 *2) (-12 (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-1057 *3 *4)) (-14 *3 (-695))))) +((-3428 (($ $) 19 T ELT)) (-3418 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3426 (((-85) $ $) 24 T ELT)) (-3430 (($ $) 17 T ELT)) (-3801 (((-117) $ (-485) (-117)) NIL T ELT) (((-117) $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) (($ $ $) 31 T ELT)) (-3947 (($ (-117)) 29 T ELT) (((-773) $) NIL T ELT))) +(((-1058 |#1|) (-10 -7 (-15 -3947 ((-773) |#1|)) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3418 (|#1| |#1| (-114))) (-15 -3418 (|#1| |#1| (-117))) (-15 -3947 (|#1| (-117))) (-15 -3426 ((-85) |#1| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3801 (|#1| |#1| (-1147 (-485)))) (-15 -3801 ((-117) |#1| (-485))) (-15 -3801 ((-117) |#1| (-485) (-117)))) (-1059)) (T -1058)) +NIL +((-2569 (((-85) $ $) 19 (|has| (-117) (-72)) ELT)) (-3427 (($ $) 131 T ELT)) (-3428 (($ $) 132 T ELT)) (-3418 (($ $ (-117)) 119 T ELT) (($ $ (-114)) 118 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-3425 (((-85) $ $) 129 T ELT)) (-3424 (((-85) $ $ (-485)) 128 T ELT)) (-3419 (((-584 $) $ (-117)) 121 T ELT) (((-584 $) $ (-114)) 120 T ELT)) (-1733 (((-85) (-1 (-85) (-117) (-117)) $) 108 T ELT) (((-85) $) 102 (|has| (-117) (-757)) ELT)) (-1731 (($ (-1 (-85) (-117) (-117)) $) 99 (|has| $ (-6 -3997)) ELT) (($ $) 98 (-12 (|has| (-117) (-757)) (|has| $ (-6 -3997))) ELT)) (-2910 (($ (-1 (-85) (-117) (-117)) $) 109 T ELT) (($ $) 103 (|has| (-117) (-757)) ELT)) (-3789 (((-117) $ (-485) (-117)) 56 (|has| $ (-6 -3997)) ELT) (((-117) $ (-1147 (-485)) (-117)) 64 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) (-117)) $) 81 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-3416 (($ $ (-117)) 115 T ELT) (($ $ (-114)) 114 T ELT)) (-2298 (($ $) 100 (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) 110 T ELT)) (-3421 (($ $ (-1147 (-485)) $) 125 T ELT)) (-1354 (($ $) 84 (-12 (|has| (-117) (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ (-117) $) 83 (-12 (|has| (-117) (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) (-117)) $) 80 (|has| $ (-6 -3996)) ELT)) (-3843 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 82 (-12 (|has| (-117) (-1014)) (|has| $ (-6 -3996))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 79 (|has| $ (-6 -3996)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) 78 (|has| $ (-6 -3996)) ELT)) (-1577 (((-117) $ (-485) (-117)) 57 (|has| $ (-6 -3997)) ELT)) (-3113 (((-117) $ (-485)) 55 T ELT)) (-3426 (((-85) $ $) 130 T ELT)) (-3420 (((-485) (-1 (-85) (-117)) $) 107 T ELT) (((-485) (-117) $) 106 (|has| (-117) (-1014)) ELT) (((-485) (-117) $ (-485)) 105 (|has| (-117) (-1014)) ELT) (((-485) $ $ (-485)) 124 T ELT) (((-485) (-114) $ (-485)) 123 T ELT)) (-2890 (((-584 (-117)) $) 30 (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-695) (-117)) 74 T ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 92 (|has| (-117) (-757)) ELT)) (-3519 (($ (-1 (-85) (-117) (-117)) $ $) 111 T ELT) (($ $ $) 104 (|has| (-117) (-757)) ELT)) (-2609 (((-584 (-117)) $) 29 T ELT)) (-3246 (((-85) (-117) $) 27 (|has| (-117) (-72)) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 93 (|has| (-117) (-757)) ELT)) (-3422 (((-85) $ $ (-117)) 126 T ELT)) (-3423 (((-695) $ $ (-117)) 127 T ELT)) (-3327 (($ (-1 (-117) (-117)) $) 34 T ELT)) (-3959 (($ (-1 (-117) (-117)) $) 35 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 69 T ELT)) (-3429 (($ $) 133 T ELT)) (-3430 (($ $) 134 T ELT)) (-3417 (($ $ (-117)) 117 T ELT) (($ $ (-114)) 116 T ELT)) (-3243 (((-1074) $) 22 (|has| (-117) (-1014)) ELT)) (-2305 (($ (-117) $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| (-117) (-1014)) ELT)) (-3802 (((-117) $) 46 (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 77 T ELT)) (-2200 (($ $ (-117)) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) (-117)) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 (-117)))) 26 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-249 (-117))) 25 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-117) (-117)) 24 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-584 (-117)) (-584 (-117))) 23 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) (-117) $) 49 (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1014))) ELT)) (-2206 (((-584 (-117)) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 (((-117) $ (-485) (-117)) 54 T ELT) (((-117) $ (-485)) 53 T ELT) (($ $ (-1147 (-485))) 75 T ELT) (($ $ $) 113 T ELT)) (-2306 (($ $ (-485)) 68 T ELT) (($ $ (-1147 (-485))) 67 T ELT)) (-1947 (((-695) (-1 (-85) (-117)) $) 31 T ELT) (((-695) (-117) $) 28 (|has| (-117) (-72)) ELT)) (-1732 (($ $ $ (-485)) 101 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 85 (|has| (-117) (-554 (-474))) ELT)) (-3531 (($ (-584 (-117))) 76 T ELT)) (-3803 (($ $ (-117)) 73 T ELT) (($ (-117) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3947 (($ (-117)) 122 T ELT) (((-773) $) 17 (|has| (-117) (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| (-117) (-72)) ELT)) (-1949 (((-85) (-1 (-85) (-117)) $) 33 T ELT)) (-2567 (((-85) $ $) 94 (|has| (-117) (-757)) ELT)) (-2568 (((-85) $ $) 96 (|has| (-117) (-757)) ELT)) (-3057 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-2685 (((-85) $ $) 95 (|has| (-117) (-757)) ELT)) (-2686 (((-85) $ $) 97 (|has| (-117) (-757)) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-1059) (-113)) (T -1059)) +((-3430 (*1 *1 *1) (-4 *1 (-1059))) (-3429 (*1 *1 *1) (-4 *1 (-1059))) (-3428 (*1 *1 *1) (-4 *1 (-1059))) (-3427 (*1 *1 *1) (-4 *1 (-1059))) (-3426 (*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85)))) (-3425 (*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85)))) (-3424 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-485)) (-5 *2 (-85)))) (-3423 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-695)))) (-3422 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3421 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-1147 (-485))))) (-3420 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485)))) (-3420 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485)) (-5 *3 (-114)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1059)))) (-3419 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-584 *1)) (-4 *1 (-1059)))) (-3419 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-584 *1)) (-4 *1 (-1059)))) (-3418 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117)))) (-3418 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) (-3801 (*1 *1 *1 *1) (-4 *1 (-1059)))) +(-13 (-19 (-117)) (-10 -8 (-15 -3430 ($ $)) (-15 -3429 ($ $)) (-15 -3428 ($ $)) (-15 -3427 ($ $)) (-15 -3426 ((-85) $ $)) (-15 -3425 ((-85) $ $)) (-15 -3424 ((-85) $ $ (-485))) (-15 -3423 ((-695) $ $ (-117))) (-15 -3422 ((-85) $ $ (-117))) (-15 -3421 ($ $ (-1147 (-485)) $)) (-15 -3420 ((-485) $ $ (-485))) (-15 -3420 ((-485) (-114) $ (-485))) (-15 -3947 ($ (-117))) (-15 -3419 ((-584 $) $ (-117))) (-15 -3419 ((-584 $) $ (-114))) (-15 -3418 ($ $ (-117))) (-15 -3418 ($ $ (-114))) (-15 -3417 ($ $ (-117))) (-15 -3417 ($ $ (-114))) (-15 -3416 ($ $ (-117))) (-15 -3416 ($ $ (-114))) (-15 -3801 ($ $ $)))) +(((-34) . T) ((-72) OR (|has| (-117) (-1014)) (|has| (-117) (-757)) (|has| (-117) (-72))) ((-553 (-773)) OR (|has| (-117) (-1014)) (|has| (-117) (-757)) (|has| (-117) (-553 (-773)))) ((-124 (-117)) . T) ((-554 (-474)) |has| (-117) (-554 (-474))) ((-241 (-485) (-117)) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) (-117)) . T) ((-260 (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ((-318 (-117)) . T) ((-324 (-117)) . T) ((-429 (-117)) . T) ((-539 (-485) (-117)) . T) ((-456 (-117) (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ((-13) . T) ((-594 (-117)) . T) ((-19 (-117)) . T) ((-757) |has| (-117) (-757)) ((-760) |has| (-117) (-757)) ((-1014) OR (|has| (-117) (-1014)) (|has| (-117) (-757))) ((-1036 (-117)) . T) ((-1130) . T)) +((-3437 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695)) 112 T ELT)) (-3434 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 61 T ELT)) (-3438 (((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)) 97 T ELT)) (-3432 (((-695) (-584 |#4|) (-584 |#5|)) 30 T ELT)) (-3435 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 63 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-85)) 65 T ELT)) (-3436 (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85)) 85 T ELT)) (-3973 (((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 90 T ELT)) (-3433 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 60 T ELT)) (-3431 (((-695) (-584 |#4|) (-584 |#5|)) 21 T ELT))) +(((-1060 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3431 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3432 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3433 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3434 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-15 -3434 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-85))) (-15 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-15 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3436 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3436 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3437 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695))) (-15 -3973 ((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-15 -3438 ((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-1021 |#1| |#2| |#3| |#4|)) (T -1060)) +((-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-1021 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074)) (-5 *1 (-1060 *4 *5 *6 *7 *8)))) (-3437 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-584 *11)) (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11)))))) (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11)))) (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9)) (-4 *11 (-1021 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-5 *1 (-1060 *7 *8 *9 *10 *11)))) (-3436 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3436 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-3435 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) (-3435 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1021 *7 *8 *9 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3682 (((-584 (-2 (|:| -3862 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3683 (((-584 $) (-584 |#4|)) 118 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT) (((-584 $) (-584 |#4|) (-85) (-85)) 117 T ELT) (((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85)) 120 T ELT)) (-3082 (((-584 |#3|) $) NIL T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3776 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 91 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3711 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) 70 T ELT)) (-3725 (($) NIL T CONST)) (-2905 (((-85) $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3690 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3157 (($ (-584 |#4|)) NIL T ELT)) (-3800 (((-3 $ #1#) $) 45 T ELT)) (-3686 ((|#4| |#4| $) 73 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT)) (-3407 (($ |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3697 (((-2 (|:| -3862 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3439 (((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85)) 133 T ELT)) (-2890 (((-584 |#4|) $) 18 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3181 ((|#3| $) 38 T ELT)) (-2609 (((-584 |#4|) $) 19 T ELT)) (-3246 (((-85) |#4| $) 27 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2915 (((-584 |#3|) $) NIL T ELT)) (-2914 (((-85) |#3| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3192 (((-3 |#4| (-584 $)) |#4| |#4| $) NIL T ELT)) (-3191 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 111 T ELT)) (-3799 (((-3 |#4| #1#) $) 42 T ELT)) (-3193 (((-584 $) |#4| $) 96 T ELT)) (-3195 (((-3 (-85) (-584 $)) |#4| $) NIL T ELT)) (-3194 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 106 T ELT) (((-85) |#4| $) 62 T ELT)) (-3239 (((-584 $) |#4| $) 115 T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 116 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT)) (-3440 (((-584 $) (-584 |#4|) (-85) (-85) (-85)) 128 T ELT)) (-3441 (($ |#4| $) 82 T ELT) (($ (-584 |#4|) $) 83 T ELT) (((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 81 T ELT)) (-3698 (((-584 |#4|) $) NIL T ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3700 (((-85) $ $) NIL T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3802 (((-3 |#4| #1#) $) 40 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3770 (($ $ |#4|) NIL T ELT) (((-584 $) |#4| $) 98 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 93 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3769 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 17 T ELT)) (-3566 (($) 14 T ELT)) (-3949 (((-695) $) NIL T ELT)) (-1947 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3401 (($ $) 13 T ELT)) (-3973 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3531 (($ (-584 |#4|)) 22 T ELT)) (-2911 (($ $ |#3|) 49 T ELT)) (-2913 (($ $ |#3|) 51 T ELT)) (-3685 (($ $) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3947 (((-773) $) 35 T ELT) (((-584 |#4|) $) 46 T ELT)) (-3679 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-3190 (((-584 $) |#4| $) 63 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-584 |#3|) $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3934 (((-85) |#3| $) 69 T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-1061 |#1| |#2| |#3| |#4|) (-13 (-1021 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3441 ((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3683 ((-584 $) (-584 |#4|) (-85) (-85))) (-15 -3683 ((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85))) (-15 -3440 ((-584 $) (-584 |#4|) (-85) (-85) (-85))) (-15 -3439 ((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85))))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -1061)) +((-3441 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *3))) (-5 *1 (-1061 *5 *6 *7 *3)) (-4 *3 (-978 *5 *6 *7)))) (-3683 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3683 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3440 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-1061 *5 *6 *7 *8))))) (-5 *1 (-1061 *5 *6 *7 *8)) (-5 *3 (-584 *8))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 32 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 30 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 29 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-695)) 31 T ELT) (($ $ (-831)) 28 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ $ $) 27 T ELT))) +(((-1062) (-113)) (T -1062)) +NIL +(-13 (-23) (-664)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3324 ((|#1| $) 38 T ELT)) (-3442 (($ (-584 |#1|)) 46 T ELT)) (-3725 (($) NIL T CONST)) (-3326 ((|#1| |#1| $) 41 T ELT)) (-3325 ((|#1| $) 36 T ELT)) (-2890 (((-584 |#1|) $) 19 (|has| $ (-6 -3996)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 39 T ELT)) (-3610 (($ |#1| $) 42 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 37 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 33 T ELT)) (-3566 (($) 44 T ELT)) (-3323 (((-695) $) 31 T ELT)) (-1947 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) 28 T ELT)) (-3947 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 32 T ELT))) +(((-1063 |#1|) (-13 (-1035 |#1|) (-10 -8 (-15 -3442 ($ (-584 |#1|))))) (-1130)) (T -1063)) +((-3442 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1063 *3))))) +((-3789 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1147 (-485)) |#2|) 53 T ELT) ((|#2| $ (-485) |#2|) 50 T ELT)) (-3444 (((-85) $) 12 T ELT)) (-3327 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3802 ((|#2| $) NIL T ELT) (($ $ (-695)) 17 T ELT)) (-2200 (($ $ |#2|) 49 T ELT)) (-3445 (((-85) $) 11 T ELT)) (-3801 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) 36 T ELT) ((|#2| $ (-485)) 25 T ELT) ((|#2| $ (-485) |#2|) NIL T ELT)) (-3792 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3803 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-584 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) +(((-1064 |#1| |#2|) (-10 -7 (-15 -3444 ((-85) |#1|)) (-15 -3445 ((-85) |#1|)) (-15 -3789 (|#2| |#1| (-485) |#2|)) (-15 -3801 (|#2| |#1| (-485) |#2|)) (-15 -3801 (|#2| |#1| (-485))) (-15 -2200 (|#1| |#1| |#2|)) (-15 -3801 (|#1| |#1| (-1147 (-485)))) (-15 -3803 (|#1| |#1| |#2|)) (-15 -3803 (|#1| (-584 |#1|))) (-15 -3789 (|#2| |#1| (-1147 (-485)) |#2|)) (-15 -3789 (|#2| |#1| #1="last" |#2|)) (-15 -3789 (|#1| |#1| #2="rest" |#1|)) (-15 -3789 (|#2| |#1| #3="first" |#2|)) (-15 -3792 (|#1| |#1| |#2|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -3801 (|#2| |#1| #1#)) (-15 -3801 (|#1| |#1| #2#)) (-15 -3802 (|#1| |#1| (-695))) (-15 -3801 (|#2| |#1| #3#)) (-15 -3802 (|#2| |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3789 (|#2| |#1| #4="value" |#2|)) (-15 -3801 (|#2| |#1| #4#)) (-15 -3327 (|#1| (-1 |#2| |#2|) |#1|))) (-1065 |#2|) (-1130)) (T -1064)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3796 ((|#1| $) 71 T ELT)) (-3798 (($ $) 73 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 107 (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) 58 (|has| $ (-6 -3997)) ELT)) (-3443 (((-85) $ (-695)) 90 T ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 62 (|has| $ (-6 -3997)) ELT)) (-3787 ((|#1| $ |#1|) 60 (|has| $ (-6 -3997)) ELT)) (-3790 ((|#1| $ |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3997)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3997)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3997)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 127 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-485) |#1|) 96 (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3996)) ELT)) (-3797 ((|#1| $) 72 T ELT)) (-3725 (($) 7 T CONST)) (-3800 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-1354 (($ $) 109 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3996)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-1577 ((|#1| $ (-485) |#1|) 95 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) 97 T ELT)) (-3444 (((-85) $) 93 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-3615 (($ (-695) |#1|) 119 T ELT)) (-3720 (((-85) $ (-695)) 91 T ELT)) (-2201 (((-485) $) 105 (|has| (-485) (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-2202 (((-485) $) 104 (|has| (-485) (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3717 (((-85) $ (-695)) 92 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3799 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-2305 (($ $ $ (-485)) 126 T ELT) (($ |#1| $ (-485)) 125 T ELT)) (-2204 (((-584 (-485)) $) 102 T ELT)) (-2205 (((-85) (-485) $) 101 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2200 (($ $ |#1|) 106 (|has| $ (-6 -3997)) ELT)) (-3445 (((-85) $) 94 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 100 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1147 (-485))) 118 T ELT) ((|#1| $ (-485)) 99 T ELT) ((|#1| $ (-485) |#1|) 98 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-2306 (($ $ (-1147 (-485))) 124 T ELT) (($ $ (-485)) 123 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-3793 (($ $) 68 T ELT)) (-3791 (($ $) 65 (|has| $ (-6 -3997)) ELT)) (-3794 (((-695) $) 69 T ELT)) (-3795 (($ $) 70 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 108 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 117 T ELT)) (-3792 (($ $ $) 67 (|has| $ (-6 -3997)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3997)) ELT)) (-3803 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-584 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-1065 |#1|) (-113) (-1130)) (T -1065)) +((-3445 (*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3444 (*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3717 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-3720 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-3443 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85))))) +(-13 (-1169 |t#1|) (-594 |t#1|) (-10 -8 (-15 -3445 ((-85) $)) (-15 -3444 ((-85) $)) (-15 -3717 ((-85) $ (-695))) (-15 -3720 ((-85) $ (-695))) (-15 -3443 ((-85) $ (-695))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T) ((-1169 |#1|) . T)) +((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-72))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3531 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-773) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-1066 |#1| |#2| |#3|) (-1108 |#1| |#2|) (-1014) (-1014) |#2|) (T -1066)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3446 (((-633 $) $) 17 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3447 (($) 18 T CONST)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT))) +(((-1067) (-113)) (T -1067)) +((-3447 (*1 *1) (-4 *1 (-1067))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-1067))))) +(-13 (-1014) (-10 -8 (-15 -3447 ($) -3953) (-15 -3446 ((-633 $) $)))) +(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3449 (((-633 (-1050)) $) 28 T ELT)) (-3448 (((-1050) $) 16 T ELT)) (-3450 (((-1050) $) 18 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3451 (((-447) $) 14 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 38 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1068) (-13 (-996) (-10 -8 (-15 -3451 ((-447) $)) (-15 -3450 ((-1050) $)) (-15 -3449 ((-633 (-1050)) $)) (-15 -3448 ((-1050) $))))) (T -1068)) +((-3451 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1068)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-633 (-1050))) (-5 *1 (-1068)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068))))) +((-3454 (((-1070 |#1|) (-1070 |#1|)) 17 T ELT)) (-3452 (((-1070 |#1|) (-1070 |#1|)) 13 T ELT)) (-3455 (((-1070 |#1|) (-1070 |#1|) (-485) (-485)) 20 T ELT)) (-3453 (((-1070 |#1|) (-1070 |#1|)) 15 T ELT))) +(((-1069 |#1|) (-10 -7 (-15 -3452 ((-1070 |#1|) (-1070 |#1|))) (-15 -3453 ((-1070 |#1|) (-1070 |#1|))) (-15 -3454 ((-1070 |#1|) (-1070 |#1|))) (-15 -3455 ((-1070 |#1|) (-1070 |#1|) (-485) (-485)))) (-13 (-496) (-120))) (T -1069)) +((-3455 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-1069 *4)))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3)))) (-3453 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3)))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) NIL T ELT)) (-3796 ((|#1| $) NIL T ELT)) (-3798 (($ $) 60 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 93 (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-485)) 122 (|has| $ (-6 -3997)) ELT)) (-3443 (((-85) $ (-695)) NIL T ELT)) (-3460 (((-773) $) 46 (|has| |#1| (-1014)) ELT)) (-3459 (((-85)) 49 (|has| |#1| (-1014)) ELT)) (-3026 ((|#1| $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 109 (|has| $ (-6 -3997)) ELT) (($ $ (-485) $) 135 T ELT)) (-3787 ((|#1| $ |#1|) 119 (|has| $ (-6 -3997)) ELT)) (-3790 ((|#1| $ |#1|) 114 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-6 -3997)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-6 -3997)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 106 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-485) |#1|) 72 (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3797 ((|#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2324 (($ $) 11 T ELT)) (-3800 (($ $) 35 T ELT) (($ $ (-695)) 105 T ELT)) (-3465 (((-85) (-584 |#1|) $) 128 (|has| |#1| (-1014)) ELT)) (-3466 (($ (-584 |#1|)) 124 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3444 (((-85) $) NIL T ELT)) (-2890 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3461 (((-1186) (-485) $) 133 (|has| |#1| (-1014)) ELT)) (-2323 (((-695) $) 131 T ELT)) (-3032 (((-584 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3615 (($ (-695) |#1|) NIL T ELT)) (-3720 (((-85) $ (-695)) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-72))) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 89 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3717 (((-85) $ (-695)) NIL T ELT)) (-3031 (((-584 |#1|) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-2326 (($ $) 107 T ELT)) (-2327 (((-85) $) 10 T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3799 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) 90 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3458 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2325 ((|#1| $) 7 T ELT)) (-3802 ((|#1| $) 34 T ELT) (($ $ (-695)) 58 T ELT)) (-3464 (((-2 (|:| |cycle?| (-85)) (|:| -2596 (-695)) (|:| |period| (-695))) (-695) $) 29 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3457 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3456 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2200 (($ $ |#1|) 85 (|has| $ (-6 -3997)) ELT)) (-3770 (($ $ (-485)) 40 T ELT)) (-3445 (((-85) $) 88 T ELT)) (-2328 (((-85) $) 9 T ELT)) (-2329 (((-85) $) 130 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 25 T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3404 (((-85) $) 14 T ELT)) (-3566 (($) 53 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) ((|#1| $ (-485)) 70 T ELT) ((|#1| $ (-485) |#1|) NIL T ELT)) (-3030 (((-485) $ $) 57 T ELT)) (-2306 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-3463 (($ (-1 $)) 56 T ELT)) (-3634 (((-85) $) 86 T ELT)) (-3793 (($ $) 87 T ELT)) (-3791 (($ $) 110 (|has| $ (-6 -3997)) ELT)) (-3794 (((-695) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-72))) ELT)) (-3401 (($ $) 52 T ELT)) (-3973 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 68 T ELT)) (-3462 (($ |#1| $) 108 T ELT)) (-3792 (($ $ $) 112 (|has| $ (-6 -3997)) ELT) (($ $ |#1|) 113 (|has| $ (-6 -3997)) ELT)) (-3803 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-584 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2892 (($ $) 59 T ELT)) (-3947 (($ (-584 |#1|)) 123 T ELT) (((-773) $) 50 (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 126 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) NIL (|has| $ (-6 -3996)) ELT))) +(((-1070 |#1|) (-13 (-617 |#1|) (-556 (-584 |#1|)) (-10 -8 (-6 -3997) (-15 -3466 ($ (-584 |#1|))) (IF (|has| |#1| (-1014)) (-15 -3465 ((-85) (-584 |#1|) $)) |%noBranch|) (-15 -3464 ((-2 (|:| |cycle?| (-85)) (|:| -2596 (-695)) (|:| |period| (-695))) (-695) $)) (-15 -3463 ($ (-1 $))) (-15 -3462 ($ |#1| $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -3461 ((-1186) (-485) $)) (-15 -3460 ((-773) $)) (-15 -3459 ((-85)))) |%noBranch|) (-15 -3788 ($ $ (-485) $)) (-15 -3458 ($ (-1 |#1|))) (-15 -3458 ($ (-1 |#1| |#1|) |#1|)) (-15 -3457 ($ (-1 (-85) |#1|) $)) (-15 -3456 ($ (-1 (-85) |#1|) $)))) (-1130)) (T -1070)) +((-3466 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3465 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-4 *4 (-1130)) (-5 *2 (-85)) (-5 *1 (-1070 *4)))) (-3464 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2596 (-695)) (|:| |period| (-695)))) (-5 *1 (-1070 *4)) (-4 *4 (-1130)) (-5 *3 (-695)))) (-3463 (*1 *1 *2) (-12 (-5 *2 (-1 (-1070 *3))) (-5 *1 (-1070 *3)) (-4 *3 (-1130)))) (-3462 (*1 *1 *2 *1) (-12 (-5 *1 (-1070 *2)) (-4 *2 (-1130)))) (-3461 (*1 *2 *3 *1) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1070 *4)) (-4 *4 (-1014)) (-4 *4 (-1130)))) (-3460 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)))) (-3459 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)))) (-3788 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1070 *3)) (-4 *3 (-1130)))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3458 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3456 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))) +((-3803 (((-1070 |#1|) (-1070 (-1070 |#1|))) 15 T ELT))) +(((-1071 |#1|) (-10 -7 (-15 -3803 ((-1070 |#1|) (-1070 (-1070 |#1|))))) (-1130)) (T -1071)) +((-3803 (*1 *2 *3) (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1071 *4)) (-4 *4 (-1130))))) +((-3842 (((-1070 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)) 25 T ELT)) (-3843 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)) 26 T ELT)) (-3959 (((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)) 16 T ELT))) +(((-1072 |#1| |#2|) (-10 -7 (-15 -3959 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|))) (-15 -3842 ((-1070 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|))) (-15 -3843 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)))) (-1130) (-1130)) (T -1072)) +((-3843 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-1072 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1070 *6)) (-4 *6 (-1130)) (-4 *3 (-1130)) (-5 *2 (-1070 *3)) (-5 *1 (-1072 *6 *3)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1070 *6)) (-5 *1 (-1072 *5 *6))))) +((-3959 (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-1070 |#2|)) 21 T ELT))) +(((-1073 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-1070 |#2|)))) (-1130) (-1130) (-1130)) (T -1073)) +((-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-1070 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) (-5 *1 (-1073 *6 *7 *8))))) +((-2569 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3427 (($ $) 42 T ELT)) (-3428 (($ $) NIL T ELT)) (-3418 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3425 (((-85) $ $) 67 T ELT)) (-3424 (((-85) $ $ (-485)) 62 T ELT)) (-3536 (($ (-485)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-447)) 11 T ELT)) (-3419 (((-584 $) $ (-117)) 76 T ELT) (((-584 $) $ (-114)) 77 T ELT)) (-1733 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-757)) ELT)) (-1731 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| (-117) (-757))) ELT)) (-2910 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-757)) ELT)) (-3789 (((-117) $ (-485) (-117)) 59 (|has| $ (-6 -3997)) ELT) (((-117) $ (-1147 (-485)) (-117)) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-3416 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2298 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) NIL T ELT)) (-3421 (($ $ (-1147 (-485)) $) 57 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1014))) ELT)) (-3407 (($ (-117) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1014))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1014))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3996)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 (((-117) $ (-485) (-117)) NIL (|has| $ (-6 -3997)) ELT)) (-3113 (((-117) $ (-485)) NIL T ELT)) (-3426 (((-85) $ $) 91 T ELT)) (-3420 (((-485) (-1 (-85) (-117)) $) NIL T ELT) (((-485) (-117) $) NIL (|has| (-117) (-1014)) ELT) (((-485) (-117) $ (-485)) 64 (|has| (-117) (-1014)) ELT) (((-485) $ $ (-485)) 63 T ELT) (((-485) (-114) $ (-485)) 66 T ELT)) (-2890 (((-584 (-117)) $) NIL (|has| $ (-6 -3996)) ELT)) (-3615 (($ (-695) (-117)) 14 T ELT)) (-2201 (((-485) $) 36 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-3519 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-2609 (((-584 (-117)) $) NIL T ELT)) (-3246 (((-85) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-2202 (((-485) $) 50 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-3422 (((-85) $ $ (-117)) 92 T ELT)) (-3423 (((-695) $ $ (-117)) 88 T ELT)) (-3327 (($ (-1 (-117) (-117)) $) 41 T ELT)) (-3959 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3429 (($ $) 45 T ELT)) (-3430 (($ $) NIL T ELT)) (-3417 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3243 (((-1074) $) 46 (|has| (-117) (-1014)) ELT)) (-2305 (($ (-117) $ (-485)) NIL T ELT) (($ $ $ (-485)) 31 T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) 87 (|has| (-117) (-1014)) ELT)) (-3802 (((-117) $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2200 (($ $ (-117)) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-584 (-117)) (-584 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-117) (-1014))) ELT)) (-2206 (((-584 (-117)) $) NIL T ELT)) (-3404 (((-85) $) 19 T ELT)) (-3566 (($) 16 T ELT)) (-3801 (((-117) $ (-485) (-117)) NIL T ELT) (((-117) $ (-485)) 69 T ELT) (($ $ (-1147 (-485))) 29 T ELT) (($ $ $) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1947 (((-695) (-1 (-85) (-117)) $) NIL T ELT) (((-695) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-1732 (($ $ $ (-485)) 83 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 24 T ELT)) (-3973 (((-474) $) NIL (|has| (-117) (-554 (-474))) ELT)) (-3531 (($ (-584 (-117))) NIL T ELT)) (-3803 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-584 $)) 84 T ELT)) (-3947 (($ (-117)) NIL T ELT) (((-773) $) 35 (|has| (-117) (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1949 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-3057 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-2686 (((-85) $ $) 22 (|has| (-117) (-757)) ELT)) (-3958 (((-695) $) 20 T ELT))) +(((-1074) (-13 (-1059) (-10 -8 (-15 -3536 ($ (-485))) (-15 -3536 ($ (-179))) (-15 -3536 ($ (-447)))))) (T -1074)) +((-3536 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1074)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1074)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-1074))))) +((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-2199 (((-1186) $ (-1074) (-1074)) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2232 (((-3 |#1| #1="failed") (-1074) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT)) (-3406 (($ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#1| #1#) (-1074) $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-1074)) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2201 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-72))) ELT) (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-72))) ELT) (((-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-72)) ELT)) (-2202 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL (OR (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014)) (|has| |#1| (-1014))) ELT)) (-2233 (((-584 (-1074)) $) NIL T ELT)) (-2234 (((-85) (-1074) $) NIL T ELT)) (-1275 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2204 (((-584 (-1074)) $) NIL T ELT)) (-2205 (((-85) (-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014)) (|has| |#1| (-1014))) ELT)) (-3802 ((|#1| $) NIL (|has| (-1074) (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-1074)) NIL T ELT) ((|#1| $ (-1074) |#1|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-72))) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-72))) ELT) (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-554 (-474))) ELT)) (-3531 (($ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-3947 (((-773) $) NIL (OR (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-553 (-773))) (|has| |#1| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-1075 |#1|) (-1108 (-1074) |#1|) (-1014)) (T -1075)) +NIL +((-3806 (((-1070 |#1|) (-1070 |#1|)) 83 T ELT)) (-3468 (((-3 (-1070 |#1|) #1="failed") (-1070 |#1|)) 39 T ELT)) (-3479 (((-1070 |#1|) (-350 (-485)) (-1070 |#1|)) 131 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3482 (((-1070 |#1|) |#1| (-1070 |#1|)) 135 (|has| |#1| (-312)) ELT)) (-3809 (((-1070 |#1|) (-1070 |#1|)) 97 T ELT)) (-3470 (((-1070 (-485)) (-485)) 63 T ELT)) (-3478 (((-1070 |#1|) (-1070 (-1070 |#1|))) 116 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3805 (((-1070 |#1|) (-485) (-485) (-1070 |#1|)) 103 T ELT)) (-3939 (((-1070 |#1|) |#1| (-485)) 51 T ELT)) (-3472 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 66 T ELT)) (-3480 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 133 (|has| |#1| (-312)) ELT)) (-3477 (((-1070 |#1|) |#1| (-1 (-1070 |#1|))) 115 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3481 (((-1070 |#1|) (-1 |#1| (-485)) |#1| (-1 (-1070 |#1|))) 134 (|has| |#1| (-312)) ELT)) (-3810 (((-1070 |#1|) (-1070 |#1|)) 96 T ELT)) (-3811 (((-1070 |#1|) (-1070 |#1|)) 82 T ELT)) (-3804 (((-1070 |#1|) (-485) (-485) (-1070 |#1|)) 104 T ELT)) (-3813 (((-1070 |#1|) |#1| (-1070 |#1|)) 113 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3469 (((-1070 (-485)) (-485)) 62 T ELT)) (-3471 (((-1070 |#1|) |#1|) 65 T ELT)) (-3807 (((-1070 |#1|) (-1070 |#1|) (-485) (-485)) 100 T ELT)) (-3474 (((-1070 |#1|) (-1 |#1| (-485)) (-1070 |#1|)) 72 T ELT)) (-3467 (((-3 (-1070 |#1|) #1#) (-1070 |#1|) (-1070 |#1|)) 37 T ELT)) (-3808 (((-1070 |#1|) (-1070 |#1|)) 98 T ELT)) (-3769 (((-1070 |#1|) (-1070 |#1|) |#1|) 77 T ELT)) (-3473 (((-1070 |#1|) (-1070 |#1|)) 68 T ELT)) (-3475 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 78 T ELT)) (-3947 (((-1070 |#1|) |#1|) 73 T ELT)) (-3476 (((-1070 |#1|) (-1070 (-1070 |#1|))) 88 T ELT)) (-3950 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 38 T ELT)) (-3838 (((-1070 |#1|) (-1070 |#1|)) 21 T ELT) (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 23 T ELT)) (-3840 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 17 T ELT)) (* (((-1070 |#1|) (-1070 |#1|) |#1|) 29 T ELT) (((-1070 |#1|) |#1| (-1070 |#1|)) 26 T ELT) (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 27 T ELT))) +(((-1076 |#1|) (-10 -7 (-15 -3840 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3838 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3838 ((-1070 |#1|) (-1070 |#1|))) (-15 * ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 * ((-1070 |#1|) |#1| (-1070 |#1|))) (-15 * ((-1070 |#1|) (-1070 |#1|) |#1|)) (-15 -3467 ((-3 (-1070 |#1|) #1="failed") (-1070 |#1|) (-1070 |#1|))) (-15 -3950 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3468 ((-3 (-1070 |#1|) #1#) (-1070 |#1|))) (-15 -3939 ((-1070 |#1|) |#1| (-485))) (-15 -3469 ((-1070 (-485)) (-485))) (-15 -3470 ((-1070 (-485)) (-485))) (-15 -3471 ((-1070 |#1|) |#1|)) (-15 -3472 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3473 ((-1070 |#1|) (-1070 |#1|))) (-15 -3474 ((-1070 |#1|) (-1 |#1| (-485)) (-1070 |#1|))) (-15 -3947 ((-1070 |#1|) |#1|)) (-15 -3769 ((-1070 |#1|) (-1070 |#1|) |#1|)) (-15 -3475 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3811 ((-1070 |#1|) (-1070 |#1|))) (-15 -3806 ((-1070 |#1|) (-1070 |#1|))) (-15 -3476 ((-1070 |#1|) (-1070 (-1070 |#1|)))) (-15 -3810 ((-1070 |#1|) (-1070 |#1|))) (-15 -3809 ((-1070 |#1|) (-1070 |#1|))) (-15 -3808 ((-1070 |#1|) (-1070 |#1|))) (-15 -3807 ((-1070 |#1|) (-1070 |#1|) (-485) (-485))) (-15 -3805 ((-1070 |#1|) (-485) (-485) (-1070 |#1|))) (-15 -3804 ((-1070 |#1|) (-485) (-485) (-1070 |#1|))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3813 ((-1070 |#1|) |#1| (-1070 |#1|))) (-15 -3477 ((-1070 |#1|) |#1| (-1 (-1070 |#1|)))) (-15 -3478 ((-1070 |#1|) (-1070 (-1070 |#1|)))) (-15 -3479 ((-1070 |#1|) (-350 (-485)) (-1070 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3480 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3481 ((-1070 |#1|) (-1 |#1| (-485)) |#1| (-1 (-1070 |#1|)))) (-15 -3482 ((-1070 |#1|) |#1| (-1070 |#1|)))) |%noBranch|)) (-962)) (T -1076)) +((-3482 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-485))) (-5 *5 (-1 (-1070 *4))) (-4 *4 (-312)) (-4 *4 (-962)) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)))) (-3480 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3479 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *4)) (-4 *4 (-38 *3)) (-4 *4 (-962)) (-5 *3 (-350 (-485))) (-5 *1 (-1076 *4)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)))) (-3477 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1070 *3))) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)))) (-3813 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3804 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3805 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3807 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) (-4 *4 (-962)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3475 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3769 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3947 (*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) (-3474 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-1 *4 (-485))) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3472 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3471 (*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) (-3470 (*1 *2 *3) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962)) (-5 *3 (-485)))) (-3469 (*1 *2 *3) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962)) (-5 *3 (-485)))) (-3939 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) (-3468 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3950 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3467 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3838 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3840 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) +((-3493 (((-1070 |#1|) (-1070 |#1|)) 102 T ELT)) (-3640 (((-1070 |#1|) (-1070 |#1|)) 59 T ELT)) (-3484 (((-2 (|:| -3491 (-1070 |#1|)) (|:| -3492 (-1070 |#1|))) (-1070 |#1|)) 98 T ELT)) (-3491 (((-1070 |#1|) (-1070 |#1|)) 99 T ELT)) (-3483 (((-2 (|:| -3639 (-1070 |#1|)) (|:| -3635 (-1070 |#1|))) (-1070 |#1|)) 54 T ELT)) (-3639 (((-1070 |#1|) (-1070 |#1|)) 55 T ELT)) (-3495 (((-1070 |#1|) (-1070 |#1|)) 104 T ELT)) (-3638 (((-1070 |#1|) (-1070 |#1|)) 66 T ELT)) (-3943 (((-1070 |#1|) (-1070 |#1|)) 40 T ELT)) (-3944 (((-1070 |#1|) (-1070 |#1|)) 37 T ELT)) (-3496 (((-1070 |#1|) (-1070 |#1|)) 105 T ELT)) (-3637 (((-1070 |#1|) (-1070 |#1|)) 67 T ELT)) (-3494 (((-1070 |#1|) (-1070 |#1|)) 103 T ELT)) (-3636 (((-1070 |#1|) (-1070 |#1|)) 62 T ELT)) (-3492 (((-1070 |#1|) (-1070 |#1|)) 100 T ELT)) (-3635 (((-1070 |#1|) (-1070 |#1|)) 56 T ELT)) (-3499 (((-1070 |#1|) (-1070 |#1|)) 113 T ELT)) (-3487 (((-1070 |#1|) (-1070 |#1|)) 88 T ELT)) (-3497 (((-1070 |#1|) (-1070 |#1|)) 107 T ELT)) (-3485 (((-1070 |#1|) (-1070 |#1|)) 84 T ELT)) (-3501 (((-1070 |#1|) (-1070 |#1|)) 117 T ELT)) (-3489 (((-1070 |#1|) (-1070 |#1|)) 92 T ELT)) (-3502 (((-1070 |#1|) (-1070 |#1|)) 119 T ELT)) (-3490 (((-1070 |#1|) (-1070 |#1|)) 94 T ELT)) (-3500 (((-1070 |#1|) (-1070 |#1|)) 115 T ELT)) (-3488 (((-1070 |#1|) (-1070 |#1|)) 90 T ELT)) (-3498 (((-1070 |#1|) (-1070 |#1|)) 109 T ELT)) (-3486 (((-1070 |#1|) (-1070 |#1|)) 86 T ELT)) (** (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 41 T ELT))) +(((-1077 |#1|) (-10 -7 (-15 -3944 ((-1070 |#1|) (-1070 |#1|))) (-15 -3943 ((-1070 |#1|) (-1070 |#1|))) (-15 ** ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3483 ((-2 (|:| -3639 (-1070 |#1|)) (|:| -3635 (-1070 |#1|))) (-1070 |#1|))) (-15 -3639 ((-1070 |#1|) (-1070 |#1|))) (-15 -3635 ((-1070 |#1|) (-1070 |#1|))) (-15 -3640 ((-1070 |#1|) (-1070 |#1|))) (-15 -3636 ((-1070 |#1|) (-1070 |#1|))) (-15 -3638 ((-1070 |#1|) (-1070 |#1|))) (-15 -3637 ((-1070 |#1|) (-1070 |#1|))) (-15 -3485 ((-1070 |#1|) (-1070 |#1|))) (-15 -3486 ((-1070 |#1|) (-1070 |#1|))) (-15 -3487 ((-1070 |#1|) (-1070 |#1|))) (-15 -3488 ((-1070 |#1|) (-1070 |#1|))) (-15 -3489 ((-1070 |#1|) (-1070 |#1|))) (-15 -3490 ((-1070 |#1|) (-1070 |#1|))) (-15 -3484 ((-2 (|:| -3491 (-1070 |#1|)) (|:| -3492 (-1070 |#1|))) (-1070 |#1|))) (-15 -3491 ((-1070 |#1|) (-1070 |#1|))) (-15 -3492 ((-1070 |#1|) (-1070 |#1|))) (-15 -3493 ((-1070 |#1|) (-1070 |#1|))) (-15 -3494 ((-1070 |#1|) (-1070 |#1|))) (-15 -3495 ((-1070 |#1|) (-1070 |#1|))) (-15 -3496 ((-1070 |#1|) (-1070 |#1|))) (-15 -3497 ((-1070 |#1|) (-1070 |#1|))) (-15 -3498 ((-1070 |#1|) (-1070 |#1|))) (-15 -3499 ((-1070 |#1|) (-1070 |#1|))) (-15 -3500 ((-1070 |#1|) (-1070 |#1|))) (-15 -3501 ((-1070 |#1|) (-1070 |#1|))) (-15 -3502 ((-1070 |#1|) (-1070 |#1|)))) (-38 (-350 (-485)))) (T -1077)) +((-3502 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-2 (|:| -3491 (-1070 *4)) (|:| -3492 (-1070 *4)))) (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3483 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-2 (|:| -3639 (-1070 *4)) (|:| -3635 (-1070 *4)))) (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3944 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))) +((-3493 (((-1070 |#1|) (-1070 |#1|)) 60 T ELT)) (-3640 (((-1070 |#1|) (-1070 |#1|)) 42 T ELT)) (-3491 (((-1070 |#1|) (-1070 |#1|)) 56 T ELT)) (-3639 (((-1070 |#1|) (-1070 |#1|)) 38 T ELT)) (-3495 (((-1070 |#1|) (-1070 |#1|)) 63 T ELT)) (-3638 (((-1070 |#1|) (-1070 |#1|)) 45 T ELT)) (-3943 (((-1070 |#1|) (-1070 |#1|)) 34 T ELT)) (-3944 (((-1070 |#1|) (-1070 |#1|)) 29 T ELT)) (-3496 (((-1070 |#1|) (-1070 |#1|)) 64 T ELT)) (-3637 (((-1070 |#1|) (-1070 |#1|)) 46 T ELT)) (-3494 (((-1070 |#1|) (-1070 |#1|)) 61 T ELT)) (-3636 (((-1070 |#1|) (-1070 |#1|)) 43 T ELT)) (-3492 (((-1070 |#1|) (-1070 |#1|)) 58 T ELT)) (-3635 (((-1070 |#1|) (-1070 |#1|)) 40 T ELT)) (-3499 (((-1070 |#1|) (-1070 |#1|)) 68 T ELT)) (-3487 (((-1070 |#1|) (-1070 |#1|)) 50 T ELT)) (-3497 (((-1070 |#1|) (-1070 |#1|)) 66 T ELT)) (-3485 (((-1070 |#1|) (-1070 |#1|)) 48 T ELT)) (-3501 (((-1070 |#1|) (-1070 |#1|)) 71 T ELT)) (-3489 (((-1070 |#1|) (-1070 |#1|)) 53 T ELT)) (-3502 (((-1070 |#1|) (-1070 |#1|)) 72 T ELT)) (-3490 (((-1070 |#1|) (-1070 |#1|)) 54 T ELT)) (-3500 (((-1070 |#1|) (-1070 |#1|)) 70 T ELT)) (-3488 (((-1070 |#1|) (-1070 |#1|)) 52 T ELT)) (-3498 (((-1070 |#1|) (-1070 |#1|)) 69 T ELT)) (-3486 (((-1070 |#1|) (-1070 |#1|)) 51 T ELT)) (** (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 36 T ELT))) +(((-1078 |#1|) (-10 -7 (-15 -3944 ((-1070 |#1|) (-1070 |#1|))) (-15 -3943 ((-1070 |#1|) (-1070 |#1|))) (-15 ** ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3639 ((-1070 |#1|) (-1070 |#1|))) (-15 -3635 ((-1070 |#1|) (-1070 |#1|))) (-15 -3640 ((-1070 |#1|) (-1070 |#1|))) (-15 -3636 ((-1070 |#1|) (-1070 |#1|))) (-15 -3638 ((-1070 |#1|) (-1070 |#1|))) (-15 -3637 ((-1070 |#1|) (-1070 |#1|))) (-15 -3485 ((-1070 |#1|) (-1070 |#1|))) (-15 -3486 ((-1070 |#1|) (-1070 |#1|))) (-15 -3487 ((-1070 |#1|) (-1070 |#1|))) (-15 -3488 ((-1070 |#1|) (-1070 |#1|))) (-15 -3489 ((-1070 |#1|) (-1070 |#1|))) (-15 -3490 ((-1070 |#1|) (-1070 |#1|))) (-15 -3491 ((-1070 |#1|) (-1070 |#1|))) (-15 -3492 ((-1070 |#1|) (-1070 |#1|))) (-15 -3493 ((-1070 |#1|) (-1070 |#1|))) (-15 -3494 ((-1070 |#1|) (-1070 |#1|))) (-15 -3495 ((-1070 |#1|) (-1070 |#1|))) (-15 -3496 ((-1070 |#1|) (-1070 |#1|))) (-15 -3497 ((-1070 |#1|) (-1070 |#1|))) (-15 -3498 ((-1070 |#1|) (-1070 |#1|))) (-15 -3499 ((-1070 |#1|) (-1070 |#1|))) (-15 -3500 ((-1070 |#1|) (-1070 |#1|))) (-15 -3501 ((-1070 |#1|) (-1070 |#1|))) (-15 -3502 ((-1070 |#1|) (-1070 |#1|)))) (-38 (-350 (-485)))) (T -1078)) +((-3502 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3944 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) +((-3503 (((-870 |#2|) |#2| |#2|) 51 T ELT)) (-3504 ((|#2| |#2| |#1|) 19 (|has| |#1| (-258)) ELT))) +(((-1079 |#1| |#2|) (-10 -7 (-15 -3503 ((-870 |#2|) |#2| |#2|)) (IF (|has| |#1| (-258)) (-15 -3504 (|#2| |#2| |#1|)) |%noBranch|)) (-496) (-1156 |#1|)) (T -1079)) +((-3504 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-1079 *3 *2)) (-4 *2 (-1156 *3)))) (-3503 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-870 *3)) (-5 *1 (-1079 *4 *3)) (-4 *3 (-1156 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3512 (($ $ (-584 (-695))) 79 T ELT)) (-3889 (($) 33 T ELT)) (-3521 (($ $) 51 T ELT)) (-3752 (((-584 $) $) 60 T ELT)) (-3527 (((-85) $) 19 T ELT)) (-3505 (((-584 (-855 |#2|)) $) 86 T ELT)) (-3506 (($ $) 80 T ELT)) (-3522 (((-695) $) 47 T ELT)) (-3615 (($) 32 T ELT)) (-3515 (($ $ (-584 (-695)) (-855 |#2|)) 72 T ELT) (($ $ (-584 (-695)) (-695)) 73 T ELT) (($ $ (-695) (-855 |#2|)) 75 T ELT)) (-3519 (($ $ $) 57 T ELT) (($ (-584 $)) 59 T ELT)) (-3507 (((-695) $) 87 T ELT)) (-3528 (((-85) $) 15 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3526 (((-85) $) 22 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3508 (((-145) $) 85 T ELT)) (-3511 (((-855 |#2|) $) 81 T ELT)) (-3510 (((-695) $) 82 T ELT)) (-3509 (((-85) $) 84 T ELT)) (-3513 (($ $ (-584 (-695)) (-145)) 78 T ELT)) (-3520 (($ $) 52 T ELT)) (-3947 (((-773) $) 99 T ELT)) (-3514 (($ $ (-584 (-695)) (-85)) 77 T ELT)) (-3523 (((-584 $) $) 11 T ELT)) (-3524 (($ $ (-695)) 46 T ELT)) (-3525 (($ $) 43 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3516 (($ $ $ (-855 |#2|) (-695)) 68 T ELT)) (-3517 (($ $ (-855 |#2|)) 67 T ELT)) (-3518 (($ $ (-584 (-695)) (-855 |#2|)) 66 T ELT) (($ $ (-584 (-695)) (-695)) 70 T ELT) (((-695) $ (-855 |#2|)) 71 T ELT)) (-3057 (((-85) $ $) 92 T ELT))) +(((-1080 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3528 ((-85) $)) (-15 -3527 ((-85) $)) (-15 -3526 ((-85) $)) (-15 -3615 ($)) (-15 -3889 ($)) (-15 -3525 ($ $)) (-15 -3524 ($ $ (-695))) (-15 -3523 ((-584 $) $)) (-15 -3522 ((-695) $)) (-15 -3521 ($ $)) (-15 -3520 ($ $)) (-15 -3519 ($ $ $)) (-15 -3519 ($ (-584 $))) (-15 -3752 ((-584 $) $)) (-15 -3518 ($ $ (-584 (-695)) (-855 |#2|))) (-15 -3517 ($ $ (-855 |#2|))) (-15 -3516 ($ $ $ (-855 |#2|) (-695))) (-15 -3515 ($ $ (-584 (-695)) (-855 |#2|))) (-15 -3518 ($ $ (-584 (-695)) (-695))) (-15 -3515 ($ $ (-584 (-695)) (-695))) (-15 -3518 ((-695) $ (-855 |#2|))) (-15 -3515 ($ $ (-695) (-855 |#2|))) (-15 -3514 ($ $ (-584 (-695)) (-85))) (-15 -3513 ($ $ (-584 (-695)) (-145))) (-15 -3512 ($ $ (-584 (-695)))) (-15 -3511 ((-855 |#2|) $)) (-15 -3510 ((-695) $)) (-15 -3509 ((-85) $)) (-15 -3508 ((-145) $)) (-15 -3507 ((-695) $)) (-15 -3506 ($ $)) (-15 -3505 ((-584 (-855 |#2|)) $)))) (-831) (-962)) (T -1080)) +((-3528 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3615 (*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3889 (*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3525 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3521 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3520 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3519 (*1 *1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3519 (*1 *1 *2) (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-855 *4)) (-4 *4 (-962)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)))) (-3516 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-855 *5)) (-5 *3 (-695)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))) (-3515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))) (-3518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3518 (*1 *2 *1 *3) (-12 (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *2 (-695)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))) (-3515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-85)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3513 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-145)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3512 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-855 *4)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3506 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-584 (-855 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3529 ((|#2| $) 11 T ELT)) (-3530 ((|#1| $) 10 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3531 (($ |#1| |#2|) 9 T ELT)) (-3947 (((-773) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1081 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3531 ($ |#1| |#2|)) (-15 -3530 (|#1| $)) (-15 -3529 (|#2| $)))) (-1014) (-1014)) (T -1081)) +((-3531 (*1 *1 *2 *3) (-12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3530 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1014)))) (-3529 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1081 *3 *2)) (-4 *3 (-1014))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3532 (((-1050) $) 10 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1082) (-13 (-996) (-10 -8 (-15 -3532 ((-1050) $))))) (T -1082)) +((-3532 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1082))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3832 (((-1091) $) 11 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2064 (($ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2062 (((-85) $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3772 (($ $ (-485)) NIL T ELT) (($ $ (-485) (-485)) 75 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) NIL T ELT)) (-3732 (((-1090 |#1| |#2| |#3|) $) 42 T ELT)) (-3729 (((-3 (-1090 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3730 (((-1090 |#1| |#2| |#3|) $) 33 T ELT)) (-3493 (($ $) 116 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 92 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) 112 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 88 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3624 (((-485) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) 120 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 96 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-1090 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1091) #1#) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3157 (((-1090 |#1| |#2| |#3|) $) 140 T ELT) (((-1091) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (((-350 (-485)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-485) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3731 (($ $) 37 T ELT) (($ (-485) $) 38 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-2280 (((-631 (-1090 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1090 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1090 |#1| |#2| |#3|)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-3468 (((-3 $ #1#) $) 54 T ELT)) (-3728 (((-350 (-858 |#1|)) $ (-485)) 74 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 76 (|has| |#1| (-496)) ELT)) (-2995 (($) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3187 (((-85) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2893 (((-85) $) 28 T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-797 (-330))) (|has| |#1| (-312))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-797 (-485))) (|has| |#1| (-312))) ELT)) (-3773 (((-485) $) NIL T ELT) (((-485) $ (-485)) 26 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 (((-1090 |#1| |#2| |#3|) $) 44 (|has| |#1| (-312)) ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3446 (((-633 $) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) ELT)) (-3188 (((-85) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3778 (($ $ (-831)) NIL T ELT)) (-3816 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-485)) 19 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-2532 (($ $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2858 (($ $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) 81 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 (-1090 |#1| |#2| |#3|)) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1090 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1090 |#1| |#2| |#3|)))) (-1180 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (($ (-485) (-1090 |#1| |#2| |#3|)) 36 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) 79 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3082 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 80 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3447 (($) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3129 (($ $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3131 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-485)) 158 T ELT)) (-3467 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) 82 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-456 (-1091) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1091)) (-584 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-456 (-1091) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-249 (-1090 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1090 |#1| |#2| |#3|)) (-584 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-485)) NIL T ELT) (($ $ $) 61 (|has| (-485) (-1026)) ELT) (($ $ (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-241 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 (((-1090 |#1| |#2| |#3|) $) 46 (|has| |#1| (-312)) ELT)) (-3949 (((-485) $) 43 T ELT)) (-3496 (($ $) 122 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 98 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) 118 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 94 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 114 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 90 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3973 (((-474) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-554 (-474))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-801 (-330)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-554 (-801 (-330)))) (|has| |#1| (-312))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-554 (-801 (-485)))) (|has| |#1| (-312))) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-773) $) 162 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1090 |#1| |#2| |#3|)) 30 T ELT) (($ (-1177 |#2|)) 25 T ELT) (($ (-1091)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT) (($ (-350 (-485))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3678 ((|#1| $ (-485)) 77 T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3774 ((|#1| $) 12 T ELT)) (-3132 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 128 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 104 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3497 (($ $) 124 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 100 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 132 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 108 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 ((|#1| $ (-485)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 134 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 110 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 130 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 106 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) 126 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 102 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3384 (($ $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 16 T CONST)) (-2670 (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2686 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 49 (|has| |#1| (-312)) ELT) (($ (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) 50 (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 23 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 60 T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 137 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1090 |#1| |#2| |#3|)) 48 (|has| |#1| (-312)) ELT) (($ (-1090 |#1| |#2| |#3|) $) 47 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-1083 |#1| |#2| |#3|) (-13 (-1144 |#1| (-1090 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-10 -8 (-15 -3947 ($ (-1177 |#2|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3813 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1083)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))) +((-3533 ((|#2| |#2| (-1005 |#2|)) 26 T ELT) ((|#2| |#2| (-1091)) 28 T ELT))) +(((-1084 |#1| |#2|) (-10 -7 (-15 -3533 (|#2| |#2| (-1091))) (-15 -3533 (|#2| |#2| (-1005 |#2|)))) (-13 (-496) (-951 (-485)) (-581 (-485))) (-13 (-364 |#1|) (-133) (-27) (-1116))) (T -1084)) +((-3533 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1116))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1084 *4 *2)))) (-3533 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1084 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1116)))))) +((-3533 (((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1005 (-350 (-858 |#1|)))) 31 T ELT) (((-350 (-858 |#1|)) (-858 |#1|) (-1005 (-858 |#1|))) 44 T ELT) (((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1091)) 33 T ELT) (((-350 (-858 |#1|)) (-858 |#1|) (-1091)) 36 T ELT))) +(((-1085 |#1|) (-10 -7 (-15 -3533 ((-350 (-858 |#1|)) (-858 |#1|) (-1091))) (-15 -3533 ((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1091))) (-15 -3533 ((-350 (-858 |#1|)) (-858 |#1|) (-1005 (-858 |#1|)))) (-15 -3533 ((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1005 (-350 (-858 |#1|)))))) (-13 (-496) (-951 (-485)))) (T -1085)) +((-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-3 *3 (-265 *5))) (-5 *1 (-1085 *5)))) (-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-858 *5))) (-5 *3 (-858 *5)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 *3)) (-5 *1 (-1085 *5)))) (-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-3 (-350 (-858 *5)) (-265 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-350 (-858 *5))))) (-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 (-858 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-858 *5))))) +((-2569 (((-85) $ $) 172 T ELT)) (-3189 (((-85) $) 44 T ELT)) (-3768 (((-1180 |#1|) $ (-695)) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3766 (($ (-1086 |#1|)) NIL T ELT)) (-3084 (((-1086 $) $ (-995)) 83 T ELT) (((-1086 |#1|) $) 72 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) 166 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3756 (($ $ $) 160 (|has| |#1| (-496)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 97 (|has| |#1| (-822)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) 117 (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3762 (($ $ (-695)) 62 T ELT)) (-3761 (($ $ (-695)) 64 T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-995) $) NIL T ELT)) (-3757 (($ $ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) 81 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ $) 133 T ELT)) (-3754 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3753 (((-2 (|:| -3955 |#1|) (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3504 (($ $) 167 (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-695) $) 70 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3534 (((-773) $ (-773)) 150 T ELT)) (-3773 (((-695) $ $) NIL (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 49 T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3446 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3085 (($ (-1086 |#1|) (-995)) 74 T ELT) (($ (-1086 $) (-995)) 91 T ELT)) (-3778 (($ $ (-695)) 52 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) 89 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 155 T ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3767 (((-1086 |#1|) $) NIL T ELT)) (-3083 (((-3 (-995) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) 77 T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ (-695)) 61 T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3813 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3447 (($) NIL (|has| |#1| (-1067)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) 51 T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 105 (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) 169 (|has| |#1| (-392)) ELT)) (-3739 (($ $ (-695) |#1| $) 125 T ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) 103 (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 102 (|has| |#1| (-822)) ELT)) (-3733 (((-348 $) $) 110 (|has| |#1| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#1|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#1|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-496)) ELT)) (-3765 (((-3 $ #1#) $ (-695)) 55 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 173 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3949 (((-695) $) 79 T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3973 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) 164 (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3755 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-496)) ELT)) (-3947 (((-773) $) 151 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-995)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3818 (((-584 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) 42 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 18 T CONST)) (-2667 (($) 20 T CONST)) (-2670 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3057 (((-85) $ $) 122 T ELT)) (-3950 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 92 T ELT)) (** (($ $ (-831)) 14 T ELT) (($ $ (-695)) 12 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1086 |#1|) (-13 (-1156 |#1|) (-10 -8 (-15 -3534 ((-773) $ (-773))) (-15 -3739 ($ $ (-695) |#1| $)))) (-962)) (T -1086)) +((-3534 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1086 *3)) (-4 *3 (-962)))) (-3739 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1086 *3)) (-4 *3 (-962))))) +((-3959 (((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 13 T ELT))) +(((-1087 |#1| |#2|) (-10 -7 (-15 -3959 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) (-962) (-962)) (T -1087)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-1086 *6)) (-5 *1 (-1087 *5 *6))))) +((-3972 (((-348 (-1086 (-350 |#4|))) (-1086 (-350 |#4|))) 51 T ELT)) (-3733 (((-348 (-1086 (-350 |#4|))) (-1086 (-350 |#4|))) 52 T ELT))) +(((-1088 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-348 (-1086 (-350 |#4|))) (-1086 (-350 |#4|)))) (-15 -3972 ((-348 (-1086 (-350 |#4|))) (-1086 (-350 |#4|))))) (-718) (-757) (-392) (-862 |#3| |#1| |#2|)) (T -1088)) +((-3972 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-348 (-1086 (-350 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) (-5 *3 (-1086 (-350 *7))))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-348 (-1086 (-350 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) (-5 *3 (-1086 (-350 *7)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3832 (((-1091) $) 11 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3819 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-1083 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1090 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3157 (((-1083 |#1| |#2| |#3|) $) NIL T ELT) (((-1090 |#1| |#2| |#3|) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3782 (((-350 (-485)) $) 59 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3783 (($ (-350 (-485)) (-1083 |#1| |#2| |#3|)) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3773 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3778 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-350 (-485))) 20 T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (((-1083 |#1| |#2| |#3|) $) 41 T ELT)) (-3779 (((-3 (-1083 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3780 (((-1083 |#1| |#2| |#3|) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) 39 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3082 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-350 (-485))) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) 38 T ELT)) (-3949 (((-350 (-485)) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-773) $) 62 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1083 |#1| |#2| |#3|)) 30 T ELT) (($ (-1090 |#1| |#2| |#3|)) 31 T ELT) (($ (-1177 |#2|)) 26 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-350 (-485))) NIL T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3774 ((|#1| $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 22 T CONST)) (-2667 (($) 16 T CONST)) (-2670 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 24 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-1089 |#1| |#2| |#3|) (-13 (-1165 |#1| (-1083 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-951 (-1090 |#1| |#2| |#3|)) (-556 (-1177 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3813 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1089)) +((-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 129 T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3832 (((-1091) $) 119 T ELT)) (-3812 (((-1149 |#2| |#1|) $ (-695)) 69 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-695)) 85 T ELT) (($ $ (-695) (-695)) 82 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 105 T ELT)) (-3493 (($ $) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1070 |#1|)) 113 T ELT)) (-3495 (($ $) 177 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 25 T ELT)) (-3817 (($ $) 28 T ELT)) (-3815 (((-858 |#1|) $ (-695)) 81 T ELT) (((-858 |#1|) $ (-695) (-695)) 83 T ELT)) (-2893 (((-85) $) 124 T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3773 (((-695) $) 126 T ELT) (((-695) $ (-695)) 128 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3778 (($ $ (-831)) NIL T ELT)) (-3816 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) 13 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) 135 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3813 (($ $) 133 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3082 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 134 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3770 (($ $ (-695)) 15 T ELT)) (-3467 (((-3 $ #1#) $ $) 26 (|has| |#1| (-496)) ELT)) (-3944 (($ $) 137 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3801 ((|#1| $ (-695)) 122 T ELT) (($ $ $) 132 (|has| (-695) (-1026)) ELT)) (-3759 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) 31 T ELT)) (-3949 (((-695) $) NIL T ELT)) (-3496 (($ $) 179 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) 175 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-773) $) 206 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1149 |#2| |#1|)) 55 T ELT) (($ (-1177 |#2|)) 36 T ELT)) (-3818 (((-1070 |#1|) $) 101 T ELT)) (-3678 ((|#1| $ (-695)) 121 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3774 ((|#1| $) 58 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 185 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) 181 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 189 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 ((|#1| $ (-695)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 191 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 187 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) 183 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 17 T CONST)) (-2667 (($) 20 T CONST)) (-2670 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3840 (($ $ $) 35 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-312)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 141 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-1090 |#1| |#2| |#3|) (-13 (-1173 |#1|) (-807 $ (-1177 |#2|)) (-10 -8 (-15 -3947 ($ (-1149 |#2| |#1|))) (-15 -3812 ((-1149 |#2| |#1|) $ (-695))) (-15 -3947 ($ (-1177 |#2|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3813 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1090)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-1090 *3 *4 *5)))) (-3812 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1090 *4 *5 *6)) (-4 *4 (-962)) (-14 *5 (-1091)) (-14 *6 *4))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3538 (($ $ (-584 (-773))) 48 T ELT)) (-3539 (($ $ (-584 (-773))) 46 T ELT)) (-3536 (((-1074) $) 88 T ELT)) (-3541 (((-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773))) (|:| |args| (-584 (-773)))) $) 95 T ELT)) (-3542 (((-85) $) 86 T ELT)) (-3540 (($ $ (-584 (-584 (-773)))) 45 T ELT) (($ $ (-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773))) (|:| |args| (-584 (-773))))) 85 T ELT)) (-3725 (($) 151 T CONST)) (-3158 (((-3 (-447) "failed") $) 155 T ELT)) (-3157 (((-447) $) NIL T ELT)) (-3544 (((-1186)) 123 T ELT)) (-2797 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 55 T ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 62 T ELT)) (-3615 (($) 109 T ELT) (($ $) 118 T ELT)) (-3543 (($ $) 87 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3535 (((-584 $) $) 124 T ELT)) (-3243 (((-1074) $) 101 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3801 (($ $ (-584 (-773))) 47 T ELT)) (-3973 (((-474) $) 33 T ELT) (((-1091) $) 34 T ELT) (((-801 (-485)) $) 66 T ELT) (((-801 (-330)) $) 64 T ELT)) (-3947 (((-773) $) 41 T ELT) (($ (-1074)) 35 T ELT) (($ (-447)) 153 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3537 (($ $ (-584 (-773))) 49 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 37 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 38 T ELT))) +(((-1091) (-13 (-757) (-554 (-474)) (-554 (-1091)) (-556 (-1074)) (-951 (-447)) (-554 (-801 (-485))) (-554 (-801 (-330))) (-797 (-485)) (-797 (-330)) (-10 -8 (-15 -3615 ($)) (-15 -3615 ($ $)) (-15 -3544 ((-1186))) (-15 -3543 ($ $)) (-15 -3542 ((-85) $)) (-15 -3541 ((-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773))) (|:| |args| (-584 (-773)))) $)) (-15 -3540 ($ $ (-584 (-584 (-773))))) (-15 -3540 ($ $ (-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773))) (|:| |args| (-584 (-773)))))) (-15 -3539 ($ $ (-584 (-773)))) (-15 -3538 ($ $ (-584 (-773)))) (-15 -3537 ($ $ (-584 (-773)))) (-15 -3801 ($ $ (-584 (-773)))) (-15 -3536 ((-1074) $)) (-15 -3535 ((-584 $) $)) (-15 -3725 ($) -3953)))) (T -1091)) +((-3615 (*1 *1) (-5 *1 (-1091))) (-3615 (*1 *1 *1) (-5 *1 (-1091))) (-3544 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1091)))) (-3543 (*1 *1 *1) (-5 *1 (-1091))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1091)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773))) (|:| |args| (-584 (-773))))) (-5 *1 (-1091)))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-1091)))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773))) (|:| |args| (-584 (-773))))) (-5 *1 (-1091)))) (-3539 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1091)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1091)))) (-3725 (*1 *1) (-5 *1 (-1091)))) +((-3545 (((-1180 |#1|) |#1| (-831)) 18 T ELT) (((-1180 |#1|) (-584 |#1|)) 25 T ELT))) +(((-1092 |#1|) (-10 -7 (-15 -3545 ((-1180 |#1|) (-584 |#1|))) (-15 -3545 ((-1180 |#1|) |#1| (-831)))) (-962)) (T -1092)) +((-3545 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-1180 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-962)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4)) (-5 *1 (-1092 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1625 (($ $ |#1| (-885) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 18 T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-885)) NIL T ELT)) (-2821 (((-885) $) NIL T ELT)) (-1626 (($ (-1 (-885) (-885)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#1| $) NIL T ELT)) (-3739 (($ $ (-885) |#1| $) NIL (-12 (|has| (-885) (-104)) (|has| |#1| (-496))) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3949 (((-885) $) NIL T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3818 (((-584 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-885)) NIL T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 13 T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 22 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-1093 |#1|) (-13 (-277 |#1| (-885)) (-10 -8 (IF (|has| |#1| (-496)) (IF (|has| (-885) (-104)) (-15 -3739 ($ $ (-885) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3994)) (-6 -3994) |%noBranch|))) (-962)) (T -1093)) +((-3739 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-885)) (-4 *2 (-104)) (-5 *1 (-1093 *3)) (-4 *3 (-496)) (-4 *3 (-962))))) +((-3546 (((-1095) (-1091) $) 26 T ELT)) (-3556 (($) 30 T ELT)) (-3548 (((-3 (|:| |fst| (-377)) (|:| -3911 #1="void")) (-1091) $) 23 T ELT)) (-3550 (((-1186) (-1091) (-3 (|:| |fst| (-377)) (|:| -3911 #1#)) $) 42 T ELT) (((-1186) (-1091) (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) 43 T ELT) (((-1186) (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) 44 T ELT)) (-3558 (((-1186) (-1091)) 59 T ELT)) (-3549 (((-1186) (-1091) $) 56 T ELT) (((-1186) (-1091)) 57 T ELT) (((-1186)) 58 T ELT)) (-3554 (((-1186) (-1091)) 38 T ELT)) (-3552 (((-1091)) 37 T ELT)) (-3566 (($) 35 T ELT)) (-3565 (((-379) (-1091) (-379) (-1091) $) 46 T ELT) (((-379) (-584 (-1091)) (-379) (-1091) $) 50 T ELT) (((-379) (-1091) (-379)) 47 T ELT) (((-379) (-1091) (-379) (-1091)) 51 T ELT)) (-3553 (((-1091)) 36 T ELT)) (-3947 (((-773) $) 29 T ELT)) (-3555 (((-1186)) 31 T ELT) (((-1186) (-1091)) 34 T ELT)) (-3547 (((-584 (-1091)) (-1091) $) 25 T ELT)) (-3551 (((-1186) (-1091) (-584 (-1091)) $) 39 T ELT) (((-1186) (-1091) (-584 (-1091))) 40 T ELT) (((-1186) (-584 (-1091))) 41 T ELT))) +(((-1094) (-13 (-553 (-773)) (-10 -8 (-15 -3556 ($)) (-15 -3555 ((-1186))) (-15 -3555 ((-1186) (-1091))) (-15 -3565 ((-379) (-1091) (-379) (-1091) $)) (-15 -3565 ((-379) (-584 (-1091)) (-379) (-1091) $)) (-15 -3565 ((-379) (-1091) (-379))) (-15 -3565 ((-379) (-1091) (-379) (-1091))) (-15 -3554 ((-1186) (-1091))) (-15 -3553 ((-1091))) (-15 -3552 ((-1091))) (-15 -3551 ((-1186) (-1091) (-584 (-1091)) $)) (-15 -3551 ((-1186) (-1091) (-584 (-1091)))) (-15 -3551 ((-1186) (-584 (-1091)))) (-15 -3550 ((-1186) (-1091) (-3 (|:| |fst| (-377)) (|:| -3911 #1="void")) $)) (-15 -3550 ((-1186) (-1091) (-3 (|:| |fst| (-377)) (|:| -3911 #1#)))) (-15 -3550 ((-1186) (-3 (|:| |fst| (-377)) (|:| -3911 #1#)))) (-15 -3549 ((-1186) (-1091) $)) (-15 -3549 ((-1186) (-1091))) (-15 -3549 ((-1186))) (-15 -3558 ((-1186) (-1091))) (-15 -3566 ($)) (-15 -3548 ((-3 (|:| |fst| (-377)) (|:| -3911 #1#)) (-1091) $)) (-15 -3547 ((-584 (-1091)) (-1091) $)) (-15 -3546 ((-1095) (-1091) $))))) (T -1094)) +((-3556 (*1 *1) (-5 *1 (-1094))) (-3555 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3555 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3565 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-3565 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1091))) (-5 *4 (-1091)) (-5 *1 (-1094)))) (-3565 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-3565 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3553 (*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094)))) (-3552 (*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094)))) (-3551 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3551 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3550 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3911 #1="void"))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3550 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3549 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3549 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3566 (*1 *1) (-5 *1 (-1094))) (-3548 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) (-5 *1 (-1094)))) (-3547 (*1 *2 *3 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1094)) (-5 *3 (-1091)))) (-3546 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1095)) (-5 *1 (-1094))))) +((-3560 (((-584 (-584 (-3 (|:| -3543 (-1091)) (|:| -3226 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))) $) 66 T ELT)) (-3562 (((-584 (-3 (|:| -3543 (-1091)) (|:| -3226 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))) (-377) $) 47 T ELT)) (-3557 (($ (-584 (-2 (|:| -3861 (-1091)) (|:| |entry| (-379))))) 17 T ELT)) (-3558 (((-1186) $) 73 T ELT)) (-3563 (((-584 (-1091)) $) 22 T ELT)) (-3559 (((-1016) $) 60 T ELT)) (-3564 (((-379) (-1091) $) 27 T ELT)) (-3561 (((-584 (-1091)) $) 30 T ELT)) (-3566 (($) 19 T ELT)) (-3565 (((-379) (-584 (-1091)) (-379) $) 25 T ELT) (((-379) (-1091) (-379) $) 24 T ELT)) (-3947 (((-773) $) 12 T ELT) (((-1103 (-1091) (-379)) $) 13 T ELT))) +(((-1095) (-13 (-553 (-773)) (-10 -8 (-15 -3947 ((-1103 (-1091) (-379)) $)) (-15 -3566 ($)) (-15 -3565 ((-379) (-584 (-1091)) (-379) $)) (-15 -3565 ((-379) (-1091) (-379) $)) (-15 -3564 ((-379) (-1091) $)) (-15 -3563 ((-584 (-1091)) $)) (-15 -3562 ((-584 (-3 (|:| -3543 (-1091)) (|:| -3226 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))) (-377) $)) (-15 -3561 ((-584 (-1091)) $)) (-15 -3560 ((-584 (-584 (-3 (|:| -3543 (-1091)) (|:| -3226 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))) $)) (-15 -3559 ((-1016) $)) (-15 -3558 ((-1186) $)) (-15 -3557 ($ (-584 (-2 (|:| -3861 (-1091)) (|:| |entry| (-379))))))))) (T -1095)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-1103 (-1091) (-379))) (-5 *1 (-1095)))) (-3566 (*1 *1) (-5 *1 (-1095))) (-3565 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1091))) (-5 *1 (-1095)))) (-3565 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1095)))) (-3564 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-379)) (-5 *1 (-1095)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1095)))) (-3562 (*1 *2 *3 *1) (-12 (-5 *3 (-377)) (-5 *2 (-584 (-3 (|:| -3543 (-1091)) (|:| -3226 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))) (-5 *1 (-1095)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1095)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-3 (|:| -3543 (-1091)) (|:| -3226 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))))) (-5 *1 (-1095)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1095)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1095)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3861 (-1091)) (|:| |entry| (-379))))) (-5 *1 (-1095))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3158 (((-3 (-485) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-447) #1#) $) 43 T ELT) (((-3 (-1074) #1#) $) 47 T ELT)) (-3157 (((-485) $) 30 T ELT) (((-179) $) 36 T ELT) (((-447) $) 40 T ELT) (((-1074) $) 48 T ELT)) (-3571 (((-85) $) 53 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3570 (((-3 (-485) (-179) (-447) (-1074) $) $) 56 T ELT)) (-3569 (((-584 $) $) 58 T ELT)) (-3973 (((-1016) $) 24 T ELT) (($ (-1016)) 25 T ELT)) (-3568 (((-85) $) 57 T ELT)) (-3947 (((-773) $) 23 T ELT) (($ (-485)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-447)) 38 T ELT) (($ (-1074)) 44 T ELT) (((-474) $) 60 T ELT) (((-485) $) 31 T ELT) (((-179) $) 37 T ELT) (((-447) $) 41 T ELT) (((-1074) $) 49 T ELT)) (-3567 (((-85) $ (|[\|\|]| (-485))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-447))) 19 T ELT) (((-85) $ (|[\|\|]| (-1074))) 16 T ELT)) (-3572 (($ (-447) (-584 $)) 51 T ELT) (($ $ (-584 $)) 52 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3573 (((-485) $) 27 T ELT) (((-179) $) 33 T ELT) (((-447) $) 39 T ELT) (((-1074) $) 45 T ELT)) (-3057 (((-85) $ $) 7 T ELT))) +(((-1096) (-13 (-1176) (-1014) (-951 (-485)) (-951 (-179)) (-951 (-447)) (-951 (-1074)) (-553 (-474)) (-10 -8 (-15 -3973 ((-1016) $)) (-15 -3973 ($ (-1016))) (-15 -3947 ((-485) $)) (-15 -3573 ((-485) $)) (-15 -3947 ((-179) $)) (-15 -3573 ((-179) $)) (-15 -3947 ((-447) $)) (-15 -3573 ((-447) $)) (-15 -3947 ((-1074) $)) (-15 -3573 ((-1074) $)) (-15 -3572 ($ (-447) (-584 $))) (-15 -3572 ($ $ (-584 $))) (-15 -3571 ((-85) $)) (-15 -3570 ((-3 (-485) (-179) (-447) (-1074) $) $)) (-15 -3569 ((-584 $) $)) (-15 -3568 ((-85) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-485)))) (-15 -3567 ((-85) $ (|[\|\|]| (-179)))) (-15 -3567 ((-85) $ (|[\|\|]| (-447)))) (-15 -3567 ((-85) $ (|[\|\|]| (-1074))))))) (T -1096)) +((-3973 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1096)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-1096)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1096)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1096)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) (-3572 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-1096))) (-5 *1 (-1096)))) (-3572 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1096)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-3 (-485) (-179) (-447) (-1074) (-1096))) (-5 *1 (-1096)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1096)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)) (-5 *1 (-1096)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1096)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-1096)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-1096))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-695)) 21 T ELT)) (-3725 (($) 10 T CONST)) (-2995 (($) 25 T ELT)) (-2532 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2858 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2011 (((-831) $) 23 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 22 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT))) +(((-1097 |#1|) (-13 (-753) (-10 -8 (-15 -3725 ($) -3953))) (-831)) (T -1097)) +((-3725 (*1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-831))))) +((-485) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 24 T ELT)) (-3137 (((-695)) NIL T ELT)) (-3725 (($) 18 T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2858 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-3726 (($ $ $) 20 T ELT)) (-3727 (($ $ $) 19 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 22 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) 21 T ELT))) +(((-1098 |#1|) (-13 (-753) (-605) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953))) (-831)) (T -1098)) +((-3727 (*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831)))) (-3726 (*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831)))) (-3725 (*1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831))))) +((-695) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 7 T ELT))) +(((-1099) (-1014)) (T -1099)) +NIL +((-3575 (((-584 (-584 (-858 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1091))) 69 T ELT)) (-3574 (((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|)))) 81 T ELT) (((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|))) 77 T ELT) (((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|))) (-1091)) 82 T ELT) (((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1091)) 76 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|))))) 108 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|)))) 107 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1091))) 109 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|))) (-584 (-1091))) 106 T ELT))) +(((-1100 |#1|) (-10 -7 (-15 -3574 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|))) (-584 (-1091)))) (-15 -3574 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1091)))) (-15 -3574 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|))))) (-15 -3574 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|)))))) (-15 -3574 ((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1091))) (-15 -3574 ((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|))) (-1091))) (-15 -3574 ((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|)))) (-15 -3574 ((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|))))) (-15 -3575 ((-584 (-584 (-858 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1091))))) (-496)) (T -1100)) +((-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-858 *5)))) (-5 *1 (-1100 *5)))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1100 *4)) (-5 *3 (-249 (-350 (-858 *4)))))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1100 *4)) (-5 *3 (-350 (-858 *4))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5))))) (-5 *1 (-1100 *5)) (-5 *3 (-249 (-350 (-858 *5)))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5))))) (-5 *1 (-1100 *5)) (-5 *3 (-350 (-858 *5))))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-1100 *4)) (-5 *3 (-584 (-249 (-350 (-858 *4))))))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-1100 *4)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1100 *5)) (-5 *3 (-584 (-249 (-350 (-858 *5))))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1100 *5))))) +((-3580 (((-1074)) 7 T ELT)) (-3577 (((-1074)) 11 T CONST)) (-3576 (((-1186) (-1074)) 13 T ELT)) (-3579 (((-1074)) 8 T CONST)) (-3578 (((-103)) 10 T CONST))) +(((-1101) (-13 (-1130) (-10 -7 (-15 -3580 ((-1074))) (-15 -3579 ((-1074)) -3953) (-15 -3578 ((-103)) -3953) (-15 -3577 ((-1074)) -3953) (-15 -3576 ((-1186) (-1074)))))) (T -1101)) +((-3580 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101)))) (-3579 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101)))) (-3578 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1101)))) (-3577 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101)))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1101))))) +((-3584 (((-584 (-584 |#1|)) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|)))) 56 T ELT)) (-3587 (((-584 (-584 (-584 |#1|))) (-584 (-584 |#1|))) 38 T ELT)) (-3588 (((-1104 (-584 |#1|)) (-584 |#1|)) 49 T ELT)) (-3590 (((-584 (-584 |#1|)) (-584 |#1|)) 45 T ELT)) (-3593 (((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 (-584 (-584 |#1|)))) 53 T ELT)) (-3592 (((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 |#1|) (-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|)))) 52 T ELT)) (-3589 (((-584 (-584 |#1|)) (-584 (-584 |#1|))) 43 T ELT)) (-3591 (((-584 |#1|) (-584 |#1|)) 46 T ELT)) (-3583 (((-584 (-584 (-584 |#1|))) (-584 |#1|) (-584 (-584 (-584 |#1|)))) 32 T ELT)) (-3582 (((-584 (-584 (-584 |#1|))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 (-584 |#1|)))) 29 T ELT)) (-3581 (((-2 (|:| |fs| (-85)) (|:| |sd| (-584 |#1|)) (|:| |td| (-584 (-584 |#1|)))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 |#1|))) 24 T ELT)) (-3585 (((-584 (-584 |#1|)) (-584 (-584 (-584 |#1|)))) 58 T ELT)) (-3586 (((-584 (-584 |#1|)) (-1104 (-584 |#1|))) 60 T ELT))) +(((-1102 |#1|) (-10 -7 (-15 -3581 ((-2 (|:| |fs| (-85)) (|:| |sd| (-584 |#1|)) (|:| |td| (-584 (-584 |#1|)))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 |#1|)))) (-15 -3582 ((-584 (-584 (-584 |#1|))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 (-584 |#1|))))) (-15 -3583 ((-584 (-584 (-584 |#1|))) (-584 |#1|) (-584 (-584 (-584 |#1|))))) (-15 -3584 ((-584 (-584 |#1|)) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))))) (-15 -3585 ((-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))))) (-15 -3586 ((-584 (-584 |#1|)) (-1104 (-584 |#1|)))) (-15 -3587 ((-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)))) (-15 -3588 ((-1104 (-584 |#1|)) (-584 |#1|))) (-15 -3589 ((-584 (-584 |#1|)) (-584 (-584 |#1|)))) (-15 -3590 ((-584 (-584 |#1|)) (-584 |#1|))) (-15 -3591 ((-584 |#1|) (-584 |#1|))) (-15 -3592 ((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 |#1|) (-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))))) (-15 -3593 ((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 (-584 (-584 |#1|)))))) (-757)) (T -1102)) +((-3593 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-2 (|:| |f1| (-584 *4)) (|:| |f2| (-584 (-584 (-584 *4)))) (|:| |f3| (-584 (-584 *4))) (|:| |f4| (-584 (-584 (-584 *4)))))) (-5 *1 (-1102 *4)) (-5 *3 (-584 (-584 (-584 *4)))))) (-3592 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-757)) (-5 *3 (-584 *6)) (-5 *5 (-584 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-584 *5)) (|:| |f3| *5) (|:| |f4| (-584 *5)))) (-5 *1 (-1102 *6)) (-5 *4 (-584 *5)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-1102 *3)))) (-3590 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4)) (-5 *3 (-584 *4)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-757)) (-5 *1 (-1102 *3)))) (-3588 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-1104 (-584 *4))) (-5 *1 (-1102 *4)) (-5 *3 (-584 *4)))) (-3587 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 (-584 *4)))) (-5 *1 (-1102 *4)) (-5 *3 (-584 (-584 *4))))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-1104 (-584 *4))) (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4)) (-4 *4 (-757)))) (-3584 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-4 *4 (-757)) (-5 *1 (-1102 *4)))) (-3583 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *1 (-1102 *4)))) (-3582 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-584 *5)) (-4 *5 (-757)) (-5 *1 (-1102 *5)))) (-3581 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-757)) (-5 *4 (-584 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-584 *4)))) (-5 *1 (-1102 *6)) (-5 *5 (-584 *4))))) +((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2890 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1034) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3996)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#2| (-72))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3531 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-773) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-1103 |#1| |#2|) (-1108 |#1| |#2|) (-1014) (-1014)) (T -1103)) +NIL +((-3594 (($ (-584 (-584 |#1|))) 10 T ELT)) (-3595 (((-584 (-584 |#1|)) $) 11 T ELT)) (-3947 (((-773) $) 33 T ELT))) +(((-1104 |#1|) (-10 -8 (-15 -3594 ($ (-584 (-584 |#1|)))) (-15 -3595 ((-584 (-584 |#1|)) $)) (-15 -3947 ((-773) $))) (-1014)) (T -1104)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1104 *3)) (-4 *3 (-1014)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1014)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-1104 *3))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3596 (($ |#1| (-55)) 11 T ELT)) (-3543 ((|#1| $) 13 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2634 (((-85) $ |#1|) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2522 (((-55) $) 15 T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1105 |#1|) (-13 (-748 |#1|) (-10 -8 (-15 -3596 ($ |#1| (-55))))) (-1014)) (T -1105)) +((-3596 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1105 *2)) (-4 *2 (-1014))))) +((-3597 ((|#1| (-584 |#1|)) 46 T ELT)) (-3599 ((|#1| |#1| (-485)) 24 T ELT)) (-3598 (((-1086 |#1|) |#1| (-831)) 20 T ELT))) +(((-1106 |#1|) (-10 -7 (-15 -3597 (|#1| (-584 |#1|))) (-15 -3598 ((-1086 |#1|) |#1| (-831))) (-15 -3599 (|#1| |#1| (-485)))) (-312)) (T -1106)) +((-3599 (*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-1106 *2)) (-4 *2 (-312)))) (-3598 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-1086 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-312)))) (-3597 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-1106 *2)) (-4 *2 (-312))))) +((-3600 (($) 10 T ELT) (($ (-584 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3406 (($ (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) 65 T ELT) (($ (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2609 (((-584 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 35 T ELT) (((-584 |#3|) $) 37 T ELT) (((-584 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 35 T ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 55 T ELT) (($ (-1 |#3| |#3|) $) 29 T ELT) (($ (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 55 T ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 51 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 51 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 34 T ELT)) (-1275 (((-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) 58 T ELT)) (-3610 (($ (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2204 (((-584 |#2|) $) 19 T ELT)) (-2205 (((-85) |#2| $) 63 T ELT)) (-1355 (((-3 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 62 T ELT)) (-1276 (((-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) 67 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 71 T ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-2206 (((-584 |#3|) $) 39 T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-695) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-695) |#3| $) NIL T ELT) (((-695) (-1 (-85) |#3|) $) 77 T ELT) (((-695) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-695) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-3947 (((-773) $) 27 T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 69 T ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-3057 (((-85) $ $) 49 T ELT))) +(((-1107 |#1| |#2| |#3|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3947 ((-773) |#1|)) (-15 -3959 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3600 (|#1| (-584 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))))) (-15 -3600 (|#1|)) (-15 -3959 (|#1| (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3327 (|#1| (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1949 ((-85) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1948 ((-85) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-695) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2609 ((-584 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-695) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3406 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3959 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3327 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1949 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1947 ((-695) (-1 (-85) |#3|) |#1|)) (-15 -2609 ((-584 |#3|) |#1|)) (-15 -1947 ((-695) |#3| |#1|)) (-15 -2206 ((-584 |#3|) |#1|)) (-15 -2205 ((-85) |#2| |#1|)) (-15 -2204 ((-584 |#2|) |#1|)) (-15 -3406 (|#1| (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3406 (|#1| (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1355 ((-3 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1275 ((-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3610 (|#1| (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1276 ((-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3327 (|#1| (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-695) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2609 ((-584 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-695) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1948 ((-85) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1949 ((-85) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3959 (|#1| (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|))) (-1108 |#2| |#3|) (-1014) (-1014)) (T -1107)) +NIL +((-2569 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3600 (($) 110 T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 109 T ELT)) (-2199 (((-1186) $ |#1| |#1|) 98 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 86 (|has| $ (-6 -3997)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3996)) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3996)) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) 68 T ELT)) (-3725 (($) 7 T CONST)) (-1354 (($ $) 62 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3996))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3996)) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3996)) ELT) (((-3 |#2| #1#) |#1| $) 69 T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3996)) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| $ (-6 -3996))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3996)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#2| $ |#1| |#2|) 85 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) 87 T ELT)) (-2890 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) 77 (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 113 (|has| $ (-6 -3996)) ELT)) (-2201 ((|#1| $) 95 (|has| |#1| (-757)) ELT)) (-2609 (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3996)) ELT) (((-584 |#2|) $) 78 (|has| $ (-6 -3996)) ELT) (((-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 121 T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3996))) ELT) (((-85) |#2| $) 80 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3996))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 123 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) 94 (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 34 T ELT) (($ (-1 |#2| |#2|) $) 73 (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 112 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 72 T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 111 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 108 T ELT)) (-3243 (((-1074) $) 22 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-2233 (((-584 |#1|) $) 70 T ELT)) (-2234 (((-85) |#1| $) 71 T ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2204 (((-584 |#1|) $) 92 T ELT)) (-2205 (((-85) |#1| $) 91 T ELT)) (-3244 (((-1034) $) 21 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3802 ((|#2| $) 96 (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2200 (($ $ |#2|) 97 (|has| $ (-6 -3997)) ELT)) (-1276 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) 75 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 119 T ELT)) (-3769 (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 84 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 83 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 82 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) 81 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 117 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 116 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 115 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 114 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#2| $) 93 (-12 (|has| $ (-6 -3996)) (|has| |#2| (-1014))) ELT)) (-2206 (((-584 |#2|) $) 90 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#2| $ |#1|) 89 T ELT) ((|#2| $ |#1| |#2|) 88 T ELT)) (-1467 (($) 53 T ELT) (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3996))) ELT) (((-695) |#2| $) 79 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3996))) ELT) (((-695) (-1 (-85) |#2|) $) 76 (|has| $ (-6 -3996)) ELT) (((-695) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 122 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 120 T ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 63 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3531 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3947 (((-773) $) 17 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-1266 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) |#2|) $) 74 (|has| $ (-6 -3996)) ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 118 T ELT)) (-3057 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-1108 |#1| |#2|) (-113) (-1014) (-1014)) (T -1108)) +((-3600 (*1 *1) (-12 (-4 *1 (-1108 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3600 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3861 *3) (|:| |entry| *4)))) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *1 (-1108 *3 *4)))) (-3959 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) +(-13 (-550 |t#1| |t#2|) (-318 (-2 (|:| -3861 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -3600 ($)) (-15 -3600 ($ (-584 (-2 (|:| -3861 |t#1|) (|:| |entry| |t#2|))))) (-15 -3959 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-76 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-474)) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ((-183 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-429 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-539 |#1| |#2|) . T) ((-456 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014))) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-550 |#1| |#2|) . T) ((-1014) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ((-1036 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-1130) . T)) +((-3606 (((-85)) 29 T ELT)) (-3603 (((-1186) (-1074)) 31 T ELT)) (-3607 (((-85)) 41 T ELT)) (-3604 (((-1186)) 39 T ELT)) (-3602 (((-1186) (-1074) (-1074)) 30 T ELT)) (-3608 (((-85)) 42 T ELT)) (-3610 (((-1186) |#1| |#2|) 53 T ELT)) (-3601 (((-1186)) 26 T ELT)) (-3609 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3605 (((-1186)) 40 T ELT))) +(((-1109 |#1| |#2|) (-10 -7 (-15 -3601 ((-1186))) (-15 -3602 ((-1186) (-1074) (-1074))) (-15 -3603 ((-1186) (-1074))) (-15 -3604 ((-1186))) (-15 -3605 ((-1186))) (-15 -3606 ((-85))) (-15 -3607 ((-85))) (-15 -3608 ((-85))) (-15 -3609 ((-3 |#2| "failed") |#1|)) (-15 -3610 ((-1186) |#1| |#2|))) (-1014) (-1014)) (T -1109)) +((-3610 (*1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3609 (*1 *2 *3) (|partial| -12 (-4 *2 (-1014)) (-5 *1 (-1109 *3 *2)) (-4 *3 (-1014)))) (-3608 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3607 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3606 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3605 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3604 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3603 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)))) (-3602 (*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)))) (-3601 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3616 (((-584 (-1074)) $) 37 T ELT)) (-3612 (((-584 (-1074)) $ (-584 (-1074))) 40 T ELT)) (-3611 (((-584 (-1074)) $ (-584 (-1074))) 39 T ELT)) (-3613 (((-584 (-1074)) $ (-584 (-1074))) 41 T ELT)) (-3614 (((-584 (-1074)) $) 36 T ELT)) (-3615 (($) 26 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3617 (((-584 (-1074)) $) 38 T ELT)) (-3618 (((-1186) $ (-485)) 33 T ELT) (((-1186) $) 34 T ELT)) (-3973 (($ (-773) (-485)) 31 T ELT) (($ (-773) (-485) (-773)) NIL T ELT)) (-3947 (((-773) $) 47 T ELT) (($ (-773)) 30 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1110) (-13 (-1014) (-556 (-773)) (-10 -8 (-15 -3973 ($ (-773) (-485))) (-15 -3973 ($ (-773) (-485) (-773))) (-15 -3618 ((-1186) $ (-485))) (-15 -3618 ((-1186) $)) (-15 -3617 ((-584 (-1074)) $)) (-15 -3616 ((-584 (-1074)) $)) (-15 -3615 ($)) (-15 -3614 ((-584 (-1074)) $)) (-15 -3613 ((-584 (-1074)) $ (-584 (-1074)))) (-15 -3612 ((-584 (-1074)) $ (-584 (-1074)))) (-15 -3611 ((-584 (-1074)) $ (-584 (-1074))))))) (T -1110)) +((-3973 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110)))) (-3973 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110)))) (-3618 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1110)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1110)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3615 (*1 *1) (-5 *1 (-1110))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3613 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3612 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3611 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110))))) +((-3947 (((-1110) |#1|) 11 T ELT))) +(((-1111 |#1|) (-10 -7 (-15 -3947 ((-1110) |#1|))) (-1014)) (T -1111)) +((-3947 (*1 *2 *3) (-12 (-5 *2 (-1110)) (-5 *1 (-1111 *3)) (-4 *3 (-1014))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3623 (((-1074) $ (-1074)) 21 T ELT) (((-1074) $) 20 T ELT)) (-1698 (((-1074) $ (-1074)) 19 T ELT)) (-1702 (($ $ (-1074)) NIL T ELT)) (-3621 (((-3 (-1074) #1="failed") $) 11 T ELT)) (-3622 (((-1074) $) 8 T ELT)) (-3620 (((-3 (-1074) #1#) $) 12 T ELT)) (-1699 (((-1074) $) 9 T ELT)) (-1703 (($ (-338)) NIL T ELT) (($ (-338) (-1074)) NIL T ELT)) (-3543 (((-338) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-1700 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3619 (((-85) $) 25 T ELT)) (-3947 (((-773) $) NIL T ELT)) (-1701 (($ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1112) (-13 (-314 (-338) (-1074)) (-10 -8 (-15 -3623 ((-1074) $ (-1074))) (-15 -3623 ((-1074) $)) (-15 -3622 ((-1074) $)) (-15 -3621 ((-3 (-1074) #1="failed") $)) (-15 -3620 ((-3 (-1074) #1#) $)) (-15 -3619 ((-85) $))))) (T -1112)) +((-3623 (*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3621 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3620 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1112))))) +((-3624 (((-3 (-485) #1="failed") |#1|) 19 T ELT)) (-3625 (((-3 (-485) #1#) |#1|) 14 T ELT)) (-3626 (((-485) (-1074)) 33 T ELT))) +(((-1113 |#1|) (-10 -7 (-15 -3624 ((-3 (-485) #1="failed") |#1|)) (-15 -3625 ((-3 (-485) #1#) |#1|)) (-15 -3626 ((-485) (-1074)))) (-962)) (T -1113)) +((-3626 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-1113 *4)) (-4 *4 (-962)))) (-3625 (*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962)))) (-3624 (*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962))))) +((-3627 (((-1048 (-179))) 9 T ELT))) +(((-1114) (-10 -7 (-15 -3627 ((-1048 (-179)))))) (T -1114)) +((-3627 (*1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1114))))) +((-3628 (($) 12 T ELT)) (-3499 (($ $) 36 T ELT)) (-3497 (($ $) 34 T ELT)) (-3485 (($ $) 26 T ELT)) (-3501 (($ $) 18 T ELT)) (-3502 (($ $) 16 T ELT)) (-3500 (($ $) 20 T ELT)) (-3488 (($ $) 31 T ELT)) (-3498 (($ $) 35 T ELT)) (-3486 (($ $) 30 T ELT))) +(((-1115 |#1|) (-10 -7 (-15 -3628 (|#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3486 (|#1| |#1|))) (-1116)) (T -1115)) +NIL +((-3493 (($ $) 26 T ELT)) (-3640 (($ $) 11 T ELT)) (-3491 (($ $) 27 T ELT)) (-3639 (($ $) 10 T ELT)) (-3495 (($ $) 28 T ELT)) (-3638 (($ $) 9 T ELT)) (-3628 (($) 16 T ELT)) (-3943 (($ $) 19 T ELT)) (-3944 (($ $) 18 T ELT)) (-3496 (($ $) 29 T ELT)) (-3637 (($ $) 8 T ELT)) (-3494 (($ $) 30 T ELT)) (-3636 (($ $) 7 T ELT)) (-3492 (($ $) 31 T ELT)) (-3635 (($ $) 6 T ELT)) (-3499 (($ $) 20 T ELT)) (-3487 (($ $) 32 T ELT)) (-3497 (($ $) 21 T ELT)) (-3485 (($ $) 33 T ELT)) (-3501 (($ $) 22 T ELT)) (-3489 (($ $) 34 T ELT)) (-3502 (($ $) 23 T ELT)) (-3490 (($ $) 35 T ELT)) (-3500 (($ $) 24 T ELT)) (-3488 (($ $) 36 T ELT)) (-3498 (($ $) 25 T ELT)) (-3486 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) +(((-1116) (-113)) (T -1116)) +((-3628 (*1 *1) (-4 *1 (-1116)))) +(-13 (-1119) (-66) (-433) (-35) (-239) (-10 -8 (-15 -3628 ($)))) +(((-35) . T) ((-66) . T) ((-239) . T) ((-433) . T) ((-1119) . T)) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 19 T ELT)) (-3633 (($ |#1| (-584 $)) 28 T ELT) (($ (-584 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3026 ((|#1| $ |#1|) 14 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) 13 (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-2890 (((-584 |#1|) $) 70 (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) 59 T ELT)) (-3028 (((-85) $ $) 50 (|has| |#1| (-1014)) ELT)) (-2609 (((-584 |#1|) $) 71 T ELT)) (-3246 (((-85) |#1| $) 69 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3031 (((-584 |#1|) $) 55 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 67 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 102 T ELT)) (-3404 (((-85) $) 9 T ELT)) (-3566 (($) 10 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-3629 (((-584 $) $) 84 T ELT)) (-3630 (((-85) $ $) 105 T ELT)) (-3631 (((-584 $) $) 100 T ELT)) (-3632 (($ $) 101 T ELT)) (-3634 (((-85) $) 77 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 25 T ELT) (((-695) |#1| $) 17 (|has| |#1| (-72)) ELT)) (-3401 (($ $) 83 T ELT)) (-3947 (((-773) $) 86 (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) 12 T ELT)) (-3029 (((-85) $ $) 39 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 66 T ELT)) (-3057 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 81 T ELT))) +(((-1117 |#1|) (-13 (-924 |#1|) (-318 |#1|) (-1036 |#1|) (-10 -8 (-15 -3633 ($ |#1| (-584 $))) (-15 -3633 ($ (-584 |#1|))) (-15 -3633 ($ |#1|)) (-15 -3634 ((-85) $)) (-15 -3632 ($ $)) (-15 -3631 ((-584 $) $)) (-15 -3630 ((-85) $ $)) (-15 -3629 ((-584 $) $)))) (-1014)) (T -1117)) +((-3634 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))) (-3633 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-1117 *2))) (-5 *1 (-1117 *2)) (-4 *2 (-1014)))) (-3633 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-1117 *3)))) (-3633 (*1 *1 *2) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1014)))) (-3632 (*1 *1 *1) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1014)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))) (-3630 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014))))) +((-3640 (($ $) 15 T ELT)) (-3638 (($ $) 12 T ELT)) (-3637 (($ $) 10 T ELT)) (-3636 (($ $) 17 T ELT))) +(((-1118 |#1|) (-10 -7 (-15 -3636 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3640 (|#1| |#1|))) (-1119)) (T -1118)) +NIL +((-3640 (($ $) 11 T ELT)) (-3639 (($ $) 10 T ELT)) (-3638 (($ $) 9 T ELT)) (-3637 (($ $) 8 T ELT)) (-3636 (($ $) 7 T ELT)) (-3635 (($ $) 6 T ELT))) +(((-1119) (-113)) (T -1119)) +((-3640 (*1 *1 *1) (-4 *1 (-1119))) (-3639 (*1 *1 *1) (-4 *1 (-1119))) (-3638 (*1 *1 *1) (-4 *1 (-1119))) (-3637 (*1 *1 *1) (-4 *1 (-1119))) (-3636 (*1 *1 *1) (-4 *1 (-1119))) (-3635 (*1 *1 *1) (-4 *1 (-1119)))) +(-13 (-10 -8 (-15 -3635 ($ $)) (-15 -3636 ($ $)) (-15 -3637 ($ $)) (-15 -3638 ($ $)) (-15 -3639 ($ $)) (-15 -3640 ($ $)))) +((-3643 ((|#2| |#2|) 95 T ELT)) (-3646 (((-85) |#2|) 29 T ELT)) (-3644 ((|#2| |#2|) 33 T ELT)) (-3645 ((|#2| |#2|) 35 T ELT)) (-3641 ((|#2| |#2| (-1091)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3647 (((-142 |#2|) |#2|) 31 T ELT)) (-3642 ((|#2| |#2| (-1091)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) +(((-1120 |#1| |#2|) (-10 -7 (-15 -3641 (|#2| |#2|)) (-15 -3641 (|#2| |#2| (-1091))) (-15 -3642 (|#2| |#2|)) (-15 -3642 (|#2| |#2| (-1091))) (-15 -3643 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3646 ((-85) |#2|)) (-15 -3647 ((-142 |#2|) |#2|))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -1120)) +((-3647 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-142 *3)) (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-85)) (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))) (-3642 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))) (-3641 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3)))))) +((-3648 ((|#4| |#4| |#1|) 31 T ELT)) (-3649 ((|#4| |#4| |#1|) 32 T ELT))) +(((-1121 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3648 (|#4| |#4| |#1|)) (-15 -3649 (|#4| |#4| |#1|))) (-496) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -1121)) +((-3649 (*1 *2 *2 *3) (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3648 (*1 *2 *2 *3) (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) +((-3667 ((|#2| |#2|) 148 T ELT)) (-3669 ((|#2| |#2|) 145 T ELT)) (-3666 ((|#2| |#2|) 136 T ELT)) (-3668 ((|#2| |#2|) 133 T ELT)) (-3665 ((|#2| |#2|) 141 T ELT)) (-3664 ((|#2| |#2|) 129 T ELT)) (-3653 ((|#2| |#2|) 44 T ELT)) (-3652 ((|#2| |#2|) 105 T ELT)) (-3650 ((|#2| |#2|) 88 T ELT)) (-3663 ((|#2| |#2|) 143 T ELT)) (-3662 ((|#2| |#2|) 131 T ELT)) (-3675 ((|#2| |#2|) 153 T ELT)) (-3673 ((|#2| |#2|) 151 T ELT)) (-3674 ((|#2| |#2|) 152 T ELT)) (-3672 ((|#2| |#2|) 150 T ELT)) (-3651 ((|#2| |#2|) 163 T ELT)) (-3676 ((|#2| |#2|) 30 (-12 (|has| |#2| (-554 (-801 |#1|))) (|has| |#2| (-797 |#1|)) (|has| |#1| (-554 (-801 |#1|))) (|has| |#1| (-797 |#1|))) ELT)) (-3654 ((|#2| |#2|) 89 T ELT)) (-3655 ((|#2| |#2|) 154 T ELT)) (-3964 ((|#2| |#2|) 155 T ELT)) (-3661 ((|#2| |#2|) 142 T ELT)) (-3660 ((|#2| |#2|) 130 T ELT)) (-3659 ((|#2| |#2|) 149 T ELT)) (-3671 ((|#2| |#2|) 147 T ELT)) (-3658 ((|#2| |#2|) 137 T ELT)) (-3670 ((|#2| |#2|) 135 T ELT)) (-3657 ((|#2| |#2|) 139 T ELT)) (-3656 ((|#2| |#2|) 127 T ELT))) +(((-1122 |#1| |#2|) (-10 -7 (-15 -3964 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (IF (|has| |#1| (-797 |#1|)) (IF (|has| |#1| (-554 (-801 |#1|))) (IF (|has| |#2| (-554 (-801 |#1|))) (IF (|has| |#2| (-797 |#1|)) (-15 -3676 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-392) (-13 (-364 |#1|) (-1116))) (T -1122)) +((-3676 (*1 *2 *2) (-12 (-4 *3 (-554 (-801 *3))) (-4 *3 (-797 *3)) (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-554 (-801 *3))) (-4 *2 (-797 *3)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3675 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-1091)) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3815 (((-858 |#1|) $ (-695)) 18 T ELT) (((-858 |#1|) $ (-695) (-695)) NIL T ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3773 (((-695) $ (-1091)) NIL T ELT) (((-695) $ (-1091) (-695)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ $ (-584 (-1091)) (-584 (-470 (-1091)))) NIL T ELT) (($ $ (-1091) (-470 (-1091))) NIL T ELT) (($ |#1| (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3813 (($ $ (-1091)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3677 (($ (-1 $) (-1091) |#1|) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (($ $ (-695)) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (($ $ (-1091) $) NIL T ELT) (($ $ (-584 (-1091)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT)) (-3759 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3949 (((-470 (-1091)) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-1091)) NIL T ELT) (($ (-858 |#1|)) NIL T ELT)) (-3678 ((|#1| $ (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (((-858 |#1|) $ (-695)) NIL T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1123 |#1|) (-13 (-680 |#1| (-1091)) (-10 -8 (-15 -3678 ((-858 |#1|) $ (-695))) (-15 -3947 ($ (-1091))) (-15 -3947 ($ (-858 |#1|))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3813 ($ $ (-1091) |#1|)) (-15 -3677 ($ (-1 $) (-1091) |#1|))) |%noBranch|))) (-962)) (T -1123)) +((-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-858 *4)) (-5 *1 (-1123 *4)) (-4 *4 (-962)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-962)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-5 *1 (-1123 *3)))) (-3813 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)))) (-3677 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1123 *4))) (-5 *3 (-1091)) (-5 *1 (-1123 *4)) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962))))) +((-3694 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3689 ((|#5| |#5| $) 83 T ELT)) (-3711 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3690 (((-584 |#5|) (-584 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3158 (((-3 $ #1#) (-584 |#5|)) 134 T ELT)) (-3800 (((-3 $ #1#) $) 119 T ELT)) (-3686 ((|#5| |#5| $) 101 T ELT)) (-3695 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3684 ((|#5| |#5| $) 105 T ELT)) (-3843 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3697 (((-2 (|:| -3862 (-584 |#5|)) (|:| -1703 (-584 |#5|))) $) 63 T ELT)) (-3696 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3181 ((|#4| $) 115 T ELT)) (-3799 (((-3 |#5| #1#) $) 117 T ELT)) (-3698 (((-584 |#5|) $) 55 T ELT)) (-3692 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3687 ((|#5| |#5| $) 89 T ELT)) (-3700 (((-85) $ $) 29 T ELT)) (-3693 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3688 ((|#5| |#5| $) 86 T ELT)) (-3802 (((-3 |#5| #1#) $) 116 T ELT)) (-3770 (($ $ |#5|) 135 T ELT)) (-3949 (((-695) $) 60 T ELT)) (-3531 (($ (-584 |#5|)) 132 T ELT)) (-2911 (($ $ |#4|) 130 T ELT)) (-2913 (($ $ |#4|) 128 T ELT)) (-3685 (($ $) 127 T ELT)) (-3947 (((-773) $) NIL T ELT) (((-584 |#5|) $) 120 T ELT)) (-3679 (((-695) $) 139 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3691 (((-85) $ (-1 (-85) |#5| (-584 |#5|))) 107 T ELT)) (-3681 (((-584 |#4|) $) 122 T ELT)) (-3934 (((-85) |#4| $) 125 T ELT)) (-3057 (((-85) $ $) 20 T ELT))) +(((-1124 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3679 ((-695) |#1|)) (-15 -3770 (|#1| |#1| |#5|)) (-15 -3711 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3934 ((-85) |#4| |#1|)) (-15 -3681 ((-584 |#4|) |#1|)) (-15 -3800 ((-3 |#1| #1#) |#1|)) (-15 -3799 ((-3 |#5| #1#) |#1|)) (-15 -3802 ((-3 |#5| #1#) |#1|)) (-15 -3684 (|#5| |#5| |#1|)) (-15 -3685 (|#1| |#1|)) (-15 -3686 (|#5| |#5| |#1|)) (-15 -3687 (|#5| |#5| |#1|)) (-15 -3688 (|#5| |#5| |#1|)) (-15 -3689 (|#5| |#5| |#1|)) (-15 -3690 ((-584 |#5|) (-584 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3843 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3692 ((-85) |#1|)) (-15 -3693 ((-85) |#1|)) (-15 -3694 ((-85) |#1|)) (-15 -3691 ((-85) |#1| (-1 (-85) |#5| (-584 |#5|)))) (-15 -3692 ((-85) |#5| |#1|)) (-15 -3693 ((-85) |#5| |#1|)) (-15 -3694 ((-85) |#5| |#1|)) (-15 -3695 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3696 ((-85) |#1|)) (-15 -3696 ((-85) |#5| |#1|)) (-15 -3697 ((-2 (|:| -3862 (-584 |#5|)) (|:| -1703 (-584 |#5|))) |#1|)) (-15 -3949 ((-695) |#1|)) (-15 -3698 ((-584 |#5|) |#1|)) (-15 -3699 ((-3 (-2 (|:| |bas| |#1|) (|:| -3324 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3699 ((-3 (-2 (|:| |bas| |#1|) (|:| -3324 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3700 ((-85) |#1| |#1|)) (-15 -2911 (|#1| |#1| |#4|)) (-15 -2913 (|#1| |#1| |#4|)) (-15 -3181 (|#4| |#1|)) (-15 -3158 ((-3 |#1| #1#) (-584 |#5|))) (-15 -3947 ((-584 |#5|) |#1|)) (-15 -3531 (|#1| (-584 |#5|))) (-15 -3843 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3843 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3711 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3843 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3947 ((-773) |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-1125 |#2| |#3| |#4| |#5|) (-496) (-718) (-757) (-978 |#2| |#3| |#4|)) (T -1124)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3682 (((-584 (-2 (|:| -3862 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3683 (((-584 $) (-584 |#4|)) 92 T ELT)) (-3082 (((-584 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3689 ((|#4| |#4| $) 98 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-6 -3996)) ELT) (((-3 |#4| "failed") $ |#3|) 85 T ELT)) (-3725 (($) 54 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3690 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3157 (($ (-584 |#4|)) 40 T ELT)) (-3800 (((-3 $ "failed") $) 88 T ELT)) (-3686 ((|#4| |#4| $) 95 T ELT)) (-1354 (($ $) 70 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#4| $) 69 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3996)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3684 ((|#4| |#4| $) 93 T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 65 (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 64 (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3697 (((-2 (|:| -3862 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 111 T ELT)) (-2890 (((-584 |#4|) $) 57 (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-584 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 49 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 56 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 55 T ELT)) (-2915 (((-584 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3799 (((-3 |#4| "failed") $) 89 T ELT)) (-3698 (((-584 |#4|) $) 113 T ELT)) (-3692 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3687 ((|#4| |#4| $) 96 T ELT)) (-3700 (((-85) $ $) 116 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3688 ((|#4| |#4| $) 97 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3802 (((-3 |#4| "failed") $) 90 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 63 T ELT)) (-3680 (((-3 $ "failed") $ |#4|) 84 T ELT)) (-3770 (($ $ |#4|) 83 T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3769 (($ $ (-584 |#4|) (-584 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 59 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 58 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 50 T ELT)) (-3404 (((-85) $) 53 T ELT)) (-3566 (($) 52 T ELT)) (-3949 (((-695) $) 112 T ELT)) (-1947 (((-695) |#4| $) 48 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3401 (($ $) 51 T ELT)) (-3973 (((-474) $) 71 (|has| |#4| (-554 (-474))) ELT)) (-3531 (($ (-584 |#4|)) 62 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-3685 (($ $) 94 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3947 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3679 (((-695) $) 82 (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) "failed") (-584 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) "failed") (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 104 T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3681 (((-584 |#3|) $) 87 T ELT)) (-3934 (((-85) |#3| $) 86 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3958 (((-695) $) 43 T ELT))) +(((-1125 |#1| |#2| |#3| |#4|) (-113) (-496) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -1125)) +((-3700 (*1 *2 *1 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3699 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3324 (-584 *8)))) (-5 *3 (-584 *8)) (-4 *1 (-1125 *5 *6 *7 *8)))) (-3699 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3324 (-584 *9)))) (-5 *3 (-584 *9)) (-4 *1 (-1125 *6 *7 *8 *9)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *6)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-695)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-2 (|:| -3862 (-584 *6)) (|:| -1703 (-584 *6)))))) (-3696 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3695 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1125 *5 *6 *7 *3)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85)))) (-3694 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3693 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3692 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-584 *7))) (-4 *1 (-1125 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3843 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1125 *5 *6 *7 *2)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *2 (-978 *5 *6 *7)))) (-3690 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1125 *5 *6 *7 *8)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)))) (-3689 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3688 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3687 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3686 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3685 (*1 *1 *1) (-12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-978 *2 *3 *4)))) (-3684 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-1125 *4 *5 *6 *7)))) (-3682 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| -3862 *1) (|:| -1703 (-584 *7))))) (-5 *3 (-584 *7)) (-4 *1 (-1125 *4 *5 *6 *7)))) (-3802 (*1 *2 *1) (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3799 (*1 *2 *1) (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3800 (*1 *1 *1) (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-978 *2 *3 *4)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) (-3934 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *3 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85)))) (-3711 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1125 *4 *5 *3 *2)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *2 (-978 *4 *5 *3)))) (-3680 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-695))))) +(-13 (-890 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -3997) (-15 -3700 ((-85) $ $)) (-15 -3699 ((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |t#4|))) "failed") (-584 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3699 ((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |t#4|))) "failed") (-584 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3698 ((-584 |t#4|) $)) (-15 -3949 ((-695) $)) (-15 -3697 ((-2 (|:| -3862 (-584 |t#4|)) (|:| -1703 (-584 |t#4|))) $)) (-15 -3696 ((-85) |t#4| $)) (-15 -3696 ((-85) $)) (-15 -3695 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3694 ((-85) |t#4| $)) (-15 -3693 ((-85) |t#4| $)) (-15 -3692 ((-85) |t#4| $)) (-15 -3691 ((-85) $ (-1 (-85) |t#4| (-584 |t#4|)))) (-15 -3694 ((-85) $)) (-15 -3693 ((-85) $)) (-15 -3692 ((-85) $)) (-15 -3843 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3690 ((-584 |t#4|) (-584 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3689 (|t#4| |t#4| $)) (-15 -3688 (|t#4| |t#4| $)) (-15 -3687 (|t#4| |t#4| $)) (-15 -3686 (|t#4| |t#4| $)) (-15 -3685 ($ $)) (-15 -3684 (|t#4| |t#4| $)) (-15 -3683 ((-584 $) (-584 |t#4|))) (-15 -3682 ((-584 (-2 (|:| -3862 $) (|:| -1703 (-584 |t#4|)))) (-584 |t#4|))) (-15 -3802 ((-3 |t#4| "failed") $)) (-15 -3799 ((-3 |t#4| "failed") $)) (-15 -3800 ((-3 $ "failed") $)) (-15 -3681 ((-584 |t#3|) $)) (-15 -3934 ((-85) |t#3| $)) (-15 -3711 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3680 ((-3 $ "failed") $ |t#4|)) (-15 -3770 ($ $ |t#4|)) (IF (|has| |t#3| (-320)) (-15 -3679 ((-695) $)) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1130) . T)) +((-3706 (($ |#1| (-584 (-584 (-855 (-179)))) (-85)) 19 T ELT)) (-3705 (((-85) $ (-85)) 18 T ELT)) (-3704 (((-85) $) 17 T ELT)) (-3702 (((-584 (-584 (-855 (-179)))) $) 13 T ELT)) (-3701 ((|#1| $) 8 T ELT)) (-3703 (((-85) $) 15 T ELT))) +(((-1126 |#1|) (-10 -8 (-15 -3701 (|#1| $)) (-15 -3702 ((-584 (-584 (-855 (-179)))) $)) (-15 -3703 ((-85) $)) (-15 -3704 ((-85) $)) (-15 -3705 ((-85) $ (-85))) (-15 -3706 ($ |#1| (-584 (-584 (-855 (-179)))) (-85)))) (-888)) (T -1126)) +((-3706 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-85)) (-5 *1 (-1126 *2)) (-4 *2 (-888)))) (-3705 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3701 (*1 *2 *1) (-12 (-5 *1 (-1126 *2)) (-4 *2 (-888))))) +((-3708 (((-855 (-179)) (-855 (-179))) 31 T ELT)) (-3707 (((-855 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3710 (((-584 (-855 (-179))) (-855 (-179)) (-855 (-179)) (-855 (-179)) (-179) (-584 (-584 (-179)))) 57 T ELT)) (-3837 (((-179) (-855 (-179)) (-855 (-179))) 27 T ELT)) (-3835 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 28 T ELT)) (-3709 (((-584 (-584 (-179))) (-485)) 45 T ELT)) (-3838 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 26 T ELT)) (-3840 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 24 T ELT)) (* (((-855 (-179)) (-179) (-855 (-179))) 22 T ELT))) +(((-1127) (-10 -7 (-15 -3707 ((-855 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-855 (-179)) (-179) (-855 (-179)))) (-15 -3840 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3838 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3837 ((-179) (-855 (-179)) (-855 (-179)))) (-15 -3835 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3708 ((-855 (-179)) (-855 (-179)))) (-15 -3709 ((-584 (-584 (-179))) (-485))) (-15 -3710 ((-584 (-855 (-179))) (-855 (-179)) (-855 (-179)) (-855 (-179)) (-179) (-584 (-584 (-179))))))) (T -1127)) +((-3710 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-584 (-584 (-179)))) (-5 *4 (-179)) (-5 *2 (-584 (-855 *4))) (-5 *1 (-1127)) (-5 *3 (-855 *4)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-1127)))) (-3708 (*1 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) (-3835 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) (-3837 (*1 *2 *3 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-179)) (-5 *1 (-1127)))) (-3838 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) (-3840 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-855 (-179))) (-5 *3 (-179)) (-5 *1 (-1127)))) (-3707 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)) (-5 *3 (-179))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3711 ((|#1| $ (-695)) 18 T ELT)) (-3834 (((-695) $) 13 T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3947 (((-870 |#1|) $) 12 T ELT) (($ (-870 |#1|)) 11 T ELT) (((-773) $) 29 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3057 (((-85) $ $) 22 (|has| |#1| (-1014)) ELT))) +(((-1128 |#1|) (-13 (-430 (-870 |#1|)) (-10 -8 (-15 -3711 (|#1| $ (-695))) (-15 -3834 ((-695) $)) (IF (|has| |#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1130)) (T -1128)) +((-3711 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-1128 *2)) (-4 *2 (-1130)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1128 *3)) (-4 *3 (-1130))))) +((-3714 (((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-485)) 92 T ELT)) (-3712 (((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|))) 84 T ELT)) (-3713 (((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|))) 68 T ELT))) +(((-1129 |#1|) (-10 -7 (-15 -3712 ((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -3713 ((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -3714 ((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-485)))) (-299)) (T -1129)) +((-3714 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-4 *5 (-299)) (-5 *2 (-348 (-1086 (-1086 *5)))) (-5 *1 (-1129 *5)) (-5 *3 (-1086 (-1086 *5))))) (-3713 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) (-5 *3 (-1086 (-1086 *4))))) (-3712 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) (-5 *3 (-1086 (-1086 *4)))))) +NIL +(((-1130) (-113)) (T -1130)) NIL (-13) (((-13) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 9 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1130) (-995)) (T -1130)) -NIL -((-3717 (((-85)) 18 T ELT)) (-3714 (((-1185) (-583 |#1|) (-583 |#1|)) 22 T ELT) (((-1185) (-583 |#1|)) 23 T ELT)) (-3719 (((-85) |#1| |#1|) 37 (|has| |#1| (-756)) ELT)) (-3716 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3718 ((|#1| (-583 |#1|)) 38 (|has| |#1| (-756)) ELT) ((|#1| (-583 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3715 (((-2 (|:| -3229 (-583 |#1|)) (|:| -3228 (-583 |#1|)))) 20 T ELT))) -(((-1131 |#1|) (-10 -7 (-15 -3714 ((-1185) (-583 |#1|))) (-15 -3714 ((-1185) (-583 |#1|) (-583 |#1|))) (-15 -3715 ((-2 (|:| -3229 (-583 |#1|)) (|:| -3228 (-583 |#1|))))) (-15 -3716 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3716 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3718 (|#1| (-583 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3717 ((-85))) (IF (|has| |#1| (-756)) (PROGN (-15 -3718 (|#1| (-583 |#1|))) (-15 -3719 ((-85) |#1| |#1|))) |%noBranch|)) (-1013)) (T -1131)) -((-3719 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-756)) (-4 *3 (-1013)))) (-3718 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-756)) (-5 *1 (-1131 *2)))) (-3717 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-1013)))) (-3718 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1131 *2)) (-4 *2 (-1013)))) (-3716 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-85)) (-5 *1 (-1131 *3)))) (-3716 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-1013)))) (-3715 (*1 *2) (-12 (-5 *2 (-2 (|:| -3229 (-583 *3)) (|:| -3228 (-583 *3)))) (-5 *1 (-1131 *3)) (-4 *3 (-1013)))) (-3714 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1185)) (-5 *1 (-1131 *4)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1185)) (-5 *1 (-1131 *4))))) -((-3720 (((-1185) (-583 (-1090)) (-583 (-1090))) 14 T ELT) (((-1185) (-583 (-1090))) 12 T ELT)) (-3722 (((-1185)) 16 T ELT)) (-3721 (((-2 (|:| -3228 (-583 (-1090))) (|:| -3229 (-583 (-1090))))) 20 T ELT))) -(((-1132) (-10 -7 (-15 -3720 ((-1185) (-583 (-1090)))) (-15 -3720 ((-1185) (-583 (-1090)) (-583 (-1090)))) (-15 -3721 ((-2 (|:| -3228 (-583 (-1090))) (|:| -3229 (-583 (-1090)))))) (-15 -3722 ((-1185))))) (T -1132)) -((-3722 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1132)))) (-3721 (*1 *2) (-12 (-5 *2 (-2 (|:| -3228 (-583 (-1090))) (|:| -3229 (-583 (-1090))))) (-5 *1 (-1132)))) (-3720 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1132)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-583 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1132))))) -((-3775 (($ $) 17 T ELT)) (-3723 (((-85) $) 27 T ELT))) -(((-1133 |#1|) (-10 -7 (-15 -3775 (|#1| |#1|)) (-15 -3723 ((-85) |#1|))) (-1134)) (T -1133)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 66 T ELT)) (-3971 (((-348 $) $) 67 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3723 (((-85) $) 68 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3732 (((-348 $) $) 65 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT))) -(((-1134) (-113)) (T -1134)) -((-3723 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-85)))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1134)))) (-3775 (*1 *1 *1) (-4 *1 (-1134))) (-3732 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1134))))) -(-13 (-392) (-10 -8 (-15 -3723 ((-85) $)) (-15 -3971 ((-348 $) $)) (-15 -3775 ($ $)) (-15 -3732 ((-348 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT))) -(((-1135) (-13 (-752) (-604) (-10 -8 (-15 -3726 ($ $ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($) -3952)))) (T -1135)) -((-3726 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3725 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3724 (*1 *1) (-5 *1 (-1135)))) -((-694) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT))) -(((-1136) (-13 (-752) (-604) (-10 -8 (-15 -3726 ($ $ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($) -3952)))) (T -1136)) -((-3726 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3725 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3724 (*1 *1) (-5 *1 (-1136)))) -((-694) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT))) -(((-1137) (-13 (-752) (-604) (-10 -8 (-15 -3726 ($ $ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($) -3952)))) (T -1137)) -((-3726 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3725 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3724 (*1 *1) (-5 *1 (-1137)))) -((-694) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2568 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3136 (((-694)) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2994 (($) NIL T ELT)) (-2531 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2857 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT)) (-3725 (($ $ $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2566 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT))) -(((-1138) (-13 (-752) (-604) (-10 -8 (-15 -3726 ($ $ $)) (-15 -3725 ($ $ $)) (-15 -3724 ($) -3952)))) (T -1138)) -((-3726 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3725 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3724 (*1 *1) (-5 *1 (-1138)))) -((-694) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3129 (((-1169 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3831 (((-1090) $) 10 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2063 (($ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2061 (((-85) $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3771 (($ $ (-484)) NIL T ELT) (($ $ (-484) (-484)) NIL T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) NIL T ELT)) (-3731 (((-1169 |#1| |#2| |#3|) $) NIL T ELT)) (-3728 (((-3 (-1169 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3729 (((-1169 |#1| |#2| |#3|) $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3623 (((-484) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-1169 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-1090))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3156 (((-1169 |#1| |#2| |#3|) $) NIL T ELT) (((-1090) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-1090))) (|has| |#1| (-312))) ELT) (((-350 (-484)) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-484) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3730 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-2279 (((-630 (-1169 |#1| |#2| |#3|)) (-630 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1169 |#1| |#2| |#3|))) (|:| |vec| (-1179 (-1169 |#1| |#2| |#3|)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3727 (((-350 (-857 |#1|)) $ (-484)) NIL (|has| |#1| (-495)) ELT) (((-350 (-857 |#1|)) $ (-484) (-484)) NIL (|has| |#1| (-495)) ELT)) (-2994 (($) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3186 (((-85) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2892 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-796 (-330))) (|has| |#1| (-312))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-796 (-484))) (|has| |#1| (-312))) ELT)) (-3772 (((-484) $) NIL T ELT) (((-484) $ (-484)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 (((-1169 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3445 (((-632 $) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-312))) ELT)) (-3187 (((-85) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3777 (($ $ (-830)) NIL T ELT)) (-3815 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-484)) 18 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-2531 (($ $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2857 (($ $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2280 (((-630 (-1169 |#1| |#2| |#3|)) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1169 |#1| |#2| |#3|))) (|:| |vec| (-1179 (-1169 |#1| |#2| |#3|)))) (-1179 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-1179 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3779 (($ (-484) (-1169 |#1| |#2| |#3|)) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3812 (($ $) 27 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3081 ((-583 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 28 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3446 (($) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-312))) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3128 (($ $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3130 (((-1169 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-484)) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1090) (-1169 |#1| |#2| |#3|)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-455 (-1090) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1090)) (-583 (-1169 |#1| |#2| |#3|))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-455 (-1090) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-249 (-1169 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1169 |#1| |#2| |#3|))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1169 |#1| |#2| |#3|)) (-583 (-1169 |#1| |#2| |#3|))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-484)) NIL T ELT) (($ $ $) NIL (|has| (-484) (-1025)) ELT) (($ $ (-1169 |#1| |#2| |#3|)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-241 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1176 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2995 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2997 (((-1169 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3948 (((-484) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3972 (((-473) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-553 (-473))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-800 (-330)) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-553 (-800 (-330)))) (|has| |#1| (-312))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-553 (-800 (-484)))) (|has| |#1| (-312))) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2891 (($ $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1169 |#1| |#2| |#3|)) NIL T ELT) (($ (-1176 |#2|)) 24 T ELT) (($ (-1090)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-1090))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT) (($ (-350 (-484))) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-484))))) ELT)) (-3677 ((|#1| $ (-484)) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-3773 ((|#1| $) 11 T ELT)) (-3131 (((-1169 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3383 (($ $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2660 (($) 20 T CONST)) (-2666 (($) 15 T CONST)) (-2669 (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1176 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2566 (((-85) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-2684 (((-85) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2685 (((-85) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT) (($ (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 22 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1169 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT) (($ (-1169 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-1139 |#1| |#2| |#3|) (-13 (-1143 |#1| (-1169 |#1| |#2| |#3|)) (-806 $ (-1176 |#2|)) (-10 -8 (-15 -3946 ($ (-1176 |#2|))) (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3812 ($ $ (-1176 |#2|))) |%noBranch|))) (-961) (-1090) |#1|) (T -1139)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))) -((-3958 (((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|)) 23 T ELT))) -(((-1140 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3958 ((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|)))) (-961) (-961) (-1090) (-1090) |#1| |#2|) (T -1140)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1139 *6 *8 *10)) (-5 *1 (-1140 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1090))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3831 (((-1090) $) 129 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3771 (($ $ (-484)) 124 T ELT) (($ $ (-484) (-484)) 123 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 130 T ELT)) (-3492 (($ $) 163 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 146 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3037 (($ $) 145 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3490 (($ $) 162 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 201 T ELT)) (-3494 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 148 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) 23 T CONST)) (-2564 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3727 (((-350 (-857 |#1|)) $ (-484)) 199 (|has| |#1| (-495)) ELT) (((-350 (-857 |#1|)) $ (-484) (-484)) 198 (|has| |#1| (-495)) ELT)) (-2563 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) 94 T ELT)) (-3627 (($) 173 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3772 (((-484) $) 126 T ELT) (((-484) $ (-484)) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 144 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3777 (($ $ (-830)) 127 T ELT)) (-3815 (($ (-1 |#1| (-484)) $) 200 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) 82 T ELT)) (-2893 (($ |#1| (-484)) 81 T ELT) (($ $ (-994) (-484)) 97 T ELT) (($ $ (-583 (-994)) (-583 (-484))) 96 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3942 (($ $) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-1891 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3812 (($ $) 197 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115)) (|has| |#1| (-38 (-350 (-484))))) (-12 (|has| |#1| (-15 -3081 ((-583 (-1090)) |#1|))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-38 (-350 (-484)))))) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 178 (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-484)) 121 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3943 (($ $) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT)) (-1607 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-484)) 131 T ELT) (($ $ $) 107 (|has| (-484) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) 119 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090))) 117 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090) (-694)) 116 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3948 (((-484) $) 84 T ELT)) (-3495 (($ $) 160 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 149 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 150 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) 158 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) 151 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2891 (($ $) 93 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3677 ((|#1| $ (-484)) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-3773 ((|#1| $) 128 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3498 (($ $) 169 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3496 (($ $) 168 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) 156 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 155 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 ((|#1| $ (-484)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 166 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 154 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 153 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) 164 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 152 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1090)) 118 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090))) 114 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090) (-694)) 113 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 143 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-1141 |#1|) (-113) (-961)) (T -1141)) -((-3818 (*1 *1 *2) (-12 (-5 *2 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1141 *3)))) (-3815 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1141 *3)) (-4 *3 (-961)))) (-3727 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-1141 *4)) (-4 *4 (-961)) (-4 *4 (-495)) (-5 *2 (-350 (-857 *4))))) (-3727 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-1141 *4)) (-4 *4 (-961)) (-4 *4 (-495)) (-5 *2 (-350 (-857 *4))))) (-3812 (*1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484)))))) (-3812 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1090)) (-4 *1 (-1141 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1115)) (-4 *3 (-38 (-350 (-484)))))) (-12 (-5 *2 (-1090)) (-4 *1 (-1141 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3081 ((-583 *2) *3))) (|has| *3 (-15 -3812 (*3 *3 *2))) (-4 *3 (-38 (-350 (-484))))))))) -(-13 (-1158 |t#1| (-484)) (-10 -8 (-15 -3818 ($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |t#1|))))) (-15 -3815 ($ (-1 |t#1| (-484)) $)) (IF (|has| |t#1| (-495)) (PROGN (-15 -3727 ((-350 (-857 |t#1|)) $ (-484))) (-15 -3727 ((-350 (-857 |t#1|)) $ (-484) (-484)))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-484)))) (PROGN (-15 -3812 ($ $)) (IF (|has| |t#1| (-15 -3812 (|t#1| |t#1| (-1090)))) (IF (|has| |t#1| (-15 -3081 ((-583 (-1090)) |t#1|))) (-15 -3812 ($ $ (-1090))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1115)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-484))) (-15 -3812 ($ $ (-1090))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1115))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-484)) . T) ((-25) . T) ((-38 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-484)))) ((-66) |has| |#1| (-38 (-350 (-484)))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-484)))) ((-241 (-484) |#1|) . T) ((-241 $ $) |has| (-484) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-654 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-809 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-811 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-886 |#1| (-484) (-994)) . T) ((-832) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-350 (-484)))) ((-963 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1115) |has| |#1| (-38 (-350 (-484)))) ((-1118) |has| |#1| (-38 (-350 (-484)))) ((-1129) . T) ((-1134) |has| |#1| (-312)) ((-1158 |#1| (-484)) . T)) -((-3188 (((-85) $) 12 T ELT)) (-3157 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1090) #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT)) (-3156 ((|#3| $) 14 T ELT) (((-1090) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT))) -(((-1142 |#1| |#2| |#3|) (-10 -7 (-15 -3157 ((-3 (-484) #1="failed") |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3156 ((-350 (-484)) |#1|)) (-15 -3157 ((-3 (-1090) #1#) |#1|)) (-15 -3156 ((-1090) |#1|)) (-15 -3157 ((-3 |#3| #1#) |#1|)) (-15 -3156 (|#3| |#1|)) (-15 -3188 ((-85) |#1|))) (-1143 |#2| |#3|) (-961) (-1172 |#2|)) (T -1142)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3129 ((|#2| $) 266 (-2562 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3831 (((-1090) $) 129 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3771 (($ $ (-484)) 124 T ELT) (($ $ (-484) (-484)) 123 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 130 T ELT)) (-3731 ((|#2| $) 302 T ELT)) (-3728 (((-3 |#2| "failed") $) 298 T ELT)) (-3729 ((|#2| $) 299 T ELT)) (-3492 (($ $) 163 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 146 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 275 (-2562 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-3775 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3037 (($ $) 145 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 272 (-2562 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-1608 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3490 (($ $) 162 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3623 (((-484) $) 284 (-2562 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 201 T ELT)) (-3494 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 148 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 |#2| #2="failed") $) 305 T ELT) (((-3 (-484) #2#) $) 295 (-2562 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-484)) #2#) $) 293 (-2562 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-1090) #2#) $) 277 (-2562 (|has| |#2| (-950 (-1090))) (|has| |#1| (-312))) ELT)) (-3156 ((|#2| $) 306 T ELT) (((-484) $) 294 (-2562 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-350 (-484)) $) 292 (-2562 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-1090) $) 276 (-2562 (|has| |#2| (-950 (-1090))) (|has| |#1| (-312))) ELT)) (-3730 (($ $) 301 T ELT) (($ (-484) $) 300 T ELT)) (-2564 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3959 (($ $) 80 T ELT)) (-2279 (((-630 |#2|) (-630 $)) 254 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) 253 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 252 (-2562 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-630 $)) 251 (-2562 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3727 (((-350 (-857 |#1|)) $ (-484)) 199 (|has| |#1| (-495)) ELT) (((-350 (-857 |#1|)) $ (-484) (-484)) 198 (|has| |#1| (-495)) ELT)) (-2994 (($) 268 (-2562 (|has| |#2| (-483)) (|has| |#1| (-312))) ELT)) (-2563 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-3186 (((-85) $) 282 (-2562 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-2892 (((-85) $) 94 T ELT)) (-3627 (($) 173 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 260 (-2562 (|has| |#2| (-796 (-330))) (|has| |#1| (-312))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 259 (-2562 (|has| |#2| (-796 (-484))) (|has| |#1| (-312))) ELT)) (-3772 (((-484) $) 126 T ELT) (((-484) $ (-484)) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2996 (($ $) 264 (|has| |#1| (-312)) ELT)) (-2998 ((|#2| $) 262 (|has| |#1| (-312)) ELT)) (-3011 (($ $ (-484)) 144 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3445 (((-632 $) $) 296 (-2562 (|has| |#2| (-1066)) (|has| |#1| (-312))) ELT)) (-3187 (((-85) $) 283 (-2562 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-3777 (($ $ (-830)) 127 T ELT)) (-3815 (($ (-1 |#1| (-484)) $) 200 T ELT)) (-1605 (((-3 (-583 $) #3="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) 82 T ELT)) (-2893 (($ |#1| (-484)) 81 T ELT) (($ $ (-994) (-484)) 97 T ELT) (($ $ (-583 (-994)) (-583 (-484))) 96 T ELT)) (-2531 (($ $ $) 291 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-2857 (($ $ $) 290 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT) (($ (-1 |#2| |#2|) $) 244 (|has| |#1| (-312)) ELT)) (-3942 (($ $) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2280 (((-630 |#2|) (-1179 $)) 256 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) 255 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 250 (-2562 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-1179 $)) 249 (-2562 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-1891 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3779 (($ (-484) |#2|) 303 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3812 (($ $) 197 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115)) (|has| |#1| (-38 (-350 (-484))))) (-12 (|has| |#1| (-15 -3081 ((-583 (-1090)) |#1|))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-38 (-350 (-484)))))) ELT)) (-3446 (($) 297 (-2562 (|has| |#2| (-1066)) (|has| |#1| (-312))) CONST)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 178 (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3128 (($ $) 267 (-2562 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3130 ((|#2| $) 270 (-2562 (|has| |#2| (-483)) (|has| |#1| (-312))) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) 273 (-2562 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 274 (-2562 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-3732 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-484)) 121 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3943 (($ $) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1090) |#2|) 243 (-2562 (|has| |#2| (-455 (-1090) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1090)) (-583 |#2|)) 242 (-2562 (|has| |#2| (-455 (-1090) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-583 (-249 |#2|))) 241 (-2562 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-249 |#2|)) 240 (-2562 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ |#2| |#2|) 239 (-2562 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 238 (-2562 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT)) (-1607 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-484)) 131 T ELT) (($ $ $) 107 (|has| (-484) (-1025)) ELT) (($ $ |#2|) 237 (-2562 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-312))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1 |#2| |#2|) (-694)) 246 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-312)) ELT) (($ $) 111 (OR (-2562 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) 109 (OR (-2562 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) 119 (OR (-2562 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090))) 117 (OR (-2562 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1090) (-694)) 116 (OR (-2562 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 115 (OR (-2562 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2995 (($ $) 265 (|has| |#1| (-312)) ELT)) (-2997 ((|#2| $) 263 (|has| |#1| (-312)) ELT)) (-3948 (((-484) $) 84 T ELT)) (-3495 (($ $) 160 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 149 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 150 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) 158 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) 151 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3972 (((-179) $) 281 (-2562 (|has| |#2| (-933)) (|has| |#1| (-312))) ELT) (((-330) $) 280 (-2562 (|has| |#2| (-933)) (|has| |#1| (-312))) ELT) (((-473) $) 279 (-2562 (|has| |#2| (-553 (-473))) (|has| |#1| (-312))) ELT) (((-800 (-330)) $) 258 (-2562 (|has| |#2| (-553 (-800 (-330)))) (|has| |#1| (-312))) ELT) (((-800 (-484)) $) 257 (-2562 (|has| |#2| (-553 (-800 (-484)))) (|has| |#1| (-312))) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) 271 (-2562 (-2562 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#1| (-312))) ELT)) (-2891 (($ $) 93 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 304 T ELT) (($ (-1090)) 278 (-2562 (|has| |#2| (-950 (-1090))) (|has| |#1| (-312))) ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3677 ((|#1| $ (-484)) 79 T ELT)) (-2702 (((-632 $) $) 68 (OR (-2562 (OR (|has| |#2| (-118)) (-2562 (|has| $ (-118)) (|has| |#2| (-821)))) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 40 T CONST)) (-3773 ((|#1| $) 128 T ELT)) (-3131 ((|#2| $) 269 (-2562 (|has| |#2| (-483)) (|has| |#1| (-312))) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3498 (($ $) 169 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3496 (($ $) 168 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) 156 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 155 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 ((|#1| $ (-484)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 166 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 154 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 153 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) 164 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 152 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3383 (($ $) 285 (-2562 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) 248 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 247 (|has| |#1| (-312)) ELT) (($ $) 110 (OR (-2562 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) 108 (OR (-2562 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) 118 (OR (-2562 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090))) 114 (OR (-2562 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1090) (-694)) 113 (OR (-2562 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 112 (OR (-2562 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2566 (((-85) $ $) 289 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-2567 (((-85) $ $) 287 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-2684 (((-85) $ $) 288 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-2685 (((-85) $ $) 286 (-2562 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 261 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 143 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ $ |#2|) 236 (|has| |#1| (-312)) ELT) (($ |#2| $) 235 (|has| |#1| (-312)) ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-1143 |#1| |#2|) (-113) (-961) (-1172 |t#1|)) (T -1143)) -((-3948 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1172 *3)) (-5 *2 (-484)))) (-3779 (*1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *4 (-961)) (-4 *1 (-1143 *4 *3)) (-4 *3 (-1172 *4)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1172 *3)))) (-3730 (*1 *1 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1172 *2)))) (-3730 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1172 *3)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1172 *3)))) (-3728 (*1 *2 *1) (|partial| -12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1172 *3))))) -(-13 (-1141 |t#1|) (-950 |t#2|) (-555 |t#2|) (-10 -8 (-15 -3779 ($ (-484) |t#2|)) (-15 -3948 ((-484) $)) (-15 -3731 (|t#2| $)) (-15 -3730 ($ $)) (-15 -3730 ($ (-484) $)) (-15 -3729 (|t#2| $)) (-15 -3728 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-312)) (-6 (-904 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-484)) . T) ((-25) . T) ((-38 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-312)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-484)))) ((-66) |has| |#1| (-38 (-350 (-484)))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-312)) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-555 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 (-1090)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1090)))) ((-555 |#1|) |has| |#1| (-146)) ((-555 |#2|) . T) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-553 (-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) ((-553 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) ((-553 (-473)) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-473)))) ((-553 (-800 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-330))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-484))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-312)) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-484)))) ((-241 (-484) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-484) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-312) |has| |#1| (-312)) ((-288 |#2|) |has| |#1| (-312)) ((-329 |#2|) |has| |#1| (-312)) ((-343 |#2|) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-484)))) ((-455 (-1090) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1090) |#2|))) ((-455 |#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 |#2|) |has| |#1| (-312)) ((-588 $) . T) ((-590 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-590 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ((-590 |#1|) . T) ((-590 |#2|) |has| |#1| (-312)) ((-590 $) . T) ((-582 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 |#2|) |has| |#1| (-312)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-580 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ((-580 |#2|) |has| |#1| (-312)) ((-654 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 |#2|) |has| |#1| (-312)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-714) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-716) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-718) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-721) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-740) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-755) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-756) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) (-12 (|has| |#1| (-312)) (|has| |#2| (-740)))) ((-759) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) (-12 (|has| |#1| (-312)) (|has| |#2| (-740)))) ((-806 $ (-1090)) OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1090))))) ((-809 (-1090)) OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1090))))) ((-811 (-1090)) OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1090))))) ((-796 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-330)))) ((-796 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-484)))) ((-794 |#2|) |has| |#1| (-312)) ((-821) -12 (|has| |#1| (-312)) (|has| |#2| (-821))) ((-886 |#1| (-484) (-994)) . T) ((-832) |has| |#1| (-312)) ((-904 |#2|) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-350 (-484)))) ((-933) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) ((-950 (-350 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ((-950 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ((-950 (-1090)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1090)))) ((-950 |#2|) . T) ((-963 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-963 |#1|) . T) ((-963 |#2|) |has| |#1| (-312)) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-968 |#1|) . T) ((-968 |#2|) |has| |#1| (-312)) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) -12 (|has| |#1| (-312)) (|has| |#2| (-1066))) ((-1115) |has| |#1| (-38 (-350 (-484)))) ((-1118) |has| |#1| (-38 (-350 (-484)))) ((-1129) . T) ((-1134) |has| |#1| (-312)) ((-1141 |#1|) . T) ((-1158 |#1| (-484)) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 83 T ELT)) (-3129 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3831 (((-1090) $) 102 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3771 (($ $ (-484)) 111 T ELT) (($ $ (-484) (-484)) 114 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 51 T ELT)) (-3731 ((|#2| $) 11 T ELT)) (-3728 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3729 ((|#2| $) 36 T ELT)) (-3492 (($ $) 208 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 184 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) 204 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 180 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3623 (((-484) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 59 T ELT)) (-3494 (($ $) 212 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 188 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-3 (-1090) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1090)))) ELT)) (-3156 ((|#2| $) 158 T ELT) (((-484) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-350 (-484)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-1090) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1090)))) ELT)) (-3730 (($ $) 65 T ELT) (($ (-484) $) 28 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-2279 (((-630 |#2|) (-630 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT)) (-3467 (((-3 $ #1#) $) 90 T ELT)) (-3727 (((-350 (-857 |#1|)) $ (-484)) 126 (|has| |#1| (-495)) ELT) (((-350 (-857 |#1|)) $ (-484) (-484)) 128 (|has| |#1| (-495)) ELT)) (-2994 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-483))) ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3186 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-2892 (((-85) $) 76 T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-796 (-484)))) ELT)) (-3772 (((-484) $) 107 T ELT) (((-484) $ (-484)) 109 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 ((|#2| $) 167 (|has| |#1| (-312)) ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3445 (((-632 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1066))) ELT)) (-3187 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-3777 (($ $ (-830)) 150 T ELT)) (-3815 (($ (-1 |#1| (-484)) $) 146 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-484)) 20 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-2531 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-2857 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-312)) ELT)) (-3942 (($ $) 178 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2280 (((-630 |#2|) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT) (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3779 (($ (-484) |#2|) 10 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 161 (|has| |#1| (-312)) ELT)) (-3812 (($ $) 230 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 235 (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3081 ((-583 (-1090)) |#1|))))) ELT)) (-3446 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1066))) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3128 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3130 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-483))) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-484)) 140 T ELT)) (-3466 (((-3 $ #1#) $ $) 130 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) 176 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1090) |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1090) |#2|))) ELT) (($ $ (-583 (-1090)) (-583 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1090) |#2|))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-484)) 105 T ELT) (($ $ $) 92 (|has| (-484) (-1025)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) 155 (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT)) (-2995 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2997 ((|#2| $) 168 (|has| |#1| (-312)) ELT)) (-3948 (((-484) $) 12 T ELT)) (-3495 (($ $) 214 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 190 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) 210 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 186 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) 206 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) 182 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3972 (((-179) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-933))) ELT) (((-330) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-933))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-553 (-473)))) ELT) (((-800 (-330)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-484))))) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-2891 (($ $) 138 T ELT)) (-3946 (((-772) $) 268 T ELT) (($ (-484)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1090)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1090)))) ELT) (($ (-350 (-484))) 171 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3677 ((|#1| $ (-484)) 87 T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-821))) (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) ELT)) (-3126 (((-694)) 157 T CONST)) (-3773 ((|#1| $) 104 T ELT)) (-3131 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-483))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 220 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 196 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3496 (($ $) 216 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) 192 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 224 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 200 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 ((|#1| $ (-484)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 226 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 202 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) 222 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 198 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) 218 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 194 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3383 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-2660 (($) 13 T CONST)) (-2666 (($) 18 T CONST)) (-2669 (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT)) (-2566 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-2567 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-3056 (((-85) $ $) 74 T ELT)) (-2684 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-2685 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 165 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3839 (($ $ $) 78 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 86 T ELT) (($ $ (-484)) 162 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 174 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-312)) ELT) (($ |#2| $) 163 (|has| |#1| (-312)) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-1144 |#1| |#2|) (-1143 |#1| |#2|) (-961) (-1172 |#1|)) (T -1144)) -NIL -((-3734 (((-2 (|:| |contp| (-484)) (|:| -1779 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85)) 13 T ELT)) (-3733 (((-348 |#1|) |#1|) 26 T ELT)) (-3732 (((-348 |#1|) |#1|) 24 T ELT))) -(((-1145 |#1|) (-10 -7 (-15 -3732 ((-348 |#1|) |#1|)) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3734 ((-2 (|:| |contp| (-484)) (|:| -1779 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85)))) (-1155 (-484))) (T -1145)) -((-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1779 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-484))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-484))))) (-3732 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-484)))))) -((-2568 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3736 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3958 (((-1069 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-755)) ELT)) (-3229 ((|#1| $) 15 T ELT)) (-3231 ((|#1| $) 12 T ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3227 (((-484) $) 19 T ELT)) (-3228 ((|#1| $) 18 T ELT)) (-3230 ((|#1| $) 13 T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3735 (((-85) $) 17 T ELT)) (-3963 (((-1069 |#1|) $) 41 (|has| |#1| (-755)) ELT) (((-1069 |#1|) (-583 $)) 40 (|has| |#1| (-755)) ELT)) (-3972 (($ |#1|) 26 T ELT)) (-3946 (($ (-1001 |#1|)) 25 T ELT) (((-772) $) 37 (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3737 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3232 (($ $ (-484)) 14 T ELT)) (-3056 (((-85) $ $) 30 (|has| |#1| (-1013)) ELT))) -(((-1146 |#1|) (-13 (-1006 |#1|) (-10 -8 (-15 -3737 ($ |#1|)) (-15 -3736 ($ |#1|)) (-15 -3946 ($ (-1001 |#1|))) (-15 -3735 ((-85) $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-1007 |#1| (-1069 |#1|))) |%noBranch|))) (-1129)) (T -1146)) -((-3737 (*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1129)))) (-3736 (*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1129)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1129)) (-5 *1 (-1146 *3)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1146 *3)) (-4 *3 (-1129))))) -((-3958 (((-1069 |#2|) (-1 |#2| |#1|) (-1146 |#1|)) 23 (|has| |#1| (-755)) ELT) (((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|)) 17 T ELT))) -(((-1147 |#1| |#2|) (-10 -7 (-15 -3958 ((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) (IF (|has| |#1| (-755)) (-15 -3958 ((-1069 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) |%noBranch|)) (-1129) (-1129)) (T -1147)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-755)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1069 *6)) (-5 *1 (-1147 *5 *6)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1146 *6)) (-5 *1 (-1147 *5 *6))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3767 (((-1179 |#2|) $ (-694)) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3765 (($ (-1085 |#2|)) NIL T ELT)) (-3083 (((-1085 $) $ (-994)) NIL T ELT) (((-1085 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3755 (($ $ $) NIL (|has| |#2| (-495)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3775 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3761 (($ $ (-694)) NIL T ELT)) (-3760 (($ $ (-694)) NIL T ELT)) (-3751 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-392)) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-994) $) NIL T ELT)) (-3756 (($ $ $ (-994)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2564 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-2563 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $ $) NIL T ELT)) (-3753 (($ $ $) NIL (|has| |#2| (-495)) ELT)) (-3752 (((-2 (|:| -3954 |#2|) (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#2| (-312)) ELT)) (-3503 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-994)) NIL (|has| |#2| (-392)) ELT)) (-2818 (((-583 $) $) NIL T ELT)) (-3723 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1624 (($ $ |#2| (-694) $) NIL T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-994) (-796 (-330))) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-3772 (((-694) $ $) NIL (|has| |#2| (-495)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3445 (((-632 $) $) NIL (|has| |#2| (-1066)) ELT)) (-3084 (($ (-1085 |#2|) (-994)) NIL T ELT) (($ (-1085 $) (-994)) NIL T ELT)) (-3777 (($ $ (-694)) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#2| (-694)) 18 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1625 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3766 (((-1085 |#2|) $) NIL T ELT)) (-3082 (((-3 (-994) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3812 (($ $) NIL (|has| |#2| (-38 (-350 (-484)))) ELT)) (-3446 (($) NIL (|has| |#2| (-1066)) CONST)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 ((|#2| $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-392)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3738 (($ $ (-694) |#2| $) NIL T ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#2| (-821)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3466 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-3768 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#2|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#2|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1607 (((-694) $) NIL (|has| |#2| (-312)) ELT)) (-3800 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#2| (-495)) ELT) ((|#2| (-350 $) |#2|) NIL (|has| |#2| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#2| (-495)) ELT)) (-3764 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3757 (($ $ (-994)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3758 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3948 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3972 (((-800 (-330)) $) NIL (-12 (|has| (-994) (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2817 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-994)) NIL (|has| |#2| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3754 (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#2| (-495)) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-994)) NIL T ELT) (($ (-1176 |#1|)) 20 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3817 (((-583 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2702 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3126 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) 14 T CONST)) (-2669 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-1148 |#1| |#2|) (-13 (-1155 |#2|) (-555 (-1176 |#1|)) (-10 -8 (-15 -3738 ($ $ (-694) |#2| $)))) (-1090) (-961)) (T -1148)) -((-3738 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1148 *4 *3)) (-14 *4 (-1090)) (-4 *3 (-961))))) -((-3958 (((-1148 |#3| |#4|) (-1 |#4| |#2|) (-1148 |#1| |#2|)) 15 T ELT))) -(((-1149 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 ((-1148 |#3| |#4|) (-1 |#4| |#2|) (-1148 |#1| |#2|)))) (-1090) (-961) (-1090) (-961)) (T -1149)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1148 *5 *6)) (-14 *5 (-1090)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1148 *7 *8)) (-5 *1 (-1149 *5 *6 *7 *8)) (-14 *7 (-1090))))) -((-3741 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3739 ((|#1| |#3|) 13 T ELT)) (-3740 ((|#3| |#3|) 19 T ELT))) -(((-1150 |#1| |#2| |#3|) (-10 -7 (-15 -3739 (|#1| |#3|)) (-15 -3740 (|#3| |#3|)) (-15 -3741 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-495) (-904 |#1|) (-1155 |#2|)) (T -1150)) -((-3741 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1150 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-3740 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-1150 *3 *4 *2)) (-4 *2 (-1155 *4)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-1150 *2 *4 *3)) (-4 *3 (-1155 *4))))) -((-3743 (((-3 |#2| #1="failed") |#2| (-694) |#1|) 35 T ELT)) (-3742 (((-3 |#2| #1#) |#2| (-694)) 36 T ELT)) (-3745 (((-3 (-2 (|:| -3138 |#2|) (|:| -3137 |#2|)) #1#) |#2|) 50 T ELT)) (-3746 (((-583 |#2|) |#2|) 52 T ELT)) (-3744 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) -(((-1151 |#1| |#2|) (-10 -7 (-15 -3742 ((-3 |#2| #1="failed") |#2| (-694))) (-15 -3743 ((-3 |#2| #1#) |#2| (-694) |#1|)) (-15 -3744 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3745 ((-3 (-2 (|:| -3138 |#2|) (|:| -3137 |#2|)) #1#) |#2|)) (-15 -3746 ((-583 |#2|) |#2|))) (-13 (-495) (-120)) (-1155 |#1|)) (T -1151)) -((-3746 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-583 *3)) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1155 *4)))) (-3745 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| -3138 *3) (|:| -3137 *3))) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1155 *4)))) (-3744 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1155 *3)))) (-3743 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4)))) (-3742 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4))))) -((-3747 (((-3 (-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) "failed") |#2| |#2|) 30 T ELT))) -(((-1152 |#1| |#2|) (-10 -7 (-15 -3747 ((-3 (-2 (|:| -1972 |#2|) (|:| -2902 |#2|)) "failed") |#2| |#2|))) (-495) (-1155 |#1|)) (T -1152)) -((-3747 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1155 *4))))) -((-3748 ((|#2| |#2| |#2|) 22 T ELT)) (-3749 ((|#2| |#2| |#2|) 36 T ELT)) (-3750 ((|#2| |#2| |#2| (-694) (-694)) 44 T ELT))) -(((-1153 |#1| |#2|) (-10 -7 (-15 -3748 (|#2| |#2| |#2|)) (-15 -3749 (|#2| |#2| |#2|)) (-15 -3750 (|#2| |#2| |#2| (-694) (-694)))) (-961) (-1155 |#1|)) (T -1153)) -((-3750 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-1155 *4)))) (-3749 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3)))) (-3748 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3))))) -((-3767 (((-1179 |#2|) $ (-694)) 129 T ELT)) (-3081 (((-583 (-994)) $) 16 T ELT)) (-3765 (($ (-1085 |#2|)) 80 T ELT)) (-2819 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) 21 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 217 T ELT)) (-3775 (($ $) 207 T ELT)) (-3971 (((-348 $) $) 205 T ELT)) (-2704 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 95 T ELT)) (-3761 (($ $ (-694)) 84 T ELT)) (-3760 (($ $ (-694)) 86 T ELT)) (-3751 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3157 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3156 ((|#2| $) 130 T ELT) (((-350 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) (((-994) $) NIL T ELT)) (-3753 (($ $ $) 182 T ELT)) (-3752 (((-2 (|:| -3954 |#2|) (|:| -1972 $) (|:| -2902 $)) $ $) 185 T ELT)) (-3772 (((-694) $ $) 202 T ELT)) (-3445 (((-632 $) $) 149 T ELT)) (-2893 (($ |#2| (-694)) NIL T ELT) (($ $ (-994) (-694)) 59 T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-994)) 54 T ELT) (((-583 (-694)) $ (-583 (-994))) 55 T ELT)) (-3766 (((-1085 |#2|) $) 72 T ELT)) (-3082 (((-3 (-994) #1#) $) 52 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) 83 T ELT)) (-3812 (($ $) 232 T ELT)) (-3446 (($) 134 T CONST)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 214 T ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) 101 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 99 T ELT)) (-3732 (((-348 $) $) 120 T ELT)) (-3768 (($ $ (-583 (-249 $))) 51 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#2|) 39 T ELT) (($ $ (-583 (-994)) (-583 |#2|)) 36 T ELT) (($ $ (-994) $) 32 T ELT) (($ $ (-583 (-994)) (-583 $)) 30 T ELT)) (-1607 (((-694) $) 220 T ELT)) (-3800 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) 176 T ELT) ((|#2| (-350 $) |#2|) 219 T ELT) (((-350 $) $ (-350 $)) 201 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 225 T ELT)) (-3758 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT)) (-3948 (((-694) $) NIL T ELT) (((-694) $ (-994)) 17 T ELT) (((-583 (-694)) $ (-583 (-994))) 23 T ELT)) (-2817 ((|#2| $) NIL T ELT) (($ $ (-994)) 151 T ELT)) (-3754 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-350 $) #1#) (-350 $) $) 189 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-994)) 64 T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT))) -(((-1154 |#1| |#2|) (-10 -7 (-15 -3946 (|#1| |#1|)) (-15 -2708 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|))) (-15 -3758 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3758 (|#1| |#1| (-1090) (-694))) (-15 -3758 (|#1| |#1| (-583 (-1090)))) (-15 -3758 (|#1| |#1| (-1090))) (-15 -3971 ((-348 |#1|) |#1|)) (-15 -3775 (|#1| |#1|)) (-15 -3946 (|#1| (-350 (-484)))) (-15 -3446 (|#1|) -3952) (-15 -3445 ((-632 |#1|) |#1|)) (-15 -3800 ((-350 |#1|) |#1| (-350 |#1|))) (-15 -1607 ((-694) |#1|)) (-15 -2879 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -3812 (|#1| |#1|)) (-15 -3800 (|#2| (-350 |#1|) |#2|)) (-15 -3751 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3752 ((-2 (|:| -3954 |#2|) (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| |#1|)) (-15 -3753 (|#1| |#1| |#1|)) (-15 -3754 ((-3 (-350 |#1|) #1="failed") (-350 |#1|) |#1|)) (-15 -3754 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3772 ((-694) |#1| |#1|)) (-15 -3800 ((-350 |#1|) (-350 |#1|) (-350 |#1|))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3760 (|#1| |#1| (-694))) (-15 -3761 (|#1| |#1| (-694))) (-15 -3762 ((-2 (|:| -1972 |#1|) (|:| -2902 |#1|)) |#1| (-694))) (-15 -3765 (|#1| (-1085 |#2|))) (-15 -3766 ((-1085 |#2|) |#1|)) (-15 -3767 ((-1179 |#2|) |#1| (-694))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3758 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3758 (|#1| |#1| (-694))) (-15 -3758 (|#1| |#1|)) (-15 -3800 (|#1| |#1| |#1|)) (-15 -3800 (|#2| |#1| |#2|)) (-15 -3732 ((-348 |#1|) |#1|)) (-15 -2707 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2706 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2705 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2704 ((-3 (-583 (-1085 |#1|)) #1#) (-583 (-1085 |#1|)) (-1085 |#1|))) (-15 -2817 (|#1| |#1| (-994))) (-15 -3081 ((-583 (-994)) |#1|)) (-15 -2819 ((-694) |#1| (-583 (-994)))) (-15 -2819 ((-694) |#1|)) (-15 -2893 (|#1| |#1| (-583 (-994)) (-583 (-694)))) (-15 -2893 (|#1| |#1| (-994) (-694))) (-15 -2820 ((-583 (-694)) |#1| (-583 (-994)))) (-15 -2820 ((-694) |#1| (-994))) (-15 -3082 ((-3 (-994) #1#) |#1|)) (-15 -3948 ((-583 (-694)) |#1| (-583 (-994)))) (-15 -3948 ((-694) |#1| (-994))) (-15 -3946 (|#1| (-994))) (-15 -3157 ((-3 (-994) #1#) |#1|)) (-15 -3156 ((-994) |#1|)) (-15 -3768 (|#1| |#1| (-583 (-994)) (-583 |#1|))) (-15 -3768 (|#1| |#1| (-994) |#1|)) (-15 -3768 (|#1| |#1| (-583 (-994)) (-583 |#2|))) (-15 -3768 (|#1| |#1| (-994) |#2|)) (-15 -3768 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3768 (|#1| |#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| (-249 |#1|))) (-15 -3768 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3948 ((-694) |#1|)) (-15 -2893 (|#1| |#2| (-694))) (-15 -3157 ((-3 (-484) #1#) |#1|)) (-15 -3156 ((-484) |#1|)) (-15 -3157 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3156 ((-350 (-484)) |#1|)) (-15 -3156 (|#2| |#1|)) (-15 -3157 ((-3 |#2| #1#) |#1|)) (-15 -3946 (|#1| |#2|)) (-15 -2820 ((-694) |#1|)) (-15 -2817 (|#2| |#1|)) (-15 -3758 (|#1| |#1| (-994))) (-15 -3758 (|#1| |#1| (-583 (-994)))) (-15 -3758 (|#1| |#1| (-994) (-694))) (-15 -3758 (|#1| |#1| (-583 (-994)) (-583 (-694)))) (-15 -3946 (|#1| (-484))) (-15 -3946 ((-772) |#1|))) (-1155 |#2|) (-961)) (T -1154)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3767 (((-1179 |#1|) $ (-694)) 271 T ELT)) (-3081 (((-583 (-994)) $) 123 T ELT)) (-3765 (($ (-1085 |#1|)) 269 T ELT)) (-3083 (((-1085 $) $ (-994)) 138 T ELT) (((-1085 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2819 (((-694) $) 125 T ELT) (((-694) $ (-583 (-994))) 124 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3755 (($ $ $) 256 (|has| |#1| (-495)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 113 (|has| |#1| (-821)) ELT)) (-3775 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3971 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 116 (|has| |#1| (-821)) ELT)) (-1608 (((-85) $ $) 241 (|has| |#1| (-312)) ELT)) (-3761 (($ $ (-694)) 264 T ELT)) (-3760 (($ $ (-694)) 263 T ELT)) (-3751 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 251 (|has| |#1| (-392)) ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-484)) #2#) $) 178 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #2#) $) 153 T ELT)) (-3156 ((|#1| $) 180 T ELT) (((-350 (-484)) $) 179 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) (((-994) $) 154 T ELT)) (-3756 (($ $ $ (-994)) 121 (|has| |#1| (-146)) ELT) ((|#1| $ $) 259 (|has| |#1| (-146)) ELT)) (-2564 (($ $ $) 245 (|has| |#1| (-312)) ELT)) (-3959 (($ $) 171 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 244 (|has| |#1| (-312)) ELT)) (-3759 (($ $ $) 262 T ELT)) (-3753 (($ $ $) 253 (|has| |#1| (-495)) ELT)) (-3752 (((-2 (|:| -3954 |#1|) (|:| -1972 $) (|:| -2902 $)) $ $) 252 (|has| |#1| (-495)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 239 (|has| |#1| (-312)) ELT)) (-3503 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ (-994)) 118 (|has| |#1| (-392)) ELT)) (-2818 (((-583 $) $) 122 T ELT)) (-3723 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-694) $) 189 T ELT)) (-2796 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 97 (-12 (|has| (-994) (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3772 (((-694) $ $) 257 (|has| |#1| (-495)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3445 (((-632 $) $) 237 (|has| |#1| (-1066)) ELT)) (-3084 (($ (-1085 |#1|) (-994)) 130 T ELT) (($ (-1085 $) (-994)) 129 T ELT)) (-3777 (($ $ (-694)) 268 T ELT)) (-1605 (((-3 (-583 $) #3="failed") (-583 $) $) 248 (|has| |#1| (-312)) ELT)) (-2821 (((-583 $) $) 139 T ELT)) (-3937 (((-85) $) 169 T ELT)) (-2893 (($ |#1| (-694)) 170 T ELT) (($ $ (-994) (-694)) 132 T ELT) (($ $ (-583 (-994)) (-583 (-694))) 131 T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $ (-994)) 133 T ELT) (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 266 T ELT)) (-2820 (((-694) $) 187 T ELT) (((-694) $ (-994)) 135 T ELT) (((-583 (-694)) $ (-583 (-994))) 134 T ELT)) (-1625 (($ (-1 (-694) (-694)) $) 188 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3766 (((-1085 |#1|) $) 270 T ELT)) (-3082 (((-3 (-994) #4="failed") $) 136 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 145 T ELT) (((-630 |#1|) (-1179 $)) 144 T ELT)) (-2894 (($ $) 166 T ELT)) (-3174 ((|#1| $) 165 T ELT)) (-1891 (($ (-583 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3762 (((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694)) 265 T ELT)) (-2823 (((-3 (-583 $) #4#) $) 127 T ELT)) (-2822 (((-3 (-583 $) #4#) $) 128 T ELT)) (-2824 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #4#) $) 126 T ELT)) (-3812 (($ $) 249 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3446 (($) 236 (|has| |#1| (-1066)) CONST)) (-3243 (((-1033) $) 12 T ELT)) (-1797 (((-85) $) 183 T ELT)) (-1796 ((|#1| $) 184 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 108 (|has| |#1| (-392)) ELT)) (-3144 (($ (-583 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2705 (((-348 (-1085 $)) (-1085 $)) 115 (|has| |#1| (-821)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 114 (|has| |#1| (-821)) ELT)) (-3732 (((-348 $) $) 112 (|has| |#1| (-821)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 247 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 246 (|has| |#1| (-312)) ELT)) (-3466 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 240 (|has| |#1| (-312)) ELT)) (-3768 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ (-994) |#1|) 158 T ELT) (($ $ (-583 (-994)) (-583 |#1|)) 157 T ELT) (($ $ (-994) $) 156 T ELT) (($ $ (-583 (-994)) (-583 $)) 155 T ELT)) (-1607 (((-694) $) 242 (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ |#1|) 281 T ELT) (($ $ $) 280 T ELT) (((-350 $) (-350 $) (-350 $)) 258 (|has| |#1| (-495)) ELT) ((|#1| (-350 $) |#1|) 250 (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) 238 (|has| |#1| (-495)) ELT)) (-3764 (((-3 $ "failed") $ (-694)) 267 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 243 (|has| |#1| (-312)) ELT)) (-3757 (($ $ (-994)) 120 (|has| |#1| (-146)) ELT) ((|#1| $) 260 (|has| |#1| (-146)) ELT)) (-3758 (($ $ (-583 (-994)) (-583 (-694))) 52 T ELT) (($ $ (-994) (-694)) 51 T ELT) (($ $ (-583 (-994))) 50 T ELT) (($ $ (-994)) 48 T ELT) (($ $) 279 T ELT) (($ $ (-694)) 277 T ELT) (($ $ (-1 |#1| |#1|)) 275 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 274 T ELT) (($ $ (-1 |#1| |#1|) $) 261 T ELT) (($ $ (-1090)) 235 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 233 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 232 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 231 (|has| |#1| (-811 (-1090))) ELT)) (-3948 (((-694) $) 167 T ELT) (((-694) $ (-994)) 143 T ELT) (((-583 (-694)) $ (-583 (-994))) 142 T ELT)) (-3972 (((-800 (-330)) $) 95 (-12 (|has| (-994) (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2817 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ (-994)) 119 (|has| |#1| (-392)) ELT)) (-2703 (((-3 (-1179 $) #1#) (-630 $)) 117 (-2562 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3754 (((-3 $ "failed") $ $) 255 (|has| |#1| (-495)) ELT) (((-3 (-350 $) "failed") (-350 $) $) 254 (|has| |#1| (-495)) ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ (-994)) 152 T ELT) (($ (-350 (-484))) 91 (OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ELT) (($ $) 98 (|has| |#1| (-495)) ELT)) (-3817 (((-583 |#1|) $) 185 T ELT)) (-3677 ((|#1| $ (-694)) 172 T ELT) (($ $ (-994) (-694)) 141 T ELT) (($ $ (-583 (-994)) (-583 (-694))) 140 T ELT)) (-2702 (((-632 $) $) 92 (OR (-2562 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1623 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-583 (-994)) (-583 (-694))) 55 T ELT) (($ $ (-994) (-694)) 54 T ELT) (($ $ (-583 (-994))) 53 T ELT) (($ $ (-994)) 49 T ELT) (($ $) 278 T ELT) (($ $ (-694)) 276 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 272 T ELT) (($ $ (-1090)) 234 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 230 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 229 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 228 (|has| |#1| (-811 (-1090))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 175 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) 174 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) -(((-1155 |#1|) (-113) (-961)) (T -1155)) -((-3767 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1155 *4)) (-4 *4 (-961)) (-5 *2 (-1179 *4)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-961)) (-5 *2 (-1085 *3)))) (-3765 (*1 *1 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-961)) (-4 *1 (-1155 *3)))) (-3777 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961)))) (-3764 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961)))) (-3763 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-1155 *3)))) (-3762 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-1155 *4)))) (-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961)))) (-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961)))) (-3759 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)))) (-3758 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-961)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-146)))) (-3756 (*1 *2 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-146)))) (-3800 (*1 *2 *2 *2) (-12 (-5 *2 (-350 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-961)) (-4 *3 (-495)))) (-3772 (*1 *2 *1 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-961)) (-4 *3 (-495)) (-5 *2 (-694)))) (-3755 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-3754 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-3754 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-961)) (-4 *3 (-495)))) (-3753 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-3752 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3954 *3) (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-1155 *3)))) (-3751 (*1 *2 *1 *1) (-12 (-4 *3 (-392)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1155 *3)))) (-3800 (*1 *2 *3 *2) (-12 (-5 *3 (-350 *1)) (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-3812 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484))))))) -(-13 (-861 |t#1| (-694) (-994)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3767 ((-1179 |t#1|) $ (-694))) (-15 -3766 ((-1085 |t#1|) $)) (-15 -3765 ($ (-1085 |t#1|))) (-15 -3777 ($ $ (-694))) (-15 -3764 ((-3 $ "failed") $ (-694))) (-15 -3763 ((-2 (|:| -1972 $) (|:| -2902 $)) $ $)) (-15 -3762 ((-2 (|:| -1972 $) (|:| -2902 $)) $ (-694))) (-15 -3761 ($ $ (-694))) (-15 -3760 ($ $ (-694))) (-15 -3759 ($ $ $)) (-15 -3758 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1066)) (-6 (-1066)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3757 (|t#1| $)) (-15 -3756 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-6 (-241 (-350 $) (-350 $))) (-15 -3800 ((-350 $) (-350 $) (-350 $))) (-15 -3772 ((-694) $ $)) (-15 -3755 ($ $ $)) (-15 -3754 ((-3 $ "failed") $ $)) (-15 -3754 ((-3 (-350 $) "failed") (-350 $) $)) (-15 -3753 ($ $ $)) (-15 -3752 ((-2 (|:| -3954 |t#1|) (|:| -1972 $) (|:| -2902 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (-15 -3751 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-258)) (-6 -3991) (-15 -3800 (|t#1| (-350 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-484)))) (-15 -3812 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-694)) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 (-994)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| (-994) (-553 (-473)))) ((-553 (-800 (-330))) -12 (|has| |#1| (-553 (-800 (-330)))) (|has| (-994) (-553 (-800 (-330))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| (-994) (-553 (-800 (-484))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-350 $) (-350 $)) |has| |#1| (-495)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 $) . T) ((-277 |#1| (-694)) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-821)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-455 (-994) |#1|) . T) ((-455 (-994) $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-994)) . T) ((-806 $ (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-809 (-994)) . T) ((-809 (-1090)) |has| |#1| (-809 (-1090))) ((-811 (-994)) . T) ((-811 (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-796 (-330)) -12 (|has| |#1| (-796 (-330))) (|has| (-994) (-796 (-330)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| (-994) (-796 (-484)))) ((-861 |#1| (-694) (-994)) . T) ((-821) |has| |#1| (-821)) ((-832) |has| |#1| (-312)) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-994)) . T) ((-950 |#1|) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) |has| |#1| (-1066)) ((-1129) . T) ((-1134) |has| |#1| (-821))) -((-3958 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) -(((-1156 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-1155 |#1|) (-961) (-1155 |#3|)) (T -1156)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1155 *6)) (-5 *1 (-1156 *5 *4 *6 *2)) (-4 *4 (-1155 *5))))) -((-3081 (((-583 (-994)) $) 34 T ELT)) (-3959 (($ $) 31 T ELT)) (-2893 (($ |#2| |#3|) NIL T ELT) (($ $ (-994) |#3|) 28 T ELT) (($ $ (-583 (-994)) (-583 |#3|)) 27 T ELT)) (-2894 (($ $) 14 T ELT)) (-3174 ((|#2| $) 12 T ELT)) (-3948 ((|#3| $) 10 T ELT))) -(((-1157 |#1| |#2| |#3|) (-10 -7 (-15 -3081 ((-583 (-994)) |#1|)) (-15 -2893 (|#1| |#1| (-583 (-994)) (-583 |#3|))) (-15 -2893 (|#1| |#1| (-994) |#3|)) (-15 -3959 (|#1| |#1|)) (-15 -2893 (|#1| |#2| |#3|)) (-15 -3948 (|#3| |#1|)) (-15 -2894 (|#1| |#1|)) (-15 -3174 (|#2| |#1|))) (-1158 |#2| |#3|) (-961) (-716)) (T -1157)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3831 (((-1090) $) 129 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3771 (($ $ |#2|) 124 T ELT) (($ $ |#2| |#2|) 123 T ELT)) (-3774 (((-1069 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 130 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2892 (((-85) $) 94 T ELT)) (-3772 ((|#2| $) 126 T ELT) ((|#2| $ |#2|) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3777 (($ $ (-830)) 127 T ELT)) (-3937 (((-85) $) 82 T ELT)) (-2893 (($ |#1| |#2|) 81 T ELT) (($ $ (-994) |#2|) 97 T ELT) (($ $ (-583 (-994)) (-583 |#2|)) 96 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3769 (($ $ |#2|) 121 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3800 ((|#1| $ |#2|) 131 T ELT) (($ $ $) 107 (|has| |#2| (-1025)) ELT)) (-3758 (($ $ (-1090)) 119 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1090))) 117 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1090) (-694)) 116 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3948 ((|#2| $) 84 T ELT)) (-2891 (($ $) 93 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3677 ((|#1| $ |#2|) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-3773 ((|#1| $) 128 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3770 ((|#1| $ |#2|) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1090)) 118 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1090))) 114 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1090) (-694)) 113 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-1158 |#1| |#2|) (-113) (-961) (-716)) (T -1158)) -((-3774 (*1 *2 *1) (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1069 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1090)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3777 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3772 (*1 *2 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3771 (*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3771 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3770 (*1 *2 *1 *3) (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-716)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3946 (*2 (-1090)))) (-4 *2 (-961)))) (-3769 (*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3768 (*1 *2 *1 *3) (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1069 *3))))) -(-13 (-886 |t#1| |t#2| (-994)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3774 ((-1069 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3831 ((-1090) $)) (-15 -3773 (|t#1| $)) (-15 -3777 ($ $ (-830))) (-15 -3772 (|t#2| $)) (-15 -3772 (|t#2| $ |t#2|)) (-15 -3771 ($ $ |t#2|)) (-15 -3771 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3946 (|t#1| (-1090)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3770 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3769 ($ $ |t#2|)) (IF (|has| |t#2| (-1025)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-809 (-1090))) (-6 (-809 (-1090))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3768 ((-1069 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1025)) ((-246) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-806 $ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-809 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-811 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-886 |#1| |#2| (-994)) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-3775 ((|#2| |#2|) 12 T ELT)) (-3971 (((-348 |#2|) |#2|) 14 T ELT)) (-3776 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-484))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-484)))) 30 T ELT))) -(((-1159 |#1| |#2|) (-10 -7 (-15 -3971 ((-348 |#2|) |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -3776 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-484))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-484)))))) (-495) (-13 (-1155 |#1|) (-495) (-10 -8 (-15 -3144 ($ $ $))))) (T -1159)) -((-3776 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-484)))) (-4 *4 (-13 (-1155 *3) (-495) (-10 -8 (-15 -3144 ($ $ $))))) (-4 *3 (-495)) (-5 *1 (-1159 *3 *4)))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-1159 *3 *2)) (-4 *2 (-13 (-1155 *3) (-495) (-10 -8 (-15 -3144 ($ $ $))))))) (-3971 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-348 *3)) (-5 *1 (-1159 *4 *3)) (-4 *3 (-13 (-1155 *4) (-495) (-10 -8 (-15 -3144 ($ $ $)))))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3831 (((-1090) $) 11 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3771 (($ $ (-350 (-484))) NIL T ELT) (($ $ (-350 (-484)) (-350 (-484))) NIL T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3818 (($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-1139 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1169 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3156 (((-1139 |#1| |#2| |#3|) $) NIL T ELT) (((-1169 |#1| |#2| |#3|) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3781 (((-350 (-484)) $) 68 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (($ (-350 (-484)) (-1139 |#1| |#2| |#3|)) NIL T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3772 (((-350 (-484)) $) NIL T ELT) (((-350 (-484)) $ (-350 (-484))) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3777 (($ $ (-830)) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-350 (-484))) 30 T ELT) (($ $ (-994) (-350 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-350 (-484)))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (((-1139 |#1| |#2| |#3|) $) 71 T ELT)) (-3778 (((-3 (-1139 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3779 (((-1139 |#1| |#2| |#3|) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3812 (($ $) 39 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3081 ((-583 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 40 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-350 (-484))) NIL T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-350 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-1176 |#2|)) 38 T ELT)) (-3948 (((-350 (-484)) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2891 (($ $) NIL T ELT)) (-3946 (((-772) $) 107 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1139 |#1| |#2| |#3|)) 16 T ELT) (($ (-1169 |#1| |#2| |#3|)) 17 T ELT) (($ (-1176 |#2|)) 36 T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3677 ((|#1| $ (-350 (-484))) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3773 ((|#1| $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 ((|#1| $ (-350 (-484))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2660 (($) 32 T CONST)) (-2666 (($) 26 T CONST)) (-2669 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-1176 |#2|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 34 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-1160 |#1| |#2| |#3|) (-13 (-1164 |#1| (-1139 |#1| |#2| |#3|)) (-806 $ (-1176 |#2|)) (-950 (-1169 |#1| |#2| |#3|)) (-555 (-1176 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3812 ($ $ (-1176 |#2|))) |%noBranch|))) (-961) (-1090) |#1|) (T -1160)) -((-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))) -((-3958 (((-1160 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1160 |#1| |#3| |#5|)) 24 T ELT))) -(((-1161 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3958 ((-1160 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1160 |#1| |#3| |#5|)))) (-961) (-961) (-1090) (-1090) |#1| |#2|) (T -1161)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1160 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1160 *6 *8 *10)) (-5 *1 (-1161 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1090))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3831 (((-1090) $) 129 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3771 (($ $ (-350 (-484))) 124 T ELT) (($ $ (-350 (-484)) (-350 (-484))) 123 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|))) $) 130 T ELT)) (-3492 (($ $) 163 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 146 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3037 (($ $) 145 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3490 (($ $) 162 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3818 (($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|)))) 199 T ELT)) (-3494 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 148 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) 23 T CONST)) (-2564 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) 94 T ELT)) (-3627 (($) 173 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3772 (((-350 (-484)) $) 126 T ELT) (((-350 (-484)) $ (-350 (-484))) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 144 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3777 (($ $ (-830)) 127 T ELT) (($ $ (-350 (-484))) 198 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) 82 T ELT)) (-2893 (($ |#1| (-350 (-484))) 81 T ELT) (($ $ (-994) (-350 (-484))) 97 T ELT) (($ $ (-583 (-994)) (-583 (-350 (-484)))) 96 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3942 (($ $) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-1891 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3812 (($ $) 197 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115)) (|has| |#1| (-38 (-350 (-484))))) (-12 (|has| |#1| (-15 -3081 ((-583 (-1090)) |#1|))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-38 (-350 (-484)))))) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 178 (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-350 (-484))) 121 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3943 (($ $) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) ELT)) (-1607 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-350 (-484))) 131 T ELT) (($ $ $) 107 (|has| (-350 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) 119 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) 117 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) 116 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-3948 (((-350 (-484)) $) 84 T ELT)) (-3495 (($ $) 160 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 149 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 150 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) 158 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) 151 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2891 (($ $) 93 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3677 ((|#1| $ (-350 (-484))) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-3773 ((|#1| $) 128 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3498 (($ $) 169 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3496 (($ $) 168 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) 156 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 155 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 ((|#1| $ (-350 (-484))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 166 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 154 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 153 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) 164 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 152 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1090)) 118 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) 114 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) 113 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 143 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-1162 |#1|) (-113) (-961)) (T -1162)) -((-3818 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1162 *4)))) (-3777 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-4 *1 (-1162 *3)) (-4 *3 (-961)))) (-3812 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484)))))) (-3812 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1090)) (-4 *1 (-1162 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1115)) (-4 *3 (-38 (-350 (-484)))))) (-12 (-5 *2 (-1090)) (-4 *1 (-1162 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3081 ((-583 *2) *3))) (|has| *3 (-15 -3812 (*3 *3 *2))) (-4 *3 (-38 (-350 (-484))))))))) -(-13 (-1158 |t#1| (-350 (-484))) (-10 -8 (-15 -3818 ($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |t#1|))))) (-15 -3777 ($ $ (-350 (-484)))) (IF (|has| |t#1| (-38 (-350 (-484)))) (PROGN (-15 -3812 ($ $)) (IF (|has| |t#1| (-15 -3812 (|t#1| |t#1| (-1090)))) (IF (|has| |t#1| (-15 -3081 ((-583 (-1090)) |t#1|))) (-15 -3812 ($ $ (-1090))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1115)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-484))) (-15 -3812 ($ $ (-1090))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1115))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-484))) . T) ((-25) . T) ((-38 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-484)))) ((-66) |has| |#1| (-38 (-350 (-484)))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-484)))) ((-241 (-350 (-484)) |#1|) . T) ((-241 $ $) |has| (-350 (-484)) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-654 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ((-809 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ((-811 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ((-886 |#1| (-350 (-484)) (-994)) . T) ((-832) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-350 (-484)))) ((-963 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1115) |has| |#1| (-38 (-350 (-484)))) ((-1118) |has| |#1| (-38 (-350 (-484)))) ((-1129) . T) ((-1134) |has| |#1| (-312)) ((-1158 |#1| (-350 (-484))) . T)) -((-3188 (((-85) $) 12 T ELT)) (-3157 (((-3 |#3| "failed") $) 17 T ELT)) (-3156 ((|#3| $) 14 T ELT))) -(((-1163 |#1| |#2| |#3|) (-10 -7 (-15 -3157 ((-3 |#3| "failed") |#1|)) (-15 -3156 (|#3| |#1|)) (-15 -3188 ((-85) |#1|))) (-1164 |#2| |#3|) (-961) (-1141 |#2|)) (T -1163)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3831 (((-1090) $) 129 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3771 (($ $ (-350 (-484))) 124 T ELT) (($ $ (-350 (-484)) (-350 (-484))) 123 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|))) $) 130 T ELT)) (-3492 (($ $) 163 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 146 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3037 (($ $) 145 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3490 (($ $) 162 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3818 (($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|)))) 199 T ELT)) (-3494 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 148 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 |#2| "failed") $) 212 T ELT)) (-3156 ((|#2| $) 213 T ELT)) (-2564 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3781 (((-350 (-484)) $) 209 T ELT)) (-2563 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-3782 (($ (-350 (-484)) |#2|) 210 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) 94 T ELT)) (-3627 (($) 173 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3772 (((-350 (-484)) $) 126 T ELT) (((-350 (-484)) $ (-350 (-484))) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 144 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3777 (($ $ (-830)) 127 T ELT) (($ $ (-350 (-484))) 198 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) 82 T ELT)) (-2893 (($ |#1| (-350 (-484))) 81 T ELT) (($ $ (-994) (-350 (-484))) 97 T ELT) (($ $ (-583 (-994)) (-583 (-350 (-484)))) 96 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3942 (($ $) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-1891 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3780 ((|#2| $) 208 T ELT)) (-3778 (((-3 |#2| "failed") $) 206 T ELT)) (-3779 ((|#2| $) 207 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3812 (($ $) 197 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115)) (|has| |#1| (-38 (-350 (-484))))) (-12 (|has| |#1| (-15 -3081 ((-583 (-1090)) |#1|))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-38 (-350 (-484)))))) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 178 (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-350 (-484))) 121 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3943 (($ $) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) ELT)) (-1607 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-350 (-484))) 131 T ELT) (($ $ $) 107 (|has| (-350 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) 119 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) 117 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) 116 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-3948 (((-350 (-484)) $) 84 T ELT)) (-3495 (($ $) 160 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 149 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 150 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) 158 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) 151 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2891 (($ $) 93 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 211 T ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3677 ((|#1| $ (-350 (-484))) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-3773 ((|#1| $) 128 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3498 (($ $) 169 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3496 (($ $) 168 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) 156 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 155 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 ((|#1| $ (-350 (-484))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 166 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 154 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 153 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) 164 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 152 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1090)) 118 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) 114 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) 113 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 143 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-1164 |#1| |#2|) (-113) (-961) (-1141 |t#1|)) (T -1164)) -((-3948 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1141 *3)) (-5 *2 (-350 (-484))))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-350 (-484))) (-4 *4 (-961)) (-4 *1 (-1164 *4 *3)) (-4 *3 (-1141 *4)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1141 *3)) (-5 *2 (-350 (-484))))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1141 *3)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1141 *3)))) (-3778 (*1 *2 *1) (|partial| -12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1141 *3))))) -(-13 (-1162 |t#1|) (-950 |t#2|) (-555 |t#2|) (-10 -8 (-15 -3782 ($ (-350 (-484)) |t#2|)) (-15 -3781 ((-350 (-484)) $)) (-15 -3780 (|t#2| $)) (-15 -3948 ((-350 (-484)) $)) (-15 -3779 (|t#2| $)) (-15 -3778 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-484))) . T) ((-25) . T) ((-38 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-484)))) ((-66) |has| |#1| (-38 (-350 (-484)))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 |#2|) . T) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-484)))) ((-241 (-350 (-484)) |#1|) . T) ((-241 $ $) |has| (-350 (-484)) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-654 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ((-809 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ((-811 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ((-886 |#1| (-350 (-484)) (-994)) . T) ((-832) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-350 (-484)))) ((-950 |#2|) . T) ((-963 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1115) |has| |#1| (-38 (-350 (-484)))) ((-1118) |has| |#1| (-38 (-350 (-484)))) ((-1129) . T) ((-1134) |has| |#1| (-312)) ((-1158 |#1| (-350 (-484))) . T) ((-1162 |#1|) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3831 (((-1090) $) 104 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3771 (($ $ (-350 (-484))) 116 T ELT) (($ $ (-350 (-484)) (-350 (-484))) 118 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|))) $) 54 T ELT)) (-3492 (($ $) 192 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 168 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3775 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3971 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3490 (($ $) 188 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 164 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3818 (($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|)))) 65 T ELT)) (-3494 (($ $) 196 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 172 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 85 T ELT)) (-3781 (((-350 (-484)) $) 13 T ELT)) (-2563 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (($ (-350 (-484)) |#2|) 11 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3723 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2892 (((-85) $) 74 T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3772 (((-350 (-484)) $) 113 T ELT) (((-350 (-484)) $ (-350 (-484))) 114 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3777 (($ $ (-830)) 130 T ELT) (($ $ (-350 (-484))) 128 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-350 (-484))) 33 T ELT) (($ $ (-994) (-350 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-350 (-484)))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3942 (($ $) 162 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-1891 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 ((|#2| $) 12 T ELT)) (-3778 (((-3 |#2| #1#) $) 44 T ELT)) (-3779 ((|#2| $) 45 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-2484 (($ $) 101 (|has| |#1| (-312)) ELT)) (-3812 (($ $) 146 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 151 (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3081 ((-583 (-1090)) |#1|))))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3144 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3732 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-350 (-484))) 122 T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) 160 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3800 ((|#1| $ (-350 (-484))) 108 T ELT) (($ $ $) 94 (|has| (-350 (-484)) (-1025)) ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-1090)) 138 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-3948 (((-350 (-484)) $) 16 T ELT)) (-3495 (($ $) 198 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 174 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) 194 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) 190 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) 166 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2891 (($ $) 120 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-350 (-484))) 139 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3677 ((|#1| $ (-350 (-484))) 107 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 127 T CONST)) (-3773 ((|#1| $) 106 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 204 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 180 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3496 (($ $) 200 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) 176 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 208 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 184 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 ((|#1| $ (-350 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3501 (($ $) 210 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 186 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) 206 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 182 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) 202 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 178 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 17 T CONST)) (-2669 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-3056 (((-85) $ $) 72 T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 100 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3839 (($ $ $) 76 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 82 T ELT) (($ $ (-484)) 157 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 158 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-1165 |#1| |#2|) (-1164 |#1| |#2|) (-961) (-1141 |#1|)) (T -1165)) -NIL -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 37 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 (-484) #1#) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-950 (-350 (-484)))) ELT) (((-3 (-1160 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3156 (((-484) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-950 (-350 (-484)))) ELT) (((-1160 |#2| |#3| |#4|) $) NIL T ELT)) (-3959 (($ $) 41 T ELT)) (-3467 (((-3 $ #1#) $) 27 T ELT)) (-3503 (($ $) NIL (|has| (-1160 |#2| |#3| |#4|) (-392)) ELT)) (-1624 (($ $ (-1160 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 11 T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ (-1160 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) 25 T ELT)) (-2820 (((-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1625 (($ (-1 (-270 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) $) NIL T ELT)) (-3958 (($ (-1 (-1160 |#2| |#3| |#4|) (-1160 |#2| |#3| |#4|)) $) NIL T ELT)) (-3784 (((-3 (-750 |#2|) #1#) $) 91 T ELT)) (-2894 (($ $) NIL T ELT)) (-3174 (((-1160 |#2| |#3| |#4|) $) 20 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-1797 (((-85) $) NIL T ELT)) (-1796 (((-1160 |#2| |#3| |#4|) $) NIL T ELT)) (-3466 (((-3 $ #1#) $ (-1160 |#2| |#3| |#4|)) NIL (|has| (-1160 |#2| |#3| |#4|) (-495)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3783 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1160 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#2|)))))) (|:| |%type| (-1073))) #1#) $) 74 T ELT)) (-3948 (((-270 |#2| |#3| |#4|) $) 17 T ELT)) (-2817 (((-1160 |#2| |#3| |#4|) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-392)) ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1160 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| (-1160 |#2| |#3| |#4|) (-950 (-350 (-484)))) (|has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484))))) ELT)) (-3817 (((-583 (-1160 |#2| |#3| |#4|)) $) NIL T ELT)) (-3677 (((-1160 |#2| |#3| |#4|) $ (-270 |#2| |#3| |#4|)) NIL T ELT)) (-2702 (((-632 $) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| (-1160 |#2| |#3| |#4|) (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ (-1160 |#2| |#3| |#4|)) NIL (|has| (-1160 |#2| |#3| |#4|) (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1160 |#2| |#3| |#4|)) NIL T ELT) (($ (-1160 |#2| |#3| |#4|) $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))) ELT))) -(((-1166 |#1| |#2| |#3| |#4|) (-13 (-277 (-1160 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) (-495) (-10 -8 (-15 -3784 ((-3 (-750 |#2|) #1="failed") $)) (-15 -3783 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1160 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#2|)))))) (|:| |%type| (-1073))) #1#) $)))) (-13 (-950 (-484)) (-580 (-484)) (-392)) (-13 (-27) (-1115) (-364 |#1|)) (-1090) |#2|) (T -1166)) -((-3784 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392))) (-5 *2 (-750 *4)) (-5 *1 (-1166 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4))) (-3783 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1160 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-350 (-484))) (|:| |c| *4)))))) (|:| |%type| (-1073)))) (-5 *1 (-1166 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4)))) -((-3402 ((|#2| $) 34 T ELT)) (-3795 ((|#2| $) 18 T ELT)) (-3797 (($ $) 44 T ELT)) (-3785 (($ $ (-484)) 79 T ELT)) (-3025 ((|#2| $ |#2|) 76 T ELT)) (-3786 ((|#2| $ |#2|) 72 T ELT)) (-3788 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3026 (($ $ (-583 $)) 75 T ELT)) (-3796 ((|#2| $) 17 T ELT)) (-3799 (($ $) NIL T ELT) (($ $ (-694)) 52 T ELT)) (-3031 (((-583 $) $) 31 T ELT)) (-3027 (((-85) $ $) 63 T ELT)) (-3527 (((-85) $) 33 T ELT)) (-3798 ((|#2| $) 25 T ELT) (($ $ (-694)) 58 T ELT)) (-3800 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3633 (((-85) $) 23 T ELT)) (-3792 (($ $) 47 T ELT)) (-3790 (($ $) 80 T ELT)) (-3793 (((-694) $) 51 T ELT)) (-3794 (($ $) 50 T ELT)) (-3802 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3522 (((-583 $) $) 32 T ELT)) (-3056 (((-85) $ $) 61 T ELT)) (-3957 (((-694) $) 43 T ELT))) -(((-1167 |#1| |#2|) (-10 -7 (-15 -3056 ((-85) |#1| |#1|)) (-15 -3785 (|#1| |#1| (-484))) (-15 -3788 (|#2| |#1| #1="last" |#2|)) (-15 -3786 (|#2| |#1| |#2|)) (-15 -3788 (|#1| |#1| #2="rest" |#1|)) (-15 -3788 (|#2| |#1| #3="first" |#2|)) (-15 -3790 (|#1| |#1|)) (-15 -3792 (|#1| |#1|)) (-15 -3793 ((-694) |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -3795 (|#2| |#1|)) (-15 -3796 (|#2| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3798 (|#1| |#1| (-694))) (-15 -3800 (|#2| |#1| #1#)) (-15 -3798 (|#2| |#1|)) (-15 -3799 (|#1| |#1| (-694))) (-15 -3800 (|#1| |#1| #2#)) (-15 -3799 (|#1| |#1|)) (-15 -3800 (|#2| |#1| #3#)) (-15 -3802 (|#1| |#2| |#1|)) (-15 -3802 (|#1| |#1| |#1|)) (-15 -3025 (|#2| |#1| |#2|)) (-15 -3788 (|#2| |#1| #4="value" |#2|)) (-15 -3026 (|#1| |#1| (-583 |#1|))) (-15 -3027 ((-85) |#1| |#1|)) (-15 -3633 ((-85) |#1|)) (-15 -3800 (|#2| |#1| #4#)) (-15 -3402 (|#2| |#1|)) (-15 -3527 ((-85) |#1|)) (-15 -3031 ((-583 |#1|) |#1|)) (-15 -3522 ((-583 |#1|) |#1|)) (-15 -3957 ((-694) |#1|))) (-1168 |#2|) (-1129)) (T -1167)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3402 ((|#1| $) 52 T ELT)) (-3795 ((|#1| $) 71 T ELT)) (-3797 (($ $) 73 T ELT)) (-3785 (($ $ (-484)) 58 (|has| $ (-6 -3996)) ELT)) (-3025 ((|#1| $ |#1|) 43 (|has| $ (-6 -3996)) ELT)) (-3787 (($ $ $) 62 (|has| $ (-6 -3996)) ELT)) (-3786 ((|#1| $ |#1|) 60 (|has| $ (-6 -3996)) ELT)) (-3789 ((|#1| $ |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3788 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3996)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -3996)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -3996)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -3996)) ELT)) (-3026 (($ $ (-583 $)) 45 (|has| $ (-6 -3996)) ELT)) (-3796 ((|#1| $) 72 T ELT)) (-3724 (($) 7 T CONST)) (-3799 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3031 (((-583 $) $) 54 T ELT)) (-3027 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-2608 (((-583 |#1|) $) 29 (|has| $ (-6 -3995)) ELT)) (-3245 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3030 (((-583 |#1|) $) 49 T ELT)) (-3527 (((-85) $) 53 T ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-3798 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3995)) ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3029 (((-484) $ $) 48 T ELT)) (-3633 (((-85) $) 50 T ELT)) (-3792 (($ $) 68 T ELT)) (-3790 (($ $) 65 (|has| $ (-6 -3996)) ELT)) (-3793 (((-694) $) 69 T ELT)) (-3794 (($ $) 70 T ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3995)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3995))) ELT)) (-3400 (($ $) 10 T ELT)) (-3791 (($ $ $) 67 (|has| $ (-6 -3996)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3996)) ELT)) (-3802 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3522 (((-583 $) $) 55 T ELT)) (-3028 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3995)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3957 (((-694) $) 6 (|has| $ (-6 -3995)) ELT))) -(((-1168 |#1|) (-113) (-1129)) (T -1168)) -((-3802 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3802 (*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) (-3799 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3798 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))) (-3792 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3791 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3791 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3790 (*1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3789 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3788 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3787 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3788 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -3996)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) (-3786 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3788 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3785 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (|has| *1 (-6 -3996)) (-4 *1 (-1168 *3)) (-4 *3 (-1129))))) -(-13 (-923 |t#1|) (-10 -8 (-15 -3802 ($ $ $)) (-15 -3802 ($ |t#1| $)) (-15 -3801 (|t#1| $)) (-15 -3800 (|t#1| $ "first")) (-15 -3801 ($ $ (-694))) (-15 -3799 ($ $)) (-15 -3800 ($ $ "rest")) (-15 -3799 ($ $ (-694))) (-15 -3798 (|t#1| $)) (-15 -3800 (|t#1| $ "last")) (-15 -3798 ($ $ (-694))) (-15 -3797 ($ $)) (-15 -3796 (|t#1| $)) (-15 -3795 (|t#1| $)) (-15 -3794 ($ $)) (-15 -3793 ((-694) $)) (-15 -3792 ($ $)) (IF (|has| $ (-6 -3996)) (PROGN (-15 -3791 ($ $ $)) (-15 -3791 ($ $ |t#1|)) (-15 -3790 ($ $)) (-15 -3789 (|t#1| $ |t#1|)) (-15 -3788 (|t#1| $ "first" |t#1|)) (-15 -3787 ($ $ $)) (-15 -3788 ($ $ "rest" $)) (-15 -3786 (|t#1| $ |t#1|)) (-15 -3788 (|t#1| $ "last" |t#1|)) (-15 -3785 ($ $ (-484)))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3081 (((-583 (-994)) $) NIL T ELT)) (-3831 (((-1090) $) 87 T ELT)) (-3811 (((-1148 |#2| |#1|) $ (-694)) 70 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 139 (|has| |#1| (-495)) ELT)) (-3771 (($ $ (-694)) 125 T ELT) (($ $ (-694) (-694)) 127 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 42 T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3037 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1069 |#1|)) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) NIL T CONST)) (-3805 (($ $) 131 T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3816 (($ $) 137 T ELT)) (-3814 (((-857 |#1|) $ (-694)) 60 T ELT) (((-857 |#1|) $ (-694) (-694)) 62 T ELT)) (-2892 (((-85) $) NIL T ELT)) (-3627 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3772 (((-694) $) NIL T ELT) (((-694) $ (-694)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3808 (($ $) 115 T ELT)) (-3011 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3804 (($ (-484) (-484) $) 133 T ELT)) (-3777 (($ $ (-830)) 136 T ELT)) (-3815 (($ (-1 |#1| (-484)) $) 109 T ELT)) (-3937 (((-85) $) NIL T ELT)) (-2893 (($ |#1| (-694)) 16 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3942 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2894 (($ $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3809 (($ $) 113 T ELT)) (-3810 (($ $) 111 T ELT)) (-3803 (($ (-484) (-484) $) 135 T ELT)) (-3812 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 153 (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3081 ((-583 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 148 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3806 (($ $ (-484) (-484)) 119 T ELT)) (-3769 (($ $ (-694)) 121 T ELT)) (-3466 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3807 (($ $) 117 T ELT)) (-3768 (((-1069 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3800 ((|#1| $ (-694)) 93 T ELT) (($ $ $) 129 (|has| (-694) (-1025)) ELT)) (-3758 (($ $ (-1090)) 106 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1176 |#2|)) 101 T ELT)) (-3948 (((-694) $) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2891 (($ $) 123 T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) 26 T ELT) (($ (-350 (-484))) 145 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1148 |#2| |#1|)) 78 T ELT) (($ (-1176 |#2|)) 22 T ELT)) (-3817 (((-1069 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ (-694)) 92 T ELT)) (-2702 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3773 ((|#1| $) 88 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 ((|#1| $ (-694)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2660 (($) 18 T CONST)) (-2666 (($) 13 T CONST)) (-2669 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1176 |#2|)) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3949 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3839 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-1169 |#1| |#2| |#3|) (-13 (-1172 |#1|) (-806 $ (-1176 |#2|)) (-10 -8 (-15 -3946 ($ (-1148 |#2| |#1|))) (-15 -3811 ((-1148 |#2| |#1|) $ (-694))) (-15 -3946 ($ (-1176 |#2|))) (-15 -3810 ($ $)) (-15 -3809 ($ $)) (-15 -3808 ($ $)) (-15 -3807 ($ $)) (-15 -3806 ($ $ (-484) (-484))) (-15 -3805 ($ $)) (-15 -3804 ($ (-484) (-484) $)) (-15 -3803 ($ (-484) (-484) $)) (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3812 ($ $ (-1176 |#2|))) |%noBranch|))) (-961) (-1090) |#1|) (T -1169)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-1169 *3 *4 *5)))) (-3811 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1169 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1090)) (-14 *6 *4))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2))) (-3809 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2))) (-3807 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2))) (-3806 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3))) (-3805 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2))) (-3804 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3))) (-3803 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3))) (-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))) -((-3958 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) -(((-1170 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3958 (|#4| (-1 |#2| |#1|) |#3|))) (-961) (-961) (-1172 |#1|) (-1172 |#2|)) (T -1170)) -((-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1172 *6)) (-5 *1 (-1170 *5 *6 *4 *2)) (-4 *4 (-1172 *5))))) -((-3188 (((-85) $) 17 T ELT)) (-3492 (($ $) 105 T ELT)) (-3639 (($ $) 81 T ELT)) (-3490 (($ $) 101 T ELT)) (-3638 (($ $) 77 T ELT)) (-3494 (($ $) 109 T ELT)) (-3637 (($ $) 85 T ELT)) (-3942 (($ $) 75 T ELT)) (-3943 (($ $) 73 T ELT)) (-3495 (($ $) 111 T ELT)) (-3636 (($ $) 87 T ELT)) (-3493 (($ $) 107 T ELT)) (-3635 (($ $) 83 T ELT)) (-3491 (($ $) 103 T ELT)) (-3634 (($ $) 79 T ELT)) (-3946 (((-772) $) 61 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3498 (($ $) 117 T ELT)) (-3486 (($ $) 93 T ELT)) (-3496 (($ $) 113 T ELT)) (-3484 (($ $) 89 T ELT)) (-3500 (($ $) 121 T ELT)) (-3488 (($ $) 97 T ELT)) (-3501 (($ $) 123 T ELT)) (-3489 (($ $) 99 T ELT)) (-3499 (($ $) 119 T ELT)) (-3487 (($ $) 95 T ELT)) (-3497 (($ $) 115 T ELT)) (-3485 (($ $) 91 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-350 (-484))) 71 T ELT))) -(((-1171 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-350 (-484)))) (-15 -3639 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3943 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3946 (|#1| |#2|)) (-15 -3946 (|#1| |#1|)) (-15 -3946 (|#1| (-350 (-484)))) (-15 -3946 (|#1| (-484))) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830))) (-15 -3188 ((-85) |#1|)) (-15 -3946 ((-772) |#1|))) (-1172 |#2|) (-961)) (T -1171)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3081 (((-583 (-994)) $) 95 T ELT)) (-3831 (((-1090) $) 129 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3771 (($ $ (-694)) 124 T ELT) (($ $ (-694) (-694)) 123 T ELT)) (-3774 (((-1069 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 130 T ELT)) (-3492 (($ $) 163 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 146 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3037 (($ $) 145 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) 162 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3818 (($ (-1069 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 183 T ELT) (($ (-1069 |#1|)) 181 T ELT)) (-3494 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 148 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3724 (($) 23 T CONST)) (-3959 (($ $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3816 (($ $) 180 T ELT)) (-3814 (((-857 |#1|) $ (-694)) 178 T ELT) (((-857 |#1|) $ (-694) (-694)) 177 T ELT)) (-2892 (((-85) $) 94 T ELT)) (-3627 (($) 173 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3772 (((-694) $) 126 T ELT) (((-694) $ (-694)) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3011 (($ $ (-484)) 144 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3777 (($ $ (-830)) 127 T ELT)) (-3815 (($ (-1 |#1| (-484)) $) 179 T ELT)) (-3937 (((-85) $) 82 T ELT)) (-2893 (($ |#1| (-694)) 81 T ELT) (($ $ (-994) (-694)) 97 T ELT) (($ $ (-583 (-994)) (-583 (-694))) 96 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3942 (($ $) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2894 (($ $) 85 T ELT)) (-3174 ((|#1| $) 86 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3812 (($ $) 175 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 174 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115)) (|has| |#1| (-38 (-350 (-484))))) (-12 (|has| |#1| (-15 -3081 ((-583 (-1090)) |#1|))) (|has| |#1| (-15 -3812 (|#1| |#1| (-1090)))) (|has| |#1| (-38 (-350 (-484)))))) ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3769 (($ $ (-694)) 121 T ELT)) (-3466 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3943 (($ $) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3768 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3800 ((|#1| $ (-694)) 131 T ELT) (($ $ $) 107 (|has| (-694) (-1025)) ELT)) (-3758 (($ $ (-1090)) 119 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090))) 117 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1090) (-694)) 116 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT)) (-3948 (((-694) $) 84 T ELT)) (-3495 (($ $) 160 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 149 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3493 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 150 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) 158 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3634 (($ $) 151 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2891 (($ $) 93 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3817 (((-1069 |#1|) $) 182 T ELT)) (-3677 ((|#1| $ (-694)) 79 T ELT)) (-2702 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3126 (((-694)) 40 T CONST)) (-3773 ((|#1| $) 128 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3498 (($ $) 169 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3496 (($ $) 168 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3484 (($ $) 156 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 155 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 ((|#1| $ (-694)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3946 (|#1| (-1090))))) ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3501 (($ $) 166 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 154 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3499 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 153 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3497 (($ $) 164 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 152 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-2669 (($ $ (-1090)) 118 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090))) 114 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1090) (-694)) 113 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ |#1|) 176 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 143 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT))) -(((-1172 |#1|) (-113) (-961)) (T -1172)) -((-3818 (*1 *1 *2) (-12 (-5 *2 (-1069 (-2 (|:| |k| (-694)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1172 *3)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-961)) (-5 *2 (-1069 *3)))) (-3818 (*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-4 *1 (-1172 *3)))) (-3816 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-961)))) (-3815 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1172 *3)) (-4 *3 (-961)))) (-3814 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1172 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))) (-3814 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1172 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-3812 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484)))))) (-3812 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1090)) (-4 *1 (-1172 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1115)) (-4 *3 (-38 (-350 (-484)))))) (-12 (-5 *2 (-1090)) (-4 *1 (-1172 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3081 ((-583 *2) *3))) (|has| *3 (-15 -3812 (*3 *3 *2))) (-4 *3 (-38 (-350 (-484))))))))) -(-13 (-1158 |t#1| (-694)) (-10 -8 (-15 -3818 ($ (-1069 (-2 (|:| |k| (-694)) (|:| |c| |t#1|))))) (-15 -3817 ((-1069 |t#1|) $)) (-15 -3818 ($ (-1069 |t#1|))) (-15 -3816 ($ $)) (-15 -3815 ($ (-1 |t#1| (-484)) $)) (-15 -3814 ((-857 |t#1|) $ (-694))) (-15 -3814 ((-857 |t#1|) $ (-694) (-694))) (IF (|has| |t#1| (-312)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-484)))) (PROGN (-15 -3812 ($ $)) (IF (|has| |t#1| (-15 -3812 (|t#1| |t#1| (-1090)))) (IF (|has| |t#1| (-15 -3081 ((-583 (-1090)) |t#1|))) (-15 -3812 ($ $ (-1090))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1115)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-484))) (-15 -3812 ($ $ (-1090))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1115))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-694)) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-35) |has| |#1| (-38 (-350 (-484)))) ((-66) |has| |#1| (-38 (-350 (-484)))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-239) |has| |#1| (-38 (-350 (-484)))) ((-241 (-694) |#1|) . T) ((-241 $ $) |has| (-694) (-1025)) ((-246) |has| |#1| (-495)) ((-433) |has| |#1| (-38 (-350 (-484)))) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-806 $ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-809 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-811 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-886 |#1| (-694) (-994)) . T) ((-915) |has| |#1| (-38 (-350 (-484)))) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1115) |has| |#1| (-38 (-350 (-484)))) ((-1118) |has| |#1| (-38 (-350 (-484)))) ((-1129) . T) ((-1158 |#1| (-694)) . T)) -((-3821 (((-1 (-1069 |#1|) (-583 (-1069 |#1|))) (-1 |#2| (-583 |#2|))) 24 T ELT)) (-3820 (((-1 (-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3819 (((-1 (-1069 |#1|) (-1069 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3824 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3823 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3825 ((|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|)) 60 T ELT)) (-3826 (((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))) 66 T ELT)) (-3822 ((|#2| |#2| |#2|) 43 T ELT))) -(((-1173 |#1| |#2|) (-10 -7 (-15 -3819 ((-1 (-1069 |#1|) (-1069 |#1|)) (-1 |#2| |#2|))) (-15 -3820 ((-1 (-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3821 ((-1 (-1069 |#1|) (-583 (-1069 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -3822 (|#2| |#2| |#2|)) (-15 -3823 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3824 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3825 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -3826 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) (-38 (-350 (-484))) (-1172 |#1|)) (T -1173)) -((-3826 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-38 (-350 (-484)))) (-4 *6 (-1172 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1173 *5 *6)))) (-3825 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-38 (-350 (-484)))) (-4 *2 (-1172 *5)) (-5 *1 (-1173 *5 *2)))) (-3824 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2)) (-4 *4 (-38 (-350 (-484)))))) (-3823 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2)) (-4 *4 (-38 (-350 (-484)))))) (-3822 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-1172 *3)))) (-3821 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-484)))) (-5 *2 (-1 (-1069 *4) (-583 (-1069 *4)))) (-5 *1 (-1173 *4 *5)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-484)))) (-5 *2 (-1 (-1069 *4) (-1069 *4) (-1069 *4))) (-5 *1 (-1173 *4 *5)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-484)))) (-5 *2 (-1 (-1069 *4) (-1069 *4))) (-5 *1 (-1173 *4 *5))))) -((-3828 ((|#2| |#4| (-694)) 31 T ELT)) (-3827 ((|#4| |#2|) 26 T ELT)) (-3830 ((|#4| (-350 |#2|)) 49 (|has| |#1| (-495)) ELT)) (-3829 (((-1 |#4| (-583 |#4|)) |#3|) 43 T ELT))) -(((-1174 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3827 (|#4| |#2|)) (-15 -3828 (|#2| |#4| (-694))) (-15 -3829 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-495)) (-15 -3830 (|#4| (-350 |#2|))) |%noBranch|)) (-961) (-1155 |#1|) (-600 |#2|) (-1172 |#1|)) (T -1174)) -((-3830 (*1 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-495)) (-4 *4 (-961)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *5 *6 *2)) (-4 *6 (-600 *5)))) (-3829 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1155 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1174 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-1172 *4)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-4 *2 (-1155 *5)) (-5 *1 (-1174 *5 *2 *6 *3)) (-4 *6 (-600 *2)) (-4 *3 (-1172 *5)))) (-3827 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1155 *4)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *3 *5 *2)) (-4 *5 (-600 *3))))) -NIL -(((-1175) (-113)) (T -1175)) -NIL -(-13 (-10 -7 (-6 -2287))) -((-2568 (((-85) $ $) NIL T ELT)) (-3831 (((-1090)) 12 T ELT)) (-3242 (((-1073) $) 18 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 11 T ELT) (((-1090) $) 8 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 15 T ELT))) -(((-1176 |#1|) (-13 (-1013) (-552 (-1090)) (-10 -8 (-15 -3946 ((-1090) $)) (-15 -3831 ((-1090))))) (-1090)) (T -1176)) -((-3946 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1176 *3)) (-14 *3 *2))) (-3831 (*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1176 *3)) (-14 *3 *2)))) -((-3838 (($ (-694)) 19 T ELT)) (-3835 (((-630 |#2|) $ $) 41 T ELT)) (-3832 ((|#2| $) 51 T ELT)) (-3833 ((|#2| $) 50 T ELT)) (-3836 ((|#2| $ $) 36 T ELT)) (-3834 (($ $ $) 47 T ELT)) (-3837 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3839 (($ $ $) 15 T ELT)) (* (($ (-484) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) -(((-1177 |#1| |#2|) (-10 -7 (-15 -3832 (|#2| |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -3834 (|#1| |#1| |#1|)) (-15 -3835 ((-630 |#2|) |#1| |#1|)) (-15 -3836 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -3837 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3838 (|#1| (-694))) (-15 -3839 (|#1| |#1| |#1|))) (-1178 |#2|) (-1129)) (T -1177)) -NIL -((-2568 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3838 (($ (-694)) 123 (|has| |#1| (-23)) ELT)) (-2198 (((-1185) $ (-484) (-484)) 44 (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-756)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3996)) ELT) (($ $) 98 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3996))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-756)) ELT)) (-3788 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 64 (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3995)) ELT)) (-3724 (($) 7 T CONST)) (-2297 (($ $) 100 (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) 110 T ELT)) (-1353 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT)) (-3406 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3995))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) 55 T ELT)) (-3419 (((-484) (-1 (-85) |#1|) $) 107 T ELT) (((-484) |#1| $) 106 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 105 (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) 30 (|has| $ (-6 -3995)) ELT)) (-3835 (((-630 |#1|) $ $) 116 (|has| |#1| (-961)) ELT)) (-3614 (($ (-694) |#1|) 74 T ELT)) (-2200 (((-484) $) 47 (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) 29 T ELT)) (-3245 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 48 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) 93 (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3832 ((|#1| $) 113 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3833 ((|#1| $) 114 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3242 (((-1073) $) 22 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2203 (((-583 (-484)) $) 50 T ELT)) (-2204 (((-85) (-484) $) 51 T ELT)) (-3243 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) 46 (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2199 (($ $ |#1|) 45 (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 11 T ELT)) (-2202 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) 52 T ELT)) (-3403 (((-85) $) 8 T ELT)) (-3565 (($) 9 T ELT)) (-3800 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1146 (-484))) 75 T ELT)) (-3836 ((|#1| $ $) 117 (|has| |#1| (-961)) ELT)) (-2305 (($ $ (-484)) 68 T ELT) (($ $ (-1146 (-484))) 67 T ELT)) (-3834 (($ $ $) 115 (|has| |#1| (-961)) ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) 31 T ELT) (((-694) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-484)) 101 (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) 10 T ELT)) (-3972 (((-473) $) 85 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 76 T ELT)) (-3802 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3946 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2566 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) 97 (|has| |#1| (-756)) ELT)) (-3837 (($ $) 122 (|has| |#1| (-21)) ELT) (($ $ $) 121 (|has| |#1| (-21)) ELT)) (-3839 (($ $ $) 124 (|has| |#1| (-25)) ELT)) (* (($ (-484) $) 120 (|has| |#1| (-21)) ELT) (($ |#1| $) 119 (|has| |#1| (-663)) ELT) (($ $ |#1|) 118 (|has| |#1| (-663)) ELT)) (-3957 (((-694) $) 6 T ELT))) -(((-1178 |#1|) (-113) (-1129)) (T -1178)) -((-3839 (*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-25)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1178 *3)) (-4 *3 (-23)) (-4 *3 (-1129)))) (-3837 (*1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-21)))) (-3837 (*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-1178 *3)) (-4 *3 (-1129)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-663)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-663)))) (-3836 (*1 *2 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-961)))) (-3835 (*1 *2 *1 *1) (-12 (-4 *1 (-1178 *3)) (-4 *3 (-1129)) (-4 *3 (-961)) (-5 *2 (-630 *3)))) (-3834 (*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-961)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-915)) (-4 *2 (-961)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-915)) (-4 *2 (-961))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3839 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3838 ($ (-694))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3837 ($ $)) (-15 -3837 ($ $ $)) (-15 * ($ (-484) $))) |%noBranch|) (IF (|has| |t#1| (-663)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-15 -3836 (|t#1| $ $)) (-15 -3835 ((-630 |t#1|) $ $)) (-15 -3834 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-915)) (IF (|has| |t#1| (-961)) (PROGN (-15 -3833 (|t#1| $)) (-15 -3832 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1035 |#1|) . T) ((-1129) . T)) -((-2568 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3838 (($ (-694)) NIL (|has| |#1| (-23)) ELT)) (-3840 (($ (-583 |#1|)) 9 T ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-1732 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1730 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-756))) ELT)) (-2909 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3788 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3710 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3724 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-6 -3996)) ELT)) (-2298 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-3406 (($ |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3842 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3995)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3995)) ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-3112 ((|#1| $ (-484)) NIL T ELT)) (-3419 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2889 (((-583 |#1|) $) 15 (|has| $ (-6 -3995)) ELT)) (-3835 (((-630 |#1|) $ $) NIL (|has| |#1| (-961)) ELT)) (-3614 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2531 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3518 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2608 (((-583 |#1|) $) NIL T ELT)) (-3245 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 11 (|has| (-484) (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3326 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3832 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3833 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3242 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3243 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3801 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3996)) ELT)) (-1947 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3768 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#1| (-1013))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3403 (((-85) $) NIL T ELT)) (-3565 (($) NIL T ELT)) (-3800 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-3836 ((|#1| $ $) NIL (|has| |#1| (-961)) ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-3834 (($ $ $) NIL (|has| |#1| (-961)) ELT)) (-1946 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1731 (($ $ $ (-484)) NIL (|has| $ (-6 -3996)) ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) 19 (|has| |#1| (-553 (-473))) ELT)) (-3530 (($ (-583 |#1|)) 8 T ELT)) (-3802 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3946 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2566 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3056 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2684 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3837 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3839 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-484) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-663)) ELT) (($ $ |#1|) NIL (|has| |#1| (-663)) ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-1179 |#1|) (-13 (-1178 |#1|) (-10 -8 (-15 -3840 ($ (-583 |#1|))))) (-1129)) (T -1179)) -((-3840 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-1179 *3))))) -((-3841 (((-1179 |#2|) (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|) 13 T ELT)) (-3842 ((|#2| (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|) 15 T ELT)) (-3958 (((-3 (-1179 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1179 |#1|)) 30 T ELT) (((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|)) 18 T ELT))) -(((-1180 |#1| |#2|) (-10 -7 (-15 -3841 ((-1179 |#2|) (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|)) (-15 -3842 (|#2| (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|)) (-15 -3958 ((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|))) (-15 -3958 ((-3 (-1179 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1179 |#1|)))) (-1129) (-1129)) (T -1180)) -((-3958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6)))) (-3842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1179 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-1180 *5 *2)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1179 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-5 *2 (-1179 *5)) (-5 *1 (-1180 *6 *5))))) -((-3843 (((-408) (-583 (-583 (-854 (-179)))) (-583 (-221))) 22 T ELT) (((-408) (-583 (-583 (-854 (-179))))) 21 T ELT) (((-408) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221))) 20 T ELT)) (-3844 (((-1182) (-583 (-583 (-854 (-179)))) (-583 (-221))) 30 T ELT) (((-1182) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221))) 29 T ELT)) (-3946 (((-1182) (-408)) 46 T ELT))) -(((-1181) (-10 -7 (-15 -3843 ((-408) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221)))) (-15 -3843 ((-408) (-583 (-583 (-854 (-179)))))) (-15 -3843 ((-408) (-583 (-583 (-854 (-179)))) (-583 (-221)))) (-15 -3844 ((-1182) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221)))) (-15 -3844 ((-1182) (-583 (-583 (-854 (-179)))) (-583 (-221)))) (-15 -3946 ((-1182) (-408))))) (T -1181)) -((-3946 (*1 *2 *3) (-12 (-5 *3 (-408)) (-5 *2 (-1182)) (-5 *1 (-1181)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-1181)))) (-3844 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *6 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-1181)))) (-3843 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-408)) (-5 *1 (-1181)))) (-3843 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-408)) (-5 *1 (-1181)))) (-3843 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *6 (-583 (-221))) (-5 *2 (-408)) (-5 *1 (-1181))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3862 (((-1073) $ (-1073)) 107 T ELT) (((-1073) $ (-1073) (-1073)) 105 T ELT) (((-1073) $ (-1073) (-583 (-1073))) 104 T ELT)) (-3858 (($) 69 T ELT)) (-3845 (((-1185) $ (-408) (-830)) 54 T ELT)) (-3851 (((-1185) $ (-830) (-1073)) 89 T ELT) (((-1185) $ (-830) (-783)) 90 T ELT)) (-3873 (((-1185) $ (-830) (-330) (-330)) 57 T ELT)) (-3883 (((-1185) $ (-1073)) 84 T ELT)) (-3846 (((-1185) $ (-830) (-1073)) 94 T ELT)) (-3847 (((-1185) $ (-830) (-330) (-330)) 58 T ELT)) (-3884 (((-1185) $ (-830) (-830)) 55 T ELT)) (-3864 (((-1185) $) 85 T ELT)) (-3849 (((-1185) $ (-830) (-1073)) 93 T ELT)) (-3853 (((-1185) $ (-408) (-830)) 41 T ELT)) (-3850 (((-1185) $ (-830) (-1073)) 92 T ELT)) (-3886 (((-583 (-221)) $) 29 T ELT) (($ $ (-583 (-221))) 30 T ELT)) (-3885 (((-1185) $ (-694) (-694)) 52 T ELT)) (-3857 (($ $) 70 T ELT) (($ (-408) (-583 (-221))) 71 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3860 (((-484) $) 48 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3854 (((-1179 (-3 (-408) "undefined")) $) 47 T ELT)) (-3855 (((-1179 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3850 (-484)) (|:| -3848 (-484)) (|:| |spline| (-484)) (|:| -3879 (-484)) (|:| |axesColor| (-783)) (|:| -3851 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484)))) $) 46 T ELT)) (-3856 (((-1185) $ (-830) (-179) (-179) (-179) (-179) (-484) (-484) (-484) (-484) (-783) (-484) (-783) (-484)) 83 T ELT)) (-3859 (((-583 (-854 (-179))) $) NIL T ELT)) (-3852 (((-408) $ (-830)) 43 T ELT)) (-3882 (((-1185) $ (-694) (-694) (-830) (-830)) 50 T ELT)) (-3880 (((-1185) $ (-1073)) 95 T ELT)) (-3848 (((-1185) $ (-830) (-1073)) 91 T ELT)) (-3946 (((-772) $) 102 T ELT)) (-3861 (((-1185) $) 96 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3879 (((-1185) $ (-830) (-1073)) 87 T ELT) (((-1185) $ (-830) (-783)) 88 T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1182) (-13 (-1013) (-10 -8 (-15 -3859 ((-583 (-854 (-179))) $)) (-15 -3858 ($)) (-15 -3857 ($ $)) (-15 -3886 ((-583 (-221)) $)) (-15 -3886 ($ $ (-583 (-221)))) (-15 -3857 ($ (-408) (-583 (-221)))) (-15 -3856 ((-1185) $ (-830) (-179) (-179) (-179) (-179) (-484) (-484) (-484) (-484) (-783) (-484) (-783) (-484))) (-15 -3855 ((-1179 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3850 (-484)) (|:| -3848 (-484)) (|:| |spline| (-484)) (|:| -3879 (-484)) (|:| |axesColor| (-783)) (|:| -3851 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484)))) $)) (-15 -3854 ((-1179 (-3 (-408) "undefined")) $)) (-15 -3883 ((-1185) $ (-1073))) (-15 -3853 ((-1185) $ (-408) (-830))) (-15 -3852 ((-408) $ (-830))) (-15 -3879 ((-1185) $ (-830) (-1073))) (-15 -3879 ((-1185) $ (-830) (-783))) (-15 -3851 ((-1185) $ (-830) (-1073))) (-15 -3851 ((-1185) $ (-830) (-783))) (-15 -3850 ((-1185) $ (-830) (-1073))) (-15 -3849 ((-1185) $ (-830) (-1073))) (-15 -3848 ((-1185) $ (-830) (-1073))) (-15 -3880 ((-1185) $ (-1073))) (-15 -3861 ((-1185) $)) (-15 -3882 ((-1185) $ (-694) (-694) (-830) (-830))) (-15 -3847 ((-1185) $ (-830) (-330) (-330))) (-15 -3873 ((-1185) $ (-830) (-330) (-330))) (-15 -3846 ((-1185) $ (-830) (-1073))) (-15 -3885 ((-1185) $ (-694) (-694))) (-15 -3845 ((-1185) $ (-408) (-830))) (-15 -3884 ((-1185) $ (-830) (-830))) (-15 -3862 ((-1073) $ (-1073))) (-15 -3862 ((-1073) $ (-1073) (-1073))) (-15 -3862 ((-1073) $ (-1073) (-583 (-1073)))) (-15 -3864 ((-1185) $)) (-15 -3860 ((-484) $)) (-15 -3946 ((-772) $))))) (T -1182)) -((-3946 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1182)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-583 (-854 (-179)))) (-5 *1 (-1182)))) (-3858 (*1 *1) (-5 *1 (-1182))) (-3857 (*1 *1 *1) (-5 *1 (-1182))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182)))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182)))) (-3857 (*1 *1 *2 *3) (-12 (-5 *2 (-408)) (-5 *3 (-583 (-221))) (-5 *1 (-1182)))) (-3856 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-830)) (-5 *4 (-179)) (-5 *5 (-484)) (-5 *6 (-783)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-1179 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3850 (-484)) (|:| -3848 (-484)) (|:| |spline| (-484)) (|:| -3879 (-484)) (|:| |axesColor| (-783)) (|:| -3851 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484))))) (-5 *1 (-1182)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-1179 (-3 (-408) "undefined"))) (-5 *1 (-1182)))) (-3883 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3853 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-408)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3852 (*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-5 *2 (-408)) (-5 *1 (-1182)))) (-3879 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3879 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3851 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3851 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3849 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3848 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3882 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3847 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-830)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3873 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-830)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3846 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3885 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3845 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-408)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3884 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3862 (*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1182)))) (-3862 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1182)))) (-3862 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1182)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1182))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3874 (((-1185) $ (-330)) 168 T ELT) (((-1185) $ (-330) (-330) (-330)) 169 T ELT)) (-3862 (((-1073) $ (-1073)) 177 T ELT) (((-1073) $ (-1073) (-1073)) 175 T ELT) (((-1073) $ (-1073) (-583 (-1073))) 174 T ELT)) (-3890 (($) 67 T ELT)) (-3881 (((-1185) $ (-330) (-330) (-330) (-330) (-330)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1185) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1185) $ (-484) (-484) (-330) (-330) (-330)) 143 T ELT) (((-1185) $ (-330) (-330)) 144 T ELT) (((-1185) $ (-330) (-330) (-330)) 151 T ELT)) (-3893 (((-330)) 121 T ELT) (((-330) (-330)) 122 T ELT)) (-3895 (((-330)) 116 T ELT) (((-330) (-330)) 118 T ELT)) (-3894 (((-330)) 119 T ELT) (((-330) (-330)) 120 T ELT)) (-3891 (((-330)) 125 T ELT) (((-330) (-330)) 126 T ELT)) (-3892 (((-330)) 123 T ELT) (((-330) (-330)) 124 T ELT)) (-3873 (((-1185) $ (-330) (-330)) 170 T ELT)) (-3883 (((-1185) $ (-1073)) 152 T ELT)) (-3888 (((-1047 (-179)) $) 68 T ELT) (($ $ (-1047 (-179))) 69 T ELT)) (-3869 (((-1185) $ (-1073)) 186 T ELT)) (-3868 (((-1185) $ (-1073)) 187 T ELT)) (-3875 (((-1185) $ (-330) (-330)) 150 T ELT) (((-1185) $ (-484) (-484)) 167 T ELT)) (-3884 (((-1185) $ (-830) (-830)) 159 T ELT)) (-3864 (((-1185) $) 136 T ELT)) (-3872 (((-1185) $ (-1073)) 185 T ELT)) (-3877 (((-1185) $ (-1073)) 133 T ELT)) (-3886 (((-583 (-221)) $) 70 T ELT) (($ $ (-583 (-221))) 71 T ELT)) (-3885 (((-1185) $ (-694) (-694)) 158 T ELT)) (-3887 (((-1185) $ (-694) (-854 (-179))) 192 T ELT)) (-3889 (($ $) 73 T ELT) (($ (-1047 (-179)) (-1073)) 74 T ELT) (($ (-1047 (-179)) (-583 (-221))) 75 T ELT)) (-3866 (((-1185) $ (-330) (-330) (-330)) 130 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3860 (((-484) $) 127 T ELT)) (-3865 (((-1185) $ (-330)) 172 T ELT)) (-3870 (((-1185) $ (-330)) 190 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3871 (((-1185) $ (-330)) 189 T ELT)) (-3876 (((-1185) $ (-1073)) 135 T ELT)) (-3882 (((-1185) $ (-694) (-694) (-830) (-830)) 157 T ELT)) (-3878 (((-1185) $ (-1073)) 132 T ELT)) (-3880 (((-1185) $ (-1073)) 134 T ELT)) (-3863 (((-1185) $ (-130) (-130)) 156 T ELT)) (-3946 (((-772) $) 165 T ELT)) (-3861 (((-1185) $) 137 T ELT)) (-3867 (((-1185) $ (-1073)) 188 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3879 (((-1185) $ (-1073)) 131 T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1183) (-13 (-1013) (-10 -8 (-15 -3895 ((-330))) (-15 -3895 ((-330) (-330))) (-15 -3894 ((-330))) (-15 -3894 ((-330) (-330))) (-15 -3893 ((-330))) (-15 -3893 ((-330) (-330))) (-15 -3892 ((-330))) (-15 -3892 ((-330) (-330))) (-15 -3891 ((-330))) (-15 -3891 ((-330) (-330))) (-15 -3890 ($)) (-15 -3889 ($ $)) (-15 -3889 ($ (-1047 (-179)) (-1073))) (-15 -3889 ($ (-1047 (-179)) (-583 (-221)))) (-15 -3888 ((-1047 (-179)) $)) (-15 -3888 ($ $ (-1047 (-179)))) (-15 -3887 ((-1185) $ (-694) (-854 (-179)))) (-15 -3886 ((-583 (-221)) $)) (-15 -3886 ($ $ (-583 (-221)))) (-15 -3885 ((-1185) $ (-694) (-694))) (-15 -3884 ((-1185) $ (-830) (-830))) (-15 -3883 ((-1185) $ (-1073))) (-15 -3882 ((-1185) $ (-694) (-694) (-830) (-830))) (-15 -3881 ((-1185) $ (-330) (-330) (-330) (-330) (-330))) (-15 -3881 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3881 ((-1185) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3881 ((-1185) $ (-484) (-484) (-330) (-330) (-330))) (-15 -3881 ((-1185) $ (-330) (-330))) (-15 -3881 ((-1185) $ (-330) (-330) (-330))) (-15 -3880 ((-1185) $ (-1073))) (-15 -3879 ((-1185) $ (-1073))) (-15 -3878 ((-1185) $ (-1073))) (-15 -3877 ((-1185) $ (-1073))) (-15 -3876 ((-1185) $ (-1073))) (-15 -3875 ((-1185) $ (-330) (-330))) (-15 -3875 ((-1185) $ (-484) (-484))) (-15 -3874 ((-1185) $ (-330))) (-15 -3874 ((-1185) $ (-330) (-330) (-330))) (-15 -3873 ((-1185) $ (-330) (-330))) (-15 -3872 ((-1185) $ (-1073))) (-15 -3871 ((-1185) $ (-330))) (-15 -3870 ((-1185) $ (-330))) (-15 -3869 ((-1185) $ (-1073))) (-15 -3868 ((-1185) $ (-1073))) (-15 -3867 ((-1185) $ (-1073))) (-15 -3866 ((-1185) $ (-330) (-330) (-330))) (-15 -3865 ((-1185) $ (-330))) (-15 -3864 ((-1185) $)) (-15 -3863 ((-1185) $ (-130) (-130))) (-15 -3862 ((-1073) $ (-1073))) (-15 -3862 ((-1073) $ (-1073) (-1073))) (-15 -3862 ((-1073) $ (-1073) (-583 (-1073)))) (-15 -3861 ((-1185) $)) (-15 -3860 ((-484) $))))) (T -1183)) -((-3895 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3894 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3893 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3892 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3891 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3890 (*1 *1) (-5 *1 (-1183))) (-3889 (*1 *1 *1) (-5 *1 (-1183))) (-3889 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-1073)) (-5 *1 (-1183)))) (-3889 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-583 (-221))) (-5 *1 (-1183)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1183)))) (-3888 (*1 *1 *1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1183)))) (-3887 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-854 (-179))) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1183)))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1183)))) (-3885 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3884 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3883 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3882 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-484)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3875 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3875 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3874 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3873 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3869 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3866 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3865 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3863 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3862 (*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1183)))) (-3862 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1183)))) (-3862 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1183)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1183))))) -((-3904 (((-583 (-1073)) (-583 (-1073))) 103 T ELT) (((-583 (-1073))) 96 T ELT)) (-3905 (((-583 (-1073))) 94 T ELT)) (-3902 (((-583 (-830)) (-583 (-830))) 69 T ELT) (((-583 (-830))) 64 T ELT)) (-3901 (((-583 (-694)) (-583 (-694))) 61 T ELT) (((-583 (-694))) 55 T ELT)) (-3903 (((-1185)) 71 T ELT)) (-3907 (((-830) (-830)) 87 T ELT) (((-830)) 86 T ELT)) (-3906 (((-830) (-830)) 85 T ELT) (((-830)) 84 T ELT)) (-3899 (((-783) (-783)) 81 T ELT) (((-783)) 80 T ELT)) (-3909 (((-179)) 91 T ELT) (((-179) (-330)) 93 T ELT)) (-3908 (((-830)) 88 T ELT) (((-830) (-830)) 89 T ELT)) (-3900 (((-830) (-830)) 83 T ELT) (((-830)) 82 T ELT)) (-3896 (((-783) (-783)) 75 T ELT) (((-783)) 73 T ELT)) (-3897 (((-783) (-783)) 77 T ELT) (((-783)) 76 T ELT)) (-3898 (((-783) (-783)) 79 T ELT) (((-783)) 78 T ELT))) -(((-1184) (-10 -7 (-15 -3896 ((-783))) (-15 -3896 ((-783) (-783))) (-15 -3897 ((-783))) (-15 -3897 ((-783) (-783))) (-15 -3898 ((-783))) (-15 -3898 ((-783) (-783))) (-15 -3899 ((-783))) (-15 -3899 ((-783) (-783))) (-15 -3900 ((-830))) (-15 -3900 ((-830) (-830))) (-15 -3901 ((-583 (-694)))) (-15 -3901 ((-583 (-694)) (-583 (-694)))) (-15 -3902 ((-583 (-830)))) (-15 -3902 ((-583 (-830)) (-583 (-830)))) (-15 -3903 ((-1185))) (-15 -3904 ((-583 (-1073)))) (-15 -3904 ((-583 (-1073)) (-583 (-1073)))) (-15 -3905 ((-583 (-1073)))) (-15 -3906 ((-830))) (-15 -3907 ((-830))) (-15 -3906 ((-830) (-830))) (-15 -3907 ((-830) (-830))) (-15 -3908 ((-830) (-830))) (-15 -3908 ((-830))) (-15 -3909 ((-179) (-330))) (-15 -3909 ((-179))))) (T -1184)) -((-3909 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1184)))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1184)))) (-3908 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3907 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3906 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3905 (*1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1184)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1184)))) (-3904 (*1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1184)))) (-3903 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1184)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1184)))) (-3902 (*1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1184)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1184)))) (-3901 (*1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1184)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3900 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) (-3899 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) (-3898 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) (-3897 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) (-3896 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184))))) -((-3910 (($) 6 T ELT)) (-3946 (((-772) $) 9 T ELT))) -(((-1185) (-13 (-552 (-772)) (-10 -8 (-15 -3910 ($))))) (T -1185)) -((-3910 (*1 *1) (-5 *1 (-1185)))) -((-3949 (($ $ |#2|) 10 T ELT))) -(((-1186 |#1| |#2|) (-10 -7 (-15 -3949 (|#1| |#1| |#2|))) (-1187 |#2|) (-312)) (T -1186)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3911 (((-107)) 39 T ELT)) (-3946 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2660 (($) 24 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ |#1|) 40 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) -(((-1187 |#1|) (-113) (-312)) (T -1187)) -((-3949 (*1 *1 *1 *2) (-12 (-4 *1 (-1187 *2)) (-4 *2 (-312)))) (-3911 (*1 *2) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) -(-13 (-654 |t#1|) (-10 -8 (-15 -3949 ($ $ |t#1|)) (-15 -3911 ((-107))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T)) -((-3916 (((-583 (-1122 |#1|)) (-1090) (-1122 |#1|)) 83 T ELT)) (-3914 (((-1069 (-1069 (-857 |#1|))) (-1090) (-1069 (-857 |#1|))) 63 T ELT)) (-3917 (((-1 (-1069 (-1122 |#1|)) (-1069 (-1122 |#1|))) (-694) (-1122 |#1|) (-1069 (-1122 |#1|))) 74 T ELT)) (-3912 (((-1 (-1069 (-857 |#1|)) (-1069 (-857 |#1|))) (-694)) 65 T ELT)) (-3915 (((-1 (-1085 (-857 |#1|)) (-857 |#1|)) (-1090)) 32 T ELT)) (-3913 (((-1 (-1069 (-857 |#1|)) (-1069 (-857 |#1|))) (-694)) 64 T ELT))) -(((-1188 |#1|) (-10 -7 (-15 -3912 ((-1 (-1069 (-857 |#1|)) (-1069 (-857 |#1|))) (-694))) (-15 -3913 ((-1 (-1069 (-857 |#1|)) (-1069 (-857 |#1|))) (-694))) (-15 -3914 ((-1069 (-1069 (-857 |#1|))) (-1090) (-1069 (-857 |#1|)))) (-15 -3915 ((-1 (-1085 (-857 |#1|)) (-857 |#1|)) (-1090))) (-15 -3916 ((-583 (-1122 |#1|)) (-1090) (-1122 |#1|))) (-15 -3917 ((-1 (-1069 (-1122 |#1|)) (-1069 (-1122 |#1|))) (-694) (-1122 |#1|) (-1069 (-1122 |#1|))))) (-312)) (T -1188)) -((-3917 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694)) (-4 *6 (-312)) (-5 *4 (-1122 *6)) (-5 *2 (-1 (-1069 *4) (-1069 *4))) (-5 *1 (-1188 *6)) (-5 *5 (-1069 *4)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-4 *5 (-312)) (-5 *2 (-583 (-1122 *5))) (-5 *1 (-1188 *5)) (-5 *4 (-1122 *5)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1 (-1085 (-857 *4)) (-857 *4))) (-5 *1 (-1188 *4)) (-4 *4 (-312)))) (-3914 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-4 *5 (-312)) (-5 *2 (-1069 (-1069 (-857 *5)))) (-5 *1 (-1188 *5)) (-5 *4 (-1069 (-857 *5))))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1069 (-857 *4)) (-1069 (-857 *4)))) (-5 *1 (-1188 *4)) (-4 *4 (-312)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1069 (-857 *4)) (-1069 (-857 *4)))) (-5 *1 (-1188 *4)) (-4 *4 (-312))))) -((-3919 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|) 80 T ELT)) (-3918 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) 79 T ELT))) -(((-1189 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3918 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))))) (-15 -3919 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|))) (-299) (-1155 |#1|) (-1155 |#2|) (-353 |#2| |#3|)) (T -1189)) -((-3919 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-1189 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5)))) (-3918 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) (-5 *1 (-1189 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3920 (((-1049) $) 12 T ELT)) (-3921 (((-1049) $) 10 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1190) (-13 (-995) (-10 -8 (-15 -3921 ((-1049) $)) (-15 -3920 ((-1049) $))))) (T -1190)) -((-3921 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1190)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1190))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3922 (((-1049) $) 11 T ELT)) (-3946 (((-772) $) 17 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT))) -(((-1191) (-13 (-995) (-10 -8 (-15 -3922 ((-1049) $))))) (T -1191)) -((-3922 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1191))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 59 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 82 T ELT) (($ (-484)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3126 (((-694)) NIL T CONST)) (-3923 (((-1185) (-694)) 16 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 36 T CONST)) (-2666 (($) 85 T CONST)) (-3056 (((-85) $ $) 88 T ELT)) (-3949 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3837 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 64 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) -(((-1192 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-961) (-430 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3949 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3923 ((-1185) (-694))))) (-961) (-756) (-717) (-861 |#1| |#3| |#2|) (-583 |#2|) (-583 (-694)) (-694)) (T -1192)) -((-3949 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-717)) (-14 *6 (-583 *3)) (-5 *1 (-1192 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861 *2 *4 *3)) (-14 *7 (-583 (-694))) (-14 *8 (-694)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-14 *8 (-583 *5)) (-5 *2 (-1185)) (-5 *1 (-1192 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-861 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3)))) -((-2568 (((-85) $ $) NIL T ELT)) (-3681 (((-583 (-2 (|:| -3861 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3682 (((-583 $) (-583 |#4|)) 95 T ELT)) (-3081 (((-583 |#3|) $) NIL T ELT)) (-2908 (((-85) $) NIL T ELT)) (-2899 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-2909 (((-2 (|:| |under| $) (|:| -3130 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3710 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3724 (($) NIL T CONST)) (-2904 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3689 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2900 (((-583 |#4|) (-583 |#4|) $) 28 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3157 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3156 (($ (-583 |#4|)) NIL T ELT)) (-3799 (((-3 $ #1#) $) 77 T ELT)) (-3685 ((|#4| |#4| $) 82 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT)) (-3406 (($ |#4| $) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-2902 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-3842 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3995)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3995)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3995)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3696 (((-2 (|:| -3861 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) NIL T ELT)) (-2889 (((-583 |#4|) $) NIL (|has| $ (-6 -3995)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3180 ((|#3| $) 83 T ELT)) (-2608 (((-583 |#4|) $) 32 T ELT)) (-3245 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-3926 (((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-583 |#4|)) 38 T ELT)) (-3326 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3958 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2914 (((-583 |#3|) $) NIL T ELT)) (-2913 (((-85) |#3| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3798 (((-3 |#4| #1#) $) NIL T ELT)) (-3697 (((-583 |#4|) $) 53 T ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3686 ((|#4| |#4| $) 81 T ELT)) (-3699 (((-85) $ $) 92 T ELT)) (-2903 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3801 (((-3 |#4| #1#) $) 76 T ELT)) (-1354 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3679 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3769 (($ $ |#4|) NIL T ELT)) (-1947 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3768 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3403 (((-85) $) 74 T ELT)) (-3565 (($) 45 T ELT)) (-3948 (((-694) $) NIL T ELT)) (-1946 (((-694) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3400 (($ $) NIL T ELT)) (-3972 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3530 (($ (-583 |#4|)) NIL T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3684 (($ $) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (((-583 |#4|) $) 62 T ELT)) (-3678 (((-694) $) NIL (|has| |#3| (-320)) ELT)) (-3925 (((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-583 |#4|)) 44 T ELT)) (-3924 (((-583 $) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-583 $) (-583 |#4|)) 73 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3698 (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3323 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-583 |#3|) $) NIL T ELT)) (-3933 (((-85) |#3| $) NIL T ELT)) (-3056 (((-85) $ $) NIL T ELT)) (-3957 (((-694) $) NIL T ELT))) -(((-1193 |#1| |#2| |#3| |#4|) (-13 (-1124 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3926 ((-3 $ #1="failed") (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3926 ((-3 $ #1#) (-583 |#4|))) (-15 -3925 ((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3925 ((-3 $ #1#) (-583 |#4|))) (-15 -3924 ((-583 $) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3924 ((-583 $) (-583 |#4|))))) (-495) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -1193)) -((-3926 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1193 *5 *6 *7 *8)))) (-3926 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1193 *3 *4 *5 *6)))) (-3925 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1193 *5 *6 *7 *8)))) (-3925 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1193 *3 *4 *5 *6)))) (-3924 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-583 (-1193 *6 *7 *8 *9))) (-5 *1 (-1193 *6 *7 *8 *9)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-1193 *4 *5 *6 *7))) (-5 *1 (-1193 *4 *5 *6 *7))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3724 (($) 23 T CONST)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 53 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 55 T ELT) (($ |#1| $) 54 T ELT))) -(((-1194 |#1|) (-113) (-961)) (T -1194)) -NIL -(-13 (-961) (-82 |t#1| |t#1|) (-555 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T)) -((-2568 (((-85) $ $) 69 T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3934 (((-583 |#1|) $) 54 T ELT)) (-3947 (($ $ (-694)) 47 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3935 (($ $ (-694)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3724 (($) NIL T CONST)) (-3939 (($ $ $) 72 T ELT) (($ $ (-739 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3157 (((-3 (-739 |#1|) #1#) $) NIL T ELT)) (-3156 (((-739 |#1|) $) NIL T ELT)) (-3959 (($ $) 40 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3951 (((-85) $) NIL T ELT)) (-3950 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-3938 (($ (-739 |#1|) |#2|) 39 T ELT)) (-3936 (($ $) 41 T ELT)) (-3941 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3955 (((-739 |#1|) $) NIL T ELT)) (-3956 (((-739 |#1|) $) 42 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3940 (($ $ $) 71 T ELT) (($ $ (-739 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1749 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2894 (((-739 |#1|) $) 36 T ELT)) (-3174 ((|#2| $) 38 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3948 (((-694) $) 44 T ELT)) (-3953 (((-85) $) 48 T ELT)) (-3952 ((|#2| $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-739 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-484)) NIL T ELT)) (-3817 (((-583 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-739 |#1|)) NIL T ELT)) (-3954 ((|#2| $ $) 78 T ELT) ((|#2| $ (-739 |#1|)) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 14 T CONST)) (-2666 (($) 20 T CONST)) (-2665 (((-583 (-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3056 (((-85) $ $) 45 T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 29 T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-739 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT))) -(((-1195 |#1| |#2|) (-13 (-335 |#2| (-739 |#1|)) (-1202 |#1| |#2|)) (-756) (-961)) (T -1195)) -NIL -((-3942 ((|#3| |#3| (-694)) 28 T ELT)) (-3943 ((|#3| |#3| (-694)) 34 T ELT)) (-3927 ((|#3| |#3| |#3| (-694)) 35 T ELT))) -(((-1196 |#1| |#2| |#3|) (-10 -7 (-15 -3943 (|#3| |#3| (-694))) (-15 -3942 (|#3| |#3| (-694))) (-15 -3927 (|#3| |#3| |#3| (-694)))) (-13 (-961) (-654 (-350 (-484)))) (-756) (-1202 |#2| |#1|)) (T -1196)) -((-3927 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-350 (-484))))) (-4 *5 (-756)) (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4)))) (-3942 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-350 (-484))))) (-4 *5 (-756)) (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4)))) (-3943 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-350 (-484))))) (-4 *5 (-756)) (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4))))) -((-3932 (((-85) $) 15 T ELT)) (-3933 (((-85) $) 14 T ELT)) (-3928 (($ $) 19 T ELT) (($ $ (-694)) 21 T ELT))) -(((-1197 |#1| |#2|) (-10 -7 (-15 -3928 (|#1| |#1| (-694))) (-15 -3928 (|#1| |#1|)) (-15 -3932 ((-85) |#1|)) (-15 -3933 ((-85) |#1|))) (-1198 |#2|) (-312)) (T -1197)) -NIL -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1772 $) (|:| -3982 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3932 (((-85) $) 114 T ELT)) (-3929 (((-694)) 110 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3775 (($ $) 91 T ELT)) (-3971 (((-348 $) $) 90 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3724 (($) 23 T CONST)) (-3157 (((-3 |#1| "failed") $) 121 T ELT)) (-3156 ((|#1| $) 122 T ELT)) (-2564 (($ $ $) 71 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-2563 (($ $ $) 72 T ELT)) (-2741 (((-2 (|:| -3954 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1764 (($ $ (-694)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3723 (((-85) $) 89 T ELT)) (-3772 (((-743 (-830)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1891 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-2484 (($ $) 88 T ELT)) (-3931 (((-85) $) 113 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-2708 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3144 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3732 (((-348 $) $) 92 T ELT)) (-3930 (((-743 (-830))) 111 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3466 (((-3 $ "failed") $ $) 56 T ELT)) (-2740 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2879 (((-2 (|:| -1972 $) (|:| -2902 $)) $ $) 73 T ELT)) (-1765 (((-3 (-694) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3911 (((-107)) 119 T ELT)) (-3948 (((-743 (-830)) $) 112 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2702 (((-632 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-3933 (((-85) $) 115 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3928 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-694)) 108 (|has| |#1| (-320)) ELT)) (-3056 (((-85) $ $) 8 T ELT)) (-3949 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) -(((-1198 |#1|) (-113) (-312)) (T -1198)) -((-3933 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830))))) (-3930 (*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830))))) (-3929 (*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-694)))) (-3928 (*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-312)) (-4 *2 (-320)))) (-3928 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-4 *3 (-320))))) -(-13 (-312) (-950 |t#1|) (-1187 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-345)) |%noBranch|) (-15 -3933 ((-85) $)) (-15 -3932 ((-85) $)) (-15 -3931 ((-85) $)) (-15 -3948 ((-743 (-830)) $)) (-15 -3930 ((-743 (-830)))) (-15 -3929 ((-694))) (IF (|has| |t#1| (-320)) (PROGN (-6 (-345)) (-15 -3928 ($ $)) (-15 -3928 ($ $ (-694)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-950 |#1|) . T) ((-963 (-350 (-484))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T) ((-1187 |#1|) . T)) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3934 (((-583 |#1|) $) 55 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3935 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-694)) 57 (|has| |#2| (-146)) ELT)) (-3724 (($) 23 T CONST)) (-3939 (($ $ |#1|) 69 T ELT) (($ $ (-739 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3157 (((-3 (-739 |#1|) "failed") $) 79 T ELT)) (-3156 (((-739 |#1|) $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3951 (((-85) $) 60 T ELT)) (-3950 (($ $) 59 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3937 (((-85) $) 65 T ELT)) (-3938 (($ (-739 |#1|) |#2|) 66 T ELT)) (-3936 (($ $) 64 T ELT)) (-3941 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3955 (((-739 |#1|) $) 76 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3940 (($ $ |#1|) 72 T ELT) (($ $ (-739 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3953 (((-85) $) 62 T ELT)) (-3952 ((|#2| $) 61 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-739 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3954 ((|#2| $ (-739 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT))) -(((-1199 |#1| |#2|) (-113) (-756) (-961)) (T -1199)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-739 *3)) (|:| |c| *4))))) (-3954 (*1 *2 *1 *3) (-12 (-5 *3 (-739 *4)) (-4 *1 (-1199 *4 *2)) (-4 *4 (-756)) (-4 *2 (-961)))) (-3954 (*1 *2 *1 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (-3940 (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3940 (*1 *1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3940 (*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3939 (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3939 (*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3938 (*1 *1 *2 *3) (-12 (-5 *2 (-739 *4)) (-4 *4 (-756)) (-4 *1 (-1199 *4 *3)) (-4 *3 (-961)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3936 (*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3946 (*1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3950 (*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3935 (*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)) (-4 *3 (-146)))) (-3935 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-4 *4 (-146)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-583 *3))))) -(-13 (-961) (-1194 |t#2|) (-950 (-739 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3955 ((-739 |t#1|) $)) (-15 -3941 ((-2 (|:| |k| (-739 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3954 (|t#2| $ (-739 |t#1|))) (-15 -3954 (|t#2| $ $)) (-15 -3940 ($ $ |t#1|)) (-15 -3940 ($ $ (-739 |t#1|))) (-15 -3940 ($ $ $)) (-15 -3939 ($ $ |t#1|)) (-15 -3939 ($ $ (-739 |t#1|))) (-15 -3939 ($ $ $)) (-15 -3938 ($ (-739 |t#1|) |t#2|)) (-15 -3937 ((-85) $)) (-15 -3936 ($ $)) (-15 -3946 ($ |t#1|)) (-15 -3953 ((-85) $)) (-15 -3952 (|t#2| $)) (-15 -3951 ((-85) $)) (-15 -3950 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3935 ($ $ $)) (-15 -3935 ($ $ (-694)))) |%noBranch|) (-15 -3958 ($ (-1 |t#2| |t#2|) $)) (-15 -3934 ((-583 |t#1|) $)) (IF (|has| |t#2| (-6 -3988)) (-6 -3988) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 (-739 |#1|)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) |has| |#2| (-146)) ((-654 |#2|) |has| |#2| (-146)) ((-663) . T) ((-950 (-739 |#1|)) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1194 |#2|) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3934 (((-583 |#1|) $) 99 T ELT)) (-3947 (($ $ (-694)) 103 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3935 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-3724 (($) NIL T CONST)) (-3939 (($ $ |#1|) NIL T ELT) (($ $ (-739 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3157 (((-3 (-739 |#1|) #1#) $) NIL T ELT) (((-3 (-803 |#1|) #1#) $) NIL T ELT)) (-3156 (((-739 |#1|) $) NIL T ELT) (((-803 |#1|) $) NIL T ELT)) (-3959 (($ $) 102 T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3951 (((-85) $) 90 T ELT)) (-3950 (($ $) 93 T ELT)) (-3944 (($ $ $ (-694)) 104 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-3938 (($ (-739 |#1|) |#2|) NIL T ELT) (($ (-803 |#1|) |#2|) 28 T ELT)) (-3936 (($ $) 120 T ELT)) (-3941 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3955 (((-739 |#1|) $) NIL T ELT)) (-3956 (((-739 |#1|) $) NIL T ELT)) (-3958 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3940 (($ $ |#1|) NIL T ELT) (($ $ (-739 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3942 (($ $ (-694)) 113 (|has| |#2| (-654 (-350 (-484)))) ELT)) (-1749 (((-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2894 (((-803 |#1|) $) 84 T ELT)) (-3174 ((|#2| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3943 (($ $ (-694)) 110 (|has| |#2| (-654 (-350 (-484)))) ELT)) (-3948 (((-694) $) 100 T ELT)) (-3953 (((-85) $) 85 T ELT)) (-3952 ((|#2| $) 88 T ELT)) (-3946 (((-772) $) 70 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-739 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-803 |#1|)) NIL T ELT) (($ (-606 |#1| |#2|)) 47 T ELT) (((-1195 |#1| |#2|) $) 77 T ELT) (((-1204 |#1| |#2|) $) 82 T ELT)) (-3817 (((-583 |#2|) $) NIL T ELT)) (-3677 ((|#2| $ (-803 |#1|)) NIL T ELT)) (-3954 ((|#2| $ (-739 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 21 T CONST)) (-2666 (($) 27 T CONST)) (-2665 (((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3945 (((-3 (-606 |#1| |#2|) #1#) $) 119 T ELT)) (-3056 (((-85) $ $) 78 T ELT)) (-3837 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3839 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-803 |#1|)) NIL T ELT))) -(((-1200 |#1| |#2|) (-13 (-1202 |#1| |#2|) (-335 |#2| (-803 |#1|)) (-10 -8 (-15 -3946 ($ (-606 |#1| |#2|))) (-15 -3946 ((-1195 |#1| |#2|) $)) (-15 -3946 ((-1204 |#1| |#2|) $)) (-15 -3945 ((-3 (-606 |#1| |#2|) "failed") $)) (-15 -3944 ($ $ $ (-694))) (IF (|has| |#2| (-654 (-350 (-484)))) (PROGN (-15 -3943 ($ $ (-694))) (-15 -3942 ($ $ (-694)))) |%noBranch|))) (-756) (-146)) (T -1200)) -((-3946 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *1 (-1200 *3 *4)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1204 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3945 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3944 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1200 *3 *4)) (-4 *4 (-654 (-350 (-484)))) (-4 *3 (-756)) (-4 *4 (-146)))) (-3942 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1200 *3 *4)) (-4 *4 (-654 (-350 (-484)))) (-4 *3 (-756)) (-4 *4 (-146))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3934 (((-583 (-1090)) $) NIL T ELT)) (-3962 (($ (-1195 (-1090) |#1|)) NIL T ELT)) (-3947 (($ $ (-694)) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3935 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-3724 (($) NIL T CONST)) (-3939 (($ $ (-1090)) NIL T ELT) (($ $ (-739 (-1090))) NIL T ELT) (($ $ $) NIL T ELT)) (-3157 (((-3 (-739 (-1090)) #1#) $) NIL T ELT)) (-3156 (((-739 (-1090)) $) NIL T ELT)) (-3467 (((-3 $ #1#) $) NIL T ELT)) (-3951 (((-85) $) NIL T ELT)) (-3950 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-3938 (($ (-739 (-1090)) |#1|) NIL T ELT)) (-3936 (($ $) NIL T ELT)) (-3941 (((-2 (|:| |k| (-739 (-1090))) (|:| |c| |#1|)) $) NIL T ELT)) (-3955 (((-739 (-1090)) $) NIL T ELT)) (-3956 (((-739 (-1090)) $) NIL T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3940 (($ $ (-1090)) NIL T ELT) (($ $ (-739 (-1090))) NIL T ELT) (($ $ $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3963 (((-1195 (-1090) |#1|) $) NIL T ELT)) (-3948 (((-694) $) NIL T ELT)) (-3953 (((-85) $) NIL T ELT)) (-3952 ((|#1| $) NIL T ELT)) (-3946 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-739 (-1090))) NIL T ELT) (($ (-1090)) NIL T ELT)) (-3954 ((|#1| $ (-739 (-1090))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3126 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) NIL T CONST)) (-3961 (((-583 (-2 (|:| |k| (-1090)) (|:| |c| $))) $) NIL T ELT)) (-2666 (($) NIL T CONST)) (-3056 (((-85) $ $) NIL T ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1090) $) NIL T ELT))) -(((-1201 |#1|) (-13 (-1202 (-1090) |#1|) (-10 -8 (-15 -3963 ((-1195 (-1090) |#1|) $)) (-15 -3962 ($ (-1195 (-1090) |#1|))) (-15 -3961 ((-583 (-2 (|:| |k| (-1090)) (|:| |c| $))) $)))) (-961)) (T -1201)) -((-3963 (*1 *2 *1) (-12 (-5 *2 (-1195 (-1090) *3)) (-5 *1 (-1201 *3)) (-4 *3 (-961)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-1195 (-1090) *3)) (-4 *3 (-961)) (-5 *1 (-1201 *3)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1090)) (|:| |c| (-1201 *3))))) (-5 *1 (-1201 *3)) (-4 *3 (-961))))) -((-2568 (((-85) $ $) 7 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-3934 (((-583 |#1|) $) 55 T ELT)) (-3947 (($ $ (-694)) 89 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3935 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-694)) 57 (|has| |#2| (-146)) ELT)) (-3724 (($) 23 T CONST)) (-3939 (($ $ |#1|) 69 T ELT) (($ $ (-739 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3157 (((-3 (-739 |#1|) "failed") $) 79 T ELT)) (-3156 (((-739 |#1|) $) 80 T ELT)) (-3467 (((-3 $ "failed") $) 42 T ELT)) (-3951 (((-85) $) 60 T ELT)) (-3950 (($ $) 59 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3937 (((-85) $) 65 T ELT)) (-3938 (($ (-739 |#1|) |#2|) 66 T ELT)) (-3936 (($ $) 64 T ELT)) (-3941 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3955 (((-739 |#1|) $) 76 T ELT)) (-3956 (((-739 |#1|) $) 91 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3940 (($ $ |#1|) 72 T ELT) (($ $ (-739 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3242 (((-1073) $) 11 T ELT)) (-3243 (((-1033) $) 12 T ELT)) (-3948 (((-694) $) 90 T ELT)) (-3953 (((-85) $) 62 T ELT)) (-3952 ((|#2| $) 61 T ELT)) (-3946 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-739 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3954 ((|#2| $ (-739 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3126 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3125 (((-85) $ $) 33 T ELT)) (-2660 (($) 24 T CONST)) (-2666 (($) 45 T CONST)) (-3056 (((-85) $ $) 8 T ELT)) (-3837 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3839 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT))) -(((-1202 |#1| |#2|) (-113) (-756) (-961)) (T -1202)) -((-3956 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-694)))) (-3947 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))) -(-13 (-1199 |t#1| |t#2|) (-10 -8 (-15 -3956 ((-739 |t#1|) $)) (-15 -3948 ((-694) $)) (-15 -3947 ($ $ (-694))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 (-739 |#1|)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) |has| |#2| (-146)) ((-654 |#2|) |has| |#2| (-146)) ((-663) . T) ((-950 (-739 |#1|)) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1194 |#2|) . T) ((-1199 |#1| |#2|) . T)) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3724 (($) NIL T CONST)) (-3157 (((-3 |#2| #1#) $) NIL T ELT)) (-3156 ((|#2| $) NIL T ELT)) (-3959 (($ $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 43 T ELT)) (-3951 (((-85) $) 37 T ELT)) (-3950 (($ $) 38 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2821 (((-583 $) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-3938 (($ |#2| |#1|) NIL T ELT)) (-3955 ((|#2| $) 25 T ELT)) (-3956 ((|#2| $) 23 T ELT)) (-3958 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1749 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2894 ((|#2| $) NIL T ELT)) (-3174 ((|#1| $) NIL T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3953 (((-85) $) 33 T ELT)) (-3952 ((|#1| $) 34 T ELT)) (-3946 (((-772) $) 66 T ELT) (($ (-484)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3817 (((-583 |#1|) $) NIL T ELT)) (-3677 ((|#1| $ |#2|) NIL T ELT)) (-3954 ((|#1| $ |#2|) 29 T ELT)) (-3126 (((-694)) 14 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 30 T CONST)) (-2666 (($) 11 T CONST)) (-2665 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3056 (((-85) $ $) 31 T ELT)) (-3949 (($ $ |#1|) 68 (|has| |#1| (-312)) ELT)) (-3837 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3839 (($ $ $) 51 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 53 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3957 (((-694) $) 18 T ELT))) -(((-1203 |#1| |#2|) (-13 (-961) (-1194 |#1|) (-335 |#1| |#2|) (-555 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3957 ((-694) $)) (-15 -3956 (|#2| $)) (-15 -3955 (|#2| $)) (-15 -3959 ($ $)) (-15 -3954 (|#1| $ |#2|)) (-15 -3953 ((-85) $)) (-15 -3952 (|#1| $)) (-15 -3951 ((-85) $)) (-15 -3950 ($ $)) (-15 -3958 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-312)) (-15 -3949 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3988)) (-6 -3988) |%noBranch|) (IF (|has| |#1| (-6 -3992)) (-6 -3992) |%noBranch|) (IF (|has| |#1| (-6 -3993)) (-6 -3993) |%noBranch|))) (-961) (-754)) (T -1203)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3959 (*1 *1 *1) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3958 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1203 *3 *4)) (-4 *4 (-754)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3956 (*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1203 *3 *2)) (-4 *3 (-961)))) (-3955 (*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1203 *3 *2)) (-4 *3 (-961)))) (-3954 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1203 *2 *3)) (-4 *3 (-754)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3952 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1203 *2 *3)) (-4 *3 (-754)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3950 (*1 *1 *1) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3949 (*1 *1 *1 *2) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-754))))) -((-2568 (((-85) $ $) 27 T ELT)) (-3188 (((-85) $) NIL T ELT)) (-3934 (((-583 |#1|) $) 132 T ELT)) (-3962 (($ (-1195 |#1| |#2|)) 50 T ELT)) (-3947 (($ $ (-694)) 38 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3935 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-694)) 52 (|has| |#2| (-146)) ELT)) (-3724 (($) NIL T CONST)) (-3939 (($ $ |#1|) 114 T ELT) (($ $ (-739 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3157 (((-3 (-739 |#1|) #1#) $) NIL T ELT)) (-3156 (((-739 |#1|) $) NIL T ELT)) (-3467 (((-3 $ #1#) $) 122 T ELT)) (-3951 (((-85) $) 117 T ELT)) (-3950 (($ $) 118 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3937 (((-85) $) NIL T ELT)) (-3938 (($ (-739 |#1|) |#2|) 20 T ELT)) (-3936 (($ $) NIL T ELT)) (-3941 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3955 (((-739 |#1|) $) 123 T ELT)) (-3956 (((-739 |#1|) $) 126 T ELT)) (-3958 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3940 (($ $ |#1|) 112 T ELT) (($ $ (-739 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3963 (((-1195 |#1| |#2|) $) 94 T ELT)) (-3948 (((-694) $) 129 T ELT)) (-3953 (((-85) $) 81 T ELT)) (-3952 ((|#2| $) 32 T ELT)) (-3946 (((-772) $) 73 T ELT) (($ (-484)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-739 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3954 ((|#2| $ (-739 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3126 (((-694)) 120 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 15 T CONST)) (-3961 (((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2666 (($) 33 T CONST)) (-3056 (((-85) $ $) 14 T ELT)) (-3837 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3839 (($ $ $) 61 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 55 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 53 T ELT) (($ (-484) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) -(((-1204 |#1| |#2|) (-13 (-1202 |#1| |#2|) (-10 -8 (-15 -3963 ((-1195 |#1| |#2|) $)) (-15 -3962 ($ (-1195 |#1| |#2|))) (-15 -3961 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-756) (-961)) (T -1204)) -((-3963 (*1 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-1195 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *1 (-1204 *3 *4)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1204 *3 *4))))) (-5 *1 (-1204 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3965 (($ (-583 (-830))) 11 T ELT)) (-3964 (((-884) $) 12 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3946 (((-772) $) 25 T ELT) (($ (-884)) 14 T ELT) (((-884) $) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3056 (((-85) $ $) 17 T ELT))) -(((-1205) (-13 (-1013) (-430 (-884)) (-10 -8 (-15 -3965 ($ (-583 (-830)))) (-15 -3964 ((-884) $))))) (T -1205)) -((-3965 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1205)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-1205))))) -((-3966 (((-583 (-1069 |#1|)) (-1 (-583 (-1069 |#1|)) (-583 (-1069 |#1|))) (-484)) 16 T ELT) (((-1069 |#1|) (-1 (-1069 |#1|) (-1069 |#1|))) 13 T ELT))) -(((-1206 |#1|) (-10 -7 (-15 -3966 ((-1069 |#1|) (-1 (-1069 |#1|) (-1069 |#1|)))) (-15 -3966 ((-583 (-1069 |#1|)) (-1 (-583 (-1069 |#1|)) (-583 (-1069 |#1|))) (-484)))) (-1129)) (T -1206)) -((-3966 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1069 *5)) (-583 (-1069 *5)))) (-5 *4 (-484)) (-5 *2 (-583 (-1069 *5))) (-5 *1 (-1206 *5)) (-4 *5 (-1129)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-1 (-1069 *4) (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1206 *4)) (-4 *4 (-1129))))) -((-3968 (((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|))) 174 T ELT) (((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85)) 173 T ELT) (((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)) 172 T ELT) (((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-958 |#1| |#2|)) 156 T ELT)) (-3967 (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|))) 85 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85)) 84 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85) (-85)) 83 T ELT)) (-3971 (((-583 (-1060 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) (-958 |#1| |#2|)) 73 T ELT)) (-3969 (((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|))) 140 T ELT) (((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85)) 139 T ELT) (((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85) (-85)) 138 T ELT) (((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-583 (-583 (-937 (-350 |#1|)))) (-958 |#1| |#2|)) 132 T ELT)) (-3970 (((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|))) 145 T ELT) (((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85)) 144 T ELT) (((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85) (-85)) 143 T ELT) (((-583 (-583 (-937 (-350 |#1|)))) (-958 |#1| |#2|)) 142 T ELT)) (-3972 (((-583 (-703 |#1| (-773 |#3|))) (-1060 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) 111 T ELT) (((-1085 (-937 (-350 |#1|))) (-1085 |#1|)) 102 T ELT) (((-857 (-937 (-350 |#1|))) (-703 |#1| (-773 |#3|))) 109 T ELT) (((-857 (-937 (-350 |#1|))) (-857 |#1|)) 107 T ELT) (((-703 |#1| (-773 |#3|)) (-703 |#1| (-773 |#2|))) 33 T ELT))) -(((-1207 |#1| |#2| |#3|) (-10 -7 (-15 -3967 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3967 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85))) (-15 -3967 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)))) (-15 -3968 ((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-958 |#1| |#2|))) (-15 -3968 ((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85) (-85))) (-15 -3968 ((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3968 ((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85))) (-15 -3968 ((-583 (-2 (|:| -1747 (-1085 |#1|)) (|:| -3224 (-583 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3969 ((-583 (-583 (-937 (-350 |#1|)))) (-958 |#1| |#2|))) (-15 -3969 ((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85) (-85) (-85))) (-15 -3969 ((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3969 ((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85))) (-15 -3969 ((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)))) (-15 -3970 ((-583 (-583 (-937 (-350 |#1|)))) (-958 |#1| |#2|))) (-15 -3970 ((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3970 ((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85))) (-15 -3970 ((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)))) (-15 -3971 ((-583 (-1060 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) (-958 |#1| |#2|))) (-15 -3972 ((-703 |#1| (-773 |#3|)) (-703 |#1| (-773 |#2|)))) (-15 -3972 ((-857 (-937 (-350 |#1|))) (-857 |#1|))) (-15 -3972 ((-857 (-937 (-350 |#1|))) (-703 |#1| (-773 |#3|)))) (-15 -3972 ((-1085 (-937 (-350 |#1|))) (-1085 |#1|))) (-15 -3972 ((-583 (-703 |#1| (-773 |#3|))) (-1060 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))))) (-13 (-755) (-258) (-120) (-933)) (-583 (-1090)) (-583 (-1090))) (T -1207)) -((-3972 (*1 *2 *3) (-12 (-5 *3 (-1060 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6)))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-703 *4 (-773 *6)))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-1085 (-937 (-350 *4)))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-703 *4 (-773 *6))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *6 (-583 (-1090))) (-5 *2 (-857 (-937 (-350 *4)))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-857 (-937 (-350 *4)))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-703 *4 (-773 *5))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1090))) (-5 *2 (-703 *4 (-773 *6))) (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1090))) (-5 *2 (-583 (-1060 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3970 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1090))) (-5 *2 (-583 (-583 (-937 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))) (-3969 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3969 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3969 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1090))) (-5 *2 (-583 (-583 (-937 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090))))) (-3968 (*1 *2 *3) (-12 (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1747 (-1085 *4)) (|:| -3224 (-583 (-857 *4)))))) (-5 *1 (-1207 *4 *5 *6)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))) (-3968 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1747 (-1085 *5)) (|:| -3224 (-583 (-857 *5)))))) (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3968 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1747 (-1085 *5)) (|:| -3224 (-583 (-857 *5)))))) (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3968 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1747 (-1085 *5)) (|:| -3224 (-583 (-857 *5)))))) (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1090))) (-5 *2 (-583 (-2 (|:| -1747 (-1085 *4)) (|:| -3224 (-583 (-857 *4)))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090))))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))) (-3967 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3967 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090)))))) -((-3975 (((-3 (-1179 (-350 (-484))) #1="failed") (-1179 |#1|) |#1|) 21 T ELT)) (-3973 (((-85) (-1179 |#1|)) 12 T ELT)) (-3974 (((-3 (-1179 (-484)) #1#) (-1179 |#1|)) 16 T ELT))) -(((-1208 |#1|) (-10 -7 (-15 -3973 ((-85) (-1179 |#1|))) (-15 -3974 ((-3 (-1179 (-484)) #1="failed") (-1179 |#1|))) (-15 -3975 ((-3 (-1179 (-350 (-484))) #1#) (-1179 |#1|) |#1|))) (-13 (-961) (-580 (-484)))) (T -1208)) -((-3975 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-1179 (-350 (-484)))) (-5 *1 (-1208 *4)))) (-3974 (*1 *2 *3) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-1179 (-484))) (-5 *1 (-1208 *4)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-85)) (-5 *1 (-1208 *4))))) -((-2568 (((-85) $ $) NIL T ELT)) (-3188 (((-85) $) 12 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3136 (((-694)) 9 T ELT)) (-3724 (($) NIL T CONST)) (-3467 (((-3 $ #1#) $) 57 T ELT)) (-2994 (($) 46 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 38 T ELT)) (-3445 (((-632 $) $) 36 T ELT)) (-2010 (((-830) $) 14 T ELT)) (-3242 (((-1073) $) NIL T ELT)) (-3446 (($) 26 T CONST)) (-2400 (($ (-830)) 47 T ELT)) (-3243 (((-1033) $) NIL T ELT)) (-3972 (((-484) $) 16 T ELT)) (-3946 (((-772) $) 21 T ELT) (($ (-484)) 18 T ELT)) (-3126 (((-694)) 10 T CONST)) (-1265 (((-85) $ $) 59 T ELT)) (-3125 (((-85) $ $) NIL T ELT)) (-2660 (($) 23 T CONST)) (-2666 (($) 25 T CONST)) (-3056 (((-85) $ $) 31 T ELT)) (-3837 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3839 (($ $ $) 29 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 52 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 41 T ELT) (($ $ $) 40 T ELT))) -(((-1209 |#1|) (-13 (-146) (-320) (-553 (-484)) (-1066)) (-830)) (T -1209)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 2822106 2822111 2822116 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2822091 2822096 2822101 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2822076 2822081 2822086 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2822061 2822066 2822071 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1209 2821040 2821979 2822056 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1208 2820255 2820434 2820653 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1207 2811414 2813283 2815217 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1206 2810802 2810955 2811144 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1205 2810264 2810567 2810680 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1204 2807824 2809726 2809929 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1203 2804588 2806241 2806812 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1202 2801845 2803575 2803629 "XPOLYC" 2803914 XPOLYC (NIL T T) -9 NIL 2804027 NIL) (-1201 2799364 2801349 2801552 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1200 2795612 2798223 2798611 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1199 2790459 2792092 2792146 "XFALG" 2794291 XFALG (NIL T T) -9 NIL 2795075 NIL) (-1198 2785615 2788348 2788390 "XF" 2789008 XF (NIL T) -9 NIL 2789404 NIL) (-1197 2785333 2785443 2785610 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1196 2784560 2784682 2784886 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1195 2782302 2784460 2784555 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1194 2780883 2781678 2781720 "XALG" 2781725 XALG (NIL T) -9 NIL 2781834 NIL) (-1193 2774593 2779293 2779771 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1192 2772836 2773838 2774159 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1191 2772435 2772707 2772776 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1190 2771922 2772225 2772318 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1189 2770999 2771209 2771504 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1188 2769295 2769758 2770220 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1187 2768184 2768769 2768811 "VSPACE" 2768947 VSPACE (NIL T) -9 NIL 2769021 NIL) (-1186 2768055 2768088 2768179 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1185 2767898 2767952 2768020 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1184 2764881 2765676 2766413 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1183 2755979 2758580 2760753 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1182 2749556 2751447 2753026 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1181 2748040 2748435 2748841 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1180 2746867 2747148 2747464 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1179 2742155 2746694 2746786 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1178 2735391 2739828 2739871 "VECTCAT" 2740859 VECTCAT (NIL T) -9 NIL 2741443 NIL) (-1177 2734670 2734996 2735386 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1176 2734164 2734406 2734526 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1175 2734097 2734102 2734132 "UTYPE" 2734137 UTYPE (NIL) -9 NIL NIL NIL) (-1174 2733084 2733260 2733521 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1173 2730935 2731443 2731967 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1172 2720817 2726787 2726829 "UTSCAT" 2727927 UTSCAT (NIL T) -9 NIL 2728684 NIL) (-1171 2718882 2719825 2720812 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1170 2718556 2718605 2718736 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1169 2710267 2716752 2717231 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1168 2704266 2707075 2707118 "URAGG" 2709188 URAGG (NIL T) -9 NIL 2709910 NIL) (-1167 2702281 2703243 2704261 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1166 2697988 2701257 2701719 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1165 2690417 2697912 2697983 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1164 2679068 2686555 2686616 "UPXSCCA" 2687184 UPXSCCA (NIL T T) -9 NIL 2687416 NIL) (-1163 2678789 2678891 2679063 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1162 2667341 2674553 2674595 "UPXSCAT" 2675235 UPXSCAT (NIL T) -9 NIL 2675843 NIL) (-1161 2666854 2666939 2667116 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1160 2658540 2666445 2666707 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1159 2657435 2657705 2658055 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1158 2650138 2653623 2653677 "UPSCAT" 2654746 UPSCAT (NIL T T) -9 NIL 2655510 NIL) (-1157 2649558 2649810 2650133 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1156 2649232 2649281 2649412 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1155 2633362 2642316 2642358 "UPOLYC" 2644436 UPOLYC (NIL T) -9 NIL 2645656 NIL) (-1154 2627417 2630265 2633357 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1153 2626853 2626978 2627141 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1152 2626487 2626574 2626713 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1151 2625300 2625567 2625871 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1150 2624633 2624763 2624948 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1149 2624225 2624300 2624447 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1148 2614989 2623991 2624119 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1147 2614351 2614488 2614693 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1146 2612952 2613799 2614075 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1145 2612181 2612378 2612603 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1144 2598991 2612105 2612176 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1143 2578797 2592032 2592093 "ULSCCAT" 2592724 ULSCCAT (NIL T T) -9 NIL 2593011 NIL) (-1142 2578132 2578418 2578792 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1141 2566504 2573638 2573680 "ULSCAT" 2574533 ULSCAT (NIL T) -9 NIL 2575263 NIL) (-1140 2566017 2566102 2566279 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1139 2548134 2565516 2565757 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1138 2547168 2547861 2547975 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2548086) (-1137 2546201 2546894 2547008 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2547119) (-1136 2545234 2545927 2546041 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2546152) (-1135 2544267 2544960 2545074 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2545185) (-1134 2542274 2543495 2543525 "UFD" 2543736 UFD (NIL) -9 NIL 2543849 NIL) (-1133 2542118 2542175 2542269 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1132 2541370 2541577 2541793 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1131 2539590 2540043 2540508 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1130 2539315 2539555 2539585 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1129 2539253 2539258 2539288 "TYPE" 2539293 TYPE (NIL) -9 NIL 2539300 NIL) (-1128 2538412 2538632 2538872 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1127 2537590 2538021 2538256 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1126 2535744 2536317 2536856 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1125 2534778 2535014 2535250 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1124 2523277 2527593 2527689 "TSETCAT" 2532904 TSETCAT (NIL T T T T) -9 NIL 2534405 NIL) (-1123 2519614 2521430 2523272 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1122 2514006 2518840 2519122 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1121 2509343 2510356 2511285 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1120 2508840 2508915 2509078 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1119 2506916 2507206 2507561 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1118 2506400 2506549 2506579 "TRIGCAT" 2506792 TRIGCAT (NIL) -9 NIL NIL NIL) (-1117 2506151 2506254 2506395 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1116 2503316 2505257 2505538 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1115 2502422 2503118 2503148 "TRANFUN" 2503183 TRANFUN (NIL) -9 NIL 2503249 NIL) (-1114 2501886 2502137 2502417 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1113 2501723 2501761 2501822 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1112 2501180 2501311 2501462 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1111 2499921 2500578 2500814 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1110 2499733 2499770 2499842 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1109 2497947 2498593 2499022 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1108 2496327 2496664 2496986 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1107 2485234 2494107 2494163 "TBAGG" 2494480 TBAGG (NIL T T) -9 NIL 2494690 NIL) (-1106 2480745 2482932 2485229 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1105 2480222 2480347 2480492 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1104 2479732 2480052 2480142 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1103 2479229 2479346 2479484 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1102 2470552 2479157 2479224 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1101 2466305 2467600 2468845 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1100 2465674 2465833 2466014 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1099 2462828 2463581 2464364 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1098 2462602 2462792 2462823 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1097 2461556 2462241 2462367 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2462553) (-1096 2460820 2461368 2461447 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2461507) (-1095 2457643 2458802 2459502 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1094 2455326 2456009 2456643 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1093 2451404 2452450 2453427 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1092 2448503 2451059 2451288 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1091 2448099 2448186 2448308 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1090 2444723 2446197 2447016 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1089 2437683 2443920 2444213 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1088 2429369 2437274 2437536 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1087 2428648 2428787 2429004 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1086 2428332 2428397 2428508 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1085 2419055 2428044 2428169 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1084 2417785 2418083 2418438 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1083 2417190 2417268 2417459 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1082 2399342 2416689 2416930 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1081 2398941 2399213 2399282 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1080 2398277 2398558 2398698 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1079 2392879 2394138 2395091 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1078 2392411 2392511 2392675 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1077 2387522 2388804 2389951 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1076 2381980 2383451 2384762 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1075 2374895 2376959 2378750 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1074 2365868 2374833 2374890 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1073 2360734 2365582 2365697 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1072 2360321 2360404 2360548 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1071 2359472 2359673 2359908 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1070 2359212 2359270 2359363 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1069 2351954 2357417 2358023 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1068 2351130 2351335 2351566 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1067 2350375 2350746 2350893 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1066 2349863 2350105 2350135 "STEP" 2350229 STEP (NIL) -9 NIL 2350300 NIL) (-1065 2341176 2349781 2349858 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1064 2335395 2339974 2340017 "STAGG" 2340444 STAGG (NIL T) -9 NIL 2340618 NIL) (-1063 2333774 2334522 2335390 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1062 2332103 2333601 2333693 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1061 2331383 2331922 2331952 "SRING" 2331957 SRING (NIL) -9 NIL 2331977 NIL) (-1060 2324158 2329921 2330360 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1059 2317932 2319371 2320875 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1058 2310487 2315227 2315257 "SRAGG" 2316556 SRAGG (NIL) -9 NIL 2317160 NIL) (-1057 2309784 2310104 2310482 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1056 2303992 2309106 2309529 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1055 2298344 2301360 2302096 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1054 2294773 2295592 2296229 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1053 2293748 2294053 2294083 "SPFCAT" 2294527 SPFCAT (NIL) -9 NIL NIL NIL) (-1052 2292685 2292937 2293201 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1051 2283443 2285717 2285747 "SPADXPT" 2290384 SPADXPT (NIL) -9 NIL 2292508 NIL) (-1050 2283245 2283291 2283360 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1049 2280901 2283209 2283240 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1048 2272575 2274664 2274706 "SPACEC" 2279021 SPACEC (NIL T) -9 NIL 2280826 NIL) (-1047 2270404 2272522 2272570 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1046 2269340 2269529 2269819 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1045 2267744 2268077 2268488 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1044 2267009 2267243 2267504 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1043 2263189 2264149 2265144 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1042 2259547 2260246 2260975 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1041 2253467 2258869 2258965 "SNTSCAT" 2258970 SNTSCAT (NIL T T T T) -9 NIL 2259040 NIL) (-1040 2247288 2252108 2252498 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1039 2241060 2247207 2247283 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1038 2239492 2239823 2240221 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1037 2231232 2236058 2236160 "SMATCAT" 2237503 SMATCAT (NIL NIL T T T) -9 NIL 2238051 NIL) (-1036 2229073 2230057 2231227 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1035 2227180 2228531 2228574 "SMAGG" 2228659 SMAGG (NIL T) -9 NIL 2228734 NIL) (-1034 2224905 2226347 2226390 "SKAGG" 2226651 SKAGG (NIL T) -9 NIL 2226787 NIL) (-1033 2220951 2224725 2224836 "SINT" NIL SINT (NIL) -8 NIL NIL 2224877) (-1032 2220761 2220805 2220871 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1031 2219836 2220068 2220336 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1030 2218840 2219002 2219278 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1029 2218186 2218526 2218649 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1028 2217532 2217839 2217979 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1027 2215643 2216135 2216641 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1026 2209236 2215562 2215638 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1025 2208739 2208976 2209006 "SGROUP" 2209099 SGROUP (NIL) -9 NIL 2209161 NIL) (-1024 2208629 2208661 2208734 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1023 2208267 2208307 2208348 "SGPOPC" 2208353 SGPOPC (NIL T) -9 NIL 2208554 NIL) (-1022 2207801 2208078 2208184 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1021 2205224 2205993 2206715 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1020 2199243 2204645 2204741 "SFRTCAT" 2204746 SFRTCAT (NIL T T T T) -9 NIL 2204784 NIL) (-1019 2193635 2194748 2195875 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1018 2187811 2188972 2190136 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1017 2186783 2187685 2187806 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1016 2182391 2183286 2183381 "SEXCAT" 2185994 SEXCAT (NIL T T T T T) -9 NIL 2186545 NIL) (-1015 2181364 2182318 2182386 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1014 2179755 2180340 2180642 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1013 2179278 2179463 2179493 "SETCAT" 2179610 SETCAT (NIL) -9 NIL 2179694 NIL) (-1012 2179110 2179174 2179273 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1011 2175337 2177564 2177607 "SETAGG" 2178475 SETAGG (NIL T) -9 NIL 2178813 NIL) (-1010 2174943 2175095 2175332 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1009 2172069 2174890 2174938 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1008 2171535 2171845 2171945 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1007 2170662 2171028 2171089 "SEGXCAT" 2171375 SEGXCAT (NIL T T) -9 NIL 2171495 NIL) (-1006 2169587 2169855 2169898 "SEGCAT" 2170420 SEGCAT (NIL T) -9 NIL 2170641 NIL) (-1005 2169267 2169332 2169445 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1004 2168333 2168803 2169011 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1003 2167911 2168190 2168266 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1002 2167276 2167412 2167616 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1001 2166342 2167089 2167271 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1000 2165595 2166290 2166337 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-999 2157082 2165464 2165590 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-998 2155942 2156232 2156549 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-997 2155248 2155460 2155648 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-996 2154598 2154755 2154931 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-995 2154171 2154402 2154430 "SASTCAT" 2154435 SASTCAT (NIL) -9 NIL 2154448 NIL) (-994 2153638 2154063 2154137 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-993 2153241 2153282 2153453 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-992 2152872 2152913 2153070 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-991 2145953 2152789 2152867 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-990 2144603 2144932 2145328 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-989 2143364 2143725 2144025 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-988 2142988 2143209 2143290 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-987 2140448 2141082 2141535 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-986 2140287 2140320 2140388 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-985 2139778 2140081 2140172 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-984 2135406 2136274 2137185 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-983 2124359 2129761 2129855 "RSETCAT" 2133911 RSETCAT (NIL T T T T) -9 NIL 2134999 NIL) (-982 2122897 2123539 2124354 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-981 2116671 2118116 2119623 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-980 2114553 2115110 2115182 "RRCC" 2116255 RRCC (NIL T T) -9 NIL 2116596 NIL) (-979 2114078 2114277 2114548 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-978 2113548 2113858 2113956 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-977 2086100 2096813 2096877 "RPOLCAT" 2107351 RPOLCAT (NIL T T T) -9 NIL 2110496 NIL) (-976 2080199 2083022 2086095 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-975 2076366 2079947 2080085 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-974 2074694 2075433 2075689 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-973 2070337 2073149 2073177 "RNS" 2073439 RNS (NIL) -9 NIL 2073691 NIL) (-972 2069240 2069727 2070264 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-971 2068358 2068759 2068959 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-970 2067496 2068058 2068086 "RNG" 2068146 RNG (NIL) -9 NIL 2068200 NIL) (-969 2067385 2067419 2067491 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-968 2066647 2067152 2067192 "RMODULE" 2067197 RMODULE (NIL T) -9 NIL 2067223 NIL) (-967 2065586 2065692 2066022 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-966 2062585 2065176 2065469 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-965 2055380 2057719 2057831 "RMATCAT" 2061136 RMATCAT (NIL NIL NIL T T T) -9 NIL 2062102 NIL) (-964 2054897 2055076 2055375 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-963 2054465 2054676 2054717 "RLINSET" 2054778 RLINSET (NIL T) -9 NIL 2054822 NIL) (-962 2054110 2054191 2054317 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-961 2052956 2053687 2053715 "RING" 2053770 RING (NIL) -9 NIL 2053862 NIL) (-960 2052801 2052857 2052951 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-959 2051855 2052122 2052378 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-958 2042995 2051483 2051684 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-957 2042220 2042731 2042770 "RGBCSPC" 2042827 RGBCSPC (NIL T) -9 NIL 2042878 NIL) (-956 2041254 2041740 2041779 "RGBCMDL" 2042007 RGBCMDL (NIL T) -9 NIL 2042121 NIL) (-955 2040966 2041035 2041136 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-954 2040729 2040770 2040865 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-953 2039153 2039583 2039963 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-952 2036740 2037408 2038076 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-951 2036290 2036388 2036548 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-950 2035912 2036010 2036051 "RETRACT" 2036182 RETRACT (NIL T) -9 NIL 2036269 NIL) (-949 2035792 2035823 2035907 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-948 2035394 2035666 2035733 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-947 2033874 2034765 2034962 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-946 2033565 2033626 2033722 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-945 2033308 2033349 2033454 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-944 2033043 2033084 2033193 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-943 2028114 2029565 2030780 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-942 2025213 2025971 2026779 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-941 2023182 2023804 2024404 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-940 2015970 2021733 2022169 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-939 2015282 2015562 2015711 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-938 2014767 2014882 2015047 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-937 2010360 2014170 2014391 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-936 2009592 2009791 2010004 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-935 2006882 2007720 2008602 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-934 2003464 2004500 2005559 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-933 2003300 2003353 2003381 "REAL" 2003386 REAL (NIL) -9 NIL 2003421 NIL) (-932 2002790 2003094 2003185 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-931 2002270 2002348 2002553 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-930 2001503 2001695 2001906 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-929 2000391 2000688 2001055 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-928 1998658 1999128 1999661 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-927 1997580 1997857 1998244 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-926 1996407 1996716 1997135 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-925 1989755 1993267 1993295 "RCFIELD" 1994572 RCFIELD (NIL) -9 NIL 1995302 NIL) (-924 1988373 1988985 1989682 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-923 1984577 1986465 1986506 "RCAGG" 1987573 RCAGG (NIL T) -9 NIL 1988034 NIL) (-922 1984304 1984414 1984572 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-921 1983749 1983878 1984039 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-920 1983366 1983445 1983564 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-919 1982781 1982931 1983081 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-918 1982563 1982613 1982684 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-917 1975005 1981681 1981989 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-916 1964707 1974872 1975000 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-915 1964341 1964434 1964462 "RADCAT" 1964619 RADCAT (NIL) -9 NIL NIL NIL) (-914 1964179 1964239 1964336 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-913 1962451 1964010 1964099 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-912 1962132 1962181 1962308 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-911 1954419 1958503 1958543 "QUATCAT" 1959321 QUATCAT (NIL T) -9 NIL 1960085 NIL) (-910 1951669 1952949 1954325 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-909 1947509 1951619 1951664 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-908 1945029 1946524 1946565 "QUAGG" 1946940 QUAGG (NIL T) -9 NIL 1947116 NIL) (-907 1944631 1944903 1944970 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-906 1943637 1944267 1944430 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-905 1943318 1943367 1943494 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-904 1932918 1939087 1939127 "QFCAT" 1939785 QFCAT (NIL T) -9 NIL 1940778 NIL) (-903 1929802 1931241 1932824 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-902 1929348 1929482 1929612 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-901 1923544 1924705 1925867 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-900 1922963 1923143 1923375 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-899 1920785 1921313 1921736 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-898 1919684 1919926 1920243 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-897 1918045 1918243 1918596 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-896 1913801 1915017 1915058 "PTRANFN" 1916942 PTRANFN (NIL T) -9 NIL NIL NIL) (-895 1912448 1912793 1913114 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-894 1912141 1912204 1912311 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-893 1906348 1910900 1910940 "PTCAT" 1911232 PTCAT (NIL T) -9 NIL 1911385 NIL) (-892 1906041 1906082 1906206 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-891 1904920 1905236 1905570 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-890 1893799 1896360 1898669 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-889 1886839 1889582 1889676 "PSETCAT" 1892650 PSETCAT (NIL T T T T) -9 NIL 1893459 NIL) (-888 1885289 1886023 1886834 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-887 1884608 1884803 1884831 "PSCURVE" 1885099 PSCURVE (NIL) -9 NIL 1885266 NIL) (-886 1880210 1882030 1882094 "PSCAT" 1882929 PSCAT (NIL T T T) -9 NIL 1883168 NIL) (-885 1879524 1879806 1880205 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-884 1877921 1878836 1879099 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-883 1877412 1877715 1877806 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-882 1868432 1870854 1873042 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-881 1866308 1867713 1867753 "PRQAGG" 1867936 PRQAGG (NIL T) -9 NIL 1868039 NIL) (-880 1865481 1865927 1865955 "PROPLOG" 1866094 PROPLOG (NIL) -9 NIL 1866208 NIL) (-879 1865156 1865219 1865342 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-878 1864592 1864731 1864903 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-877 1862840 1863603 1863900 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-876 1862392 1862524 1862652 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-875 1856833 1861332 1862152 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-874 1856662 1856700 1856759 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-873 1856101 1856241 1856392 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-872 1854569 1854988 1855454 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-871 1854286 1854347 1854375 "PRIMCAT" 1854499 PRIMCAT (NIL) -9 NIL NIL NIL) (-870 1853457 1853653 1853881 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-869 1849510 1853407 1853452 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-868 1849209 1849271 1849382 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-867 1846345 1848858 1849091 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-866 1845796 1845953 1845981 "PPCURVE" 1846186 PPCURVE (NIL) -9 NIL 1846322 NIL) (-865 1845409 1845654 1845737 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-864 1843165 1843586 1844178 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-863 1842608 1842672 1842905 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-862 1839328 1839814 1840425 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-861 1824919 1831048 1831112 "POLYCAT" 1834597 POLYCAT (NIL T T T) -9 NIL 1836474 NIL) (-860 1820429 1822576 1824914 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-859 1820086 1820160 1820279 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-858 1819779 1819842 1819949 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-857 1813142 1819512 1819671 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-856 1812029 1812292 1812568 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-855 1810633 1810946 1811276 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-854 1805967 1810583 1810628 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-853 1804455 1804866 1805241 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-852 1803212 1803521 1803917 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-851 1802883 1802967 1803084 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-850 1802462 1802537 1802711 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-849 1801948 1802044 1802204 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-848 1801420 1801540 1801694 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-847 1800315 1800533 1800910 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-846 1799926 1800011 1800163 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-845 1799477 1799559 1799740 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-844 1799169 1799250 1799363 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-843 1798682 1798757 1798965 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-842 1798030 1798158 1798360 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-841 1797392 1797526 1797689 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-840 1796696 1796878 1797059 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-839 1796419 1796493 1796587 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-838 1792987 1794176 1795092 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-837 1792071 1792272 1792507 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-836 1787636 1789020 1790162 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-835 1767557 1772444 1777291 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-834 1767297 1767350 1767453 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-833 1766738 1766872 1767052 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-832 1764747 1765968 1765996 "PID" 1766193 PID (NIL) -9 NIL 1766320 NIL) (-831 1764535 1764578 1764653 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-830 1763722 1764382 1764469 "PI" NIL PI (NIL) -8 NIL NIL 1764509) (-829 1763174 1763325 1763501 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-828 1759502 1760460 1761365 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-827 1757866 1758155 1758521 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-826 1757308 1757423 1757584 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-825 1753849 1756177 1756530 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-824 1752455 1752735 1753060 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-823 1751220 1751474 1751822 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-822 1749930 1750157 1750509 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-821 1746940 1748500 1748528 "PFECAT" 1749121 PFECAT (NIL) -9 NIL 1749498 NIL) (-820 1746563 1746728 1746935 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-819 1745387 1745669 1745970 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-818 1743569 1743956 1744386 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-817 1739539 1743495 1743564 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-816 1735442 1736589 1737456 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-815 1733374 1734463 1734504 "PERMCAT" 1734903 PERMCAT (NIL T) -9 NIL 1735200 NIL) (-814 1733070 1733117 1733240 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-813 1729519 1731200 1731845 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-812 1726988 1729274 1729395 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-811 1725857 1726120 1726161 "PDSPC" 1726694 PDSPC (NIL T) -9 NIL 1726939 NIL) (-810 1725224 1725490 1725852 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-809 1723859 1724852 1724893 "PDRING" 1724898 PDRING (NIL T) -9 NIL 1724925 NIL) (-808 1722569 1723358 1723411 "PDMOD" 1723416 PDMOD (NIL T T) -9 NIL 1723519 NIL) (-807 1721662 1721874 1722123 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-806 1721267 1721334 1721388 "PDDOM" 1721553 PDDOM (NIL T T) -9 NIL 1721633 NIL) (-805 1721119 1721155 1721262 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-804 1720905 1720944 1721033 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-803 1719222 1719976 1720275 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-802 1718911 1718974 1719083 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-801 1717049 1717479 1717930 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-800 1710669 1712498 1713790 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-799 1710300 1710373 1710505 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-798 1708002 1708682 1709163 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-797 1706206 1706634 1707037 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-796 1705652 1705900 1705941 "PATMAB" 1706048 PATMAB (NIL T) -9 NIL 1706131 NIL) (-795 1704299 1704703 1704960 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-794 1703837 1703968 1704009 "PATAB" 1704014 PATAB (NIL T) -9 NIL 1704186 NIL) (-793 1702380 1702817 1703240 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-792 1702058 1702133 1702235 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-791 1701747 1701810 1701919 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-790 1701552 1701598 1701665 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-789 1701230 1701305 1701407 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-788 1700919 1700982 1701091 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-787 1700610 1700680 1700777 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-786 1700299 1700362 1700471 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-785 1699460 1699839 1700018 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-784 1699067 1699165 1699284 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-783 1698035 1698460 1698679 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-782 1696700 1697354 1697714 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-781 1689790 1696104 1696298 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-780 1682211 1689288 1689472 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-779 1678936 1680851 1680891 "PADICCT" 1681472 PADICCT (NIL NIL) -9 NIL 1681754 NIL) (-778 1676926 1678886 1678931 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-777 1676088 1676298 1676564 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-776 1675430 1675573 1675777 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-775 1673811 1674838 1675116 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-774 1673335 1673594 1673691 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-773 1672394 1673072 1673244 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-772 1662816 1665685 1667884 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-771 1662208 1662522 1662648 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-770 1661485 1661680 1661708 "OUTBCON" 1662026 OUTBCON (NIL) -9 NIL 1662192 NIL) (-769 1661193 1661323 1661480 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-768 1660574 1660719 1660880 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-767 1659945 1660372 1660461 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-766 1659360 1659775 1659803 "OSGROUP" 1659808 OSGROUP (NIL) -9 NIL 1659830 NIL) (-765 1658324 1658585 1658870 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-764 1655593 1658199 1658319 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-763 1652734 1655344 1655470 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-762 1650752 1651280 1651840 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-761 1644094 1646634 1646674 "OREPCAT" 1648995 OREPCAT (NIL T) -9 NIL 1650097 NIL) (-760 1642120 1643054 1644089 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-759 1641317 1641588 1641616 "ORDTYPE" 1641921 ORDTYPE (NIL) -9 NIL 1642079 NIL) (-758 1640851 1641062 1641312 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-757 1640313 1640689 1640846 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-756 1639807 1640170 1640198 "ORDSET" 1640203 ORDSET (NIL) -9 NIL 1640225 NIL) (-755 1638372 1639394 1639422 "ORDRING" 1639427 ORDRING (NIL) -9 NIL 1639455 NIL) (-754 1637620 1638177 1638205 "ORDMON" 1638210 ORDMON (NIL) -9 NIL 1638231 NIL) (-753 1636924 1637086 1637278 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-752 1636135 1636643 1636671 "ORDFIN" 1636736 ORDFIN (NIL) -9 NIL 1636810 NIL) (-751 1635529 1635668 1635854 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-750 1632204 1634497 1634903 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-749 1631611 1631966 1632071 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-748 1631419 1631464 1631530 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-747 1630720 1630996 1631037 "OPERCAT" 1631248 OPERCAT (NIL T) -9 NIL 1631344 NIL) (-746 1630532 1630599 1630715 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-745 1627898 1629334 1629830 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-744 1627319 1627446 1627620 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-743 1624220 1626458 1626824 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-742 1620986 1623613 1623653 "OMSAGG" 1623714 OMSAGG (NIL T) -9 NIL 1623778 NIL) (-741 1619398 1620657 1620825 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-740 1617594 1618835 1618863 "OINTDOM" 1618868 OINTDOM (NIL) -9 NIL 1618889 NIL) (-739 1615024 1616596 1616925 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-738 1614278 1614974 1615019 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-737 1611480 1614119 1614273 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-736 1603017 1611351 1611475 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-735 1596581 1602908 1603012 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-734 1595553 1595790 1596063 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-733 1593187 1593857 1594561 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-732 1588964 1589924 1590947 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-731 1588472 1588560 1588754 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-730 1585921 1586503 1587176 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-729 1583316 1583824 1584420 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-728 1580313 1580852 1581498 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-727 1579668 1579776 1580034 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-726 1578826 1578951 1579172 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-725 1575110 1575906 1576819 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-724 1574550 1574645 1574867 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-723 1574231 1574280 1574407 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-722 1570834 1574030 1574149 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-721 1569994 1570616 1570644 "OCAMON" 1570649 OCAMON (NIL) -9 NIL 1570670 NIL) (-720 1564206 1567020 1567060 "OC" 1568155 OC (NIL T) -9 NIL 1569011 NIL) (-719 1562206 1563132 1564112 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-718 1561622 1562040 1562068 "OASGP" 1562073 OASGP (NIL) -9 NIL 1562093 NIL) (-717 1560685 1561334 1561362 "OAMONS" 1561402 OAMONS (NIL) -9 NIL 1561445 NIL) (-716 1559830 1560411 1560439 "OAMON" 1560496 OAMON (NIL) -9 NIL 1560547 NIL) (-715 1559726 1559758 1559825 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-714 1558477 1559251 1559279 "OAGROUP" 1559425 OAGROUP (NIL) -9 NIL 1559517 NIL) (-713 1558268 1558355 1558472 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-712 1558008 1558064 1558152 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-711 1553070 1554633 1556160 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-710 1549765 1550799 1551834 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-709 1548875 1549108 1549326 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-708 1537736 1540764 1543212 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-707 1531757 1537159 1537253 "NTSCAT" 1537258 NTSCAT (NIL T T T T) -9 NIL 1537296 NIL) (-706 1531098 1531277 1531470 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-705 1530791 1530854 1530961 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-704 1518458 1528411 1529221 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-703 1507467 1518323 1518453 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-702 1506187 1506512 1506869 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-701 1505023 1505287 1505645 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-700 1504190 1504323 1504539 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-699 1502508 1502827 1503233 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-698 1502221 1502255 1502379 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-697 1502040 1502075 1502144 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-696 1501816 1502006 1502035 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-695 1501380 1501447 1501624 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-694 1499666 1500743 1500998 "NNI" NIL NNI (NIL) -8 NIL NIL 1501345) (-693 1498394 1498731 1499095 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-692 1497371 1497623 1497925 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-691 1496458 1497023 1497064 "NETCLT" 1497235 NETCLT (NIL T) -9 NIL 1497316 NIL) (-690 1495362 1495629 1495910 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-689 1495161 1495204 1495279 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-688 1493692 1494080 1494500 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-687 1492325 1493291 1493319 "NASRING" 1493429 NASRING (NIL) -9 NIL 1493509 NIL) (-686 1492170 1492226 1492320 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-685 1491099 1491777 1491805 "NARNG" 1491922 NARNG (NIL) -9 NIL 1492013 NIL) (-684 1490875 1490960 1491094 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-683 1489641 1490395 1490435 "NAALG" 1490514 NAALG (NIL T) -9 NIL 1490575 NIL) (-682 1489511 1489546 1489636 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-681 1484490 1485675 1486861 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-680 1483885 1483972 1484156 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-679 1475895 1480389 1480441 "MTSCAT" 1481501 MTSCAT (NIL T T) -9 NIL 1482015 NIL) (-678 1475661 1475721 1475813 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-677 1475487 1475526 1475586 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-676 1472353 1475019 1475060 "MSETAGG" 1475065 MSETAGG (NIL T) -9 NIL 1475099 NIL) (-675 1468640 1471396 1471717 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-674 1464914 1466737 1467477 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-673 1464551 1464624 1464753 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-672 1464204 1464245 1464389 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-671 1462069 1462406 1462837 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-670 1455467 1461968 1462064 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-669 1454992 1455033 1455241 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-668 1454551 1454600 1454783 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-667 1453825 1453918 1454137 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-666 1452442 1452803 1453193 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-665 1451963 1452030 1452069 "MONOPC" 1452129 MONOPC (NIL T) -9 NIL 1452348 NIL) (-664 1451414 1451750 1451878 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-663 1450556 1450935 1450963 "MONOID" 1451181 MONOID (NIL) -9 NIL 1451325 NIL) (-662 1450215 1450365 1450551 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-661 1439153 1446023 1446082 "MONOGEN" 1446756 MONOGEN (NIL T T) -9 NIL 1447212 NIL) (-660 1437165 1438051 1439034 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-659 1435879 1436423 1436451 "MONADWU" 1436842 MONADWU (NIL) -9 NIL 1437077 NIL) (-658 1435427 1435627 1435874 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-657 1434704 1435005 1435033 "MONAD" 1435240 MONAD (NIL) -9 NIL 1435352 NIL) (-656 1434471 1434567 1434699 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-655 1432861 1433631 1433910 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-654 1431995 1432522 1432562 "MODULE" 1432567 MODULE (NIL T) -9 NIL 1432605 NIL) (-653 1431674 1431800 1431990 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-652 1429385 1430271 1430585 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-651 1426564 1427981 1428494 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-650 1425198 1425772 1426048 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-649 1414417 1423863 1424276 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-648 1411373 1413417 1413686 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-647 1410457 1410824 1411014 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-646 1410026 1410075 1410254 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-645 1407851 1408847 1408887 "MLO" 1409304 MLO (NIL T) -9 NIL 1409544 NIL) (-644 1405732 1406259 1406854 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-643 1405200 1405296 1405450 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-642 1404870 1404946 1405069 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-641 1404082 1404268 1404496 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-640 1403575 1403691 1403847 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-639 1402947 1403061 1403246 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-638 1401974 1402247 1402524 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-637 1401407 1401495 1401666 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-636 1398565 1399444 1400323 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-635 1397232 1397580 1397933 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-634 1393893 1396337 1396378 "MDAGG" 1396635 MDAGG (NIL T) -9 NIL 1396780 NIL) (-633 1393167 1393331 1393531 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-632 1392245 1392531 1392761 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-631 1390342 1390919 1391480 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-630 1386248 1389932 1390179 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-629 1382597 1383366 1384100 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-628 1381350 1381519 1381848 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-627 1371001 1374456 1374532 "MATCAT" 1379520 MATCAT (NIL T T T) -9 NIL 1380966 NIL) (-626 1368282 1369588 1370996 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-625 1366683 1367043 1367427 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-624 1365816 1366013 1366235 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-623 1364567 1364893 1365220 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-622 1363729 1364131 1364307 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-621 1363398 1363462 1363585 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-620 1363046 1363119 1363233 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-619 1362581 1362696 1362838 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-618 1360790 1361558 1361859 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-617 1360284 1360586 1360676 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-616 1353797 1358599 1358640 "LZSTAGG" 1359417 LZSTAGG (NIL T) -9 NIL 1359707 NIL) (-615 1350916 1352350 1353792 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-614 1348303 1349269 1349752 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-613 1347884 1348163 1348237 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-612 1340201 1347745 1347879 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-611 1339564 1339709 1339937 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-610 1337048 1337746 1338458 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-609 1335160 1335483 1335931 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-608 1328464 1334210 1334251 "LSAGG" 1334313 LSAGG (NIL T) -9 NIL 1334391 NIL) (-607 1326158 1327257 1328459 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-606 1323638 1325507 1325756 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-605 1323305 1323396 1323519 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-604 1322976 1323055 1323083 "LOGIC" 1323194 LOGIC (NIL) -9 NIL 1323276 NIL) (-603 1322871 1322900 1322971 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-602 1322190 1322348 1322541 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-601 1320975 1321224 1321575 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-600 1316797 1319596 1319636 "LODOCAT" 1320068 LODOCAT (NIL T) -9 NIL 1320279 NIL) (-599 1316590 1316666 1316792 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-598 1313590 1316467 1316585 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-597 1310688 1313540 1313585 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-596 1307775 1310618 1310683 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-595 1306828 1307003 1307305 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-594 1304960 1306090 1306343 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-593 1300059 1303119 1303160 "LNAGG" 1304022 LNAGG (NIL T) -9 NIL 1304457 NIL) (-592 1299446 1299713 1300054 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-591 1296018 1296959 1297596 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-590 1295280 1295785 1295825 "LMODULE" 1295830 LMODULE (NIL T) -9 NIL 1295856 NIL) (-589 1292630 1295016 1295139 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-588 1292198 1292409 1292450 "LLINSET" 1292511 LLINSET (NIL T) -9 NIL 1292555 NIL) (-587 1291874 1292134 1292193 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-586 1291473 1291553 1291692 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-585 1289924 1290272 1290671 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-584 1289095 1289291 1289519 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-583 1282313 1288351 1288605 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-582 1281890 1282123 1282164 "LINSET" 1282169 LINSET (NIL T) -9 NIL 1282202 NIL) (-581 1280791 1281513 1281680 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-580 1279057 1279812 1279852 "LINEXP" 1280338 LINEXP (NIL T) -9 NIL 1280611 NIL) (-579 1277679 1278666 1278847 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-578 1276506 1276778 1277080 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-577 1275719 1276308 1276418 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-576 1273269 1273991 1274741 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-575 1271899 1272196 1272587 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-574 1270692 1271294 1271334 "LIECAT" 1271474 LIECAT (NIL T) -9 NIL 1271625 NIL) (-573 1270566 1270599 1270687 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-572 1264822 1270256 1270484 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-571 1255257 1264498 1264654 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-570 1251709 1252658 1253593 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-569 1250333 1251241 1251269 "LFCAT" 1251476 LFCAT (NIL) -9 NIL 1251615 NIL) (-568 1248572 1248902 1249247 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-567 1246089 1246754 1247435 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-566 1243101 1244079 1244582 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-565 1242592 1242895 1242986 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-564 1241299 1241623 1242023 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-563 1240565 1240650 1240876 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-562 1235568 1239133 1239669 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-561 1235193 1235243 1235403 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-560 1233964 1234737 1234777 "LALG" 1234838 LALG (NIL T) -9 NIL 1234896 NIL) (-559 1233747 1233824 1233959 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-558 1231600 1233015 1233266 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-557 1231429 1231459 1231500 "KVTFROM" 1231562 KVTFROM (NIL T) -9 NIL NIL NIL) (-556 1230245 1230960 1231149 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-555 1230074 1230104 1230145 "KRCFROM" 1230207 KRCFROM (NIL T) -9 NIL NIL NIL) (-554 1229176 1229373 1229668 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-553 1229005 1229035 1229076 "KONVERT" 1229138 KONVERT (NIL T) -9 NIL NIL NIL) (-552 1228834 1228864 1228905 "KOERCE" 1228967 KOERCE (NIL T) -9 NIL NIL NIL) (-551 1228404 1228497 1228629 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-550 1226457 1227351 1227723 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-549 1217634 1224241 1224295 "KDAGG" 1224671 KDAGG (NIL T T) -9 NIL 1224897 NIL) (-548 1217099 1217331 1217629 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-547 1210097 1216891 1217037 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-546 1209747 1210029 1210092 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-545 1208717 1209216 1209465 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-544 1207843 1208292 1208497 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-543 1206707 1207199 1207499 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-542 1205989 1206388 1206549 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-541 1205699 1205935 1205984 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-540 1199954 1205389 1205617 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-539 1199372 1199705 1199825 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-538 1195538 1197549 1197603 "IXAGG" 1198530 IXAGG (NIL T T) -9 NIL 1198987 NIL) (-537 1194744 1195115 1195533 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-536 1193711 1193986 1194249 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-535 1192373 1192580 1192873 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-534 1191324 1191546 1191829 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-533 1190999 1191062 1191185 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-532 1190261 1190633 1190807 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-531 1188237 1189537 1189811 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-530 1177785 1183554 1184711 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-529 1177030 1177182 1177418 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-528 1176521 1176824 1176915 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-527 1175814 1175905 1176118 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-526 1174946 1175171 1175411 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-525 1173359 1173740 1174168 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-524 1173144 1173188 1173264 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-523 1171994 1172291 1172586 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-522 1171267 1171618 1171769 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-521 1170470 1170601 1170814 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-520 1168625 1169122 1169666 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-519 1165706 1166974 1167663 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-518 1165531 1165571 1165631 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-517 1161529 1165457 1165526 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-516 1159532 1161468 1161524 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-515 1158903 1159202 1159332 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-514 1158356 1158644 1158776 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-513 1157437 1158062 1158188 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-512 1156847 1157341 1157369 "IOBCON" 1157374 IOBCON (NIL) -9 NIL 1157395 NIL) (-511 1156418 1156482 1156664 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-510 1148462 1150833 1153158 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-509 1145573 1146356 1147220 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-508 1145250 1145347 1145464 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-507 1142692 1145186 1145245 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-506 1140804 1141333 1141900 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-505 1140306 1140420 1140560 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-504 1138690 1139096 1139558 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-503 1136469 1137063 1137674 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-502 1133842 1134452 1135172 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-501 1133246 1133404 1133612 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-500 1132765 1132851 1133039 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-499 1130970 1131491 1131948 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-498 1124052 1125705 1127434 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-497 1123418 1123580 1123753 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-496 1121291 1121755 1122299 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-495 1119417 1120367 1120395 "INTDOM" 1120694 INTDOM (NIL) -9 NIL 1120899 NIL) (-494 1118970 1119172 1119412 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-493 1114777 1117249 1117303 "INTCAT" 1118099 INTCAT (NIL T) -9 NIL 1118415 NIL) (-492 1114342 1114462 1114589 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-491 1113182 1113354 1113660 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-490 1112755 1112851 1113008 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-489 1104057 1112662 1112750 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-488 1103355 1103910 1103975 "INT8" NIL INT8 (NIL) -8 NIL NIL 1104009) (-487 1102652 1103207 1103272 "INT64" NIL INT64 (NIL) -8 NIL NIL 1103306) (-486 1101949 1102504 1102569 "INT32" NIL INT32 (NIL) -8 NIL NIL 1102603) (-485 1101246 1101801 1101866 "INT16" NIL INT16 (NIL) -8 NIL NIL 1101900) (-484 1097709 1101165 1101241 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-483 1091766 1095249 1095277 "INS" 1096207 INS (NIL) -9 NIL 1096866 NIL) (-482 1089828 1090746 1091693 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-481 1088887 1089110 1089385 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-480 1088101 1088242 1088439 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-479 1087091 1087232 1087469 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-478 1086243 1086407 1086667 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-477 1085523 1085638 1085826 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-476 1084262 1084531 1084855 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-475 1083542 1083683 1083866 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-474 1083205 1083277 1083375 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-473 1080283 1081769 1082292 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-472 1079882 1079989 1080103 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-471 1079038 1079683 1079784 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-470 1077888 1078156 1078477 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-469 1076878 1077818 1077883 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-468 1076503 1076583 1076700 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-467 1075417 1075962 1076166 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-466 1071512 1072567 1073510 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-465 1070366 1070689 1070717 "INBCON" 1071230 INBCON (NIL) -9 NIL 1071496 NIL) (-464 1069820 1070085 1070361 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-463 1069314 1069616 1069706 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-462 1068771 1069080 1069185 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-461 1067611 1067750 1068065 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-460 1066035 1066302 1066639 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-459 1060878 1065966 1066030 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-458 1060258 1060592 1060707 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-457 1055237 1059696 1059882 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-456 1054267 1055159 1055232 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-455 1053839 1053916 1053970 "IEVALAB" 1054177 IEVALAB (NIL T T) -9 NIL NIL NIL) (-454 1053594 1053674 1053834 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-453 1052979 1053206 1053363 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-452 1051972 1052899 1052974 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-451 1051035 1051892 1051967 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-450 1050117 1050764 1050901 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-449 1048480 1049051 1049102 "IDPC" 1049608 IDPC (NIL T T) -9 NIL 1049921 NIL) (-448 1047768 1048402 1048475 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-447 1046938 1047690 1047763 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-446 1046631 1046844 1046904 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-445 1046335 1046375 1046414 "IDEMOPC" 1046419 IDEMOPC (NIL T) -9 NIL 1046556 NIL) (-444 1043406 1044287 1045179 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-443 1037032 1038309 1039348 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-442 1036294 1036424 1036623 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-441 1035467 1035966 1036104 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-440 1033856 1034187 1034578 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-439 1031114 1031738 1032433 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-438 1029340 1029820 1030353 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-437 1027322 1029246 1029335 "IARRAY2" NIL IARRAY2 (NIL T T T) -8 NIL NIL NIL) (-436 1023355 1027260 1027317 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-435 1016934 1022319 1022787 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-434 1016502 1016565 1016738 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-433 1015994 1016143 1016171 "HYPCAT" 1016378 HYPCAT (NIL) -9 NIL NIL NIL) (-432 1015650 1015803 1015989 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-431 1015263 1015508 1015591 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-430 1015096 1015145 1015186 "HOMOTOP" 1015191 HOMOTOP (NIL T) -9 NIL 1015224 NIL) (-429 1011674 1013044 1013085 "HOAGG" 1014056 HOAGG (NIL T) -9 NIL 1014775 NIL) (-428 1010680 1011150 1011669 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-427 1003880 1010405 1010553 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-426 1002815 1003073 1003336 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-425 1001750 1002680 1002810 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-424 1000116 1001583 1001671 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-423 999431 999783 999916 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-422 993038 999364 999426 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-421 986177 992774 992925 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-420 985630 985787 985950 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-419 976949 985547 985625 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-418 976440 976743 976834 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-417 973990 976227 976406 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-416 969536 973873 973985 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-415 960832 969433 969531 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-414 952769 960201 960456 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-413 951793 952302 952330 "GROUP" 952533 GROUP (NIL) -9 NIL 952667 NIL) (-412 951336 951537 951788 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-411 950008 950347 950734 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-410 948830 949187 949238 "GRMOD" 949767 GRMOD (NIL T T) -9 NIL 949933 NIL) (-409 948649 948697 948825 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-408 944772 945983 946983 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-407 943494 943818 944133 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-406 943047 943175 943316 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-405 942120 942619 942670 "GRALG" 942823 GRALG (NIL T T) -9 NIL 942913 NIL) (-404 941839 941940 942115 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-403 938720 941532 941697 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-402 938133 938196 938453 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-401 933987 934883 935408 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-400 933162 933364 933602 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-399 928165 929092 930111 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-398 927913 927970 928059 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-397 927395 927484 927649 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-396 926904 926945 927158 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-395 925705 925988 926292 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-394 918980 925395 925556 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-393 908763 913770 914874 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-392 906815 907918 907946 "GCDDOM" 908201 GCDDOM (NIL) -9 NIL 908358 NIL) (-391 906438 906595 906810 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-390 897231 899701 902089 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-389 895366 895691 896109 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-388 894307 894496 894763 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-387 893178 893385 893689 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-386 892641 892783 892931 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-385 891253 891601 891914 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-384 889798 890119 890441 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-383 887424 887780 888185 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-382 880676 882337 883915 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-381 880328 880549 880617 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-380 879952 880173 880254 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-379 878049 878732 879192 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-378 876642 876949 877341 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-377 875297 875656 875980 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-376 874600 874724 874911 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-375 873574 873840 874187 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-374 871232 871762 872244 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-373 870815 870875 871044 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-372 869115 870029 870332 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-371 868263 868397 868620 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-370 867434 867595 867822 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-369 863550 866329 866370 "FSAGG" 866740 FSAGG (NIL T) -9 NIL 867001 NIL) (-368 861904 862663 863455 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-367 859860 860156 860700 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-366 858907 859089 859389 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-365 858588 858637 858764 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-364 838744 848245 848286 "FS" 852156 FS (NIL T) -9 NIL 854434 NIL) (-363 830975 834468 838447 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-362 830509 830636 830788 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-361 825032 828190 828230 "FRNAALG" 829550 FRNAALG (NIL T) -9 NIL 830148 NIL) (-360 821773 823024 824282 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-359 821454 821503 821630 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-358 819941 820498 820792 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-357 819227 819320 819607 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-356 817061 817827 818143 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-355 816170 816613 816654 "FRETRCT" 816659 FRETRCT (NIL T) -9 NIL 816830 NIL) (-354 815543 815821 816165 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-353 812287 813807 813866 "FRAMALG" 814748 FRAMALG (NIL T T) -9 NIL 815040 NIL) (-352 810883 811434 812064 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-351 810576 810639 810746 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-350 804217 810381 810571 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-349 803910 803973 804080 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-348 796218 800789 802117 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-347 789996 793499 793527 "FPS" 794646 FPS (NIL) -9 NIL 795202 NIL) (-346 789553 789686 789850 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-345 786363 788406 788434 "FPC" 788659 FPC (NIL) -9 NIL 788801 NIL) (-344 786209 786261 786358 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-343 784986 785695 785736 "FPATMAB" 785741 FPATMAB (NIL T) -9 NIL 785893 NIL) (-342 783416 784012 784359 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-341 782991 783049 783222 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-340 781494 782389 782563 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-339 780109 780614 780642 "FNCAT" 781099 FNCAT (NIL) -9 NIL 781356 NIL) (-338 779566 780076 780104 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-337 778153 779515 779561 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-336 774741 776099 776140 "FMONCAT" 777357 FMONCAT (NIL T) -9 NIL 777961 NIL) (-335 771599 772677 772730 "FMCAT" 773911 FMCAT (NIL T T) -9 NIL 774403 NIL) (-334 770299 771422 771521 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-333 769347 770147 770294 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-332 767534 767986 768480 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-331 765469 766005 766583 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-330 758855 763806 764420 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-329 757336 758437 758477 "FLINEXP" 758482 FLINEXP (NIL T) -9 NIL 758575 NIL) (-328 756745 757004 757331 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-327 755960 756119 756340 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-326 752843 753922 753974 "FLALG" 755201 FLALG (NIL T T) -9 NIL 755668 NIL) (-325 752014 752175 752402 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-324 745555 749413 749454 "FLAGG" 750709 FLAGG (NIL T) -9 NIL 751356 NIL) (-323 744663 745067 745550 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-322 741224 742488 742547 "FINRALG" 743675 FINRALG (NIL T T) -9 NIL 744183 NIL) (-321 740615 740880 741219 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-320 739913 740209 740237 "FINITE" 740433 FINITE (NIL) -9 NIL 740540 NIL) (-319 739821 739847 739908 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-318 737278 738499 738540 "FINAGG" 739170 FINAGG (NIL T) -9 NIL 739482 NIL) (-317 736718 736977 737273 "FINAGG-" NIL FINAGG- (NIL T T) -7 NIL NIL NIL) (-316 728679 731270 731310 "FINAALG" 734962 FINAALG (NIL T) -9 NIL 736400 NIL) (-315 724946 726191 727314 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-314 723498 723917 723971 "FILECAT" 724655 FILECAT (NIL T T) -9 NIL 724871 NIL) (-313 722849 723323 723426 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-312 720097 721975 722003 "FIELD" 722043 FIELD (NIL) -9 NIL 722123 NIL) (-311 719122 719583 720092 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-310 717126 718072 718418 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-309 716369 716550 716769 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-308 711639 716307 716364 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-307 711301 711368 711503 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-306 710841 710883 711092 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-305 707521 708398 709175 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-304 702805 707453 707516 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-303 697484 702294 702484 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-302 691965 696765 697023 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-301 686172 691416 691627 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-300 685195 685405 685720 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-299 680635 683340 683368 "FFIELDC" 683987 FFIELDC (NIL) -9 NIL 684362 NIL) (-298 679704 680144 680630 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-297 679319 679377 679501 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-296 677463 677986 678503 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-295 672557 677262 677363 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-294 667657 672346 672453 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-293 662323 667448 667556 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-292 661777 661826 662061 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-291 640352 651386 651472 "FFCAT" 656622 FFCAT (NIL T T T) -9 NIL 658058 NIL) (-290 636592 637818 639124 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-289 631435 636523 636587 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-288 630327 630796 630837 "FEVALAB" 630921 FEVALAB (NIL T) -9 NIL 631182 NIL) (-287 629732 629984 630322 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-286 626559 627470 627585 "FDIVCAT" 629152 FDIVCAT (NIL T T T T) -9 NIL 629588 NIL) (-285 626353 626385 626554 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-284 625660 625753 626030 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-283 624146 625144 625347 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-282 623239 623623 623825 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-281 622361 622850 622990 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-280 613948 618591 618631 "FAXF" 620432 FAXF (NIL T) -9 NIL 621122 NIL) (-279 611864 612668 613483 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-278 606900 611386 611560 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-277 601358 603781 603833 "FAMR" 604844 FAMR (NIL T T) -9 NIL 605303 NIL) (-276 600557 600922 601353 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-275 599578 600499 600552 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-274 597172 598051 598104 "FAMONC" 599045 FAMONC (NIL T T) -9 NIL 599430 NIL) (-273 595728 597030 597167 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-272 593808 594169 594571 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-271 593085 593282 593504 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-270 584945 592532 592731 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-269 582964 583534 584120 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-268 579866 580508 581228 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-267 575023 575730 576535 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-266 574712 574775 574884 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-265 559505 573761 574187 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-264 550032 558825 559113 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-263 549526 549828 549918 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-262 549302 549492 549521 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-261 548991 549059 549172 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-260 548508 548650 548691 "EVALAB" 548861 EVALAB (NIL T) -9 NIL 548965 NIL) (-259 548136 548282 548503 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-258 545179 546774 546802 "EUCDOM" 547356 EUCDOM (NIL) -9 NIL 547705 NIL) (-257 544106 544599 545174 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-256 543831 543887 543987 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-255 543519 543583 543692 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-254 537290 539190 539218 "ES" 541960 ES (NIL) -9 NIL 543344 NIL) (-253 533805 535337 537129 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-252 533153 533306 533482 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-251 524478 533083 533148 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-250 524167 524230 524339 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-249 517794 520919 522352 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-248 514097 515193 516286 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-247 512926 513276 513581 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-246 511811 512542 512570 "ENTIRER" 512575 ENTIRER (NIL) -9 NIL 512619 NIL) (-245 511700 511734 511806 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-244 508333 510130 510479 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 507425 507636 507690 "ELTAGG" 508070 ELTAGG (NIL T T) -9 NIL 508281 NIL) (-242 507205 507279 507420 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 506951 506986 507040 "ELTAB" 507124 ELTAB (NIL T T) -9 NIL 507176 NIL) (-240 506202 506372 506571 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 505926 506000 506028 "ELEMFUN" 506133 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 505826 505853 505921 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 500372 503845 503886 "ELAGG" 504823 ELAGG (NIL T) -9 NIL 505286 NIL) (-236 499170 499708 500367 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 498588 498755 498911 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 497501 497820 498099 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 490894 492892 493719 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 484873 486869 487679 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 482687 483093 483564 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 473687 475600 477141 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 472800 473301 473450 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 471498 472172 472212 "DVARCAT" 472495 DVARCAT (NIL T) -9 NIL 472635 NIL) (-227 470917 471181 471493 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 462984 470785 470912 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 461322 462113 462154 "DSEXT" 462517 DSEXT (NIL T) -9 NIL 462811 NIL) (-224 460127 460651 461317 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 459851 459916 460014 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 456002 457218 458349 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 451648 453003 454067 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 450323 450684 451070 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 450009 450068 450186 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 448984 449282 449572 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 448569 448644 448794 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 440982 443094 445209 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 436499 437518 438597 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 433229 435126 435167 "DQAGG" 435796 DQAGG (NIL T) -9 NIL 436069 NIL) (-213 419772 427412 427494 "DPOLCAT" 429331 DPOLCAT (NIL T T T T) -9 NIL 429874 NIL) (-212 416180 417828 419767 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 409338 416078 416175 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 402405 409167 409333 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 401998 402258 402347 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 401412 401860 401940 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 400698 401023 401174 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 393837 400434 400585 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 391586 392903 392943 "DMEXT" 392948 DMEXT (NIL T) -9 NIL 393123 NIL) (-204 391242 391304 391448 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 384739 390727 390917 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 381409 383562 383603 "DLAGG" 384153 DLAGG (NIL T) -9 NIL 384382 NIL) (-201 379760 380631 380659 "DIVRING" 380751 DIVRING (NIL) -9 NIL 380834 NIL) (-200 379211 379455 379755 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 377639 378056 378462 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 376676 376897 377162 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 370303 376608 376671 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 358755 365063 365116 "DIRPCAT" 365372 DIRPCAT (NIL NIL T) -9 NIL 366247 NIL) (-195 356761 357531 358418 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 356208 356374 356560 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 352758 355075 355116 "DIOPS" 355548 DIOPS (NIL T) -9 NIL 355774 NIL) (-192 352418 352562 352753 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 351425 352171 352199 "DIOID" 352204 DIOID (NIL) -9 NIL 352226 NIL) (-190 350253 351082 351110 "DIFRING" 351115 DIFRING (NIL) -9 NIL 351136 NIL) (-189 349889 349987 350015 "DIFFSPC" 350134 DIFFSPC (NIL) -9 NIL 350209 NIL) (-188 349630 349732 349884 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 348533 349158 349198 "DIFFMOD" 349203 DIFFMOD (NIL T) -9 NIL 349300 NIL) (-186 348217 348274 348315 "DIFFDOM" 348436 DIFFDOM (NIL T) -9 NIL 348504 NIL) (-185 348098 348128 348212 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 345771 347292 347332 "DIFEXT" 347337 DIFEXT (NIL T) -9 NIL 347489 NIL) (-183 342936 345253 345294 "DIAGG" 345299 DIAGG (NIL T) -9 NIL 345319 NIL) (-182 342492 342682 342931 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 337838 341682 341959 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 334296 335349 336359 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 328846 333450 333777 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 327412 327704 328079 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 324532 325784 326180 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 322424 324363 324452 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 321807 321952 322134 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 319125 319849 320649 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 317234 317692 318254 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 316617 316950 317064 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 309817 316342 316490 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 307737 308247 308751 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 307376 307425 307576 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 306635 307197 307288 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 304659 305101 305461 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 303951 304240 304386 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 303402 303548 303700 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 300764 301557 302284 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 300203 300349 300520 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 298275 298586 298953 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 297832 298087 298188 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 297033 297416 297444 "CTORCAT" 297625 CTORCAT (NIL) -9 NIL 297737 NIL) (-159 296736 296870 297028 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 296229 296486 296594 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 295645 296076 296149 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 295104 295221 295374 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 291498 292254 293009 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 290989 291292 291383 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 290208 290417 290645 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 289712 289817 290021 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 289465 289499 289605 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 286404 287166 287884 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 285923 286065 286204 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 281816 284386 284878 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 281690 281717 281745 "CONDUIT" 281782 CONDUIT (NIL) -9 NIL NIL NIL) (-146 280569 281300 281328 "COMRING" 281333 COMRING (NIL) -9 NIL 281383 NIL) (-145 279734 280101 280279 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 279430 279471 279599 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 279123 279186 279293 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 267965 279073 279118 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 267426 267565 267725 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 267179 267220 267318 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 248610 260860 260900 "COMPCAT" 261901 COMPCAT (NIL T) -9 NIL 263243 NIL) (-138 241148 244661 248254 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 240907 240941 241043 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 240737 240776 240834 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 240318 240597 240671 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 239895 240136 240223 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 239090 239338 239366 "COMBOPC" 239704 COMBOPC (NIL) -9 NIL 239879 NIL) (-132 238154 238406 238648 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 235086 235770 236393 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 233966 234417 234652 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 233457 233760 233851 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 233144 233197 233322 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 232614 232924 233022 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 229134 230204 231284 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 227429 228414 228652 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 223545 225549 225590 "CLAGG" 226516 CLAGG (NIL T) -9 NIL 227049 NIL) (-123 222438 222965 223540 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 222067 222158 222298 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 220004 220511 221059 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 218965 219696 219724 "CHARZ" 219729 CHARZ (NIL) -9 NIL 219743 NIL) (-119 218759 218805 218883 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 217598 218361 218389 "CHARNZ" 218450 CHARNZ (NIL) -9 NIL 218498 NIL) (-117 215076 216173 216696 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 214784 214863 214891 "CFCAT" 215002 CFCAT (NIL) -9 NIL NIL NIL) (-115 214127 214256 214438 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 210288 213540 213820 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 209666 209853 210030 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 209194 209613 209661 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 208667 208976 209073 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 208158 208461 208552 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 207407 207567 207788 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 203507 204764 205472 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 201873 202904 203155 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 201454 201733 201807 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 200888 201141 201169 "CACHSET" 201301 CACHSET (NIL) -9 NIL 201379 NIL) (-104 200240 200655 200683 "CABMON" 200733 CABMON (NIL) -9 NIL 200789 NIL) (-103 199770 200034 200144 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 195176 199438 199599 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 194146 194850 194985 "BYTE" NIL BYTE (NIL) -8 NIL NIL 195148) (-100 191789 193913 194019 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 189403 191543 191651 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 186773 188805 188844 "BTCAT" 188911 BTCAT (NIL T) -9 NIL 188992 NIL) (-97 186524 186622 186768 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 181765 185716 185742 "BTAGG" 185853 BTAGG (NIL) -9 NIL 185961 NIL) (-95 181396 181557 181760 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 178652 180888 181078 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 177922 178074 178252 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 174459 176628 176667 "BRAGG" 177308 BRAGG (NIL T) -9 NIL 177565 NIL) (-91 173414 173909 174454 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 165948 172919 173100 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 163940 165900 165943 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 163673 163709 163820 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 161912 162345 162793 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 157878 159294 160184 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 156754 157645 157767 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 156340 156497 156523 "BOOLE" 156631 BOOLE (NIL) -9 NIL 156712 NIL) (-83 156133 156214 156335 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 155271 155798 155848 "BMODULE" 155853 BMODULE (NIL T T) -9 NIL 155917 NIL) (-81 151060 155128 155197 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 150873 150913 150952 "BINOPC" 150957 BINOPC (NIL T) -9 NIL 151002 NIL) (-79 150415 150688 150790 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 149936 150080 150218 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 143142 149666 149811 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 140890 142362 142401 "BGAGG" 142657 BGAGG (NIL T) -9 NIL 142784 NIL) (-75 140759 140797 140885 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 139610 139811 140096 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 136442 138790 139095 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 136027 136120 136146 "BASTYPE" 136317 BASTYPE (NIL) -9 NIL 136413 NIL) (-71 135797 135893 136022 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 135312 135400 135550 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 134211 134886 135071 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 133948 133953 133979 "ATTREG" 133984 ATTREG (NIL) -9 NIL NIL NIL) (-67 133553 133825 133890 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 133053 133202 133228 "ATRIG" 133429 ATRIG (NIL) -9 NIL NIL NIL) (-65 132908 132961 133048 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 132478 132709 132735 "ASTCAT" 132740 ASTCAT (NIL) -9 NIL 132770 NIL) (-63 132277 132354 132473 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 130608 132110 132198 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 129415 129728 130093 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 127375 129345 129410 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 126566 126757 126978 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 122325 126297 126411 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 116765 118663 118738 "ARR2CAT" 121250 ARR2CAT (NIL T T T) -9 NIL 121968 NIL) (-56 115726 116208 116760 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 115094 115465 115587 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 114026 114194 114490 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 113727 113781 113899 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 113110 113256 113412 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 112515 112805 112925 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 110083 111244 111567 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 109608 109868 109964 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 103303 108670 109112 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 98837 100500 100550 "AMR" 101288 AMR (NIL T T) -9 NIL 101885 NIL) (-46 98191 98471 98832 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 79737 98125 98186 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 76140 79413 79582 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 73150 73810 74417 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 72529 72642 72826 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 68941 69566 70158 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 58430 68634 68784 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 57747 57901 58079 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 56460 57255 57293 "ALGEBRA" 57298 ALGEBRA (NIL T) -9 NIL 57338 NIL) (-37 56246 56323 56455 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 34174 53353 53405 "ALAGG" 53540 ALAGG (NIL T T) -9 NIL 53698 NIL) (-35 33674 33823 33849 "AHYP" 34050 AHYP (NIL) -9 NIL NIL NIL) (-34 32970 33151 33177 "AGG" 33458 AGG (NIL) -9 NIL 33645 NIL) (-33 32813 32871 32965 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30952 31412 31812 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30447 30750 30839 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29817 30112 30268 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17375 26654 26692 "ACFS" 27299 ACFS (NIL T) -9 NIL 27538 NIL) (-28 15998 16608 17370 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11550 13929 13955 "ACF" 14834 ACF (NIL) -9 NIL 15246 NIL) (-26 10646 11052 11545 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10148 10388 10414 "ABELSG" 10506 ABELSG (NIL) -9 NIL 10571 NIL) (-24 10046 10077 10143 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9201 9575 9601 "ABELMON" 9826 ABELMON (NIL) -9 NIL 9959 NIL) (-22 8883 9023 9196 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8095 8578 8604 "ABELGRP" 8676 ABELGRP (NIL) -9 NIL 8751 NIL) (-20 7648 7844 8090 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 6875 6914 "A1AGG" 6919 A1AGG (NIL T) -9 NIL 6953 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 9 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1131) (-996)) (T -1131)) +NIL +((-3718 (((-85)) 18 T ELT)) (-3715 (((-1186) (-584 |#1|) (-584 |#1|)) 22 T ELT) (((-1186) (-584 |#1|)) 23 T ELT)) (-3720 (((-85) |#1| |#1|) 37 (|has| |#1| (-757)) ELT)) (-3717 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3719 ((|#1| (-584 |#1|)) 38 (|has| |#1| (-757)) ELT) ((|#1| (-584 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3716 (((-2 (|:| -3230 (-584 |#1|)) (|:| -3229 (-584 |#1|)))) 20 T ELT))) +(((-1132 |#1|) (-10 -7 (-15 -3715 ((-1186) (-584 |#1|))) (-15 -3715 ((-1186) (-584 |#1|) (-584 |#1|))) (-15 -3716 ((-2 (|:| -3230 (-584 |#1|)) (|:| -3229 (-584 |#1|))))) (-15 -3717 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3717 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3719 (|#1| (-584 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3718 ((-85))) (IF (|has| |#1| (-757)) (PROGN (-15 -3719 (|#1| (-584 |#1|))) (-15 -3720 ((-85) |#1| |#1|))) |%noBranch|)) (-1014)) (T -1132)) +((-3720 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-757)) (-4 *3 (-1014)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-757)) (-5 *1 (-1132 *2)))) (-3718 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))) (-3719 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1132 *2)) (-4 *2 (-1014)))) (-3717 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1014)) (-5 *2 (-85)) (-5 *1 (-1132 *3)))) (-3717 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))) (-3716 (*1 *2) (-12 (-5 *2 (-2 (|:| -3230 (-584 *3)) (|:| -3229 (-584 *3)))) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))) (-3715 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4))))) +((-3721 (((-1186) (-584 (-1091)) (-584 (-1091))) 14 T ELT) (((-1186) (-584 (-1091))) 12 T ELT)) (-3723 (((-1186)) 16 T ELT)) (-3722 (((-2 (|:| -3229 (-584 (-1091))) (|:| -3230 (-584 (-1091))))) 20 T ELT))) +(((-1133) (-10 -7 (-15 -3721 ((-1186) (-584 (-1091)))) (-15 -3721 ((-1186) (-584 (-1091)) (-584 (-1091)))) (-15 -3722 ((-2 (|:| -3229 (-584 (-1091))) (|:| -3230 (-584 (-1091)))))) (-15 -3723 ((-1186))))) (T -1133)) +((-3723 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1133)))) (-3722 (*1 *2) (-12 (-5 *2 (-2 (|:| -3229 (-584 (-1091))) (|:| -3230 (-584 (-1091))))) (-5 *1 (-1133)))) (-3721 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133))))) +((-3776 (($ $) 17 T ELT)) (-3724 (((-85) $) 27 T ELT))) +(((-1134 |#1|) (-10 -7 (-15 -3776 (|#1| |#1|)) (-15 -3724 ((-85) |#1|))) (-1135)) (T -1134)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 66 T ELT)) (-3972 (((-348 $) $) 67 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3724 (((-85) $) 68 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3733 (((-348 $) $) 65 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT))) +(((-1135) (-113)) (T -1135)) +((-3724 (*1 *2 *1) (-12 (-4 *1 (-1135)) (-5 *2 (-85)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1135)))) (-3776 (*1 *1 *1) (-4 *1 (-1135))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1135))))) +(-13 (-392) (-10 -8 (-15 -3724 ((-85) $)) (-15 -3972 ((-348 $) $)) (-15 -3776 ($ $)) (-15 -3733 ((-348 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT))) +(((-1136) (-13 (-753) (-605) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953)))) (T -1136)) +((-3727 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3726 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3725 (*1 *1) (-5 *1 (-1136)))) +((-695) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT))) +(((-1137) (-13 (-753) (-605) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953)))) (T -1137)) +((-3727 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3726 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3725 (*1 *1) (-5 *1 (-1137)))) +((-695) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT))) +(((-1138) (-13 (-753) (-605) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953)))) (T -1138)) +((-3727 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3726 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3725 (*1 *1) (-5 *1 (-1138)))) +((-695) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2569 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3137 (((-695)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT))) +(((-1139) (-13 (-753) (-605) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953)))) (T -1139)) +((-3727 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3726 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3725 (*1 *1) (-5 *1 (-1139)))) +((-695) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-1170 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3832 (((-1091) $) 10 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2064 (($ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2062 (((-85) $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3772 (($ $ (-485)) NIL T ELT) (($ $ (-485) (-485)) NIL T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) NIL T ELT)) (-3732 (((-1170 |#1| |#2| |#3|) $) NIL T ELT)) (-3729 (((-3 (-1170 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3730 (((-1170 |#1| |#2| |#3|) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3624 (((-485) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-1170 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3157 (((-1170 |#1| |#2| |#3|) $) NIL T ELT) (((-1091) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (((-350 (-485)) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-485) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3731 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-2280 (((-631 (-1170 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1170 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1170 |#1| |#2| |#3|)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3728 (((-350 (-858 |#1|)) $ (-485)) NIL (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) NIL (|has| |#1| (-496)) ELT)) (-2995 (($) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3187 (((-85) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-797 (-330))) (|has| |#1| (-312))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-797 (-485))) (|has| |#1| (-312))) ELT)) (-3773 (((-485) $) NIL T ELT) (((-485) $ (-485)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 (((-1170 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3446 (((-633 $) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) ELT)) (-3188 (((-85) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3778 (($ $ (-831)) NIL T ELT)) (-3816 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-485)) 18 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-2532 (($ $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2858 (($ $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 (-1170 |#1| |#2| |#3|)) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1170 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1170 |#1| |#2| |#3|)))) (-1180 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (($ (-485) (-1170 |#1| |#2| |#3|)) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) 27 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3082 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 28 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3447 (($) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3129 (($ $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3131 (((-1170 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-485)) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) (-1170 |#1| |#2| |#3|)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-456 (-1091) (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1091)) (-584 (-1170 |#1| |#2| |#3|))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-456 (-1091) (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-249 (-1170 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1170 |#1| |#2| |#3|))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1170 |#1| |#2| |#3|)) (-584 (-1170 |#1| |#2| |#3|))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-485)) NIL T ELT) (($ $ $) NIL (|has| (-485) (-1026)) ELT) (($ $ (-1170 |#1| |#2| |#3|)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-241 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 (((-1170 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3949 (((-485) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3973 (((-474) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-554 (-474))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-801 (-330)) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-554 (-801 (-330)))) (|has| |#1| (-312))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-554 (-801 (-485)))) (|has| |#1| (-312))) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1170 |#1| |#2| |#3|)) NIL T ELT) (($ (-1177 |#2|)) 24 T ELT) (($ (-1091)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT) (($ (-350 (-485))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3678 ((|#1| $ (-485)) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-3774 ((|#1| $) 11 T ELT)) (-3132 (((-1170 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 ((|#1| $ (-485)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3384 (($ $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2661 (($) 20 T CONST)) (-2667 (($) 15 T CONST)) (-2670 (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2686 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT) (($ (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 22 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1170 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT) (($ (-1170 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-1140 |#1| |#2| |#3|) (-13 (-1144 |#1| (-1170 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-10 -8 (-15 -3947 ($ (-1177 |#2|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3813 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1140)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))) +((-3959 (((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|)) 23 T ELT))) +(((-1141 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3959 ((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|)))) (-962) (-962) (-1091) (-1091) |#1| |#2|) (T -1141)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1140 *6 *8 *10)) (-5 *1 (-1141 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1091))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 (-995)) $) 95 T ELT)) (-3832 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-485)) 124 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 130 T ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3038 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 201 T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) 23 T CONST)) (-2565 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3728 (((-350 (-858 |#1|)) $ (-485)) 199 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 198 (|has| |#1| (-496)) ELT)) (-2564 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) 94 T ELT)) (-3628 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3773 (((-485) $) 126 T ELT) (((-485) $ (-485)) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3778 (($ $ (-831)) 127 T ELT)) (-3816 (($ (-1 |#1| (-485)) $) 200 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| (-485)) 81 T ELT) (($ $ (-995) (-485)) 97 T ELT) (($ $ (-584 (-995)) (-584 (-485))) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3943 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-1892 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3082 ((-584 (-1091)) |#1|))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-485)) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3944 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT)) (-1608 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-485)) 131 T ELT) (($ $ $) 107 (|has| (-485) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) 119 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) 117 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) 116 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3949 (((-485) $) 84 T ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 93 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-485)) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 ((|#1| $ (-485)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1091)) 118 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) 114 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) 113 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-1142 |#1|) (-113) (-962)) (T -1142)) +((-3819 (*1 *1 *2) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1142 *3)))) (-3816 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1142 *3)) (-4 *3 (-962)))) (-3728 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496)) (-5 *2 (-350 (-858 *4))))) (-3728 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496)) (-5 *2 (-350 (-858 *4))))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) (-3813 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) (-4 *3 (-38 (-350 (-485)))))) (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3082 ((-584 *2) *3))) (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485))))))))) +(-13 (-1159 |t#1| (-485)) (-10 -8 (-15 -3819 ($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |t#1|))))) (-15 -3816 ($ (-1 |t#1| (-485)) $)) (IF (|has| |t#1| (-496)) (PROGN (-15 -3728 ((-350 (-858 |t#1|)) $ (-485))) (-15 -3728 ((-350 (-858 |t#1|)) $ (-485) (-485)))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3813 ($ $)) (IF (|has| |t#1| (-15 -3813 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-15 -3082 ((-584 (-1091)) |t#1|))) (-15 -3813 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-485))) (-15 -3813 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1116))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-485)) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-485) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-485) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-485) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-485) |#1|) . T) ((-241 $ $) |has| (-485) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ((-810 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ((-812 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ((-887 |#1| (-485) (-995)) . T) ((-833) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1159 |#1| (-485)) . T)) +((-3189 (((-85) $) 12 T ELT)) (-3158 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT)) (-3157 ((|#3| $) 14 T ELT) (((-1091) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT))) +(((-1143 |#1| |#2| |#3|) (-10 -7 (-15 -3158 ((-3 (-485) #1="failed") |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3158 ((-3 (-1091) #1#) |#1|)) (-15 -3157 ((-1091) |#1|)) (-15 -3158 ((-3 |#3| #1#) |#1|)) (-15 -3157 (|#3| |#1|)) (-15 -3189 ((-85) |#1|))) (-1144 |#2| |#3|) (-962) (-1173 |#2|)) (T -1143)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3130 ((|#2| $) 266 (-2563 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3082 (((-584 (-995)) $) 95 T ELT)) (-3832 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-485)) 124 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 130 T ELT)) (-3732 ((|#2| $) 302 T ELT)) (-3729 (((-3 |#2| "failed") $) 298 T ELT)) (-3730 ((|#2| $) 299 T ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 275 (-2563 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-3776 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3038 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 272 (-2563 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3624 (((-485) $) 284 (-2563 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 201 T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#2| #2="failed") $) 305 T ELT) (((-3 (-485) #2#) $) 295 (-2563 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-485)) #2#) $) 293 (-2563 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-1091) #2#) $) 277 (-2563 (|has| |#2| (-951 (-1091))) (|has| |#1| (-312))) ELT)) (-3157 ((|#2| $) 306 T ELT) (((-485) $) 294 (-2563 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-350 (-485)) $) 292 (-2563 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-1091) $) 276 (-2563 (|has| |#2| (-951 (-1091))) (|has| |#1| (-312))) ELT)) (-3731 (($ $) 301 T ELT) (($ (-485) $) 300 T ELT)) (-2565 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3960 (($ $) 80 T ELT)) (-2280 (((-631 |#2|) (-631 $)) 254 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 253 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 252 (-2563 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-631 $)) 251 (-2563 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3728 (((-350 (-858 |#1|)) $ (-485)) 199 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 198 (|has| |#1| (-496)) ELT)) (-2995 (($) 268 (-2563 (|has| |#2| (-484)) (|has| |#1| (-312))) ELT)) (-2564 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-3187 (((-85) $) 282 (-2563 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-2893 (((-85) $) 94 T ELT)) (-3628 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 260 (-2563 (|has| |#2| (-797 (-330))) (|has| |#1| (-312))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 259 (-2563 (|has| |#2| (-797 (-485))) (|has| |#1| (-312))) ELT)) (-3773 (((-485) $) 126 T ELT) (((-485) $ (-485)) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2997 (($ $) 264 (|has| |#1| (-312)) ELT)) (-2999 ((|#2| $) 262 (|has| |#1| (-312)) ELT)) (-3012 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3446 (((-633 $) $) 296 (-2563 (|has| |#2| (-1067)) (|has| |#1| (-312))) ELT)) (-3188 (((-85) $) 283 (-2563 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-3778 (($ $ (-831)) 127 T ELT)) (-3816 (($ (-1 |#1| (-485)) $) 200 T ELT)) (-1606 (((-3 (-584 $) #3="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| (-485)) 81 T ELT) (($ $ (-995) (-485)) 97 T ELT) (($ $ (-584 (-995)) (-584 (-485))) 96 T ELT)) (-2532 (($ $ $) 291 (-2563 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-2858 (($ $ $) 290 (-2563 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT) (($ (-1 |#2| |#2|) $) 244 (|has| |#1| (-312)) ELT)) (-3943 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 |#2|) (-1180 $)) 256 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) 255 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 250 (-2563 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-1180 $)) 249 (-2563 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-1892 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3780 (($ (-485) |#2|) 303 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3082 ((-584 (-1091)) |#1|))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3447 (($) 297 (-2563 (|has| |#2| (-1067)) (|has| |#1| (-312))) CONST)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3129 (($ $) 267 (-2563 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3131 ((|#2| $) 270 (-2563 (|has| |#2| (-484)) (|has| |#1| (-312))) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) 273 (-2563 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 274 (-2563 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-3733 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-485)) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3944 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) |#2|) 243 (-2563 (|has| |#2| (-456 (-1091) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1091)) (-584 |#2|)) 242 (-2563 (|has| |#2| (-456 (-1091) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-584 (-249 |#2|))) 241 (-2563 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-249 |#2|)) 240 (-2563 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ |#2| |#2|) 239 (-2563 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 238 (-2563 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT)) (-1608 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-485)) 131 T ELT) (($ $ $) 107 (|has| (-485) (-1026)) ELT) (($ $ |#2|) 237 (-2563 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-312))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-695)) 246 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-312)) ELT) (($ $) 111 (OR (-2563 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) 109 (OR (-2563 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) 119 (OR (-2563 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) 117 (OR (-2563 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) 116 (OR (-2563 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (OR (-2563 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2996 (($ $) 265 (|has| |#1| (-312)) ELT)) (-2998 ((|#2| $) 263 (|has| |#1| (-312)) ELT)) (-3949 (((-485) $) 84 T ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3973 (((-179) $) 281 (-2563 (|has| |#2| (-934)) (|has| |#1| (-312))) ELT) (((-330) $) 280 (-2563 (|has| |#2| (-934)) (|has| |#1| (-312))) ELT) (((-474) $) 279 (-2563 (|has| |#2| (-554 (-474))) (|has| |#1| (-312))) ELT) (((-801 (-330)) $) 258 (-2563 (|has| |#2| (-554 (-801 (-330)))) (|has| |#1| (-312))) ELT) (((-801 (-485)) $) 257 (-2563 (|has| |#2| (-554 (-801 (-485)))) (|has| |#1| (-312))) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) 271 (-2563 (-2563 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#1| (-312))) ELT)) (-2892 (($ $) 93 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 304 T ELT) (($ (-1091)) 278 (-2563 (|has| |#2| (-951 (-1091))) (|has| |#1| (-312))) ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-485)) 79 T ELT)) (-2703 (((-633 $) $) 68 (OR (-2563 (OR (|has| |#2| (-118)) (-2563 (|has| $ (-118)) (|has| |#2| (-822)))) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-3132 ((|#2| $) 269 (-2563 (|has| |#2| (-484)) (|has| |#1| (-312))) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 ((|#1| $ (-485)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3384 (($ $) 285 (-2563 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-695)) 248 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 247 (|has| |#1| (-312)) ELT) (($ $) 110 (OR (-2563 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) 108 (OR (-2563 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) 118 (OR (-2563 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) 114 (OR (-2563 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) 113 (OR (-2563 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (OR (-2563 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2567 (((-85) $ $) 289 (-2563 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-2568 (((-85) $ $) 287 (-2563 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 288 (-2563 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-2686 (((-85) $ $) 286 (-2563 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 261 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ $ |#2|) 236 (|has| |#1| (-312)) ELT) (($ |#2| $) 235 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-1144 |#1| |#2|) (-113) (-962) (-1173 |t#1|)) (T -1144)) +((-3949 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3)) (-5 *2 (-485)))) (-3780 (*1 *1 *2 *3) (-12 (-5 *2 (-485)) (-4 *4 (-962)) (-4 *1 (-1144 *4 *3)) (-4 *3 (-1173 *4)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))) (-3731 (*1 *1 *1) (-12 (-4 *1 (-1144 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1173 *2)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))) (-3729 (*1 *2 *1) (|partial| -12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3))))) +(-13 (-1142 |t#1|) (-951 |t#2|) (-556 |t#2|) (-10 -8 (-15 -3780 ($ (-485) |t#2|)) (-15 -3949 ((-485) $)) (-15 -3732 (|t#2| $)) (-15 -3731 ($ $)) (-15 -3731 ($ (-485) $)) (-15 -3730 (|t#2| $)) (-15 -3729 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-312)) (-6 (-905 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-485)) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-312)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-312)) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 (-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) ((-556 |#1|) |has| |#1| (-146)) ((-556 |#2|) . T) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-554 (-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) ((-554 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) ((-554 (-474)) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-485))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-485) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-15 * (|#1| (-485) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-485) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-312)) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-485) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-485) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-312) |has| |#1| (-312)) ((-288 |#2|) |has| |#1| (-312)) ((-329 |#2|) |has| |#1| (-312)) ((-343 |#2|) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-456 (-1091) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1091) |#2|))) ((-456 |#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 |#2|) |has| |#1| (-312)) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ((-591 |#1|) . T) ((-591 |#2|) |has| |#1| (-312)) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 |#2|) |has| |#1| (-312)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-581 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ((-581 |#2|) |has| |#1| (-312)) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 |#2|) |has| |#1| (-312)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-715) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-717) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-719) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-722) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-741) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-756) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-757) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) (-12 (|has| |#1| (-312)) (|has| |#2| (-741)))) ((-760) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) (-12 (|has| |#1| (-312)) (|has| |#2| (-741)))) ((-807 $ (-1091)) OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091))))) ((-810 (-1091)) OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091))))) ((-812 (-1091)) OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091))))) ((-797 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-485)))) ((-795 |#2|) |has| |#1| (-312)) ((-822) -12 (|has| |#1| (-312)) (|has| |#2| (-822))) ((-887 |#1| (-485) (-995)) . T) ((-833) |has| |#1| (-312)) ((-905 |#2|) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-934) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) ((-951 (-350 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ((-951 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ((-951 (-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) ((-951 |#2|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 |#2|) |has| |#1| (-312)) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 |#2|) |has| |#1| (-312)) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) -12 (|has| |#1| (-312)) (|has| |#2| (-1067))) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1142 |#1|) . T) ((-1159 |#1| (-485)) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 83 T ELT)) (-3130 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3832 (((-1091) $) 102 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-485)) 111 T ELT) (($ $ (-485) (-485)) 114 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 51 T ELT)) (-3732 ((|#2| $) 11 T ELT)) (-3729 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3730 ((|#2| $) 36 T ELT)) (-3493 (($ $) 208 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 184 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) 204 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 180 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3624 (((-485) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 59 T ELT)) (-3495 (($ $) 212 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 188 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-3 (-1091) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) ELT)) (-3157 ((|#2| $) 158 T ELT) (((-485) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-1091) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) ELT)) (-3731 (($ $) 65 T ELT) (($ (-485) $) 28 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-2280 (((-631 |#2|) (-631 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT)) (-3468 (((-3 $ #1#) $) 90 T ELT)) (-3728 (((-350 (-858 |#1|)) $ (-485)) 126 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 128 (|has| |#1| (-496)) ELT)) (-2995 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-484))) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3187 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-2893 (((-85) $) 76 T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-797 (-485)))) ELT)) (-3773 (((-485) $) 107 T ELT) (((-485) $ (-485)) 109 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 ((|#2| $) 167 (|has| |#1| (-312)) ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3446 (((-633 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1067))) ELT)) (-3188 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-3778 (($ $ (-831)) 150 T ELT)) (-3816 (($ (-1 |#1| (-485)) $) 146 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-485)) 20 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-2532 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-2858 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) 178 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 |#2|) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (($ (-485) |#2|) 10 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 161 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 230 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 235 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3082 ((-584 (-1091)) |#1|))))) ELT)) (-3447 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1067))) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3129 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3131 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-484))) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-485)) 140 T ELT)) (-3467 (((-3 $ #1#) $ $) 130 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) 176 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1091) |#2|))) ELT) (($ $ (-584 (-1091)) (-584 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1091) |#2|))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-485)) 105 T ELT) (($ $ $) 92 (|has| (-485) (-1026)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) 155 (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 ((|#2| $) 168 (|has| |#1| (-312)) ELT)) (-3949 (((-485) $) 12 T ELT)) (-3496 (($ $) 214 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 190 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) 210 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 186 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 206 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 182 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3973 (((-179) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-934))) ELT) (((-330) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-934))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-554 (-474)))) ELT) (((-801 (-330)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-485))))) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-2892 (($ $) 138 T ELT)) (-3947 (((-773) $) 268 T ELT) (($ (-485)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1091)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) ELT) (($ (-350 (-485))) 171 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-485)) 87 T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-822))) (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) ELT)) (-3127 (((-695)) 157 T CONST)) (-3774 ((|#1| $) 104 T ELT)) (-3132 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-484))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 220 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 196 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) 216 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 192 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 224 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 200 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 ((|#1| $ (-485)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 226 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 202 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 222 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 198 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) 218 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 194 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3384 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-2661 (($) 13 T CONST)) (-2667 (($) 18 T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT)) (-2567 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-2568 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-3057 (((-85) $ $) 74 T ELT)) (-2685 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-2686 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 165 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3840 (($ $ $) 78 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 86 T ELT) (($ $ (-485)) 162 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 174 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-312)) ELT) (($ |#2| $) 163 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-1145 |#1| |#2|) (-1144 |#1| |#2|) (-962) (-1173 |#1|)) (T -1145)) +NIL +((-3735 (((-2 (|:| |contp| (-485)) (|:| -1780 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85)) 13 T ELT)) (-3734 (((-348 |#1|) |#1|) 26 T ELT)) (-3733 (((-348 |#1|) |#1|) 24 T ELT))) +(((-1146 |#1|) (-10 -7 (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3735 ((-2 (|:| |contp| (-485)) (|:| -1780 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85)))) (-1156 (-485))) (T -1146)) +((-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1780 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485)))))) +((-2569 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3737 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3959 (((-1070 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-756)) ELT)) (-3230 ((|#1| $) 15 T ELT)) (-3232 ((|#1| $) 12 T ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3228 (((-485) $) 19 T ELT)) (-3229 ((|#1| $) 18 T ELT)) (-3231 ((|#1| $) 13 T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3736 (((-85) $) 17 T ELT)) (-3964 (((-1070 |#1|) $) 41 (|has| |#1| (-756)) ELT) (((-1070 |#1|) (-584 $)) 40 (|has| |#1| (-756)) ELT)) (-3973 (($ |#1|) 26 T ELT)) (-3947 (($ (-1002 |#1|)) 25 T ELT) (((-773) $) 37 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3738 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3233 (($ $ (-485)) 14 T ELT)) (-3057 (((-85) $ $) 30 (|has| |#1| (-1014)) ELT))) +(((-1147 |#1|) (-13 (-1007 |#1|) (-10 -8 (-15 -3738 ($ |#1|)) (-15 -3737 ($ |#1|)) (-15 -3947 ($ (-1002 |#1|))) (-15 -3736 ((-85) $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-1008 |#1| (-1070 |#1|))) |%noBranch|))) (-1130)) (T -1147)) +((-3738 (*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130)))) (-3737 (*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1002 *3)) (-4 *3 (-1130)) (-5 *1 (-1147 *3)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1147 *3)) (-4 *3 (-1130))))) +((-3959 (((-1070 |#2|) (-1 |#2| |#1|) (-1147 |#1|)) 23 (|has| |#1| (-756)) ELT) (((-1147 |#2|) (-1 |#2| |#1|) (-1147 |#1|)) 17 T ELT))) +(((-1148 |#1| |#2|) (-10 -7 (-15 -3959 ((-1147 |#2|) (-1 |#2| |#1|) (-1147 |#1|))) (IF (|has| |#1| (-756)) (-15 -3959 ((-1070 |#2|) (-1 |#2| |#1|) (-1147 |#1|))) |%noBranch|)) (-1130) (-1130)) (T -1148)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-756)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1070 *6)) (-5 *1 (-1148 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1147 *6)) (-5 *1 (-1148 *5 *6))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3768 (((-1180 |#2|) $ (-695)) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3766 (($ (-1086 |#2|)) NIL T ELT)) (-3084 (((-1086 $) $ (-995)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3756 (($ $ $) NIL (|has| |#2| (-496)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3776 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3762 (($ $ (-695)) NIL T ELT)) (-3761 (($ $ (-695)) NIL T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-392)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-995) $) NIL T ELT)) (-3757 (($ $ $ (-995)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2565 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3760 (($ $ $) NIL T ELT)) (-3754 (($ $ $) NIL (|has| |#2| (-496)) ELT)) (-3753 (((-2 (|:| -3955 |#2|) (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#2| (-312)) ELT)) (-3504 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-995)) NIL (|has| |#2| (-392)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-695) $) NIL T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-3773 (((-695) $ $) NIL (|has| |#2| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3446 (((-633 $) $) NIL (|has| |#2| (-1067)) ELT)) (-3085 (($ (-1086 |#2|) (-995)) NIL T ELT) (($ (-1086 $) (-995)) NIL T ELT)) (-3778 (($ $ (-695)) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-695)) 18 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3767 (((-1086 |#2|) $) NIL T ELT)) (-3083 (((-3 (-995) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ (-695)) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3813 (($ $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT)) (-3447 (($) NIL (|has| |#2| (-1067)) CONST)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 ((|#2| $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3739 (($ $ (-695) |#2| $) NIL T ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-3769 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#2|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#2|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#2| (-312)) ELT)) (-3801 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#2| (-496)) ELT) ((|#2| (-350 $) |#2|) NIL (|has| |#2| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#2| (-496)) ELT)) (-3765 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3758 (($ $ (-995)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3759 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3949 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3973 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2818 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-995)) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3755 (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#2| (-496)) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-995)) NIL T ELT) (($ (-1177 |#1|)) 20 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3818 (((-584 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2703 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3127 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) 14 T CONST)) (-2670 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-1149 |#1| |#2|) (-13 (-1156 |#2|) (-556 (-1177 |#1|)) (-10 -8 (-15 -3739 ($ $ (-695) |#2| $)))) (-1091) (-962)) (T -1149)) +((-3739 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1149 *4 *3)) (-14 *4 (-1091)) (-4 *3 (-962))))) +((-3959 (((-1149 |#3| |#4|) (-1 |#4| |#2|) (-1149 |#1| |#2|)) 15 T ELT))) +(((-1150 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 ((-1149 |#3| |#4|) (-1 |#4| |#2|) (-1149 |#1| |#2|)))) (-1091) (-962) (-1091) (-962)) (T -1150)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1149 *5 *6)) (-14 *5 (-1091)) (-4 *6 (-962)) (-4 *8 (-962)) (-5 *2 (-1149 *7 *8)) (-5 *1 (-1150 *5 *6 *7 *8)) (-14 *7 (-1091))))) +((-3742 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3740 ((|#1| |#3|) 13 T ELT)) (-3741 ((|#3| |#3|) 19 T ELT))) +(((-1151 |#1| |#2| |#3|) (-10 -7 (-15 -3740 (|#1| |#3|)) (-15 -3741 (|#3| |#3|)) (-15 -3742 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-496) (-905 |#1|) (-1156 |#2|)) (T -1151)) +((-3742 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1151 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-3741 (*1 *2 *2) (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-1151 *3 *4 *2)) (-4 *2 (-1156 *4)))) (-3740 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-1151 *2 *4 *3)) (-4 *3 (-1156 *4))))) +((-3744 (((-3 |#2| #1="failed") |#2| (-695) |#1|) 35 T ELT)) (-3743 (((-3 |#2| #1#) |#2| (-695)) 36 T ELT)) (-3746 (((-3 (-2 (|:| -3139 |#2|) (|:| -3138 |#2|)) #1#) |#2|) 50 T ELT)) (-3747 (((-584 |#2|) |#2|) 52 T ELT)) (-3745 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) +(((-1152 |#1| |#2|) (-10 -7 (-15 -3743 ((-3 |#2| #1="failed") |#2| (-695))) (-15 -3744 ((-3 |#2| #1#) |#2| (-695) |#1|)) (-15 -3745 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3746 ((-3 (-2 (|:| -3139 |#2|) (|:| -3138 |#2|)) #1#) |#2|)) (-15 -3747 ((-584 |#2|) |#2|))) (-13 (-496) (-120)) (-1156 |#1|)) (T -1152)) +((-3747 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-584 *3)) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1156 *4)))) (-3746 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-2 (|:| -3139 *3) (|:| -3138 *3))) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1156 *4)))) (-3745 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1156 *3)))) (-3744 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4)))) (-3743 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4))))) +((-3748 (((-3 (-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) "failed") |#2| |#2|) 30 T ELT))) +(((-1153 |#1| |#2|) (-10 -7 (-15 -3748 ((-3 (-2 (|:| -1973 |#2|) (|:| -2903 |#2|)) "failed") |#2| |#2|))) (-496) (-1156 |#1|)) (T -1153)) +((-3748 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-1153 *4 *3)) (-4 *3 (-1156 *4))))) +((-3749 ((|#2| |#2| |#2|) 22 T ELT)) (-3750 ((|#2| |#2| |#2|) 36 T ELT)) (-3751 ((|#2| |#2| |#2| (-695) (-695)) 44 T ELT))) +(((-1154 |#1| |#2|) (-10 -7 (-15 -3749 (|#2| |#2| |#2|)) (-15 -3750 (|#2| |#2| |#2|)) (-15 -3751 (|#2| |#2| |#2| (-695) (-695)))) (-962) (-1156 |#1|)) (T -1154)) +((-3751 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-1154 *4 *2)) (-4 *2 (-1156 *4)))) (-3750 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3)))) (-3749 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3))))) +((-3768 (((-1180 |#2|) $ (-695)) 129 T ELT)) (-3082 (((-584 (-995)) $) 16 T ELT)) (-3766 (($ (-1086 |#2|)) 80 T ELT)) (-2820 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) 21 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 217 T ELT)) (-3776 (($ $) 207 T ELT)) (-3972 (((-348 $) $) 205 T ELT)) (-2705 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 95 T ELT)) (-3762 (($ $ (-695)) 84 T ELT)) (-3761 (($ $ (-695)) 86 T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3158 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3157 ((|#2| $) 130 T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) (((-995) $) NIL T ELT)) (-3754 (($ $ $) 182 T ELT)) (-3753 (((-2 (|:| -3955 |#2|) (|:| -1973 $) (|:| -2903 $)) $ $) 185 T ELT)) (-3773 (((-695) $ $) 202 T ELT)) (-3446 (((-633 $) $) 149 T ELT)) (-2894 (($ |#2| (-695)) NIL T ELT) (($ $ (-995) (-695)) 59 T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-995)) 54 T ELT) (((-584 (-695)) $ (-584 (-995))) 55 T ELT)) (-3767 (((-1086 |#2|) $) 72 T ELT)) (-3083 (((-3 (-995) #1#) $) 52 T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ (-695)) 83 T ELT)) (-3813 (($ $) 232 T ELT)) (-3447 (($) 134 T CONST)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 214 T ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) 101 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 99 T ELT)) (-3733 (((-348 $) $) 120 T ELT)) (-3769 (($ $ (-584 (-249 $))) 51 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#2|) 39 T ELT) (($ $ (-584 (-995)) (-584 |#2|)) 36 T ELT) (($ $ (-995) $) 32 T ELT) (($ $ (-584 (-995)) (-584 $)) 30 T ELT)) (-1608 (((-695) $) 220 T ELT)) (-3801 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) 176 T ELT) ((|#2| (-350 $) |#2|) 219 T ELT) (((-350 $) $ (-350 $)) 201 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 225 T ELT)) (-3759 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3949 (((-695) $) NIL T ELT) (((-695) $ (-995)) 17 T ELT) (((-584 (-695)) $ (-584 (-995))) 23 T ELT)) (-2818 ((|#2| $) NIL T ELT) (($ $ (-995)) 151 T ELT)) (-3755 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-350 $) #1#) (-350 $) $) 189 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-995)) 64 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT))) +(((-1155 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| |#1|)) (-15 -2709 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -3759 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3759 (|#1| |#1| (-1091) (-695))) (-15 -3759 (|#1| |#1| (-584 (-1091)))) (-15 -3759 (|#1| |#1| (-1091))) (-15 -3972 ((-348 |#1|) |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -3947 (|#1| (-350 (-485)))) (-15 -3447 (|#1|) -3953) (-15 -3446 ((-633 |#1|) |#1|)) (-15 -3801 ((-350 |#1|) |#1| (-350 |#1|))) (-15 -1608 ((-695) |#1|)) (-15 -2880 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3801 (|#2| (-350 |#1|) |#2|)) (-15 -3752 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3753 ((-2 (|:| -3955 |#2|) (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -3754 (|#1| |#1| |#1|)) (-15 -3755 ((-3 (-350 |#1|) #1="failed") (-350 |#1|) |#1|)) (-15 -3755 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3773 ((-695) |#1| |#1|)) (-15 -3801 ((-350 |#1|) (-350 |#1|) (-350 |#1|))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3761 (|#1| |#1| (-695))) (-15 -3762 (|#1| |#1| (-695))) (-15 -3763 ((-2 (|:| -1973 |#1|) (|:| -2903 |#1|)) |#1| (-695))) (-15 -3766 (|#1| (-1086 |#2|))) (-15 -3767 ((-1086 |#2|) |#1|)) (-15 -3768 ((-1180 |#2|) |#1| (-695))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3759 (|#1| |#1| (-695))) (-15 -3759 (|#1| |#1|)) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3801 (|#2| |#1| |#2|)) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -2708 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2707 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2706 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2705 ((-3 (-584 (-1086 |#1|)) #1#) (-584 (-1086 |#1|)) (-1086 |#1|))) (-15 -2818 (|#1| |#1| (-995))) (-15 -3082 ((-584 (-995)) |#1|)) (-15 -2820 ((-695) |#1| (-584 (-995)))) (-15 -2820 ((-695) |#1|)) (-15 -2894 (|#1| |#1| (-584 (-995)) (-584 (-695)))) (-15 -2894 (|#1| |#1| (-995) (-695))) (-15 -2821 ((-584 (-695)) |#1| (-584 (-995)))) (-15 -2821 ((-695) |#1| (-995))) (-15 -3083 ((-3 (-995) #1#) |#1|)) (-15 -3949 ((-584 (-695)) |#1| (-584 (-995)))) (-15 -3949 ((-695) |#1| (-995))) (-15 -3947 (|#1| (-995))) (-15 -3158 ((-3 (-995) #1#) |#1|)) (-15 -3157 ((-995) |#1|)) (-15 -3769 (|#1| |#1| (-584 (-995)) (-584 |#1|))) (-15 -3769 (|#1| |#1| (-995) |#1|)) (-15 -3769 (|#1| |#1| (-584 (-995)) (-584 |#2|))) (-15 -3769 (|#1| |#1| (-995) |#2|)) (-15 -3769 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3769 (|#1| |#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| (-249 |#1|))) (-15 -3769 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3949 ((-695) |#1|)) (-15 -2894 (|#1| |#2| (-695))) (-15 -3158 ((-3 (-485) #1#) |#1|)) (-15 -3157 ((-485) |#1|)) (-15 -3158 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3157 ((-350 (-485)) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -2821 ((-695) |#1|)) (-15 -2818 (|#2| |#1|)) (-15 -3759 (|#1| |#1| (-995))) (-15 -3759 (|#1| |#1| (-584 (-995)))) (-15 -3759 (|#1| |#1| (-995) (-695))) (-15 -3759 (|#1| |#1| (-584 (-995)) (-584 (-695)))) (-15 -3947 (|#1| (-485))) (-15 -3947 ((-773) |#1|))) (-1156 |#2|) (-962)) (T -1155)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3768 (((-1180 |#1|) $ (-695)) 271 T ELT)) (-3082 (((-584 (-995)) $) 123 T ELT)) (-3766 (($ (-1086 |#1|)) 269 T ELT)) (-3084 (((-1086 $) $ (-995)) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2820 (((-695) $) 125 T ELT) (((-695) $ (-584 (-995))) 124 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3756 (($ $ $) 256 (|has| |#1| (-496)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-822)) ELT)) (-3776 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) 241 (|has| |#1| (-312)) ELT)) (-3762 (($ $ (-695)) 264 T ELT)) (-3761 (($ $ (-695)) 263 T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 251 (|has| |#1| (-392)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #2#) $) 153 T ELT)) (-3157 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) (((-995) $) 154 T ELT)) (-3757 (($ $ $ (-995)) 121 (|has| |#1| (-146)) ELT) ((|#1| $ $) 259 (|has| |#1| (-146)) ELT)) (-2565 (($ $ $) 245 (|has| |#1| (-312)) ELT)) (-3960 (($ $) 171 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 244 (|has| |#1| (-312)) ELT)) (-3760 (($ $ $) 262 T ELT)) (-3754 (($ $ $) 253 (|has| |#1| (-496)) ELT)) (-3753 (((-2 (|:| -3955 |#1|) (|:| -1973 $) (|:| -2903 $)) $ $) 252 (|has| |#1| (-496)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 239 (|has| |#1| (-312)) ELT)) (-3504 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ (-995)) 118 (|has| |#1| (-392)) ELT)) (-2819 (((-584 $) $) 122 T ELT)) (-3724 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-695) $) 189 T ELT)) (-2797 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3773 (((-695) $ $) 257 (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3446 (((-633 $) $) 237 (|has| |#1| (-1067)) ELT)) (-3085 (($ (-1086 |#1|) (-995)) 130 T ELT) (($ (-1086 $) (-995)) 129 T ELT)) (-3778 (($ $ (-695)) 268 T ELT)) (-1606 (((-3 (-584 $) #3="failed") (-584 $) $) 248 (|has| |#1| (-312)) ELT)) (-2822 (((-584 $) $) 139 T ELT)) (-3938 (((-85) $) 169 T ELT)) (-2894 (($ |#1| (-695)) 170 T ELT) (($ $ (-995) (-695)) 132 T ELT) (($ $ (-584 (-995)) (-584 (-695))) 131 T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $ (-995)) 133 T ELT) (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 266 T ELT)) (-2821 (((-695) $) 187 T ELT) (((-695) $ (-995)) 135 T ELT) (((-584 (-695)) $ (-584 (-995))) 134 T ELT)) (-1626 (($ (-1 (-695) (-695)) $) 188 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3767 (((-1086 |#1|) $) 270 T ELT)) (-3083 (((-3 (-995) #4="failed") $) 136 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-631 |#1|) (-1180 $)) 144 T ELT)) (-2895 (($ $) 166 T ELT)) (-3175 ((|#1| $) 165 T ELT)) (-1892 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3763 (((-2 (|:| -1973 $) (|:| -2903 $)) $ (-695)) 265 T ELT)) (-2824 (((-3 (-584 $) #4#) $) 127 T ELT)) (-2823 (((-3 (-584 $) #4#) $) 128 T ELT)) (-2825 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #4#) $) 126 T ELT)) (-3813 (($ $) 249 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3447 (($) 236 (|has| |#1| (-1067)) CONST)) (-3244 (((-1034) $) 12 T ELT)) (-1798 (((-85) $) 183 T ELT)) (-1797 ((|#1| $) 184 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-392)) ELT)) (-3145 (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3733 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 247 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 246 (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 240 (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ (-995) |#1|) 158 T ELT) (($ $ (-584 (-995)) (-584 |#1|)) 157 T ELT) (($ $ (-995) $) 156 T ELT) (($ $ (-584 (-995)) (-584 $)) 155 T ELT)) (-1608 (((-695) $) 242 (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ |#1|) 281 T ELT) (($ $ $) 280 T ELT) (((-350 $) (-350 $) (-350 $)) 258 (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) 250 (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) 238 (|has| |#1| (-496)) ELT)) (-3765 (((-3 $ "failed") $ (-695)) 267 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 243 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-995)) 120 (|has| |#1| (-146)) ELT) ((|#1| $) 260 (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-584 (-995)) (-584 (-695))) 52 T ELT) (($ $ (-995) (-695)) 51 T ELT) (($ $ (-584 (-995))) 50 T ELT) (($ $ (-995)) 48 T ELT) (($ $) 279 T ELT) (($ $ (-695)) 277 T ELT) (($ $ (-1 |#1| |#1|)) 275 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 274 T ELT) (($ $ (-1 |#1| |#1|) $) 261 T ELT) (($ $ (-1091)) 235 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 233 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 232 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 231 (|has| |#1| (-812 (-1091))) ELT)) (-3949 (((-695) $) 167 T ELT) (((-695) $ (-995)) 143 T ELT) (((-584 (-695)) $ (-584 (-995))) 142 T ELT)) (-3973 (((-801 (-330)) $) 95 (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2818 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ (-995)) 119 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1180 $) #1#) (-631 $)) 117 (-2563 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3755 (((-3 $ "failed") $ $) 255 (|has| |#1| (-496)) ELT) (((-3 (-350 $) "failed") (-350 $) $) 254 (|has| |#1| (-496)) ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ (-995)) 152 T ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT) (($ $) 98 (|has| |#1| (-496)) ELT)) (-3818 (((-584 |#1|) $) 185 T ELT)) (-3678 ((|#1| $ (-695)) 172 T ELT) (($ $ (-995) (-695)) 141 T ELT) (($ $ (-584 (-995)) (-584 (-695))) 140 T ELT)) (-2703 (((-633 $) $) 92 (OR (-2563 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3127 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-584 (-995)) (-584 (-695))) 55 T ELT) (($ $ (-995) (-695)) 54 T ELT) (($ $ (-584 (-995))) 53 T ELT) (($ $ (-995)) 49 T ELT) (($ $) 278 T ELT) (($ $ (-695)) 276 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 272 T ELT) (($ $ (-1091)) 234 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 230 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 229 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 228 (|has| |#1| (-812 (-1091))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT))) +(((-1156 |#1|) (-113) (-962)) (T -1156)) +((-3768 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1156 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-5 *2 (-1086 *3)))) (-3766 (*1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-962)) (-4 *1 (-1156 *3)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3765 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3764 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-1156 *3)))) (-3763 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-1156 *4)))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3760 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)))) (-3759 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3758 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-146)))) (-3757 (*1 *2 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-146)))) (-3801 (*1 *2 *2 *2) (-12 (-5 *2 (-350 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)))) (-3773 (*1 *2 *1 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)) (-5 *2 (-695)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-3755 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-3755 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)))) (-3754 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-3753 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -3955 *3) (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-1156 *3)))) (-3752 (*1 *2 *1 *1) (-12 (-4 *3 (-392)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1156 *3)))) (-3801 (*1 *2 *3 *2) (-12 (-5 *3 (-350 *1)) (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485))))))) +(-13 (-862 |t#1| (-695) (-995)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3768 ((-1180 |t#1|) $ (-695))) (-15 -3767 ((-1086 |t#1|) $)) (-15 -3766 ($ (-1086 |t#1|))) (-15 -3778 ($ $ (-695))) (-15 -3765 ((-3 $ "failed") $ (-695))) (-15 -3764 ((-2 (|:| -1973 $) (|:| -2903 $)) $ $)) (-15 -3763 ((-2 (|:| -1973 $) (|:| -2903 $)) $ (-695))) (-15 -3762 ($ $ (-695))) (-15 -3761 ($ $ (-695))) (-15 -3760 ($ $ $)) (-15 -3759 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3758 (|t#1| $)) (-15 -3757 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-6 (-241 (-350 $) (-350 $))) (-15 -3801 ((-350 $) (-350 $) (-350 $))) (-15 -3773 ((-695) $ $)) (-15 -3756 ($ $ $)) (-15 -3755 ((-3 $ "failed") $ $)) (-15 -3755 ((-3 (-350 $) "failed") (-350 $) $)) (-15 -3754 ($ $ $)) (-15 -3753 ((-2 (|:| -3955 |t#1|) (|:| -1973 $) (|:| -2903 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (-15 -3752 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-258)) (-6 -3992) (-15 -3801 (|t#1| (-350 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (-15 -3813 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-695)) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 (-995)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| (-995) (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| (-995) (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| (-995) (-554 (-801 (-485))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-350 $) (-350 $)) |has| |#1| (-496)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 $) . T) ((-277 |#1| (-695)) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-456 (-995) |#1|) . T) ((-456 (-995) $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-995)) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-995)) . T) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-995)) . T) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| (-995) (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| (-995) (-797 (-485)))) ((-862 |#1| (-695) (-995)) . T) ((-822) |has| |#1| (-822)) ((-833) |has| |#1| (-312)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-995)) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-1067)) ((-1130) . T) ((-1135) |has| |#1| (-822))) +((-3959 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) +(((-1157 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#3| |#1|) |#2|))) (-962) (-1156 |#1|) (-962) (-1156 |#3|)) (T -1157)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1156 *6)) (-5 *1 (-1157 *5 *4 *6 *2)) (-4 *4 (-1156 *5))))) +((-3082 (((-584 (-995)) $) 34 T ELT)) (-3960 (($ $) 31 T ELT)) (-2894 (($ |#2| |#3|) NIL T ELT) (($ $ (-995) |#3|) 28 T ELT) (($ $ (-584 (-995)) (-584 |#3|)) 27 T ELT)) (-2895 (($ $) 14 T ELT)) (-3175 ((|#2| $) 12 T ELT)) (-3949 ((|#3| $) 10 T ELT))) +(((-1158 |#1| |#2| |#3|) (-10 -7 (-15 -3082 ((-584 (-995)) |#1|)) (-15 -2894 (|#1| |#1| (-584 (-995)) (-584 |#3|))) (-15 -2894 (|#1| |#1| (-995) |#3|)) (-15 -3960 (|#1| |#1|)) (-15 -2894 (|#1| |#2| |#3|)) (-15 -3949 (|#3| |#1|)) (-15 -2895 (|#1| |#1|)) (-15 -3175 (|#2| |#1|))) (-1159 |#2| |#3|) (-962) (-717)) (T -1158)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 (-995)) $) 95 T ELT)) (-3832 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3772 (($ $ |#2|) 124 T ELT) (($ $ |#2| |#2|) 123 T ELT)) (-3775 (((-1070 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 130 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2893 (((-85) $) 94 T ELT)) (-3773 ((|#2| $) 126 T ELT) ((|#2| $ |#2|) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3778 (($ $ (-831)) 127 T ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| |#2|) 81 T ELT) (($ $ (-995) |#2|) 97 T ELT) (($ $ (-584 (-995)) (-584 |#2|)) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3770 (($ $ |#2|) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3801 ((|#1| $ |#2|) 131 T ELT) (($ $ $) 107 (|has| |#2| (-1026)) ELT)) (-3759 (($ $ (-1091)) 119 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091))) 117 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1091) (-695)) 116 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3949 ((|#2| $) 84 T ELT)) (-2892 (($ $) 93 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3678 ((|#1| $ |#2|) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3771 ((|#1| $ |#2|) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1091)) 118 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091))) 114 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1091) (-695)) 113 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-1159 |#1| |#2|) (-113) (-962) (-717)) (T -1159)) +((-3775 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1070 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1091)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3773 (*1 *2 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3772 (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3772 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3771 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3947 (*2 (-1091)))) (-4 *2 (-962)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3769 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1070 *3))))) +(-13 (-887 |t#1| |t#2| (-995)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3775 ((-1070 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3832 ((-1091) $)) (-15 -3774 (|t#1| $)) (-15 -3778 ($ $ (-831))) (-15 -3773 (|t#2| $)) (-15 -3773 (|t#2| $ |t#2|)) (-15 -3772 ($ $ |t#2|)) (-15 -3772 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3947 (|t#1| (-1091)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3771 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3770 ($ $ |t#2|)) (IF (|has| |t#2| (-1026)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-810 (-1091))) (-6 (-810 (-1091))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3769 ((-1070 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1026)) ((-246) |has| |#1| (-496)) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-807 $ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-810 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-812 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-887 |#1| |#2| (-995)) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-3776 ((|#2| |#2|) 12 T ELT)) (-3972 (((-348 |#2|) |#2|) 14 T ELT)) (-3777 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-485))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-485)))) 30 T ELT))) +(((-1160 |#1| |#2|) (-10 -7 (-15 -3972 ((-348 |#2|) |#2|)) (-15 -3776 (|#2| |#2|)) (-15 -3777 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-485))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-485)))))) (-496) (-13 (-1156 |#1|) (-496) (-10 -8 (-15 -3145 ($ $ $))))) (T -1160)) +((-3777 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-485)))) (-4 *4 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3145 ($ $ $))))) (-4 *3 (-496)) (-5 *1 (-1160 *3 *4)))) (-3776 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-1160 *3 *2)) (-4 *2 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3145 ($ $ $))))))) (-3972 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-1160 *4 *3)) (-4 *3 (-13 (-1156 *4) (-496) (-10 -8 (-15 -3145 ($ $ $)))))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3832 (((-1091) $) 11 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3819 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-1140 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1170 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3157 (((-1140 |#1| |#2| |#3|) $) NIL T ELT) (((-1170 |#1| |#2| |#3|) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3782 (((-350 (-485)) $) 68 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3783 (($ (-350 (-485)) (-1140 |#1| |#2| |#3|)) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3773 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3778 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-350 (-485))) 30 T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (((-1140 |#1| |#2| |#3|) $) 71 T ELT)) (-3779 (((-3 (-1140 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3780 (((-1140 |#1| |#2| |#3|) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) 39 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3082 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-350 (-485))) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) 38 T ELT)) (-3949 (((-350 (-485)) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-773) $) 107 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1140 |#1| |#2| |#3|)) 16 T ELT) (($ (-1170 |#1| |#2| |#3|)) 17 T ELT) (($ (-1177 |#2|)) 36 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-350 (-485))) NIL T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3774 ((|#1| $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 ((|#1| $ (-350 (-485))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 32 T CONST)) (-2667 (($) 26 T CONST)) (-2670 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 34 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-1161 |#1| |#2| |#3|) (-13 (-1165 |#1| (-1140 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-951 (-1170 |#1| |#2| |#3|)) (-556 (-1177 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3813 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1161)) +((-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))) +((-3959 (((-1161 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1161 |#1| |#3| |#5|)) 24 T ELT))) +(((-1162 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3959 ((-1161 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1161 |#1| |#3| |#5|)))) (-962) (-962) (-1091) (-1091) |#1| |#2|) (T -1162)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1161 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1161 *6 *8 *10)) (-5 *1 (-1162 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1091))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 (-995)) $) 95 T ELT)) (-3832 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-350 (-485))) 124 T ELT) (($ $ (-350 (-485)) (-350 (-485))) 123 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 130 T ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3038 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3819 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) 199 T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) 23 T CONST)) (-2565 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) 94 T ELT)) (-3628 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3773 (((-350 (-485)) $) 126 T ELT) (((-350 (-485)) $ (-350 (-485))) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3778 (($ $ (-831)) 127 T ELT) (($ $ (-350 (-485))) 198 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| (-350 (-485))) 81 T ELT) (($ $ (-995) (-350 (-485))) 97 T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3943 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-1892 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3082 ((-584 (-1091)) |#1|))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-350 (-485))) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3944 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-350 (-485))) 131 T ELT) (($ $ $) 107 (|has| (-350 (-485)) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) 119 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 117 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 116 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3949 (((-350 (-485)) $) 84 T ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 93 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-350 (-485))) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 ((|#1| $ (-350 (-485))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1091)) 118 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 114 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 113 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-1163 |#1|) (-113) (-962)) (T -1163)) +((-3819 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4)))) (-4 *4 (-962)) (-4 *1 (-1163 *4)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-1163 *3)) (-4 *3 (-962)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) (-3813 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) (-4 *3 (-38 (-350 (-485)))))) (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3082 ((-584 *2) *3))) (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485))))))))) +(-13 (-1159 |t#1| (-350 (-485))) (-10 -8 (-15 -3819 ($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |t#1|))))) (-15 -3778 ($ $ (-350 (-485)))) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3813 ($ $)) (IF (|has| |t#1| (-15 -3813 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-15 -3082 ((-584 (-1091)) |t#1|))) (-15 -3813 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-485))) (-15 -3813 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1116))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-485))) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-350 (-485)) |#1|) . T) ((-241 $ $) |has| (-350 (-485)) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-810 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-812 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-887 |#1| (-350 (-485)) (-995)) . T) ((-833) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1159 |#1| (-350 (-485))) . T)) +((-3189 (((-85) $) 12 T ELT)) (-3158 (((-3 |#3| "failed") $) 17 T ELT)) (-3157 ((|#3| $) 14 T ELT))) +(((-1164 |#1| |#2| |#3|) (-10 -7 (-15 -3158 ((-3 |#3| "failed") |#1|)) (-15 -3157 (|#3| |#1|)) (-15 -3189 ((-85) |#1|))) (-1165 |#2| |#3|) (-962) (-1142 |#2|)) (T -1164)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 (-995)) $) 95 T ELT)) (-3832 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-350 (-485))) 124 T ELT) (($ $ (-350 (-485)) (-350 (-485))) 123 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 130 T ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3038 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3819 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) 199 T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#2| "failed") $) 212 T ELT)) (-3157 ((|#2| $) 213 T ELT)) (-2565 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3782 (((-350 (-485)) $) 209 T ELT)) (-2564 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-3783 (($ (-350 (-485)) |#2|) 210 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) 94 T ELT)) (-3628 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3773 (((-350 (-485)) $) 126 T ELT) (((-350 (-485)) $ (-350 (-485))) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3778 (($ $ (-831)) 127 T ELT) (($ $ (-350 (-485))) 198 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| (-350 (-485))) 81 T ELT) (($ $ (-995) (-350 (-485))) 97 T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3943 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-1892 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3781 ((|#2| $) 208 T ELT)) (-3779 (((-3 |#2| "failed") $) 206 T ELT)) (-3780 ((|#2| $) 207 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3082 ((-584 (-1091)) |#1|))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-350 (-485))) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3944 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-350 (-485))) 131 T ELT) (($ $ $) 107 (|has| (-350 (-485)) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) 119 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 117 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 116 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3949 (((-350 (-485)) $) 84 T ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 93 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 211 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-350 (-485))) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 ((|#1| $ (-350 (-485))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1091)) 118 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 114 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 113 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-1165 |#1| |#2|) (-113) (-962) (-1142 |t#1|)) (T -1165)) +((-3949 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3)) (-5 *2 (-350 (-485))))) (-3783 (*1 *1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-4 *4 (-962)) (-4 *1 (-1165 *4 *3)) (-4 *3 (-1142 *4)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3)) (-5 *2 (-350 (-485))))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))) (-3779 (*1 *2 *1) (|partial| -12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3))))) +(-13 (-1163 |t#1|) (-951 |t#2|) (-556 |t#2|) (-10 -8 (-15 -3783 ($ (-350 (-485)) |t#2|)) (-15 -3782 ((-350 (-485)) $)) (-15 -3781 (|t#2| $)) (-15 -3949 ((-350 (-485)) $)) (-15 -3780 (|t#2| $)) (-15 -3779 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-485))) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 |#2|) . T) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-350 (-485)) |#1|) . T) ((-241 $ $) |has| (-350 (-485)) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-810 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-812 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-887 |#1| (-350 (-485)) (-995)) . T) ((-833) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-951 |#2|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1159 |#1| (-350 (-485))) . T) ((-1163 |#1|) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3832 (((-1091) $) 104 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-350 (-485))) 116 T ELT) (($ $ (-350 (-485)) (-350 (-485))) 118 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 54 T ELT)) (-3493 (($ $) 192 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) 188 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3819 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) 65 T ELT)) (-3495 (($ $) 196 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 85 T ELT)) (-3782 (((-350 (-485)) $) 13 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3783 (($ (-350 (-485)) |#2|) 11 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) 74 T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3773 (((-350 (-485)) $) 113 T ELT) (((-350 (-485)) $ (-350 (-485))) 114 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3778 (($ $ (-831)) 130 T ELT) (($ $ (-350 (-485))) 128 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-350 (-485))) 33 T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3943 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1892 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 ((|#2| $) 12 T ELT)) (-3779 (((-3 |#2| #1#) $) 44 T ELT)) (-3780 ((|#2| $) 45 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-2485 (($ $) 101 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 151 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3082 ((-584 (-1091)) |#1|))))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-350 (-485))) 122 T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-350 (-485))) 108 T ELT) (($ $ $) 94 (|has| (-350 (-485)) (-1026)) ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1091)) 138 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3949 (((-350 (-485)) $) 16 T ELT)) (-3496 (($ $) 198 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) 194 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 190 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 120 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-350 (-485))) 139 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3678 ((|#1| $ (-350 (-485))) 107 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 127 T CONST)) (-3774 ((|#1| $) 106 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 204 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 180 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) 200 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 176 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 208 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 184 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 210 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 186 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 206 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 182 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) 202 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 178 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 17 T CONST)) (-2670 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3057 (((-85) $ $) 72 T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 100 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3840 (($ $ $) 76 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 82 T ELT) (($ $ (-485)) 157 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-1166 |#1| |#2|) (-1165 |#1| |#2|) (-962) (-1142 |#1|)) (T -1166)) +NIL +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 37 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-485) #1#) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-350 (-485)))) ELT) (((-3 (-1161 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3157 (((-485) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-350 (-485)))) ELT) (((-1161 |#2| |#3| |#4|) $) NIL T ELT)) (-3960 (($ $) 41 T ELT)) (-3468 (((-3 $ #1#) $) 27 T ELT)) (-3504 (($ $) NIL (|has| (-1161 |#2| |#3| |#4|) (-392)) ELT)) (-1625 (($ $ (-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 11 T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ (-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) 25 T ELT)) (-2821 (((-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1626 (($ (-1 (-270 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) $) NIL T ELT)) (-3959 (($ (-1 (-1161 |#2| |#3| |#4|) (-1161 |#2| |#3| |#4|)) $) NIL T ELT)) (-3785 (((-3 (-751 |#2|) #1#) $) 91 T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 (((-1161 |#2| |#3| |#4|) $) 20 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-1798 (((-85) $) NIL T ELT)) (-1797 (((-1161 |#2| |#3| |#4|) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ (-1161 |#2| |#3| |#4|)) NIL (|has| (-1161 |#2| |#3| |#4|) (-496)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3784 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1161 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#2|)))))) (|:| |%type| (-1074))) #1#) $) 74 T ELT)) (-3949 (((-270 |#2| |#3| |#4|) $) 17 T ELT)) (-2818 (((-1161 |#2| |#3| |#4|) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-392)) ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1161 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| (-1161 |#2| |#3| |#4|) (-951 (-350 (-485)))) (|has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485))))) ELT)) (-3818 (((-584 (-1161 |#2| |#3| |#4|)) $) NIL T ELT)) (-3678 (((-1161 |#2| |#3| |#4|) $ (-270 |#2| |#3| |#4|)) NIL T ELT)) (-2703 (((-633 $) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| (-1161 |#2| |#3| |#4|) (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ (-1161 |#2| |#3| |#4|)) NIL (|has| (-1161 |#2| |#3| |#4|) (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1161 |#2| |#3| |#4|)) NIL T ELT) (($ (-1161 |#2| |#3| |#4|) $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))) ELT))) +(((-1167 |#1| |#2| |#3| |#4|) (-13 (-277 (-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) (-496) (-10 -8 (-15 -3785 ((-3 (-751 |#2|) #1="failed") $)) (-15 -3784 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1161 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#2|)))))) (|:| |%type| (-1074))) #1#) $)))) (-13 (-951 (-485)) (-581 (-485)) (-392)) (-13 (-27) (-1116) (-364 |#1|)) (-1091) |#2|) (T -1167)) +((-3785 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-751 *4)) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4))) (-3784 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1161 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4)))))) (|:| |%type| (-1074)))) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4)))) +((-3403 ((|#2| $) 34 T ELT)) (-3796 ((|#2| $) 18 T ELT)) (-3798 (($ $) 44 T ELT)) (-3786 (($ $ (-485)) 79 T ELT)) (-3026 ((|#2| $ |#2|) 76 T ELT)) (-3787 ((|#2| $ |#2|) 72 T ELT)) (-3789 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3027 (($ $ (-584 $)) 75 T ELT)) (-3797 ((|#2| $) 17 T ELT)) (-3800 (($ $) NIL T ELT) (($ $ (-695)) 52 T ELT)) (-3032 (((-584 $) $) 31 T ELT)) (-3028 (((-85) $ $) 63 T ELT)) (-3528 (((-85) $) 33 T ELT)) (-3799 ((|#2| $) 25 T ELT) (($ $ (-695)) 58 T ELT)) (-3801 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3634 (((-85) $) 23 T ELT)) (-3793 (($ $) 47 T ELT)) (-3791 (($ $) 80 T ELT)) (-3794 (((-695) $) 51 T ELT)) (-3795 (($ $) 50 T ELT)) (-3803 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3523 (((-584 $) $) 32 T ELT)) (-3057 (((-85) $ $) 61 T ELT)) (-3958 (((-695) $) 43 T ELT))) +(((-1168 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3786 (|#1| |#1| (-485))) (-15 -3789 (|#2| |#1| #1="last" |#2|)) (-15 -3787 (|#2| |#1| |#2|)) (-15 -3789 (|#1| |#1| #2="rest" |#1|)) (-15 -3789 (|#2| |#1| #3="first" |#2|)) (-15 -3791 (|#1| |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3794 ((-695) |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3796 (|#2| |#1|)) (-15 -3797 (|#2| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3799 (|#1| |#1| (-695))) (-15 -3801 (|#2| |#1| #1#)) (-15 -3799 (|#2| |#1|)) (-15 -3800 (|#1| |#1| (-695))) (-15 -3801 (|#1| |#1| #2#)) (-15 -3800 (|#1| |#1|)) (-15 -3801 (|#2| |#1| #3#)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3026 (|#2| |#1| |#2|)) (-15 -3789 (|#2| |#1| #4="value" |#2|)) (-15 -3027 (|#1| |#1| (-584 |#1|))) (-15 -3028 ((-85) |#1| |#1|)) (-15 -3634 ((-85) |#1|)) (-15 -3801 (|#2| |#1| #4#)) (-15 -3403 (|#2| |#1|)) (-15 -3528 ((-85) |#1|)) (-15 -3032 ((-584 |#1|) |#1|)) (-15 -3523 ((-584 |#1|) |#1|)) (-15 -3958 ((-695) |#1|))) (-1169 |#2|) (-1130)) (T -1168)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 52 T ELT)) (-3796 ((|#1| $) 71 T ELT)) (-3798 (($ $) 73 T ELT)) (-3786 (($ $ (-485)) 58 (|has| $ (-6 -3997)) ELT)) (-3026 ((|#1| $ |#1|) 43 (|has| $ (-6 -3997)) ELT)) (-3788 (($ $ $) 62 (|has| $ (-6 -3997)) ELT)) (-3787 ((|#1| $ |#1|) 60 (|has| $ (-6 -3997)) ELT)) (-3790 ((|#1| $ |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3997)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -3997)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -3997)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-584 $)) 45 (|has| $ (-6 -3997)) ELT)) (-3797 ((|#1| $) 72 T ELT)) (-3725 (($) 7 T CONST)) (-3800 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3032 (((-584 $) $) 54 T ELT)) (-3028 (((-85) $ $) 46 (|has| |#1| (-1014)) ELT)) (-2609 (((-584 |#1|) $) 29 (|has| $ (-6 -3996)) ELT)) (-3246 (((-85) |#1| $) 27 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3031 (((-584 |#1|) $) 49 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3799 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3996)) ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3030 (((-485) $ $) 48 T ELT)) (-3634 (((-85) $) 50 T ELT)) (-3793 (($ $) 68 T ELT)) (-3791 (($ $) 65 (|has| $ (-6 -3997)) ELT)) (-3794 (((-695) $) 69 T ELT)) (-3795 (($ $) 70 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3996)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-72)) (|has| $ (-6 -3996))) ELT)) (-3401 (($ $) 10 T ELT)) (-3792 (($ $ $) 67 (|has| $ (-6 -3997)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3997)) ELT)) (-3803 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3523 (((-584 $) $) 55 T ELT)) (-3029 (((-85) $ $) 47 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3996)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-695) $) 6 (|has| $ (-6 -3996)) ELT))) +(((-1169 |#1|) (-113) (-1130)) (T -1169)) +((-3803 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3803 (*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3800 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3795 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-3793 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3792 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3792 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3791 (*1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3790 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3789 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3788 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3789 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -3997)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3787 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3789 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3786 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (|has| *1 (-6 -3997)) (-4 *1 (-1169 *3)) (-4 *3 (-1130))))) +(-13 (-924 |t#1|) (-10 -8 (-15 -3803 ($ $ $)) (-15 -3803 ($ |t#1| $)) (-15 -3802 (|t#1| $)) (-15 -3801 (|t#1| $ "first")) (-15 -3802 ($ $ (-695))) (-15 -3800 ($ $)) (-15 -3801 ($ $ "rest")) (-15 -3800 ($ $ (-695))) (-15 -3799 (|t#1| $)) (-15 -3801 (|t#1| $ "last")) (-15 -3799 ($ $ (-695))) (-15 -3798 ($ $)) (-15 -3797 (|t#1| $)) (-15 -3796 (|t#1| $)) (-15 -3795 ($ $)) (-15 -3794 ((-695) $)) (-15 -3793 ($ $)) (IF (|has| $ (-6 -3997)) (PROGN (-15 -3792 ($ $ $)) (-15 -3792 ($ $ |t#1|)) (-15 -3791 ($ $)) (-15 -3790 (|t#1| $ |t#1|)) (-15 -3789 (|t#1| $ "first" |t#1|)) (-15 -3788 ($ $ $)) (-15 -3789 ($ $ "rest" $)) (-15 -3787 (|t#1| $ |t#1|)) (-15 -3789 (|t#1| $ "last" |t#1|)) (-15 -3786 ($ $ (-485)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-584 (-995)) $) NIL T ELT)) (-3832 (((-1091) $) 87 T ELT)) (-3812 (((-1149 |#2| |#1|) $ (-695)) 70 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 139 (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-695)) 125 T ELT) (($ $ (-695) (-695)) 127 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 42 T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1070 |#1|)) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) NIL T CONST)) (-3806 (($ $) 131 T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3817 (($ $) 137 T ELT)) (-3815 (((-858 |#1|) $ (-695)) 60 T ELT) (((-858 |#1|) $ (-695) (-695)) 62 T ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3773 (((-695) $) NIL T ELT) (((-695) $ (-695)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3809 (($ $) 115 T ELT)) (-3012 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3805 (($ (-485) (-485) $) 133 T ELT)) (-3778 (($ $ (-831)) 136 T ELT)) (-3816 (($ (-1 |#1| (-485)) $) 109 T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-695)) 16 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3810 (($ $) 113 T ELT)) (-3811 (($ $) 111 T ELT)) (-3804 (($ (-485) (-485) $) 135 T ELT)) (-3813 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 153 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3082 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3807 (($ $ (-485) (-485)) 119 T ELT)) (-3770 (($ $ (-695)) 121 T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3808 (($ $) 117 T ELT)) (-3769 (((-1070 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3801 ((|#1| $ (-695)) 93 T ELT) (($ $ $) 129 (|has| (-695) (-1026)) ELT)) (-3759 (($ $ (-1091)) 106 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) 101 T ELT)) (-3949 (((-695) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 123 T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) 26 T ELT) (($ (-350 (-485))) 145 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1149 |#2| |#1|)) 78 T ELT) (($ (-1177 |#2|)) 22 T ELT)) (-3818 (((-1070 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-695)) 92 T ELT)) (-2703 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3774 ((|#1| $) 88 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 ((|#1| $ (-695)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 18 T CONST)) (-2667 (($) 13 T CONST)) (-2670 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3840 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-1170 |#1| |#2| |#3|) (-13 (-1173 |#1|) (-807 $ (-1177 |#2|)) (-10 -8 (-15 -3947 ($ (-1149 |#2| |#1|))) (-15 -3812 ((-1149 |#2| |#1|) $ (-695))) (-15 -3947 ($ (-1177 |#2|))) (-15 -3811 ($ $)) (-15 -3810 ($ $)) (-15 -3809 ($ $)) (-15 -3808 ($ $)) (-15 -3807 ($ $ (-485) (-485))) (-15 -3806 ($ $)) (-15 -3805 ($ (-485) (-485) $)) (-15 -3804 ($ (-485) (-485) $)) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3813 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1170)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-1170 *3 *4 *5)))) (-3812 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1170 *4 *5 *6)) (-4 *4 (-962)) (-14 *5 (-1091)) (-14 *6 *4))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))) (-3809 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))) (-3807 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3))) (-3806 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))) (-3805 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3))) (-3804 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))) +((-3959 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) +(((-1171 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#2| |#1|) |#3|))) (-962) (-962) (-1173 |#1|) (-1173 |#2|)) (T -1171)) +((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1173 *6)) (-5 *1 (-1171 *5 *6 *4 *2)) (-4 *4 (-1173 *5))))) +((-3189 (((-85) $) 17 T ELT)) (-3493 (($ $) 105 T ELT)) (-3640 (($ $) 81 T ELT)) (-3491 (($ $) 101 T ELT)) (-3639 (($ $) 77 T ELT)) (-3495 (($ $) 109 T ELT)) (-3638 (($ $) 85 T ELT)) (-3943 (($ $) 75 T ELT)) (-3944 (($ $) 73 T ELT)) (-3496 (($ $) 111 T ELT)) (-3637 (($ $) 87 T ELT)) (-3494 (($ $) 107 T ELT)) (-3636 (($ $) 83 T ELT)) (-3492 (($ $) 103 T ELT)) (-3635 (($ $) 79 T ELT)) (-3947 (((-773) $) 61 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3499 (($ $) 117 T ELT)) (-3487 (($ $) 93 T ELT)) (-3497 (($ $) 113 T ELT)) (-3485 (($ $) 89 T ELT)) (-3501 (($ $) 121 T ELT)) (-3489 (($ $) 97 T ELT)) (-3502 (($ $) 123 T ELT)) (-3490 (($ $) 99 T ELT)) (-3500 (($ $) 119 T ELT)) (-3488 (($ $) 95 T ELT)) (-3498 (($ $) 115 T ELT)) (-3486 (($ $) 91 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-350 (-485))) 71 T ELT))) +(((-1172 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-350 (-485)))) (-15 -3640 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3943 (|#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3947 (|#1| |#2|)) (-15 -3947 (|#1| |#1|)) (-15 -3947 (|#1| (-350 (-485)))) (-15 -3947 (|#1| (-485))) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831))) (-15 -3189 ((-85) |#1|)) (-15 -3947 ((-773) |#1|))) (-1173 |#2|) (-962)) (T -1172)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-584 (-995)) $) 95 T ELT)) (-3832 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3772 (($ $ (-695)) 124 T ELT) (($ $ (-695) (-695)) 123 T ELT)) (-3775 (((-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 130 T ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3038 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3819 (($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 183 T ELT) (($ (-1070 |#1|)) 181 T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3817 (($ $) 180 T ELT)) (-3815 (((-858 |#1|) $ (-695)) 178 T ELT) (((-858 |#1|) $ (-695) (-695)) 177 T ELT)) (-2893 (((-85) $) 94 T ELT)) (-3628 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3773 (((-695) $) 126 T ELT) (((-695) $ (-695)) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3012 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3778 (($ $ (-831)) 127 T ELT)) (-3816 (($ (-1 |#1| (-485)) $) 179 T ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| (-695)) 81 T ELT) (($ $ (-995) (-695)) 97 T ELT) (($ $ (-584 (-995)) (-584 (-695))) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3943 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3813 (($ $) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 174 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3082 ((-584 (-1091)) |#1|))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3770 (($ $ (-695)) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3944 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3769 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3801 ((|#1| $ (-695)) 131 T ELT) (($ $ $) 107 (|has| (-695) (-1026)) ELT)) (-3759 (($ $ (-1091)) 119 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) 117 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) 116 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT)) (-3949 (((-695) $) 84 T ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2892 (($ $) 93 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3818 (((-1070 |#1|) $) 182 T ELT)) (-3678 ((|#1| $ (-695)) 79 T ELT)) (-2703 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-695)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 ((|#1| $ (-695)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3947 (|#1| (-1091))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1091)) 118 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) 114 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) 113 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ |#1|) 176 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT))) +(((-1173 |#1|) (-113) (-962)) (T -1173)) +((-3819 (*1 *1 *2) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-695)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1173 *3)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-5 *2 (-1070 *3)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-4 *1 (-1173 *3)))) (-3817 (*1 *1 *1) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)))) (-3816 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1173 *3)) (-4 *3 (-962)))) (-3815 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) (-3815 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) (-3813 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) (-4 *3 (-38 (-350 (-485)))))) (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3082 ((-584 *2) *3))) (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485))))))))) +(-13 (-1159 |t#1| (-695)) (-10 -8 (-15 -3819 ($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |t#1|))))) (-15 -3818 ((-1070 |t#1|) $)) (-15 -3819 ($ (-1070 |t#1|))) (-15 -3817 ($ $)) (-15 -3816 ($ (-1 |t#1| (-485)) $)) (-15 -3815 ((-858 |t#1|) $ (-695))) (-15 -3815 ((-858 |t#1|) $ (-695) (-695))) (IF (|has| |t#1| (-312)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3813 ($ $)) (IF (|has| |t#1| (-15 -3813 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-15 -3082 ((-584 (-1091)) |t#1|))) (-15 -3813 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-485))) (-15 -3813 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1116))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-695)) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-695) |#1|) . T) ((-241 $ $) |has| (-695) (-1026)) ((-246) |has| |#1| (-496)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-807 $ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-810 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-812 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-887 |#1| (-695) (-995)) . T) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T) ((-1159 |#1| (-695)) . T)) +((-3822 (((-1 (-1070 |#1|) (-584 (-1070 |#1|))) (-1 |#2| (-584 |#2|))) 24 T ELT)) (-3821 (((-1 (-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3820 (((-1 (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3825 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3824 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3826 ((|#2| (-1 |#2| (-584 |#2|)) (-584 |#1|)) 60 T ELT)) (-3827 (((-584 |#2|) (-584 |#1|) (-584 (-1 |#2| (-584 |#2|)))) 66 T ELT)) (-3823 ((|#2| |#2| |#2|) 43 T ELT))) +(((-1174 |#1| |#2|) (-10 -7 (-15 -3820 ((-1 (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2|))) (-15 -3821 ((-1 (-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3822 ((-1 (-1070 |#1|) (-584 (-1070 |#1|))) (-1 |#2| (-584 |#2|)))) (-15 -3823 (|#2| |#2| |#2|)) (-15 -3824 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3825 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3826 (|#2| (-1 |#2| (-584 |#2|)) (-584 |#1|))) (-15 -3827 ((-584 |#2|) (-584 |#1|) (-584 (-1 |#2| (-584 |#2|)))))) (-38 (-350 (-485))) (-1173 |#1|)) (T -1174)) +((-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 (-1 *6 (-584 *6)))) (-4 *5 (-38 (-350 (-485)))) (-4 *6 (-1173 *5)) (-5 *2 (-584 *6)) (-5 *1 (-1174 *5 *6)))) (-3826 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-584 *2))) (-5 *4 (-584 *5)) (-4 *5 (-38 (-350 (-485)))) (-4 *2 (-1173 *5)) (-5 *1 (-1174 *5 *2)))) (-3825 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-38 (-350 (-485)))))) (-3824 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-38 (-350 (-485)))))) (-3823 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1174 *3 *2)) (-4 *2 (-1173 *3)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-584 *5))) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-1 (-1070 *4) (-584 (-1070 *4)))) (-5 *1 (-1174 *4 *5)))) (-3821 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-1 (-1070 *4) (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5))))) +((-3829 ((|#2| |#4| (-695)) 31 T ELT)) (-3828 ((|#4| |#2|) 26 T ELT)) (-3831 ((|#4| (-350 |#2|)) 49 (|has| |#1| (-496)) ELT)) (-3830 (((-1 |#4| (-584 |#4|)) |#3|) 43 T ELT))) +(((-1175 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3828 (|#4| |#2|)) (-15 -3829 (|#2| |#4| (-695))) (-15 -3830 ((-1 |#4| (-584 |#4|)) |#3|)) (IF (|has| |#1| (-496)) (-15 -3831 (|#4| (-350 |#2|))) |%noBranch|)) (-962) (-1156 |#1|) (-601 |#2|) (-1173 |#1|)) (T -1175)) +((-3831 (*1 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-496)) (-4 *4 (-962)) (-4 *2 (-1173 *4)) (-5 *1 (-1175 *4 *5 *6 *2)) (-4 *6 (-601 *5)))) (-3830 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-1156 *4)) (-5 *2 (-1 *6 (-584 *6))) (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1173 *4)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1173 *5)))) (-3828 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *3 (-1156 *4)) (-4 *2 (-1173 *4)) (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-601 *3))))) +NIL +(((-1176) (-113)) (T -1176)) +NIL +(-13 (-10 -7 (-6 -2288))) +((-2569 (((-85) $ $) NIL T ELT)) (-3832 (((-1091)) 12 T ELT)) (-3243 (((-1074) $) 18 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 11 T ELT) (((-1091) $) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 15 T ELT))) +(((-1177 |#1|) (-13 (-1014) (-553 (-1091)) (-10 -8 (-15 -3947 ((-1091) $)) (-15 -3832 ((-1091))))) (-1091)) (T -1177)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2))) (-3832 (*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2)))) +((-3839 (($ (-695)) 19 T ELT)) (-3836 (((-631 |#2|) $ $) 41 T ELT)) (-3833 ((|#2| $) 51 T ELT)) (-3834 ((|#2| $) 50 T ELT)) (-3837 ((|#2| $ $) 36 T ELT)) (-3835 (($ $ $) 47 T ELT)) (-3838 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3840 (($ $ $) 15 T ELT)) (* (($ (-485) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) +(((-1178 |#1| |#2|) (-10 -7 (-15 -3833 (|#2| |#1|)) (-15 -3834 (|#2| |#1|)) (-15 -3835 (|#1| |#1| |#1|)) (-15 -3836 ((-631 |#2|) |#1| |#1|)) (-15 -3837 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3839 (|#1| (-695))) (-15 -3840 (|#1| |#1| |#1|))) (-1179 |#2|) (-1130)) (T -1178)) +NIL +((-2569 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3839 (($ (-695)) 123 (|has| |#1| (-23)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 44 (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) 108 T ELT) (((-85) $) 102 (|has| |#1| (-757)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) 99 (|has| $ (-6 -3997)) ELT) (($ $) 98 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3997))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) 109 T ELT) (($ $) 103 (|has| |#1| (-757)) ELT)) (-3789 ((|#1| $ (-485) |#1|) 56 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 64 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3996)) ELT)) (-3725 (($) 7 T CONST)) (-2298 (($ $) 100 (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) 110 T ELT)) (-1354 (($ $) 84 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT)) (-3407 (($ |#1| $) 83 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -3996))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 57 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) 55 T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) 107 T ELT) (((-485) |#1| $) 106 (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) 105 (|has| |#1| (-1014)) ELT)) (-2890 (((-584 |#1|) $) 30 (|has| $ (-6 -3996)) ELT)) (-3836 (((-631 |#1|) $ $) 116 (|has| |#1| (-962)) ELT)) (-3615 (($ (-695) |#1|) 74 T ELT)) (-2201 (((-485) $) 47 (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) 111 T ELT) (($ $ $) 104 (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) 29 T ELT)) (-3246 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 48 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) 93 (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3833 ((|#1| $) 113 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3834 ((|#1| $) 114 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3243 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 66 T ELT) (($ $ $ (-485)) 65 T ELT)) (-2204 (((-584 (-485)) $) 50 T ELT)) (-2205 (((-85) (-485) $) 51 T ELT)) (-3244 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) 46 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2200 (($ $ |#1|) 45 (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) 52 T ELT)) (-3404 (((-85) $) 8 T ELT)) (-3566 (($) 9 T ELT)) (-3801 ((|#1| $ (-485) |#1|) 54 T ELT) ((|#1| $ (-485)) 53 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-3837 ((|#1| $ $) 117 (|has| |#1| (-962)) ELT)) (-2306 (($ $ (-485)) 68 T ELT) (($ $ (-1147 (-485))) 67 T ELT)) (-3835 (($ $ $) 115 (|has| |#1| (-962)) ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 31 T ELT) (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-1732 (($ $ $ (-485)) 101 (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) 10 T ELT)) (-3973 (((-474) $) 85 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 76 T ELT)) (-3803 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3947 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 33 T ELT)) (-2567 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) 97 (|has| |#1| (-757)) ELT)) (-3838 (($ $) 122 (|has| |#1| (-21)) ELT) (($ $ $) 121 (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) 124 (|has| |#1| (-25)) ELT)) (* (($ (-485) $) 120 (|has| |#1| (-21)) ELT) (($ |#1| $) 119 (|has| |#1| (-664)) ELT) (($ $ |#1|) 118 (|has| |#1| (-664)) ELT)) (-3958 (((-695) $) 6 T ELT))) +(((-1179 |#1|) (-113) (-1130)) (T -1179)) +((-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-25)))) (-3839 (*1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1179 *3)) (-4 *3 (-23)) (-4 *3 (-1130)))) (-3838 (*1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664)))) (-3837 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))) (-3836 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-962)) (-5 *2 (-631 *3)))) (-3835 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3840 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3839 ($ (-695))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3838 ($ $)) (-15 -3838 ($ $ $)) (-15 * ($ (-485) $))) |%noBranch|) (IF (|has| |t#1| (-664)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-15 -3837 (|t#1| $ $)) (-15 -3836 ((-631 |t#1|) $ $)) (-15 -3835 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-916)) (IF (|has| |t#1| (-962)) (PROGN (-15 -3834 (|t#1| $)) (-15 -3833 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1130) . T)) +((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3839 (($ (-695)) NIL (|has| |#1| (-23)) ELT)) (-3841 (($ (-584 |#1|)) 9 T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-1733 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1731 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3997)) (|has| |#1| (-757))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3789 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3725 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-6 -3997)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3996)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3996)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-485)) NIL T ELT)) (-3420 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-1014)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-1014)) ELT)) (-2890 (((-584 |#1|) $) 15 (|has| $ (-6 -3996)) ELT)) (-3836 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3615 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2609 (((-584 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 11 (|has| (-485) (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3833 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3834 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3243 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3244 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3802 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#1| (-1014))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3837 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3835 (($ $ $) NIL (|has| |#1| (-962)) ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1732 (($ $ $ (-485)) NIL (|has| $ (-6 -3997)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) 19 (|has| |#1| (-554 (-474))) ELT)) (-3531 (($ (-584 |#1|)) 8 T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3947 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3838 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-485) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-1180 |#1|) (-13 (-1179 |#1|) (-10 -8 (-15 -3841 ($ (-584 |#1|))))) (-1130)) (T -1180)) +((-3841 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1180 *3))))) +((-3842 (((-1180 |#2|) (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|) 13 T ELT)) (-3843 ((|#2| (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|) 15 T ELT)) (-3959 (((-3 (-1180 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1180 |#1|)) 30 T ELT) (((-1180 |#2|) (-1 |#2| |#1|) (-1180 |#1|)) 18 T ELT))) +(((-1181 |#1| |#2|) (-10 -7 (-15 -3842 ((-1180 |#2|) (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|)) (-15 -3843 (|#2| (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|)) (-15 -3959 ((-1180 |#2|) (-1 |#2| |#1|) (-1180 |#1|))) (-15 -3959 ((-3 (-1180 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1180 |#1|)))) (-1130) (-1130)) (T -1181)) +((-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-1181 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1180 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-1180 *5)) (-5 *1 (-1181 *6 *5))))) +((-3844 (((-408) (-584 (-584 (-855 (-179)))) (-584 (-221))) 22 T ELT) (((-408) (-584 (-584 (-855 (-179))))) 21 T ELT) (((-408) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221))) 20 T ELT)) (-3845 (((-1183) (-584 (-584 (-855 (-179)))) (-584 (-221))) 30 T ELT) (((-1183) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221))) 29 T ELT)) (-3947 (((-1183) (-408)) 46 T ELT))) +(((-1182) (-10 -7 (-15 -3844 ((-408) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221)))) (-15 -3844 ((-408) (-584 (-584 (-855 (-179)))))) (-15 -3844 ((-408) (-584 (-584 (-855 (-179)))) (-584 (-221)))) (-15 -3845 ((-1183) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221)))) (-15 -3845 ((-1183) (-584 (-584 (-855 (-179)))) (-584 (-221)))) (-15 -3947 ((-1183) (-408))))) (T -1182)) +((-3947 (*1 *2 *3) (-12 (-5 *3 (-408)) (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3845 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3845 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *6 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-408)) (-5 *1 (-1182)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-408)) (-5 *1 (-1182)))) (-3844 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *6 (-584 (-221))) (-5 *2 (-408)) (-5 *1 (-1182))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3863 (((-1074) $ (-1074)) 107 T ELT) (((-1074) $ (-1074) (-1074)) 105 T ELT) (((-1074) $ (-1074) (-584 (-1074))) 104 T ELT)) (-3859 (($) 69 T ELT)) (-3846 (((-1186) $ (-408) (-831)) 54 T ELT)) (-3852 (((-1186) $ (-831) (-1074)) 89 T ELT) (((-1186) $ (-831) (-784)) 90 T ELT)) (-3874 (((-1186) $ (-831) (-330) (-330)) 57 T ELT)) (-3884 (((-1186) $ (-1074)) 84 T ELT)) (-3847 (((-1186) $ (-831) (-1074)) 94 T ELT)) (-3848 (((-1186) $ (-831) (-330) (-330)) 58 T ELT)) (-3885 (((-1186) $ (-831) (-831)) 55 T ELT)) (-3865 (((-1186) $) 85 T ELT)) (-3850 (((-1186) $ (-831) (-1074)) 93 T ELT)) (-3854 (((-1186) $ (-408) (-831)) 41 T ELT)) (-3851 (((-1186) $ (-831) (-1074)) 92 T ELT)) (-3887 (((-584 (-221)) $) 29 T ELT) (($ $ (-584 (-221))) 30 T ELT)) (-3886 (((-1186) $ (-695) (-695)) 52 T ELT)) (-3858 (($ $) 70 T ELT) (($ (-408) (-584 (-221))) 71 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3861 (((-485) $) 48 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3855 (((-1180 (-3 (-408) "undefined")) $) 47 T ELT)) (-3856 (((-1180 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3851 (-485)) (|:| -3849 (-485)) (|:| |spline| (-485)) (|:| -3880 (-485)) (|:| |axesColor| (-784)) (|:| -3852 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485)))) $) 46 T ELT)) (-3857 (((-1186) $ (-831) (-179) (-179) (-179) (-179) (-485) (-485) (-485) (-485) (-784) (-485) (-784) (-485)) 83 T ELT)) (-3860 (((-584 (-855 (-179))) $) NIL T ELT)) (-3853 (((-408) $ (-831)) 43 T ELT)) (-3883 (((-1186) $ (-695) (-695) (-831) (-831)) 50 T ELT)) (-3881 (((-1186) $ (-1074)) 95 T ELT)) (-3849 (((-1186) $ (-831) (-1074)) 91 T ELT)) (-3947 (((-773) $) 102 T ELT)) (-3862 (((-1186) $) 96 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3880 (((-1186) $ (-831) (-1074)) 87 T ELT) (((-1186) $ (-831) (-784)) 88 T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1183) (-13 (-1014) (-10 -8 (-15 -3860 ((-584 (-855 (-179))) $)) (-15 -3859 ($)) (-15 -3858 ($ $)) (-15 -3887 ((-584 (-221)) $)) (-15 -3887 ($ $ (-584 (-221)))) (-15 -3858 ($ (-408) (-584 (-221)))) (-15 -3857 ((-1186) $ (-831) (-179) (-179) (-179) (-179) (-485) (-485) (-485) (-485) (-784) (-485) (-784) (-485))) (-15 -3856 ((-1180 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3851 (-485)) (|:| -3849 (-485)) (|:| |spline| (-485)) (|:| -3880 (-485)) (|:| |axesColor| (-784)) (|:| -3852 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485)))) $)) (-15 -3855 ((-1180 (-3 (-408) "undefined")) $)) (-15 -3884 ((-1186) $ (-1074))) (-15 -3854 ((-1186) $ (-408) (-831))) (-15 -3853 ((-408) $ (-831))) (-15 -3880 ((-1186) $ (-831) (-1074))) (-15 -3880 ((-1186) $ (-831) (-784))) (-15 -3852 ((-1186) $ (-831) (-1074))) (-15 -3852 ((-1186) $ (-831) (-784))) (-15 -3851 ((-1186) $ (-831) (-1074))) (-15 -3850 ((-1186) $ (-831) (-1074))) (-15 -3849 ((-1186) $ (-831) (-1074))) (-15 -3881 ((-1186) $ (-1074))) (-15 -3862 ((-1186) $)) (-15 -3883 ((-1186) $ (-695) (-695) (-831) (-831))) (-15 -3848 ((-1186) $ (-831) (-330) (-330))) (-15 -3874 ((-1186) $ (-831) (-330) (-330))) (-15 -3847 ((-1186) $ (-831) (-1074))) (-15 -3886 ((-1186) $ (-695) (-695))) (-15 -3846 ((-1186) $ (-408) (-831))) (-15 -3885 ((-1186) $ (-831) (-831))) (-15 -3863 ((-1074) $ (-1074))) (-15 -3863 ((-1074) $ (-1074) (-1074))) (-15 -3863 ((-1074) $ (-1074) (-584 (-1074)))) (-15 -3865 ((-1186) $)) (-15 -3861 ((-485) $)) (-15 -3947 ((-773) $))))) (T -1183)) +((-3947 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1183)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-584 (-855 (-179)))) (-5 *1 (-1183)))) (-3859 (*1 *1) (-5 *1 (-1183))) (-3858 (*1 *1 *1) (-5 *1 (-1183))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183)))) (-3887 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183)))) (-3858 (*1 *1 *2 *3) (-12 (-5 *2 (-408)) (-5 *3 (-584 (-221))) (-5 *1 (-1183)))) (-3857 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-831)) (-5 *4 (-179)) (-5 *5 (-485)) (-5 *6 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-1180 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3851 (-485)) (|:| -3849 (-485)) (|:| |spline| (-485)) (|:| -3880 (-485)) (|:| |axesColor| (-784)) (|:| -3852 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485))))) (-5 *1 (-1183)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-1180 (-3 (-408) "undefined"))) (-5 *1 (-1183)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3854 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3853 (*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-408)) (-5 *1 (-1183)))) (-3880 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3880 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3851 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3849 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3883 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3848 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3874 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3847 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3886 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3846 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3885 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3863 (*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183)))) (-3863 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183)))) (-3863 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1183)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1183))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3875 (((-1186) $ (-330)) 168 T ELT) (((-1186) $ (-330) (-330) (-330)) 169 T ELT)) (-3863 (((-1074) $ (-1074)) 177 T ELT) (((-1074) $ (-1074) (-1074)) 175 T ELT) (((-1074) $ (-1074) (-584 (-1074))) 174 T ELT)) (-3891 (($) 67 T ELT)) (-3882 (((-1186) $ (-330) (-330) (-330) (-330) (-330)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1186) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1186) $ (-485) (-485) (-330) (-330) (-330)) 143 T ELT) (((-1186) $ (-330) (-330)) 144 T ELT) (((-1186) $ (-330) (-330) (-330)) 151 T ELT)) (-3894 (((-330)) 121 T ELT) (((-330) (-330)) 122 T ELT)) (-3896 (((-330)) 116 T ELT) (((-330) (-330)) 118 T ELT)) (-3895 (((-330)) 119 T ELT) (((-330) (-330)) 120 T ELT)) (-3892 (((-330)) 125 T ELT) (((-330) (-330)) 126 T ELT)) (-3893 (((-330)) 123 T ELT) (((-330) (-330)) 124 T ELT)) (-3874 (((-1186) $ (-330) (-330)) 170 T ELT)) (-3884 (((-1186) $ (-1074)) 152 T ELT)) (-3889 (((-1048 (-179)) $) 68 T ELT) (($ $ (-1048 (-179))) 69 T ELT)) (-3870 (((-1186) $ (-1074)) 186 T ELT)) (-3869 (((-1186) $ (-1074)) 187 T ELT)) (-3876 (((-1186) $ (-330) (-330)) 150 T ELT) (((-1186) $ (-485) (-485)) 167 T ELT)) (-3885 (((-1186) $ (-831) (-831)) 159 T ELT)) (-3865 (((-1186) $) 136 T ELT)) (-3873 (((-1186) $ (-1074)) 185 T ELT)) (-3878 (((-1186) $ (-1074)) 133 T ELT)) (-3887 (((-584 (-221)) $) 70 T ELT) (($ $ (-584 (-221))) 71 T ELT)) (-3886 (((-1186) $ (-695) (-695)) 158 T ELT)) (-3888 (((-1186) $ (-695) (-855 (-179))) 192 T ELT)) (-3890 (($ $) 73 T ELT) (($ (-1048 (-179)) (-1074)) 74 T ELT) (($ (-1048 (-179)) (-584 (-221))) 75 T ELT)) (-3867 (((-1186) $ (-330) (-330) (-330)) 130 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3861 (((-485) $) 127 T ELT)) (-3866 (((-1186) $ (-330)) 172 T ELT)) (-3871 (((-1186) $ (-330)) 190 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3872 (((-1186) $ (-330)) 189 T ELT)) (-3877 (((-1186) $ (-1074)) 135 T ELT)) (-3883 (((-1186) $ (-695) (-695) (-831) (-831)) 157 T ELT)) (-3879 (((-1186) $ (-1074)) 132 T ELT)) (-3881 (((-1186) $ (-1074)) 134 T ELT)) (-3864 (((-1186) $ (-130) (-130)) 156 T ELT)) (-3947 (((-773) $) 165 T ELT)) (-3862 (((-1186) $) 137 T ELT)) (-3868 (((-1186) $ (-1074)) 188 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3880 (((-1186) $ (-1074)) 131 T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1184) (-13 (-1014) (-10 -8 (-15 -3896 ((-330))) (-15 -3896 ((-330) (-330))) (-15 -3895 ((-330))) (-15 -3895 ((-330) (-330))) (-15 -3894 ((-330))) (-15 -3894 ((-330) (-330))) (-15 -3893 ((-330))) (-15 -3893 ((-330) (-330))) (-15 -3892 ((-330))) (-15 -3892 ((-330) (-330))) (-15 -3891 ($)) (-15 -3890 ($ $)) (-15 -3890 ($ (-1048 (-179)) (-1074))) (-15 -3890 ($ (-1048 (-179)) (-584 (-221)))) (-15 -3889 ((-1048 (-179)) $)) (-15 -3889 ($ $ (-1048 (-179)))) (-15 -3888 ((-1186) $ (-695) (-855 (-179)))) (-15 -3887 ((-584 (-221)) $)) (-15 -3887 ($ $ (-584 (-221)))) (-15 -3886 ((-1186) $ (-695) (-695))) (-15 -3885 ((-1186) $ (-831) (-831))) (-15 -3884 ((-1186) $ (-1074))) (-15 -3883 ((-1186) $ (-695) (-695) (-831) (-831))) (-15 -3882 ((-1186) $ (-330) (-330) (-330) (-330) (-330))) (-15 -3882 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3882 ((-1186) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3882 ((-1186) $ (-485) (-485) (-330) (-330) (-330))) (-15 -3882 ((-1186) $ (-330) (-330))) (-15 -3882 ((-1186) $ (-330) (-330) (-330))) (-15 -3881 ((-1186) $ (-1074))) (-15 -3880 ((-1186) $ (-1074))) (-15 -3879 ((-1186) $ (-1074))) (-15 -3878 ((-1186) $ (-1074))) (-15 -3877 ((-1186) $ (-1074))) (-15 -3876 ((-1186) $ (-330) (-330))) (-15 -3876 ((-1186) $ (-485) (-485))) (-15 -3875 ((-1186) $ (-330))) (-15 -3875 ((-1186) $ (-330) (-330) (-330))) (-15 -3874 ((-1186) $ (-330) (-330))) (-15 -3873 ((-1186) $ (-1074))) (-15 -3872 ((-1186) $ (-330))) (-15 -3871 ((-1186) $ (-330))) (-15 -3870 ((-1186) $ (-1074))) (-15 -3869 ((-1186) $ (-1074))) (-15 -3868 ((-1186) $ (-1074))) (-15 -3867 ((-1186) $ (-330) (-330) (-330))) (-15 -3866 ((-1186) $ (-330))) (-15 -3865 ((-1186) $)) (-15 -3864 ((-1186) $ (-130) (-130))) (-15 -3863 ((-1074) $ (-1074))) (-15 -3863 ((-1074) $ (-1074) (-1074))) (-15 -3863 ((-1074) $ (-1074) (-584 (-1074)))) (-15 -3862 ((-1186) $)) (-15 -3861 ((-485) $))))) (T -1184)) +((-3896 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3895 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3894 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3893 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3892 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3891 (*1 *1) (-5 *1 (-1184))) (-3890 (*1 *1 *1) (-5 *1 (-1184))) (-3890 (*1 *1 *2 *3) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1074)) (-5 *1 (-1184)))) (-3890 (*1 *1 *2 *3) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-584 (-221))) (-5 *1 (-1184)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184)))) (-3889 (*1 *1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184)))) (-3888 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1184)))) (-3887 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1184)))) (-3886 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3885 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3882 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1184)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3882 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-485)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3882 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3882 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3876 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3876 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3875 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3875 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3874 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3869 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3867 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3864 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3863 (*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184)))) (-3863 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184)))) (-3863 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1184)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1184))))) +((-3905 (((-584 (-1074)) (-584 (-1074))) 103 T ELT) (((-584 (-1074))) 96 T ELT)) (-3906 (((-584 (-1074))) 94 T ELT)) (-3903 (((-584 (-831)) (-584 (-831))) 69 T ELT) (((-584 (-831))) 64 T ELT)) (-3902 (((-584 (-695)) (-584 (-695))) 61 T ELT) (((-584 (-695))) 55 T ELT)) (-3904 (((-1186)) 71 T ELT)) (-3908 (((-831) (-831)) 87 T ELT) (((-831)) 86 T ELT)) (-3907 (((-831) (-831)) 85 T ELT) (((-831)) 84 T ELT)) (-3900 (((-784) (-784)) 81 T ELT) (((-784)) 80 T ELT)) (-3910 (((-179)) 91 T ELT) (((-179) (-330)) 93 T ELT)) (-3909 (((-831)) 88 T ELT) (((-831) (-831)) 89 T ELT)) (-3901 (((-831) (-831)) 83 T ELT) (((-831)) 82 T ELT)) (-3897 (((-784) (-784)) 75 T ELT) (((-784)) 73 T ELT)) (-3898 (((-784) (-784)) 77 T ELT) (((-784)) 76 T ELT)) (-3899 (((-784) (-784)) 79 T ELT) (((-784)) 78 T ELT))) +(((-1185) (-10 -7 (-15 -3897 ((-784))) (-15 -3897 ((-784) (-784))) (-15 -3898 ((-784))) (-15 -3898 ((-784) (-784))) (-15 -3899 ((-784))) (-15 -3899 ((-784) (-784))) (-15 -3900 ((-784))) (-15 -3900 ((-784) (-784))) (-15 -3901 ((-831))) (-15 -3901 ((-831) (-831))) (-15 -3902 ((-584 (-695)))) (-15 -3902 ((-584 (-695)) (-584 (-695)))) (-15 -3903 ((-584 (-831)))) (-15 -3903 ((-584 (-831)) (-584 (-831)))) (-15 -3904 ((-1186))) (-15 -3905 ((-584 (-1074)))) (-15 -3905 ((-584 (-1074)) (-584 (-1074)))) (-15 -3906 ((-584 (-1074)))) (-15 -3907 ((-831))) (-15 -3908 ((-831))) (-15 -3907 ((-831) (-831))) (-15 -3908 ((-831) (-831))) (-15 -3909 ((-831) (-831))) (-15 -3909 ((-831))) (-15 -3910 ((-179) (-330))) (-15 -3910 ((-179))))) (T -1185)) +((-3910 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1185)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1185)))) (-3909 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3908 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3907 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3906 (*1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))) (-3905 (*1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))) (-3904 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1185)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1185)))) (-3903 (*1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1185)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1185)))) (-3902 (*1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1185)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3901 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3900 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3899 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3898 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3897 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185))))) +((-3911 (($) 6 T ELT)) (-3947 (((-773) $) 9 T ELT))) +(((-1186) (-13 (-553 (-773)) (-10 -8 (-15 -3911 ($))))) (T -1186)) +((-3911 (*1 *1) (-5 *1 (-1186)))) +((-3950 (($ $ |#2|) 10 T ELT))) +(((-1187 |#1| |#2|) (-10 -7 (-15 -3950 (|#1| |#1| |#2|))) (-1188 |#2|) (-312)) (T -1187)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3912 (((-107)) 39 T ELT)) (-3947 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 40 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT))) +(((-1188 |#1|) (-113) (-312)) (T -1188)) +((-3950 (*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-312)))) (-3912 (*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) +(-13 (-655 |t#1|) (-10 -8 (-15 -3950 ($ $ |t#1|)) (-15 -3912 ((-107))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T)) +((-3917 (((-584 (-1123 |#1|)) (-1091) (-1123 |#1|)) 83 T ELT)) (-3915 (((-1070 (-1070 (-858 |#1|))) (-1091) (-1070 (-858 |#1|))) 63 T ELT)) (-3918 (((-1 (-1070 (-1123 |#1|)) (-1070 (-1123 |#1|))) (-695) (-1123 |#1|) (-1070 (-1123 |#1|))) 74 T ELT)) (-3913 (((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695)) 65 T ELT)) (-3916 (((-1 (-1086 (-858 |#1|)) (-858 |#1|)) (-1091)) 32 T ELT)) (-3914 (((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695)) 64 T ELT))) +(((-1189 |#1|) (-10 -7 (-15 -3913 ((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695))) (-15 -3914 ((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695))) (-15 -3915 ((-1070 (-1070 (-858 |#1|))) (-1091) (-1070 (-858 |#1|)))) (-15 -3916 ((-1 (-1086 (-858 |#1|)) (-858 |#1|)) (-1091))) (-15 -3917 ((-584 (-1123 |#1|)) (-1091) (-1123 |#1|))) (-15 -3918 ((-1 (-1070 (-1123 |#1|)) (-1070 (-1123 |#1|))) (-695) (-1123 |#1|) (-1070 (-1123 |#1|))))) (-312)) (T -1189)) +((-3918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695)) (-4 *6 (-312)) (-5 *4 (-1123 *6)) (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1189 *6)) (-5 *5 (-1070 *4)))) (-3917 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-584 (-1123 *5))) (-5 *1 (-1189 *5)) (-5 *4 (-1123 *5)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1 (-1086 (-858 *4)) (-858 *4))) (-5 *1 (-1189 *4)) (-4 *4 (-312)))) (-3915 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-1070 (-1070 (-858 *5)))) (-5 *1 (-1189 *5)) (-5 *4 (-1070 (-858 *5))))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-312)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-312))))) +((-3920 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 80 T ELT)) (-3919 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 79 T ELT))) +(((-1190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3919 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3920 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|))) (-299) (-1156 |#1|) (-1156 |#2|) (-353 |#2| |#3|)) (T -1190)) +((-3920 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5)))) (-3919 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3921 (((-1050) $) 12 T ELT)) (-3922 (((-1050) $) 10 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1191) (-13 (-996) (-10 -8 (-15 -3922 ((-1050) $)) (-15 -3921 ((-1050) $))))) (T -1191)) +((-3922 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3923 (((-1050) $) 11 T ELT)) (-3947 (((-773) $) 17 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT))) +(((-1192) (-13 (-996) (-10 -8 (-15 -3923 ((-1050) $))))) (T -1192)) +((-3923 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1192))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 59 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 82 T ELT) (($ (-485)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3127 (((-695)) NIL T CONST)) (-3924 (((-1186) (-695)) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 36 T CONST)) (-2667 (($) 85 T CONST)) (-3057 (((-85) $ $) 88 T ELT)) (-3950 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 64 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT))) +(((-1193 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-962) (-430 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3950 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3924 ((-1186) (-695))))) (-962) (-757) (-718) (-862 |#1| |#3| |#2|) (-584 |#2|) (-584 (-695)) (-695)) (T -1193)) +((-3950 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-718)) (-14 *6 (-584 *3)) (-5 *1 (-1193 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-862 *2 *4 *3)) (-14 *7 (-584 (-695))) (-14 *8 (-695)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-14 *8 (-584 *5)) (-5 *2 (-1186)) (-5 *1 (-1193 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-862 *4 *6 *5)) (-14 *9 (-584 *3)) (-14 *10 *3)))) +((-2569 (((-85) $ $) NIL T ELT)) (-3682 (((-584 (-2 (|:| -3862 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3683 (((-584 $) (-584 |#4|)) 95 T ELT)) (-3082 (((-584 |#3|) $) NIL T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3711 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2905 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3690 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2901 (((-584 |#4|) (-584 |#4|) $) 28 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3158 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3157 (($ (-584 |#4|)) NIL T ELT)) (-3800 (((-3 $ #1#) $) 77 T ELT)) (-3686 ((|#4| |#4| $) 82 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT)) (-3407 (($ |#4| $) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3996)) (|has| |#4| (-1014))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3996)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3996)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3697 (((-2 (|:| -3862 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-2890 (((-584 |#4|) $) NIL (|has| $ (-6 -3996)) ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3181 ((|#3| $) 83 T ELT)) (-2609 (((-584 |#4|) $) 32 T ELT)) (-3246 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-3927 (((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-584 |#4|)) 38 T ELT)) (-3327 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2915 (((-584 |#3|) $) NIL T ELT)) (-2914 (((-85) |#3| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3799 (((-3 |#4| #1#) $) NIL T ELT)) (-3698 (((-584 |#4|) $) 53 T ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) 81 T ELT)) (-3700 (((-85) $ $) 92 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3802 (((-3 |#4| #1#) $) 76 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3770 (($ $ |#4|) NIL T ELT)) (-1948 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3769 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 74 T ELT)) (-3566 (($) 45 T ELT)) (-3949 (((-695) $) NIL T ELT)) (-1947 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3531 (($ (-584 |#4|)) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3685 (($ $) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (((-584 |#4|) $) 62 T ELT)) (-3679 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-3926 (((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-584 |#4|)) 44 T ELT)) (-3925 (((-584 $) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-584 $) (-584 |#4|)) 73 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-1949 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-584 |#3|) $) NIL T ELT)) (-3934 (((-85) |#3| $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3958 (((-695) $) NIL T ELT))) +(((-1194 |#1| |#2| |#3| |#4|) (-13 (-1125 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3927 ((-3 $ #1="failed") (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3927 ((-3 $ #1#) (-584 |#4|))) (-15 -3926 ((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3926 ((-3 $ #1#) (-584 |#4|))) (-15 -3925 ((-584 $) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3925 ((-584 $) (-584 |#4|))))) (-496) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -1194)) +((-3927 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8)))) (-3927 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6)))) (-3926 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8)))) (-3926 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6)))) (-3925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-584 (-1194 *6 *7 *8 *9))) (-5 *1 (-1194 *6 *7 *8 *9)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-1194 *4 *5 *6 *7))) (-5 *1 (-1194 *4 *5 *6 *7))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 53 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 55 T ELT) (($ |#1| $) 54 T ELT))) +(((-1195 |#1|) (-113) (-962)) (T -1195)) +NIL +(-13 (-962) (-82 |t#1| |t#1|) (-556 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T)) +((-2569 (((-85) $ $) 69 T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3935 (((-584 |#1|) $) 54 T ELT)) (-3948 (($ $ (-695)) 47 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3936 (($ $ (-695)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3725 (($) NIL T CONST)) (-3940 (($ $ $) 72 T ELT) (($ $ (-740 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3158 (((-3 (-740 |#1|) #1#) $) NIL T ELT)) (-3157 (((-740 |#1|) $) NIL T ELT)) (-3960 (($ $) 40 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3952 (((-85) $) NIL T ELT)) (-3951 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ (-740 |#1|) |#2|) 39 T ELT)) (-3937 (($ $) 41 T ELT)) (-3942 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3956 (((-740 |#1|) $) NIL T ELT)) (-3957 (((-740 |#1|) $) 42 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3941 (($ $ $) 71 T ELT) (($ $ (-740 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1750 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2895 (((-740 |#1|) $) 36 T ELT)) (-3175 ((|#2| $) 38 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3949 (((-695) $) 44 T ELT)) (-3954 (((-85) $) 48 T ELT)) (-3953 ((|#2| $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-740 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-485)) NIL T ELT)) (-3818 (((-584 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-740 |#1|)) NIL T ELT)) (-3955 ((|#2| $ $) 78 T ELT) ((|#2| $ (-740 |#1|)) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 14 T CONST)) (-2667 (($) 20 T CONST)) (-2666 (((-584 (-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) 45 T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 29 T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-740 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT))) +(((-1196 |#1| |#2|) (-13 (-335 |#2| (-740 |#1|)) (-1203 |#1| |#2|)) (-757) (-962)) (T -1196)) +NIL +((-3943 ((|#3| |#3| (-695)) 28 T ELT)) (-3944 ((|#3| |#3| (-695)) 34 T ELT)) (-3928 ((|#3| |#3| |#3| (-695)) 35 T ELT))) +(((-1197 |#1| |#2| |#3|) (-10 -7 (-15 -3944 (|#3| |#3| (-695))) (-15 -3943 (|#3| |#3| (-695))) (-15 -3928 (|#3| |#3| |#3| (-695)))) (-13 (-962) (-655 (-350 (-485)))) (-757) (-1203 |#2| |#1|)) (T -1197)) +((-3928 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) (-3943 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) (-3944 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4))))) +((-3933 (((-85) $) 15 T ELT)) (-3934 (((-85) $) 14 T ELT)) (-3929 (($ $) 19 T ELT) (($ $ (-695)) 21 T ELT))) +(((-1198 |#1| |#2|) (-10 -7 (-15 -3929 (|#1| |#1| (-695))) (-15 -3929 (|#1| |#1|)) (-15 -3933 ((-85) |#1|)) (-15 -3934 ((-85) |#1|))) (-1199 |#2|) (-312)) (T -1198)) +NIL +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1773 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3933 (((-85) $) 114 T ELT)) (-3930 (((-695)) 110 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| "failed") $) 121 T ELT)) (-3157 ((|#1| $) 122 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1765 (($ $ (-695)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) 89 T ELT)) (-3773 (((-744 (-831)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1892 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3932 (((-85) $) 113 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-2709 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-3931 (((-744 (-831))) 111 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2880 (((-2 (|:| -1973 $) (|:| -2903 $)) $ $) 73 T ELT)) (-1766 (((-3 (-695) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) 119 T ELT)) (-3949 (((-744 (-831)) $) 112 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2703 (((-633 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3934 (((-85) $) 115 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3929 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-695)) 108 (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT))) +(((-1199 |#1|) (-113) (-312)) (T -1199)) +((-3934 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831))))) (-3931 (*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831))))) (-3930 (*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-695)))) (-3929 (*1 *1 *1) (-12 (-4 *1 (-1199 *2)) (-4 *2 (-312)) (-4 *2 (-320)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-4 *3 (-320))))) +(-13 (-312) (-951 |t#1|) (-1188 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-345)) |%noBranch|) (-15 -3934 ((-85) $)) (-15 -3933 ((-85) $)) (-15 -3932 ((-85) $)) (-15 -3949 ((-744 (-831)) $)) (-15 -3931 ((-744 (-831)))) (-15 -3930 ((-695))) (IF (|has| |t#1| (-320)) (PROGN (-6 (-345)) (-15 -3929 ($ $)) (-15 -3929 ($ $ (-695)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T) ((-1188 |#1|) . T)) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3935 (((-584 |#1|) $) 55 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3936 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-695)) 57 (|has| |#2| (-146)) ELT)) (-3725 (($) 23 T CONST)) (-3940 (($ $ |#1|) 69 T ELT) (($ $ (-740 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3158 (((-3 (-740 |#1|) "failed") $) 79 T ELT)) (-3157 (((-740 |#1|) $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3952 (((-85) $) 60 T ELT)) (-3951 (($ $) 59 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3938 (((-85) $) 65 T ELT)) (-3939 (($ (-740 |#1|) |#2|) 66 T ELT)) (-3937 (($ $) 64 T ELT)) (-3942 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3956 (((-740 |#1|) $) 76 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3941 (($ $ |#1|) 72 T ELT) (($ $ (-740 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3954 (((-85) $) 62 T ELT)) (-3953 ((|#2| $) 61 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-740 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3955 ((|#2| $ (-740 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT))) +(((-1200 |#1| |#2|) (-113) (-757) (-962)) (T -1200)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-2 (|:| |k| (-740 *3)) (|:| |c| *4))))) (-3955 (*1 *2 *1 *3) (-12 (-5 *3 (-740 *4)) (-4 *1 (-1200 *4 *2)) (-4 *4 (-757)) (-4 *2 (-962)))) (-3955 (*1 *2 *1 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (-3941 (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3941 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3940 (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3940 (*1 *1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3940 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-740 *4)) (-4 *4 (-757)) (-4 *1 (-1200 *4 *3)) (-4 *3 (-962)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3937 (*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3947 (*1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3951 (*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3936 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)) (-4 *3 (-146)))) (-3936 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-4 *4 (-146)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-584 *3))))) +(-13 (-962) (-1195 |t#2|) (-951 (-740 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3956 ((-740 |t#1|) $)) (-15 -3942 ((-2 (|:| |k| (-740 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3955 (|t#2| $ (-740 |t#1|))) (-15 -3955 (|t#2| $ $)) (-15 -3941 ($ $ |t#1|)) (-15 -3941 ($ $ (-740 |t#1|))) (-15 -3941 ($ $ $)) (-15 -3940 ($ $ |t#1|)) (-15 -3940 ($ $ (-740 |t#1|))) (-15 -3940 ($ $ $)) (-15 -3939 ($ (-740 |t#1|) |t#2|)) (-15 -3938 ((-85) $)) (-15 -3937 ($ $)) (-15 -3947 ($ |t#1|)) (-15 -3954 ((-85) $)) (-15 -3953 (|t#2| $)) (-15 -3952 ((-85) $)) (-15 -3951 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3936 ($ $ $)) (-15 -3936 ($ $ (-695)))) |%noBranch|) (-15 -3959 ($ (-1 |t#2| |t#2|) $)) (-15 -3935 ((-584 |t#1|) $)) (IF (|has| |t#2| (-6 -3989)) (-6 -3989) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 (-740 |#1|)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) |has| |#2| (-146)) ((-655 |#2|) |has| |#2| (-146)) ((-664) . T) ((-951 (-740 |#1|)) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1195 |#2|) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3935 (((-584 |#1|) $) 99 T ELT)) (-3948 (($ $ (-695)) 103 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3936 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-3725 (($) NIL T CONST)) (-3940 (($ $ |#1|) NIL T ELT) (($ $ (-740 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3158 (((-3 (-740 |#1|) #1#) $) NIL T ELT) (((-3 (-804 |#1|) #1#) $) NIL T ELT)) (-3157 (((-740 |#1|) $) NIL T ELT) (((-804 |#1|) $) NIL T ELT)) (-3960 (($ $) 102 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3952 (((-85) $) 90 T ELT)) (-3951 (($ $) 93 T ELT)) (-3945 (($ $ $ (-695)) 104 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ (-740 |#1|) |#2|) NIL T ELT) (($ (-804 |#1|) |#2|) 28 T ELT)) (-3937 (($ $) 120 T ELT)) (-3942 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3956 (((-740 |#1|) $) NIL T ELT)) (-3957 (((-740 |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3941 (($ $ |#1|) NIL T ELT) (($ $ (-740 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3943 (($ $ (-695)) 113 (|has| |#2| (-655 (-350 (-485)))) ELT)) (-1750 (((-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2895 (((-804 |#1|) $) 84 T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3944 (($ $ (-695)) 110 (|has| |#2| (-655 (-350 (-485)))) ELT)) (-3949 (((-695) $) 100 T ELT)) (-3954 (((-85) $) 85 T ELT)) (-3953 ((|#2| $) 88 T ELT)) (-3947 (((-773) $) 70 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-740 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-804 |#1|)) NIL T ELT) (($ (-607 |#1| |#2|)) 47 T ELT) (((-1196 |#1| |#2|) $) 77 T ELT) (((-1205 |#1| |#2|) $) 82 T ELT)) (-3818 (((-584 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-804 |#1|)) NIL T ELT)) (-3955 ((|#2| $ (-740 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 27 T CONST)) (-2666 (((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3946 (((-3 (-607 |#1| |#2|) #1#) $) 119 T ELT)) (-3057 (((-85) $ $) 78 T ELT)) (-3838 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3840 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-804 |#1|)) NIL T ELT))) +(((-1201 |#1| |#2|) (-13 (-1203 |#1| |#2|) (-335 |#2| (-804 |#1|)) (-10 -8 (-15 -3947 ($ (-607 |#1| |#2|))) (-15 -3947 ((-1196 |#1| |#2|) $)) (-15 -3947 ((-1205 |#1| |#2|) $)) (-15 -3946 ((-3 (-607 |#1| |#2|) "failed") $)) (-15 -3945 ($ $ $ (-695))) (IF (|has| |#2| (-655 (-350 (-485)))) (PROGN (-15 -3944 ($ $ (-695))) (-15 -3943 ($ $ (-695)))) |%noBranch|))) (-757) (-146)) (T -1201)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *1 (-1201 *3 *4)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1205 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3946 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3945 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3944 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-350 (-485)))) (-4 *3 (-757)) (-4 *4 (-146)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-350 (-485)))) (-4 *3 (-757)) (-4 *4 (-146))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3935 (((-584 (-1091)) $) NIL T ELT)) (-3963 (($ (-1196 (-1091) |#1|)) NIL T ELT)) (-3948 (($ $ (-695)) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3936 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-3725 (($) NIL T CONST)) (-3940 (($ $ (-1091)) NIL T ELT) (($ $ (-740 (-1091))) NIL T ELT) (($ $ $) NIL T ELT)) (-3158 (((-3 (-740 (-1091)) #1#) $) NIL T ELT)) (-3157 (((-740 (-1091)) $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3952 (((-85) $) NIL T ELT)) (-3951 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ (-740 (-1091)) |#1|) NIL T ELT)) (-3937 (($ $) NIL T ELT)) (-3942 (((-2 (|:| |k| (-740 (-1091))) (|:| |c| |#1|)) $) NIL T ELT)) (-3956 (((-740 (-1091)) $) NIL T ELT)) (-3957 (((-740 (-1091)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ $ (-1091)) NIL T ELT) (($ $ (-740 (-1091))) NIL T ELT) (($ $ $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3964 (((-1196 (-1091) |#1|) $) NIL T ELT)) (-3949 (((-695) $) NIL T ELT)) (-3954 (((-85) $) NIL T ELT)) (-3953 ((|#1| $) NIL T ELT)) (-3947 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-740 (-1091))) NIL T ELT) (($ (-1091)) NIL T ELT)) (-3955 ((|#1| $ (-740 (-1091))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3127 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-3962 (((-584 (-2 (|:| |k| (-1091)) (|:| |c| $))) $) NIL T ELT)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1091) $) NIL T ELT))) +(((-1202 |#1|) (-13 (-1203 (-1091) |#1|) (-10 -8 (-15 -3964 ((-1196 (-1091) |#1|) $)) (-15 -3963 ($ (-1196 (-1091) |#1|))) (-15 -3962 ((-584 (-2 (|:| |k| (-1091)) (|:| |c| $))) $)))) (-962)) (T -1202)) +((-3964 (*1 *2 *1) (-12 (-5 *2 (-1196 (-1091) *3)) (-5 *1 (-1202 *3)) (-4 *3 (-962)))) (-3963 (*1 *1 *2) (-12 (-5 *2 (-1196 (-1091) *3)) (-4 *3 (-962)) (-5 *1 (-1202 *3)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-1091)) (|:| |c| (-1202 *3))))) (-5 *1 (-1202 *3)) (-4 *3 (-962))))) +((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3935 (((-584 |#1|) $) 55 T ELT)) (-3948 (($ $ (-695)) 89 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3936 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-695)) 57 (|has| |#2| (-146)) ELT)) (-3725 (($) 23 T CONST)) (-3940 (($ $ |#1|) 69 T ELT) (($ $ (-740 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3158 (((-3 (-740 |#1|) "failed") $) 79 T ELT)) (-3157 (((-740 |#1|) $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3952 (((-85) $) 60 T ELT)) (-3951 (($ $) 59 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3938 (((-85) $) 65 T ELT)) (-3939 (($ (-740 |#1|) |#2|) 66 T ELT)) (-3937 (($ $) 64 T ELT)) (-3942 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3956 (((-740 |#1|) $) 76 T ELT)) (-3957 (((-740 |#1|) $) 91 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3941 (($ $ |#1|) 72 T ELT) (($ $ (-740 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3243 (((-1074) $) 11 T ELT)) (-3244 (((-1034) $) 12 T ELT)) (-3949 (((-695) $) 90 T ELT)) (-3954 (((-85) $) 62 T ELT)) (-3953 ((|#2| $) 61 T ELT)) (-3947 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-740 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3955 ((|#2| $ (-740 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3127 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT))) +(((-1203 |#1| |#2|) (-113) (-757) (-962)) (T -1203)) +((-3957 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-695)))) (-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))) +(-13 (-1200 |t#1| |t#2|) (-10 -8 (-15 -3957 ((-740 |t#1|) $)) (-15 -3949 ((-695) $)) (-15 -3948 ($ $ (-695))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 (-740 |#1|)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) |has| |#2| (-146)) ((-655 |#2|) |has| |#2| (-146)) ((-664) . T) ((-951 (-740 |#1|)) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1195 |#2|) . T) ((-1200 |#1| |#2|) . T)) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 43 T ELT)) (-3952 (((-85) $) 37 T ELT)) (-3951 (($ $) 38 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2822 (((-584 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ |#2| |#1|) NIL T ELT)) (-3956 ((|#2| $) 25 T ELT)) (-3957 ((|#2| $) 23 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1750 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2895 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3954 (((-85) $) 33 T ELT)) (-3953 ((|#1| $) 34 T ELT)) (-3947 (((-773) $) 66 T ELT) (($ (-485)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3818 (((-584 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ |#2|) NIL T ELT)) (-3955 ((|#1| $ |#2|) 29 T ELT)) (-3127 (((-695)) 14 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 30 T CONST)) (-2667 (($) 11 T CONST)) (-2666 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3057 (((-85) $ $) 31 T ELT)) (-3950 (($ $ |#1|) 68 (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 51 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 53 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3958 (((-695) $) 18 T ELT))) +(((-1204 |#1| |#2|) (-13 (-962) (-1195 |#1|) (-335 |#1| |#2|) (-556 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3958 ((-695) $)) (-15 -3957 (|#2| $)) (-15 -3956 (|#2| $)) (-15 -3960 ($ $)) (-15 -3955 (|#1| $ |#2|)) (-15 -3954 ((-85) $)) (-15 -3953 (|#1| $)) (-15 -3952 ((-85) $)) (-15 -3951 ($ $)) (-15 -3959 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-312)) (-15 -3950 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3989)) (-6 -3989) |%noBranch|) (IF (|has| |#1| (-6 -3993)) (-6 -3993) |%noBranch|) (IF (|has| |#1| (-6 -3994)) (-6 -3994) |%noBranch|))) (-962) (-755)) (T -1204)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-1204 *3 *4)) (-4 *4 (-755)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3957 (*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962)))) (-3956 (*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962)))) (-3955 (*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3953 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3951 (*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-755))))) +((-2569 (((-85) $ $) 27 T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3935 (((-584 |#1|) $) 132 T ELT)) (-3963 (($ (-1196 |#1| |#2|)) 50 T ELT)) (-3948 (($ $ (-695)) 38 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3936 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-695)) 52 (|has| |#2| (-146)) ELT)) (-3725 (($) NIL T CONST)) (-3940 (($ $ |#1|) 114 T ELT) (($ $ (-740 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3158 (((-3 (-740 |#1|) #1#) $) NIL T ELT)) (-3157 (((-740 |#1|) $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 122 T ELT)) (-3952 (((-85) $) 117 T ELT)) (-3951 (($ $) 118 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ (-740 |#1|) |#2|) 20 T ELT)) (-3937 (($ $) NIL T ELT)) (-3942 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3956 (((-740 |#1|) $) 123 T ELT)) (-3957 (((-740 |#1|) $) 126 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3941 (($ $ |#1|) 112 T ELT) (($ $ (-740 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3964 (((-1196 |#1| |#2|) $) 94 T ELT)) (-3949 (((-695) $) 129 T ELT)) (-3954 (((-85) $) 81 T ELT)) (-3953 ((|#2| $) 32 T ELT)) (-3947 (((-773) $) 73 T ELT) (($ (-485)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-740 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3955 ((|#2| $ (-740 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3127 (((-695)) 120 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 15 T CONST)) (-3962 (((-584 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2667 (($) 33 T CONST)) (-3057 (((-85) $ $) 14 T ELT)) (-3838 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3840 (($ $ $) 61 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 55 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 53 T ELT) (($ (-485) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) +(((-1205 |#1| |#2|) (-13 (-1203 |#1| |#2|) (-10 -8 (-15 -3964 ((-1196 |#1| |#2|) $)) (-15 -3963 ($ (-1196 |#1| |#2|))) (-15 -3962 ((-584 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-757) (-962)) (T -1205)) +((-3964 (*1 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3963 (*1 *1 *2) (-12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *1 (-1205 *3 *4)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| *3) (|:| |c| (-1205 *3 *4))))) (-5 *1 (-1205 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3966 (($ (-584 (-831))) 11 T ELT)) (-3965 (((-885) $) 12 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3947 (((-773) $) 25 T ELT) (($ (-885)) 14 T ELT) (((-885) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 17 T ELT))) +(((-1206) (-13 (-1014) (-430 (-885)) (-10 -8 (-15 -3966 ($ (-584 (-831)))) (-15 -3965 ((-885) $))))) (T -1206)) +((-3966 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1206)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1206))))) +((-3967 (((-584 (-1070 |#1|)) (-1 (-584 (-1070 |#1|)) (-584 (-1070 |#1|))) (-485)) 16 T ELT) (((-1070 |#1|) (-1 (-1070 |#1|) (-1070 |#1|))) 13 T ELT))) +(((-1207 |#1|) (-10 -7 (-15 -3967 ((-1070 |#1|) (-1 (-1070 |#1|) (-1070 |#1|)))) (-15 -3967 ((-584 (-1070 |#1|)) (-1 (-584 (-1070 |#1|)) (-584 (-1070 |#1|))) (-485)))) (-1130)) (T -1207)) +((-3967 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-584 (-1070 *5)) (-584 (-1070 *5)))) (-5 *4 (-485)) (-5 *2 (-584 (-1070 *5))) (-5 *1 (-1207 *5)) (-4 *5 (-1130)))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-1 (-1070 *4) (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1207 *4)) (-4 *4 (-1130))))) +((-3969 (((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|))) 174 T ELT) (((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85)) 173 T ELT) (((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)) 172 T ELT) (((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-959 |#1| |#2|)) 156 T ELT)) (-3968 (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|))) 85 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85)) 84 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85) (-85)) 83 T ELT)) (-3972 (((-584 (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) (-959 |#1| |#2|)) 73 T ELT)) (-3970 (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|))) 140 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85)) 139 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85)) 138 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|)) 132 T ELT)) (-3971 (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|))) 145 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85)) 144 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85)) 143 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|)) 142 T ELT)) (-3973 (((-584 (-704 |#1| (-774 |#3|))) (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) 111 T ELT) (((-1086 (-938 (-350 |#1|))) (-1086 |#1|)) 102 T ELT) (((-858 (-938 (-350 |#1|))) (-704 |#1| (-774 |#3|))) 109 T ELT) (((-858 (-938 (-350 |#1|))) (-858 |#1|)) 107 T ELT) (((-704 |#1| (-774 |#3|)) (-704 |#1| (-774 |#2|))) 33 T ELT))) +(((-1208 |#1| |#2| |#3|) (-10 -7 (-15 -3968 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3968 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85))) (-15 -3968 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)))) (-15 -3969 ((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-959 |#1| |#2|))) (-15 -3969 ((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85) (-85))) (-15 -3969 ((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3969 ((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85))) (-15 -3969 ((-584 (-2 (|:| -1748 (-1086 |#1|)) (|:| -3225 (-584 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3970 ((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|))) (-15 -3970 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85) (-85))) (-15 -3970 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3970 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85))) (-15 -3970 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)))) (-15 -3971 ((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|))) (-15 -3971 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3971 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85))) (-15 -3971 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)))) (-15 -3972 ((-584 (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) (-959 |#1| |#2|))) (-15 -3973 ((-704 |#1| (-774 |#3|)) (-704 |#1| (-774 |#2|)))) (-15 -3973 ((-858 (-938 (-350 |#1|))) (-858 |#1|))) (-15 -3973 ((-858 (-938 (-350 |#1|))) (-704 |#1| (-774 |#3|)))) (-15 -3973 ((-1086 (-938 (-350 |#1|))) (-1086 |#1|))) (-15 -3973 ((-584 (-704 |#1| (-774 |#3|))) (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))))) (-13 (-756) (-258) (-120) (-934)) (-584 (-1091)) (-584 (-1091))) (T -1208)) +((-3973 (*1 *2 *3) (-12 (-5 *3 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6)))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-704 *4 (-774 *6)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-1086 (-938 (-350 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-704 *4 (-774 *6))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *6 (-584 (-1091))) (-5 *2 (-858 (-938 (-350 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-858 (-938 (-350 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-704 *4 (-774 *5))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1091))) (-5 *2 (-704 *4 (-774 *6))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3971 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3971 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3970 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3970 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) (-3969 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1748 (-1086 *4)) (|:| -3225 (-584 (-858 *4)))))) (-5 *1 (-1208 *4 *5 *6)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3969 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1748 (-1086 *5)) (|:| -3225 (-584 (-858 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3969 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1748 (-1086 *5)) (|:| -3225 (-584 (-858 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3969 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1748 (-1086 *5)) (|:| -3225 (-584 (-858 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-2 (|:| -1748 (-1086 *4)) (|:| -3225 (-584 (-858 *4)))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *4 *5))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3968 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3968 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091)))))) +((-3976 (((-3 (-1180 (-350 (-485))) #1="failed") (-1180 |#1|) |#1|) 21 T ELT)) (-3974 (((-85) (-1180 |#1|)) 12 T ELT)) (-3975 (((-3 (-1180 (-485)) #1#) (-1180 |#1|)) 16 T ELT))) +(((-1209 |#1|) (-10 -7 (-15 -3974 ((-85) (-1180 |#1|))) (-15 -3975 ((-3 (-1180 (-485)) #1="failed") (-1180 |#1|))) (-15 -3976 ((-3 (-1180 (-350 (-485))) #1#) (-1180 |#1|) |#1|))) (-13 (-962) (-581 (-485)))) (T -1209)) +((-3976 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-1180 (-350 (-485)))) (-5 *1 (-1209 *4)))) (-3975 (*1 *2 *3) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-1180 (-485))) (-5 *1 (-1209 *4)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-85)) (-5 *1 (-1209 *4))))) +((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 12 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-695)) 9 T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) 57 T ELT)) (-2995 (($) 46 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 38 T ELT)) (-3446 (((-633 $) $) 36 T ELT)) (-2011 (((-831) $) 14 T ELT)) (-3243 (((-1074) $) NIL T ELT)) (-3447 (($) 26 T CONST)) (-2401 (($ (-831)) 47 T ELT)) (-3244 (((-1034) $) NIL T ELT)) (-3973 (((-485) $) 16 T ELT)) (-3947 (((-773) $) 21 T ELT) (($ (-485)) 18 T ELT)) (-3127 (((-695)) 10 T CONST)) (-1266 (((-85) $ $) 59 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 23 T CONST)) (-2667 (($) 25 T CONST)) (-3057 (((-85) $ $) 31 T ELT)) (-3838 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3840 (($ $ $) 29 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 52 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 41 T ELT) (($ $ $) 40 T ELT))) +(((-1210 |#1|) (-13 (-146) (-320) (-554 (-485)) (-1067)) (-831)) (T -1210)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 2826143 2826148 2826153 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2826128 2826133 2826138 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2826113 2826118 2826123 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2826098 2826103 2826108 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1210 2825077 2826016 2826093 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1209 2824292 2824471 2824690 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1208 2815451 2817320 2819254 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1207 2814839 2814992 2815181 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1206 2814301 2814604 2814717 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1205 2811861 2813763 2813966 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1204 2808625 2810278 2810849 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1203 2805882 2807612 2807666 "XPOLYC" 2807951 XPOLYC (NIL T T) -9 NIL 2808064 NIL) (-1202 2803401 2805386 2805589 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1201 2799649 2802260 2802648 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1200 2794496 2796129 2796183 "XFALG" 2798328 XFALG (NIL T T) -9 NIL 2799112 NIL) (-1199 2789652 2792385 2792427 "XF" 2793045 XF (NIL T) -9 NIL 2793441 NIL) (-1198 2789370 2789480 2789647 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1197 2788597 2788719 2788923 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1196 2786339 2788497 2788592 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1195 2784920 2785715 2785757 "XALG" 2785762 XALG (NIL T) -9 NIL 2785871 NIL) (-1194 2778630 2783330 2783808 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1193 2776873 2777875 2778196 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1192 2776472 2776744 2776813 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1191 2775959 2776262 2776355 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1190 2775036 2775246 2775541 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1189 2773332 2773795 2774257 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1188 2772221 2772806 2772848 "VSPACE" 2772984 VSPACE (NIL T) -9 NIL 2773058 NIL) (-1187 2772092 2772125 2772216 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1186 2771935 2771989 2772057 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1185 2768918 2769713 2770450 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1184 2760016 2762617 2764790 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1183 2753593 2755484 2757063 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1182 2752077 2752472 2752878 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1181 2750904 2751185 2751501 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1180 2746192 2750731 2750823 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1179 2739428 2743865 2743908 "VECTCAT" 2744896 VECTCAT (NIL T) -9 NIL 2745480 NIL) (-1178 2738707 2739033 2739423 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1177 2738201 2738443 2738563 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1176 2738134 2738139 2738169 "UTYPE" 2738174 UTYPE (NIL) -9 NIL NIL NIL) (-1175 2737121 2737297 2737558 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1174 2734972 2735480 2736004 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1173 2724854 2730824 2730866 "UTSCAT" 2731964 UTSCAT (NIL T) -9 NIL 2732721 NIL) (-1172 2722919 2723862 2724849 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1171 2722593 2722642 2722773 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1170 2714304 2720789 2721268 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1169 2708303 2711112 2711155 "URAGG" 2713225 URAGG (NIL T) -9 NIL 2713947 NIL) (-1168 2706318 2707280 2708298 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1167 2702025 2705294 2705756 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1166 2694454 2701949 2702020 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1165 2683105 2690592 2690653 "UPXSCCA" 2691221 UPXSCCA (NIL T T) -9 NIL 2691453 NIL) (-1164 2682826 2682928 2683100 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1163 2671378 2678590 2678632 "UPXSCAT" 2679272 UPXSCAT (NIL T) -9 NIL 2679880 NIL) (-1162 2670891 2670976 2671153 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1161 2662577 2670482 2670744 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1160 2661472 2661742 2662092 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1159 2654175 2657660 2657714 "UPSCAT" 2658783 UPSCAT (NIL T T) -9 NIL 2659547 NIL) (-1158 2653595 2653847 2654170 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1157 2653269 2653318 2653449 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1156 2637399 2646353 2646395 "UPOLYC" 2648473 UPOLYC (NIL T) -9 NIL 2649693 NIL) (-1155 2631454 2634302 2637394 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1154 2630890 2631015 2631178 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1153 2630524 2630611 2630750 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1152 2629337 2629604 2629908 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1151 2628670 2628800 2628985 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1150 2628262 2628337 2628484 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1149 2619026 2628028 2628156 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1148 2618388 2618525 2618730 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1147 2616989 2617836 2618112 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1146 2616218 2616415 2616640 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1145 2603028 2616142 2616213 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1144 2582834 2596069 2596130 "ULSCCAT" 2596761 ULSCCAT (NIL T T) -9 NIL 2597048 NIL) (-1143 2582169 2582455 2582829 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1142 2570541 2577675 2577717 "ULSCAT" 2578570 ULSCAT (NIL T) -9 NIL 2579300 NIL) (-1141 2570054 2570139 2570316 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1140 2552171 2569553 2569794 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1139 2551205 2551898 2552012 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2552123) (-1138 2550238 2550931 2551045 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2551156) (-1137 2549271 2549964 2550078 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2550189) (-1136 2548304 2548997 2549111 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2549222) (-1135 2546311 2547532 2547562 "UFD" 2547773 UFD (NIL) -9 NIL 2547886 NIL) (-1134 2546155 2546212 2546306 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1133 2545407 2545614 2545830 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1132 2543627 2544080 2544545 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1131 2543352 2543592 2543622 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1130 2543290 2543295 2543325 "TYPE" 2543330 TYPE (NIL) -9 NIL 2543337 NIL) (-1129 2542449 2542669 2542909 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1128 2541627 2542058 2542293 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1127 2539781 2540354 2540893 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1126 2538815 2539051 2539287 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1125 2527314 2531630 2531726 "TSETCAT" 2536941 TSETCAT (NIL T T T T) -9 NIL 2538442 NIL) (-1124 2523651 2525467 2527309 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1123 2518043 2522877 2523159 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1122 2513380 2514393 2515322 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1121 2512877 2512952 2513115 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1120 2510953 2511243 2511598 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1119 2510437 2510586 2510616 "TRIGCAT" 2510829 TRIGCAT (NIL) -9 NIL NIL NIL) (-1118 2510188 2510291 2510432 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1117 2507353 2509294 2509575 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1116 2506459 2507155 2507185 "TRANFUN" 2507220 TRANFUN (NIL) -9 NIL 2507286 NIL) (-1115 2505923 2506174 2506454 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1114 2505760 2505798 2505859 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1113 2505217 2505348 2505499 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1112 2503958 2504615 2504851 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1111 2503770 2503807 2503879 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1110 2501984 2502630 2503059 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1109 2500364 2500701 2501023 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1108 2489271 2498144 2498200 "TBAGG" 2498517 TBAGG (NIL T T) -9 NIL 2498727 NIL) (-1107 2484782 2486969 2489266 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1106 2484259 2484384 2484529 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1105 2483769 2484089 2484179 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1104 2483266 2483383 2483521 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1103 2474589 2483194 2483261 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1102 2470342 2471637 2472882 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1101 2469711 2469870 2470051 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1100 2466865 2467618 2468401 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1099 2466639 2466829 2466860 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1098 2465593 2466278 2466404 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2466590) (-1097 2464857 2465405 2465484 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2465544) (-1096 2461680 2462839 2463539 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1095 2459363 2460046 2460680 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1094 2455441 2456487 2457464 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1093 2452540 2455096 2455325 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1092 2452136 2452223 2452345 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1091 2448760 2450234 2451053 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1090 2441720 2447957 2448250 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1089 2433406 2441311 2441573 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1088 2432685 2432824 2433041 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1087 2432369 2432434 2432545 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1086 2423092 2432081 2432206 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1085 2421822 2422120 2422475 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1084 2421227 2421305 2421496 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1083 2403379 2420726 2420967 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1082 2402978 2403250 2403319 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1081 2402314 2402595 2402735 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1080 2396916 2398175 2399128 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1079 2396448 2396548 2396712 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1078 2391559 2392841 2393988 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1077 2386017 2387488 2388799 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1076 2378932 2380996 2382787 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1075 2369905 2378870 2378927 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1074 2364771 2369619 2369734 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1073 2364358 2364441 2364585 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1072 2363509 2363710 2363945 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1071 2363249 2363307 2363400 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1070 2355991 2361454 2362060 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1069 2355167 2355372 2355603 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1068 2354412 2354783 2354930 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1067 2353900 2354142 2354172 "STEP" 2354266 STEP (NIL) -9 NIL 2354337 NIL) (-1066 2345213 2353818 2353895 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1065 2339432 2344011 2344054 "STAGG" 2344481 STAGG (NIL T) -9 NIL 2344655 NIL) (-1064 2337811 2338559 2339427 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1063 2336140 2337638 2337730 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1062 2335420 2335959 2335989 "SRING" 2335994 SRING (NIL) -9 NIL 2336014 NIL) (-1061 2328195 2333958 2334397 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1060 2321969 2323408 2324912 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1059 2314524 2319264 2319294 "SRAGG" 2320593 SRAGG (NIL) -9 NIL 2321197 NIL) (-1058 2313821 2314141 2314519 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1057 2308029 2313143 2313566 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1056 2302381 2305397 2306133 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1055 2298810 2299629 2300266 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1054 2297785 2298090 2298120 "SPFCAT" 2298564 SPFCAT (NIL) -9 NIL NIL NIL) (-1053 2296722 2296974 2297238 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1052 2287480 2289754 2289784 "SPADXPT" 2294421 SPADXPT (NIL) -9 NIL 2296545 NIL) (-1051 2287282 2287328 2287397 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1050 2284938 2287246 2287277 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1049 2276612 2278701 2278743 "SPACEC" 2283058 SPACEC (NIL T) -9 NIL 2284863 NIL) (-1048 2274441 2276559 2276607 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1047 2273377 2273566 2273856 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1046 2271781 2272114 2272525 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1045 2271046 2271280 2271541 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1044 2267226 2268186 2269181 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1043 2263584 2264283 2265012 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1042 2257504 2262906 2263002 "SNTSCAT" 2263007 SNTSCAT (NIL T T T T) -9 NIL 2263077 NIL) (-1041 2251325 2256145 2256535 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1040 2245097 2251244 2251320 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1039 2243529 2243860 2244258 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1038 2235269 2240095 2240197 "SMATCAT" 2241540 SMATCAT (NIL NIL T T T) -9 NIL 2242088 NIL) (-1037 2233110 2234094 2235264 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1036 2231217 2232568 2232611 "SMAGG" 2232696 SMAGG (NIL T) -9 NIL 2232771 NIL) (-1035 2228942 2230384 2230427 "SKAGG" 2230688 SKAGG (NIL T) -9 NIL 2230824 NIL) (-1034 2224988 2228762 2228873 "SINT" NIL SINT (NIL) -8 NIL NIL 2228914) (-1033 2224798 2224842 2224908 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1032 2223873 2224105 2224373 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1031 2222877 2223039 2223315 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1030 2222223 2222563 2222686 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1029 2221569 2221876 2222016 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1028 2219680 2220172 2220678 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1027 2213273 2219599 2219675 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1026 2212776 2213013 2213043 "SGROUP" 2213136 SGROUP (NIL) -9 NIL 2213198 NIL) (-1025 2212666 2212698 2212771 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1024 2212304 2212344 2212385 "SGPOPC" 2212390 SGPOPC (NIL T) -9 NIL 2212591 NIL) (-1023 2211838 2212115 2212221 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1022 2209261 2210030 2210752 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1021 2203280 2208682 2208778 "SFRTCAT" 2208783 SFRTCAT (NIL T T T T) -9 NIL 2208821 NIL) (-1020 2197672 2198785 2199912 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1019 2191848 2193009 2194173 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1018 2190820 2191722 2191843 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1017 2186428 2187323 2187418 "SEXCAT" 2190031 SEXCAT (NIL T T T T T) -9 NIL 2190582 NIL) (-1016 2185401 2186355 2186423 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1015 2183792 2184377 2184679 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1014 2183315 2183500 2183530 "SETCAT" 2183647 SETCAT (NIL) -9 NIL 2183731 NIL) (-1013 2183147 2183211 2183310 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1012 2179374 2181601 2181644 "SETAGG" 2182512 SETAGG (NIL T) -9 NIL 2182850 NIL) (-1011 2178980 2179132 2179369 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1010 2176106 2178927 2178975 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1009 2175572 2175882 2175982 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1008 2174699 2175065 2175126 "SEGXCAT" 2175412 SEGXCAT (NIL T T) -9 NIL 2175532 NIL) (-1007 2173624 2173892 2173935 "SEGCAT" 2174457 SEGCAT (NIL T) -9 NIL 2174678 NIL) (-1006 2173304 2173369 2173482 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1005 2172370 2172840 2173048 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1004 2171948 2172227 2172303 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1003 2171313 2171449 2171653 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1002 2170379 2171126 2171308 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1001 2169632 2170327 2170374 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1000 2161117 2169499 2169627 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-999 2159977 2160267 2160584 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-998 2159283 2159495 2159683 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-997 2158633 2158790 2158966 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-996 2158206 2158437 2158465 "SASTCAT" 2158470 SASTCAT (NIL) -9 NIL 2158483 NIL) (-995 2157673 2158098 2158172 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-994 2157276 2157317 2157488 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-993 2156907 2156948 2157105 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-992 2149988 2156824 2156902 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-991 2148638 2148967 2149363 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-990 2147399 2147760 2148060 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-989 2147023 2147244 2147325 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-988 2144483 2145117 2145570 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-987 2144322 2144355 2144423 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-986 2143813 2144116 2144207 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-985 2139441 2140309 2141220 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-984 2128394 2133796 2133890 "RSETCAT" 2137946 RSETCAT (NIL T T T T) -9 NIL 2139034 NIL) (-983 2126932 2127574 2128389 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-982 2120706 2122151 2123658 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-981 2118588 2119145 2119217 "RRCC" 2120290 RRCC (NIL T T) -9 NIL 2120631 NIL) (-980 2118113 2118312 2118583 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-979 2117583 2117893 2117991 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-978 2090135 2100848 2100912 "RPOLCAT" 2111386 RPOLCAT (NIL T T T) -9 NIL 2114531 NIL) (-977 2084234 2087057 2090130 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-976 2080401 2083982 2084120 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-975 2078729 2079468 2079724 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-974 2074372 2077184 2077212 "RNS" 2077474 RNS (NIL) -9 NIL 2077726 NIL) (-973 2073275 2073762 2074299 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-972 2072393 2072794 2072994 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-971 2071531 2072093 2072121 "RNG" 2072181 RNG (NIL) -9 NIL 2072235 NIL) (-970 2071420 2071454 2071526 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-969 2070682 2071187 2071227 "RMODULE" 2071232 RMODULE (NIL T) -9 NIL 2071258 NIL) (-968 2069621 2069727 2070057 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-967 2066620 2069211 2069504 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-966 2059415 2061754 2061866 "RMATCAT" 2065171 RMATCAT (NIL NIL NIL T T T) -9 NIL 2066137 NIL) (-965 2058932 2059111 2059410 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-964 2058500 2058711 2058752 "RLINSET" 2058813 RLINSET (NIL T) -9 NIL 2058857 NIL) (-963 2058145 2058226 2058352 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-962 2056991 2057722 2057750 "RING" 2057805 RING (NIL) -9 NIL 2057897 NIL) (-961 2056836 2056892 2056986 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-960 2055890 2056157 2056413 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-959 2047030 2055518 2055719 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-958 2046255 2046766 2046805 "RGBCSPC" 2046862 RGBCSPC (NIL T) -9 NIL 2046913 NIL) (-957 2045289 2045775 2045814 "RGBCMDL" 2046042 RGBCMDL (NIL T) -9 NIL 2046156 NIL) (-956 2045001 2045070 2045171 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-955 2044764 2044805 2044900 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-954 2043188 2043618 2043998 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-953 2040775 2041443 2042111 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-952 2040325 2040423 2040583 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-951 2039947 2040045 2040086 "RETRACT" 2040217 RETRACT (NIL T) -9 NIL 2040304 NIL) (-950 2039827 2039858 2039942 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-949 2039429 2039701 2039768 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-948 2037909 2038800 2038997 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-947 2037600 2037661 2037757 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-946 2037343 2037384 2037489 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-945 2037078 2037119 2037228 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-944 2032149 2033600 2034815 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-943 2029248 2030006 2030814 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-942 2027217 2027839 2028439 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-941 2020005 2025768 2026204 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-940 2019317 2019597 2019746 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-939 2018802 2018917 2019082 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-938 2014395 2018205 2018426 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-937 2013627 2013826 2014039 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-936 2010917 2011755 2012637 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-935 2007499 2008535 2009594 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-934 2007335 2007388 2007416 "REAL" 2007421 REAL (NIL) -9 NIL 2007456 NIL) (-933 2006825 2007129 2007220 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-932 2006305 2006383 2006588 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-931 2005538 2005730 2005941 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-930 2004426 2004723 2005090 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-929 2002693 2003163 2003696 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-928 2001615 2001892 2002279 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-927 2000442 2000751 2001170 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-926 1993790 1997302 1997330 "RCFIELD" 1998607 RCFIELD (NIL) -9 NIL 1999337 NIL) (-925 1992408 1993020 1993717 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-924 1988612 1990500 1990541 "RCAGG" 1991608 RCAGG (NIL T) -9 NIL 1992069 NIL) (-923 1988339 1988449 1988607 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-922 1987784 1987913 1988074 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-921 1987401 1987480 1987599 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-920 1986816 1986966 1987116 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-919 1986598 1986648 1986719 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-918 1979040 1985716 1986024 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-917 1968742 1978907 1979035 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-916 1968376 1968469 1968497 "RADCAT" 1968654 RADCAT (NIL) -9 NIL NIL NIL) (-915 1968214 1968274 1968371 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-914 1966486 1968045 1968134 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-913 1966167 1966216 1966343 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-912 1958454 1962538 1962578 "QUATCAT" 1963356 QUATCAT (NIL T) -9 NIL 1964120 NIL) (-911 1955704 1956984 1958360 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-910 1951544 1955654 1955699 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-909 1949064 1950559 1950600 "QUAGG" 1950975 QUAGG (NIL T) -9 NIL 1951151 NIL) (-908 1948666 1948938 1949005 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-907 1947672 1948302 1948465 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-906 1947353 1947402 1947529 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-905 1936953 1943122 1943162 "QFCAT" 1943820 QFCAT (NIL T) -9 NIL 1944813 NIL) (-904 1933837 1935276 1936859 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-903 1933383 1933517 1933647 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-902 1927579 1928740 1929902 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-901 1926998 1927178 1927410 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-900 1924820 1925348 1925771 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-899 1923719 1923961 1924278 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-898 1922080 1922278 1922631 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-897 1917836 1919052 1919093 "PTRANFN" 1920977 PTRANFN (NIL T) -9 NIL NIL NIL) (-896 1916483 1916828 1917149 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-895 1916176 1916239 1916346 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-894 1910383 1914935 1914975 "PTCAT" 1915267 PTCAT (NIL T) -9 NIL 1915420 NIL) (-893 1910076 1910117 1910241 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-892 1908955 1909271 1909605 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-891 1897834 1900395 1902704 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-890 1890874 1893617 1893711 "PSETCAT" 1896685 PSETCAT (NIL T T T T) -9 NIL 1897494 NIL) (-889 1889324 1890058 1890869 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-888 1888643 1888838 1888866 "PSCURVE" 1889134 PSCURVE (NIL) -9 NIL 1889301 NIL) (-887 1884245 1886065 1886129 "PSCAT" 1886964 PSCAT (NIL T T T) -9 NIL 1887203 NIL) (-886 1883559 1883841 1884240 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-885 1881956 1882871 1883134 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-884 1881447 1881750 1881841 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-883 1872467 1874889 1877077 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-882 1870343 1871748 1871788 "PRQAGG" 1871971 PRQAGG (NIL T) -9 NIL 1872074 NIL) (-881 1869516 1869962 1869990 "PROPLOG" 1870129 PROPLOG (NIL) -9 NIL 1870243 NIL) (-880 1869191 1869254 1869377 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-879 1868627 1868766 1868938 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-878 1866875 1867638 1867935 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-877 1866427 1866559 1866687 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-876 1860868 1865367 1866187 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-875 1860697 1860735 1860794 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-874 1860136 1860276 1860427 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-873 1858604 1859023 1859489 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-872 1858321 1858382 1858410 "PRIMCAT" 1858534 PRIMCAT (NIL) -9 NIL NIL NIL) (-871 1857492 1857688 1857916 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-870 1853545 1857442 1857487 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-869 1853244 1853306 1853417 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-868 1850380 1852893 1853126 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-867 1849831 1849988 1850016 "PPCURVE" 1850221 PPCURVE (NIL) -9 NIL 1850357 NIL) (-866 1849444 1849689 1849772 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-865 1847200 1847621 1848213 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-864 1846643 1846707 1846940 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-863 1843363 1843849 1844460 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-862 1828954 1835083 1835147 "POLYCAT" 1838632 POLYCAT (NIL T T T) -9 NIL 1840509 NIL) (-861 1824464 1826611 1828949 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-860 1824121 1824195 1824314 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-859 1823814 1823877 1823984 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-858 1817177 1823547 1823706 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-857 1816064 1816327 1816603 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-856 1814668 1814981 1815311 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-855 1810002 1814618 1814663 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-854 1808490 1808901 1809276 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-853 1807247 1807556 1807952 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-852 1806918 1807002 1807119 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-851 1806497 1806572 1806746 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-850 1805983 1806079 1806239 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-849 1805455 1805575 1805729 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-848 1804350 1804568 1804945 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-847 1803961 1804046 1804198 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-846 1803512 1803594 1803775 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-845 1803204 1803285 1803398 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-844 1802717 1802792 1803000 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-843 1802065 1802193 1802395 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-842 1801427 1801561 1801724 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-841 1800731 1800913 1801094 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-840 1800454 1800528 1800622 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-839 1797022 1798211 1799127 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-838 1796106 1796307 1796542 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-837 1791671 1793055 1794197 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-836 1771592 1776479 1781326 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-835 1771332 1771385 1771488 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-834 1770773 1770907 1771087 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-833 1768782 1770003 1770031 "PID" 1770228 PID (NIL) -9 NIL 1770355 NIL) (-832 1768570 1768613 1768688 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-831 1767757 1768417 1768504 "PI" NIL PI (NIL) -8 NIL NIL 1768544) (-830 1767209 1767360 1767536 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-829 1763537 1764495 1765400 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-828 1761901 1762190 1762556 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-827 1761343 1761458 1761619 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-826 1757884 1760212 1760565 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-825 1756490 1756770 1757095 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-824 1755255 1755509 1755857 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-823 1753965 1754192 1754544 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-822 1750975 1752535 1752563 "PFECAT" 1753156 PFECAT (NIL) -9 NIL 1753533 NIL) (-821 1750598 1750763 1750970 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-820 1749422 1749704 1750005 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-819 1747604 1747991 1748421 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-818 1743574 1747530 1747599 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-817 1739477 1740624 1741491 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-816 1737409 1738498 1738539 "PERMCAT" 1738938 PERMCAT (NIL T) -9 NIL 1739235 NIL) (-815 1737105 1737152 1737275 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-814 1733554 1735235 1735880 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-813 1731023 1733309 1733430 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-812 1729892 1730155 1730196 "PDSPC" 1730729 PDSPC (NIL T) -9 NIL 1730974 NIL) (-811 1729259 1729525 1729887 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-810 1727894 1728887 1728928 "PDRING" 1728933 PDRING (NIL T) -9 NIL 1728960 NIL) (-809 1726604 1727393 1727446 "PDMOD" 1727451 PDMOD (NIL T T) -9 NIL 1727554 NIL) (-808 1725697 1725909 1726158 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-807 1725302 1725369 1725423 "PDDOM" 1725588 PDDOM (NIL T T) -9 NIL 1725668 NIL) (-806 1725154 1725190 1725297 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-805 1724940 1724979 1725068 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-804 1723257 1724011 1724310 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-803 1722946 1723009 1723118 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-802 1721084 1721514 1721965 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-801 1714704 1716533 1717825 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-800 1714335 1714408 1714540 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-799 1712037 1712717 1713198 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-798 1710241 1710669 1711072 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-797 1709687 1709935 1709976 "PATMAB" 1710083 PATMAB (NIL T) -9 NIL 1710166 NIL) (-796 1708334 1708738 1708995 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-795 1707872 1708003 1708044 "PATAB" 1708049 PATAB (NIL T) -9 NIL 1708221 NIL) (-794 1706415 1706852 1707275 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-793 1706093 1706168 1706270 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-792 1705782 1705845 1705954 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-791 1705587 1705633 1705700 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-790 1705265 1705340 1705442 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-789 1704954 1705017 1705126 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-788 1704645 1704715 1704812 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-787 1704334 1704397 1704506 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-786 1703495 1703874 1704053 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-785 1703102 1703200 1703319 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-784 1702070 1702495 1702714 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-783 1700735 1701389 1701749 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-782 1693825 1700139 1700333 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-781 1686246 1693323 1693507 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-780 1682971 1684886 1684926 "PADICCT" 1685507 PADICCT (NIL NIL) -9 NIL 1685789 NIL) (-779 1680961 1682921 1682966 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-778 1680123 1680333 1680599 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-777 1679465 1679608 1679812 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-776 1677846 1678873 1679151 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-775 1677370 1677629 1677726 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-774 1676429 1677107 1677279 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-773 1666851 1669720 1671919 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-772 1666243 1666557 1666683 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-771 1665520 1665715 1665743 "OUTBCON" 1666061 OUTBCON (NIL) -9 NIL 1666227 NIL) (-770 1665228 1665358 1665515 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-769 1664609 1664754 1664915 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-768 1663980 1664407 1664496 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-767 1663395 1663810 1663838 "OSGROUP" 1663843 OSGROUP (NIL) -9 NIL 1663865 NIL) (-766 1662359 1662620 1662905 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-765 1659628 1662234 1662354 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-764 1656769 1659379 1659505 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-763 1654787 1655315 1655875 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-762 1648129 1650669 1650709 "OREPCAT" 1653030 OREPCAT (NIL T) -9 NIL 1654132 NIL) (-761 1646155 1647089 1648124 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-760 1645352 1645623 1645651 "ORDTYPE" 1645956 ORDTYPE (NIL) -9 NIL 1646114 NIL) (-759 1644886 1645097 1645347 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-758 1644348 1644724 1644881 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-757 1643842 1644205 1644233 "ORDSET" 1644238 ORDSET (NIL) -9 NIL 1644260 NIL) (-756 1642407 1643429 1643457 "ORDRING" 1643462 ORDRING (NIL) -9 NIL 1643490 NIL) (-755 1641655 1642212 1642240 "ORDMON" 1642245 ORDMON (NIL) -9 NIL 1642266 NIL) (-754 1640959 1641121 1641313 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-753 1640170 1640678 1640706 "ORDFIN" 1640771 ORDFIN (NIL) -9 NIL 1640845 NIL) (-752 1639564 1639703 1639889 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-751 1636239 1638532 1638938 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-750 1635646 1636001 1636106 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-749 1635454 1635499 1635565 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-748 1634755 1635031 1635072 "OPERCAT" 1635283 OPERCAT (NIL T) -9 NIL 1635379 NIL) (-747 1634567 1634634 1634750 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-746 1631933 1633369 1633865 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-745 1631354 1631481 1631655 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-744 1628255 1630493 1630859 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-743 1625021 1627648 1627688 "OMSAGG" 1627749 OMSAGG (NIL T) -9 NIL 1627813 NIL) (-742 1623433 1624692 1624860 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-741 1621629 1622870 1622898 "OINTDOM" 1622903 OINTDOM (NIL) -9 NIL 1622924 NIL) (-740 1619059 1620631 1620960 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-739 1618313 1619009 1619054 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-738 1615515 1618154 1618308 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-737 1607052 1615386 1615510 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-736 1600616 1606943 1607047 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-735 1599588 1599825 1600098 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-734 1597222 1597892 1598596 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-733 1592999 1593959 1594982 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-732 1592507 1592595 1592789 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-731 1589956 1590538 1591211 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-730 1587351 1587859 1588455 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-729 1584348 1584887 1585533 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-728 1583703 1583811 1584069 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-727 1582861 1582986 1583207 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-726 1579145 1579941 1580854 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-725 1578585 1578680 1578902 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-724 1578266 1578315 1578442 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-723 1574869 1578065 1578184 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-722 1574029 1574651 1574679 "OCAMON" 1574684 OCAMON (NIL) -9 NIL 1574705 NIL) (-721 1568241 1571055 1571095 "OC" 1572190 OC (NIL T) -9 NIL 1573046 NIL) (-720 1566241 1567167 1568147 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-719 1565657 1566075 1566103 "OASGP" 1566108 OASGP (NIL) -9 NIL 1566128 NIL) (-718 1564720 1565369 1565397 "OAMONS" 1565437 OAMONS (NIL) -9 NIL 1565480 NIL) (-717 1563865 1564446 1564474 "OAMON" 1564531 OAMON (NIL) -9 NIL 1564582 NIL) (-716 1563761 1563793 1563860 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-715 1562512 1563286 1563314 "OAGROUP" 1563460 OAGROUP (NIL) -9 NIL 1563552 NIL) (-714 1562303 1562390 1562507 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-713 1562043 1562099 1562187 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-712 1557105 1558668 1560195 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-711 1553800 1554834 1555869 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-710 1552910 1553143 1553361 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-709 1541771 1544799 1547247 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-708 1535792 1541194 1541288 "NTSCAT" 1541293 NTSCAT (NIL T T T T) -9 NIL 1541331 NIL) (-707 1535133 1535312 1535505 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-706 1534826 1534889 1534996 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-705 1522493 1532446 1533256 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-704 1511502 1522358 1522488 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-703 1510222 1510547 1510904 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-702 1509058 1509322 1509680 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-701 1508225 1508358 1508574 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-700 1506543 1506862 1507268 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-699 1506256 1506290 1506414 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-698 1506075 1506110 1506179 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-697 1505851 1506041 1506070 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-696 1505415 1505482 1505659 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-695 1503701 1504778 1505033 "NNI" NIL NNI (NIL) -8 NIL NIL 1505380) (-694 1502429 1502766 1503130 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-693 1501406 1501658 1501960 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-692 1500493 1501058 1501099 "NETCLT" 1501270 NETCLT (NIL T) -9 NIL 1501351 NIL) (-691 1499397 1499664 1499945 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-690 1499196 1499239 1499314 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-689 1497727 1498115 1498535 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-688 1496360 1497326 1497354 "NASRING" 1497464 NASRING (NIL) -9 NIL 1497544 NIL) (-687 1496205 1496261 1496355 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-686 1495134 1495812 1495840 "NARNG" 1495957 NARNG (NIL) -9 NIL 1496048 NIL) (-685 1494910 1494995 1495129 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-684 1493676 1494430 1494470 "NAALG" 1494549 NAALG (NIL T) -9 NIL 1494610 NIL) (-683 1493546 1493581 1493671 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-682 1488525 1489710 1490896 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-681 1487920 1488007 1488191 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-680 1479930 1484424 1484476 "MTSCAT" 1485536 MTSCAT (NIL T T) -9 NIL 1486050 NIL) (-679 1479696 1479756 1479848 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-678 1479522 1479561 1479621 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-677 1476388 1479054 1479095 "MSETAGG" 1479100 MSETAGG (NIL T) -9 NIL 1479134 NIL) (-676 1472675 1475431 1475752 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-675 1468949 1470772 1471512 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-674 1468586 1468659 1468788 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-673 1468239 1468280 1468424 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-672 1466104 1466441 1466872 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-671 1459502 1466003 1466099 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-670 1459027 1459068 1459276 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-669 1458586 1458635 1458818 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-668 1457860 1457953 1458172 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-667 1456477 1456838 1457228 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-666 1455998 1456065 1456104 "MONOPC" 1456164 MONOPC (NIL T) -9 NIL 1456383 NIL) (-665 1455449 1455785 1455913 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-664 1454591 1454970 1454998 "MONOID" 1455216 MONOID (NIL) -9 NIL 1455360 NIL) (-663 1454250 1454400 1454586 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-662 1443188 1450058 1450117 "MONOGEN" 1450791 MONOGEN (NIL T T) -9 NIL 1451247 NIL) (-661 1441200 1442086 1443069 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-660 1439914 1440458 1440486 "MONADWU" 1440877 MONADWU (NIL) -9 NIL 1441112 NIL) (-659 1439462 1439662 1439909 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-658 1438739 1439040 1439068 "MONAD" 1439275 MONAD (NIL) -9 NIL 1439387 NIL) (-657 1438506 1438602 1438734 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-656 1436896 1437666 1437945 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-655 1436030 1436557 1436597 "MODULE" 1436602 MODULE (NIL T) -9 NIL 1436640 NIL) (-654 1435709 1435835 1436025 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-653 1433420 1434306 1434620 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-652 1430599 1432016 1432529 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-651 1429233 1429807 1430083 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-650 1418452 1427898 1428311 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-649 1415408 1417452 1417721 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-648 1414492 1414859 1415049 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-647 1414061 1414110 1414289 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-646 1411886 1412882 1412922 "MLO" 1413339 MLO (NIL T) -9 NIL 1413579 NIL) (-645 1409767 1410294 1410889 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-644 1409235 1409331 1409485 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-643 1408905 1408981 1409104 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-642 1408117 1408303 1408531 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-641 1407610 1407726 1407882 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-640 1406982 1407096 1407281 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-639 1406009 1406282 1406559 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-638 1405442 1405530 1405701 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-637 1402600 1403479 1404358 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-636 1401267 1401615 1401968 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-635 1397928 1400372 1400413 "MDAGG" 1400670 MDAGG (NIL T) -9 NIL 1400815 NIL) (-634 1397202 1397366 1397566 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-633 1396280 1396566 1396796 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-632 1394377 1394954 1395515 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-631 1390283 1393967 1394214 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-630 1386632 1387401 1388135 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-629 1385385 1385554 1385883 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-628 1375016 1378472 1378548 "MATCAT" 1383536 MATCAT (NIL T T T) -9 NIL 1384982 NIL) (-627 1372297 1373603 1375011 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-626 1370698 1371058 1371442 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-625 1369831 1370028 1370250 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-624 1368582 1368908 1369235 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-623 1367744 1368146 1368322 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-622 1367413 1367477 1367600 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-621 1367061 1367134 1367248 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-620 1366596 1366711 1366853 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-619 1364805 1365573 1365874 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-618 1364299 1364601 1364691 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-617 1357812 1362614 1362655 "LZSTAGG" 1363432 LZSTAGG (NIL T) -9 NIL 1363722 NIL) (-616 1354931 1356365 1357807 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-615 1352318 1353284 1353767 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-614 1351899 1352178 1352252 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-613 1344216 1351760 1351894 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-612 1343579 1343724 1343952 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-611 1341063 1341761 1342473 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-610 1339175 1339498 1339946 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-609 1332479 1338225 1338266 "LSAGG" 1338328 LSAGG (NIL T) -9 NIL 1338406 NIL) (-608 1330173 1331272 1332474 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-607 1327653 1329522 1329771 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-606 1327320 1327411 1327534 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-605 1326991 1327070 1327098 "LOGIC" 1327209 LOGIC (NIL) -9 NIL 1327291 NIL) (-604 1326886 1326915 1326986 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-603 1326205 1326363 1326556 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-602 1324990 1325239 1325590 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-601 1320812 1323611 1323651 "LODOCAT" 1324083 LODOCAT (NIL T) -9 NIL 1324294 NIL) (-600 1320605 1320681 1320807 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-599 1317605 1320482 1320600 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-598 1314703 1317555 1317600 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-597 1311790 1314633 1314698 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-596 1310843 1311018 1311320 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-595 1308975 1310105 1310358 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-594 1304074 1307134 1307175 "LNAGG" 1308037 LNAGG (NIL T) -9 NIL 1308472 NIL) (-593 1303461 1303728 1304069 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-592 1300033 1300974 1301611 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-591 1299295 1299800 1299840 "LMODULE" 1299845 LMODULE (NIL T) -9 NIL 1299871 NIL) (-590 1296645 1299031 1299154 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-589 1296213 1296424 1296465 "LLINSET" 1296526 LLINSET (NIL T) -9 NIL 1296570 NIL) (-588 1295889 1296149 1296208 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-587 1295488 1295568 1295707 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-586 1293939 1294287 1294686 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-585 1293110 1293306 1293534 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-584 1286328 1292366 1292620 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-583 1285905 1286138 1286179 "LINSET" 1286184 LINSET (NIL T) -9 NIL 1286217 NIL) (-582 1284806 1285528 1285695 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-581 1283072 1283827 1283867 "LINEXP" 1284353 LINEXP (NIL T) -9 NIL 1284626 NIL) (-580 1281694 1282681 1282862 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-579 1280521 1280793 1281095 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-578 1279734 1280323 1280433 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-577 1277284 1278006 1278756 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-576 1275914 1276211 1276602 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-575 1274707 1275309 1275349 "LIECAT" 1275489 LIECAT (NIL T) -9 NIL 1275640 NIL) (-574 1274581 1274614 1274702 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-573 1268837 1274271 1274499 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-572 1259272 1268513 1268669 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-571 1255724 1256673 1257608 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-570 1254348 1255256 1255284 "LFCAT" 1255491 LFCAT (NIL) -9 NIL 1255630 NIL) (-569 1252587 1252917 1253262 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-568 1250104 1250769 1251450 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-567 1247116 1248094 1248597 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-566 1246607 1246910 1247001 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-565 1245314 1245638 1246038 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-564 1244580 1244665 1244891 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-563 1239583 1243148 1243684 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-562 1239208 1239258 1239418 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-561 1237979 1238752 1238792 "LALG" 1238853 LALG (NIL T) -9 NIL 1238911 NIL) (-560 1237762 1237839 1237974 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-559 1235615 1237030 1237281 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-558 1235444 1235474 1235515 "KVTFROM" 1235577 KVTFROM (NIL T) -9 NIL NIL NIL) (-557 1234260 1234975 1235164 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-556 1234089 1234119 1234160 "KRCFROM" 1234222 KRCFROM (NIL T) -9 NIL NIL NIL) (-555 1233191 1233388 1233683 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-554 1233020 1233050 1233091 "KONVERT" 1233153 KONVERT (NIL T) -9 NIL NIL NIL) (-553 1232849 1232879 1232920 "KOERCE" 1232982 KOERCE (NIL T) -9 NIL NIL NIL) (-552 1232419 1232512 1232644 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-551 1230472 1231366 1231738 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-550 1221649 1228256 1228310 "KDAGG" 1228686 KDAGG (NIL T T) -9 NIL 1228912 NIL) (-549 1221114 1221346 1221644 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-548 1214112 1220906 1221052 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-547 1213762 1214044 1214107 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-546 1212732 1213231 1213480 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-545 1211858 1212307 1212512 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-544 1210722 1211214 1211514 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-543 1210004 1210403 1210564 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-542 1209714 1209950 1209999 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-541 1203969 1209404 1209632 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-540 1203387 1203720 1203840 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-539 1199553 1201564 1201618 "IXAGG" 1202545 IXAGG (NIL T T) -9 NIL 1203002 NIL) (-538 1198759 1199130 1199548 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-537 1197726 1198001 1198264 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-536 1196388 1196595 1196888 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-535 1195339 1195561 1195844 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-534 1195014 1195077 1195200 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-533 1194276 1194648 1194822 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-532 1192252 1193552 1193826 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-531 1181800 1187569 1188726 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-530 1181045 1181197 1181433 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-529 1180536 1180839 1180930 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-528 1179829 1179920 1180133 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-527 1178961 1179186 1179426 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-526 1177374 1177755 1178183 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-525 1177159 1177203 1177279 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-524 1176009 1176306 1176601 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-523 1175282 1175633 1175784 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-522 1174485 1174616 1174829 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-521 1172640 1173137 1173681 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-520 1169721 1170989 1171678 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-519 1169546 1169586 1169646 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-518 1165544 1169472 1169541 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-517 1163547 1165483 1165539 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-516 1162918 1163217 1163347 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-515 1162371 1162659 1162791 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-514 1161452 1162077 1162203 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-513 1160862 1161356 1161384 "IOBCON" 1161389 IOBCON (NIL) -9 NIL 1161410 NIL) (-512 1160433 1160497 1160679 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-511 1152477 1154848 1157173 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-510 1149588 1150371 1151235 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-509 1149265 1149362 1149479 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-508 1146707 1149201 1149260 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-507 1144819 1145348 1145915 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-506 1144321 1144435 1144575 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-505 1142705 1143111 1143573 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-504 1140484 1141078 1141689 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-503 1137857 1138467 1139187 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-502 1137261 1137419 1137627 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-501 1136780 1136866 1137054 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-500 1134985 1135506 1135963 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-499 1128067 1129720 1131449 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-498 1127433 1127595 1127768 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-497 1125306 1125770 1126314 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-496 1123432 1124382 1124410 "INTDOM" 1124709 INTDOM (NIL) -9 NIL 1124914 NIL) (-495 1122985 1123187 1123427 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-494 1118792 1121264 1121318 "INTCAT" 1122114 INTCAT (NIL T) -9 NIL 1122430 NIL) (-493 1118357 1118477 1118604 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-492 1117197 1117369 1117675 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-491 1116770 1116866 1117023 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-490 1108072 1116677 1116765 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-489 1107370 1107925 1107990 "INT8" NIL INT8 (NIL) -8 NIL NIL 1108024) (-488 1106667 1107222 1107287 "INT64" NIL INT64 (NIL) -8 NIL NIL 1107321) (-487 1105964 1106519 1106584 "INT32" NIL INT32 (NIL) -8 NIL NIL 1106618) (-486 1105261 1105816 1105881 "INT16" NIL INT16 (NIL) -8 NIL NIL 1105915) (-485 1101724 1105180 1105256 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-484 1095781 1099264 1099292 "INS" 1100222 INS (NIL) -9 NIL 1100881 NIL) (-483 1093843 1094761 1095708 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-482 1092902 1093125 1093400 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-481 1092116 1092257 1092454 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-480 1091106 1091247 1091484 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-479 1090258 1090422 1090682 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-478 1089538 1089653 1089841 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-477 1088277 1088546 1088870 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-476 1087557 1087698 1087881 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-475 1087220 1087292 1087390 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-474 1084298 1085784 1086307 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-473 1083897 1084004 1084118 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-472 1083053 1083698 1083799 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-471 1081903 1082171 1082492 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-470 1080893 1081833 1081898 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-469 1080518 1080598 1080715 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-468 1079432 1079977 1080181 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-467 1075527 1076582 1077525 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-466 1074381 1074704 1074732 "INBCON" 1075245 INBCON (NIL) -9 NIL 1075511 NIL) (-465 1073835 1074100 1074376 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-464 1073329 1073631 1073721 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-463 1072786 1073095 1073200 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-462 1071626 1071765 1072080 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-461 1070050 1070317 1070654 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-460 1064893 1069981 1070045 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-459 1064273 1064607 1064722 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-458 1059252 1063711 1063897 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-457 1058282 1059174 1059247 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-456 1057854 1057931 1057985 "IEVALAB" 1058192 IEVALAB (NIL T T) -9 NIL NIL NIL) (-455 1057609 1057689 1057849 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-454 1056994 1057221 1057378 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-453 1055987 1056914 1056989 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-452 1055050 1055907 1055982 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-451 1054132 1054779 1054916 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-450 1052495 1053066 1053117 "IDPC" 1053623 IDPC (NIL T T) -9 NIL 1053936 NIL) (-449 1051783 1052417 1052490 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-448 1050953 1051705 1051778 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-447 1050646 1050859 1050919 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-446 1050350 1050390 1050429 "IDEMOPC" 1050434 IDEMOPC (NIL T) -9 NIL 1050571 NIL) (-445 1047421 1048302 1049194 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-444 1041047 1042324 1043363 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-443 1040309 1040439 1040638 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-442 1039482 1039981 1040119 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-441 1037871 1038202 1038593 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-440 1033812 1037827 1037866 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-439 1031070 1031694 1032389 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-438 1029296 1029776 1030309 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-437 1027278 1029202 1029291 "IARRAY2" NIL IARRAY2 (NIL T T T) -8 NIL NIL NIL) (-436 1023311 1027216 1027273 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-435 1016890 1022275 1022743 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-434 1016458 1016521 1016694 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-433 1015950 1016099 1016127 "HYPCAT" 1016334 HYPCAT (NIL) -9 NIL NIL NIL) (-432 1015606 1015759 1015945 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-431 1015219 1015464 1015547 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-430 1015052 1015101 1015142 "HOMOTOP" 1015147 HOMOTOP (NIL T) -9 NIL 1015180 NIL) (-429 1011630 1013000 1013041 "HOAGG" 1014012 HOAGG (NIL T) -9 NIL 1014731 NIL) (-428 1010702 1011137 1011625 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-427 1003902 1010427 1010575 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-426 1002837 1003095 1003358 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-425 1001772 1002702 1002832 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-424 1000138 1001605 1001693 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-423 999453 999805 999938 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-422 993060 999386 999448 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-421 986199 992796 992947 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-420 985652 985809 985972 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-419 976971 985569 985647 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-418 976462 976765 976856 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-417 974012 976249 976428 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-416 969558 973895 974007 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-415 960854 969455 969553 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-414 952791 960223 960478 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-413 951815 952324 952352 "GROUP" 952555 GROUP (NIL) -9 NIL 952689 NIL) (-412 951358 951559 951810 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-411 950030 950369 950756 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-410 948852 949209 949260 "GRMOD" 949789 GRMOD (NIL T T) -9 NIL 949955 NIL) (-409 948671 948719 948847 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-408 944794 946005 947005 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-407 943516 943840 944155 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-406 943069 943197 943338 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-405 942142 942641 942692 "GRALG" 942845 GRALG (NIL T T) -9 NIL 942935 NIL) (-404 941861 941962 942137 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-403 938742 941554 941719 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-402 938155 938218 938475 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-401 934009 934905 935430 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-400 933184 933386 933624 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-399 928187 929114 930133 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-398 927935 927992 928081 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-397 927417 927506 927671 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-396 926926 926967 927180 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-395 925727 926010 926314 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-394 919002 925417 925578 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-393 908785 913792 914896 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-392 906837 907940 907968 "GCDDOM" 908223 GCDDOM (NIL) -9 NIL 908380 NIL) (-391 906460 906617 906832 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-390 897253 899723 902111 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-389 895388 895713 896131 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-388 894329 894518 894785 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-387 893200 893407 893711 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-386 892663 892805 892953 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-385 891275 891623 891936 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-384 889820 890141 890463 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-383 887446 887802 888207 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-382 880698 882359 883937 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-381 880350 880571 880639 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-380 879974 880195 880276 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-379 878071 878754 879214 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-378 876664 876971 877363 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-377 875319 875678 876002 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-376 874622 874746 874933 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-375 873596 873862 874209 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-374 871254 871784 872266 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-373 870837 870897 871066 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-372 869137 870051 870354 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-371 868285 868419 868642 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-370 867456 867617 867844 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-369 863572 866351 866392 "FSAGG" 866762 FSAGG (NIL T) -9 NIL 867023 NIL) (-368 861926 862685 863477 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-367 859882 860178 860722 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-366 858929 859111 859411 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-365 858610 858659 858786 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-364 838766 848267 848308 "FS" 852178 FS (NIL T) -9 NIL 854456 NIL) (-363 830997 834490 838469 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-362 830531 830658 830810 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-361 825054 828212 828252 "FRNAALG" 829572 FRNAALG (NIL T) -9 NIL 830170 NIL) (-360 821795 823046 824304 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-359 821476 821525 821652 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-358 819963 820520 820814 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-357 819249 819342 819629 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-356 817083 817849 818165 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-355 816192 816635 816676 "FRETRCT" 816681 FRETRCT (NIL T) -9 NIL 816852 NIL) (-354 815565 815843 816187 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-353 812309 813829 813888 "FRAMALG" 814770 FRAMALG (NIL T T) -9 NIL 815062 NIL) (-352 810905 811456 812086 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-351 810598 810661 810768 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-350 804239 810403 810593 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-349 803932 803995 804102 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-348 796240 800811 802139 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-347 790018 793521 793549 "FPS" 794668 FPS (NIL) -9 NIL 795224 NIL) (-346 789575 789708 789872 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-345 786385 788428 788456 "FPC" 788681 FPC (NIL) -9 NIL 788823 NIL) (-344 786231 786283 786380 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-343 785008 785717 785758 "FPATMAB" 785763 FPATMAB (NIL T) -9 NIL 785915 NIL) (-342 783438 784034 784381 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-341 783013 783071 783244 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-340 781516 782411 782585 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-339 780131 780636 780664 "FNCAT" 781121 FNCAT (NIL) -9 NIL 781378 NIL) (-338 779588 780098 780126 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-337 778175 779537 779583 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-336 774763 776121 776162 "FMONCAT" 777379 FMONCAT (NIL T) -9 NIL 777983 NIL) (-335 771621 772699 772752 "FMCAT" 773933 FMCAT (NIL T T) -9 NIL 774425 NIL) (-334 770321 771444 771543 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-333 769369 770169 770316 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-332 767556 768008 768502 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-331 765491 766027 766605 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-330 758877 763828 764442 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-329 757358 758459 758499 "FLINEXP" 758504 FLINEXP (NIL T) -9 NIL 758597 NIL) (-328 756767 757026 757353 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-327 755982 756141 756362 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-326 752865 753944 753996 "FLALG" 755223 FLALG (NIL T T) -9 NIL 755690 NIL) (-325 752036 752197 752424 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-324 745577 749435 749476 "FLAGG" 750731 FLAGG (NIL T) -9 NIL 751378 NIL) (-323 744685 745089 745572 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-322 741246 742510 742569 "FINRALG" 743697 FINRALG (NIL T T) -9 NIL 744205 NIL) (-321 740637 740902 741241 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-320 739935 740231 740259 "FINITE" 740455 FINITE (NIL) -9 NIL 740562 NIL) (-319 739843 739869 739930 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-318 737300 738521 738562 "FINAGG" 739192 FINAGG (NIL T) -9 NIL 739504 NIL) (-317 736740 736999 737295 "FINAGG-" NIL FINAGG- (NIL T T) -7 NIL NIL NIL) (-316 728701 731292 731332 "FINAALG" 734984 FINAALG (NIL T) -9 NIL 736422 NIL) (-315 724968 726213 727336 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-314 723520 723939 723993 "FILECAT" 724677 FILECAT (NIL T T) -9 NIL 724893 NIL) (-313 722871 723345 723448 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-312 720119 721997 722025 "FIELD" 722065 FIELD (NIL) -9 NIL 722145 NIL) (-311 719144 719605 720114 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-310 717148 718094 718440 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-309 716391 716572 716791 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-308 711661 716329 716386 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-307 711323 711390 711525 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-306 710863 710905 711114 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-305 707543 708420 709197 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-304 702827 707475 707538 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-303 697506 702316 702506 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-302 691987 696787 697045 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-301 686194 691438 691649 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-300 685217 685427 685742 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-299 680657 683362 683390 "FFIELDC" 684009 FFIELDC (NIL) -9 NIL 684384 NIL) (-298 679726 680166 680652 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-297 679341 679399 679523 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-296 677485 678008 678525 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-295 672579 677284 677385 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-294 667679 672368 672475 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-293 662345 667470 667578 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-292 661799 661848 662083 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-291 640374 651408 651494 "FFCAT" 656644 FFCAT (NIL T T T) -9 NIL 658080 NIL) (-290 636614 637840 639146 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-289 631457 636545 636609 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-288 630349 630818 630859 "FEVALAB" 630943 FEVALAB (NIL T) -9 NIL 631204 NIL) (-287 629754 630006 630344 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-286 626581 627492 627607 "FDIVCAT" 629174 FDIVCAT (NIL T T T T) -9 NIL 629610 NIL) (-285 626375 626407 626576 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-284 625682 625775 626052 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-283 624168 625166 625369 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-282 623261 623645 623847 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-281 622383 622872 623012 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-280 613970 618613 618653 "FAXF" 620454 FAXF (NIL T) -9 NIL 621144 NIL) (-279 611886 612690 613505 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-278 606922 611408 611582 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-277 601380 603803 603855 "FAMR" 604866 FAMR (NIL T T) -9 NIL 605325 NIL) (-276 600579 600944 601375 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-275 599600 600521 600574 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-274 597194 598073 598126 "FAMONC" 599067 FAMONC (NIL T T) -9 NIL 599452 NIL) (-273 595750 597052 597189 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-272 593830 594191 594593 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-271 593107 593304 593526 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-270 584967 592554 592753 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-269 582986 583556 584142 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-268 579888 580530 581250 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-267 575045 575752 576557 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-266 574734 574797 574906 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-265 559527 573783 574209 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-264 550054 558847 559135 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-263 549548 549850 549940 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-262 549324 549514 549543 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-261 549013 549081 549194 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-260 548530 548672 548713 "EVALAB" 548883 EVALAB (NIL T) -9 NIL 548987 NIL) (-259 548158 548304 548525 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-258 545201 546796 546824 "EUCDOM" 547378 EUCDOM (NIL) -9 NIL 547727 NIL) (-257 544128 544621 545196 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-256 543853 543909 544009 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-255 543541 543605 543714 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-254 537312 539212 539240 "ES" 541982 ES (NIL) -9 NIL 543366 NIL) (-253 533827 535359 537151 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-252 533175 533328 533504 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-251 524500 533105 533170 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-250 524189 524252 524361 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-249 517816 520941 522374 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-248 514119 515215 516308 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-247 512948 513298 513603 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-246 511833 512564 512592 "ENTIRER" 512597 ENTIRER (NIL) -9 NIL 512641 NIL) (-245 511722 511756 511828 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-244 508355 510152 510501 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 507447 507658 507712 "ELTAGG" 508092 ELTAGG (NIL T T) -9 NIL 508303 NIL) (-242 507227 507301 507442 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 506973 507008 507062 "ELTAB" 507146 ELTAB (NIL T T) -9 NIL 507198 NIL) (-240 506224 506394 506593 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 505948 506022 506050 "ELEMFUN" 506155 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 505848 505875 505943 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 500394 503867 503908 "ELAGG" 504845 ELAGG (NIL T) -9 NIL 505308 NIL) (-236 499192 499730 500389 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 498610 498777 498933 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 497523 497842 498121 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 490916 492914 493741 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 484895 486891 487701 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 482709 483115 483586 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 473709 475622 477163 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 472822 473323 473472 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 471520 472194 472234 "DVARCAT" 472517 DVARCAT (NIL T) -9 NIL 472657 NIL) (-227 470939 471203 471515 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 463006 470807 470934 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 461344 462135 462176 "DSEXT" 462539 DSEXT (NIL T) -9 NIL 462833 NIL) (-224 460149 460673 461339 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 459873 459938 460036 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 456024 457240 458371 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 451670 453025 454089 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 450345 450706 451092 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 450031 450090 450208 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 449006 449304 449594 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 448591 448666 448816 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 441004 443116 445231 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 436521 437540 438619 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 433251 435148 435189 "DQAGG" 435818 DQAGG (NIL T) -9 NIL 436091 NIL) (-213 419794 427434 427516 "DPOLCAT" 429353 DPOLCAT (NIL T T T T) -9 NIL 429896 NIL) (-212 416202 417850 419789 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 409360 416100 416197 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 402427 409189 409355 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 402020 402280 402369 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 401434 401882 401962 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 400720 401045 401196 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 393859 400456 400607 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 391608 392925 392965 "DMEXT" 392970 DMEXT (NIL T) -9 NIL 393145 NIL) (-204 391264 391326 391470 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 384761 390749 390939 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 381431 383584 383625 "DLAGG" 384175 DLAGG (NIL T) -9 NIL 384404 NIL) (-201 379782 380653 380681 "DIVRING" 380773 DIVRING (NIL) -9 NIL 380856 NIL) (-200 379233 379477 379777 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 377661 378078 378484 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 376698 376919 377184 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 370325 376630 376693 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 358777 365085 365138 "DIRPCAT" 365394 DIRPCAT (NIL NIL T) -9 NIL 366269 NIL) (-195 356783 357553 358440 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 356230 356396 356582 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 352780 355097 355138 "DIOPS" 355570 DIOPS (NIL T) -9 NIL 355796 NIL) (-192 352440 352584 352775 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 351447 352193 352221 "DIOID" 352226 DIOID (NIL) -9 NIL 352248 NIL) (-190 350275 351104 351132 "DIFRING" 351137 DIFRING (NIL) -9 NIL 351158 NIL) (-189 349911 350009 350037 "DIFFSPC" 350156 DIFFSPC (NIL) -9 NIL 350231 NIL) (-188 349652 349754 349906 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 348555 349180 349220 "DIFFMOD" 349225 DIFFMOD (NIL T) -9 NIL 349322 NIL) (-186 348239 348296 348337 "DIFFDOM" 348458 DIFFDOM (NIL T) -9 NIL 348526 NIL) (-185 348120 348150 348234 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 345793 347314 347354 "DIFEXT" 347359 DIFEXT (NIL T) -9 NIL 347511 NIL) (-183 342958 345275 345316 "DIAGG" 345321 DIAGG (NIL T) -9 NIL 345341 NIL) (-182 342514 342704 342953 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 337860 341704 341981 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 334318 335371 336381 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 328868 333472 333799 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 327434 327726 328101 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 324554 325806 326202 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 322446 324385 324474 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 321829 321974 322156 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 319147 319871 320671 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 317256 317714 318276 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 316639 316972 317086 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 309839 316364 316512 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 307759 308269 308773 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 307398 307447 307598 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 306657 307219 307310 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 304681 305123 305483 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 303973 304262 304408 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 303424 303570 303722 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 300786 301579 302306 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 300225 300371 300542 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 298297 298608 298975 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 297854 298109 298210 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 297055 297438 297466 "CTORCAT" 297647 CTORCAT (NIL) -9 NIL 297759 NIL) (-159 296758 296892 297050 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 296251 296508 296616 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 295667 296098 296171 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 295126 295243 295396 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 291520 292276 293031 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 291011 291314 291405 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 290230 290439 290667 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 289734 289839 290043 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 289487 289521 289627 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 286426 287188 287906 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 285945 286087 286226 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 281838 284408 284900 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 281712 281739 281767 "CONDUIT" 281804 CONDUIT (NIL) -9 NIL NIL NIL) (-146 280591 281322 281350 "COMRING" 281355 COMRING (NIL) -9 NIL 281405 NIL) (-145 279756 280123 280301 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 279452 279493 279621 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 279145 279208 279315 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 267987 279095 279140 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 267448 267587 267747 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 267201 267242 267340 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 248632 260882 260922 "COMPCAT" 261923 COMPCAT (NIL T) -9 NIL 263265 NIL) (-138 241170 244683 248276 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 240929 240963 241065 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 240759 240798 240856 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 240340 240619 240693 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 239917 240158 240245 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 239112 239360 239388 "COMBOPC" 239726 COMBOPC (NIL) -9 NIL 239901 NIL) (-132 238176 238428 238670 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 235108 235792 236415 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 233988 234439 234674 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 233479 233782 233873 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 233166 233219 233344 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 232636 232946 233044 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 229156 230226 231306 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 227451 228436 228674 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 223567 225571 225612 "CLAGG" 226538 CLAGG (NIL T) -9 NIL 227071 NIL) (-123 222460 222987 223562 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 222089 222180 222320 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 220026 220533 221081 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 218987 219718 219746 "CHARZ" 219751 CHARZ (NIL) -9 NIL 219765 NIL) (-119 218781 218827 218905 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 217620 218383 218411 "CHARNZ" 218472 CHARNZ (NIL) -9 NIL 218520 NIL) (-117 215098 216195 216718 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 214806 214885 214913 "CFCAT" 215024 CFCAT (NIL) -9 NIL NIL NIL) (-115 214149 214278 214460 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 210310 213562 213842 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 209688 209875 210052 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 209216 209635 209683 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 208689 208998 209095 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 208180 208483 208574 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 207429 207589 207810 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 203529 204786 205494 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 201895 202926 203177 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 201476 201755 201829 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 200910 201163 201191 "CACHSET" 201323 CACHSET (NIL) -9 NIL 201401 NIL) (-104 200262 200677 200705 "CABMON" 200755 CABMON (NIL) -9 NIL 200811 NIL) (-103 199792 200056 200166 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 195198 199460 199621 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 194168 194872 195007 "BYTE" NIL BYTE (NIL) -8 NIL NIL 195170) (-100 191811 193935 194041 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 189425 191565 191673 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 186795 188827 188866 "BTCAT" 188933 BTCAT (NIL T) -9 NIL 189014 NIL) (-97 186546 186644 186790 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 181787 185738 185764 "BTAGG" 185875 BTAGG (NIL) -9 NIL 185983 NIL) (-95 181418 181579 181782 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 178674 180910 181100 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 177944 178096 178274 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 174481 176650 176689 "BRAGG" 177330 BRAGG (NIL T) -9 NIL 177587 NIL) (-91 173436 173931 174476 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 165970 172941 173122 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 163962 165922 165965 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 163695 163731 163842 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 161934 162367 162815 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 157900 159316 160206 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 156776 157667 157789 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 156362 156519 156545 "BOOLE" 156653 BOOLE (NIL) -9 NIL 156734 NIL) (-83 156155 156236 156357 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 155293 155820 155870 "BMODULE" 155875 BMODULE (NIL T T) -9 NIL 155939 NIL) (-81 151082 155150 155219 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 150895 150935 150974 "BINOPC" 150979 BINOPC (NIL T) -9 NIL 151024 NIL) (-79 150437 150710 150812 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 149958 150102 150240 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 143164 149688 149833 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 140912 142384 142423 "BGAGG" 142679 BGAGG (NIL T) -9 NIL 142806 NIL) (-75 140781 140819 140907 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 139632 139833 140118 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 136464 138812 139117 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 136049 136142 136168 "BASTYPE" 136339 BASTYPE (NIL) -9 NIL 136435 NIL) (-71 135819 135915 136044 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 135334 135422 135572 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 134233 134908 135093 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 133970 133975 134001 "ATTREG" 134006 ATTREG (NIL) -9 NIL NIL NIL) (-67 133575 133847 133912 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 133075 133224 133250 "ATRIG" 133451 ATRIG (NIL) -9 NIL NIL NIL) (-65 132930 132983 133070 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 132500 132731 132757 "ASTCAT" 132762 ASTCAT (NIL) -9 NIL 132792 NIL) (-63 132299 132376 132495 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 130630 132132 132220 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 129437 129750 130115 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 127397 129367 129432 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 126588 126779 127000 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 122347 126319 126433 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 116765 118663 118738 "ARR2CAT" 121250 ARR2CAT (NIL T T T) -9 NIL 121971 NIL) (-56 115726 116208 116760 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 115094 115465 115587 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 114026 114194 114490 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 113727 113781 113899 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 113110 113256 113412 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 112515 112805 112925 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 110083 111244 111567 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 109608 109868 109964 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 103303 108670 109112 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 98837 100500 100550 "AMR" 101288 AMR (NIL T T) -9 NIL 101885 NIL) (-46 98191 98471 98832 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 79737 98125 98186 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 76140 79413 79582 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 73150 73810 74417 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 72529 72642 72826 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 68941 69566 70158 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 58430 68634 68784 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 57747 57901 58079 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 56460 57255 57293 "ALGEBRA" 57298 ALGEBRA (NIL T) -9 NIL 57338 NIL) (-37 56246 56323 56455 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 34174 53353 53405 "ALAGG" 53540 ALAGG (NIL T T) -9 NIL 53698 NIL) (-35 33674 33823 33849 "AHYP" 34050 AHYP (NIL) -9 NIL NIL NIL) (-34 32970 33151 33177 "AGG" 33458 AGG (NIL) -9 NIL 33645 NIL) (-33 32813 32871 32965 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30952 31412 31812 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30447 30750 30839 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29817 30112 30268 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17375 26654 26692 "ACFS" 27299 ACFS (NIL T) -9 NIL 27538 NIL) (-28 15998 16608 17370 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11550 13929 13955 "ACF" 14834 ACF (NIL) -9 NIL 15246 NIL) (-26 10646 11052 11545 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10148 10388 10414 "ABELSG" 10506 ABELSG (NIL) -9 NIL 10571 NIL) (-24 10046 10077 10143 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9201 9575 9601 "ABELMON" 9826 ABELMON (NIL) -9 NIL 9959 NIL) (-22 8883 9023 9196 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8095 8578 8604 "ABELGRP" 8676 ABELGRP (NIL) -9 NIL 8751 NIL) (-20 7648 7844 8090 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 6875 6914 "A1AGG" 6919 A1AGG (NIL T) -9 NIL 6953 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index e3238bd7..3fc80efb 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,794 +1,794 @@ -(631528 . 3577831633) +(631528 . 3577834557) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) - (-5 *2 (-1179 (-350 (-484)))) (-5 *1 (-1208 *4))))) + (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) + (-5 *2 (-1180 (-350 (-485)))) (-5 *1 (-1209 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) - (-5 *2 (-1179 (-484))) (-5 *1 (-1208 *4))))) + (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) + (-5 *2 (-1180 (-485))) (-5 *1 (-1209 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-85)) - (-5 *1 (-1208 *4))))) + (-12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-85)) + (-5 *1 (-1209 *4))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-553 *2) (-146))) (-5 *2 (-800 *4)) (-5 *1 (-144 *4 *5 *3)) - (-4 *4 (-1013)) (-4 *3 (-139 *5)))) + (-12 (-4 *5 (-13 (-554 *2) (-146))) (-5 *2 (-801 *4)) (-5 *1 (-144 *4 *5 *3)) + (-4 *4 (-1014)) (-4 *3 (-139 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) - (-4 *4 (-1155 *3)))) + (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) + (-4 *4 (-1156 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) - (-5 *2 (-1179 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 *3)))) + (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) + (-5 *2 (-1180 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *1 (-403 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-473)))) - ((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1129)))) - ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1129)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1155 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *1 (-403 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-474)))) + ((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) ((*1 *1 *2) - (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) - (-4 *5 (-553 (-1090))) (-4 *4 (-717)) (-4 *5 (-756)))) + (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) + (-4 *5 (-554 (-1091))) (-4 *4 (-718)) (-4 *5 (-757)))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) - (-12 (-2560 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484))) - (-4 *5 (-553 (-1090)))) - (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) - (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) - (-4 *4 (-717)) (-4 *5 (-756))))) + (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) + (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) + (-4 *5 (-554 (-1091)))) + (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) + (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) + (-4 *4 (-718)) (-4 *5 (-757))))) ((*1 *1 *2) - (-12 (-5 *2 (-857 (-350 (-484)))) (-4 *1 (-977 *3 *4 *5)) - (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090))) (-4 *3 (-961)) - (-4 *4 (-717)) (-4 *5 (-756)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8))) - (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-392)) - (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1073)) - (-5 *1 (-981 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8))) - (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-1020 *4 *5 *6 *7)) (-4 *4 (-392)) - (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1073)) - (-5 *1 (-1059 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-1095)))) - ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1095)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1109)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1109)))) - ((*1 *2 *3) - (-12 (-5 *3 (-703 *4 (-773 *5))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) - (-14 *5 (-583 (-1090))) (-5 *2 (-703 *4 (-773 *6))) (-5 *1 (-1207 *4 *5 *6)) - (-14 *6 (-583 (-1090))))) - ((*1 *2 *3) - (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) - (-5 *2 (-857 (-937 (-350 *4)))) (-5 *1 (-1207 *4 *5 *6)) - (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))) - ((*1 *2 *3) - (-12 (-5 *3 (-703 *4 (-773 *6))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) - (-14 *6 (-583 (-1090))) (-5 *2 (-857 (-937 (-350 *4)))) - (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1085 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) - (-5 *2 (-1085 (-937 (-350 *4)))) (-5 *1 (-1207 *4 *5 *6)) - (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1060 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6)))) - (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *6 (-583 (-1090))) - (-5 *2 (-583 (-703 *4 (-773 *6)))) (-5 *1 (-1207 *4 *5 *6)) - (-14 *5 (-583 (-1090)))))) -(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) - ((*1 *2 *3) - (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-348 *3)) - (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-4 *7 (-861 *6 *4 *5)) - (-5 *2 (-348 (-1085 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-392)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *2 (-348 *1)) (-4 *1 (-861 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-392)) (-5 *2 (-348 *3)) - (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-392)) (-4 *7 (-861 *6 *4 *5)) - (-5 *2 (-348 (-1085 (-350 *7)))) (-5 *1 (-1087 *4 *5 *6 *7)) - (-5 *3 (-1085 (-350 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1134)))) - ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-348 *3)) (-5 *1 (-1159 *4 *3)) - (-4 *3 (-13 (-1155 *4) (-495) (-10 -8 (-15 -3144 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) - (-14 *5 (-583 (-1090))) - (-5 *2 (-583 (-1060 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6))))) - (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) - (-14 *5 (-583 (-1090))) (-5 *2 (-583 (-583 (-937 (-350 *4))))) - (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090))))) + (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) + (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) + (-4 *4 (-718)) (-4 *5 (-757)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) + (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) + (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074)) + (-5 *1 (-982 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) + (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-1021 *4 *5 *6 *7)) (-4 *4 (-392)) + (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074)) + (-5 *1 (-1060 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1096)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110)))) + ((*1 *2 *3) + (-12 (-5 *3 (-704 *4 (-774 *5))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) + (-14 *5 (-584 (-1091))) (-5 *2 (-704 *4 (-774 *6))) (-5 *1 (-1208 *4 *5 *6)) + (-14 *6 (-584 (-1091))))) + ((*1 *2 *3) + (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) + (-5 *2 (-858 (-938 (-350 *4)))) (-5 *1 (-1208 *4 *5 *6)) + (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) + ((*1 *2 *3) + (-12 (-5 *3 (-704 *4 (-774 *6))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) + (-14 *6 (-584 (-1091))) (-5 *2 (-858 (-938 (-350 *4)))) + (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) + (-5 *2 (-1086 (-938 (-350 *4)))) (-5 *1 (-1208 *4 *5 *6)) + (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6)))) + (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *6 (-584 (-1091))) + (-5 *2 (-584 (-704 *4 (-774 *6)))) (-5 *1 (-1208 *4 *5 *6)) + (-14 *5 (-584 (-1091)))))) +(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) + ((*1 *2 *3) + (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) + (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-4 *7 (-862 *6 *4 *5)) + (-5 *2 (-348 (-1086 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-392)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *2 (-348 *1)) (-4 *1 (-862 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-392)) (-5 *2 (-348 *3)) + (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5)) + (-5 *2 (-348 (-1086 (-350 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) + (-5 *3 (-1086 (-350 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1135)))) + ((*1 *2 *3) + (-12 (-4 *4 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-1160 *4 *3)) + (-4 *3 (-13 (-1156 *4) (-496) (-10 -8 (-15 -3145 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) + (-14 *5 (-584 (-1091))) + (-5 *2 (-584 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6))))) + (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) + (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) + (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-755) (-258) (-120) (-933))) - (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) - (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-755) (-258) (-120) (-933))) - (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) - (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) - (-5 *2 (-583 (-583 (-937 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6)) - (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090)))))) + (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-756) (-258) (-120) (-934))) + (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) + (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-756) (-258) (-120) (-934))) + (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) + (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) + ((*1 *2 *3) + (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) + (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) + (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-583 (-1090))) - (-5 *2 (-583 (-583 (-330)))) (-5 *1 (-936)) (-5 *5 (-330)))) + (-12 (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-584 (-1091))) + (-5 *2 (-584 (-584 (-330)))) (-5 *1 (-937)) (-5 *5 (-330)))) ((*1 *2 *3) - (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) - (-14 *5 (-583 (-1090))) (-5 *2 (-583 (-583 (-937 (-350 *4))))) - (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090))))) + (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) + (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) + (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-755) (-258) (-120) (-933))) - (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) - (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) + (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-756) (-258) (-120) (-934))) + (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) + (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-755) (-258) (-120) (-933))) - (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) - (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-755) (-258) (-120) (-933))) - (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) - (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) - (-5 *2 (-583 (-583 (-937 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6)) - (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) - (-14 *5 (-583 (-1090))) - (-5 *2 (-583 (-2 (|:| -1747 (-1085 *4)) (|:| -3224 (-583 (-857 *4)))))) - (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090))))) + (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-756) (-258) (-120) (-934))) + (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) + (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-756) (-258) (-120) (-934))) + (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) + (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) + ((*1 *2 *3) + (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) + (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) + (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) + (-14 *5 (-584 (-1091))) + (-5 *2 (-584 (-2 (|:| -1748 (-1086 *4)) (|:| -3225 (-584 (-858 *4)))))) + (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) - (-5 *2 (-583 (-2 (|:| -1747 (-1085 *5)) (|:| -3224 (-583 (-857 *5)))))) - (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090))) - (-14 *7 (-583 (-1090))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) + (-5 *2 (-584 (-2 (|:| -1748 (-1086 *5)) (|:| -3225 (-584 (-858 *5)))))) + (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))) + (-14 *7 (-584 (-1091))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) - (-5 *2 (-583 (-2 (|:| -1747 (-1085 *5)) (|:| -3224 (-583 (-857 *5)))))) - (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090))) - (-14 *7 (-583 (-1090))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) - (-5 *2 (-583 (-2 (|:| -1747 (-1085 *5)) (|:| -3224 (-583 (-857 *5)))))) - (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090))) - (-14 *7 (-583 (-1090))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-755) (-258) (-120) (-933))) - (-5 *2 (-583 (-2 (|:| -1747 (-1085 *4)) (|:| -3224 (-583 (-857 *4)))))) - (-5 *1 (-1207 *4 *5 *6)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1090))) - (-14 *6 (-583 (-1090)))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) + (-5 *2 (-584 (-2 (|:| -1748 (-1086 *5)) (|:| -3225 (-584 (-858 *5)))))) + (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))) + (-14 *7 (-584 (-1091))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) + (-5 *2 (-584 (-2 (|:| -1748 (-1086 *5)) (|:| -3225 (-584 (-858 *5)))))) + (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))) + (-14 *7 (-584 (-1091))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-756) (-258) (-120) (-934))) + (-5 *2 (-584 (-2 (|:| -1748 (-1086 *4)) (|:| -3225 (-584 (-858 *4)))))) + (-5 *1 (-1208 *4 *5 *6)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1091))) + (-14 *6 (-584 (-1091)))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) - (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) + (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) + (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) - (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) - (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) + (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) + (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) + (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) - (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))) - (-14 *6 (-583 (-1090)))))) + (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) + (-5 *2 (-584 (-959 *4 *5))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) + (-14 *6 (-584 (-1091)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1069 *4) (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1206 *4)) - (-4 *4 (-1129)))) + (-12 (-5 *3 (-1 (-1070 *4) (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1207 *4)) + (-4 *4 (-1130)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-583 (-1069 *5)) (-583 (-1069 *5)))) (-5 *4 (-484)) - (-5 *2 (-583 (-1069 *5))) (-5 *1 (-1206 *5)) (-4 *5 (-1129))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1205))))) -(((*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-1205))))) + (-12 (-5 *3 (-1 (-584 (-1070 *5)) (-584 (-1070 *5)))) (-5 *4 (-485)) + (-5 *2 (-584 (-1070 *5))) (-5 *1 (-1207 *5)) (-4 *5 (-1130))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1206))))) +(((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1206))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-830)) (-4 *6 (-495)) (-5 *2 (-583 (-265 *6))) - (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-961)))) - ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-495)))) + (-12 (-5 *4 (-831)) (-4 *6 (-496)) (-5 *2 (-584 (-265 *6))) + (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-962)))) + ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))) ((*1 *2 *3) - (-12 (-5 *3 (-519 *5)) (-4 *5 (-13 (-29 *4) (-1115))) - (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 *5)) - (-5 *1 (-521 *4 *5)))) + (-12 (-5 *3 (-520 *5)) (-4 *5 (-13 (-29 *4) (-1116))) + (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 *5)) + (-5 *1 (-522 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-519 (-350 (-857 *4)))) - (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 (-265 *4))) - (-5 *1 (-525 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1007 *3 *2)) (-4 *3 (-755)) (-4 *2 (-1064 *3)))) + (-12 (-5 *3 (-520 (-350 (-858 *4)))) + (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 (-265 *4))) + (-5 *1 (-526 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-756)) (-4 *2 (-1065 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 *1)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755)) - (-4 *2 (-1064 *4)))) + (-12 (-5 *3 (-584 *1)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756)) + (-4 *2 (-1065 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) ((*1 *2 *1) - (-12 (-5 *2 (-1195 (-1090) *3)) (-5 *1 (-1201 *3)) (-4 *3 (-961)))) + (-12 (-5 *2 (-1196 (-1091) *3)) (-5 *1 (-1202 *3)) (-4 *3 (-962)))) ((*1 *2 *1) - (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-756)) - (-4 *4 (-961))))) + (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-757)) + (-4 *4 (-962))))) (((*1 *1 *2) - (-12 (-5 *2 (-1195 (-1090) *3)) (-4 *3 (-961)) (-5 *1 (-1201 *3)))) + (-12 (-5 *2 (-1196 (-1091) *3)) (-4 *3 (-962)) (-5 *1 (-1202 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1195 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) - (-5 *1 (-1204 *3 *4))))) + (-12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) + (-5 *1 (-1205 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |k| (-1090)) (|:| |c| (-1201 *3))))) - (-5 *1 (-1201 *3)) (-4 *3 (-961)))) + (-12 (-5 *2 (-584 (-2 (|:| |k| (-1091)) (|:| |c| (-1202 *3))))) + (-5 *1 (-1202 *3)) (-4 *3 (-962)))) ((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1204 *3 *4))))) - (-5 *1 (-1204 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-694)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-830)))) + (-12 (-5 *2 (-584 (-2 (|:| |k| *3) (|:| |c| (-1205 *3 *4))))) + (-5 *1 (-1205 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-695)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-831)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-130)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-130)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115))) (-5 *1 (-181 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1129)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1129)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) + (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116))) (-5 *1 (-181 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1130)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *6 (-196 (-3957 *3) (-694))) + (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3958 *3) (-695))) (-14 *7 - (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) - (-2 (|:| -2400 *5) (|:| -2401 *6)))) - (-5 *1 (-401 *3 *4 *5 *6 *7 *2)) (-4 *5 (-756)) - (-4 *2 (-861 *4 *6 (-773 *3))))) + (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) + (-2 (|:| -2401 *5) (|:| -2402 *6)))) + (-5 *1 (-401 *3 *4 *5 *6 *7 *2)) (-4 *5 (-757)) + (-4 *2 (-862 *4 *6 (-774 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) - (-4 *5 (-861 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-473))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1025)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-4 *7 (-1013)) (-5 *2 (-1 *7 *5)) (-5 *1 (-625 *5 *6 *7)))) + (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) + (-4 *5 (-862 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-474))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1026)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) + (-4 *7 (-1014)) (-5 *2 (-1 *7 *5)) (-5 *1 (-626 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-324 *3)) + (-12 (-4 *1 (-628 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-324 *3)) + (-12 (-4 *1 (-628 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-657))) ((*1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) + ((*1 *1 *1 *1) (-4 *1 (-658))) ((*1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-495)) - (-5 *1 (-882 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-1025)))) - ((*1 *1 *1 *1) (-4 *1 (-1025))) + (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) + (-5 *1 (-883 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1026)))) + ((*1 *1 *1 *1) (-4 *1 (-1026))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-196 *3 *4)) + (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1037 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) + (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1040 *3 *4 *2)) - (-4 *2 (-861 *3 (-469 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-854 (-179))) (-5 *3 (-179)) (-5 *1 (-1126)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-663)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-663)))) + (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2)) + (-4 *2 (-862 *3 (-470 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-855 (-179))) (-5 *3 (-179)) (-5 *1 (-1127)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-484)) (-4 *1 (-1178 *3)) (-4 *3 (-1129)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) - ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1090))))) + (-12 (-5 *2 (-485)) (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) + ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1091))))) ((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) - (-14 *3 (-583 (-1090))))) - ((*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013)))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) + (-14 *3 (-584 (-1091))))) + ((*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014)))) ((*1 *1 *1) - (-12 (-14 *2 (-583 (-1090))) (-4 *3 (-146)) (-4 *5 (-196 (-3957 *2) (-694))) + (-12 (-14 *2 (-584 (-1091))) (-4 *3 (-146)) (-4 *5 (-196 (-3958 *2) (-695))) (-14 *6 - (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5)) - (-2 (|:| -2400 *4) (|:| -2401 *5)))) - (-5 *1 (-401 *2 *3 *4 *5 *6 *7)) (-4 *4 (-756)) - (-4 *7 (-861 *3 *5 (-773 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) - ((*1 *1 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1155 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) + (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5)) + (-2 (|:| -2401 *4) (|:| -2402 *5)))) + (-5 *1 (-401 *2 *3 *4 *5 *6 *7)) (-4 *4 (-757)) + (-4 *7 (-862 *3 *5 (-774 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) + ((*1 *1 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) ((*1 *1 *1) - (-12 (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *2 (-961)) (-4 *3 (-663)))) - ((*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) + (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *2 (-962)) (-4 *3 (-664)))) + ((*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) - ((*1 *1 *1) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754))))) + (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) + ((*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-583 (-1090))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-584 (-1091))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) - (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) + (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-961) (-756))) - (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1090))))) + (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-962) (-757))) + (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1091))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1129)) - (-4 *7 (-1129)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-249 *3)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1130)) + (-4 *7 (-1130)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-249 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-550 *1)) (-4 *1 (-254)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-551 *1)) (-4 *1 (-254)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1073)) (-5 *5 (-550 *6)) (-4 *6 (-254)) - (-4 *2 (-1129)) (-5 *1 (-255 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1074)) (-5 *5 (-551 *6)) (-4 *6 (-254)) + (-4 *2 (-1130)) (-5 *1 (-255 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-550 *5)) (-4 *5 (-254)) (-4 *2 (-254)) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-551 *5)) (-4 *5 (-254)) (-4 *2 (-254)) (-5 *1 (-256 *5 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) - (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *9 (-312)) (-4 *10 (-1155 *9)) (-4 *11 (-1155 (-350 *10))) + (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *9 (-312)) (-4 *10 (-1156 *9)) (-4 *11 (-1156 (-350 *10))) (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-291 *9 *10 *11)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1013)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1014)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1134)) (-4 *8 (-1134)) (-4 *6 (-1155 *5)) - (-4 *7 (-1155 (-350 *6))) (-4 *9 (-1155 *8)) (-4 *2 (-291 *8 *9 *10)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1135)) (-4 *8 (-1135)) (-4 *6 (-1156 *5)) + (-4 *7 (-1156 (-350 *6))) (-4 *9 (-1156 *8)) (-4 *2 (-291 *8 *9 *10)) (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) - (-4 *10 (-1155 (-350 *9))))) + (-4 *10 (-1156 (-350 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *2 (-324 *6)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-324 *6)) (-5 *1 (-325 *5 *4 *6 *2)) (-4 *4 (-324 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-495)) (-5 *1 (-348 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-496)) (-5 *1 (-348 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-495)) (-4 *6 (-495)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-495)) (-4 *6 (-495)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-5 *2 (-350 *6)) (-5 *1 (-351 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-356 *5 *6 *7 *8)) (-4 *5 (-258)) - (-4 *6 (-904 *5)) (-4 *7 (-1155 *6)) (-4 *8 (-13 (-353 *6 *7) (-950 *6))) - (-4 *9 (-258)) (-4 *10 (-904 *9)) (-4 *11 (-1155 *10)) + (-4 *6 (-905 *5)) (-4 *7 (-1156 *6)) (-4 *8 (-13 (-353 *6 *7) (-951 *6))) + (-4 *9 (-258)) (-4 *10 (-905 *9)) (-4 *11 (-1156 *10)) (-5 *2 (-356 *9 *10 *11 *12)) (-5 *1 (-357 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-353 *10 *11) (-950 *10))))) + (-4 *12 (-13 (-353 *10 *11) (-951 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-361 *6)) (-5 *1 (-359 *4 *5 *2 *6)) (-4 *4 (-361 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-364 *6)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-364 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-364 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-369 *6)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-369 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-369 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-429 *3)) (-4 *3 (-1129)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-429 *3)) (-4 *3 (-1130)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-519 *5)) (-4 *5 (-312)) (-4 *6 (-312)) - (-5 *2 (-519 *6)) (-5 *1 (-520 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-520 *5)) (-4 *5 (-312)) (-4 *6 (-312)) + (-5 *2 (-520 *6)) (-5 *1 (-521 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2136 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) - (-4 *6 (-312)) (-5 *2 (-2 (|:| -2136 *6) (|:| |coeff| *6))) - (-5 *1 (-520 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2137 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) + (-4 *6 (-312)) (-5 *2 (-2 (|:| -2137 *6) (|:| |coeff| *6))) + (-5 *1 (-521 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) - (-4 *2 (-312)) (-5 *1 (-520 *5 *2)))) + (-4 *2 (-312)) (-5 *1 (-521 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-520 *5 *6)))) + (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-521 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-536 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) - (-5 *2 (-536 *6)) (-5 *1 (-533 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-537 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-537 *6)) (-5 *1 (-534 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-536 *7)) - (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-536 *8)) - (-5 *1 (-534 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-537 *7)) + (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-537 *8)) + (-5 *1 (-535 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1069 *6)) (-5 *5 (-536 *7)) - (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8)) - (-5 *1 (-534 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-537 *7)) + (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) + (-5 *1 (-535 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-1069 *7)) - (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8)) - (-5 *1 (-534 *6 *7 *8)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-1070 *7)) + (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) + (-5 *1 (-535 *6 *7 *8)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) - (-5 *2 (-583 *6)) (-5 *1 (-584 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-584 *6)) (-5 *1 (-585 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) - (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-583 *8)) - (-5 *1 (-586 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-584 *6)) (-5 *5 (-584 *7)) + (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-584 *8)) + (-5 *1 (-587 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-324 *5)) - (-4 *7 (-324 *5)) (-4 *2 (-627 *8 *9 *10)) - (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-324 *5)) + (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10)) + (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) - (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-627 *8 *9 *10)) - (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962)) (-4 *8 (-962)) + (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10)) + (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-495)) (-4 *7 (-495)) (-4 *6 (-1155 *5)) - (-4 *2 (-1155 (-350 *8))) (-5 *1 (-646 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1155 (-350 *6))) (-4 *8 (-1155 *7)))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-496)) (-4 *7 (-496)) (-4 *6 (-1156 *5)) + (-4 *2 (-1156 (-350 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1156 (-350 *6))) (-4 *8 (-1156 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-756)) - (-4 *6 (-717)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5)))) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-757)) + (-4 *6 (-718)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-756)) (-4 *6 (-756)) (-4 *7 (-717)) - (-4 *9 (-961)) (-4 *2 (-861 *9 *8 *6)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-717)) (-4 *4 (-861 *9 *7 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-757)) (-4 *6 (-757)) (-4 *7 (-718)) + (-4 *9 (-962)) (-4 *2 (-862 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-718)) (-4 *4 (-862 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-674 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) - (-4 *7 (-663)) (-5 *2 (-674 *6 *7)) (-5 *1 (-673 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-962)) (-4 *6 (-962)) + (-4 *7 (-664)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-674 *3 *4)) (-4 *4 (-663)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-675 *3 *4)) (-4 *4 (-664)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-704 *5)) (-4 *5 (-961)) (-4 *6 (-961)) - (-5 *2 (-704 *6)) (-5 *1 (-705 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-962)) (-4 *6 (-962)) + (-5 *2 (-705 *6)) (-5 *1 (-706 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-720 *6)) - (-5 *1 (-723 *4 *5 *2 *6)) (-4 *4 (-720 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-721 *6)) + (-5 *1 (-724 *4 *5 *2 *6)) (-4 *4 (-721 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) + (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013)) - (-4 *6 (-1013)) (-5 *1 (-744 *5 *6)))) + (-12 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) + (-4 *6 (-1014)) (-5 *1 (-745 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-5 *2 (-750 *6)) (-5 *1 (-751 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) + (-5 *2 (-751 *6)) (-5 *1 (-752 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-750 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013)) - (-4 *6 (-1013)) (-5 *1 (-751 *5 *6)))) + (-12 (-5 *2 (-751 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) + (-4 *6 (-1014)) (-5 *1 (-752 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) - (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) - (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) - (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-798 *5 *6)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-4 *7 (-1013)) (-5 *2 (-798 *5 *7)) (-5 *1 (-799 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-799 *5 *6)) (-4 *5 (-1014)) (-4 *6 (-1014)) + (-4 *7 (-1014)) (-5 *2 (-799 *5 *7)) (-5 *1 (-800 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-5 *2 (-800 *6)) (-5 *1 (-802 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) + (-5 *2 (-801 *6)) (-5 *1 (-803 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-857 *5)) (-4 *5 (-961)) (-4 *6 (-961)) - (-5 *2 (-857 *6)) (-5 *1 (-858 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-962)) (-4 *6 (-962)) + (-5 *2 (-858 *6)) (-5 *1 (-859 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-756)) (-4 *8 (-961)) - (-4 *6 (-717)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-757)) (-4 *8 (-962)) + (-4 *6 (-718)) (-4 *2 - (-13 (-1013) - (-10 -8 (-15 -3839 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694)))))) - (-5 *1 (-863 *6 *7 *8 *5 *2)) (-4 *5 (-861 *8 *6 *7)))) + (-13 (-1014) + (-10 -8 (-15 -3840 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695)))))) + (-5 *1 (-864 *6 *7 *8 *5 *2)) (-4 *5 (-862 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) - (-5 *2 (-869 *6)) (-5 *1 (-870 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-870 *6)) (-5 *1 (-871 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-5 *2 (-877 *6)) (-5 *1 (-879 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) + (-5 *2 (-878 *6)) (-5 *1 (-880 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-961)) (-4 *6 (-961)) - (-5 *2 (-854 *6)) (-5 *1 (-894 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-962)) (-4 *6 (-962)) + (-5 *2 (-855 *6)) (-5 *1 (-895 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-857 *4))) (-4 *4 (-961)) (-4 *2 (-861 (-857 *4) *5 *6)) - (-4 *5 (-717)) + (-12 (-5 *3 (-1 *2 (-858 *4))) (-4 *4 (-962)) (-4 *2 (-862 (-858 *4) *5 *6)) + (-4 *5 (-718)) (-4 *6 - (-13 (-756) - (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090)))))) - (-5 *1 (-897 *4 *5 *6 *2)))) + (-13 (-757) + (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091)))))) + (-5 *1 (-898 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-4 *2 (-904 *6)) - (-5 *1 (-905 *5 *6 *4 *2)) (-4 *4 (-904 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-4 *2 (-905 *6)) + (-5 *1 (-906 *5 *6 *4 *2)) (-4 *4 (-905 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-911 *6)) - (-5 *1 (-912 *4 *5 *2 *6)) (-4 *4 (-911 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-912 *6)) + (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-694)) - (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) - (-4 *2 (-965 *5 *6 *10 *11 *12)) - (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962)) (-14 *5 (-695)) + (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) + (-4 *2 (-966 *5 *6 *10 *11 *12)) + (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) - (-5 *2 (-1001 *6)) (-5 *1 (-1002 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-1002 *6)) (-5 *1 (-1003 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-755)) (-4 *5 (-1129)) - (-4 *6 (-1129)) (-5 *2 (-583 *6)) (-5 *1 (-1002 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-756)) (-4 *5 (-1130)) + (-4 *6 (-1130)) (-5 *2 (-584 *6)) (-5 *1 (-1003 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1004 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) - (-5 *2 (-1004 *6)) (-5 *1 (-1005 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-1005 *6)) (-5 *1 (-1006 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755)) - (-4 *2 (-1064 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756)) + (-4 *2 (-1065 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1069 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) - (-5 *2 (-1069 *6)) (-5 *1 (-1071 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-1070 *6)) (-5 *1 (-1072 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1069 *6)) (-5 *5 (-1069 *7)) - (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8)) - (-5 *1 (-1072 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-1070 *7)) + (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) + (-5 *1 (-1073 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-961)) (-4 *6 (-961)) - (-5 *2 (-1085 *6)) (-5 *1 (-1086 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-962)) (-4 *6 (-962)) + (-5 *2 (-1086 *6)) (-5 *1 (-1087 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1107 *3 *4)) (-4 *3 (-1013)) - (-4 *4 (-1013)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1108 *3 *4)) (-4 *3 (-1014)) + (-4 *4 (-1014)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5 *7 *9)) (-4 *5 (-961)) - (-4 *6 (-961)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1139 *6 *8 *10)) (-5 *1 (-1140 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1090)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5 *7 *9)) (-4 *5 (-962)) + (-4 *6 (-962)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1140 *6 *8 *10)) (-5 *1 (-1141 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1091)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) - (-5 *2 (-1146 *6)) (-5 *1 (-1147 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-1147 *6)) (-5 *1 (-1148 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-755)) (-4 *5 (-1129)) - (-4 *6 (-1129)) (-5 *2 (-1069 *6)) (-5 *1 (-1147 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-756)) (-4 *5 (-1130)) + (-4 *6 (-1130)) (-5 *2 (-1070 *6)) (-5 *1 (-1148 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1148 *5 *6)) (-14 *5 (-1090)) (-4 *6 (-961)) - (-4 *8 (-961)) (-5 *2 (-1148 *7 *8)) (-5 *1 (-1149 *5 *6 *7 *8)) - (-14 *7 (-1090)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1149 *5 *6)) (-14 *5 (-1091)) (-4 *6 (-962)) + (-4 *8 (-962)) (-5 *2 (-1149 *7 *8)) (-5 *1 (-1150 *5 *6 *7 *8)) + (-14 *7 (-1091)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1155 *6)) - (-5 *1 (-1156 *5 *4 *6 *2)) (-4 *4 (-1155 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1156 *6)) + (-5 *1 (-1157 *5 *4 *6 *2)) (-4 *4 (-1156 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1160 *5 *7 *9)) (-4 *5 (-961)) - (-4 *6 (-961)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1160 *6 *8 *10)) (-5 *1 (-1161 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1090)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1161 *5 *7 *9)) (-4 *5 (-962)) + (-4 *6 (-962)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1161 *6 *8 *10)) (-5 *1 (-1162 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1091)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1172 *6)) - (-5 *1 (-1170 *5 *6 *4 *2)) (-4 *4 (-1172 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1173 *6)) + (-5 *1 (-1171 *5 *6 *4 *2)) (-4 *4 (-1173 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) - (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) + (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1179 *5)) - (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1180 *5)) + (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1203 *3 *4)) (-4 *4 (-754))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-34)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-209)))) - ((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-884)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-1204 *3 *4)) (-4 *4 (-755))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-34)) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-209)))) + ((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-885)))) ((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-484)))) + (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-485)))) ((*1 *2 *1) - (-12 (-5 *2 (-694)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754))))) + (-12 (-5 *2 (-695)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755))))) (((*1 *2 *1) - (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1203 *3 *2)) (-4 *3 (-961))))) + (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962))))) (((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1203 *3 *2)) (-4 *3 (-961))))) + (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1204 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-756)) + (-12 (-5 *3 (-1205 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-757)) (-4 *2 (-146)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-739 *4)) (-4 *1 (-1199 *4 *2)) (-4 *4 (-756)) (-4 *2 (-961)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1203 *2 *3)) (-4 *3 (-754))))) + (-12 (-5 *3 (-740 *4)) (-4 *1 (-1200 *4 *2)) (-4 *4 (-757)) (-4 *2 (-962)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) ((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5)) - (-4 *4 (-1013)))) - ((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) - ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) - ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1203 *2 *3)) (-4 *3 (-754))))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)) + (-4 *4 (-1014)))) + ((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) + ((*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) + ((*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755))))) (((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754))))) -(((*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) - ((*1 *1 *1) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755))))) +(((*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) + ((*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-179)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-179)))) ((*1 *1 *1 *1) - (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1129))) - (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1129))))) + (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130))) + (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1130))))) ((*1 *1 *1 *1) (-4 *1 (-312))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-330)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1039 *3 (-550 *1))) (-4 *3 (-495)) (-4 *3 (-1013)) + (-12 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) ((*1 *1 *1 *1) (-4 *1 (-413))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-473))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-474))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-663) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-559 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-664) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-146)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-663) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)) (-4 *2 (-312)))) + (-12 (-4 *4 (-146)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-664) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)) (-4 *2 (-312)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-594 *2 *4 *3)) (-4 *2 (-654 *4)) - (-4 *3 (|SubsetCategory| (-663) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-595 *2 *4 *3)) (-4 *2 (-655 *4)) + (-4 *3 (|SubsetCategory| (-664) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-146)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4)) - (-4 *2 (|SubsetCategory| (-663) *4)))) + (-12 (-4 *4 (-146)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)) + (-4 *2 (|SubsetCategory| (-664) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) - ((*1 *1 *1 *1) (-5 *1 (-772))) + ((*1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-775 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-961)) - (-14 *3 (-583 (-1090))) (-14 *4 (-583 (-694))) (-14 *5 (-694)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) + (|partial| -12 (-5 *1 (-776 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-962)) + (-14 *3 (-584 (-1091))) (-14 *4 (-584 (-695))) (-14 *5 (-695)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2)) + (-12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1187 *2)) (-4 *2 (-312)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-312)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-717)) - (-14 *6 (-583 *3)) (-5 *1 (-1192 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-861 *2 *4 *3)) (-14 *7 (-583 (-694))) (-14 *8 (-694)))) + (|partial| -12 (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-718)) + (-14 *6 (-584 *3)) (-5 *1 (-1193 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-862 *2 *4 *3)) (-14 *7 (-584 (-695))) (-14 *8 (-695)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-754))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) + (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-755))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) ((*1 *2 *1) - (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) - (-14 *4 (-583 (-1090))))) + (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) + (-14 *4 (-584 (-1091))))) ((*1 *2 *1) - (-12 (-5 *2 (-484)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) - (-14 *4 (-583 (-1090))))) + (-12 (-5 *2 (-485)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) + (-14 *4 (-584 (-1091))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) - (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-229)))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) + (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-229)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 *8)) (-5 *4 (-583 *6)) (-4 *6 (-756)) - (-4 *8 (-861 *7 *5 *6)) (-4 *5 (-717)) (-4 *7 (-961)) (-5 *2 (-583 (-694))) + (-12 (-5 *3 (-1086 *8)) (-5 *4 (-584 *6)) (-4 *6 (-757)) + (-4 *8 (-862 *7 *5 *6)) (-4 *5 (-718)) (-4 *7 (-962)) (-5 *2 (-584 (-695))) (-5 *1 (-272 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830)))) + ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831)))) ((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-694)))) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-695)))) ((*1 *2 *1) (-12 (-4 *1 (-410 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) ((*1 *2 *1) - (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1155 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) + (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) + ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-583 (-694))))) + (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-584 (-695))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) - (-5 *2 (-694)))) + (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) + (-5 *2 (-695)))) ((*1 *2 *1) - (-12 (-4 *1 (-886 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *2 (-716)))) + (-12 (-4 *1 (-887 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *2 (-717)))) ((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-694)))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-695)))) ((*1 *2 *1) - (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1172 *3)) (-5 *2 (-484)))) + (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3)) (-5 *2 (-485)))) ((*1 *2 *1) - (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1141 *3)) - (-5 *2 (-350 (-484))))) - ((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830))))) + (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3)) + (-5 *2 (-350 (-485))))) + ((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831))))) ((*1 *2 *1) - (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-694))))) + (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-695))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) + (-12 (-5 *2 (-695)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-4 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))) + (-12 (-5 *2 (-695)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))) (((*1 *1 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-312)) (-14 *6 (-1179 (-630 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1129)))) + (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-14 *6 (-1180 (-631 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1130)))) ((*1 *2 *3) - (-12 (-5 *3 (-1179 (-630 *4))) (-4 *4 (-146)) - (-5 *2 (-1179 (-630 (-350 (-857 *4))))) (-5 *1 (-163 *4)))) + (-12 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-146)) + (-5 *2 (-1180 (-631 (-350 (-858 *4))))) (-5 *1 (-163 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1004 (-265 *4))) (-4 *4 (-13 (-756) (-495) (-553 (-330)))) - (-5 *2 (-1004 (-330))) (-5 *1 (-219 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229)))) + (-12 (-5 *3 (-1005 (-265 *4))) (-4 *4 (-13 (-757) (-496) (-554 (-330)))) + (-5 *2 (-1005 (-330))) (-5 *1 (-219 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229)))) ((*1 *2 *1) - (-12 (-4 *2 (-1155 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) + (-12 (-4 *2 (-1156 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1160 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3))) - (-14 *5 (-1090)) (-14 *6 *4) - (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392))) + (-12 (-5 *2 (-1161 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) + (-14 *5 (-1091)) (-14 *6 *4) + (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *1 (-264 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) @@ -797,10398 +797,10398 @@ (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) (-4 *3 (-280 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) - (-5 *2 (-1204 *3 *4)))) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) + (-5 *2 (-1205 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) - (-5 *2 (-1195 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) + (-5 *2 (-1196 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-857 (-350 *3)))) (-4 *3 (-495)) (-4 *3 (-1013)) + (-12 (-5 *2 (-350 (-858 (-350 *3)))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-857 (-350 *3))) (-4 *3 (-495)) (-4 *3 (-1013)) + (-12 (-5 *2 (-858 (-350 *3))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 *3)) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-364 *3)))) + (-12 (-5 *2 (-350 *3)) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1039 *3 (-550 *1))) (-4 *3 (-961)) (-4 *3 (-1013)) + (-12 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-962)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-756) (-21))) (-5 *1 (-372 *3 *4)) - (-4 *3 (-13 (-146) (-38 (-350 (-484))))))) + (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-757) (-21))) (-5 *1 (-372 *3 *4)) + (-4 *3 (-13 (-146) (-38 (-350 (-485))))))) ((*1 *1 *2) - (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-484))))) - (-4 *3 (-13 (-756) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-377)))) - ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-377)))) - ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-377)))) + (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-485))))) + (-4 *3 (-13 (-757) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-377)))) + ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-377)))) ((*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-379)))) ((*1 *1 *2) - (-12 (-5 *2 (-1179 (-350 (-857 *3)))) (-4 *3 (-146)) - (-14 *6 (-1179 (-630 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *4 (-830)) - (-14 *5 (-583 (-1090))))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-408)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-408)))) + (-12 (-5 *2 (-1180 (-350 (-858 *3)))) (-4 *3 (-146)) + (-14 *6 (-1180 (-631 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *4 (-831)) + (-14 *5 (-584 (-1091))))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-408)))) ((*1 *1 *2) - (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3) + (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-414 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-414 *3 *4 *5)) - (-4 *3 (-961)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-414 *3 *4 *5)) + (-4 *3 (-962)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-462)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-539)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-540 *3 *2)) (-4 *2 (-683 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1129)))) - ((*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1129)))) - ((*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-961)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1200 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) - (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) - (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-572 *3 *2)) (-4 *2 (-683 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) - ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) - ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) - ((*1 *1 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-622)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-463)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-540)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-541 *3 *2)) (-4 *2 (-684 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-962)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1201 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) + (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) + (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-573 *3 *2)) (-4 *2 (-684 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) + ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) + ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) + ((*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-623)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014)))) ((*1 *1 *2) - (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-324 *3)) + (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *2)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647)))) + ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-146)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-146)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 (-2 (|:| -3954 *3) (|:| -3938 *4)))) (-4 *3 (-961)) - (-4 *4 (-663)) (-5 *1 (-674 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-687)))) - ((*1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-697 *3)) (-4 *3 (-1129)))) - ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-767)))) - ((*1 *2 *3) (-12 (-5 *3 (-857 (-48))) (-5 *2 (-265 (-484))) (-5 *1 (-784)))) - ((*1 *2 *3) - (-12 (-5 *3 (-350 (-857 (-48)))) (-5 *2 (-265 (-484))) (-5 *1 (-784)))) - ((*1 *1 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) - ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) - ((*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-825 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) - ((*1 *2 *3) - (-12 (-5 *3 (-417)) (-5 *2 (-265 *4)) (-5 *1 (-831 *4)) (-4 *4 (-495)))) - ((*1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *1 (-946 *3)) (-4 *3 (-1129)))) - ((*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-946 *2)) (-4 *2 (-1129)))) + (-12 (-5 *2 (-584 (-2 (|:| -3955 *3) (|:| -3939 *4)))) (-4 *3 (-962)) + (-4 *4 (-664)) (-5 *1 (-675 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-688)))) + ((*1 *2 *3) (-12 (-5 *2 (-697)) (-5 *1 (-698 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-768)))) + ((*1 *2 *3) (-12 (-5 *3 (-858 (-48))) (-5 *2 (-265 (-485))) (-5 *1 (-785)))) + ((*1 *2 *3) + (-12 (-5 *3 (-350 (-858 (-48)))) (-5 *2 (-265 (-485))) (-5 *1 (-785)))) + ((*1 *1 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) + ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) + ((*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-826 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) + ((*1 *2 *3) + (-12 (-5 *3 (-417)) (-5 *2 (-265 *4)) (-5 *1 (-832 *4)) (-4 *4 (-496)))) + ((*1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *1 (-947 *3)) (-4 *3 (-1130)))) + ((*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-947 *2)) (-4 *2 (-1130)))) ((*1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) - ((*1 *2 *3) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-952 *3)) (-4 *3 (-495)))) + (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) + ((*1 *2 *3) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-953 *3)) (-4 *3 (-496)))) ((*1 *1 *2) - (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1040 *3 *4 *2)) - (-4 *2 (-861 *3 (-469 *4) *4)))) + (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2)) + (-4 *2 (-862 *3 (-470 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1040 *3 *2 *4)) - (-4 *4 (-861 *3 (-469 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-772)))) - ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1058)))) - ((*1 *2 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961)))) + (-12 (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1041 *3 *2 *4)) + (-4 *4 (-862 *3 (-470 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-773)))) + ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1059)))) + ((*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) ((*1 *1 *2) - (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1082 *3 *4 *5)) - (-4 *3 (-961)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) + (-4 *3 (-962)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1089 *3 *4 *5)) - (-4 *3 (-961)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) + (-4 *3 (-962)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3) - (-5 *1 (-1089 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102 (-1090) (-379))) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) - ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1095)))) - ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1095)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1095)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1103 *3)) (-4 *3 (-1013)))) - ((*1 *2 *3) (-12 (-5 *2 (-1109)) (-5 *1 (-1110 *3)) (-4 *3 (-1013)))) - ((*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-5 *1 (-1122 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1122 *3)) (-4 *3 (-961)))) + (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3) + (-5 *1 (-1090 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103 (-1091) (-379))) (-5 *1 (-1095)))) + ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1104 *3)) (-4 *3 (-1014)))) + ((*1 *2 *3) (-12 (-5 *2 (-1110)) (-5 *1 (-1111 *3)) (-4 *3 (-1014)))) + ((*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-5 *1 (-1123 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-962)))) ((*1 *1 *2) - (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1139 *3 *4 *5)) - (-4 *3 (-961)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1129)) (-5 *1 (-1146 *3)))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) + (-4 *3 (-962)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1002 *3)) (-4 *3 (-1130)) (-5 *1 (-1147 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1169 *3 *4 *5)) - (-4 *3 (-961)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) + (-4 *3 (-962)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3) - (-5 *1 (-1169 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1176 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-408)) (-5 *2 (-1182)) (-5 *1 (-1181)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1182)))) - ((*1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1204 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756)) + (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3) + (-5 *1 (-1170 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-408)) (-5 *2 (-1183)) (-5 *1 (-1182)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1183)))) + ((*1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1205 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) ((*1 *2 *1) - (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756)) + (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) ((*1 *1 *2) - (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) - (-5 *1 (-1200 *3 *4))))) + (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) + (-5 *1 (-1201 *3 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1195 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) - (-5 *1 (-606 *3 *4)))) + (|partial| -12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) + (-5 *1 (-607 *3 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756)) + (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) + (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1004 *2)) (-4 *2 (-364 *4)) (-4 *4 (-495)) + (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))))) + (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 (-484))) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) - (-14 *4 (-583 (-1090))))) + (-12 (-5 *2 (-584 (-485))) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) + (-14 *4 (-584 (-1091))))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *1 *1) (-4 *1 (-239))) ((*1 *1 *2) - (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) - (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-5 *1 (-566 *3 *4 *5)) - (-14 *5 (-830)))) + (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) + (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-5 *1 (-567 *3 *4 *5)) + (-14 *5 (-831)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-350 (-484))))) (-4 *5 (-756)) - (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4)))) + (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) + (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-5 *1 (-1200 *3 *4)) (-4 *4 (-654 (-350 (-484)))) - (-4 *3 (-756)) (-4 *4 (-146))))) + (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-350 (-485)))) + (-4 *3 (-757)) (-4 *4 (-146))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *1 *1) (-4 *1 (-239))) ((*1 *2 *3) - (-12 (-5 *3 (-348 *4)) (-4 *4 (-495)) - (-5 *2 (-583 (-2 (|:| -3954 (-694)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) + (-12 (-5 *3 (-348 *4)) (-4 *4 (-496)) + (-5 *2 (-584 (-2 (|:| -3955 (-695)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) - (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) + (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) + (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-350 (-484))))) (-4 *5 (-756)) - (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4)))) + (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) + (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-5 *1 (-1200 *3 *4)) (-4 *4 (-654 (-350 (-484)))) - (-4 *3 (-756)) (-4 *4 (-146))))) + (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-350 (-485)))) + (-4 *3 (-757)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) - (-5 *2 (-2 (|:| |k| (-739 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) + (-5 *2 (-2 (|:| |k| (-740 *3)) (|:| |c| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1204 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) + (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-739 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))) + (-12 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1204 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) + (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-739 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013)))) + (-12 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-484)) (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961)))) + (-12 (-5 *4 (-485)) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-739 *4)) (-4 *4 (-756)) (-4 *1 (-1199 *4 *3)) (-4 *3 (-961))))) + (-12 (-5 *2 (-740 *4)) (-4 *4 (-757)) (-4 *1 (-1200 *4 *3)) (-4 *3 (-962))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) ((*1 *2 *1) - (-12 (-4 *3 (-495)) (-5 *2 (-85)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1155 *3)))) + (-12 (-4 *3 (-496)) (-5 *2 (-85)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) + (-12 (-5 *2 (-85)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) ((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85))))) -(((*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) + (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) ((*1 *1 *1) - (-12 (-5 *1 (-566 *2 *3 *4)) (-4 *2 (-756)) - (-4 *3 (-13 (-146) (-654 (-350 (-484))))) (-14 *4 (-830)))) - ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) - ((*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) - ((*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))) + (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-757)) + (-4 *3 (-13 (-146) (-655 (-350 (-485))))) (-14 *4 (-831)))) + ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) + ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) + ((*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) + (-12 (-5 *2 (-695)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-4 *4 (-146)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)) (-4 *3 (-146))))) + (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)) (-4 *3 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-583 *3)))) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-584 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-583 *3)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) - (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) + (-12 (-5 *2 (-584 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) + (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) ((*1 *2 *1) - (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-583 *3))))) + (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-584 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1124 *4 *5 *3 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *3 (-756)) - (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1125 *4 *5 *3 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *3 (-757)) + (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-830)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) + (-12 (-4 *4 (-312)) (-5 *2 (-831)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) ((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-743 (-830))) (-5 *1 (-279 *3 *4)) + (-12 (-4 *4 (-312)) (-5 *2 (-744 (-831))) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) - ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830)))) - ((*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830)))))) + ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831)))) + ((*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831)))))) (((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) - ((*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-694))))) + (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) + ((*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-695))))) (((*1 *2 *2) - (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1155 *4)) - (-5 *1 (-700 *3 *4 *5 *2 *6)) (-4 *2 (-1155 *5)) (-14 *6 (-830)))) + (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1156 *4)) + (-5 *1 (-701 *3 *4 *5 *2 *6)) (-4 *2 (-1156 *5)) (-14 *6 (-831)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) - ((*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-312)) (-4 *2 (-320))))) + (-12 (-5 *2 (-695)) (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) + ((*1 *1 *1) (-12 (-4 *1 (-1199 *2)) (-4 *2 (-312)) (-4 *2 (-320))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-350 (-484))))) (-4 *5 (-756)) - (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4))))) + (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) + (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) - (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1193 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) + (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) - (-4 *7 (-756)) (-5 *1 (-1193 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) + (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) - (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1193 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) + (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) - (-4 *7 (-756)) (-5 *1 (-1193 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) + (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-583 (-1193 *4 *5 *6 *7))) - (-5 *1 (-1193 *4 *5 *6 *7)))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-584 (-1194 *4 *5 *6 *7))) + (-5 *1 (-1194 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) - (-5 *2 (-583 (-1193 *6 *7 *8 *9))) (-5 *1 (-1193 *6 *7 *8 *9))))) + (-12 (-5 *3 (-584 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) + (-5 *2 (-584 (-1194 *6 *7 *8 *9))) (-5 *1 (-1194 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-775 *4 *5 *6 *7)) (-4 *4 (-961)) - (-14 *5 (-583 (-1090))) (-14 *6 (-583 *3)) (-14 *7 *3))) + (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-776 *4 *5 *6 *7)) (-4 *4 (-962)) + (-14 *5 (-584 (-1091))) (-14 *6 (-584 *3)) (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) - (-14 *8 (-583 *5)) (-5 *2 (-1185)) (-5 *1 (-1192 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-861 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-458)))) + (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) + (-14 *8 (-584 *5)) (-5 *2 (-1186)) (-5 *1 (-1193 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-862 *4 *6 *5)) (-14 *9 (-584 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *2)) - (-4 *3 (-13 (-1013) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1191))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1190))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1190))))) + (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *2)) + (-4 *3 (-13 (-1014) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1192))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) - (-4 *4 (-1155 *3)) + (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) + (-4 *4 (-1156 *3)) (-5 *2 - (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) + (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-1155 *3)) + (-12 (-5 *3 (-485)) (-4 *4 (-1156 *3)) (-5 *2 - (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) - (-5 *1 (-692 *4 *5)) (-4 *5 (-353 *3 *4)))) + (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) + (-5 *1 (-693 *4 *5)) (-4 *5 (-353 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3)) + (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) (-5 *2 - (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) - (-5 *1 (-898 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5)))) + (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) + (-5 *1 (-899 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3)) + (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) (-5 *2 - (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) - (-5 *1 (-1189 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5))))) + (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) + (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5))))) (((*1 *2) - (-12 (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) - (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)))) + (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) + (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) - (-4 *4 (-1155 *3)) + (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) + (-4 *4 (-1156 *3)) (-5 *2 - (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) + (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-1155 (-484))) + (-12 (-4 *3 (-1156 (-485))) (-5 *2 - (-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) - (|:| |basisInv| (-630 (-484))))) - (-5 *1 (-692 *3 *4)) (-4 *4 (-353 (-484) *3)))) + (-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) + (|:| |basisInv| (-631 (-485))))) + (-5 *1 (-693 *3 *4)) (-4 *4 (-353 (-485) *3)))) ((*1 *2) - (-12 (-4 *3 (-299)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4)) + (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) (-5 *2 - (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) - (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5)))) + (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) + (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-299)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4)) + (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) (-5 *2 - (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) - (-5 *1 (-1189 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5))))) + (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) + (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-694)) (-4 *6 (-312)) (-5 *4 (-1122 *6)) - (-5 *2 (-1 (-1069 *4) (-1069 *4))) (-5 *1 (-1188 *6)) (-5 *5 (-1069 *4))))) + (-12 (-5 *3 (-695)) (-4 *6 (-312)) (-5 *4 (-1123 *6)) + (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1189 *6)) (-5 *5 (-1070 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1090)) (-4 *5 (-312)) (-5 *2 (-583 (-1122 *5))) - (-5 *1 (-1188 *5)) (-5 *4 (-1122 *5))))) + (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-584 (-1123 *5))) + (-5 *1 (-1189 *5)) (-5 *4 (-1123 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1090)) (-5 *2 (-1 (-1085 (-857 *4)) (-857 *4))) - (-5 *1 (-1188 *4)) (-4 *4 (-312))))) + (-12 (-5 *3 (-1091)) (-5 *2 (-1 (-1086 (-858 *4)) (-858 *4))) + (-5 *1 (-1189 *4)) (-4 *4 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1090)) (-4 *5 (-312)) (-5 *2 (-1069 (-1069 (-857 *5)))) - (-5 *1 (-1188 *5)) (-5 *4 (-1069 (-857 *5)))))) + (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-1070 (-1070 (-858 *5)))) + (-5 *1 (-1189 *5)) (-5 *4 (-1070 (-858 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1069 (-857 *4)) (-1069 (-857 *4)))) - (-5 *1 (-1188 *4)) (-4 *4 (-312))))) + (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4)))) + (-5 *1 (-1189 *4)) (-4 *4 (-312))))) (((*1 *2 *3) - (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1069 (-857 *4)) (-1069 (-857 *4)))) - (-5 *1 (-1188 *4)) (-4 *4 (-312))))) + (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4)))) + (-5 *1 (-1189 *4)) (-4 *4 (-312))))) (((*1 *2) - (-12 (-14 *4 (-694)) (-4 *5 (-1129)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) + (-12 (-14 *4 (-695)) (-4 *5 (-1130)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) ((*1 *2) - (-12 (-5 *2 (-694)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) ((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484)) - (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485)) + (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) - (-5 *2 (-484)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-961)) (-5 *2 (-830)))) - ((*1 *2) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) -(((*1 *1) (-5 *1 (-1185)))) -(((*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1184)))) - ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1184))))) -(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) - ((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184))))) -(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) - ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184))))) -(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) - ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184))))) -(((*1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1184))))) -(((*1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1184)))) - ((*1 *2 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1184))))) -(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1184))))) -(((*1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1184)))) - ((*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1184))))) -(((*1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1184)))) - ((*1 *2 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1184))))) -(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) - ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184))))) -(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) - ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184))))) -(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) - ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184))))) -(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) - ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184))))) -(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) - ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184))))) -(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) - ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183))))) -(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) - ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183))))) -(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) - ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183))))) -(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) - ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183))))) -(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) - ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183))))) -(((*1 *1) (-5 *1 (-1183)))) + (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) + (-5 *2 (-485)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-4 *3 (-962)) (-5 *2 (-831)))) + ((*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-312)) (-5 *2 (-107))))) +(((*1 *1) (-5 *1 (-1186)))) +(((*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1185)))) + ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1185))))) +(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) + ((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185))))) +(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) + ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184))))) +(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) + ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184))))) +(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) + ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184))))) +(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) + ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184))))) +(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) + ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184))))) +(((*1 *1) (-5 *1 (-1184)))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-583 (-221))) (-5 *1 (-1183)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-1073)) (-5 *1 (-1183)))) - ((*1 *1 *1) (-5 *1 (-1183)))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-1079 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1183))))) + (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-584 (-221))) (-5 *1 (-1184)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1074)) (-5 *1 (-1184)))) + ((*1 *1 *1) (-5 *1 (-1184)))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-1080 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184)))) + ((*1 *2 *1) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-694)) (-5 *3 (-854 *4)) (-4 *1 (-1048 *4)) (-4 *4 (-961)))) + (-12 (-5 *2 (-695)) (-5 *3 (-855 *4)) (-4 *1 (-1049 *4)) (-4 *4 (-962)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-694)) (-5 *4 (-854 (-179))) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1183))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-1182)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183))))) + (-12 (-5 *3 (-695)) (-5 *4 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1184)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1184))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) (((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182)))) + (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1183))))) + (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) ((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *3 (-583 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) + (-5 *3 (-584 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-484)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) + (-12 (-5 *3 (-485)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *2 (-1185)) (-5 *1 (-1183)))) + (-5 *2 (-1186)) (-5 *1 (-1184)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3847 (-179)) + (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) - (-5 *1 (-1183)))) + (-5 *1 (-1184)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183))))) + (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1185)) (-5 *1 (-1182)))) + (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-1183)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) + (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1184)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-830)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1182)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1185)) (-5 *1 (-1183))))) + (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1186)) (-5 *1 (-1184))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1182)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1182)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1182)))) + (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1183)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1183)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1183)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1183))))) + (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1184)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-408)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1183))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-854 (-179)))) (-5 *1 (-1182))))) -(((*1 *1) (-5 *1 (-1182)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-408)) (-5 *3 (-583 (-221))) (-5 *1 (-1182)))) - ((*1 *1 *1) (-5 *1 (-1182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-408)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1184))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-855 (-179)))) (-5 *1 (-1183))))) +(((*1 *1) (-5 *1 (-1183)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-408)) (-5 *3 (-584 (-221))) (-5 *1 (-1183)))) + ((*1 *1 *1) (-5 *1 (-1183)))) (((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-830)) (-5 *4 (-179)) (-5 *5 (-484)) (-5 *6 (-783)) - (-5 *2 (-1185)) (-5 *1 (-1182))))) + (-12 (-5 *3 (-831)) (-5 *4 (-179)) (-5 *5 (-485)) (-5 *6 (-784)) + (-5 *2 (-1186)) (-5 *1 (-1183))))) (((*1 *2 *1) (-12 (-5 *2 - (-1179 + (-1180 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) - (|:| |deltaY| (-179)) (|:| -3850 (-484)) (|:| -3848 (-484)) - (|:| |spline| (-484)) (|:| -3879 (-484)) (|:| |axesColor| (-783)) - (|:| -3851 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484))))) - (-5 *1 (-1182))))) -(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) - ((*1 *2 *1) (-12 (-5 *2 (-1179 (-3 (-408) "undefined"))) (-5 *1 (-1182))))) + (|:| |deltaY| (-179)) (|:| -3851 (-485)) (|:| -3849 (-485)) + (|:| |spline| (-485)) (|:| -3880 (-485)) (|:| |axesColor| (-784)) + (|:| -3852 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485))))) + (-5 *1 (-1183))))) +(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180 (-3 (-408) "undefined"))) (-5 *1 (-1183))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-408)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-5 *2 (-408)) (-5 *1 (-1182))))) + (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-408)) (-5 *1 (-1183))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-583 (-330))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-330))) (-5 *1 (-408)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-330))) (-5 *1 (-408)))) + (-12 (-5 *2 (-584 (-330))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1185)) (-5 *1 (-1182)))) + (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182))))) + (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182))))) + (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182))))) + (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) - ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) + (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) + ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-830)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1182))))) + (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1183))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182))))) + (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-408)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182))))) + (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) - (-5 *6 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-1181)))) + (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) + (-5 *6 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-1182)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) - (-5 *2 (-1182)) (-5 *1 (-1181))))) + (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) + (-5 *2 (-1183)) (-5 *1 (-1182))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) - (-5 *6 (-583 (-221))) (-5 *2 (-408)) (-5 *1 (-1181)))) + (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) + (-5 *6 (-584 (-221))) (-5 *2 (-408)) (-5 *1 (-1182)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-408)) (-5 *1 (-1181)))) + (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-408)) (-5 *1 (-1182)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-408)) - (-5 *1 (-1181))))) + (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-408)) + (-5 *1 (-1182))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-59 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (|has| *1 (-6 -3995)) - (-4 *1 (-124 *2)) (-4 *2 (-1129)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (|has| *1 (-6 -3996)) + (-4 *1 (-124 *2)) (-4 *2 (-1130)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) - (-4 *2 (-1129)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) + (-4 *2 (-1130)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) - (-4 *2 (-1129)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) + (-4 *2 (-1130)))) ((*1 *2 *3) - (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -2004 (-1085 *4)) (|:| |deg| (-830)))) - (-5 *1 (-175 *4 *5)) (-5 *3 (-1085 *4)) (-4 *5 (-495)))) + (-12 (-4 *4 (-962)) (-5 *2 (-2 (|:| -2005 (-1086 *4)) (|:| |deg| (-831)))) + (-5 *1 (-175 *4 *5)) (-5 *3 (-1086 *4)) (-4 *5 (-496)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) - (-4 *6 (-1129)) (-4 *2 (-1129)) (-5 *1 (-198 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) + (-4 *6 (-1130)) (-4 *2 (-1130)) (-5 *1 (-198 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1155 *4)) + (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1156 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-495)) (-4 *2 (-1013)))) + ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-496)) (-4 *2 (-1014)))) ((*1 *1 *1) - (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1155 *2)) - (-4 *4 (-1155 (-350 *3))) (-4 *5 (-291 *2 *3 *4)))) + (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1156 *2)) + (-4 *4 (-1156 (-350 *3))) (-4 *5 (-291 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1129)) (-4 *2 (-1129)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-325 *5 *4 *2 *6)) (-4 *4 (-324 *5)) (-4 *6 (-324 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1014)) (-4 *2 (-1014)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-369 *5)) (-4 *6 (-369 *2)))) ((*1 *1 *1) (-5 *1 (-435))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) - (-5 *1 (-584 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) + (-5 *1 (-585 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-324 *5)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *8 (-324 *2)) (-4 *9 (-324 *2)) - (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-627 *5 *6 *7)) - (-4 *10 (-627 *2 *8 *9)))) + (-5 *1 (-629 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-628 *5 *6 *7)) + (-4 *10 (-628 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1155 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-312)) - (-4 *3 (-146)) (-4 *1 (-661 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1155 *3)))) + (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-312)) + (-4 *3 (-146)) (-4 *1 (-662 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-869 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) - (-5 *1 (-870 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) + (-5 *1 (-871 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) + (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-694)) - (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962)) (-14 *5 (-695)) + (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) - (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *12 (-965 *5 *6 *2 *10 *11)))) + (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1069 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) - (-5 *1 (-1071 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) + (-5 *1 (-1072 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) - (-4 *1 (-1124 *5 *6 *7 *2)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) - (-4 *2 (-977 *5 *6 *7)))) + (-4 *1 (-1125 *5 *6 *7 *2)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) + (-4 *2 (-978 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1179 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) - (-5 *1 (-1180 *5 *2))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) + (-5 *1 (-1181 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-694)) - (-4 *7 (-1129)) (-4 *5 (-1129)) (-5 *2 (-197 *6 *5)) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-695)) + (-4 *7 (-1130)) (-4 *5 (-1130)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-4 *2 (-324 *5)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-4 *2 (-324 *5)) (-5 *1 (-325 *6 *4 *5 *2)) (-4 *4 (-324 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013)) (-4 *2 (-369 *5)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1014)) (-4 *5 (-1014)) (-4 *2 (-369 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-369 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) - (-5 *2 (-583 *5)) (-5 *1 (-584 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-584 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) + (-5 *2 (-584 *5)) (-5 *1 (-585 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-869 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) - (-5 *2 (-869 *5)) (-5 *1 (-870 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-870 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) + (-5 *2 (-870 *5)) (-5 *1 (-871 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1069 *6)) (-4 *6 (-1129)) (-4 *3 (-1129)) - (-5 *2 (-1069 *3)) (-5 *1 (-1071 *6 *3)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1070 *6)) (-4 *6 (-1130)) (-4 *3 (-1130)) + (-5 *2 (-1070 *3)) (-5 *1 (-1072 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1179 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) - (-5 *2 (-1179 *5)) (-5 *1 (-1180 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-1179 *3))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1180 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) + (-5 *2 (-1180 *5)) (-5 *1 (-1181 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1180 *3))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-130))) ((*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 - (-13 (-756) - (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $)) - (-15 -1963 ((-1185) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1129)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1129)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)))) + (-13 (-757) + (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) + (-15 -1964 ((-1186) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1155 *3)))) + (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1156 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) - (-4 *5 (-861 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-473))) + (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) + (-4 *5 (-862 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-474))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-25))))) + ((*1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-25))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-694)) (-4 *1 (-1178 *3)) (-4 *3 (-23)) (-4 *3 (-1129))))) + (-12 (-5 *2 (-695)) (-4 *1 (-1179 *3)) (-4 *3 (-23)) (-4 *3 (-1130))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-107))) ((*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 - (-13 (-756) - (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $)) - (-15 -1963 ((-1185) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))) + (-13 (-757) + (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) + (-15 -1964 ((-1186) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) - ((*1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1129)) (-4 *2 (-961)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) - ((*1 *1 *1) (-5 *1 (-772))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-179)) (-5 *1 (-1126)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-961))))) + ((*1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) + ((*1 *1 *1) (-5 *1 (-773))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-179)) (-5 *1 (-1127)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1178 *3)) (-4 *3 (-1129)) (-4 *3 (-961)) (-5 *2 (-630 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-961)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-961))))) -(((*1 *2 *3) - (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239))) - (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) - ((*1 *1 *1) (-4 *1 (-483))) - ((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) - ((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) - ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) - ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) - ((*1 *2 *1) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1127 *3)) (-4 *3 (-1129)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-915)) (-4 *2 (-961))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-915)) (-4 *2 (-961))))) -(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-756)))) + (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-962)) (-5 *2 (-631 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-962)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962))))) +(((*1 *2 *3) + (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) + (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) + ((*1 *1 *1) (-4 *1 (-484))) + ((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) + ((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) + ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) + ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) + ((*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1128 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962))))) +(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-757)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-773 *3)) (-14 *3 (-583 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-902)))) + (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-774 *3)) (-14 *3 (-584 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-903)))) ((*1 *2 *1) - (-12 (-4 *4 (-1129)) (-5 *2 (-1090)) (-5 *1 (-971 *3 *4)) - (-4 *3 (-1006 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1004 *3)) (-4 *3 (-1129)))) + (-12 (-4 *4 (-1130)) (-5 *2 (-1091)) (-5 *1 (-972 *3 *4)) + (-4 *3 (-1007 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1005 *3)) (-4 *3 (-1130)))) ((*1 *2 *1) - (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1090)))) - ((*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1176 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1091)))) + ((*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-350 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-495)) (-4 *4 (-961)) - (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *5 *6 *2)) (-4 *6 (-600 *5))))) + (-12 (-5 *3 (-350 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-496)) (-4 *4 (-962)) + (-4 *2 (-1173 *4)) (-5 *1 (-1175 *4 *5 *6 *2)) (-4 *6 (-601 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-961)) (-4 *5 (-1155 *4)) (-5 *2 (-1 *6 (-583 *6))) - (-5 *1 (-1174 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-1172 *4))))) + (-12 (-4 *4 (-962)) (-4 *5 (-1156 *4)) (-5 *2 (-1 *6 (-584 *6))) + (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1173 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-4 *2 (-1155 *5)) - (-5 *1 (-1174 *5 *2 *6 *3)) (-4 *6 (-600 *2)) (-4 *3 (-1172 *5))))) + (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-4 *2 (-1156 *5)) + (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1173 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-961)) (-4 *3 (-1155 *4)) (-4 *2 (-1172 *4)) - (-5 *1 (-1174 *4 *3 *5 *2)) (-4 *5 (-600 *3))))) + (-12 (-4 *4 (-962)) (-4 *3 (-1156 *4)) (-4 *2 (-1173 *4)) + (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-601 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) - (-4 *5 (-38 (-350 (-484)))) (-4 *6 (-1172 *5)) (-5 *2 (-583 *6)) - (-5 *1 (-1173 *5 *6))))) + (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 (-1 *6 (-584 *6)))) + (-4 *5 (-38 (-350 (-485)))) (-4 *6 (-1173 *5)) (-5 *2 (-584 *6)) + (-5 *1 (-1174 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-38 (-350 (-484)))) - (-4 *2 (-1172 *5)) (-5 *1 (-1173 *5 *2))))) + (-12 (-5 *3 (-1 *2 (-584 *2))) (-5 *4 (-584 *5)) (-4 *5 (-38 (-350 (-485)))) + (-4 *2 (-1173 *5)) (-5 *1 (-1174 *5 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2)) - (-4 *4 (-38 (-350 (-484))))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) + (-4 *4 (-38 (-350 (-485))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2)) - (-4 *4 (-38 (-350 (-484))))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) + (-4 *4 (-38 (-350 (-485))))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-1172 *3))))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1174 *3 *2)) (-4 *2 (-1173 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-484)))) - (-5 *2 (-1 (-1069 *4) (-583 (-1069 *4)))) (-5 *1 (-1173 *4 *5))))) + (-12 (-5 *3 (-1 *5 (-584 *5))) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485)))) + (-5 *2 (-1 (-1070 *4) (-584 (-1070 *4)))) (-5 *1 (-1174 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-484)))) - (-5 *2 (-1 (-1069 *4) (-1069 *4) (-1069 *4))) (-5 *1 (-1173 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485)))) + (-5 *2 (-1 (-1070 *4) (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-484)))) - (-5 *2 (-1 (-1069 *4) (-1069 *4))) (-5 *1 (-1173 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485)))) + (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) + (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-350 (-484))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) + (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) - (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) + (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-484))) - (-4 *3 (-13 (-27) (-1115) (-364 *6))) - (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485))) + (-4 *3 (-13 (-27) (-1116) (-364 *6))) + (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6)) - (-4 *6 (-13 (-27) (-1115) (-364 *5))) - (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) + (-4 *6 (-13 (-27) (-1116) (-364 *5))) + (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) - (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) + (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-484))) - (-4 *7 (-13 (-27) (-1115) (-364 *6))) - (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485))) + (-4 *7 (-13 (-27) (-1116) (-364 *6))) + (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-484))) - (-4 *3 (-13 (-27) (-1115) (-364 *7))) - (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485))) + (-4 *3 (-13 (-27) (-1116) (-364 *7))) + (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-350 (-484)))) (-5 *4 (-249 *8)) - (-5 *5 (-1146 (-350 (-484)))) (-5 *6 (-350 (-484))) - (-4 *8 (-13 (-27) (-1115) (-364 *7))) - (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8)) + (-5 *5 (-1147 (-350 (-485)))) (-5 *6 (-350 (-485))) + (-4 *8 (-13 (-27) (-1116) (-364 *7))) + (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-350 (-484)))) - (-5 *7 (-350 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *8))) - (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-350 (-485)))) + (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *8))) + (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961)) - (-5 *1 (-530 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-531 *3)))) + (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962)) + (-5 *1 (-531 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-532 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961)) - (-4 *1 (-1141 *3)))) + (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962)) + (-4 *1 (-1142 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-694)) (-5 *3 (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| *4)))) - (-4 *4 (-961)) (-4 *1 (-1162 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-4 *1 (-1172 *3)))) + (-12 (-5 *2 (-695)) (-5 *3 (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4)))) + (-4 *4 (-962)) (-4 *1 (-1163 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-4 *1 (-1173 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1069 (-2 (|:| |k| (-694)) (|:| |c| *3)))) (-4 *3 (-961)) - (-4 *1 (-1172 *3))))) + (-12 (-5 *2 (-1070 (-2 (|:| |k| (-695)) (|:| |c| *3)))) (-4 *3 (-962)) + (-4 *1 (-1173 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-583 *3)))) + (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-584 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) ((*1 *2 *1) - (-12 (-5 *2 (-583 *3)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) - ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-961)) (-5 *2 (-1069 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-961))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-530 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1141 *3)) (-4 *3 (-961)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1172 *3)) (-4 *3 (-961))))) + (-12 (-5 *2 (-584 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) + ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-584 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-5 *2 (-1070 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-531 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1142 *3)) (-4 *3 (-962)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1173 *3)) (-4 *3 (-962))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) - (-5 *2 (-857 *4)))) + (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) + (-5 *2 (-858 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) - (-5 *2 (-857 *4)))) + (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) + (-5 *2 (-858 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-694)) (-4 *1 (-1172 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))) + (-12 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-694)) (-4 *1 (-1172 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4))))) + (-12 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-350 (-484))) (-4 *4 (-950 (-484))) (-4 *4 (-495)) + (-12 (-5 *3 (-350 (-485))) (-4 *4 (-951 (-485))) (-4 *4 (-496)) (-5 *1 (-32 *4 *2)) (-4 *2 (-364 *4)))) ((*1 *1 *1 *1) (-5 *1 (-107))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) ((*1 *1 *1 *1) (-5 *1 (-179))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-484)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-485)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-350 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1172 *4)) - (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1143 *4 *5)))) + (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1173 *4)) + (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1144 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-350 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1141 *4)) - (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1164 *4 *5)) (-4 *6 (-896 *5)))) + (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1142 *4)) + (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1165 *4 *5)) (-4 *6 (-897 *5)))) ((*1 *1 *1 *1) (-4 *1 (-239))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014)))) ((*1 *1 *1 *1) (-5 *1 (-330))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-336 *2)) (-4 *2 (-1013)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-336 *2)) (-4 *2 (-1014)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-4 *3 (-1025)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-484)))) + (-12 (-5 *2 (-695)) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-1026)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-485)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) + (-12 (-5 *2 (-695)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1179 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-473)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-473)))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-474)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-474)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *4 (-1013)) (-5 *1 (-623 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *4 (-1014)) (-5 *1 (-624 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-312)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-695)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))) + (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-484)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)) (-4 *4 (-590 *3)))) + (-12 (-5 *2 (-485)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)) (-4 *4 (-591 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-651 *4 *5)) - (-4 *5 (-590 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-694)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-745 *3)) (-4 *3 (-961)))) + (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-652 *4 *5)) + (-4 *5 (-591 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-695)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-746 *3)) (-4 *3 (-962)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-5 *1 (-745 *4)) (-4 *4 (-961)))) - ((*1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-350 (-484))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-830)))) + (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-5 *1 (-746 *4)) (-4 *4 (-962)))) + ((*1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-350 (-485))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-831)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-484)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *4 (-961)) + (-12 (-5 *2 (-485)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1004 (-750 *3))) (-4 *3 (-13 (-1115) (-871) (-29 *5))) - (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) + (-12 (-5 *4 (-1005 (-751 *3))) (-4 *3 (-13 (-1116) (-872) (-29 *5))) + (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 - (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) + (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1004 (-750 *3))) (-5 *5 (-1073)) - (-4 *3 (-13 (-1115) (-871) (-29 *6))) - (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) + (-12 (-5 *4 (-1005 (-751 *3))) (-5 *5 (-1074)) + (-4 *3 (-13 (-1116) (-872) (-29 *6))) + (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 - (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#) + (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1004 (-750 (-265 *5)))) - (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) + (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1005 (-751 (-265 *5)))) + (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 - (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5)))) + (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5)))) (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) (-5 *1 (-174 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-350 (-857 *6))) (-5 *4 (-1004 (-750 (-265 *6)))) - (-5 *5 (-1073)) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) + (-12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1005 (-751 (-265 *6)))) + (-5 *5 (-1074)) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 - (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6)))) + (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-174 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1004 (-750 (-350 (-857 *5))))) (-5 *3 (-350 (-857 *5))) - (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) + (-12 (-5 *4 (-1005 (-751 (-350 (-858 *5))))) (-5 *3 (-350 (-858 *5))) + (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 - (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5)))) + (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-174 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1004 (-750 (-350 (-857 *6))))) (-5 *5 (-1073)) - (-5 *3 (-350 (-857 *6))) - (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) + (-12 (-5 *4 (-1005 (-751 (-350 (-858 *6))))) (-5 *5 (-1074)) + (-5 *3 (-350 (-858 *6))) + (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 - (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6)))) + (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-174 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) - (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-373 *5 *3)) - (-4 *3 (-13 (-1115) (-871) (-29 *5))))) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) + (-5 *2 (-3 *3 (-584 *3))) (-5 *1 (-373 *5 *3)) + (-4 *3 (-13 (-1116) (-872) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-414 *3 *4 *5)) - (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-414 *3 *4 *5)) + (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4)) - (-5 *2 (-519 (-350 *5))) (-5 *1 (-504 *4 *5)) (-5 *3 (-350 *5)))) + (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) + (-5 *2 (-520 (-350 *5))) (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-120)) - (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-5 *2 (-3 (-265 *5) (-583 (-265 *5)))) (-5 *1 (-525 *5)))) + (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-120)) + (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-5 *2 (-3 (-265 *5) (-584 (-265 *5)))) (-5 *1 (-526 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-679 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756)) - (-4 *3 (-38 (-350 (-484)))))) + (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)) + (-4 *3 (-38 (-350 (-485)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1090)) (-5 *1 (-857 *3)) (-4 *3 (-38 (-350 (-484)))) - (-4 *3 (-961)))) + (-12 (-5 *2 (-1091)) (-5 *1 (-858 *3)) (-4 *3 (-38 (-350 (-485)))) + (-4 *3 (-962)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-4 *2 (-756)) - (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-861 *3 (-469 *2) *2)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-4 *2 (-757)) + (-5 *1 (-1041 *3 *2 *4)) (-4 *4 (-862 *3 (-470 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) - (-5 *1 (-1075 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) + (-5 *1 (-1076 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1082 *3 *4 *5)) - (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) + (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5)) - (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5)) + (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1089 *3 *4 *5)) - (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) + (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1090)) (-5 *1 (-1122 *3)) (-4 *3 (-38 (-350 (-484)))) - (-4 *3 (-961)))) + (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-38 (-350 (-485)))) + (-4 *3 (-962)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1139 *3 *4 *5)) - (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) + (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1090)) (-4 *1 (-1141 *3)) (-4 *3 (-961)) - (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1115)) - (-4 *3 (-38 (-350 (-484)))))) - (-12 (-5 *2 (-1090)) (-4 *1 (-1141 *3)) (-4 *3 (-961)) - (-12 (|has| *3 (-15 -3081 ((-583 *2) *3))) - (|has| *3 (-15 -3812 (*3 *3 *2))) (-4 *3 (-38 (-350 (-484)))))))) + (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962)) + (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) + (-4 *3 (-38 (-350 (-485)))))) + (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962)) + (-12 (|has| *3 (-15 -3082 ((-584 *2) *3))) + (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1141 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484)))))) + (-12 (-4 *1 (-1142 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) ((*1 *1 *1) - (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484)))))) + (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1160 *3 *4 *5)) - (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1161 *3 *4 *5)) + (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1090)) (-4 *1 (-1162 *3)) (-4 *3 (-961)) - (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1115)) - (-4 *3 (-38 (-350 (-484)))))) - (-12 (-5 *2 (-1090)) (-4 *1 (-1162 *3)) (-4 *3 (-961)) - (-12 (|has| *3 (-15 -3081 ((-583 *2) *3))) - (|has| *3 (-15 -3812 (*3 *3 *2))) (-4 *3 (-38 (-350 (-484)))))))) + (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962)) + (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) + (-4 *3 (-38 (-350 (-485)))))) + (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962)) + (-12 (|has| *3 (-15 -3082 ((-584 *2) *3))) + (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1162 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484)))))) + (-12 (-4 *1 (-1163 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1169 *3 *4 *5)) - (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3))) + (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) + (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1090)) (-4 *1 (-1172 *3)) (-4 *3 (-961)) - (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1115)) - (-4 *3 (-38 (-350 (-484)))))) - (-12 (-5 *2 (-1090)) (-4 *1 (-1172 *3)) (-4 *3 (-961)) - (-12 (|has| *3 (-15 -3081 ((-583 *2) *3))) - (|has| *3 (-15 -3812 (*3 *3 *2))) (-4 *3 (-38 (-350 (-484)))))))) + (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962)) + (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) + (-4 *3 (-38 (-350 (-485)))))) + (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962)) + (-12 (|has| *3 (-15 -3082 ((-584 *2) *3))) + (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1172 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484))))))) + (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-694)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1089 *4 *5 *6)) - (-4 *4 (-961)) (-14 *5 (-1090)) (-14 *6 *4))) + (-12 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1090 *4 *5 *6)) + (-4 *4 (-962)) (-14 *5 (-1091)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-694)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1169 *4 *5 *6)) - (-4 *4 (-961)) (-14 *5 (-1090)) (-14 *6 *4)))) -(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) + (-12 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1170 *4 *5 *6)) + (-4 *4 (-962)) (-14 *5 (-1091)) (-14 *6 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) + (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) + (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) + (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2)))) + (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1075 *4)))) + (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-484)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090)) + (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2)))) + (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1075 *4)))) + (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-484)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090)) + (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1075 *4)))) + (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-484)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090)) + (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1129)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1129)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1129)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1070 *4)) - (-4 *4 (-1129)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) - (-12 (-4 *1 (-538 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-756)) (-4 *2 (-1129)))) - ((*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) - ((*1 *2 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) - ((*1 *2 *1) (-12 (-4 *2 (-1129)) (-5 *1 (-782 *2 *3)) (-4 *3 (-1129)))) - ((*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) - (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) - ((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1071 *4)) + (-4 *4 (-1130)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) + (-12 (-4 *1 (-539 *3 *2)) (-4 *3 (-1014)) (-4 *3 (-757)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) + ((*1 *2 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) + ((*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-783 *2 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) + (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2)) + (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) - (-4 *5 (-324 *2)) (-4 *2 (-1129)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1129)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1129)))) + (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) + (-4 *5 (-324 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1130)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-583 (-484))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) - (-14 *4 (-484)) (-14 *5 (-694)))) + (-12 (-5 *3 (-584 (-485))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) + (-14 *4 (-485)) (-14 *5 (-695)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-694)))) + (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-695)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-694)))) + (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-695)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-694)))) + (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-695)))) ((*1 *2 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-484)) (-14 *4 (-694)))) + (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-485)) (-14 *4 (-695)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1090)) (-5 *2 (-203 (-1073))) (-5 *1 (-167 *4)) + (-12 (-5 *3 (-1091)) (-5 *2 (-203 (-1074))) (-5 *1 (-167 *4)) (-4 *4 - (-13 (-756) - (-10 -8 (-15 -3800 ((-1073) $ *3)) (-15 -3617 ((-1185) $)) - (-15 -1963 ((-1185) $))))))) + (-13 (-757) + (-10 -8 (-15 -3801 ((-1074) $ *3)) (-15 -3618 ((-1186) $)) + (-15 -1964 ((-1186) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-902)) (-5 *1 (-167 *3)) + (-12 (-5 *2 (-903)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-756) - (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 ((-1185) $)) - (-15 -1963 ((-1185) $))))))) + (-13 (-757) + (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 ((-1186) $)) + (-15 -1964 ((-1186) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-694)) (-5 *1 (-203 *4)) (-4 *4 (-756)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-756)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-756)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1129)) (-4 *2 (-1129)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1129)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254)))) + (-12 (-5 *3 "count") (-5 *2 (-695)) (-5 *1 (-203 *4)) (-4 *4 (-757)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-757)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-757)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1134)) (-4 *3 (-1155 *2)) - (-4 *4 (-1155 (-350 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1073)) (-5 *1 (-441)))) + (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) + (-4 *4 (-1156 (-350 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1074)) (-5 *1 (-442)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) + (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-583 (-800 *4))) (-5 *1 (-800 *4)) - (-4 *4 (-1013)))) + (-12 (-5 *2 (-86)) (-5 *3 (-584 (-801 *4))) (-5 *1 (-801 *4)) + (-4 *4 (-1014)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-694)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-923 *2)) (-4 *2 (-1129)))) + (-12 (-5 *3 (-695)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1130)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *2 (-961)) + (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-962)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) - (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))) + (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) + (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-830)) (-4 *4 (-1013)) - (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2)) - (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))))) + (-12 (-5 *3 (-831)) (-4 *4 (-1014)) + (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2)) + (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-830)) (-4 *4 (-1013)) - (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-989 *4 *5 *2)) - (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1058))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090)))) + (-12 (-5 *3 (-831)) (-4 *4 (-1014)) + (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-990 *4 *5 *2)) + (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1059))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-350 *1)) (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) + (-12 (-5 *3 (-350 *1)) (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-350 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-961)) (-4 *3 (-495)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1168 *2)) (-4 *2 (-1129))))) -(((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) - ((*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) - ((*1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) + (-12 (-5 *2 (-350 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) + ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) + ((*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1124 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717)) - (-4 *4 (-756)) (-4 *5 (-977 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) - ((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1008)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) - (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) - ((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129))))) -(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) + (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) + (-4 *4 (-757)) (-4 *5 (-978 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1009)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) + (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) ((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) - ((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *2 (-1129)) (-5 *1 (-782 *3 *2)) (-4 *3 (-1129)))) - ((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129))))) -(((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1129)) (-5 *2 (-694))))) -(((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-202 *2)) (-4 *2 (-1129)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)))) - ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) + ((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-783 *3 *2)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1130)) (-5 *2 (-695))))) +(((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-202 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2)) + (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -3996)) (-4 *1 (-92 *3)) (-4 *3 (-1129)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -3997)) (-4 *1 (-92 *3)) (-4 *3 (-1130)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -3996)) (-4 *1 (-92 *3)) (-4 *3 (-1129)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -3997)) (-4 *1 (-92 *3)) (-4 *3 (-1130)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -3996)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) - (-4 *2 (-1129)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1090)) (-5 *1 (-571)))) + (-12 (|has| *1 (-6 -3997)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) + (-4 *2 (-1130)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1091)) (-5 *1 (-572)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1146 (-484))) (|has| *1 (-6 -3996)) (-4 *1 (-593 *2)) - (-4 *2 (-1129)))) + (-12 (-5 *3 (-1147 (-485))) (|has| *1 (-6 -3997)) (-4 *1 (-594 *2)) + (-4 *2 (-1130)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) + (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -3996)) (-4 *1 (-923 *2)) - (-4 *2 (-1129)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -3997)) (-4 *1 (-924 *2)) + (-4 *2 (-1130)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) - (-4 *2 (-1129)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) + (-4 *2 (-1130)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -3996)) (-4 *1 (-1168 *3)) - (-4 *3 (-1129)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -3997)) (-4 *1 (-1169 *3)) + (-4 *3 (-1130)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) - (-4 *2 (-1129))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1069 *3)) (-4 *3 (-1129)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-1168 *2)) (-4 *2 (-1129))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) + (-4 *2 (-1130))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1070 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-484)) (|has| *1 (-6 -3996)) (-4 *1 (-1168 *3)) - (-4 *3 (-1129))))) + (-12 (-5 *2 (-485)) (|has| *1 (-6 -3997)) (-4 *1 (-1169 *3)) + (-4 *3 (-1130))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392))) - (-5 *2 (-750 *4)) (-5 *1 (-264 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4))) + (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) + (-5 *2 (-751 *4)) (-5 *1 (-264 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392))) - (-5 *2 (-750 *4)) (-5 *1 (-1166 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4)))) + (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) + (-5 *2 (-751 *4)) (-5 *1 (-1167 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392))) + (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-2 (|:| |%term| - (-2 (|:| |%coef| (-1160 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) - (|:| |%expTerms| (-583 (-2 (|:| |k| (-350 (-484))) (|:| |c| *4)))))) - (|:| |%type| (-1073)))) - (-5 *1 (-1166 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3))) - (-14 *5 (-1090)) (-14 *6 *4)))) + (-2 (|:| |%coef| (-1161 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) + (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4)))))) + (|:| |%type| (-1074)))) + (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) + (-14 *5 (-1091)) (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) + (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-350 (-484))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) + (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) - (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) + (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-484))) - (-4 *3 (-13 (-27) (-1115) (-364 *6))) - (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485))) + (-4 *3 (-13 (-27) (-1116) (-364 *6))) + (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-350 (-484)))) (-5 *4 (-249 *8)) - (-5 *5 (-1146 (-350 (-484)))) (-5 *6 (-350 (-484))) - (-4 *8 (-13 (-27) (-1115) (-364 *7))) - (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8)) + (-5 *5 (-1147 (-350 (-485)))) (-5 *6 (-350 (-485))) + (-4 *8 (-13 (-27) (-1116) (-364 *7))) + (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-350 (-484)))) - (-5 *7 (-350 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *8))) - (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-350 (-485)))) + (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *8))) + (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-350 (-484))) (-4 *4 (-961)) (-4 *1 (-1164 *4 *3)) - (-4 *3 (-1141 *4))))) + (-12 (-5 *2 (-350 (-485))) (-4 *4 (-962)) (-4 *1 (-1165 *4 *3)) + (-4 *3 (-1142 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1141 *3)) - (-5 *2 (-350 (-484)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1141 *3))))) + (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3)) + (-5 *2 (-350 (-485)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) + (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-484)) (-4 *5 (-13 (-392) (-950 *4) (-580 *4))) (-5 *2 (-51)) - (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) + (-12 (-5 *4 (-485)) (-4 *5 (-13 (-392) (-951 *4) (-581 *4))) (-5 *2 (-51)) + (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) - (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) + (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) - (-4 *6 (-13 (-392) (-950 *5) (-580 *5))) (-5 *5 (-484)) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) + (-4 *6 (-13 (-392) (-951 *5) (-581 *5))) (-5 *5 (-485)) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-484))) - (-4 *7 (-13 (-27) (-1115) (-364 *6))) - (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485))) + (-4 *7 (-13 (-27) (-1116) (-364 *6))) + (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-484))) - (-4 *3 (-13 (-27) (-1115) (-364 *7))) - (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485))) + (-4 *3 (-13 (-27) (-1116) (-364 *7))) + (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-484)) (-4 *4 (-961)) (-4 *1 (-1143 *4 *3)) (-4 *3 (-1172 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1141 *3))))) + (-12 (-5 *2 (-485)) (-4 *4 (-962)) (-4 *1 (-1144 *4 *3)) (-4 *3 (-1173 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1141 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961)))) + (|partial| -12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-830)) (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-4 *1 (-1162 *3)) (-4 *3 (-961))))) + (-12 (-5 *2 (-831)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-1163 *3)) (-4 *3 (-962))))) (((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-484)))) - (-4 *4 (-13 (-1155 *3) (-495) (-10 -8 (-15 -3144 ($ $ $))))) (-4 *3 (-495)) - (-5 *1 (-1159 *3 *4))))) + (|:| |xpnt| (-485)))) + (-4 *4 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3145 ($ $ $))))) (-4 *3 (-496)) + (-5 *1 (-1160 *3 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *1)))) - (-4 *1 (-983 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1134))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) + (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1)))) + (-4 *1 (-984 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1135))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-1159 *3 *2)) - (-4 *2 (-13 (-1155 *3) (-495) (-10 -8 (-15 -3144 ($ $ $)))))))) + (-12 (-4 *3 (-496)) (-5 *1 (-1160 *3 *2)) + (-4 *2 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3145 ($ $ $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) - (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3943 *4)))))) + (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)) + (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3944 *4)))))) ((*1 *2 *1) - (-12 (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)) - (-5 *2 (-583 (-453 *3 *4))))) + (-12 (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)) + (-5 *2 (-584 (-454 *3 *4))))) ((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| -3954 *3) (|:| -3938 *4)))) (-5 *1 (-674 *3 *4)) - (-4 *3 (-961)) (-4 *4 (-663)))) + (-12 (-5 *2 (-584 (-2 (|:| -3955 *3) (|:| -3939 *4)))) (-5 *1 (-675 *3 *4)) + (-4 *3 (-962)) (-4 *4 (-664)))) ((*1 *2 *1) - (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) - (-5 *2 (-1069 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-484)) (-5 *1 (-199)))) + (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) + (-5 *2 (-1070 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-484)) (-5 *4 (-1073)) (-5 *1 (-199)))) - ((*1 *1 *1) (-5 *1 (-772))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961))))) + (-12 (-5 *2 (-584 (-1074))) (-5 *3 (-485)) (-5 *4 (-1074)) (-5 *1 (-199)))) + ((*1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962))))) (((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) - (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) + (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) - (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-830)))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) + (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-831)))) ((*1 *2 *3) (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-320) (-312))) - (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-4 *7 (-291 *4 *5 *6)) - (-5 *2 (-694)) (-5 *1 (-341 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-743 (-830))))) - ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-484)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) - ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) - ((*1 *2 *1) - (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1155 *3)))) + (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-4 *7 (-291 *4 *5 *6)) + (-5 *2 (-695)) (-5 *1 (-341 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-744 (-831))))) + ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) + ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) + ((*1 *2 *1) + (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-694)) (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)))) + (-12 (-5 *2 (-695)) (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) + (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) + ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) - (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-694)) - (-5 *1 (-822 *4 *5 *6 *7 *8)))) + (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-695)) + (-5 *1 (-823 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-283 (-350 (-484)) *4 *5 *6)) - (-4 *4 (-1155 (-350 (-484)))) (-4 *5 (-1155 (-350 *4))) - (-4 *6 (-291 (-350 (-484)) *4 *5)) (-5 *2 (-694)) (-5 *1 (-823 *4 *5 *6)))) + (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) + (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-1156 (-350 *4))) + (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-695)) (-5 *1 (-824 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) - (-4 *7 (-1155 *6)) (-4 *4 (-1155 (-350 *7))) (-4 *8 (-291 *6 *7 *4)) - (-4 *9 (-13 (-320) (-312))) (-5 *2 (-694)) (-5 *1 (-931 *6 *7 *4 *8 *9)))) + (-4 *7 (-1156 *6)) (-4 *4 (-1156 (-350 *7))) (-4 *8 (-291 *6 *7 *4)) + (-4 *9 (-13 (-320) (-312))) (-5 *2 (-695)) (-5 *1 (-932 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-961)) (-4 *3 (-495)) (-5 *2 (-694)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))) -(((*1 *1 *1) (-4 *1 (-973))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))) + (-12 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)) (-5 *2 (-695)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))) +(((*1 *1 *1) (-4 *1 (-974))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-350 (-484))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-484)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) + (-12 (-5 *2 (-350 (-485))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-485)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-350 (-484))) (-5 *1 (-780 *4)) (-14 *4 *3) (-5 *3 (-484)))) + (-12 (-5 *2 (-350 (-485))) (-5 *1 (-781 *4)) (-14 *4 *3) (-5 *3 (-485)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-350 (-484))) (-5 *1 (-781 *4 *5)) (-5 *3 (-484)) - (-4 *5 (-779 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-925)) (-5 *2 (-350 (-484))))) + (-12 (-14 *4 *3) (-5 *2 (-350 (-485))) (-5 *1 (-782 *4 *5)) (-5 *3 (-485)) + (-4 *5 (-780 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-350 (-485))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1155 *2)))) + (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1156 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-716)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -3946 (*2 (-1090)))) (-4 *2 (-961))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-616 *3)) (-4 *3 (-1129)))) + (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -3947 (*2 (-1091)))) (-4 *2 (-962))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-4 *1 (-679 *3 *4)) (-4 *3 (-961)) (-4 *4 (-756)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-893 *3)) (-4 *3 (-961)))) + (-12 (-5 *2 (-695)) (-4 *1 (-680 *3 *4)) (-4 *3 (-962)) (-4 *4 (-757)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-894 *3)) (-4 *3 (-962)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) - (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) + (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) + (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) - (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) + (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) + (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) + (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *2 (-977 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *2 (-978 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-350 *5)) (-4 *4 (-1134)) (-4 *5 (-1155 *4)) - (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1155 *3)))) + (-12 (-5 *3 (-350 *5)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) + (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1156 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1092 (-350 (-484)))) (-5 *2 (-350 (-484))) (-5 *1 (-164)))) + (-12 (-5 *3 (-1093 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1013)) - (-4 *3 (-1129)) (-5 *1 (-249 *3)))) + (-12 (-5 *2 (-584 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1014)) + (-4 *3 (-1130)) (-5 *1 (-249 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-260 *2)) (-4 *2 (-1013)) (-4 *2 (-1129)) (-5 *1 (-249 *2)))) + (-12 (-4 *2 (-260 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)) (-5 *1 (-249 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254)))) + (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) + (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254)))) + (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1013)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-584 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1014)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1014)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-484))) (-5 *4 (-1092 (-350 (-484)))) (-5 *1 (-261 *2)) - (-4 *2 (-38 (-350 (-484)))))) + (-12 (-5 *3 (-1 *2 (-485))) (-5 *4 (-1093 (-350 (-485)))) (-5 *1 (-261 *2)) + (-4 *2 (-38 (-350 (-485)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-756)) + (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-757)) (-4 *5 (-146)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1090)) (-5 *3 (-694)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5)) - (-4 *5 (-1013)) (-4 *5 (-961)))) + (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5)) + (-4 *5 (-1014)) (-4 *5 (-962)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1090)) (-5 *3 (-694)) (-5 *4 (-1 *1 (-583 *1))) - (-4 *1 (-364 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) + (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 (-584 *1))) + (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-694))) - (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1013)) - (-4 *5 (-961)))) + (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695))) + (-5 *4 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1014)) + (-4 *5 (-962)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 *1))) - (-4 *1 (-364 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) + (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 *1))) + (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 *1)) (-5 *4 (-1090)) (-4 *1 (-364 *5)) - (-4 *5 (-1013)) (-4 *5 (-553 (-473))))) + (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 *1)) (-5 *4 (-1091)) (-4 *1 (-364 *5)) + (-4 *5 (-1014)) (-4 *5 (-554 (-474))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1090)) (-4 *1 (-364 *4)) (-4 *4 (-1013)) - (-4 *4 (-553 (-473))))) - ((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013)) (-4 *2 (-553 (-473))))) + (-12 (-5 *2 (-86)) (-5 *3 (-1091)) (-4 *1 (-364 *4)) (-4 *4 (-1014)) + (-4 *4 (-554 (-474))))) + ((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-554 (-474))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-1090))) (-4 *1 (-364 *3)) (-4 *3 (-1013)) - (-4 *3 (-553 (-473))))) + (-12 (-5 *2 (-584 (-1091))) (-4 *1 (-364 *3)) (-4 *3 (-1014)) + (-4 *3 (-554 (-474))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013)) - (-4 *3 (-553 (-473))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1129)))) + (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)) + (-4 *3 (-554 (-474))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1130)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-455 *4 *5)) (-4 *4 (-1013)) - (-4 *5 (-1129)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *3 (-312)) (-5 *1 (-655 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) + (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *5)) (-4 *1 (-456 *4 *5)) (-4 *4 (-1014)) + (-4 *5 (-1130)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-744 *3)) (-4 *3 (-312)) (-5 *1 (-656 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-350 (-857 *4))) (-5 *3 (-1090)) (-4 *4 (-495)) - (-5 *1 (-952 *4)))) + (-12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1091)) (-4 *4 (-496)) + (-5 *1 (-953 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-583 (-1090))) (-5 *4 (-583 (-350 (-857 *5)))) - (-5 *2 (-350 (-857 *5))) (-4 *5 (-495)) (-5 *1 (-952 *5)))) + (-12 (-5 *3 (-584 (-1091))) (-5 *4 (-584 (-350 (-858 *5)))) + (-5 *2 (-350 (-858 *5))) (-4 *5 (-496)) (-5 *1 (-953 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-249 (-350 (-857 *4)))) (-5 *2 (-350 (-857 *4))) (-4 *4 (-495)) - (-5 *1 (-952 *4)))) + (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-5 *2 (-350 (-858 *4))) (-4 *4 (-496)) + (-5 *1 (-953 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-583 (-249 (-350 (-857 *4))))) (-5 *2 (-350 (-857 *4))) - (-4 *4 (-495)) (-5 *1 (-952 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) + (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-5 *2 (-350 (-858 *4))) + (-4 *4 (-496)) (-5 *1 (-953 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1069 *3))))) + (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1070 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-694)) (-4 *1 (-1155 *4)) (-4 *4 (-961)) (-5 *2 (-1179 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-961)) (-5 *2 (-1085 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-961)) (-4 *1 (-1155 *3))))) + (-12 (-5 *3 (-695)) (-4 *1 (-1156 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-5 *2 (-1086 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-962)) (-4 *1 (-1156 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961))))) + (|partial| -12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) - (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-861 *4 *5 *3)))) + (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) + (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-862 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) - (-4 *1 (-1155 *3))))) + (-12 (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) + (-4 *1 (-1156 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) - (-4 *1 (-1155 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961))))) -(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1129)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694)))) + (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) + (-4 *1 (-1156 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962))))) +(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1129)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1129)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) - (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) + (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-312)) (-4 *2 (-809 *3)) (-5 *1 (-519 *2)) (-5 *3 (-1090)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-519 *2)) (-4 *2 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1129)))) + (-12 (-4 *2 (-312)) (-4 *2 (-810 *3)) (-5 *1 (-520 *2)) (-5 *3 (-1091)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-520 *2)) (-4 *2 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) - (-4 *4 (-1013)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013)))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-961))))) + (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) + (-4 *4 (-1014)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014)))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-962))))) (((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1155 *2)) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1156 *2)) (-4 *2 (-146)))) ((*1 *2) - (-12 (-4 *4 (-1155 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4)) + (-12 (-4 *4 (-1156 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4)) (-4 *3 (-353 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146)))) + ((*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) ((*1 *2) - (-12 (-4 *3 (-1155 *2)) (-5 *2 (-484)) (-5 *1 (-692 *3 *4)) + (-12 (-4 *3 (-1156 *2)) (-5 *2 (-485)) (-5 *1 (-693 *3 *4)) (-4 *4 (-353 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-146)))) - ((*1 *2 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-146))))) + ((*1 *2 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-146))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-146)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) - (-4 *2 (-495)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-146))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3)))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) + (-4 *2 (-496)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-146))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) - (-4 *2 (-495)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-495))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) + (-4 *2 (-496)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-961)) - (-4 *3 (-495)))) + (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962)) + (-4 *3 (-496)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-495))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-495))))) + (|partial| -12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -3954 *4) (|:| -1972 *3) (|:| -2902 *3))) - (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -3955 *4) (|:| -1973 *3) (|:| -2903 *3))) + (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-977 *3 *4 *5)))) + (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-978 *3 *4 *5)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-961)) - (-5 *2 (-2 (|:| -3954 *3) (|:| -1972 *1) (|:| -2902 *1))) - (-4 *1 (-1155 *3))))) + (-12 (-4 *3 (-496)) (-4 *3 (-962)) + (-5 *2 (-2 (|:| -3955 *3) (|:| -1973 *1) (|:| -2903 *1))) + (-4 *1 (-1156 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *4 (-495)) (-4 *5 (-1155 *4)) - (-5 *2 (-2 (|:| -1762 (-562 *4 *5)) (|:| -1761 (-350 *5)))) - (-5 *1 (-562 *4 *5)) (-5 *3 (-350 *5)))) + (-12 (-4 *4 (-312)) (-4 *4 (-496)) (-4 *5 (-1156 *4)) + (-5 *2 (-2 (|:| -1763 (-563 *4 *5)) (|:| -1762 (-350 *5)))) + (-5 *1 (-563 *4 *5)) (-5 *3 (-350 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-583 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) - (-4 *4 (-961)))) + (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) + (-4 *4 (-962)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-392)) (-4 *3 (-961)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1155 *3))))) + (-12 (-4 *3 (-392)) (-4 *3 (-962)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1156 *3))))) (((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-1155 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3))))) + (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-1154 *4 *2)) (-4 *2 (-1156 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) - (-5 *1 (-1152 *4 *3)) (-4 *3 (-1155 *4))))) + (|partial| -12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) + (-5 *1 (-1153 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-583 *3)) (-5 *1 (-1151 *4 *3)) - (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-584 *3)) (-5 *1 (-1152 *4 *3)) + (-4 *3 (-1156 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-495) (-120))) - (-5 *2 (-2 (|:| -3138 *3) (|:| -3137 *3))) (-5 *1 (-1151 *4 *3)) - (-4 *3 (-1155 *4))))) + (|partial| -12 (-4 *4 (-13 (-496) (-120))) + (-5 *2 (-2 (|:| -3139 *3) (|:| -3138 *3))) (-5 *1 (-1152 *4 *3)) + (-4 *3 (-1156 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-1155 *3))))) + (|partial| -12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1152 *3 *2)) + (-4 *2 (-1156 *3))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120))) - (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4))))) + (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120))) + (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120))) - (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4))))) + (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120))) + (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) + (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-324 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-442 *4 *5 *6 *3)) + (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *6 (-324 *4)) (-4 *3 (-324 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495)) - (-5 *2 (-2 (|:| |num| (-630 *4)) (|:| |den| *4))) (-5 *1 (-633 *4 *5)))) + (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) + (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) (-5 *1 (-634 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) - (-5 *2 (-2 (|:| -3266 *7) (|:| |rh| (-583 (-350 *6))))) - (-5 *1 (-728 *5 *6 *7 *3)) (-5 *4 (-583 (-350 *6))) (-4 *7 (-600 *6)) - (-4 *3 (-600 (-350 *6))))) + (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) + (-5 *2 (-2 (|:| -3267 *7) (|:| |rh| (-584 (-350 *6))))) + (-5 *1 (-729 *5 *6 *7 *3)) (-5 *4 (-584 (-350 *6))) (-4 *7 (-601 *6)) + (-4 *3 (-601 (-350 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1150 *4 *5 *3)) - (-4 *3 (-1155 *5))))) + (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1151 *4 *5 *3)) + (-4 *3 (-1156 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-115 *3 *4 *2)) + (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-324 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-4 *2 (-324 *4)) - (-5 *1 (-442 *4 *5 *2 *3)) (-4 *3 (-324 *5)))) + (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-4 *2 (-324 *4)) + (-5 *1 (-443 *4 *5 *2 *3)) (-4 *3 (-324 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495)) (-5 *2 (-630 *4)) - (-5 *1 (-633 *4 *5)))) + (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) (-5 *2 (-631 *4)) + (-5 *1 (-634 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-1150 *3 *4 *2)) - (-4 *2 (-1155 *4))))) + (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-1151 *3 *4 *2)) + (-4 *2 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-115 *2 *4 *3)) + (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-324 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-442 *2 *4 *5 *3)) + (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-443 *2 *4 *5 *3)) (-4 *5 (-324 *2)) (-4 *3 (-324 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-630 *4)) (-4 *4 (-904 *2)) (-4 *2 (-495)) - (-5 *1 (-633 *2 *4)))) + (-12 (-5 *3 (-631 *4)) (-4 *4 (-905 *2)) (-4 *2 (-496)) + (-5 *1 (-634 *2 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-1150 *2 *4 *3)) - (-4 *3 (-1155 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-704 *3)) (-4 *3 (-961)))) + (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-1151 *2 *4 *3)) + (-4 *3 (-1156 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-705 *3)) (-4 *3 (-962)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-867 *3 *2)) (-4 *2 (-104)) (-4 *3 (-495)) (-4 *3 (-961)) - (-4 *2 (-716)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1085 *3)) (-4 *3 (-961)))) + (-12 (-5 *1 (-868 *3 *2)) (-4 *2 (-104)) (-4 *3 (-496)) (-4 *3 (-962)) + (-4 *2 (-717)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1086 *3)) (-4 *3 (-962)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-884)) (-4 *2 (-104)) (-5 *1 (-1092 *3)) (-4 *3 (-495)) - (-4 *3 (-961)))) + (-12 (-5 *2 (-885)) (-4 *2 (-104)) (-5 *1 (-1093 *3)) (-4 *3 (-496)) + (-4 *3 (-962)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-694)) (-5 *1 (-1148 *4 *3)) (-14 *4 (-1090)) (-4 *3 (-961))))) -(((*1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))) - ((*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *2 (-1006 *3)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1129)))) - ((*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1129)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))) - ((*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1146 *3)) (-4 *3 (-1129))))) + (-12 (-5 *2 (-695)) (-5 *1 (-1149 *4 *3)) (-14 *4 (-1091)) (-4 *3 (-962))))) +(((*1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *2 (-1007 *3)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-1002 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1147 *3)) (-4 *3 (-1130))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 - (-2 (|:| |contp| (-484)) - (|:| -1779 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) - (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) + (-2 (|:| |contp| (-485)) + (|:| -1780 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) + (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 - (-2 (|:| |contp| (-484)) - (|:| -1779 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) - (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-484)))))) + (-2 (|:| |contp| (-485)) + (|:| -1780 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) + (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485)))))) (((*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) - (-4 *3 (-1155 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) + (-4 *3 (-1156 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1155 (-484))))) + (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-694))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1155 (-484))))) + (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1155 (-484))))) + (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1155 (-484))))) + (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3) - (-12 (-5 *2 (-348 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1155 (-350 (-484)))))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-484)))))) + (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-350 (-485)))))) + ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1155 (-48))))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48))))) + (-12 (-5 *4 (-584 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1156 (-48))))) + ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-348 *3)) - (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-861 (-48) *6 *5)))) + (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3)) + (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-862 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) - (-4 *7 (-861 (-48) *6 *5)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-42 *5 *6 *7)) - (-5 *3 (-1085 *7)))) + (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) + (-4 *7 (-862 (-48) *6 *5)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-42 *5 *6 *7)) + (-5 *3 (-1086 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-140 *4 *3)) - (-4 *3 (-1155 (-142 *4))))) + (-4 *3 (-1156 (-142 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) + (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1155 (-142 *4))))) + (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1156 (-142 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1155 (-142 *4))))) + (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1156 (-142 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) - (-4 *3 (-1155 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) + (-4 *3 (-1156 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1155 (-484))))) + (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-694))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1155 (-484))))) + (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1155 (-484))))) + (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) - (-4 *3 (-1155 (-484))))) + (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) + (-4 *3 (-1156 (-485))))) ((*1 *2 *3) - (-12 (-5 *2 (-348 (-142 (-484)))) (-5 *1 (-386)) (-5 *3 (-142 (-484))))) + (-12 (-5 *2 (-348 (-142 (-485)))) (-5 *1 (-386)) (-5 *3 (-142 (-485))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-756) - (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090)))))) - (-4 *5 (-717)) (-4 *7 (-495)) (-5 *2 (-348 *3)) - (-5 *1 (-396 *4 *5 *6 *7 *3)) (-4 *6 (-495)) (-4 *3 (-861 *7 *5 *4)))) + (-13 (-757) + (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091)))))) + (-4 *5 (-718)) (-4 *7 (-496)) (-5 *2 (-348 *3)) + (-5 *1 (-396 *4 *5 *6 *7 *3)) (-4 *6 (-496)) (-4 *3 (-862 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1085 *4))) (-5 *1 (-398 *4)) - (-5 *3 (-1085 *4)))) + (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1086 *4))) (-5 *1 (-398 *4)) + (-5 *3 (-1086 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) - (-4 *7 (-13 (-312) (-120) (-661 *5 *6))) (-5 *2 (-348 *3)) - (-5 *1 (-434 *5 *6 *7 *3)) (-4 *3 (-1155 *7)))) + (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) + (-4 *7 (-13 (-312) (-120) (-662 *5 *6))) (-5 *2 (-348 *3)) + (-5 *1 (-434 *5 *6 *7 *3)) (-4 *3 (-1156 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-348 (-1085 *7)) (-1085 *7))) (-4 *7 (-13 (-258) (-120))) - (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-348 *3)) (-5 *1 (-478 *5 *6 *7 *3)) - (-4 *3 (-861 *7 *6 *5)))) + (-12 (-5 *4 (-1 (-348 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120))) + (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3)) (-5 *1 (-479 *5 *6 *7 *3)) + (-4 *3 (-862 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-348 (-1085 *7)) (-1085 *7))) (-4 *7 (-13 (-258) (-120))) - (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-861 *7 *6 *5)) - (-5 *2 (-348 (-1085 *8))) (-5 *1 (-478 *5 *6 *7 *8)) (-5 *3 (-1085 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) + (-12 (-5 *4 (-1 (-348 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120))) + (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-862 *7 *6 *5)) + (-5 *2 (-348 (-1086 *8))) (-5 *1 (-479 *5 *6 *7 *8)) (-5 *3 (-1086 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-583 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-4 *6 (-1155 *5)) (-5 *2 (-583 (-597 (-350 *6)))) (-5 *1 (-601 *5 *6)) - (-5 *3 (-597 (-350 *6))))) + (-12 (-5 *4 (-1 (-584 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-4 *6 (-1156 *5)) (-5 *2 (-584 (-598 (-350 *6)))) (-5 *1 (-602 *5 *6)) + (-5 *3 (-598 (-350 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-4 *5 (-1155 *4)) (-5 *2 (-583 (-597 (-350 *5)))) (-5 *1 (-601 *4 *5)) - (-5 *3 (-597 (-350 *5))))) + (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5)) + (-5 *3 (-598 (-350 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-614 *4))) - (-5 *1 (-614 *4)))) + (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-615 *4))) + (-5 *1 (-615 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-484)) (-5 *2 (-583 *3)) (-5 *1 (-635 *3)) (-4 *3 (-1155 *4)))) + (-12 (-5 *4 (-485)) (-5 *2 (-584 *3)) (-5 *1 (-636 *3)) (-4 *3 (-1156 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-5 *2 (-348 *3)) - (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) + (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-5 *2 (-348 *3)) + (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-4 *7 (-861 *6 *5 *4)) - (-5 *2 (-348 (-1085 *7))) (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) + (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-4 *7 (-862 *6 *5 *4)) + (-5 *2 (-348 (-1086 *7))) (-5 *1 (-638 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-717)) + (-12 (-4 *4 (-718)) (-4 *5 - (-13 (-756) - (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ "failed") (-1090)))))) - (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-669 *4 *5 *6 *3)) - (-4 *3 (-861 (-857 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $))))) - (-4 *6 (-495)) (-5 *2 (-348 *3)) (-5 *1 (-671 *4 *5 *6 *3)) - (-4 *3 (-861 (-350 (-857 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-13 (-258) (-120))) - (-5 *2 (-348 *3)) (-5 *1 (-672 *4 *5 *6 *3)) - (-4 *3 (-861 (-350 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120))) - (-5 *2 (-348 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-680 *4 *5 *6 *7)) - (-5 *3 (-1085 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-348 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1155 (-350 (-484)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-348 *3)) (-5 *1 (-954 *3)) - (-4 *3 (-1155 (-350 (-857 (-484))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1155 (-350 (-484)))) - (-4 *5 (-13 (-312) (-120) (-661 (-350 (-484)) *4))) (-5 *2 (-348 *3)) - (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1155 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1155 (-350 (-857 (-484))))) - (-4 *5 (-13 (-312) (-120) (-661 (-350 (-857 (-484))) *4))) (-5 *2 (-348 *3)) - (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1155 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-392)) (-4 *7 (-861 *6 *4 *5)) - (-5 *2 (-348 (-1085 (-350 *7)))) (-5 *1 (-1087 *4 *5 *6 *7)) - (-5 *3 (-1085 (-350 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1134)))) - ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-484)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1172 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-90 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-484)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-780 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-780 *2)) (-14 *2 (-484)))) + (-13 (-757) + (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ "failed") (-1091)))))) + (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-670 *4 *5 *6 *3)) + (-4 *3 (-862 (-858 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $))))) + (-4 *6 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-672 *4 *5 *6 *3)) + (-4 *3 (-862 (-350 (-858 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-13 (-258) (-120))) + (-5 *2 (-348 *3)) (-5 *1 (-673 *4 *5 *6 *3)) + (-4 *3 (-862 (-350 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120))) + (-5 *2 (-348 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-681 *4 *5 *6 *7)) + (-5 *3 (-1086 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-350 (-485)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-348 *3)) (-5 *1 (-955 *3)) + (-4 *3 (-1156 (-350 (-858 (-485))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1156 (-350 (-485)))) + (-4 *5 (-13 (-312) (-120) (-662 (-350 (-485)) *4))) (-5 *2 (-348 *3)) + (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1156 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1156 (-350 (-858 (-485))))) + (-4 *5 (-13 (-312) (-120) (-662 (-350 (-858 (-485))) *4))) (-5 *2 (-348 *3)) + (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1156 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5)) + (-5 *2 (-348 (-1086 (-350 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) + (-5 *3 (-1086 (-350 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1135)))) + ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-90 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-485)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-781 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-781 *2)) (-14 *2 (-485)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-484)) (-14 *3 *2) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-484)) (-5 *1 (-781 *2 *3)) (-4 *3 (-779 *2)))) + (-12 (-5 *2 (-485)) (-14 *3 *2) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-485)) (-5 *1 (-782 *2 *3)) (-4 *3 (-780 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-484)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1172 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1172 *2))))) + (-12 (-5 *2 (-485)) (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1144 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1173 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) - (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) + (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) + (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-694)) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) + (-12 (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) - (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) + (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-249 *3)) (-5 *5 (-694)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) - (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *4 (-249 *3)) (-5 *5 (-695)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) + (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6)) - (-4 *6 (-13 (-27) (-1115) (-364 *5))) - (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) + (-4 *6 (-13 (-27) (-1116) (-364 *5))) + (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) - (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) + (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-694))) - (-4 *7 (-13 (-27) (-1115) (-364 *6))) - (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-695))) + (-4 *7 (-13 (-27) (-1116) (-364 *6))) + (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-694))) - (-4 *3 (-13 (-27) (-1115) (-364 *7))) - (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) + (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-695))) + (-4 *3 (-13 (-27) (-1116) (-364 *7))) + (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1172 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1172 *3))))) + (|partial| -12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-1141 *4)) (-4 *4 (-961)) (-4 *4 (-495)) - (-5 *2 (-350 (-857 *4))))) + (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496)) + (-5 *2 (-350 (-858 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-1141 *4)) (-4 *4 (-961)) (-4 *4 (-495)) - (-5 *2 (-350 (-857 *4)))))) + (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496)) + (-5 *2 (-350 (-858 *4)))))) (((*1 *1 *1 *1) (-5 *1 (-101))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-830)))) - ((*1 *1 *1 *1) (-5 *1 (-1135))) ((*1 *1 *1 *1) (-5 *1 (-1136))) - ((*1 *1 *1 *1) (-5 *1 (-1137))) ((*1 *1 *1 *1) (-5 *1 (-1138)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831)))) + ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137))) + ((*1 *1 *1 *1) (-5 *1 (-1138))) ((*1 *1 *1 *1) (-5 *1 (-1139)))) (((*1 *1 *1 *1) (-5 *1 (-101))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-830)))) - ((*1 *1 *1 *1) (-5 *1 (-1135))) ((*1 *1 *1 *1) (-5 *1 (-1136))) - ((*1 *1 *1 *1) (-5 *1 (-1137))) ((*1 *1 *1 *1) (-5 *1 (-1138)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831)))) + ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137))) + ((*1 *1 *1 *1) (-5 *1 (-1138))) ((*1 *1 *1 *1) (-5 *1 (-1139)))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-101))) ((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) - ((*1 *1) (-5 *1 (-485))) ((*1 *1) (-5 *1 (-486))) ((*1 *1) (-5 *1 (-487))) - ((*1 *1) (-5 *1 (-488))) ((*1 *1) (-4 *1 (-663))) ((*1 *1) (-5 *1 (-1090))) - ((*1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830)))) - ((*1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-830)))) ((*1 *1) (-5 *1 (-1135))) - ((*1 *1) (-5 *1 (-1136))) ((*1 *1) (-5 *1 (-1137))) ((*1 *1) (-5 *1 (-1138)))) -(((*1 *2 *3) (-12 (-5 *3 (-142 (-484))) (-5 *2 (-85)) (-5 *1 (-386)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) + ((*1 *1) (-5 *1 (-486))) ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-5 *1 (-488))) + ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-664))) ((*1 *1) (-5 *1 (-1091))) + ((*1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-831)))) + ((*1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831)))) ((*1 *1) (-5 *1 (-1136))) + ((*1 *1) (-5 *1 (-1137))) ((*1 *1) (-5 *1 (-1138))) ((*1 *1) (-5 *1 (-1139)))) +(((*1 *2 *3) (-12 (-5 *3 (-142 (-485))) (-5 *2 (-85)) (-5 *1 (-386)))) ((*1 *2 *3) (-12 (-5 *3 - (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))) - (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-873 *3)) (-4 *3 (-483)))) - ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-85))))) -(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1132))))) + (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) + (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-874 *3)) (-4 *3 (-484)))) + ((*1 *2 *1) (-12 (-4 *1 (-1135)) (-5 *2 (-85))))) +(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1133))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3228 (-583 (-1090))) (|:| -3229 (-583 (-1090))))) - (-5 *1 (-1132))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1132)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1132))))) + (-12 (-5 *2 (-2 (|:| -3229 (-584 (-1091))) (|:| -3230 (-584 (-1091))))) + (-5 *1 (-1133))))) +(((*1 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-694)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) + (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-756)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-757)) (-4 *3 (-1014))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1131 *2)) - (-4 *2 (-1013)))) + (-12 (-5 *3 (-584 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1132 *2)) + (-4 *2 (-1014)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-756)) (-5 *1 (-1131 *2))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-1013))))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-757)) (-5 *1 (-1132 *2))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1014))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-694)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) + (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-85)) - (-5 *1 (-1131 *3))))) + (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1014)) (-5 *2 (-85)) + (-5 *1 (-1132 *3))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3229 (-583 *3)) (|:| -3228 (-583 *3)))) - (-5 *1 (-1131 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-2 (|:| -3230 (-584 *3)) (|:| -3229 (-584 *3)))) + (-5 *1 (-1132 *3)) (-4 *3 (-1014))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1185)) (-5 *1 (-1131 *4)))) + (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1185)) (-5 *1 (-1131 *4))))) + (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-484)) (-4 *5 (-299)) (-5 *2 (-348 (-1085 (-1085 *5)))) - (-5 *1 (-1128 *5)) (-5 *3 (-1085 (-1085 *5)))))) + (-12 (-5 *4 (-485)) (-4 *5 (-299)) (-5 *2 (-348 (-1086 (-1086 *5)))) + (-5 *1 (-1129 *5)) (-5 *3 (-1086 (-1086 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1085 (-1085 *4)))) (-5 *1 (-1128 *4)) - (-5 *3 (-1085 (-1085 *4)))))) + (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) + (-5 *3 (-1086 (-1086 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1085 (-1085 *4)))) (-5 *1 (-1128 *4)) - (-5 *3 (-1085 (-1085 *4)))))) + (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) + (-5 *3 (-1086 (-1086 *4)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *3)) - (-4 *3 (-1129)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1129)))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *3)) + (-4 *3 (-1130)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1124 *4 *5 *3 *2)) (-4 *4 (-495)) (-4 *5 (-717)) - (-4 *3 (-756)) (-4 *2 (-977 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-1127 *2)) (-4 *2 (-1129))))) + (|partial| -12 (-4 *1 (-1125 *4 *5 *3 *2)) (-4 *4 (-496)) (-4 *5 (-718)) + (-4 *3 (-757)) (-4 *2 (-978 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-1128 *2)) (-4 *2 (-1130))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-583 (-583 (-179)))) (-5 *4 (-179)) (-5 *2 (-583 (-854 *4))) - (-5 *1 (-1126)) (-5 *3 (-854 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-1126))))) + (-12 (-5 *5 (-584 (-584 (-179)))) (-5 *4 (-179)) (-5 *2 (-584 (-855 *4))) + (-5 *1 (-1127)) (-5 *3 (-855 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-1127))))) (((*1 *1 *2) - (-12 (-5 *2 (-830)) (-4 *1 (-196 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1129)))) + (-12 (-5 *2 (-831)) (-4 *1 (-196 *3 *4)) (-4 *4 (-962)) (-4 *4 (-1130)))) ((*1 *1 *2) - (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *5 (-196 (-3957 *3) (-694))) + (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3958 *3) (-695))) (-14 *6 - (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5)) - (-2 (|:| -2400 *2) (|:| -2401 *5)))) - (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *2 (-756)) - (-4 *7 (-861 *4 *5 (-773 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126))))) + (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5)) + (-2 (|:| -2401 *2) (|:| -2402 *5)))) + (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *2 (-757)) + (-4 *7 (-862 *4 *5 (-774 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *2 (-1185)) (-5 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-893 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-854 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) + (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-894 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-855 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)) (-5 *3 (-179))))) + (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)) (-5 *3 (-179))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-179)) (-5 *5 (-484)) (-5 *2 (-1125 *3)) (-5 *1 (-712 *3)) - (-4 *3 (-887)))) + (-12 (-5 *4 (-179)) (-5 *5 (-485)) (-5 *2 (-1126 *3)) (-5 *1 (-713 *3)) + (-4 *3 (-888)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-85)) (-5 *1 (-1125 *2)) - (-4 *2 (-887))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-887))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-887))))) + (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-85)) (-5 *1 (-1126 *2)) + (-4 *2 (-888))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-887))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-1125 *3)) (-4 *3 (-887))))) -(((*1 *2 *1) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-887))))) + (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-1126 *3)) (-4 *3 (-888))))) +(((*1 *2 *1) (-12 (-5 *1 (-1126 *2)) (-4 *2 (-888))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) + (-4 *8 (-984 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) + (-4 *8 (-984 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) - (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3323 (-583 *9)))) (-5 *3 (-583 *9)) - (-4 *1 (-1124 *6 *7 *8 *9)))) + (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3324 (-584 *9)))) (-5 *3 (-584 *9)) + (-4 *1 (-1125 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-977 *5 *6 *7)) - (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3323 (-583 *8)))) (-5 *3 (-583 *8)) - (-4 *1 (-1124 *5 *6 *7 *8))))) + (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-978 *5 *6 *7)) + (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3324 (-584 *8)))) (-5 *3 (-584 *8)) + (-4 *1 (-1125 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *6))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) - (-5 *2 (-2 (|:| -3861 (-583 *6)) (|:| -1702 (-583 *6))))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) + (-5 *2 (-2 (|:| -3862 (-584 *6)) (|:| -1703 (-584 *6))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-85)))) + (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-85)))) + (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1124 *5 *6 *7 *3)) (-4 *5 (-495)) - (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85))))) + (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1125 *5 *6 *7 *3)) (-4 *5 (-496)) + (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-85)))) + (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-85)))) + (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-85)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-85) *7 (-583 *7))) (-4 *1 (-1124 *4 *5 *6 *7)) - (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) + (-12 (-5 *3 (-1 (-85) *7 (-584 *7))) (-4 *1 (-1125 *4 *5 *6 *7)) + (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) - (-4 *1 (-1124 *5 *6 *7 *8)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) - (-4 *8 (-977 *5 *6 *7))))) + (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) + (-4 *1 (-1125 *5 *6 *7 *8)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) + (-4 *8 (-978 *5 *6 *7))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *2 (-977 *3 *4 *5))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *2 (-978 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *2 (-977 *3 *4 *5))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *2 (-978 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *2 (-977 *3 *4 *5))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *2 (-978 *3 *4 *5))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *2 (-977 *3 *4 *5))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *2 (-978 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1124 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717)) (-4 *4 (-756)) - (-4 *5 (-977 *2 *3 *4))))) + (-12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) (-4 *4 (-757)) + (-4 *5 (-978 *2 *3 *4))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *2 (-977 *3 *4 *5))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *2 (-978 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *10)) - (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8)) - (-4 *10 (-1020 *5 *6 *7 *8)))) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *10)) + (-5 *1 (-564 *5 *6 *7 *8 *9 *10)) (-4 *9 (-984 *5 *6 *7 *8)) + (-4 *10 (-1021 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) - (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))) + (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) + (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) - (-14 *6 (-583 (-1090))) - (-5 *2 (-583 (-1060 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) - (-5 *1 (-567 *5 *6)))) + (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) + (-14 *6 (-584 (-1091))) + (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) + (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) - (-5 *1 (-940 *5 *6 *7 *8)))) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) + (-5 *1 (-941 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) - (-5 *1 (-940 *5 *6 *7 *8)))) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) + (-5 *1 (-941 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) - (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6)))) + (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) + (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-959 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *5 *6 *7 *8)))) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1060 *5 *6 *7 *8))) - (-5 *1 (-1060 *5 *6 *7 *8)))) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) + (-5 *1 (-1061 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1060 *5 *6 *7 *8))) - (-5 *1 (-1060 *5 *6 *7 *8)))) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) + (-5 *1 (-1061 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-1124 *4 *5 *6 *7))))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-1125 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-583 (-2 (|:| -3861 *1) (|:| -1702 (-583 *7))))) (-5 *3 (-583 *7)) - (-4 *1 (-1124 *4 *5 *6 *7))))) + (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-584 (-2 (|:| -3862 *1) (|:| -1703 (-584 *7))))) (-5 *3 (-584 *7)) + (-4 *1 (-1125 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5))))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) - (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5))))) + (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) + (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-694))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) + (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-695))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1090))))) + (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1091))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-583 (-830))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) - (-14 *4 (-830)) (-14 *5 (-906 *4 *2)))) + (-12 (-5 *3 (-584 (-831))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) + (-14 *4 (-831)) (-14 *5 (-907 *4 *2)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) - (-14 *4 (-583 (-1090))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961)))) - ((*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-453 *2 *3)) (-4 *3 (-759)))) + (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) + (-14 *4 (-584 (-1091))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962)))) + ((*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-454 *2 *3)) (-4 *3 (-760)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1155 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-663)))) + (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-664)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) - (-4 *4 (-961)) (-4 *5 (-756)))) + (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) + (-4 *4 (-962)) (-4 *5 (-757)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) + (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) - (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) + (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) + (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) - (-4 *2 (-756)))) + (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) + (-4 *2 (-757)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-694)) (-4 *2 (-861 *4 (-469 *5) *5)) (-5 *1 (-1040 *4 *5 *2)) - (-4 *4 (-961)) (-4 *5 (-756)))) + (-12 (-5 *3 (-695)) (-4 *2 (-862 *4 (-470 *5) *5)) (-5 *1 (-1041 *4 *5 *2)) + (-4 *4 (-962)) (-4 *5 (-757)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-694)) (-5 *2 (-857 *4)) (-5 *1 (-1122 *4)) (-4 *4 (-961))))) + (-12 (-5 *3 (-695)) (-5 *2 (-858 *4)) (-5 *1 (-1123 *4)) (-4 *4 (-962))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1040 *4 *3 *5))) (-4 *4 (-38 (-350 (-484)))) (-4 *4 (-961)) - (-4 *3 (-756)) (-5 *1 (-1040 *4 *3 *5)) (-4 *5 (-861 *4 (-469 *3) *3)))) + (-12 (-5 *2 (-1 (-1041 *4 *3 *5))) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)) + (-4 *3 (-757)) (-5 *1 (-1041 *4 *3 *5)) (-4 *5 (-862 *4 (-470 *3) *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1122 *4))) (-5 *3 (-1090)) (-5 *1 (-1122 *4)) - (-4 *4 (-38 (-350 (-484)))) (-4 *4 (-961))))) + (-12 (-5 *2 (-1 (-1123 *4))) (-5 *3 (-1091)) (-5 *1 (-1123 *4)) + (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962))))) (((*1 *2 *2) - (-12 (-4 *3 (-553 (-800 *3))) (-4 *3 (-796 *3)) (-4 *3 (-392)) - (-5 *1 (-1121 *3 *2)) (-4 *2 (-553 (-800 *3))) (-4 *2 (-796 *3)) - (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-554 (-801 *3))) (-4 *3 (-797 *3)) (-4 *3 (-392)) + (-5 *1 (-1122 *3 *2)) (-4 *2 (-554 (-801 *3))) (-4 *2 (-797 *3)) + (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) -(((*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3)))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) +(((*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-392)) (-4 *3 (-756)) - (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-484))) (-5 *1 (-1032)))) + (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-392)) (-4 *3 (-757)) + (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-485))) (-5 *1 (-1033)))) ((*1 *2 *2) - (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))) + (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-495)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-1120 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) + (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) + (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-495)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-1120 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) + (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) + (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-142 (-265 *4))) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) + (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-142 (-265 *4))) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-142 *3)) - (-5 *1 (-1119 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4)))))) + (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-142 *3)) + (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) - (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) + (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) + (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-85)) - (-5 *1 (-1119 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4)))))) + (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-85)) + (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4)))))) (((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) + (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4)) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2)) - (-4 *2 (-13 (-27) (-1115) (-364 *3)))))) + (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-364 *3)))))) (((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4)) - (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) + (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4)) + (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2)) - (-4 *2 (-13 (-27) (-1115) (-364 *3)))))) + (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-364 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3)))))) + (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2)) - (-4 *2 (-13 (-27) (-1115) (-364 *3)))))) + (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-364 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3)))))) + (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2)) - (-4 *2 (-13 (-27) (-1115) (-364 (-142 *4)))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2)) + (-4 *2 (-13 (-27) (-1116) (-364 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2)) - (-4 *2 (-13 (-27) (-1115) (-364 *3))))) + (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-364 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4)))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) - (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3)))))) + (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2)) - (-4 *2 (-13 (-27) (-1115) (-364 (-142 *4)))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2)) + (-4 *2 (-13 (-27) (-1116) (-364 (-142 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2)) - (-4 *2 (-13 (-27) (-1115) (-364 *3))))) + (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-364 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4)))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) - ((*1 *1 *1) (-4 *1 (-1118)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) + ((*1 *1 *1) (-4 *1 (-1119)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) - ((*1 *1 *1) (-4 *1 (-1118)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) + ((*1 *1 *1) (-4 *1 (-1119)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) - ((*1 *1 *1) (-4 *1 (-1118)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) + ((*1 *1 *1) (-4 *1 (-1119)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) - ((*1 *1 *1) (-4 *1 (-1118)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) + ((*1 *1 *1) (-4 *1 (-1119)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) - ((*1 *1 *1) (-4 *1 (-1118)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) + ((*1 *1 *1) (-4 *1 (-1119)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) - ((*1 *1 *1) (-4 *1 (-1118)))) -(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1116 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-1116 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) + ((*1 *1 *1) (-4 *1 (-1119)))) +(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1014))))) +(((*1 *1 *2) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1014)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-1117 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-583 (-1116 *2))) (-5 *1 (-1116 *2)) (-4 *2 (-1013))))) -(((*1 *1 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1013))))) + (-12 (-5 *3 (-584 (-1117 *2))) (-5 *1 (-1117 *2)) (-4 *2 (-1014))))) +(((*1 *1 *1) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1014))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1116 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1014))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014))))) (((*1 *2) - (-12 (-4 *2 (-13 (-364 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) - ((*1 *1) (-5 *1 (-417))) ((*1 *1) (-4 *1 (-1115)))) -(((*1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1113))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1073)) (-5 *2 (-484)) (-5 *1 (-1112 *4)) (-4 *4 (-961))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1112 *3)) (-4 *3 (-961))))) -(((*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-484)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) + (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) + ((*1 *1) (-5 *1 (-417))) ((*1 *1) (-4 *1 (-1116)))) +(((*1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1114))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-1113 *4)) (-4 *4 (-962))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962))))) +(((*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-485)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) - (-5 *2 (-484)))) + (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) + (-5 *2 (-485)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-495) (-950 *2) (-580 *2) (-392))) (-5 *2 (-484)) - (-5 *1 (-1030 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) + (|partial| -12 (-4 *4 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) + (-5 *1 (-1031 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-750 *3)) - (-4 *3 (-13 (-27) (-1115) (-364 *6))) - (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-392))) (-5 *2 (-484)) - (-5 *1 (-1030 *6 *3)))) + (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-751 *3)) + (-4 *3 (-13 (-27) (-1116) (-364 *6))) + (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) + (-5 *1 (-1031 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-1073)) - (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-392))) (-5 *2 (-484)) - (-5 *1 (-1030 *6 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))))) + (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-1074)) + (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) + (-5 *1 (-1031 *6 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-392)) (-5 *2 (-484)) - (-5 *1 (-1031 *4)))) + (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-485)) + (-5 *1 (-1032 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-750 (-350 (-857 *6)))) - (-5 *3 (-350 (-857 *6))) (-4 *6 (-392)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) + (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-751 (-350 (-858 *6)))) + (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-350 (-857 *6))) (-5 *4 (-1090)) (-5 *5 (-1073)) - (-4 *6 (-392)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1112 *3)) (-4 *3 (-961))))) -(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1111)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1111))))) -(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1111))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1111))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1013)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1111))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1111))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-772))) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-583 (-772)))) (-5 *1 (-86)))) - ((*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-772) (-583 (-772))))) (-5 *1 (-86)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1185)) (-5 *1 (-167 *3)) + (|partial| -12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1091)) (-5 *5 (-1074)) + (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962))))) +(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1014)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-773))) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-584 (-773)))) (-5 *1 (-86)))) + ((*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-773) (-584 (-773))))) (-5 *1 (-86)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-756) - (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 (*2 $)) - (-15 -1963 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-441)))) - ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-647)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1109)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-1109))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109))))) + (-13 (-757) + (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 (*2 $)) + (-15 -1964 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-442)))) + ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-648)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1110)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1110))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-694)) (-4 *3 (-1129)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-695)) (-4 *3 (-1130)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *1) (-5 *1 (-145))) - ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-830)) (-4 *3 (-1013)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-339)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) + ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-831)) (-4 *3 (-1014)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-339)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) ((*1 *1) - (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013)) - (-4 *4 (-608 *3)))) - ((*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) - ((*1 *1 *2) (-12 (-5 *1 (-1056 *3 *2)) (-14 *3 (-694)) (-4 *2 (-961)))) - ((*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) - ((*1 *1 *1) (-5 *1 (-1090))) ((*1 *1) (-5 *1 (-1090))) - ((*1 *1) (-5 *1 (-1109)))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-756)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-237 *2)) (-4 *2 (-1129)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-634 *2)) (-4 *2 (-1013)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1013))))) + (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014)) + (-4 *4 (-609 *3)))) + ((*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) + ((*1 *1 *2) (-12 (-5 *1 (-1057 *3 *2)) (-14 *3 (-695)) (-4 *2 (-962)))) + ((*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) + ((*1 *1 *1) (-5 *1 (-1091))) ((*1 *1) (-5 *1 (-1091))) + ((*1 *1) (-5 *1 (-1110)))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-757)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-237 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-635 *2)) (-4 *2 (-1014)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1014)) (-5 *1 (-1109 *3 *2)) (-4 *3 (-1014))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) (((*1 *2) - (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) (((*1 *2) - (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) (((*1 *2 *3) - (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1108 *4 *5)) (-4 *4 (-1013)) - (-4 *5 (-1013))))) + (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014)) + (-4 *5 (-1014))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1108 *4 *5)) (-4 *4 (-1013)) - (-4 *5 (-1013))))) + (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014)) + (-4 *5 (-1014))))) (((*1 *2) - (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 (-2 (|:| -3860 *3) (|:| |entry| *4)))) (-4 *3 (-1013)) - (-4 *4 (-1013)) (-4 *1 (-1107 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1107 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-1105 *2)) (-4 *2 (-312))))) + (-12 (-5 *2 (-584 (-2 (|:| -3861 *3) (|:| |entry| *4)))) (-4 *3 (-1014)) + (-4 *4 (-1014)) (-4 *1 (-1108 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1108 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-1106 *2)) (-4 *2 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-830)) (-5 *2 (-1085 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-312))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1105 *2)) (-4 *2 (-312))))) + (-12 (-5 *4 (-831)) (-5 *2 (-1086 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-312))))) +(((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-1106 *2)) (-4 *2 (-312))))) (((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-55)) (-5 *1 (-86)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-694)) (-5 *1 (-86)))) - ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-86)))) + (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-55)) (-5 *1 (-86)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *1 (-86)))) + ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-86)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-86)) (-5 *1 (-136)))) + (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-86)) (-5 *1 (-136)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-230 *3 *4)) - (-4 *4 (-13 (-364 *3) (-915))))) + (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-230 *3 *4)) + (-4 *4 (-13 (-364 *3) (-916))))) ((*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) ((*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *4 (-1013)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) + (-12 (-5 *2 (-86)) (-4 *4 (-1014)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) ((*1 *2 *2) - (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-568 *3 *4)) - (-4 *4 (-13 (-364 *3) (-915) (-1115))))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-932)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1104 *2)) (-4 *2 (-1013))))) + (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-569 *3 *4)) + (-4 *4 (-13 (-364 *3) (-916) (-1116))))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-933)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1105 *2)) (-4 *2 (-1014))))) (((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-583 (-583 *3))))) + (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *2 (-584 (-584 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-583 (-583 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1103 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-1103 *3))))) + (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-584 (-584 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-584 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1014))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-1104 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-756)) + (-12 (-4 *4 (-757)) (-5 *2 - (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) - (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) - (-5 *1 (-1101 *4)) (-5 *3 (-583 (-583 (-583 *4))))))) + (-2 (|:| |f1| (-584 *4)) (|:| |f2| (-584 (-584 (-584 *4)))) + (|:| |f3| (-584 (-584 *4))) (|:| |f4| (-584 (-584 (-584 *4)))))) + (-5 *1 (-1102 *4)) (-5 *3 (-584 (-584 (-584 *4))))))) (((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-756)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) + (-12 (-4 *6 (-757)) (-5 *3 (-584 *6)) (-5 *5 (-584 *3)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) - (-5 *1 (-1101 *6)) (-5 *4 (-583 *5))))) + (-2 (|:| |f1| *3) (|:| |f2| (-584 *5)) (|:| |f3| *5) (|:| |f4| (-584 *5)))) + (-5 *1 (-1102 *6)) (-5 *4 (-584 *5))))) (((*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) + (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-495)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9)) - (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) + (|partial| -12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) + (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) + (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) ((*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-630 *2)) (-4 *2 (-312)) (-4 *2 (-961)))) + (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-631 *2)) (-4 *2 (-312)) (-4 *2 (-962)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1037 *2 *3 *4 *5)) (-4 *3 (-961)) + (|partial| -12 (-4 *1 (-1038 *2 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) - ((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-1101 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-1102 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1101 *4)) - (-5 *3 (-583 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-756)) (-5 *1 (-1101 *3))))) + (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4)) + (-5 *3 (-584 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-757)) (-5 *1 (-1102 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-756)) (-5 *2 (-1103 (-583 *4))) (-5 *1 (-1101 *4)) - (-5 *3 (-583 *4))))) + (-12 (-4 *4 (-757)) (-5 *2 (-1104 (-584 *4))) (-5 *1 (-1102 *4)) + (-5 *3 (-584 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1101 *4)) - (-5 *3 (-583 (-583 *4)))))) + (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 (-584 *4)))) (-5 *1 (-1102 *4)) + (-5 *3 (-584 (-584 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1103 (-583 *4))) (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) - (-5 *1 (-1101 *4))))) + (-12 (-5 *3 (-1104 (-584 *4))) (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) + (-5 *1 (-1102 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) - (-5 *1 (-1101 *4)) (-4 *4 (-756))))) + (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) + (-5 *1 (-1102 *4)) (-4 *4 (-757))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-756)) - (-5 *1 (-1101 *4))))) + (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-4 *4 (-757)) + (-5 *1 (-1102 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-756)) - (-5 *1 (-1101 *4))))) + (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-584 *4)) (-4 *4 (-757)) + (-5 *1 (-1102 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-85) *5 *5)) - (-5 *4 (-583 *5)) (-4 *5 (-756)) (-5 *1 (-1101 *5))))) + (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-1 (-85) *5 *5)) + (-5 *4 (-584 *5)) (-4 *5 (-757)) (-5 *1 (-1102 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-756)) (-5 *4 (-583 *6)) - (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-583 *4)))) - (-5 *1 (-1101 *6)) (-5 *5 (-583 *4))))) -(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100))))) -(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100))))) -(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1100))))) -(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100))))) -(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1100))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090))) (-4 *5 (-495)) - (-5 *2 (-583 (-583 (-857 *5)))) (-5 *1 (-1099 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-350 (-857 (-484))))) - (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-332 *4)) - (-4 *4 (-13 (-755) (-312))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-249 (-350 (-857 (-484)))))) - (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-332 *4)) - (-4 *4 (-13 (-755) (-312))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-857 (-484)))) (-5 *2 (-583 (-249 (-857 *4)))) - (-5 *1 (-332 *4)) (-4 *4 (-13 (-755) (-312))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-350 (-857 (-484))))) (-5 *2 (-583 (-249 (-857 *4)))) - (-5 *1 (-332 *4)) (-4 *4 (-13 (-755) (-312))))) + (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-757)) (-5 *4 (-584 *6)) + (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-584 *4)))) + (-5 *1 (-1102 *6)) (-5 *5 (-584 *4))))) +(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101))))) +(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101))))) +(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1101))))) +(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1101))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) + (-5 *2 (-584 (-584 (-858 *5)))) (-5 *1 (-1100 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-584 (-350 (-858 (-485))))) + (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4)) + (-4 *4 (-13 (-756) (-312))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-584 (-249 (-350 (-858 (-485)))))) + (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4)) + (-4 *4 (-13 (-756) (-312))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 (-249 (-858 *4)))) + (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-249 (-350 (-858 (-485))))) (-5 *2 (-584 (-249 (-858 *4)))) + (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1090)) - (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-4 *4 (-13 (-29 *6) (-1115) (-871))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4)))) - (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-600 *4)))) + (|partial| -12 (-5 *5 (-1091)) + (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-4 *4 (-13 (-29 *6) (-1116) (-872))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4)))) + (-5 *1 (-596 *6 *4 *3)) (-4 *3 (-601 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-583 *2)) - (-4 *2 (-13 (-29 *6) (-1115) (-871))) - (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-600 *2)))) + (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 *2)) + (-4 *2 (-13 (-29 *6) (-1116) (-872))) + (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *1 (-596 *6 *2 *3)) (-4 *3 (-601 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996)))) - (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3996)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) - (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3997)))) + (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3997)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) + (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996)))) - (-4 *7 (-13 (-324 *5) (-10 -7 (-6 -3996)))) - (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2012 (-583 *7))))) - (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-627 *5 *6 *7)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3997)))) + (-4 *7 (-13 (-324 *5) (-10 -7 (-6 -3997)))) + (-5 *2 (-584 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2013 (-584 *7))))) + (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-584 *7)) (-4 *3 (-628 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *5)) (-4 *5 (-312)) + (-12 (-5 *3 (-631 *5)) (-4 *5 (-312)) (-5 *2 - (-2 (|:| |particular| (-3 (-1179 *5) #2="failed")) - (|:| -2012 (-583 (-1179 *5))))) - (-5 *1 (-610 *5)) (-5 *4 (-1179 *5)))) + (-2 (|:| |particular| (-3 (-1180 *5) #2="failed")) + (|:| -2013 (-584 (-1180 *5))))) + (-5 *1 (-611 *5)) (-5 *4 (-1180 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312)) + (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312)) (-5 *2 - (-2 (|:| |particular| (-3 (-1179 *5) #2#)) (|:| -2012 (-583 (-1179 *5))))) - (-5 *1 (-610 *5)) (-5 *4 (-1179 *5)))) + (-2 (|:| |particular| (-3 (-1180 *5) #2#)) (|:| -2013 (-584 (-1180 *5))))) + (-5 *1 (-611 *5)) (-5 *4 (-1180 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *5)) (-4 *5 (-312)) + (-12 (-5 *3 (-631 *5)) (-4 *5 (-312)) (-5 *2 - (-583 - (-2 (|:| |particular| (-3 (-1179 *5) #2#)) - (|:| -2012 (-583 (-1179 *5)))))) - (-5 *1 (-610 *5)) (-5 *4 (-583 (-1179 *5))))) + (-584 + (-2 (|:| |particular| (-3 (-1180 *5) #2#)) + (|:| -2013 (-584 (-1180 *5)))))) + (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312)) + (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312)) (-5 *2 - (-583 - (-2 (|:| |particular| (-3 (-1179 *5) #2#)) - (|:| -2012 (-583 (-1179 *5)))))) - (-5 *1 (-610 *5)) (-5 *4 (-583 (-1179 *5))))) + (-584 + (-2 (|:| |particular| (-3 (-1180 *5) #2#)) + (|:| -2013 (-584 (-1180 *5)))))) + (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1090))) (-4 *5 (-495)) - (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-693 *5)))) + (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) + (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495)) - (-5 *2 (-583 (-583 (-249 (-350 (-857 *4)))))) (-5 *1 (-693 *4)))) + (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496)) + (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1090)) - (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-695 *5 *2)) - (-4 *2 (-13 (-29 *5) (-1115) (-871))))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1091)) + (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-696 *5 *2)) + (-4 *2 (-13 (-29 *5) (-1116) (-872))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-630 *7)) (-5 *5 (-1090)) - (-4 *7 (-13 (-29 *6) (-1115) (-871))) - (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2012 (-583 (-1179 *7))))) - (-5 *1 (-725 *6 *7)) (-5 *4 (-1179 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-630 *6)) (-5 *4 (-1090)) - (-4 *6 (-13 (-29 *5) (-1115) (-871))) - (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *2 (-583 (-1179 *6))) (-5 *1 (-725 *5 *6)))) + (|partial| -12 (-5 *3 (-631 *7)) (-5 *5 (-1091)) + (-4 *7 (-13 (-29 *6) (-1116) (-872))) + (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7))))) + (-5 *1 (-726 *6 *7)) (-5 *4 (-1180 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-631 *6)) (-5 *4 (-1091)) + (-4 *6 (-13 (-29 *5) (-1116) (-872))) + (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *2 (-584 (-1180 *6))) (-5 *1 (-726 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-1090)) - (-4 *7 (-13 (-29 *6) (-1115) (-871))) - (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2012 (-583 (-1179 *7))))) - (-5 *1 (-725 *6 *7)))) + (|partial| -12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-1091)) + (-4 *7 (-13 (-29 *6) (-1116) (-872))) + (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7))))) + (-5 *1 (-726 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-1090)) - (-4 *7 (-13 (-29 *6) (-1115) (-871))) - (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2012 (-583 (-1179 *7))))) - (-5 *1 (-725 *6 *7)))) + (|partial| -12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-1091)) + (-4 *7 (-13 (-29 *6) (-1116) (-872))) + (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7))))) + (-5 *1 (-726 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1090)) - (-4 *7 (-13 (-29 *6) (-1115) (-871))) - (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2012 (-583 *7))) *7 #3="failed")) - (-5 *1 (-725 *6 *7)))) + (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1091)) + (-4 *7 (-13 (-29 *6) (-1116) (-872))) + (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2013 (-584 *7))) *7 #3="failed")) + (-5 *1 (-726 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-86)) (-5 *5 (-1090)) - (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2012 (-583 *3))) *3 #3#)) - (-5 *1 (-725 *6 *3)) (-4 *3 (-13 (-29 *6) (-1115) (-871))))) + (-12 (-5 *4 (-86)) (-5 *5 (-1091)) + (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2013 (-584 *3))) *3 #3#)) + (-5 *1 (-726 *6 *3)) (-4 *3 (-13 (-29 *6) (-1116) (-872))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-583 *2)) - (-4 *2 (-13 (-29 *6) (-1115) (-871))) (-5 *1 (-725 *6 *2)) - (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))))) + (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-584 *2)) + (-4 *2 (-13 (-29 *6) (-1116) (-872))) (-5 *1 (-726 *6 *2)) + (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-583 *2)) - (-4 *2 (-13 (-29 *6) (-1115) (-871))) - (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *1 (-725 *6 *2)))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-584 *2)) + (-4 *2 (-13 (-29 *6) (-1116) (-872))) + (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *1 (-726 *6 *2)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -2012 (-583 *6))) "failed") *7 *6)) - (-4 *6 (-312)) (-4 *7 (-600 *6)) - (-5 *2 (-2 (|:| |particular| (-1179 *6)) (|:| -2012 (-630 *6)))) - (-5 *1 (-733 *6 *7)) (-5 *3 (-630 *6)) (-5 *4 (-1179 *6)))) + (-1 (-3 (-2 (|:| |particular| *6) (|:| -2013 (-584 *6))) "failed") *7 *6)) + (-4 *6 (-312)) (-4 *7 (-601 *6)) + (-5 *2 (-2 (|:| |particular| (-1180 *6)) (|:| -2013 (-631 *6)))) + (-5 *1 (-734 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-857 (-350 (-484)))) (-5 *2 (-583 (-330))) (-5 *1 (-936)) + (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 (-330))) (-5 *1 (-937)) (-5 *4 (-330)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 (-330))) (-5 *1 (-936)) + (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 (-330))) (-5 *1 (-937)) (-5 *4 (-330)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) - (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) + (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-265 *4)))) + (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-265 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1045 *4)) + (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-249 (-265 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1045 *5)) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-249 (-265 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-265 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-1090))) - (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1045 *5)) - (-5 *3 (-583 (-249 (-265 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090))) (-4 *5 (-495)) - (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-1099 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-1090))) (-4 *5 (-495)) - (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-1099 *5)) - (-5 *3 (-583 (-249 (-350 (-857 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-350 (-857 *4)))) (-4 *4 (-495)) - (-5 *2 (-583 (-583 (-249 (-350 (-857 *4)))))) (-5 *1 (-1099 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *4)))))) - (-5 *1 (-1099 *4)) (-5 *3 (-583 (-249 (-350 (-857 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *5))))) - (-5 *1 (-1099 *5)) (-5 *3 (-350 (-857 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *5))))) - (-5 *1 (-1099 *5)) (-5 *3 (-249 (-350 (-857 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *4))))) (-5 *1 (-1099 *4)) - (-5 *3 (-350 (-857 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *4))))) (-5 *1 (-1099 *4)) - (-5 *3 (-249 (-350 (-857 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))) - ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-785)))) - ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-785)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-484)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1073)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-446)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-528)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-418)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-110)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-129)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1081)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-565)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1008)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1003)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-985)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-883)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-948)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-263)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-613)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-127)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1067)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-463)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1191)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-978)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-458)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-622)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-67)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1029)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-106)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-539)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-111)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1190)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-617)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-462)))) - ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) - ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1095)))) - ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1095)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1095))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-1095)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-1095))) (-5 *1 (-1095))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1095))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-484) (-179) (-446) (-1073) (-1095))) (-5 *1 (-1095))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-234))) (-5 *1 (-234)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-1095))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1095))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2855)) (-5 *2 (-85)) (-5 *1 (-556)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2240)) (-5 *2 (-85)) (-5 *1 (-556)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2854)) (-5 *2 (-85)) (-5 *1 (-556)))) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-265 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-584 (-1091))) + (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1046 *5)) + (-5 *3 (-584 (-249 (-265 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) + (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1100 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-584 (-1091))) (-4 *5 (-496)) + (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1100 *5)) + (-5 *3 (-584 (-249 (-350 (-858 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-496)) + (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-1100 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) + (-5 *1 (-1100 *4)) (-5 *3 (-584 (-249 (-350 (-858 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5))))) + (-5 *1 (-1100 *5)) (-5 *3 (-350 (-858 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5))))) + (-5 *1 (-1100 *5)) (-5 *3 (-249 (-350 (-858 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1100 *4)) + (-5 *3 (-350 (-858 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1100 *4)) + (-5 *3 (-249 (-350 (-858 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) + ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-786)))) + ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-786)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-485)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1074)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-447)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-529)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-418)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-110)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-129)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1082)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-566)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1009)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1004)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-986)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-884)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-949)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-263)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-614)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-127)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1068)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-464)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1192)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-979)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-459)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-623)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-67)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1030)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-106)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-540)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1191)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-618)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-463)))) + ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1096)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-1096))) (-5 *1 (-1096))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-485) (-179) (-447) (-1074) (-1096))) (-5 *1 (-1096))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-234))) (-5 *1 (-234)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1096))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2856)) (-5 *2 (-85)) (-5 *1 (-557)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2241)) (-5 *2 (-85)) (-5 *1 (-557)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2855)) (-5 *2 (-85)) (-5 *1 (-557)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2365)) (-5 *2 (-85)) (-5 *1 (-632 *4)) - (-4 *4 (-552 (-772))))) + (-12 (-5 *3 (|[\|\|]| -2366)) (-5 *2 (-85)) (-5 *1 (-633 *4)) + (-4 *4 (-553 (-773))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-552 (-772))) (-5 *2 (-85)) - (-5 *1 (-632 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)) (-5 *1 (-785)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-785)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-418))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-565))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1008))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1003))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-883))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-948))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-458))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1190))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)) (-5 *1 (-1095)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-1095)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1095)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)) (-5 *1 (-1095))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-247))) ((*1 *1) (-5 *1 (-772))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-553 (-773))) (-5 *2 (-85)) + (-5 *1 (-633 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-786)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-786)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-418))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1009))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1004))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-986))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-884))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1192))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-459))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1030))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-540))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-1096)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-1096)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1096)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)) (-5 *1 (-1096))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-247))) ((*1 *1) (-5 *1 (-773))) ((*1 *1) - (-12 (-4 *2 (-392)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) - (-4 *5 (-861 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-997))) + (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) + (-4 *5 (-862 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-998))) ((*1 *1) - (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34))))) - ((*1 *1) (-5 *1 (-1093))) ((*1 *1) (-5 *1 (-1094)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093)))) + (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) + (-4 *3 (-13 (-1014) (-34))))) + ((*1 *1) (-5 *1 (-1094))) ((*1 *1) (-5 *1 (-1095)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-379)) (-5 *3 (-583 (-1090))) (-5 *4 (-1090)) (-5 *1 (-1093)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1094)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-583 (-1090))) (-5 *1 (-1094))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-379)) (-5 *1 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1094))))) + (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1091))) (-5 *4 (-1091)) (-5 *1 (-1094)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1095)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1091))) (-5 *1 (-1095))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-379)) (-5 *1 (-1095))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1095))))) (((*1 *2 *3 *1) (-12 (-5 *3 (-377)) (-5 *2 - (-583 - (-3 (|:| -3542 (-1090)) - (|:| -3225 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484))))))))) - (-5 *1 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1094))))) + (-584 + (-3 (|:| -3543 (-1091)) + (|:| -3226 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))) + (-5 *1 (-1095))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1095))))) (((*1 *2 *1) (-12 (-5 *2 - (-583 - (-583 - (-3 (|:| -3542 (-1090)) - (|:| -3225 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484)))))))))) - (-5 *1 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1094))))) -(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1094))))) + (-584 + (-584 + (-3 (|:| -3543 (-1091)) + (|:| -3226 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))))) + (-5 *1 (-1095))))) +(((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1095))))) +(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1095))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 (-2 (|:| -3860 (-1090)) (|:| |entry| (-379))))) - (-5 *1 (-1094))))) -(((*1 *1) (-5 *1 (-1093)))) -(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) - ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1093))))) -(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093))))) -(((*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093))))) -(((*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1093)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) + (-12 (-5 *2 (-584 (-2 (|:| -3861 (-1091)) (|:| |entry| (-379))))) + (-5 *1 (-1095))))) +(((*1 *1) (-5 *1 (-1094)))) +(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) + ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))) +(((*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094))))) +(((*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1094)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-583 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093))))) + (-12 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3910 #1="void"))) (-5 *2 (-1185)) - (-5 *1 (-1093)))) + (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3911 #1="void"))) (-5 *2 (-1186)) + (-5 *1 (-1094)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) - (-5 *2 (-1185)) (-5 *1 (-1093)))) + (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) + (-5 *2 (-1186)) (-5 *1 (-1094)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) - (-5 *2 (-1185)) (-5 *1 (-1093))))) -(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1093)))) - ((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093))))) + (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) + (-5 *2 (-1186)) (-5 *1 (-1094))))) +(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094)))) + ((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1090)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 "void"))) - (-5 *1 (-1093))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1093)) (-5 *3 (-1090))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1094)) (-5 *1 (-1093))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1179 *4)) (-5 *1 (-1091 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-830)) (-5 *2 (-1179 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-961))))) -(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1090))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-67)))) - ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-78)))) - ((*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013)))) - ((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073)))) - ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-380 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-423)))) - ((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-774)))) - ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-876)))) - ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-988 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1029)))) ((*1 *1 *1) (-5 *1 (-1090)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1090))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) + (-12 (-5 *3 (-1091)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 "void"))) + (-5 *1 (-1094))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1094)) (-5 *3 (-1091))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1095)) (-5 *1 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *3 (-584 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4)) (-5 *1 (-1092 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-831)) (-5 *2 (-1180 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-962))))) +(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1091))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-67)))) + ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-1014)))) + ((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074)))) + ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-380 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-423)))) + ((*1 *2 *1) (-12 (-4 *1 (-748 *2)) (-4 *2 (-1014)))) + ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-775)))) + ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-877)))) + ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-989 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1030)))) ((*1 *1 *1) (-5 *1 (-1091)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1091))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) - (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) - (|:| |args| (-583 (-772))))) - (-5 *1 (-1090))))) + (-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773))) + (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773))) + (|:| |args| (-584 (-773))))) + (-5 *1 (-1091))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2584 (-583 (-772))) (|:| -2483 (-583 (-772))) - (|:| |presup| (-583 (-772))) (|:| -2582 (-583 (-772))) - (|:| |args| (-583 (-772))))) - (-5 *1 (-1090)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-1090))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090))))) -(((*1 *1 *1) (-5 *1 (-772))) - ((*1 *2 *1) - (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) - ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-1073)))) - ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1073)))) - ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1073)))) - ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1090))))) -(((*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1129)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1090))))) + (-2 (|:| -2585 (-584 (-773))) (|:| -2484 (-584 (-773))) + (|:| |presup| (-584 (-773))) (|:| -2583 (-584 (-773))) + (|:| |args| (-584 (-773))))) + (-5 *1 (-1091)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-1091))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091))))) +(((*1 *1 *1) (-5 *1 (-773))) + ((*1 *2 *1) + (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) + ((*1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-1074)))) + ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1074)))) + ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1074)))) + ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1091))))) +(((*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1091))))) (((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-772) (-772) (-772))) (-5 *4 (-484)) (-5 *2 (-772)) - (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6))) + (-12 (-5 *3 (-1 (-773) (-773) (-773))) (-5 *4 (-485)) (-5 *2 (-773)) + (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1014)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-763 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-69 *3)) + (-12 (-5 *2 (-773)) (-5 *1 (-764 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-772)))) - ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-772)))) - ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-772)))) - ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1085 *3)) (-4 *3 (-961))))) + ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-773)))) + ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773)))) + ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-773)))) + ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1086 *3)) (-4 *3 (-962))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1001 *3)) (-4 *3 (-861 *7 *6 *4)) (-4 *6 (-717)) (-4 *4 (-756)) - (-4 *7 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) - (-5 *1 (-529 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-495)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *5 *4 *6 *3)) - (-4 *3 (-861 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *1 *1) (-5 *1 (-772))) + (-12 (-5 *5 (-1002 *3)) (-4 *3 (-862 *7 *6 *4)) (-4 *6 (-718)) (-4 *4 (-757)) + (-4 *7 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) + (-5 *1 (-530 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-496)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *5 *4 *6 *3)) + (-4 *3 (-862 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *1) (-5 *1 (-773))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) - (-5 *1 (-1083 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1115))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) + (-5 *1 (-1084 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1116))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1115))) - (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1083 *4 *2)))) + (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1116))) + (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1084 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)))) - (-5 *2 (-350 (-857 *5))) (-5 *1 (-1084 *5)) (-5 *3 (-857 *5)))) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)))) + (-5 *2 (-350 (-858 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-858 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)))) - (-5 *2 (-3 (-350 (-857 *5)) (-265 *5))) (-5 *1 (-1084 *5)) - (-5 *3 (-350 (-857 *5))))) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)))) + (-5 *2 (-3 (-350 (-858 *5)) (-265 *5))) (-5 *1 (-1085 *5)) + (-5 *3 (-350 (-858 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1004 (-857 *5))) (-5 *3 (-857 *5)) - (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-350 *3)) (-5 *1 (-1084 *5)))) + (-12 (-5 *4 (-1005 (-858 *5))) (-5 *3 (-858 *5)) + (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 *3)) (-5 *1 (-1085 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1004 (-350 (-857 *5)))) (-5 *3 (-350 (-857 *5))) - (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-3 *3 (-265 *5))) - (-5 *1 (-1084 *5))))) + (-12 (-5 *4 (-1005 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) + (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-3 *3 (-265 *5))) + (-5 *1 (-1085 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) - (-5 *1 (-801 *4 *5)) (-4 *5 (-1129)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1081))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-4 *1 (-124 *3)))) + (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5)) + (-5 *1 (-802 *4 *5)) (-4 *5 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1082))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-124 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3773 *4) (|:| |num| *4)))) - (-4 *4 (-1155 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))) + (-12 (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3774 *4) (|:| |num| *4)))) + (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 #1="void"))) - (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-85)) (-5 *1 (-379)))) + (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 #1="void"))) + (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-85)) (-5 *1 (-379)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 #1#))) (-5 *3 (-583 (-1090))) + (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) (-5 *3 (-584 (-1091))) (-5 *4 (-85)) (-5 *1 (-379)))) - ((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-536 *3)) (-4 *3 (-1129)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-537 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) + (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-1013)) + (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-1014)) (-14 *4 - (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3)) - (-2 (|:| -2400 *2) (|:| -2401 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-749)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1129)) (-4 *3 (-1129)))) + (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3)) + (-2 (|:| -2401 *2) (|:| -2402 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-750)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 (-2 (|:| -3860 (-1090)) (|:| |entry| *4)))) (-4 *4 (-1013)) - (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-584 (-2 (|:| -3861 (-1091)) (|:| |entry| *4)))) (-4 *4 (-1014)) + (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1013) (-34))) - (-5 *2 (-583 (-1054 *3 *5))) (-5 *1 (-1054 *3 *5)) - (-4 *3 (-13 (-1013) (-34))))) + (-12 (-5 *4 (-584 *5)) (-4 *5 (-13 (-1014) (-34))) + (-5 *2 (-584 (-1055 *3 *5))) (-5 *1 (-1055 *3 *5)) + (-4 *3 (-13 (-1014) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -1600 *5)))) - (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) - (-5 *2 (-583 (-1054 *4 *5))) (-5 *1 (-1054 *4 *5)))) + (-12 (-5 *3 (-584 (-2 (|:| |val| *4) (|:| -1601 *5)))) + (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) + (-5 *2 (-584 (-1055 *4 *5))) (-5 *1 (-1055 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1600 *4))) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1601 *4))) (-4 *3 (-13 (-1014) (-34))) + (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34))))) + (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) + (-4 *3 (-13 (-1014) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34))))) + (-12 (-5 *4 (-85)) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) + (-4 *3 (-13 (-1014) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1055 *2 *3)) - (-4 *2 (-13 (-1013) (-34))))) + (-12 (-5 *4 (-584 *3)) (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1056 *2 *3)) + (-4 *2 (-13 (-1014) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-583 (-1054 *2 *3))) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1055 *2 *3)))) + (-12 (-5 *4 (-584 (-1055 *2 *3))) (-4 *2 (-13 (-1014) (-34))) + (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1056 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-583 (-1055 *2 *3))) (-5 *1 (-1055 *2 *3)) - (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) + (-12 (-5 *4 (-584 (-1056 *2 *3))) (-5 *1 (-1056 *2 *3)) + (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-129)))) - ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-528)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-565)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))) - (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-110)))) - ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-129)))) - ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-528)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-565)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))) - (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1080 *3 *2)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) - ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) -(((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) -(((*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))) + (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) + (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-129)))) + ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-418)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-566)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) + (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110)))) + ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-129)))) + ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-418)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-566)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) + (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1081 *3 *2)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) + ((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) +(((*1 *2 *1) + (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) +(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) -(((*1 *2 *1) (-12 (-4 *3 (-1129)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))) + (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) +(((*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-583 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) - (-4 *4 (-961))))) + (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) + (-4 *4 (-962))))) (((*1 *2 *1) - (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) -(((*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))) -(((*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-756)))) + (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) +(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))) +(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) - (-4 *4 (-961)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))) + (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) + (-4 *4 (-962)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *2 (-694)) (-5 *1 (-1079 *4 *5)) - (-14 *4 (-830)))) + (-12 (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *2 (-695)) (-5 *1 (-1080 *4 *5)) + (-14 *4 (-831)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1079 *4 *5)) - (-14 *4 (-830)) (-4 *5 (-961)))) + (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5)) + (-14 *4 (-831)) (-4 *5 (-962)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) - (-5 *1 (-1079 *4 *5)) (-14 *4 (-830))))) + (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) + (-5 *1 (-1080 *4 *5)) (-14 *4 (-831))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-854 *4)) (-4 *4 (-961)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830))))) + (-12 (-5 *2 (-855 *4)) (-4 *4 (-962)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-854 *5)) (-5 *3 (-694)) (-4 *5 (-961)) (-5 *1 (-1079 *4 *5)) - (-14 *4 (-830))))) + (-12 (-5 *2 (-855 *5)) (-5 *3 (-695)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) + (-14 *4 (-831))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-694)) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1079 *4 *5)) - (-14 *4 (-830)))) + (-12 (-5 *2 (-695)) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) + (-14 *4 (-831)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1079 *4 *5)) - (-14 *4 (-830)) (-4 *5 (-961)))) + (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5)) + (-14 *4 (-831)) (-4 *5 (-962)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) - (-5 *1 (-1079 *4 *5)) (-14 *4 (-830))))) + (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) + (-5 *1 (-1080 *4 *5)) (-14 *4 (-831))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-694))) (-5 *3 (-85)) (-5 *1 (-1079 *4 *5)) - (-14 *4 (-830)) (-4 *5 (-961))))) + (-12 (-5 *2 (-584 (-695))) (-5 *3 (-85)) (-5 *1 (-1080 *4 *5)) + (-14 *4 (-831)) (-4 *5 (-962))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-694))) (-5 *3 (-145)) (-5 *1 (-1079 *4 *5)) - (-14 *4 (-830)) (-4 *5 (-961))))) + (-12 (-5 *2 (-584 (-695))) (-5 *3 (-145)) (-5 *1 (-1080 *4 *5)) + (-14 *4 (-831)) (-4 *5 (-962))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) - (-4 *4 (-961))))) + (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) + (-4 *4 (-962))))) (((*1 *2 *1) - (-12 (-5 *2 (-854 *4)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) + (-12 (-5 *2 (-855 *4)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) (((*1 *2 *1) - (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) + (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) (((*1 *2 *1) - (-12 (-5 *2 (-145)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-263)))) + (-12 (-5 *2 (-145)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-263)))) ((*1 *2 *1) - (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961))))) -(((*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))) + (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962))))) +(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-854 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) - (-4 *4 (-961))))) + (-12 (-5 *2 (-584 (-855 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) + (-4 *4 (-962))))) (((*1 *1 *1) - (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-392)))) + (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-392)))) ((*1 *1 *1) - (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1134)) (-4 *3 (-1155 *2)) - (-4 *4 (-1155 (-350 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-392)))) + (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) + (-4 *4 (-1156 (-350 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-392)))) ((*1 *1 *1) - (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-258)) (-4 *3 (-495)) (-5 *1 (-1078 *3 *2)) (-4 *2 (-1155 *3))))) + (-12 (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-1079 *3 *2)) (-4 *2 (-1156 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-869 *3)) (-5 *1 (-1078 *4 *3)) - (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-870 *3)) (-5 *1 (-1079 *4 *3)) + (-4 *3 (-1156 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *1 *1) (-4 *1 (-433))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *1 *1) (-4 *1 (-433))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *1 *1) (-4 *1 (-433))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *1 *1) (-4 *1 (-433))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *1 *1) (-4 *1 (-433))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *1 *1) (-4 *1 (-433))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *1 *1 *1) (-5 *1 (-330))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) - (-4 *2 (-1143 *3 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) + (-4 *2 (-1144 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) - (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) + (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-350 (-484)))) - (-5 *2 (-2 (|:| -3490 (-1069 *4)) (|:| -3491 (-1069 *4)))) - (-5 *1 (-1076 *4)) (-5 *3 (-1069 *4))))) + (-12 (-4 *4 (-38 (-350 (-485)))) + (-5 *2 (-2 (|:| -3491 (-1070 *4)) (|:| -3492 (-1070 *4)))) + (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-350 (-484)))) - (-5 *2 (-2 (|:| -3638 (-1069 *4)) (|:| -3634 (-1069 *4)))) - (-5 *1 (-1076 *4)) (-5 *3 (-1069 *4))))) + (-12 (-4 *4 (-38 (-350 (-485)))) + (-5 *2 (-2 (|:| -3639 (-1070 *4)) (|:| -3635 (-1070 *4)))) + (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-484))) (-5 *5 (-1 (-1069 *4))) (-4 *4 (-312)) - (-4 *4 (-961)) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4))))) + (-12 (-5 *3 (-1 *4 (-485))) (-5 *5 (-1 (-1070 *4))) (-4 *4 (-312)) + (-4 *4 (-962)) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1069 *4)) (-4 *4 (-38 *3)) (-4 *4 (-961)) (-5 *3 (-350 (-484))) - (-5 *1 (-1075 *4))))) + (-12 (-5 *2 (-1070 *4)) (-4 *4 (-38 *3)) (-4 *4 (-962)) (-5 *3 (-350 (-485))) + (-5 *1 (-1076 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4)) - (-4 *4 (-38 (-350 (-484)))) (-4 *4 (-961))))) + (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) + (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1069 *3))) (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) - (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961))))) + (-12 (-5 *4 (-1 (-1070 *3))) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) + (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962))))) (((*1 *2 *3) - (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4)) - (-4 *4 (-961))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-804 *2 *3)) (-4 *2 (-1155 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))) + (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) + (-4 *4 (-962))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-805 *2 *3)) (-4 *2 (-1156 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1069 *4)) (-5 *3 (-1 *4 (-484))) (-4 *4 (-961)) - (-5 *1 (-1075 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))) + (-12 (-5 *2 (-1070 *4)) (-5 *3 (-1 *4 (-485))) (-4 *4 (-962)) + (-5 *1 (-1076 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1115) (-871))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *1 *1) (-5 *1 (-772))) - ((*1 *2 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-872))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *1) (-5 *1 (-773))) + ((*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962))))) (((*1 *2 *3) - (-12 (-5 *2 (-1069 (-484))) (-5 *1 (-1075 *4)) (-4 *4 (-961)) - (-5 *3 (-484))))) + (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962)) + (-5 *3 (-485))))) (((*1 *2 *3) - (-12 (-5 *2 (-1069 (-484))) (-5 *1 (-1075 *4)) (-4 *4 (-961)) - (-5 *3 (-484))))) + (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962)) + (-5 *3 (-485))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-830)) (-4 *3 (-312)) - (-14 *4 (-906 *2 *3)))) + (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-831)) (-4 *3 (-312)) + (-14 *4 (-907 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) - ((*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) - ((*1 *1 *1) (|partial| -4 *1 (-659))) ((*1 *1 *1) (|partial| -4 *1 (-663))) + ((*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) + ((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) + ((*1 *1 *1) (|partial| -4 *1 (-660))) ((*1 *1 *1) (|partial| -4 *1 (-664))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-699 *5 *6 *7 *3 *4)) - (-4 *4 (-983 *5 *6 *7 *3)))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-700 *5 *6 *7 *3 *4)) + (-4 *4 (-984 *5 *6 *7 *3)))) ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312))) - (-4 *2 (-1155 *3)))) + (|partial| -12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312))) + (-4 *2 (-1156 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))) + (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) + (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) - (-4 *2 (-495)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-495))) + (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) + (-4 *2 (-496)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-496))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) - (-4 *4 (-324 *2)) (-4 *2 (-495)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-694))) + (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) + (-4 *4 (-324 *2)) (-4 *2 (-496)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-695))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) - ((*1 *1 *1 *1) (-5 *1 (-772))) + (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) + ((*1 *1 *1 *1) (-5 *1 (-773))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-495)) - (-5 *1 (-882 *3 *4)))) + (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) + (-5 *1 (-883 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) - (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-495)))) + (|partial| -12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) + (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-496)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3))))) + (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-4 *4 (-1129)) (-5 *2 (-85)) - (-5 *1 (-1069 *4))))) + (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-4 *4 (-1130)) (-5 *2 (-85)) + (-5 *1 (-1070 *4))))) (((*1 *2 *3 *1) (-12 - (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2595 (-694)) (|:| |period| (-694)))) - (-5 *1 (-1069 *4)) (-4 *4 (-1129)) (-5 *3 (-694))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1069 *3))) (-5 *1 (-1069 *3)) (-4 *3 (-1129))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1129)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1069 *2)) (-4 *2 (-1129))))) -(((*1 *1) (-5 *1 (-514))) - ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-768)))) - ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-768)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1073)) (-5 *4 (-772)) (-5 *2 (-1185)) (-5 *1 (-768)))) + (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2596 (-695)) (|:| |period| (-695)))) + (-5 *1 (-1070 *4)) (-4 *4 (-1130)) (-5 *3 (-695))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1070 *3))) (-5 *1 (-1070 *3)) (-4 *3 (-1130))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1070 *2)) (-4 *2 (-1130))))) +(((*1 *1) (-5 *1 (-515))) + ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-769)))) + ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-769)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-769)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-1069 *4)) (-4 *4 (-1013)) - (-4 *4 (-1129))))) + (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1070 *4)) (-4 *4 (-1014)) + (-4 *4 (-1130))))) (((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-1069 *3)) (-4 *3 (-1013)) (-4 *3 (-1129))))) + (-12 (-5 *2 (-773)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130))))) (((*1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1069 *3)) (-4 *3 (-1013)) (-4 *3 (-1129))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-694)) (-5 *2 (-1179 (-583 (-484)))) (-5 *1 (-420)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3))))) + (-12 (-5 *3 (-695)) (-5 *2 (-1180 (-584 (-485)))) (-5 *1 (-420)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-475 *4 *2)) - (-4 *2 (-1172 *4)))) + (-12 (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-476 *4 *2)) + (-4 *2 (-1173 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-320) (-553 *3))) (-4 *5 (-1155 *4)) - (-4 *6 (-661 *4 *5)) (-5 *1 (-479 *4 *5 *6 *2)) (-4 *2 (-1172 *6)))) + (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3))) (-4 *5 (-1156 *4)) + (-4 *6 (-662 *4 *5)) (-5 *1 (-480 *4 *5 *6 *2)) (-4 *2 (-1173 *6)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-320) (-553 *3))) - (-5 *1 (-480 *4 *2)) (-4 *2 (-1172 *4)))) + (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3))) + (-5 *1 (-481 *4 *2)) (-4 *2 (-1173 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) - (-5 *1 (-1068 *4))))) + (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) + (-5 *1 (-1069 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1172 *3)))) + (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-4 *4 (-1155 *3)) - (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) + (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3)) + (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-5 *1 (-480 *3 *2)) - (-4 *2 (-1172 *3)))) + (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) + (-4 *2 (-1173 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1172 *3)))) + (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-4 *4 (-1155 *3)) - (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) + (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3)) + (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-5 *1 (-480 *3 *2)) - (-4 *2 (-1172 *3)))) + (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) + (-4 *2 (-1173 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1068 *3))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1172 *3)))) + (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-4 *4 (-1155 *3)) - (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) + (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3)) + (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-5 *1 (-480 *3 *2)) - (-4 *2 (-1172 *3)))) + (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) + (-4 *2 (-1173 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1068 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-463)))) - ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-632 (-1049))) (-5 *1 (-1067))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1067))))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-464)))) + ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-633 (-1050))) (-5 *1 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) - ((*1 *1) (-4 *1 (-1066)))) -(((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-1066))))) -(((*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1129)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1129)) (-5 *2 (-85))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) + ((*1 *1) (-4 *1 (-1067)))) +(((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-1067))))) +(((*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-694)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-1062 *3))))) + (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1063 *3))))) (((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) - (-5 *2 (-583 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3)) - (-4 *3 (-977 *5 *6 *7)))) + (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) + (-5 *2 (-584 (-941 *5 *6 *7 *3))) (-5 *1 (-941 *5 *6 *7 *3)) + (-4 *3 (-978 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-583 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) - (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)))) + (-12 (-5 *2 (-584 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) + (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *2 (-977 *3 *4 *5)))) + (-12 (-4 *1 (-984 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *2 (-978 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) - (-5 *2 (-583 (-1060 *5 *6 *7 *3))) (-5 *1 (-1060 *5 *6 *7 *3)) - (-4 *3 (-977 *5 *6 *7))))) + (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) + (-5 *2 (-584 (-1061 *5 *6 *7 *3))) (-5 *1 (-1061 *5 *6 *7 *3)) + (-4 *3 (-978 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) - (-5 *1 (-940 *5 *6 *7 *8)))) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) + (-5 *1 (-941 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1060 *5 *6 *7 *8))) - (-5 *1 (-1060 *5 *6 *7 *8))))) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) + (-5 *1 (-1061 *5 *6 *7 *8))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) - (-4 *8 (-977 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-940 *5 *6 *7 *8))))) - (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) + (-4 *8 (-978 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-941 *5 *6 *7 *8))))) + (-5 *1 (-941 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) - (-4 *8 (-977 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1060 *5 *6 *7 *8))))) - (-5 *1 (-1060 *5 *6 *7 *8)) (-5 *3 (-583 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *4 (-694)) - (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1185)) - (-5 *1 (-981 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *4 (-694)) - (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1185)) - (-5 *1 (-1059 *5 *6 *7 *8 *9))))) + (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) + (-4 *8 (-978 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-1061 *5 *6 *7 *8))))) + (-5 *1 (-1061 *5 *6 *7 *8)) (-5 *3 (-584 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695)) + (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186)) + (-5 *1 (-982 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695)) + (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186)) + (-5 *1 (-1060 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-583 *11)) - (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1600 *11)))))) - (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1600 *11)))) - (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9)) - (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-717)) (-4 *9 (-756)) - (-5 *1 (-981 *7 *8 *9 *10 *11)))) + (-2 (|:| |done| (-584 *11)) + (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11)))))) + (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11)))) + (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9)) + (-4 *11 (-984 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) + (-5 *1 (-982 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-583 *11)) - (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1600 *11)))))) - (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1600 *11)))) - (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9)) - (-4 *11 (-1020 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-717)) (-4 *9 (-756)) - (-5 *1 (-1059 *7 *8 *9 *10 *11))))) + (-2 (|:| |done| (-584 *11)) + (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11)))))) + (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11)))) + (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9)) + (-4 *11 (-1021 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) + (-5 *1 (-1060 *7 *8 *9 *10 *11))))) (((*1 *2 *1) - (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) + (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 - (-2 (|:| -2336 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -2337 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3089 (-350 *6)) (|:| |special| (-350 *6)))) - (-5 *1 (-666 *5 *6)) (-5 *3 (-350 *6)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3090 (-350 *6)) (|:| |special| (-350 *6)))) + (-5 *1 (-667 *5 *6)) (-5 *3 (-350 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-807 *3 *4)) - (-4 *3 (-1155 *4)))) + (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-808 *3 *4)) + (-4 *3 (-1156 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-694)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -3138 *3) (|:| -3137 *3))) (-5 *1 (-807 *3 *5)) - (-4 *3 (-1155 *5)))) + (|partial| -12 (-5 *4 (-695)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -3139 *3) (|:| -3138 *3))) (-5 *1 (-808 *3 *5)) + (-4 *3 (-1156 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) - (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) + (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) - (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) + (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) - (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) + (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) - (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1059 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) + (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-717)) - (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9)) + (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718)) + (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) - (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3)))) + (-2 (|:| |done| (-584 *4)) + (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) + (-5 *1 (-982 *7 *8 *9 *3 *4)) (-4 *4 (-984 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) - (-4 *3 (-977 *6 *7 *8)) + (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) + (-4 *3 (-978 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) - (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) + (-2 (|:| |done| (-584 *4)) + (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) + (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) - (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) + (-2 (|:| |done| (-584 *4)) + (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) + (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-717)) - (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9)) + (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718)) + (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) - (-5 *1 (-1059 *7 *8 *9 *3 *4)) (-4 *4 (-1020 *7 *8 *9 *3)))) + (-2 (|:| |done| (-584 *4)) + (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) + (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1021 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) - (-4 *3 (-977 *6 *7 *8)) + (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) + (-4 *3 (-978 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) - (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) + (-2 (|:| |done| (-584 *4)) + (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) + (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) - (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3))))) + (-2 (|:| |done| (-584 *4)) + (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) + (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) - (-4 *3 (-977 *6 *7 *8)) + (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) + (-4 *3 (-978 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) - (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) + (-2 (|:| |done| (-584 *4)) + (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) + (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) - (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) + (-2 (|:| |done| (-584 *4)) + (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) + (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) - (-4 *3 (-977 *6 *7 *8)) + (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) + (-4 *3 (-978 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) - (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) + (-2 (|:| |done| (-584 *4)) + (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) + (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) - (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3))))) + (-2 (|:| |done| (-584 *4)) + (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) + (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) - (-4 *3 (-977 *6 *7 *8)) + (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) + (-4 *3 (-978 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) - (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) + (-2 (|:| |done| (-584 *4)) + (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) + (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-583 *4)) - (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) - (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3))))) + (-2 (|:| |done| (-584 *4)) + (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) + (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) - (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) - (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) + (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) + (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) - (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) - (-5 *2 (-694)) (-5 *1 (-1059 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) + (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) + (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) - (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) - (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) + (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) + (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) - (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) - (-5 *2 (-694)) (-5 *1 (-1059 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) + (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) + (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))) (((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) - ((*1 *1 *1) (-4 *1 (-1058)))) -(((*1 *1 *1) (-4 *1 (-1058)))) + ((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *1 *1) (-4 *1 (-1059)))) (((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117))) - ((*1 *1 *1) (-4 *1 (-1058)))) -(((*1 *1 *1) (-4 *1 (-1058)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-85))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-85))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-484)) (-5 *2 (-85))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013)) (-4 *6 (-1129)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6)))) + ((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *1 *1) (-4 *1 (-1059)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-485)) (-5 *2 (-85))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) (-4 *6 (-1130)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1129)) - (-5 *1 (-585 *5 *2)))) + (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130)) + (-5 *1 (-586 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1013)) (-4 *5 (-1129)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5)))) + (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 *5)) (-4 *6 (-1014)) (-4 *5 (-1130)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1129)) - (-5 *1 (-585 *5 *2)))) + (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130)) + (-5 *1 (-586 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013)) - (-4 *6 (-1129)) (-5 *1 (-585 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) + (-4 *6 (-1130)) (-5 *1 (-586 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1013)) - (-4 *2 (-1129)) (-5 *1 (-585 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-117)) (-5 *2 (-694))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-117)) (-5 *2 (-85))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-1146 (-484)))))) -(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-694)))) + (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1014)) + (-4 *2 (-1130)) (-5 *1 (-586 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-695))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-85))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-1147 (-485)))))) +(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-695)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-484)) (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-485)) (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-1014)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-1013)) (-5 *2 (-484)))) + (-12 (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-1014)) (-5 *2 (-485)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1129)) (-5 *2 (-484)))) - ((*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-467)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-484)) (-5 *3 (-114)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-484))))) -(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48))))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1130)) (-5 *2 (-485)))) + ((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-468)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485)) (-5 *3 (-114)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485))))) +(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) - (-5 *1 (-94 *3)) (-4 *3 (-756)))) - ((*1 *2 *2) - (-12 (-5 *2 (-519 *4)) (-4 *4 (-13 (-29 *3) (-1115))) - (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-521 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-519 (-350 (-857 *3)))) - (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-525 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -3089 *3) (|:| |special| *3))) (-5 *1 (-666 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-4 *5 (-961)) - (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1179 (-1179 *5))) (-4 *5 (-312)) (-4 *5 (-961)) - (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-583 *1)) (-4 *1 (-1058)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-583 *1)) (-4 *1 (-1058))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117))))) + (-5 *1 (-94 *3)) (-4 *3 (-757)))) + ((*1 *2 *2) + (-12 (-5 *2 (-520 *4)) (-4 *4 (-13 (-29 *3) (-1116))) + (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-522 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-520 (-350 (-858 *3)))) + (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-526 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -3090 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-4 *5 (-962)) + (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1180 (-1180 *5))) (-4 *5 (-312)) (-4 *5 (-962)) + (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-584 *1)) (-4 *1 (-1059)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-584 *1)) (-4 *1 (-1059))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) + (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) ((*1 *1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) ((*1 *1 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-324 *3)) + (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *2 *4)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-14 *2 (-694)) (-4 *3 (-961))))) + ((*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-14 *2 (-695)) (-4 *3 (-962))))) (((*1 *1 *2) - (-12 (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-1056 *3 *4)) (-14 *3 (-694))))) + (-12 (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-1057 *3 *4)) (-14 *3 (-695))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34)))))) + (|partial| -12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))) + (-4 *3 (-13 (-1014) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34)))))) + (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))) + (-4 *3 (-13 (-1014) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 *4)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34)))))) + (-12 (-5 *2 (-584 *4)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1014) (-34))) + (-4 *4 (-13 (-1014) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1055 *3 *4)) - (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34)))))) + (-12 (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1056 *3 *4)) + (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-1013) (-34))) - (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *4 *5))))) + (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-1014) (-34))) + (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *4 *5))))) (((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1054 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) - (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) - (-5 *1 (-1055 *5 *6))))) + (-12 (-5 *3 (-1055 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) + (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85)) + (-5 *1 (-1056 *5 *6))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) (-4 *2 (-1129)) - (-4 *2 (-1013)))) + (-12 (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) + (-4 *2 (-1014)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-124 *3)) - (-4 *3 (-1129)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1129)))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-124 *3)) + (-4 *3 (-1130)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013)))) + (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4))))) + (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) + (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-193 *3)) - (-4 *3 (-1013)))) - ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -3995)) (-4 *1 (-193 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-1013)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-193 *3)) + (-4 *3 (-1014)))) + ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-193 *2)) (-4 *2 (-1014)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-1014)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) + (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013)))) + (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4))))) + (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) + (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-1054 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) - (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) - (-5 *1 (-1055 *4 *5)))) + (-12 (-5 *2 (-584 (-1055 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) + (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) + (-5 *1 (-1056 *4 *5)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-583 (-1054 *3 *4))) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4))))) + (-12 (-5 *2 (-584 (-1055 *3 *4))) (-4 *3 (-13 (-1014) (-34))) + (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4))))) (((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) - (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) + (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) + (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-767)))) - ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-876)))) - ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-902)))) - ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1129)))) + (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) + (-4 *4 (-13 (-1014) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-768)))) + ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-877)))) + ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-903)))) + ((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1130)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3)) - (-4 *3 (-13 (-1013) (-34)))))) + (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1055 *2 *3)) + (-4 *3 (-13 (-1014) (-34)))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) - (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) + (|partial| -12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) + (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) + (-4 *4 (-13 (-1014) (-34)))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-86))) - ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-483))) - ((*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961)))) + ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-484))) + ((*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) + ((*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) ((*1 *1 *1) - (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34)))))) + (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) + (-4 *3 (-13 (-1014) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34)))))) + (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) + (-4 *3 (-13 (-1014) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1054 *3 *2)) (-4 *3 (-13 (-1013) (-34))) - (-4 *2 (-13 (-1013) (-34)))))) + (-12 (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1014) (-34))) + (-4 *2 (-13 (-1014) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) - (-4 *4 (-13 (-1013) (-34)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) + (-4 *4 (-13 (-1014) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) - (-4 *3 (-13 (-1013) (-34)))))) + (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) + (-4 *3 (-13 (-1014) (-34)))))) (((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) - (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) - (-5 *1 (-1054 *5 *6))))) + (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85)) + (-5 *1 (-1055 *5 *6))))) (((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) - (-5 *1 (-1054 *4 *5)) (-4 *4 (-13 (-1013) (-34)))))) + (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85)) + (-5 *1 (-1055 *4 *5)) (-4 *4 (-13 (-1014) (-34)))))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1) (-4 *1 (-1053)))) + ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1) (-4 *1 (-1053)))) + ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1053)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1053)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1053)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1053)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) (((*1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1) (-4 *1 (-1053))) ((*1 *1 *1 *1) (-4 *1 (-1053)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-694)) (-5 *1 (-180)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-694)) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1053)))) + ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1) (-4 *1 (-1054))) ((*1 *1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-695)) (-5 *1 (-180)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-695)) (-5 *1 (-180)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1) (-4 *1 (-1053)))) + ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1) (-4 *1 (-1054)))) (((*1 *1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953)))) - ((*1 *1 *1 *1) (-4 *1 (-1053)))) -(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) - ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *1 *1) (-4 *1 (-714))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) - ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) - ((*1 *1 *1) (-4 *1 (-1053)))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052)))) - ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1185)) (-5 *1 (-1052))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052)))) - ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1185)) (-5 *1 (-1052))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1073)) (-5 *4 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052)))) - ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052)))) - ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1185)) (-5 *1 (-1052))))) -(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-583 (-1095))) (-5 *1 (-1050))))) -(((*1 *1 *2) (-12 (-5 *2 (-1079 3 *3)) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) - ((*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) + ((*1 *1 *1 *1) (-4 *1 (-1054)))) +(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) + ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *1) (-4 *1 (-715))) + ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) + ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) + ((*1 *1 *1) (-4 *1 (-1054)))) +(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) + ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053))))) +(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) + ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) + ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) + ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-1051))))) +(((*1 *1 *2) (-12 (-5 *2 (-1080 3 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) + ((*1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962))))) (((*1 *2) - (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) - (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) + (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) + (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-694))))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-694))))) -(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1048 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1048 *3))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695))))) +(((*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-583 (-854 *4))) (-4 *1 (-1048 *4)) (-4 *4 (-961)) - (-5 *2 (-694))))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1129)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1129)))) - ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) + (-12 (-5 *3 (-584 (-855 *4))) (-4 *1 (-1049 *4)) (-4 *4 (-962)) + (-5 *2 (-695))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) + (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961))))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) + (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) + (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961))))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) + (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) + (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961))))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85))))) + (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-854 *3)))))) + (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-855 *3)))))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *4 (-961)) - (-4 *1 (-1048 *4)))) + (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *4 (-962)) + (-4 *1 (-1049 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 (-583 (-854 *3)))) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) + (-12 (-5 *2 (-584 (-584 (-855 *3)))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-85)) (-4 *1 (-1048 *4)) - (-4 *4 (-961)))) + (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4)) + (-4 *4 (-962)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *1 (-1048 *4)) - (-4 *4 (-961)))) + (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4)) + (-4 *4 (-962)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) - (-4 *1 (-1048 *5)) (-4 *5 (-961)))) + (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) + (-4 *1 (-1049 *5)) (-4 *5 (-962)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-583 (-583 (-854 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) - (-4 *1 (-1048 *5)) (-4 *5 (-961))))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3)))))) + (-12 (-5 *2 (-584 (-584 (-855 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) + (-4 *1 (-1049 *5)) (-4 *5 (-962))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-694)))))))) + (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-695)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) - (-5 *2 (-583 (-583 (-583 (-854 *3)))))))) + (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) + (-5 *2 (-584 (-584 (-584 (-855 *3)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-145))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-145)))))) + (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-145))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-145)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) + (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 - (-2 (|:| -3850 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) - (|:| |constructs| (-694))))))) + (-2 (|:| -3851 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) + (|:| |constructs| (-695))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-583 (-2 (|:| -3732 (-1085 *6)) (|:| -2401 (-484))))) - (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) - (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961))))) + (-12 (-5 *3 (-584 (-2 (|:| -3733 (-1086 *6)) (|:| -2402 (-485))))) + (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) + (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-1046 *4 *2)) - (-4 *2 (-13 (-538 (-484) *4) (-318 *4) (-10 -7 (-6 -3996)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) + (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-10 -7 (-6 -3997)))))) ((*1 *2 *2) - (-12 (-4 *3 (-756)) (-4 *3 (-1129)) (-5 *1 (-1046 *3 *2)) - (-4 *2 (-13 (-538 (-484) *3) (-318 *3) (-10 -7 (-6 -3996))))))) + (-12 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) + (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-10 -7 (-6 -3997))))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-1046 *4 *2)) - (-4 *2 (-13 (-538 (-484) *4) (-318 *4) (-10 -7 (-6 -3996)))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) + (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-10 -7 (-6 -3997)))))) ((*1 *2 *2) - (-12 (-4 *3 (-756)) (-4 *3 (-1129)) (-5 *1 (-1046 *3 *2)) - (-4 *2 (-13 (-538 (-484) *3) (-318 *3) (-10 -7 (-6 -3996))))))) + (-12 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) + (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-10 -7 (-6 -3997))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179 *4)) (-4 *4 (-961)) (-4 *2 (-1155 *4)) + (-12 (-5 *3 (-1180 *4)) (-4 *4 (-962)) (-4 *2 (-1156 *4)) (-5 *1 (-384 *4 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-350 (-1085 (-265 *5)))) (-5 *3 (-1179 (-265 *5))) - (-5 *4 (-484)) (-4 *5 (-495)) (-5 *1 (-1044 *5))))) + (-12 (-5 *2 (-350 (-1086 (-265 *5)))) (-5 *3 (-1180 (-265 *5))) + (-5 *4 (-485)) (-4 *5 (-496)) (-5 *1 (-1045 *5))))) (((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-350 (-1085 (-265 *3)))) (-4 *3 (-495)) (-5 *1 (-1044 *3))))) + (-12 (-5 *2 (-350 (-1086 (-265 *3)))) (-4 *3 (-496)) (-5 *1 (-1045 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-350 (-857 *5)))) (-5 *4 (-1090)) + (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-1080 (-583 (-265 *5)) (-583 (-249 (-265 *5))))) - (-5 *1 (-1043 *5)))) + (-5 *2 (-1081 (-584 (-265 *5)) (-584 (-249 (-265 *5))))) + (-5 *1 (-1044 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-1080 (-583 (-265 *5)) (-583 (-249 (-265 *5))))) - (-5 *1 (-1043 *5))))) + (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-1081 (-584 (-265 *5)) (-584 (-249 (-265 *5))))) + (-5 *1 (-1044 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-583 (-265 *5))) (-5 *1 (-1043 *5)))) + (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-584 (-265 *5))) (-5 *1 (-1044 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090))) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-265 *5)))) - (-5 *1 (-1043 *5))))) + (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-265 *5)))) + (-5 *1 (-1044 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1043 *5)))) + (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1044 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1043 *4)))) + (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1044 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-350 (-857 *5)))) (-5 *4 (-1090)) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) - (-5 *1 (-1043 *5)))) + (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1091)) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) + (-5 *1 (-1044 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-249 (-350 (-857 *4)))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1043 *4)))) + (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1044 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090))) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) - (-5 *1 (-1043 *5)))) + (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) + (-5 *1 (-1044 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-350 (-857 *4)))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1043 *4)))) + (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1044 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-249 (-350 (-857 *5))))) (-5 *4 (-583 (-1090))) - (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) - (-5 *1 (-1043 *5)))) + (-12 (-5 *3 (-584 (-249 (-350 (-858 *5))))) (-5 *4 (-584 (-1091))) + (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) + (-5 *1 (-1044 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-249 (-350 (-857 *4))))) (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1043 *4))))) + (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-4 *4 (-13 (-258) (-120))) + (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1044 *4))))) (((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) - (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) + (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2))))) (((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) - (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) + (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2))))) (((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) - (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) + (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2))))) (((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) - (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) + (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) - (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) + (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) - (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) + (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) - (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) + (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) - (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) + (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) - (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) + (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) - (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) + (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) - (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) + (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) + (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) - (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3))))) + (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) + (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) + (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 - (-2 (|:| |solns| (-583 *5)) - (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1042 *3 *5)) (-4 *3 (-1155 *5))))) + (-2 (|:| |solns| (-584 *5)) + (|:| |maps| (-584 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1043 *3 *5)) (-4 *3 (-1156 *5))))) (((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-10 -7 (-6 -3996)))) - (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996)))) (-5 *1 (-609 *4 *5 *2 *3)) - (-4 *3 (-627 *4 *5 *2)))) + (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-10 -7 (-6 -3997)))) + (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3997)))) (-5 *1 (-610 *4 *5 *2 *3)) + (-4 *3 (-628 *4 *5 *2)))) ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1179 *4)) (-5 *3 (-630 *4)) (-4 *4 (-312)) - (-5 *1 (-610 *4)))) + (|partial| -12 (-5 *2 (-1180 *4)) (-5 *3 (-631 *4)) (-4 *4 (-312)) + (-5 *1 (-611 *4)))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) - (-5 *1 (-734 *2 *3)) (-4 *3 (-600 *2)))) + (|partial| -12 (-5 *4 (-584 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) + (-5 *1 (-735 *2 *3)) (-4 *3 (-601 *2)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) - (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2))))) + (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) + (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1069 *7))) (-4 *6 (-756)) - (-4 *7 (-861 *5 (-469 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1069 *7) *7)) - (-5 *1 (-1040 *5 *6 *7))))) + (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1070 *7))) (-4 *6 (-757)) + (-4 *7 (-862 *5 (-470 *6) *6)) (-4 *5 (-962)) (-5 *2 (-1 (-1070 *7) *7)) + (-5 *1 (-1041 *5 *6 *7))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-258)) (-4 *6 (-324 *5)) (-4 *4 (-324 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4)))) - (-5 *1 (-1038 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4)))) + (-5 *1 (-1039 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))) + (-5 *1 (-1039 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))) (((*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) + (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) (((*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1038 *4 *5 *6 *3)) - (-4 *3 (-627 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1039 *4 *5 *6 *3)) + (-4 *3 (-628 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) ((*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) + (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-961)) (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) + (-12 (-4 *2 (-962)) (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) + (-12 (-5 *2 (-584 *1)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) + (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-961)) (-5 *1 (-630 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-631 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1037 *3 *4 *5 *6)) + (-12 (-5 *2 (-584 *4)) (-4 *4 (-962)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) + (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) + (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) ((*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1179 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (-4 *2 (-961))))) + (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (-4 *2 (-962))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 *2)) (-4 *4 (-1155 *2)) - (-4 *2 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) + (-12 (-5 *3 (-631 *2)) (-4 *4 (-1156 *2)) + (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-5 *1 (-439 *2 *4 *5)) (-4 *5 (-353 *2 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (-4 *2 (-961))))) + (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (-4 *2 (-962))))) (((*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-312)) - (-5 *1 (-460 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) + (-5 *1 (-461 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) - (|has| *2 (-6 (-3997 "*"))) (-4 *2 (-961)))) + (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) + (|has| *2 (-6 (-3998 "*"))) (-4 *2 (-962)))) ((*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) - (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) + (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (|has| *2 (-6 (-3997 "*"))) (-4 *2 (-961))))) + (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (|has| *2 (-6 (-3998 "*"))) (-4 *2 (-962))))) (((*1 *2 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) - (|has| *2 (-6 (-3997 "*"))) (-4 *2 (-961)))) + (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) + (|has| *2 (-6 (-3998 "*"))) (-4 *2 (-962)))) ((*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) - (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) + (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) - (|has| *2 (-6 (-3997 "*"))) (-4 *2 (-961))))) + (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) + (|has| *2 (-6 (-3998 "*"))) (-4 *2 (-962))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3996)) (-4 *1 (-429 *3)) - (-4 *3 (-1129)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-1129))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) - ((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1129)) (-5 *2 (-694))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3997)) (-4 *1 (-429 *3)) + (-4 *3 (-1130)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1036 *3)) (-4 *3 (-1130))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) + ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1130)) (-5 *2 (-695))))) (((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96))) - ((*1 *1 *1 *1) (-5 *1 (-1033)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-1029))))) -(((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-381)))) - ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-749)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1095))) (-5 *3 (-1095)) (-5 *1 (-1028)))) - ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-1029))))) -(((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-622)))) - ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-883)))) - ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-985)))) - ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1028))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-622)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-1028))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-392)) (-4 *4 (-740)) (-14 *5 (-1090)) - (-5 *2 (-484)) (-5 *1 (-1027 *4 *5))))) + ((*1 *1 *1 *1) (-5 *1 (-1034)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-1030))))) +(((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-381)))) + ((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-750)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1096))) (-5 *3 (-1096)) (-5 *1 (-1029)))) + ((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-1030))))) +(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-623)))) + ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-884)))) + ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-986)))) + ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1029))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-623)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1029))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1091)) + (-5 *2 (-485)) (-5 *1 (-1028 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-392)) (-4 *4 (-740)) (-14 *5 (-1090)) - (-5 *2 (-484)) (-5 *1 (-1027 *4 *5))))) + (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1091)) + (-5 *2 (-485)) (-5 *1 (-1028 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-484)) - (-5 *1 (-1027 *4 *5))))) + (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) + (-5 *1 (-1028 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-484)) - (-5 *1 (-1027 *4 *5))))) + (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) + (-5 *1 (-1028 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-583 *4)) - (-5 *1 (-1027 *4 *5))))) + (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 *4)) + (-5 *1 (-1028 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-583 (-1148 *5 *4))) - (-5 *1 (-1027 *4 *5)) (-5 *3 (-1148 *5 *4))))) + (-12 (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4))) + (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-583 (-1148 *5 *4))) - (-5 *1 (-1027 *4 *5)) (-5 *3 (-1148 *5 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1022 *3))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1021))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1179 (-484))) (-5 *3 (-484)) (-5 *1 (-1021)))) + (-12 (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4))) + (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1023 *3))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1022))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-485)) (-5 *1 (-1022)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1179 (-484))) (-5 *3 (-583 (-484))) (-5 *4 (-484)) - (-5 *1 (-1021))))) + (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-584 (-485))) (-5 *4 (-485)) + (-5 *1 (-1022))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-583 (-484))) (-5 *3 (-583 (-830))) (-5 *4 (-85)) - (-5 *1 (-1021))))) + (-12 (-5 *2 (-584 (-485))) (-5 *3 (-584 (-831))) (-5 *4 (-85)) + (-5 *1 (-1022))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-630 (-484))) (-5 *3 (-583 (-484))) (-5 *1 (-1021))))) + (-12 (-5 *2 (-631 (-485))) (-5 *3 (-584 (-485))) (-5 *1 (-1022))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-484))) (-5 *2 (-630 (-484))) - (-5 *1 (-1021))))) + (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-485))) (-5 *2 (-631 (-485))) + (-5 *1 (-1022))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-1021))))) + (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-1022))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-583 (-484))) (-5 *3 (-630 (-484))) (-5 *1 (-1021))))) + (-12 (-5 *2 (-584 (-485))) (-5 *3 (-631 (-485))) (-5 *1 (-1022))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-1021))))) + (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-1022))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) - (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) + (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-85)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) + (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) - (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) + (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) + (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) - (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) + (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) + (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) - (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) - (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) + (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) + (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-1020 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *5 (-85)) - (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-392)) - (-4 *7 (-717)) (-4 *4 (-756)) - (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1600 *9)))) - (-5 *1 (-1019 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) + (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392)) + (-4 *7 (-718)) (-4 *4 (-757)) + (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9)))) + (-5 *1 (-1020 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))) - (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))) + (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) - (-5 *2 (-1185)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) + (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) + (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) - (-5 *2 (-1185)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))) + (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) + (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-984 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8)) + (-4 *8 (-984 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) + (-4 *8 (-984 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) - (-5 *2 (-1185)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) + (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) + (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) - (-5 *2 (-1185)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))) + (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) + (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-984 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8)) + (-4 *8 (-984 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) + (-4 *8 (-984 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) - (-4 *9 (-977 *6 *7 *8)) - (-5 *2 (-2 (|:| -3266 (-583 *9)) (|:| -1600 *4) (|:| |ineq| (-583 *9)))) - (-5 *1 (-901 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) + (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) + (-4 *9 (-978 *6 *7 *8)) + (-5 *2 (-2 (|:| -3267 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9)))) + (-5 *1 (-902 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-984 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) - (-4 *9 (-977 *6 *7 *8)) - (-5 *2 (-2 (|:| -3266 (-583 *9)) (|:| -1600 *4) (|:| |ineq| (-583 *9)))) - (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) - (-4 *4 (-983 *6 *7 *8 *9))))) + (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) + (-4 *9 (-978 *6 *7 *8)) + (-5 *2 (-2 (|:| -3267 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9)))) + (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) + (-4 *4 (-984 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) - (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) + (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9)) + (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 - (-583 (-2 (|:| -3266 (-583 *9)) (|:| -1600 *10) (|:| |ineq| (-583 *9))))) - (-5 *1 (-901 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) + (-584 (-2 (|:| -3267 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9))))) + (-5 *1 (-902 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) - (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) + (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9)) + (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 - (-583 (-2 (|:| -3266 (-583 *9)) (|:| -1600 *10) (|:| |ineq| (-583 *9))))) - (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9))))) + (-584 (-2 (|:| -3267 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9))))) + (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1600 *7)))) - (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) - (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7)))) + (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) + (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1600 *7)))) - (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) - (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1018 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7)))) + (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) + (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1019 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8))) - (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-392)) - (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) + (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) + (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8))) - (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-392)) - (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8))))) + (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) + (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) + (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) - (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) - (-5 *1 (-901 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) + (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) + (-5 *1 (-902 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) - (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) - (-5 *1 (-1018 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) + (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) + (-5 *1 (-1019 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) - (-5 *1 (-901 *5 *6 *7 *8 *3)))) + (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) + (-5 *1 (-902 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) - (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) - (-5 *1 (-1018 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) + (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) + (-5 *1 (-1019 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) - (-4 *3 (-983 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) + (-4 *3 (-984 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) - (-4 *3 (-983 *4 *5 *6 *7))))) + (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) + (-4 *3 (-984 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) + (-4 *8 (-984 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7))))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) + (-4 *8 (-984 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) + (-4 *8 (-984 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7))))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) + (-4 *8 (-984 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) + (-4 *8 (-984 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7))))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) + (-4 *8 (-984 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) - (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) - (-5 *1 (-901 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) + (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) + (-5 *1 (-902 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) - (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) - (-5 *1 (-1018 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) + (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) + (-5 *1 (-1019 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) - (-5 *2 (-1185)) (-5 *1 (-901 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) + (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) + (-5 *2 (-1186)) (-5 *1 (-902 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) - (-5 *2 (-1185)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))) + (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) + (-5 *2 (-1186)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-901 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-902 *4 *5 *6 *7 *8)) + (-4 *8 (-984 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) - (-4 *8 (-983 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-986)))) + (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) + (-4 *8 (-984 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-987)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) + (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) ((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) - ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-505 *3)) (-4 *3 (-950 (-484))))) + ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-506 *3)) (-4 *3 (-951 (-485))))) ((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| -3860 (-1090)) (|:| |entry| *4)))) - (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) + (-12 (-5 *2 (-584 (-2 (|:| -3861 (-1091)) (|:| |entry| *4)))) + (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) ((*1 *2 *1) - (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-4 *7 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) + (-4 *7 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))) -(((*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2)))) + (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))) +(((*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-830)) (-4 *1 (-347)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-347)))) + (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-831)) (-4 *1 (-347)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-347)))) ((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))) + (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))) (((*1 *2 *1) - (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))) + (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))) (((*1 *1 *1) - (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) - (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))))) + (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) + (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))))) (((*1 *1 *1) - (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) - (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))))) + (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) + (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) + (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-613)))) + (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-614)))) ((*1 *2 *1) - (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) - (-14 *4 (-830))))) + (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) + (-14 *4 (-831))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) - (-14 *4 (-830))))) + (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) + (-14 *4 (-831))))) (((*1 *2) - (-12 (-5 *2 (-1179 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) - (-14 *4 (-830))))) + (-12 (-5 *2 (-1180 (-1015 *3 *4))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) + (-14 *4 (-831))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-85)))) + (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) + (-12 (|has| *1 (-6 -3996)) (-4 *1 (-429 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-816 *4)))) + (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-817 *4)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-830)) (-5 *2 (-85)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-831)) (-5 *2 (-85)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-830)) (-5 *2 (-694)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-831)) (-5 *2 (-695)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1033))))) -(((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1073))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) - ((*1 *1 *1) (-5 *1 (-772))) - ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) - ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) - ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) +(((*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1034))))) +(((*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1074))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) + ((*1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) + ((*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) + ((*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 (-443 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) + (-12 (-5 *2 (-584 (-444 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) - (-4 *5 (-861 *2 *3 *4)))) + (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) + (-4 *5 (-862 *2 *3 *4)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) - (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) + (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) + (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) - (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) + (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) + (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) + (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-583 (-550 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1013)) - (-5 *1 (-509 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-106)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-111)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-617)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-932)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-978)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-1008))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1006 *3)) (-4 *3 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1129)) (-5 *2 (-484))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1073)) (-5 *1 (-902)))) + (-12 (-5 *2 (-584 (-551 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1014)) + (-5 *1 (-510 *3 *4)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-106)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-618)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-933)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-979)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-1009))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1007 *3)) (-4 *3 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1130)) (-5 *2 (-485))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1074)) (-5 *1 (-903)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1090)) (-4 *4 (-1129)) (-5 *1 (-971 *3 *4)) - (-4 *3 (-1006 *4)))) + (-12 (-5 *2 (-1091)) (-4 *4 (-1130)) (-5 *1 (-972 *3 *4)) + (-4 *3 (-1007 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1090)) (-5 *3 (-1001 *4)) (-4 *4 (-1129)) (-5 *1 (-1004 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-1003))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) + (-12 (-5 *2 (-1091)) (-5 *3 (-1002 *4)) (-4 *4 (-1130)) (-5 *1 (-1005 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-1004))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) ((*1 *2 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1179 *3)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1180 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1179 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1180 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1155 *4)) (-5 *2 (-630 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1155 *4)) (-5 *2 (-1179 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1156 *4)) (-5 *2 (-1180 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1155 *4)) (-5 *2 (-630 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) - (-5 *2 (-1179 *3)))) + (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) + (-5 *2 (-1180 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 *3)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1179 *3)) (-5 *1 (-579 *3 *4)) (-4 *3 (-312)) - (-14 *4 (-583 (-1090))))) + (-12 (-5 *2 (-1180 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-312)) + (-14 *4 (-584 (-1091))))) ((*1 *2 *1) - (-12 (-5 *2 (-1179 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-312)) - (-14 *4 (-583 (-1090))))) + (-12 (-5 *2 (-1180 *3)) (-5 *1 (-582 *3 *4)) (-4 *3 (-312)) + (-14 *4 (-584 (-1091))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-630 *5))) (-5 *3 (-630 *5)) (-4 *5 (-312)) - (-5 *2 (-1179 *5)) (-5 *1 (-998 *5))))) + (-12 (-5 *4 (-584 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-312)) + (-5 *2 (-1180 *5)) (-5 *1 (-999 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) - (-5 *2 (-1179 (-630 *4))))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) + (-5 *2 (-1180 (-631 *4))))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1179 (-630 *4))) (-5 *1 (-360 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 (-630 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-1090))) (-4 *5 (-312)) - (-5 *2 (-1179 (-630 (-350 (-857 *5))))) (-5 *1 (-998 *5)) - (-5 *4 (-630 (-350 (-857 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-1090))) (-4 *5 (-312)) (-5 *2 (-1179 (-630 (-857 *5)))) - (-5 *1 (-998 *5)) (-5 *4 (-630 (-857 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-5 *2 (-1179 (-630 *4))) - (-5 *1 (-998 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-149))) (-5 *1 (-997))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-149)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-997))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-997))))) -(((*1 *1) (-5 *1 (-997)))) -(((*1 *1) (-5 *1 (-997)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 (-631 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-584 (-1091))) (-4 *5 (-312)) + (-5 *2 (-1180 (-631 (-350 (-858 *5))))) (-5 *1 (-999 *5)) + (-5 *4 (-631 (-350 (-858 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-584 (-1091))) (-4 *5 (-312)) (-5 *2 (-1180 (-631 (-858 *5)))) + (-5 *1 (-999 *5)) (-5 *4 (-631 (-858 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-5 *2 (-1180 (-631 *4))) + (-5 *1 (-999 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-149))) (-5 *1 (-998))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-149)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-998))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-998))))) +(((*1 *1) (-5 *1 (-998)))) +(((*1 *1) (-5 *1 (-998)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-997 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-484) *2 *2)) (-4 *2 (-105)) (-5 *1 (-996 *2))))) -(((*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-996 *3)) (-4 *3 (-105))))) -(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-996 *3)) (-4 *3 (-105))))) -(((*1 *1) (-5 *1 (-994)))) + (-12 (-5 *3 (-1 (-485) *2 *2)) (-4 *2 (-105)) (-5 *1 (-997 *2))))) +(((*1 *2) (-12 (-5 *2 (-584 *3)) (-5 *1 (-997 *3)) (-4 *3 (-105))))) +(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-997 *3)) (-4 *3 (-105))))) +(((*1 *1) (-5 *1 (-995)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) - (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-527 *5 *6 *7 *8 *3)) - (-4 *3 (-1020 *5 *6 *7 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) + (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-584 *3)) (-5 *1 (-528 *5 *6 *7 *8 *3)) + (-4 *3 (-1021 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-583 (-2 (|:| -1747 (-1085 *5)) (|:| -3224 (-583 (-857 *5)))))) - (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090))))) + (-5 *2 (-584 (-2 (|:| -1748 (-1086 *5)) (|:| -3225 (-584 (-858 *5)))))) + (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) - (-5 *2 (-583 (-2 (|:| -1747 (-1085 *4)) (|:| -3224 (-583 (-857 *4)))))) - (-5 *1 (-990 *4 *5)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1090))))) + (-5 *2 (-584 (-2 (|:| -1748 (-1086 *4)) (|:| -3225 (-584 (-858 *4)))))) + (-5 *1 (-991 *4 *5)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1091))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-583 (-2 (|:| -1747 (-1085 *5)) (|:| -3224 (-583 (-857 *5)))))) - (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090)))))) + (-5 *2 (-584 (-2 (|:| -1748 (-1086 *5)) (|:| -3225 (-584 (-858 *5)))))) + (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091)))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 (-987 *3 *4 *5))) (-4 *3 (-1013)) - (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) - (-4 *5 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-989 *3 *4 *5))))) + (-12 (-5 *2 (-584 (-988 *3 *4 *5))) (-4 *3 (-1014)) + (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) + (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-990 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) - (-5 *2 (-583 (-987 *3 *4 *5))) (-5 *1 (-989 *3 *4 *5)) - (-4 *5 (-13 (-364 *4) (-796 *3) (-553 (-800 *3))))))) + (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) + (-5 *2 (-584 (-988 *3 *4 *5))) (-5 *1 (-990 *3 *4 *5)) + (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3))))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-583 (-1090))) (-4 *4 (-1013)) - (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2)) - (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))))) + (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-1014)) + (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2)) + (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) - (-5 *1 (-987 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-796 *3) (-553 (-800 *3))))))) + (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) + (-5 *1 (-988 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-800 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1013)) (-4 *5 (-1129)) - (-5 *1 (-801 *4 *5)))) + (-12 (-5 *2 (-801 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1014)) (-4 *5 (-1130)) + (-5 *1 (-802 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-800 *4)) (-5 *3 (-583 (-1 (-85) *5))) (-4 *4 (-1013)) - (-4 *5 (-1129)) (-5 *1 (-801 *4 *5)))) + (-12 (-5 *2 (-801 *4)) (-5 *3 (-584 (-1 (-85) *5))) (-4 *4 (-1014)) + (-4 *5 (-1130)) (-5 *1 (-802 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-800 *5)) (-5 *3 (-583 (-1090))) (-5 *4 (-1 (-85) (-583 *6))) - (-4 *5 (-1013)) (-4 *6 (-1129)) (-5 *1 (-801 *5 *6)))) + (-12 (-5 *2 (-801 *5)) (-5 *3 (-584 (-1091))) (-5 *4 (-1 (-85) (-584 *6))) + (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *1 (-802 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1090)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1129)) - (-5 *2 (-265 (-484))) (-5 *1 (-848 *5)))) + (-12 (-5 *3 (-1091)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1130)) + (-5 *2 (-265 (-485))) (-5 *1 (-849 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1090)) (-5 *4 (-583 (-1 (-85) *5))) (-4 *5 (-1129)) - (-5 *2 (-265 (-484))) (-5 *1 (-848 *5)))) + (-12 (-5 *3 (-1091)) (-5 *4 (-584 (-1 (-85) *5))) (-4 *5 (-1130)) + (-5 *2 (-265 (-485))) (-5 *1 (-849 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1129)) (-4 *4 (-1013)) - (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-364 *4)))) + (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1130)) (-4 *4 (-1014)) + (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-583 (-1 (-85) *5))) (-4 *5 (-1129)) (-4 *4 (-1013)) - (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-364 *4)))) + (-12 (-5 *3 (-584 (-1 (-85) *5))) (-4 *5 (-1130)) (-4 *4 (-1014)) + (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-1 (-85) (-583 *6))) - (-4 *6 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))) (-4 *4 (-1013)) - (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 *2))) - (-5 *2 (-800 *3)) (-5 *1 (-987 *3 *4 *5)) - (-4 *5 (-13 (-364 *4) (-796 *3) (-553 *2)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) - (-5 *2 (-583 (-1090))) (-5 *1 (-987 *3 *4 *5)) - (-4 *5 (-13 (-364 *4) (-796 *3) (-553 (-800 *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-263)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-883)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-907)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-948)))) - ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-985))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 *4)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-85)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-1 (-85) (-584 *6))) + (-4 *6 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-4 *4 (-1014)) + (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 *2))) + (-5 *2 (-801 *3)) (-5 *1 (-988 *3 *4 *5)) + (-4 *5 (-13 (-364 *4) (-797 *3) (-554 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) + (-5 *2 (-584 (-1091))) (-5 *1 (-988 *3 *4 *5)) + (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-263)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-884)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-908)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-949)))) + ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-986))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 *4)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-85)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) + (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) - (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) - (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) + (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) + (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *5 (-85)) - (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-392)) - (-4 *7 (-717)) (-4 *4 (-756)) - (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1600 *9)))) - (-5 *1 (-984 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) + (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392)) + (-4 *7 (-718)) (-4 *4 (-757)) + (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9)))) + (-5 *1 (-985 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))) - (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))) + (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) + (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))) + (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-3 (-85) (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3))))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) + (-5 *2 (-3 (-85) (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) + (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *1)))) - (-4 *1 (-983 *4 *5 *6 *3))))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) + (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *1)))) + (-4 *1 (-984 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3))))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) + (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-495)) (-4 *2 (-961)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3)))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) + (-5 *2 (-3 *3 (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-496)) (-4 *2 (-962)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) - (-4 *2 (-495)))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) + (-4 *2 (-496)))) ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *1)))) - (-4 *1 (-983 *4 *5 *6 *3))))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) + (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1)))) + (-4 *1 (-984 *4 *5 *6 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) - (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) + (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) + (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) - (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) + (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) + (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) - (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3))))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) + (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) - (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) + (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) + (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-85)))) + (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) + (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85)))) + (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) + (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85))))) (((*1 *2 *2) - (-12 (-4 *3 (-950 (-484))) (-4 *3 (-495)) (-5 *1 (-32 *3 *2)) + (-12 (-4 *3 (-951 (-485))) (-4 *3 (-496)) (-5 *1 (-32 *3 *2)) (-4 *2 (-364 *3)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1085 *4)) (-5 *1 (-138 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-1086 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-254)))) - ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1085 *3)))) - ((*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312))) (-4 *2 (-1155 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) - ((*1 *2 *3) - (-12 (-5 *3 (-857 (-350 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) - ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1085 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1085 (-350 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) - ((*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-583 *1)) - (-4 *1 (-980 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1090)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 *2)) (-5 *4 (-1090)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2)) - (-4 *5 (-495)))) + ((*1 *1 *1) (-12 (-4 *1 (-962)) (-4 *1 (-254)))) + ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3)))) + ((*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312))) (-4 *2 (-1156 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) + ((*1 *2 *3) + (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) + ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1086 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) + ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-584 *1)) + (-4 *1 (-981 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1086 *2)) (-5 *4 (-1091)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2)) + (-4 *5 (-496)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-830)) (-4 *1 (-925)))) + (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-4 *1 (-926)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-830)) (-5 *4 (-772)) - (-4 *1 (-925)))) + (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-5 *4 (-773)) + (-4 *1 (-926)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-830)) (-4 *4 (-13 (-755) (-312))) - (-4 *1 (-980 *4 *2)) (-4 *2 (-1155 *4))))) + (|partial| -12 (-5 *3 (-831)) (-4 *4 (-13 (-756) (-312))) + (-4 *1 (-981 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-350 (-484))) (-5 *1 (-937 *3)) - (-4 *3 (-13 (-755) (-312) (-933))))) + (-12 (-5 *2 (-350 (-485))) (-5 *1 (-938 *3)) + (-4 *3 (-13 (-756) (-312) (-934))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))) + (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1155 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-978))))) + (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1156 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-979))))) (((*1 *2 *1) - (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) - (-4 *5 (-977 *3 *4 *2)) (-4 *2 (-756)))) + (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) + (-4 *5 (-978 *3 *4 *2)) (-4 *2 (-757)))) ((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))) + (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))) (((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *2 (-694))))) + (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *2 (-695))))) (((*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-172)))) - ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) - ((*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-617)))) + ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-618)))) ((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) (((*1 *2 *1) - (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) - (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) + (-4 *1 (-978 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) - ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1090))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) + ((*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1091))))) ((*1 *2 *1) - (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) - (-14 *4 (-583 (-1090))))) - ((*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961)))) + (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) + (-14 *4 (-584 (-1091))))) + ((*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962)))) ((*1 *2 *1) - (-12 (-14 *3 (-583 (-1090))) (-4 *5 (-196 (-3957 *3) (-694))) + (-12 (-14 *3 (-584 (-1091))) (-4 *5 (-196 (-3958 *3) (-695))) (-14 *6 - (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5)) - (-2 (|:| -2400 *4) (|:| -2401 *5)))) - (-4 *2 (-146)) (-5 *1 (-401 *3 *2 *4 *5 *6 *7)) (-4 *4 (-756)) - (-4 *7 (-861 *2 *5 (-773 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *3 (-759)) (-4 *2 (-72)))) - ((*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1155 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) - ((*1 *2 *1) - (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *3 (-663)))) - ((*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) - ((*1 *2 *1) - (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *3 (-716)) (-4 *4 (-756)) (-4 *2 (-961)))) + (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5)) + (-2 (|:| -2401 *4) (|:| -2402 *5)))) + (-4 *2 (-146)) (-5 *1 (-401 *3 *2 *4 *5 *6 *7)) (-4 *4 (-757)) + (-4 *7 (-862 *2 *5 (-774 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *3 (-760)) (-4 *2 (-72)))) + ((*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) + ((*1 *2 *1) + (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *3 (-664)))) + ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) + ((*1 *2 *1) + (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *3 (-717)) (-4 *4 (-757)) (-4 *2 (-962)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))) + (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))) (((*1 *2 *3) - (-12 (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-384 *4 *3)) (-4 *3 (-1155 *4)))) + (-12 (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-384 *4 *3)) (-4 *3 (-1156 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) (((*1 *2 *1) - (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) - (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) + (-4 *1 (-978 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) - (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) + (-4 *1 (-978 *3 *4 *5))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *2 (-85))))) + (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) + (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) + (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) + (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) + (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) + (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) - (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-694)) (|:| -2902 *1))) - (-4 *1 (-977 *4 *5 *3)))) + (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) + (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-695)) (|:| -2903 *1))) + (-4 *1 (-978 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-694)) (|:| -2902 *1))) - (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-695)) (|:| -2903 *1))) + (-4 *1 (-978 *3 *4 *5))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3954 *3) (|:| |gap| (-694)) (|:| -1972 (-704 *3)) - (|:| -2902 (-704 *3)))) - (-5 *1 (-704 *3)) (-4 *3 (-961)))) + (-2 (|:| -3955 *3) (|:| |gap| (-695)) (|:| -1973 (-705 *3)) + (|:| -2903 (-705 *3)))) + (-5 *1 (-705 *3)) (-4 *3 (-962)))) ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) - (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2902 *1))) - (-4 *1 (-977 *4 *5 *3)))) + (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) + (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2903 *1))) + (-4 *1 (-978 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *2 (-2 (|:| -3954 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2902 *1))) - (-4 *1 (-977 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) + (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2903 *1))) + (-4 *1 (-978 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| |polnum| (-704 *3)) (|:| |polden| *3) (|:| -3481 (-694)))) - (-5 *1 (-704 *3)) (-4 *3 (-961)))) + (-5 *2 (-2 (|:| |polnum| (-705 *3)) (|:| |polden| *3) (|:| -3482 (-695)))) + (-5 *1 (-705 *3)) (-4 *3 (-962)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3481 (-694)))) - (-4 *1 (-977 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1129)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1155 *5)) - (-5 *2 (-1085 (-1085 *4))) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6)) - (-14 *7 (-830)))) + (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3482 (-695)))) + (-4 *1 (-978 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5)) + (-5 *2 (-1086 (-1086 *4))) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) + (-14 *7 (-831)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) - (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1129)))) + (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) + (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-951 *2)) (-4 *2 (-1130)))) ((*1 *1 *2) (|partial| OR - (-12 (-5 *2 (-857 *3)) - (-12 (-2560 (-4 *3 (-38 (-350 (-484))))) (-2560 (-4 *3 (-38 (-484)))) - (-4 *5 (-553 (-1090)))) - (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) - (-12 (-5 *2 (-857 *3)) - (-12 (-2560 (-4 *3 (-483))) (-2560 (-4 *3 (-38 (-350 (-484))))) - (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1090)))) - (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) - (-12 (-5 *2 (-857 *3)) - (-12 (-2560 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-350 (-484)))) - (-4 *5 (-553 (-1090)))) - (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) + (-12 (-5 *2 (-858 *3)) + (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-2561 (-4 *3 (-38 (-485)))) + (-4 *5 (-554 (-1091)))) + (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) + (-12 (-5 *2 (-858 *3)) + (-12 (-2561 (-4 *3 (-484))) (-2561 (-4 *3 (-38 (-350 (-485))))) + (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) + (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) + (-12 (-5 *2 (-858 *3)) + (-12 (-2561 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485)))) + (-4 *5 (-554 (-1091)))) + (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) ((*1 *1 *2) (|partial| OR - (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) - (-12 (-2560 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484))) - (-4 *5 (-553 (-1090)))) - (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) - (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) - (-4 *4 (-717)) (-4 *5 (-756))))) + (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) + (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) + (-4 *5 (-554 (-1091)))) + (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) + (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) + (-4 *4 (-718)) (-4 *5 (-757))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-857 (-350 (-484)))) (-4 *1 (-977 *3 *4 *5)) - (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090))) (-4 *3 (-961)) - (-4 *4 (-717)) (-4 *5 (-756))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1129)))) + (|partial| -12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) + (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) + (-4 *4 (-718)) (-4 *5 (-757))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) - (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1129)))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) + (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1130)))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-857 *3)) - (-12 (-2560 (-4 *3 (-38 (-350 (-484))))) (-2560 (-4 *3 (-38 (-484)))) - (-4 *5 (-553 (-1090)))) - (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) - (-12 (-5 *2 (-857 *3)) - (-12 (-2560 (-4 *3 (-483))) (-2560 (-4 *3 (-38 (-350 (-484))))) - (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1090)))) - (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) - (-12 (-5 *2 (-857 *3)) - (-12 (-2560 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-350 (-484)))) - (-4 *5 (-553 (-1090)))) - (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) + (-12 (-5 *2 (-858 *3)) + (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-2561 (-4 *3 (-38 (-485)))) + (-4 *5 (-554 (-1091)))) + (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) + (-12 (-5 *2 (-858 *3)) + (-12 (-2561 (-4 *3 (-484))) (-2561 (-4 *3 (-38 (-350 (-485))))) + (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) + (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) + (-12 (-5 *2 (-858 *3)) + (-12 (-2561 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485)))) + (-4 *5 (-554 (-1091)))) + (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) - (-12 (-2560 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484))) - (-4 *5 (-553 (-1090)))) - (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) - (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) - (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) - (-4 *4 (-717)) (-4 *5 (-756))))) + (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) + (-12 (-2561 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) + (-4 *5 (-554 (-1091)))) + (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) + (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) + (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) + (-4 *4 (-718)) (-4 *5 (-757))))) ((*1 *1 *2) - (-12 (-5 *2 (-857 (-350 (-484)))) (-4 *1 (-977 *3 *4 *5)) - (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090))) (-4 *3 (-961)) - (-4 *4 (-717)) (-4 *5 (-756))))) + (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) + (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) + (-4 *4 (-718)) (-4 *5 (-757))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) - (-4 *2 (-495))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) + (-4 *2 (-496))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) - (-4 *2 (-495))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) + (-4 *2 (-496))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) - (-4 *2 (-495)))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) + (-4 *2 (-496)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) - (-4 *2 (-495))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) + (-4 *2 (-496))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) - (-4 *2 (-495)))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) + (-4 *2 (-496)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) - (-4 *2 (-495))))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) + (-4 *2 (-496))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3144 (-704 *3)) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) - (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) + (-2 (|:| -3145 (-705 *3)) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) + (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *2 (-2 (|:| -3144 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *2 (-2 (|:| -3145 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-978 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3144 (-704 *3)) (|:| |coef1| (-704 *3)))) - (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) + (-12 (-5 *2 (-2 (|:| -3145 (-705 *3)) (|:| |coef1| (-705 *3)))) + (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *2 (-2 (|:| -3144 *1) (|:| |coef1| *1))) (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *2 (-2 (|:| -3145 *1) (|:| |coef1| *1))) (-4 *1 (-978 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3144 (-704 *3)) (|:| |coef2| (-704 *3)))) - (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) + (-12 (-5 *2 (-2 (|:| -3145 (-705 *3)) (|:| |coef2| (-705 *3)))) + (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *2 (-2 (|:| -3144 *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *2 (-2 (|:| -3145 *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5))))) + (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) - (-4 *5 (-756)) (-4 *3 (-495))))) + (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) + (-4 *5 (-757)) (-4 *3 (-496))))) (((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) - (-4 *5 (-756)) (-4 *3 (-495))))) + (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) + (-4 *5 (-757)) (-4 *3 (-496))))) (((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) - (-4 *2 (-495))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-392)))) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) + (-4 *2 (-496))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392)))) ((*1 *1 *1 *1) (-4 *1 (-392))) - ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1155 (-484))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1155 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-694))) + ((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-695))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2)) - (-4 *2 (-861 *5 *3 *4)))) + (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2)) + (-4 *2 (-862 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) - (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) + (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1085 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) - (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) + (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-1085 *7))) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) - (-5 *2 (-1085 *7)) (-5 *1 (-827 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-830))) + (-12 (-5 *3 (-584 (-1086 *7))) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) + (-5 *2 (-1086 *7)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-831))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-392)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3)))) + (-12 (-4 *3 (-392)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392))))) (((*1 *1 *1) - (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) + (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392))))) -(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-975)))) - ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-975))))) -(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1129)))) - ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) - ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) - ((*1 *1 *1) (-5 *1 (-772))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1129)))) - ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) - ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) - ((*1 *1 *1) (-5 *1 (-772))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-976)))) + ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-976))))) +(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) + ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) + ((*1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) + ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) + ((*1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1129)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) + (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-694)))) + (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)) (-5 *2 (-695)))) ((*1 *2) - (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) - ((*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1013)) (-5 *2 (-694)))) + (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) + ((*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014)) (-5 *2 (-695)))) ((*1 *2) - (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-694)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) + (-12 (-5 *2 (-695)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-694)) (-5 *1 (-660 *3 *4 *5)) - (-4 *3 (-661 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) + (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-695)) (-5 *1 (-661 *3 *4 *5)) + (-4 *3 (-662 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2))))) + (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2))))) + (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-495)) (-5 *2 (-348 *4)) + (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-496)) (-5 *2 (-348 *4)) (-5 *1 (-362 *4)))) - ((*1 *1 *1) (-5 *1 (-836))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) - ((*1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) + ((*1 *1 *1) (-5 *1 (-837))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) + ((*1 *1 *1) (-5 *1 (-839))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) - (-5 *4 (-350 (-484))) (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))))) + (-12 (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) + (-5 *4 (-350 (-485))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) - (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))))) + (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) + (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) - (-5 *4 (-350 (-484))) (-5 *1 (-935 *3)) (-4 *3 (-1155 *4)))) + (-12 (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) + (-5 *4 (-350 (-485))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) - (-5 *1 (-935 *3)) (-4 *3 (-1155 (-350 (-484)))))) + (-5 *2 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) + (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485)))))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2))))) + (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-755) (-312))) (-5 *2 (-85)) (-5 *1 (-974 *4 *3)) - (-4 *3 (-1155 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-550 (-48))) (-5 *1 (-48)))) + (-12 (-4 *4 (-13 (-756) (-312))) (-5 *2 (-85)) (-5 *1 (-975 *4 *3)) + (-4 *3 (-1156 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-551 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1085 (-48))) (-5 *3 (-583 (-550 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-48))) (-5 *3 (-550 (-48))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-584 (-551 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-551 (-48))) (-5 *1 (-48)))) ((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1155 (-142 *2))))) + (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1156 (-142 *2))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) + (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) ((*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) ((*1 *2 *1) - (-12 (-4 *4 (-1155 *2)) (-4 *2 (-904 *3)) (-5 *1 (-356 *3 *2 *4 *5)) - (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-950 *2))))) + (-12 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-356 *3 *2 *4 *5)) + (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-951 *2))))) ((*1 *2 *1) - (-12 (-4 *4 (-1155 *2)) (-4 *2 (-904 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6)) - (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1179 *5)))) + (-12 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6)) + (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1180 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-830)) (-4 *5 (-961)) - (-4 *2 (-13 (-347) (-950 *5) (-312) (-1115) (-239))) (-5 *1 (-383 *5 *3 *2)) - (-4 *3 (-1155 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-435)))) (-5 *1 (-435)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-550 (-435))) (-5 *1 (-435)))) + (-12 (-5 *4 (-831)) (-4 *5 (-962)) + (-4 *2 (-13 (-347) (-951 *5) (-312) (-1116) (-239))) (-5 *1 (-383 *5 *3 *2)) + (-4 *3 (-1156 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-435)))) (-5 *1 (-435)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-551 (-435))) (-5 *1 (-435)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1085 (-435))) (-5 *3 (-583 (-550 (-435)))) (-5 *1 (-435)))) + (-12 (-5 *2 (-1086 (-435))) (-5 *3 (-584 (-551 (-435)))) (-5 *1 (-435)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1085 (-435))) (-5 *3 (-550 (-435))) (-5 *1 (-435)))) + (-12 (-5 *2 (-1086 (-435))) (-5 *3 (-551 (-435))) (-5 *1 (-435)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1179 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1155 *4)) - (-5 *1 (-698 *4 *2 *5 *3)) (-4 *3 (-1155 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) - ((*1 *1 *1) (-4 *1 (-973)))) -(((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483)))) - ((*1 *1 *1) (-4 *1 (-973)))) -(((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483)))) - ((*1 *1 *1) (-4 *1 (-973)))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-392)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1156 *4)) + (-5 *1 (-699 *4 *2 *5 *3)) (-4 *3 (-1156 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) + ((*1 *1 *1) (-4 *1 (-974)))) +(((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484)))) + ((*1 *1 *1) (-4 *1 (-974)))) +(((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484)))) + ((*1 *1 *1) (-4 *1 (-974)))) (((*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-484))))) -(((*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-77)))) - ((*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-427)))) - ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258)))) - ((*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) - ((*1 *1 *1) (-4 *1 (-973)))) -(((*1 *1 *1) (-4 *1 (-973)))) + ((*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))) + ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) + ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-485))))) +(((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77)))) + ((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427)))) + ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) + ((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) + ((*1 *1 *1) (-4 *1 (-974)))) +(((*1 *1 *1) (-4 *1 (-974)))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1129)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) + (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) - ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-482 *3)) (-4 *3 (-483)))) - ((*1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-694)))) + (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) + ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-483 *3)) (-4 *3 (-484)))) + ((*1 *2) (-12 (-4 *1 (-688)) (-5 *2 (-695)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-719 *3 *4)) (-4 *3 (-720 *4)))) + (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-720 *3 *4)) (-4 *3 (-721 *4)))) ((*1 *2) - (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4)))) + (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-910 *3 *4)) (-4 *3 (-911 *4)))) - ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-924 *3)) (-4 *3 (-925)))) - ((*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-694)))) - ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-972 *3)) (-4 *3 (-973))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-970)) (-5 *2 (-85))))) + (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4)))) + ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) + ((*1 *2) (-12 (-4 *1 (-962)) (-5 *2 (-695)))) + ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-973 *3)) (-4 *3 (-974))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-971)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-630 *5)) (-4 *5 (-961)) (-5 *1 (-966 *3 *4 *5)) (-14 *3 (-694)) - (-14 *4 (-694))))) + (-12 (-5 *2 (-631 *5)) (-4 *5 (-962)) (-5 *1 (-967 *3 *4 *5)) (-14 *3 (-695)) + (-14 *4 (-695))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-694)) (-5 *3 (-1 *4 (-484) (-484))) (-4 *4 (-961)) - (-4 *1 (-627 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) + (-12 (-5 *2 (-695)) (-5 *3 (-1 *4 (-485) (-485))) (-4 *4 (-962)) + (-4 *1 (-628 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) + (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-772)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-773)))) ((*1 *2 *1) - (-12 (-5 *2 (-1056 *3 *4)) (-5 *1 (-906 *3 *4)) (-14 *3 (-830)) + (-12 (-5 *2 (-1057 *3 *4)) (-5 *1 (-907 *3 *4)) (-14 *3 (-831)) (-4 *4 (-312)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-965 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-584 (-584 *5))) (-4 *5 (-962)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) + (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) + (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) + (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) + (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) + (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-484)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *2 (-485)))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-484))))) + (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-485))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-484)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *2 (-485)))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-484))))) + (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-485))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-484)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *2 (-485)))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-484))))) + (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-485))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-484)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *2 (-485)))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-484))))) + (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-485))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-694)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *2 (-695)))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-694))))) + (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-695))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *2 (-694)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *2 (-695)))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-5 *2 (-694))))) + (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-5 *2 (-695))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) - (-4 *5 (-324 *2)) (-4 *2 (-1129)))) + (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) + (-4 *5 (-324 *2)) (-4 *2 (-1130)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-694)) (-4 *2 (-1013)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1129)))) + (-12 (-5 *3 (-695)) (-4 *2 (-1014)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) - (-4 *7 (-196 *4 *2)) (-4 *2 (-961))))) + (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) + (-4 *7 (-196 *4 *2)) (-4 *2 (-962))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1129)) (-4 *5 (-324 *4)) + (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1130)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *2 *7)) (-4 *6 (-961)) + (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-962)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1129)) (-4 *5 (-324 *4)) + (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1130)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *7 *2)) (-4 *6 (-961)) + (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-962)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6))))) (((*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) + (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-904 *4)) - (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) + (-12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4)) + (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-258)))) ((*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))) + (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-965 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) + (-12 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-258))))) (((*1 *2 *1) - (-12 (-5 *2 (-694)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 *2) + (-12 (-5 *2 (-695)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 *2) (-4 *5 (-146)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-830)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) - ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-830)))) + (-12 (-4 *4 (-146)) (-5 *2 (-831)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) + ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-831)))) ((*1 *2) - (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-830)))) + (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-831)))) ((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-694)) - (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) + (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) + (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996)))) - (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-5 *2 (-694)) - (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3997)))) + (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3997)))) (-5 *2 (-695)) + (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-5 *2 (-694)) - (-5 *1 (-610 *5)))) + (-12 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-695)) + (-5 *1 (-611 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-4 *3 (-495)) (-5 *2 (-694)))) + (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695)))) ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) + (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694))))) + (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695))))) (((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-694)) - (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) + (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) + (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-4 *3 (-495)) (-5 *2 (-694)))) + (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695)))) ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) + (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694))))) + (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -3996)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-583 *6)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) + (-12 (|has| *6 (-6 -3997)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-5 *2 (-584 *6)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -3996)) (-4 *4 (-495)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-4 *7 (-904 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-583 *6)) - (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6)) - (-4 *10 (-627 *7 *8 *9)))) + (-12 (|has| *9 (-6 -3997)) (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-4 *7 (-905 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-584 *6)) + (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-628 *4 *5 *6)) + (-4 *10 (-628 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-4 *3 (-495)) (-5 *2 (-583 *5)))) + (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-584 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-583 *6)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) + (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-5 *2 (-584 *6)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) - (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-583 *7))))) + (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) + (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-584 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1148 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1090)) (-4 *5 (-312)) - (-5 *1 (-833 *4 *5)))) + (-12 (-5 *2 (-1149 *4 *5)) (-5 *3 (-584 *5)) (-14 *4 (-1091)) (-4 *5 (-312)) + (-5 *1 (-834 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *5)) (-4 *5 (-312)) (-5 *2 (-1085 *5)) (-5 *1 (-833 *4 *5)) - (-14 *4 (-1090)))) + (-12 (-5 *3 (-584 *5)) (-4 *5 (-312)) (-5 *2 (-1086 *5)) (-5 *1 (-834 *4 *5)) + (-14 *4 (-1091)))) ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-583 *6)) (-5 *4 (-694)) (-4 *6 (-312)) (-5 *2 (-350 (-857 *6))) - (-5 *1 (-962 *5 *6)) (-14 *5 (-1090))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959))))) + (-12 (-5 *3 (-584 *6)) (-5 *4 (-695)) (-4 *6 (-312)) (-5 *2 (-350 (-858 *6))) + (-5 *1 (-963 *5 *6)) (-14 *5 (-1091))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-960))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960))))) (((*1 *1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) - ((*1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)) - (-5 *3 (-484))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1009 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-953)) (-5 *3 (-330)))) - ((*1 *2 *3) (-12 (-5 *3 (-1001 (-484))) (-5 *2 (-1 (-484))) (-5 *1 (-959))))) -(((*1 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-857 *4)))) - (-5 *1 (-955 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953))))) -(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) + ((*1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)) + (-5 *3 (-485))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1010 *4)) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))) + ((*1 *2 *3) (-12 (-5 *3 (-1002 (-485))) (-5 *2 (-1 (-485))) (-5 *1 (-960))))) +(((*1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-858 *4)))) + (-5 *1 (-956 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954))))) +(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954))))) (((*1 *1 *2) - (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1090)) (-14 *5 *3) + (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-270 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-953)) (-5 *3 (-330))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-953)) (-5 *3 (-330))))) -(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-330)) (-5 *1 (-953))))) -(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-953))))) -(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-953))))) -(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-953))))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330))))) +(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-330)) (-5 *1 (-954))))) +(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954))))) +(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954))))) +(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1085 (-350 (-1085 *2)))) (-5 *4 (-550 *2)) - (-4 *2 (-13 (-364 *5) (-27) (-1115))) - (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) - (-5 *1 (-498 *5 *2 *6)) (-4 *6 (-1013)))) + (-12 (-5 *3 (-1086 (-350 (-1086 *2)))) (-5 *4 (-551 *2)) + (-4 *2 (-13 (-364 *5) (-27) (-1116))) + (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) + (-5 *1 (-499 *5 *2 *6)) (-4 *6 (-1014)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085 *1)) (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) - (-4 *3 (-756)))) + (-12 (-5 *2 (-1086 *1)) (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) + (-4 *3 (-757)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1085 *4)) (-4 *4 (-961)) (-4 *1 (-861 *4 *5 *3)) (-4 *5 (-717)) - (-4 *3 (-756)))) + (-12 (-5 *2 (-1086 *4)) (-4 *4 (-962)) (-4 *1 (-862 *4 *5 *3)) (-4 *5 (-718)) + (-4 *3 (-757)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-1085 *2))) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) + (-12 (-5 *3 (-350 (-1086 *2))) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *2 (-13 (-312) - (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))) - (-5 *1 (-862 *5 *4 *6 *7 *2)) (-4 *7 (-861 *6 *5 *4)))) + (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))) + (-5 *1 (-863 *5 *4 *6 *7 *2)) (-4 *7 (-862 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-1085 (-350 (-857 *5))))) (-5 *4 (-1090)) - (-5 *2 (-350 (-857 *5))) (-5 *1 (-952 *5)) (-4 *5 (-495))))) + (-12 (-5 *3 (-350 (-1086 (-350 (-858 *5))))) (-5 *4 (-1091)) + (-5 *2 (-350 (-858 *5))) (-5 *1 (-953 *5)) (-4 *5 (-496))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-550 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1013)) (-4 *4 (-495)) - (-5 *2 (-350 (-1085 *1))))) + (-12 (-5 *3 (-551 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014)) (-4 *4 (-496)) + (-5 *2 (-350 (-1086 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1115))) - (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) - (-5 *2 (-1085 (-350 (-1085 *3)))) (-5 *1 (-498 *6 *3 *7)) (-5 *5 (-1085 *3)) - (-4 *7 (-1013)))) + (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1116))) + (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) + (-5 *2 (-1086 (-350 (-1086 *3)))) (-5 *1 (-499 *6 *3 *7)) (-5 *5 (-1086 *3)) + (-4 *7 (-1014)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1176 *5)) (-14 *5 (-1090)) (-4 *6 (-961)) - (-5 *2 (-1148 *5 (-857 *6))) (-5 *1 (-859 *5 *6)) (-5 *3 (-857 *6)))) + (-12 (-5 *4 (-1177 *5)) (-14 *5 (-1091)) (-4 *6 (-962)) + (-5 *2 (-1149 *5 (-858 *6))) (-5 *1 (-860 *5 *6)) (-5 *3 (-858 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *2 (-1085 *3)))) + (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *2 (-1086 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-1085 *1)) - (-4 *1 (-861 *4 *5 *3)))) + (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-1086 *1)) + (-4 *1 (-862 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *5 *4)) - (-5 *2 (-350 (-1085 *3))) (-5 *1 (-862 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *5 *4)) + (-5 *2 (-350 (-1086 *3))) (-5 *1 (-863 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) + (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1085 *3)) + (-12 (-5 *2 (-1086 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))) - (-4 *7 (-861 *6 *5 *4)) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) - (-5 *1 (-862 *5 *4 *6 *7 *3)))) + (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))) + (-4 *7 (-862 *6 *5 *4)) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) + (-5 *1 (-863 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-4 *5 (-495)) (-5 *2 (-350 (-1085 (-350 (-857 *5))))) - (-5 *1 (-952 *5)) (-5 *3 (-350 (-857 *5)))))) + (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-350 (-1086 (-350 (-858 *5))))) + (-5 *1 (-953 *5)) (-5 *3 (-350 (-858 *5)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) - (-4 *2 (-756)))) + (|partial| -12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) + (-4 *2 (-757)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-717)) (-4 *5 (-961)) (-4 *6 (-861 *5 *4 *2)) - (-4 *2 (-756)) (-5 *1 (-862 *4 *2 *5 *6 *3)) + (|partial| -12 (-4 *4 (-718)) (-4 *5 (-962)) (-4 *6 (-862 *5 *4 *2)) + (-4 *2 (-757)) (-5 *1 (-863 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3946 ($ *6)) (-15 -2998 (*6 $)) (-15 -2997 (*6 $))))))) + (-10 -8 (-15 -3947 ($ *6)) (-15 -2999 (*6 $)) (-15 -2998 (*6 $))))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-1090)) - (-5 *1 (-952 *4))))) + (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-1091)) + (-5 *1 (-953 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1085 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-1090))))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) + (-12 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-962)) (-5 *2 (-584 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-1091))))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) ((*1 *2 *1) - (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *2 (-583 *5)))) + (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *2 (-584 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) - (-5 *2 (-583 *5)) (-5 *1 (-862 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) + (-5 *2 (-584 *5)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $))))))) + (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) - (-5 *2 (-583 *5)))) + (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) + (-5 *2 (-584 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) + (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-1090))) - (-5 *1 (-952 *4))))) + (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-1091))) + (-5 *1 (-953 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1090))) - (-4 *6 (-13 (-495) (-950 *5))) (-4 *5 (-495)) - (-5 *2 (-583 (-583 (-249 (-350 (-857 *6)))))) (-5 *1 (-951 *5 *6))))) + (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) + (-4 *6 (-13 (-496) (-951 *5))) (-4 *5 (-496)) + (-5 *2 (-584 (-584 (-249 (-350 (-858 *6)))))) (-5 *1 (-952 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-550 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1115))) - (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) - (-5 *2 (-1085 (-350 (-1085 *6)))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-1085 *6)) - (-4 *7 (-1013)))) - ((*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) - ((*1 *2 *1) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3)))) + (-12 (-5 *4 (-551 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1116))) + (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) + (-5 *2 (-1086 (-350 (-1086 *6)))) (-5 *1 (-499 *5 *6 *7)) (-5 *3 (-1086 *6)) + (-4 *7 (-1014)))) + ((*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) + ((*1 *2 *1) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1085 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-694))) - (-5 *8 (-583 *11)) (-4 *10 (-756)) (-4 *11 (-258)) (-4 *9 (-717)) - (-4 *5 (-861 *11 *9 *10)) (-5 *2 (-583 (-1085 *5))) - (-5 *1 (-681 *9 *10 *11 *5)) (-5 *3 (-1085 *5)))) + (|partial| -12 (-5 *4 (-1086 *11)) (-5 *6 (-584 *10)) (-5 *7 (-584 (-695))) + (-5 *8 (-584 *11)) (-4 *10 (-757)) (-4 *11 (-258)) (-4 *9 (-718)) + (-4 *5 (-862 *11 *9 *10)) (-5 *2 (-584 (-1086 *5))) + (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1086 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-861 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-312)) - (-4 *4 (-717)) (-4 *5 (-756)) (-14 *6 (-583 *2))))) + (-12 (-4 *2 (-862 *3 *4 *5)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *3 (-312)) + (-4 *4 (-718)) (-4 *5 (-757)) (-14 *6 (-584 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-830)) (-5 *1 (-945 *2)) - (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-5 *3 (-831)) (-5 *1 (-946 *2)) + (-4 *2 (-13 (-1014) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-830)) (-5 *1 (-944 *2)) - (-4 *2 (-13 (-1013) (-10 -8 (-15 -3839 ($ $ $)))))))) + (-12 (-5 *3 (-831)) (-5 *1 (-945 *2)) + (-4 *2 (-13 (-1014) (-10 -8 (-15 -3840 ($ $ $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-1179 *5))) (-5 *4 (-484)) (-5 *2 (-1179 *5)) - (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-961))))) + (-12 (-5 *3 (-584 (-1180 *5))) (-5 *4 (-485)) (-5 *2 (-1180 *5)) + (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-85)) (-5 *5 (-484)) (-4 *6 (-312)) (-4 *6 (-320)) - (-4 *6 (-961)) (-5 *2 (-583 (-583 (-630 *6)))) (-5 *1 (-943 *6)) - (-5 *3 (-583 (-630 *6))))) + (-12 (-5 *4 (-85)) (-5 *5 (-485)) (-4 *6 (-312)) (-4 *6 (-320)) + (-4 *6 (-962)) (-5 *2 (-584 (-584 (-631 *6)))) (-5 *1 (-944 *6)) + (-5 *3 (-584 (-631 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-961)) - (-5 *2 (-583 (-583 (-630 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-583 (-630 *4))))) + (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-962)) + (-5 *2 (-584 (-584 (-631 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-584 (-631 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-961)) - (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) + (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)) + (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-830)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-961)) - (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5)))))) + (-12 (-5 *4 (-831)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)) + (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-4 *5 (-312)) (-4 *5 (-961)) - (-5 *2 (-85)) (-5 *1 (-943 *5)))) + (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-4 *5 (-312)) (-4 *5 (-962)) + (-5 *2 (-85)) (-5 *1 (-944 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-4 *4 (-961)) (-5 *2 (-85)) - (-5 *1 (-943 *4))))) + (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-4 *4 (-962)) (-5 *2 (-85)) + (-5 *1 (-944 *4))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-583 (-630 *6))) (-5 *4 (-85)) (-5 *5 (-484)) (-5 *2 (-630 *6)) - (-5 *1 (-943 *6)) (-4 *6 (-312)) (-4 *6 (-961)))) + (-12 (-5 *3 (-584 (-631 *6))) (-5 *4 (-85)) (-5 *5 (-485)) (-5 *2 (-631 *6)) + (-5 *1 (-944 *6)) (-4 *6 (-312)) (-4 *6 (-962)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-5 *1 (-943 *4)) - (-4 *4 (-312)) (-4 *4 (-961)))) + (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-944 *4)) + (-4 *4 (-312)) (-4 *4 (-962)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-5 *2 (-630 *5)) - (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-961))))) + (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-5 *2 (-631 *5)) + (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-962))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-1179 *5)) (-4 *5 (-258)) - (-4 *5 (-961)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5))))) + (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-1180 *5)) (-4 *5 (-258)) + (-4 *5 (-962)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-630 *5))) (-4 *5 (-258)) (-4 *5 (-961)) - (-5 *2 (-1179 (-1179 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1179 *5))))) + (-12 (-5 *3 (-584 (-631 *5))) (-4 *5 (-258)) (-4 *5 (-962)) + (-5 *2 (-1180 (-1180 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1180 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-4 *4 (-961)) - (-5 *1 (-943 *4))))) + (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-962)) + (-5 *1 (-944 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179 (-1179 *4))) (-4 *4 (-961)) (-5 *2 (-630 *4)) - (-5 *1 (-943 *4))))) + (-12 (-5 *3 (-1180 (-1180 *4))) (-4 *4 (-962)) (-5 *2 (-631 *4)) + (-5 *1 (-944 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-813 (-484))) (-5 *4 (-484)) (-5 *2 (-630 *4)) (-5 *1 (-942 *5)) - (-4 *5 (-961)))) + (-12 (-5 *3 (-814 (-485))) (-5 *4 (-485)) (-5 *2 (-631 *4)) (-5 *1 (-943 *5)) + (-4 *5 (-962)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-942 *4)) - (-4 *4 (-961)))) + (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-943 *4)) + (-4 *4 (-962)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-813 (-484)))) (-5 *4 (-484)) (-5 *2 (-583 (-630 *4))) - (-5 *1 (-942 *5)) (-4 *5 (-961)))) + (-12 (-5 *3 (-584 (-814 (-485)))) (-5 *4 (-485)) (-5 *2 (-584 (-631 *4))) + (-5 *1 (-943 *5)) (-4 *5 (-962)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-583 (-484)))) (-5 *2 (-583 (-630 (-484)))) - (-5 *1 (-942 *4)) (-4 *4 (-961))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) + (-12 (-5 *3 (-584 (-584 (-485)))) (-5 *2 (-584 (-631 (-485)))) + (-5 *1 (-943 *4)) (-4 *4 (-962))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3))))) + (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4)))) + (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (-4 *4 (-961)) - (-5 *1 (-942 *4))))) + (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (-4 *4 (-962)) + (-5 *1 (-943 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-694)) (-5 *2 (-630 (-857 *4))) (-5 *1 (-942 *4)) - (-4 *4 (-961))))) + (-12 (-5 *3 (-695)) (-5 *2 (-631 (-858 *4))) (-5 *1 (-943 *4)) + (-4 *4 (-962))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (|has| *4 (-6 (-3997 "*"))) - (-4 *4 (-961)) (-5 *1 (-942 *4)))) + (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (|has| *4 (-6 (-3998 "*"))) + (-4 *4 (-962)) (-5 *1 (-943 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (|has| *4 (-6 (-3997 "*"))) - (-4 *4 (-961)) (-5 *1 (-942 *4))))) + (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (|has| *4 (-6 (-3998 "*"))) + (-4 *4 (-962)) (-5 *1 (-943 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-350 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484))))) - (-5 *1 (-941))))) -(((*1 *2 *2) (-12 (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941))))) -(((*1 *2 *2) (-12 (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941))))) + (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485))))) + (-5 *1 (-942))))) +(((*1 *2 *2) (-12 (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942))))) +(((*1 *2 *2) (-12 (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-630 (-350 (-857 (-484))))) - (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941))))) + (|partial| -12 (-5 *3 (-631 (-350 (-858 (-485))))) + (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-350 (-857 (-484))))) (-5 *2 (-583 (-265 (-484)))) - (-5 *1 (-941))))) + (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-265 (-485)))) + (-5 *1 (-942))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-630 (-350 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484))))) - (-5 *1 (-941)) (-5 *3 (-265 (-484)))))) + (-12 (-5 *4 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485))))) + (-5 *1 (-942)) (-5 *3 (-265 (-485)))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-350 (-857 (-484))))) + (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 - (-583 - (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484)) - (|:| |radvect| (-583 (-630 (-265 (-484)))))))) - (-5 *1 (-941))))) + (-584 + (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) + (|:| |radvect| (-584 (-631 (-265 (-485)))))))) + (-5 *1 (-942))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) - ((*1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-939 *3)) (-4 *3 (-1129))))) -(((*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1129))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-938 *3 *2)) (-4 *2 (-600 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3266 *3) (|:| -2513 (-583 *5)))) - (-5 *1 (-938 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-600 *5))))) + ((*1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-940 *3)) (-4 *3 (-1130))))) +(((*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-939 *3 *2)) (-4 *2 (-601 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3267 *3) (|:| -2514 (-584 *5)))) + (-5 *1 (-939 *5 *3)) (-5 *4 (-584 *5)) (-4 *3 (-601 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-974 (-937 *4) (-1085 (-937 *4)))) (-5 *3 (-772)) - (-5 *1 (-937 *4)) (-4 *4 (-13 (-755) (-312) (-933)))))) + (-12 (-5 *2 (-975 (-938 *4) (-1086 (-938 *4)))) (-5 *3 (-773)) + (-5 *1 (-938 *4)) (-4 *4 (-13 (-756) (-312) (-934)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-974 (-937 *3) (-1085 (-937 *3)))) (-5 *1 (-937 *3)) - (-4 *3 (-13 (-755) (-312) (-933)))))) + (|partial| -12 (-5 *2 (-975 (-938 *3) (-1086 (-938 *3)))) (-5 *1 (-938 *3)) + (-4 *3 (-13 (-756) (-312) (-934)))))) (((*1 *2 *3) - (-12 (-5 *2 (-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) - (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))))) + (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) + (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) - (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))) - (-5 *4 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))))) + (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) + (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) + (-5 *4 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) - (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))) (-5 *4 (-350 (-484))))) + (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) + (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-350 (-485))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-350 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *5) (|:| -3137 *5)))) - (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))) - (-5 *4 (-2 (|:| -3138 *5) (|:| -3137 *5))))) + (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3139 *5) (|:| -3138 *5)))) + (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) + (-5 *4 (-2 (|:| -3139 *5) (|:| -3138 *5))))) ((*1 *2 *3) - (-12 (-5 *2 (-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) - (-5 *1 (-935 *3)) (-4 *3 (-1155 (-350 (-484)))))) + (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) + (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485)))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) - (-5 *1 (-935 *3)) (-4 *3 (-1155 (-350 (-484)))) - (-5 *4 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))))) + (-12 (-5 *2 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) + (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485)))) + (-5 *4 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-350 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *4) (|:| -3137 *4)))) - (-5 *1 (-935 *3)) (-4 *3 (-1155 *4)))) + (-12 (-5 *4 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3139 *4) (|:| -3138 *4)))) + (-5 *1 (-936 *3)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-350 (-484))) (-5 *2 (-583 (-2 (|:| -3138 *5) (|:| -3137 *5)))) - (-5 *1 (-935 *3)) (-4 *3 (-1155 *5)) - (-5 *4 (-2 (|:| -3138 *5) (|:| -3137 *5)))))) + (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3139 *5) (|:| -3138 *5)))) + (-5 *1 (-936 *3)) (-4 *3 (-1156 *5)) + (-5 *4 (-2 (|:| -3139 *5) (|:| -3138 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484)))))) - (-5 *2 (-583 (-350 (-484)))) (-5 *1 (-934 *4)) (-4 *4 (-1155 (-484)))))) + (-12 (-5 *3 (-584 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485)))))) + (-5 *2 (-584 (-350 (-485)))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485)))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3138 (-350 (-484))) (|:| -3137 (-350 (-484))))) - (-5 *2 (-350 (-484))) (-5 *1 (-934 *4)) (-4 *4 (-1155 (-484)))))) + (-12 (-5 *3 (-2 (|:| -3139 (-350 (-485))) (|:| -3138 (-350 (-485))))) + (-5 *2 (-350 (-485))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1179 *6)) (-5 *4 (-1179 (-484))) (-5 *5 (-484)) (-4 *6 (-1013)) - (-5 *2 (-1 *6)) (-5 *1 (-930 *6))))) + (-12 (-5 *3 (-1180 *6)) (-5 *4 (-1180 (-485))) (-5 *5 (-485)) (-4 *6 (-1014)) + (-5 *2 (-1 *6)) (-5 *1 (-931 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-2 (|:| -3402 *4) (|:| -1522 (-484))))) (-4 *4 (-1013)) - (-5 *2 (-1 *4)) (-5 *1 (-930 *4))))) + (-12 (-5 *3 (-584 (-2 (|:| -3403 *4) (|:| -1523 (-485))))) (-4 *4 (-1014)) + (-5 *2 (-1 *4)) (-5 *1 (-931 *4))))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4)) - (-5 *2 (-583 (-350 *5))) (-5 *1 (-929 *4 *5)) (-5 *3 (-350 *5))))) + (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) + (-5 *2 (-584 (-350 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-350 *5))))) (((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) - (-4 *5 (-13 (-312) (-120) (-950 (-484)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-951 (-485)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |h| *6) (|:| |c1| (-350 *6)) - (|:| |c2| (-350 *6)) (|:| -3093 *6))) - (-5 *1 (-929 *5 *6)) (-5 *3 (-350 *6))))) + (|:| |c2| (-350 *6)) (|:| -3094 *6))) + (-5 *1 (-930 *5 *6)) (-5 *3 (-350 *6))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1155 *6)) - (-4 *6 (-13 (-312) (-120) (-950 *4))) (-5 *4 (-484)) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1156 *6)) + (-4 *6 (-13 (-312) (-120) (-951 *4))) (-5 *4 (-485)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) - (|:| -3266 + (|:| -3267 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) - (-5 *1 (-928 *6 *3))))) + (-5 *1 (-929 *6 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4)) - (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-928 *4 *5)) + (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) + (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-929 *4 *5)) (-5 *3 (-350 *5))))) (((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) - (-4 *5 (-13 (-312) (-120) (-950 (-484)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-951 (-485)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3093 *6))) - (-5 *1 (-928 *5 *6)) (-5 *3 (-350 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3094 *6))) + (-5 *1 (-929 *5 *6)) (-5 *3 (-350 *6))))) (((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1090)) + (|partial| -12 (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-583 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1115) (-27) (-364 *8))) - (-4 *8 (-13 (-392) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484)) - (-5 *2 (-583 *4)) (-5 *1 (-927 *8 *4))))) + *4 (-584 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1116) (-27) (-364 *8))) + (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485)) + (-5 *2 (-584 *4)) (-5 *1 (-928 *8 *4))))) (((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1090)) + (-12 (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-583 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1115) (-27) (-364 *8))) - (-4 *8 (-13 (-392) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3137 *4) (|:| |sol?| (-85)))) - (-5 *1 (-926 *8 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) - ((*1 *1 *1) (-4 *1 (-915))) ((*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-925)))) - ((*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-4 *1 (-925)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-830)))) - ((*1 *1 *1) (-4 *1 (-925)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-925)) (-5 *2 (-772))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-925))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-925))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772))))) -(((*1 *2 *1) (-12 (-4 *3 (-1129)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-583 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-484))))) + *4 (-584 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1116) (-27) (-364 *8))) + (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3138 *4) (|:| |sol?| (-85)))) + (-5 *1 (-927 *8 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) + ((*1 *1 *1) (-4 *1 (-916))) ((*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-926)))) + ((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-926)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-831)))) + ((*1 *1 *1) (-4 *1 (-926)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-773))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-926))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-926))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773))))) +(((*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-485))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-4 *3 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-1014)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-4 *3 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-1014)) (-5 *2 (-85))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -3996)) (-4 *1 (-923 *3)) - (-4 *3 (-1129))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-923 *2)) (-4 *2 (-1129))))) + (-12 (-5 *2 (-584 *1)) (|has| *1 (-6 -3997)) (-4 *1 (-924 *3)) + (-4 *3 (-1130))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-924 *2)) (-4 *2 (-1130))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) - (-5 *2 (-350 (-484))))) + (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) + (-5 *2 (-350 (-485))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-348 *3)) (-4 *3 (-483)) - (-4 *3 (-495)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-483)) (-5 *2 (-350 (-484))))) + (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484)) + (-4 *3 (-496)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-484)) (-5 *2 (-350 (-485))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) - (-5 *2 (-350 (-484))))) + (|partial| -12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) + (-5 *2 (-350 (-485))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483)) - (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) + (-4 *3 (-1014)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483)) - (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) + (-4 *3 (-1014)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) - (-5 *2 (-350 (-484))))) + (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) + (-5 *2 (-350 (-485))))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2))))) + (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) - ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) + (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) + ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) + (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) ((*1 *2 *1) - (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) + (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *2 (-85)) (-5 *1 (-921 *3)) (-4 *3 (-950 (-350 (-484))))))) + (-12 (-5 *2 (-85)) (-5 *1 (-922 *3)) (-4 *3 (-951 (-350 (-485))))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484))))) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) ((*1 *2 *1) - (-12 (-5 *2 (-350 (-484))) (-5 *1 (-348 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) - ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-350 (-484))))) + (-12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) + ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-350 (-485))))) ((*1 *2 *1) - (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484))))) + (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) ((*1 *2 *1) - (-12 (-5 *2 (-350 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) ((*1 *2 *1) - (-12 (-5 *2 (-350 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) ((*1 *2 *1) - (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484))))) - ((*1 *2 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919))))) -(((*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-919))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) - ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919))))) + (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) + ((*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920))))) +(((*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-920))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) + ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-484))) (-5 *4 (-484)) (-5 *2 (-51)) (-5 *1 (-918))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))) -(((*1 *2 *1) (-12 (-5 *2 (-1069 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))) + (-12 (-5 *3 (-350 (-485))) (-5 *4 (-485)) (-5 *2 (-51)) (-5 *1 (-919))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-348 *5)) (-4 *5 (-495)) - (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3954 *5) (|:| |radicand| (-583 *5)))) - (-5 *1 (-271 *5)) (-5 *4 (-694)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-484))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-913 *3))))) + (-12 (-5 *3 (-348 *5)) (-4 *5 (-496)) + (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3955 *5) (|:| |radicand| (-584 *5)))) + (-5 *1 (-271 *5)) (-5 *4 (-695)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-485))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-914 *3))))) (((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) ((*1 *1 *1 *1) (-4 *1 (-413))) - ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) - ((*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-793)))) - ((*1 *1 *1) (-5 *1 (-884))) - ((*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129))))) -(((*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129))))) + ((*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) + ((*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-794)))) + ((*1 *1 *1) (-5 *1 (-885))) + ((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130))))) (((*1 *1 *2) - (-12 (-5 *2 (-1056 *3 *4)) (-14 *3 (-830)) (-4 *4 (-312)) - (-5 *1 (-906 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1057 *3 *4)) (-14 *3 (-831)) (-4 *4 (-312)) + (-5 *1 (-907 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6)) - (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-950 *4))))) + (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) + (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-961)) (-4 *3 (-1013)) (-5 *2 (-1039 *3 (-550 *1))) + (-12 (-4 *3 (-962)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1))) (-4 *1 (-364 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-435)))) (-5 *1 (-435)))) + ((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435)))) ((*1 *2 *1) - (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-558 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-663) *3)))) + (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-559 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-664) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-146)) (-4 *2 (-654 *3)) (-5 *1 (-594 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-663) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495))))) -(((*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *3 (-146)) (-4 *2 (-655 *3)) (-5 *1 (-595 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-664) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496))))) +(((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-904 *2)) (-4 *4 (-1155 *3)) (-4 *2 (-258)) - (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-950 *3))))) + (-12 (-4 *3 (-905 *2)) (-4 *4 (-1156 *3)) (-4 *2 (-258)) + (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-1013)) (-5 *2 (-1039 *3 (-550 *1))) + (-12 (-4 *3 (-496)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1))) (-4 *1 (-364 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-435)))) (-5 *1 (-435)))) + ((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435)))) ((*1 *2 *1) - (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) - (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) + (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) - (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495))))) -(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013)) (-4 *2 (-961)))) - ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495))))) -(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013)) (-4 *2 (-495)))) - ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495))))) + (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) + (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496))))) +(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-962)))) + ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496))))) +(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-496)))) + ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496))))) (((*1 *2 *3) - (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) + (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) + (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) ((*1 *1) (-4 *1 (-320))) ((*1 *2 *3) - (-12 (-5 *3 (-830)) (-5 *2 (-1179 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) - ((*1 *1 *1) (-4 *1 (-483))) ((*1 *1) (-4 *1 (-483))) - ((*1 *1 *1) (-5 *1 (-694))) - ((*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) + (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) + ((*1 *1 *1) (-4 *1 (-484))) ((*1 *1) (-4 *1 (-484))) + ((*1 *1 *1) (-5 *1 (-695))) + ((*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))) - ((*1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-483)) (-4 *2 (-495))))) + (-12 (-5 *3 (-485)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) + ((*1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-484)) (-4 *2 (-496))))) (((*1 *2 *2) (-12 (-5 *2 - (-899 (-350 (-484)) (-773 *3) (-197 *4 (-694)) (-206 *3 (-350 (-484))))) - (-14 *3 (-583 (-1090))) (-14 *4 (-694)) (-5 *1 (-900 *3 *4))))) + (-900 (-350 (-485)) (-774 *3) (-197 *4 (-695)) (-206 *3 (-350 (-485))))) + (-14 *3 (-584 (-1091))) (-14 *4 (-695)) (-5 *1 (-901 *3 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-861 *4 *6 *5)) (-4 *4 (-392)) (-4 *5 (-756)) - (-4 *6 (-717)) (-5 *1 (-899 *4 *5 *6 *3))))) + (-12 (-5 *2 (-584 *3)) (-4 *3 (-862 *4 *6 *5)) (-4 *4 (-392)) (-4 *5 (-757)) + (-4 *6 (-718)) (-5 *1 (-900 *4 *5 *6 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)) - (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4))))) + (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) + (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-583 *6)) - (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4))))) + (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-584 *6)) + (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-899 *3 *4 *5 *2)) (-4 *3 (-392)) - (-4 *4 (-756)) (-4 *5 (-717))))) + (-12 (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *3 (-392)) + (-4 *4 (-757)) (-4 *5 (-718))))) (((*1 *1 *1) - (-12 (-4 *2 (-392)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) - (-4 *5 (-861 *2 *4 *3))))) + (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) + (-4 *5 (-862 *2 *4 *3))))) (((*1 *2 *3) - (-12 (-4 *3 (-1155 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-898 *4 *2 *3 *5)) - (-4 *4 (-299)) (-4 *5 (-661 *2 *3))))) + (-12 (-4 *3 (-1156 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-899 *4 *2 *3 *5)) + (-4 *4 (-299)) (-4 *5 (-662 *2 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $))))) - (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2)) - (-4 *2 (-861 (-350 (-857 *5)) *4 *3)))) + (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $))))) + (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2)) + (-4 *2 (-862 (-350 (-858 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-961)) (-4 *5 (-717)) + (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 - (-13 (-756) - (-10 -8 (-15 -3972 ((-1090) $)) - (-15 -3831 ((-3 $ #1="failed") (-1090)))))) - (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3)))) + (-13 (-757) + (-10 -8 (-15 -3973 ((-1091) $)) + (-15 -3832 ((-3 $ #1="failed") (-1091)))))) + (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *6)) + (-12 (-5 *3 (-584 *6)) (-4 *6 - (-13 (-756) - (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ #1#) (-1090)))))) - (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) - (-4 *2 (-861 (-857 *4) *5 *6))))) + (-13 (-757) + (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ #1#) (-1091)))))) + (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) + (-4 *2 (-862 (-858 *4) *5 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $))))) - (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2)) - (-4 *2 (-861 (-350 (-857 *5)) *4 *3)))) + (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $))))) + (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2)) + (-4 *2 (-862 (-350 (-858 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-961)) (-4 *5 (-717)) + (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 - (-13 (-756) - (-10 -8 (-15 -3972 ((-1090) $)) - (-15 -3831 ((-3 $ #1="failed") (-1090)))))) - (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3)))) + (-13 (-757) + (-10 -8 (-15 -3973 ((-1091) $)) + (-15 -3832 ((-3 $ #1="failed") (-1091)))))) + (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *6)) + (-12 (-5 *3 (-584 *6)) (-4 *6 - (-13 (-756) - (-10 -8 (-15 -3972 ((-1090) $)) (-15 -3831 ((-3 $ #1#) (-1090)))))) - (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) - (-4 *2 (-861 (-857 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115))))) + (-13 (-757) + (-10 -8 (-15 -3973 ((-1091) $)) (-15 -3832 ((-3 $ #1#) (-1091)))))) + (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) + (-4 *2 (-862 (-858 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-694)) (-4 *1 (-896 *2)) (-4 *2 (-1115))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-783)))) - ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-130)))) - ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) - ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) -(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-130)))) - ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) -(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) -(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) -(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) -(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) -(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) -(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961))))) + (|partial| -12 (-5 *3 (-695)) (-4 *1 (-897 *2)) (-4 *2 (-1116))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-784)))) + ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-130)))) + ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) + ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) +(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-130)))) + ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) +(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) +(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) +(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) +(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) +(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) +(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-312)) - (-5 *2 (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1179 *5))))) (-5 *1 (-891 *5)) - (-5 *3 (-630 *5)) (-5 *4 (-1179 *5))))) + (-5 *2 (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5))))) (-5 *1 (-892 *5)) + (-5 *3 (-631 *5)) (-5 *4 (-1180 *5))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-630 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) - (-5 *1 (-891 *5))))) + (-12 (-5 *2 (-631 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) + (-5 *1 (-892 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-392)) - (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2)))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-392)) + (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) - (-5 *2 (-2 (|:| R (-630 *6)) (|:| A (-630 *6)) (|:| |Ainv| (-630 *6)))) - (-5 *1 (-891 *6)) (-5 *3 (-630 *6))))) + (-5 *2 (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6)))) + (-5 *1 (-892 *6)) (-5 *3 (-631 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) - (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) + (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) - (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) + (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) - (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) + (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495)) - (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) + (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495)) - (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) + (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495)) - (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) + (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495)) - (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) + (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) - (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7))))) + (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) + (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-392)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) - (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) + (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) + (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) - (-5 *1 (-890 *5 *6 *7 *8))))) + (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) + (-5 *1 (-891 *5 *6 *7 *8))))) (((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) - (-4 *8 (-756)) (-5 *1 (-890 *6 *7 *8 *9))))) + (-12 (-5 *2 (-584 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) + (-4 *8 (-757)) (-5 *1 (-891 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-416 *4 *5 *6 *7)) (|:| -3323 (-583 *7)))) - (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) + (|partial| -12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-416 *4 *5 *6 *7)) (|:| -3324 (-584 *7)))) + (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *2))))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *2))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) - (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7))))) + (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) + (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) - (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) + (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) + (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) - (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) + (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) + (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) - (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) + (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) + (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) - (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) + (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) + (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) - (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) + (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) + (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) - (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) + (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) + (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) - (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) + (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) + (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) - (-4 *6 (-717)) (-4 *7 (-756)) - (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) - (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) + (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) + (-4 *6 (-718)) (-4 *7 (-757)) + (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) + (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) - (-4 *6 (-717)) (-4 *7 (-756)) - (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) - (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) + (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) + (-4 *6 (-718)) (-4 *7 (-757)) + (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) + (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) - (-4 *6 (-717)) (-4 *7 (-756)) - (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) - (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8))))) + (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) + (-4 *6 (-718)) (-4 *7 (-757)) + (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) + (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7))))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-977 *5 *6 *7)) - (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-85)) - (-5 *1 (-890 *5 *6 *7 *8))))) + (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-978 *5 *6 *7)) + (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-85)) + (-5 *1 (-891 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7))))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) - (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) + (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) + (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *3)))) + (-12 (-5 *2 (-584 *3)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) - (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) - (-5 *1 (-890 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 (-584 *7) (-584 *7))) (-5 *2 (-584 *7)) + (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) + (-5 *1 (-891 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) - (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))) + (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) + (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5))))) + (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-889 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) - (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85))))) + (-12 (-4 *1 (-890 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) + (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) - (-4 *5 (-977 *3 *4 *2))))) + (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) + (-4 *5 (-978 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) - (-4 *5 (-977 *3 *4 *2))))) + (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) + (-4 *5 (-978 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) - (-4 *5 (-977 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-756)))) + (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) + (-4 *5 (-978 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))) - ((*1 *2 *2) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) + ((*1 *2 *2) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3130 *1) (|:| |upper| *1))) - (-4 *1 (-889 *4 *5 *3 *6))))) + (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3131 *1) (|:| |upper| *1))) + (-4 *1 (-890 *4 *5 *3 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) + (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) + (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) + (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) + (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) + (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) + (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) - (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495))))) + (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) + (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) - (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495))))) -(((*1 *2 *1) - (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-583 (-583 (-854 (-179))))))) - ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-583 (-583 (-854 (-179)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179))))) - ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179)))))) -(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179))))) - ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179)))))) -(((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) - ((*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013)))) - ((*1 *2 *1) - (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *6 (-196 (-3957 *3) (-694))) + (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) + (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496))))) +(((*1 *2 *1) + (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-584 (-584 (-855 (-179))))))) + ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-584 (-584 (-855 (-179)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179))))) + ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179)))))) +(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179))))) + ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179)))))) +(((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) + ((*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014)))) + ((*1 *2 *1) + (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3958 *3) (-695))) (-14 *7 - (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) - (-2 (|:| -2400 *5) (|:| -2401 *6)))) - (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-401 *3 *4 *5 *6 *7 *8)) (-4 *5 (-756)) - (-4 *8 (-861 *4 *6 (-773 *3))))) + (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) + (-2 (|:| -2401 *5) (|:| -2402 *6)))) + (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-401 *3 *4 *5 *6 *7 *8)) (-4 *5 (-757)) + (-4 *8 (-862 *4 *6 (-774 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-663)) (-4 *2 (-756)) (-5 *1 (-674 *3 *2)) (-4 *3 (-961)))) + (-12 (-4 *2 (-664)) (-4 *2 (-757)) (-5 *1 (-675 *3 *2)) (-4 *3 (-962)))) ((*1 *1 *1) - (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) + (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-583 (-830))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830)) - (-4 *2 (-312)) (-14 *5 (-906 *4 *2)))) + (-12 (-5 *3 (-584 (-831))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831)) + (-4 *2 (-312)) (-14 *5 (-907 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-756)) (-4 *6 (-196 (-3957 *4) (-694))) + (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-757)) (-4 *6 (-196 (-3958 *4) (-695))) (-14 *7 - (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) - (-2 (|:| -2400 *5) (|:| -2401 *6)))) - (-14 *4 (-583 (-1090))) (-4 *2 (-146)) (-5 *1 (-401 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-861 *2 *6 (-773 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) + (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) + (-2 (|:| -2401 *5) (|:| -2402 *6)))) + (-14 *4 (-584 (-1091))) (-4 *2 (-146)) (-5 *1 (-401 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-862 *2 *6 (-774 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1155 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-961)) (-4 *3 (-663)))) + (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-962)) (-4 *3 (-664)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) - (-4 *4 (-961)) (-4 *5 (-756)))) + (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) + (-4 *4 (-962)) (-4 *5 (-757)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) + (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) - (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) + (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) + (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) - (-4 *2 (-756)))) + (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) + (-4 *2 (-757)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-886 *4 *5 *6)) - (-4 *4 (-961)) (-4 *5 (-716)) (-4 *6 (-756)))) + (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 *5)) (-4 *1 (-887 *4 *5 *6)) + (-4 *4 (-962)) (-4 *5 (-717)) (-4 *6 (-757)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-886 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-716)) (-4 *2 (-756))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) + (-12 (-4 *1 (-887 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-717)) (-4 *2 (-757))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) ((*1 *2 *1) - (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) + (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) (-5 *2 (-85))))) (((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) - ((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) - ((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129)))) - ((*1 *1 *1) (-4 *1 (-779 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) + ((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1) (-4 *1 (-780 *2))) ((*1 *1 *1) - (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756))))) -(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129)) - (-5 *2 (-583 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884))))) -(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1069 (-884))) (-5 *1 (-884))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-830) (-830)))) (-5 *1 (-884))))) -(((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-884))))) + (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757))))) +(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -3996)) (-4 *1 (-429 *3)) (-4 *3 (-1130)) + (-5 *2 (-584 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885))))) +(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1070 (-885))) (-5 *1 (-885))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-831) (-831)))) (-5 *1 (-885))))) +(((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-885))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3756 *4))) - (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4))) + (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3756 *4))) - (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2))))) + (-12 (-4 *4 (-496)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4))) + (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3))))) + (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3))))) (((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-694)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3))))) + (-12 (-5 *4 (-695)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-694)) (-4 *2 (-495)) (-5 *1 (-882 *2 *4)) (-4 *4 (-1155 *2))))) + (-12 (-5 *3 (-695)) (-4 *2 (-496)) (-5 *1 (-883 *2 *4)) (-4 *4 (-1156 *2))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) (-4 *1 (-258)))) + (-12 (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) (-4 *1 (-258)))) ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) + (|partial| -12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1972 (-694)) (|:| -2902 (-694)))) (-5 *1 (-694)))) + (-12 (-5 *2 (-2 (|:| -1973 (-695)) (|:| -2903 (-695)))) (-5 *1 (-695)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) - (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) + (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *4 (-495)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2876 *4))) (-5 *1 (-882 *4 *3)) - (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-392)) (-4 *4 (-496)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2877 *4))) (-5 *1 (-883 *4 *3)) + (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *4 (-495)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2876 *4))) - (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-392)) (-4 *4 (-496)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2877 *4))) + (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-495)) (-4 *2 (-392)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2))))) + (-12 (-4 *2 (-496)) (-4 *2 (-392)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-583 (-694))) (-5 *1 (-882 *4 *3)) - (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-584 (-695))) (-5 *1 (-883 *4 *3)) + (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-882 *4 *3)) - (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-883 *4 *3)) + (-4 *3 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4))) - (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4))) + (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4))) - (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-496)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4))) + (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3144 *3))) - (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3145 *3))) + (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3144 *3))) - (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3145 *3))) + (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3144 *3))) - (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-496)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3145 *3))) + (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4))))) + (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-694)) (-4 *5 (-495)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) - (-4 *3 (-1155 *5))))) + (-12 (-5 *4 (-695)) (-4 *5 (-496)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) + (-4 *3 (-1156 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-694)) (-4 *5 (-495)) + (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-882 *5 *3)) (-4 *3 (-1155 *5))))) + (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1155 *4))))) + (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-694)) (-4 *5 (-495)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) - (-4 *3 (-1155 *5))))) + (-12 (-5 *4 (-695)) (-4 *5 (-496)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) + (-4 *3 (-1156 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-694)) (-4 *5 (-495)) + (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-882 *5 *3)) (-4 *3 (-1155 *5))))) + (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1155 *4))))) + (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3756 *4))) - (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3757 *4))) + (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3756 *4))) - (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4))) + (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-495)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3756 *4))) - (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-496)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4))) + (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *1) - (-12 (-4 *1 (-347)) (-2560 (|has| *1 (-6 -3986))) - (-2560 (|has| *1 (-6 -3978))))) - ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1013)) (-4 *2 (-756)))) - ((*1 *1) (-4 *1 (-752))) ((*1 *1 *1 *1) (-4 *1 (-759))) - ((*1 *2 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-756)))) + (-12 (-4 *1 (-347)) (-2561 (|has| *1 (-6 -3987))) + (-2561 (|has| *1 (-6 -3979))))) + ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757)))) + ((*1 *1) (-4 *1 (-753))) ((*1 *1 *1 *1) (-4 *1 (-760))) + ((*1 *2 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756))))) -(((*1 *1) (-4 *1 (-880)))) -(((*1 *1) (-4 *1 (-880)))) -(((*1 *1 *1 *1) (-4 *1 (-880)))) -(((*1 *1 *1 *1) (-4 *1 (-880)))) -(((*1 *1 *2) (-12 (-5 *2 (-577 *3)) (-14 *3 (-583 (-1090))) (-5 *1 (-168 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-583 (-1090))) (-5 *1 (-577 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *4)) (-5 *1 (-795 *3 *4 *5)) - (-4 *3 (-1013)) (-4 *5 (-608 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-877 *4)) (-4 *4 (-1013)) (-5 *2 (-1009 *4)) (-5 *1 (-878 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-632 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-632 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) - (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) - (-4 *3 (-1013))))) -(((*1 *2 *1) - (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) - (-4 *3 (-1013))))) -(((*1 *2 *1) - (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) - (-4 *3 (-1013))))) -(((*1 *2 *1) - (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) - (-4 *3 (-1013))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-696))) (-5 *1 (-86)))) - ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-696)) (-5 *1 (-86)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-876))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-772)))) - ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-874))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-873 *3)) (-4 *3 (-483))))) -(((*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483))))) -(((*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483))))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757))))) +(((*1 *1) (-4 *1 (-881)))) +(((*1 *1) (-4 *1 (-881)))) +(((*1 *1 *1 *1) (-4 *1 (-881)))) +(((*1 *1 *1 *1) (-4 *1 (-881)))) +(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-14 *3 (-584 (-1091))) (-5 *1 (-168 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-584 (-1091))) (-5 *1 (-578 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *4)) (-5 *1 (-796 *3 *4 *5)) + (-4 *3 (-1014)) (-4 *5 (-609 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-878 *4)) (-4 *4 (-1014)) (-5 *2 (-1010 *4)) (-5 *1 (-879 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-633 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) + (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) + (-4 *3 (-1014))))) +(((*1 *2 *1) + (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) + (-4 *3 (-1014))))) +(((*1 *2 *1) + (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) + (-4 *3 (-1014))))) +(((*1 *2 *1) + (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) + (-4 *3 (-1014))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-697))) (-5 *1 (-86)))) + ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-697)) (-5 *1 (-86)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-877))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-773)))) + ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-875))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-584 *3)) (-5 *1 (-874 *3)) (-4 *3 (-484))))) +(((*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484))))) +(((*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484))))) (((*1 *1) (-4 *1 (-299))) ((*1 *2 *3) - (-12 (-5 *3 (-583 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-495) (-120))) + (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-496) (-120))) (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1085 *5))) - (|:| |prim| (-1085 *5)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-584 (-1086 *5))) + (|:| |prim| (-1086 *5)))) (-5 *1 (-375 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-495) (-120))) + (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1085 *3)) (|:| |pol2| (-1085 *3)) - (|:| |prim| (-1085 *3)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1086 *3)) (|:| |pol2| (-1086 *3)) + (|:| |prim| (-1086 *3)))) (-5 *1 (-375 *4 *3)) (-4 *3 (-27)) (-4 *3 (-364 *4)))) ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-857 *5)) (-5 *4 (-1090)) (-4 *5 (-13 (-312) (-120))) + (-12 (-5 *3 (-858 *5)) (-5 *4 (-1091)) (-4 *5 (-13 (-312) (-120))) (-5 *2 - (-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1085 *5)))) - (-5 *1 (-872 *5)))) + (-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 *5)))) + (-5 *1 (-873 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1090))) + (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-312) (-120))) (-5 *2 - (-2 (|:| -3954 (-583 (-484))) (|:| |poly| (-583 (-1085 *5))) - (|:| |prim| (-1085 *5)))) - (-5 *1 (-872 *5)))) + (-2 (|:| -3955 (-584 (-485))) (|:| |poly| (-584 (-1086 *5))) + (|:| |prim| (-1086 *5)))) + (-5 *1 (-873 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1090))) (-5 *5 (-1090)) + (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-5 *5 (-1091)) (-4 *6 (-13 (-312) (-120))) (-5 *2 - (-2 (|:| -3954 (-583 (-484))) (|:| |poly| (-583 (-1085 *6))) - (|:| |prim| (-1085 *6)))) - (-5 *1 (-872 *6))))) + (-2 (|:| -3955 (-584 (-485))) (|:| |poly| (-584 (-1086 *6))) + (|:| |prim| (-1086 *6)))) + (-5 *1 (-873 *6))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1090)) (-5 *1 (-519 *2)) (-4 *2 (-950 *3)) (-4 *2 (-312)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312)))) + (-12 (-5 *3 (-1091)) (-5 *1 (-520 *2)) (-4 *2 (-951 *3)) (-4 *2 (-312)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-568 *4 *2)) - (-4 *2 (-13 (-364 *4) (-915) (-1115))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-569 *4 *2)) + (-4 *2 (-13 (-364 *4) (-916) (-1116))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-364 *4) (-915) (-1115))) (-4 *4 (-495)) - (-5 *1 (-568 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-871)) (-5 *2 (-1090)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-871))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-830)) (-4 *5 (-495)) (-5 *2 (-630 *5)) - (-5 *1 (-868 *5 *3)) (-4 *3 (-600 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-865))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *3 (-861 *7 *5 *6)) - (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3954 *3) (|:| |radicand| (-583 *3)))) - (-5 *1 (-864 *5 *6 *7 *3 *8)) (-5 *4 (-694)) + (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-916) (-1116))) (-4 *4 (-496)) + (-5 *1 (-569 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-872)) (-5 *2 (-1091)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-872))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-831)) (-4 *5 (-496)) (-5 *2 (-631 *5)) + (-5 *1 (-869 *5 *3)) (-4 *3 (-601 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-866))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *3 (-862 *7 *5 *6)) + (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3955 *3) (|:| |radicand| (-584 *3)))) + (-5 *1 (-865 *5 *6 *7 *3 *8)) (-5 *4 (-695)) (-4 *8 (-13 (-312) - (-10 -8 (-15 -3946 ($ *3)) (-15 -2998 (*3 $)) (-15 -2997 (*3 $)))))))) + (-10 -8 (-15 -3947 ($ *3)) (-15 -2999 (*3 $)) (-15 -2998 (*3 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) - (-4 *8 (-861 *7 *5 *6)) - (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3954 *3) (|:| |radicand| *3))) - (-5 *1 (-864 *5 *6 *7 *8 *3)) (-5 *4 (-694)) + (-12 (-4 *7 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) + (-4 *8 (-862 *7 *5 *6)) + (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3955 *3) (|:| |radicand| *3))) + (-5 *1 (-865 *5 *6 *7 *8 *3)) (-5 *4 (-695)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3946 ($ *8)) (-15 -2998 (*8 $)) (-15 -2997 (*8 $)))))))) + (-10 -8 (-15 -3947 ($ *8)) (-15 -2999 (*8 $)) (-15 -2998 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-484))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) - (-4 *8 (-861 *7 *5 *6)) - (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3954 *9) (|:| |radicand| *9))) - (-5 *1 (-864 *5 *6 *7 *8 *9)) (-5 *4 (-694)) + (-12 (-5 *3 (-350 (-485))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) + (-4 *8 (-862 *7 *5 *6)) + (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3955 *9) (|:| |radicand| *9))) + (-5 *1 (-865 *5 *6 *7 *8 *9)) (-5 *4 (-695)) (-4 *9 (-13 (-312) - (-10 -8 (-15 -3946 ($ *8)) (-15 -2998 (*8 $)) (-15 -2997 (*8 $)))))))) + (-10 -8 (-15 -3947 ($ *8)) (-15 -2999 (*8 $)) (-15 -2998 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-495)) (-4 *7 (-861 *3 *5 *6)) - (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3954 *8) (|:| |radicand| *8))) - (-5 *1 (-864 *5 *6 *3 *7 *8)) (-5 *4 (-694)) + (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-496)) (-4 *7 (-862 *3 *5 *6)) + (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3955 *8) (|:| |radicand| *8))) + (-5 *1 (-865 *5 *6 *3 *7 *8)) (-5 *4 (-695)) (-4 *8 (-13 (-312) - (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) + (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-961)) (-4 *3 (-1013)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2401 (-484)))) (-4 *1 (-364 *3)))) + (|partial| -12 (-4 *3 (-962)) (-4 *3 (-1014)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2402 (-485)))) (-4 *1 (-364 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-800 *3)))) - (-5 *1 (-800 *3)) (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-801 *3)))) + (-5 *1 (-801 *3)) (-4 *3 (-1014)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) - (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2401 (-484)))) - (-5 *1 (-862 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) + (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2402 (-485)))) + (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) + (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-961)) (-4 *4 (-1013)) - (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-364 *4)))) + (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-962)) (-4 *4 (-1014)) + (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-86)) (-4 *4 (-961)) (-4 *4 (-1013)) - (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-364 *4)))) + (|partial| -12 (-5 *3 (-86)) (-4 *4 (-962)) (-4 *4 (-1014)) + (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) - (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-364 *3)))) + (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014)) + (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-694)))) - (-5 *1 (-800 *3)) (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-695)))) + (-5 *1 (-801 *3)) (-4 *3 (-1014)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-694)))))) + (|partial| -12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-695)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) - (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-484)))) - (-5 *1 (-862 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) + (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-485)))) + (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) + (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-583 *1)) + (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-364 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) - (-4 *1 (-861 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) + (-4 *1 (-862 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) - (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) + (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) + (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-583 *1)) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-364 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) - (-4 *1 (-861 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) + (-4 *1 (-862 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) - (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) + (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) - (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) + (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-335 *3 *4)))) + (-12 (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-335 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-583 (-674 *3 *4))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) - (-4 *4 (-663)))) + (-12 (-5 *2 (-584 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) + (-4 *4 (-664)))) ((*1 *2 *1) - (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) - (-4 *1 (-861 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) - ((*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) + (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) + (-4 *1 (-862 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) + ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-583 (-694))))) + (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-584 (-695))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) - (-5 *2 (-694))))) + (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) + (-5 *2 (-695))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-694)))) + (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-695)))) ((*1 *2 *1) - (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *2 (-694))))) + (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *2 (-695))))) (((*1 *2 *1) - (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) - (-4 *1 (-861 *3 *4 *5))))) + (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) + (-4 *1 (-862 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)) (-4 *2 (-392)))) + (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)) (-4 *2 (-392)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-1155 (-484))) (-5 *2 (-583 (-484))) + (-12 (-5 *3 (-584 *4)) (-4 *4 (-1156 (-485))) (-5 *2 (-584 (-485))) (-5 *1 (-426 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-392)))) + ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) + (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-392))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-484)) (-4 *5 (-755)) (-4 *5 (-312)) - (-5 *2 (-694)) (-5 *1 (-856 *5 *6)) (-4 *6 (-1155 *5))))) + (-12 (-5 *3 (-584 *5)) (-5 *4 (-485)) (-4 *5 (-756)) (-4 *5 (-312)) + (-5 *2 (-695)) (-5 *1 (-857 *5 *6)) (-4 *6 (-1156 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-755)) (-4 *4 (-312)) (-5 *2 (-694)) - (-5 *1 (-856 *4 *5)) (-4 *5 (-1155 *4))))) + (-12 (-5 *3 (-584 *4)) (-4 *4 (-756)) (-4 *4 (-312)) (-5 *2 (-695)) + (-5 *1 (-857 *4 *5)) (-4 *5 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *2 (-312)) (-4 *2 (-755)) (-5 *1 (-856 *2 *3)) (-4 *3 (-1155 *2))))) + (-12 (-4 *2 (-312)) (-4 *2 (-756)) (-5 *1 (-857 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) - (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) + (-4 *3 (-1156 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) - (-4 *3 (-1155 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-206 *4 *5)) - (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1090)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961)) - (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961)) - (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-421 *4 *5)) - (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1090)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961)) - (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961)) - (-5 *2 (-421 *4 *5)) (-5 *1 (-855 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) - ((*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-853)) (-5 *3 (-484))))) -(((*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484))))) -(((*1 *2 *3) (-12 (-5 *3 (-1085 (-484))) (-5 *2 (-484)) (-5 *1 (-853))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) - ((*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-853)) (-5 *3 (-484))))) -(((*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-165)) (-5 *3 (-484)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) - ((*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484))))) -(((*1 *2 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))) - ((*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-853)) (-5 *3 (-484))))) + (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) + (-4 *3 (-1156 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-206 *4 *5)) + (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1091)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) + (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) + (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-421 *4 *5)) + (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1091)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) + (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) + (-5 *2 (-421 *4 *5)) (-5 *1 (-856 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) + ((*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485))))) +(((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485))))) +(((*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-485)) (-5 *1 (-854))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) + ((*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485))))) +(((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-165)) (-5 *3 (-485)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) + ((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485))))) +(((*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))) + ((*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485))))) (((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-800 *6))) - (-5 *5 (-1 (-798 *6 *8) *8 (-800 *6) (-798 *6 *8))) (-4 *6 (-1013)) - (-4 *8 (-13 (-961) (-553 (-800 *6)) (-950 *7))) (-5 *2 (-798 *6 *8)) - (-4 *7 (-961)) (-5 *1 (-852 *6 *7 *8))))) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-801 *6))) + (-5 *5 (-1 (-799 *6 *8) *8 (-801 *6) (-799 *6 *8))) (-4 *6 (-1014)) + (-4 *8 (-13 (-962) (-554 (-801 *6)) (-951 *7))) (-5 *2 (-799 *6 *8)) + (-4 *7 (-962)) (-5 *1 (-853 *6 *7 *8))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-798 *5 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *3 (-139 *6)) - (-4 (-857 *6) (-796 *5)) (-4 *6 (-13 (-796 *5) (-146))) + (-12 (-5 *2 (-799 *5 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *3 (-139 *6)) + (-4 (-858 *6) (-797 *5)) (-4 *6 (-13 (-797 *5) (-146))) (-5 *1 (-152 *5 *6 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-798 *4 *1)) (-5 *3 (-800 *4)) (-4 *1 (-796 *4)) - (-4 *4 (-1013)))) + (-12 (-5 *2 (-799 *4 *1)) (-5 *3 (-801 *4)) (-4 *1 (-797 *4)) + (-4 *4 (-1014)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-798 *5 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) - (-4 *6 (-13 (-1013) (-950 *3))) (-4 *3 (-796 *5)) (-5 *1 (-842 *5 *3 *6)))) + (-12 (-5 *2 (-799 *5 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) + (-4 *6 (-13 (-1014) (-951 *3))) (-4 *3 (-797 *5)) (-5 *1 (-843 *5 *3 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) - (-4 *3 (-13 (-364 *6) (-553 *4) (-796 *5) (-950 (-550 $)))) - (-5 *4 (-800 *5)) (-4 *6 (-13 (-495) (-796 *5))) (-5 *1 (-843 *5 *6 *3)))) + (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) + (-4 *3 (-13 (-364 *6) (-554 *4) (-797 *5) (-951 (-551 $)))) + (-5 *4 (-801 *5)) (-4 *6 (-13 (-496) (-797 *5))) (-5 *1 (-844 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-798 (-484) *3)) (-5 *4 (-800 (-484))) (-4 *3 (-483)) - (-5 *1 (-844 *3)))) + (-12 (-5 *2 (-799 (-485) *3)) (-5 *4 (-801 (-485))) (-4 *3 (-484)) + (-5 *1 (-845 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-798 *5 *6)) (-5 *3 (-550 *6)) (-4 *5 (-1013)) - (-4 *6 (-13 (-1013) (-950 (-550 $)) (-553 *4) (-796 *5))) (-5 *4 (-800 *5)) - (-5 *1 (-845 *5 *6)))) + (-12 (-5 *2 (-799 *5 *6)) (-5 *3 (-551 *6)) (-4 *5 (-1014)) + (-4 *6 (-13 (-1014) (-951 (-551 $)) (-554 *4) (-797 *5))) (-5 *4 (-801 *5)) + (-5 *1 (-846 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-795 *5 *6 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) - (-4 *6 (-796 *5)) (-4 *3 (-608 *6)) (-5 *1 (-846 *5 *6 *3)))) + (-12 (-5 *2 (-796 *5 *6 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) + (-4 *6 (-797 *5)) (-4 *3 (-609 *6)) (-5 *1 (-847 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-798 *6 *3) *8 (-800 *6) (-798 *6 *3))) (-4 *8 (-756)) - (-5 *2 (-798 *6 *3)) (-5 *4 (-800 *6)) (-4 *6 (-1013)) - (-4 *3 (-13 (-861 *9 *7 *8) (-553 *4))) (-4 *7 (-717)) - (-4 *9 (-13 (-961) (-796 *6))) (-5 *1 (-847 *6 *7 *8 *9 *3)))) + (-12 (-5 *5 (-1 (-799 *6 *3) *8 (-801 *6) (-799 *6 *3))) (-4 *8 (-757)) + (-5 *2 (-799 *6 *3)) (-5 *4 (-801 *6)) (-4 *6 (-1014)) + (-4 *3 (-13 (-862 *9 *7 *8) (-554 *4))) (-4 *7 (-718)) + (-4 *9 (-13 (-962) (-797 *6))) (-5 *1 (-848 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) - (-4 *3 (-13 (-861 *8 *6 *7) (-553 *4))) (-5 *4 (-800 *5)) (-4 *7 (-796 *5)) - (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-13 (-961) (-796 *5))) - (-5 *1 (-847 *5 *6 *7 *8 *3)))) + (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) + (-4 *3 (-13 (-862 *8 *6 *7) (-554 *4))) (-5 *4 (-801 *5)) (-4 *7 (-797 *5)) + (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-13 (-962) (-797 *5))) + (-5 *1 (-848 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-904 *6)) - (-4 *6 (-13 (-495) (-796 *5) (-553 *4))) (-5 *4 (-800 *5)) - (-5 *1 (-850 *5 *6 *3)))) + (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-905 *6)) + (-4 *6 (-13 (-496) (-797 *5) (-554 *4))) (-5 *4 (-801 *5)) + (-5 *1 (-851 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-798 *5 (-1090))) (-5 *3 (-1090)) (-5 *4 (-800 *5)) - (-4 *5 (-1013)) (-5 *1 (-851 *5)))) + (-12 (-5 *2 (-799 *5 (-1091))) (-5 *3 (-1091)) (-5 *4 (-801 *5)) + (-4 *5 (-1014)) (-5 *1 (-852 *5)))) ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-583 (-800 *7))) (-5 *5 (-1 *9 (-583 *9))) - (-5 *6 (-1 (-798 *7 *9) *9 (-800 *7) (-798 *7 *9))) (-4 *7 (-1013)) - (-4 *9 (-13 (-961) (-553 (-800 *7)) (-950 *8))) (-5 *2 (-798 *7 *9)) - (-5 *3 (-583 *9)) (-4 *8 (-961)) (-5 *1 (-852 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1013) (-950 *5))) (-4 *5 (-796 *4)) - (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-842 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) - ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-364 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) - ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-364 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1090)) (-5 *4 (-446)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) + (-12 (-5 *4 (-584 (-801 *7))) (-5 *5 (-1 *9 (-584 *9))) + (-5 *6 (-1 (-799 *7 *9) *9 (-801 *7) (-799 *7 *9))) (-4 *7 (-1014)) + (-4 *9 (-13 (-962) (-554 (-801 *7)) (-951 *8))) (-5 *2 (-799 *7 *9)) + (-5 *3 (-584 *9)) (-4 *8 (-962)) (-5 *1 (-853 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1014) (-951 *5))) (-4 *5 (-797 *4)) + (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-843 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) + ((*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) + ((*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1091)) (-5 *4 (-447)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-446)) (-4 *4 (-1013)) (-5 *1 (-841 *4 *2)) (-4 *2 (-364 *4))))) + (-12 (-5 *3 (-447)) (-4 *4 (-1014)) (-5 *1 (-842 *4 *2)) (-4 *2 (-364 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-1001 (-179)))) - (-5 *1 (-839))))) + (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-1002 (-179)))) + (-5 *1 (-840))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) - (-5 *1 (-836)))) + (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) + (-5 *1 (-837)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) - (-5 *1 (-836)))) + (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) + (-5 *1 (-837)))) ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) - (-5 *1 (-838)))) + (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) + (-5 *1 (-839)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) - (-5 *1 (-838))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) + (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) + (-5 *1 (-839))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) - (-5 *1 (-836)))) + (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179))) + (-5 *1 (-837)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) - (-5 *1 (-836)))) + (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179))) + (-5 *1 (-837)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1090)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) - (-4 *3 (-553 (-473))))) + (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) + (-4 *3 (-554 (-474))))) ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1090)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) - (-4 *3 (-553 (-473))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) + (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) + (-4 *3 (-554 (-474))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838))))) -(((*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) - ((*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-838))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-836)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839))))) +(((*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) + ((*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-839))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-837)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) + (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1090)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) - (-4 *3 (-553 (-473))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473)))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-836))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) - ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) - ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) - ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) - ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) - ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) - ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836))))) -(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-85)) - (-5 *1 (-835 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-85)) - (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1090)))) - (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *2)) (-4 *2 (-861 *3 *5 *4))))) + (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) + (-4 *3 (-554 (-474))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1091)) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474)))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) + ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) + ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) + ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) + ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) + ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) + ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) +(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837))))) +(((*1 *2 *3) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-85)) + (-5 *1 (-836 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-85)) + (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1091)))) + (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-862 *3 *5 *4))))) (((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) - (-5 *4 (-630 *12)) (-5 *5 (-583 (-350 (-857 *9)))) (-5 *6 (-583 (-583 *12))) - (-5 *7 (-694)) (-5 *8 (-484)) (-4 *9 (-13 (-258) (-120))) - (-4 *12 (-861 *9 *11 *10)) (-4 *10 (-13 (-756) (-553 (-1090)))) - (-4 *11 (-717)) - (-5 *2 - (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) - (|:| |wcond| (-583 (-857 *9))) + (-2 (|:| |det| *12) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) + (-5 *4 (-631 *12)) (-5 *5 (-584 (-350 (-858 *9)))) (-5 *6 (-584 (-584 *12))) + (-5 *7 (-695)) (-5 *8 (-485)) (-4 *9 (-13 (-258) (-120))) + (-4 *12 (-862 *9 *11 *10)) (-4 *10 (-13 (-757) (-554 (-1091)))) + (-4 *11 (-718)) + (-5 *2 + (-2 (|:| |eqzro| (-584 *12)) (|:| |neqzro| (-584 *12)) + (|:| |wcond| (-584 (-858 *9))) (|:| |bsoln| - (-2 (|:| |partsol| (-1179 (-350 (-857 *9)))) - (|:| -2012 (-583 (-1179 (-350 (-857 *9))))))))) - (-5 *1 (-835 *9 *10 *11 *12))))) + (-2 (|:| |partsol| (-1180 (-350 (-858 *9)))) + (|:| -2013 (-584 (-1180 (-350 (-858 *9))))))))) + (-5 *1 (-836 *9 *10 *11 *12))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-630 *7)) (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) - (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) - (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-694)) (-4 *8 (-861 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) - (-4 *7 (-717)) - (-5 *2 - (-583 - (-2 (|:| |det| *8) (|:| |rows| (-583 (-484))) - (|:| |cols| (-583 (-484)))))) - (-5 *1 (-835 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-861 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) - (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *5 *6 *7 *8))))) + (-12 (-5 *2 (-631 *7)) (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) + (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) + (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-695)) (-4 *8 (-862 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) + (-4 *7 (-718)) + (-5 *2 + (-584 + (-2 (|:| |det| *8) (|:| |rows| (-584 (-485))) + (|:| |cols| (-584 (-485)))))) + (-5 *1 (-836 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-862 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) + (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) - (-4 *6 (-717)) (-5 *2 (-583 (-583 (-484)))) (-5 *1 (-835 *4 *5 *6 *7)) - (-5 *3 (-484)) (-4 *7 (-861 *4 *6 *5))))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) + (-4 *6 (-718)) (-5 *2 (-584 (-584 (-485)))) (-5 *1 (-836 *4 *5 *6 *7)) + (-5 *3 (-485)) (-4 *7 (-862 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-861 *3 *5 *4)) - (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1090)))) - (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *6))))) + (-12 (-5 *2 (-584 (-584 *6))) (-4 *6 (-862 *3 *5 *4)) + (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1091)))) + (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-583 - (-2 (|:| -3108 (-694)) + (-584 + (-2 (|:| -3109 (-695)) (|:| |eqns| - (-583 - (-2 (|:| |det| *7) (|:| |rows| (-583 (-484))) - (|:| |cols| (-583 (-484)))))) - (|:| |fgb| (-583 *7))))) - (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-694)) - (-5 *1 (-835 *4 *5 *6 *7))))) + (-584 + (-2 (|:| |det| *7) (|:| |rows| (-584 (-485))) + (|:| |cols| (-584 (-485)))))) + (|:| |fgb| (-584 *7))))) + (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695)) + (-5 *1 (-836 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-583 - (-2 (|:| -3108 (-694)) + (-584 + (-2 (|:| -3109 (-695)) (|:| |eqns| - (-583 - (-2 (|:| |det| *7) (|:| |rows| (-583 (-484))) - (|:| |cols| (-583 (-484)))))) - (|:| |fgb| (-583 *7))))) - (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-694)) - (-5 *1 (-835 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) - (-4 *6 (-717)) (-5 *2 (-583 *3)) (-5 *1 (-835 *4 *5 *6 *3)) - (-4 *3 (-861 *4 *6 *5))))) + (-584 + (-2 (|:| |det| *7) (|:| |rows| (-584 (-485))) + (|:| |cols| (-584 (-485)))))) + (|:| |fgb| (-584 *7))))) + (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695)) + (-5 *1 (-836 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) + (-4 *6 (-718)) (-5 *2 (-584 *3)) (-5 *1 (-836 *4 *5 *6 *3)) + (-4 *3 (-862 *4 *6 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |mat| (-630 (-350 (-857 *4)))) (|:| |vec| (-583 (-350 (-857 *4)))) - (|:| -3108 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) - (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) - (-4 *6 (-717)) - (-5 *2 - (-2 (|:| |partsol| (-1179 (-350 (-857 *4)))) - (|:| -2012 (-583 (-1179 (-350 (-857 *4))))))) - (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5))))) + (-2 (|:| |mat| (-631 (-350 (-858 *4)))) (|:| |vec| (-584 (-350 (-858 *4)))) + (|:| -3109 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) + (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) + (-4 *6 (-718)) + (-5 *2 + (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) + (|:| -2013 (-584 (-1180 (-350 (-858 *4))))))) + (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5))))) (((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1179 (-350 (-857 *4)))) - (|:| -2012 (-583 (-1179 (-350 (-857 *4))))))) - (-5 *3 (-583 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-861 *4 *6 *5)) - (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) - (-5 *1 (-835 *4 *5 *6 *7))))) + (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) + (|:| -2013 (-584 (-1180 (-350 (-858 *4))))))) + (-5 *3 (-584 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-862 *4 *6 *5)) + (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) + (-5 *1 (-836 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) - (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) + (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) + (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 - (-583 - (-2 (|:| -3108 (-694)) + (-584 + (-2 (|:| -3109 (-695)) (|:| |eqns| - (-583 - (-2 (|:| |det| *8) (|:| |rows| (-583 (-484))) - (|:| |cols| (-583 (-484)))))) - (|:| |fgb| (-583 *8))))) - (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-694))))) + (-584 + (-2 (|:| |det| *8) (|:| |rows| (-584 (-485))) + (|:| |cols| (-584 (-485)))))) + (|:| |fgb| (-584 *8))))) + (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-695))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) - (-4 *6 (-717)) (-4 *7 (-861 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) - (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-583 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-861 *4 *6 *5)) - (-5 *1 (-835 *4 *5 *6 *2)) (-4 *5 (-13 (-756) (-553 (-1090)))) - (-4 *6 (-717))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-1090))) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) - (-5 *2 (-583 (-350 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)) - (-4 *7 (-861 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) - (-4 *6 (-717)) (-5 *2 (-350 (-857 *4))) (-5 *1 (-835 *4 *5 *6 *3)) - (-4 *3 (-861 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) - (-5 *2 (-630 (-350 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) - (-5 *2 (-583 (-350 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7))))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) + (-4 *6 (-718)) (-4 *7 (-862 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-584 *7)) (|:| |n0| (-584 *7)))) + (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-584 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-862 *4 *6 *5)) + (-5 *1 (-836 *4 *5 *6 *2)) (-4 *5 (-13 (-757) (-554 (-1091)))) + (-4 *6 (-718))))) +(((*1 *2 *3) + (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) + (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)) + (-4 *7 (-862 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) + (-4 *6 (-718)) (-5 *2 (-350 (-858 *4))) (-5 *1 (-836 *4 *5 *6 *3)) + (-4 *3 (-862 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) + (-5 *2 (-631 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) + (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-630 *11)) (-5 *4 (-583 (-350 (-857 *8)))) (-5 *5 (-694)) - (-5 *6 (-1073)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-861 *8 *10 *9)) - (-4 *9 (-13 (-756) (-553 (-1090)))) (-4 *10 (-717)) + (-12 (-5 *3 (-631 *11)) (-5 *4 (-584 (-350 (-858 *8)))) (-5 *5 (-695)) + (-5 *6 (-1074)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-862 *8 *10 *9)) + (-4 *9 (-13 (-757) (-554 (-1091)))) (-4 *10 (-718)) (-5 *2 (-2 (|:| |rgl| - (-583 - (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) - (|:| |wcond| (-583 (-857 *8))) + (-584 + (-2 (|:| |eqzro| (-584 *11)) (|:| |neqzro| (-584 *11)) + (|:| |wcond| (-584 (-858 *8))) (|:| |bsoln| - (-2 (|:| |partsol| (-1179 (-350 (-857 *8)))) - (|:| -2012 (-583 (-1179 (-350 (-857 *8)))))))))) - (|:| |rgsz| (-484)))) - (-5 *1 (-835 *8 *9 *10 *11)) (-5 *7 (-484))))) + (-2 (|:| |partsol| (-1180 (-350 (-858 *8)))) + (|:| -2013 (-584 (-1180 (-350 (-858 *8)))))))))) + (|:| |rgsz| (-485)))) + (-5 *1 (-836 *8 *9 *10 *11)) (-5 *7 (-485))))) (((*1 *2 *3) - (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) + (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 - (-583 - (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) - (|:| |wcond| (-583 (-857 *4))) + (-584 + (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) + (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1179 (-350 (-857 *4)))) - (|:| -2012 (-583 (-1179 (-350 (-857 *4)))))))))) - (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5))))) + (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) + (|:| -2013 (-584 (-1180 (-350 (-858 *4)))))))))) + (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5))))) (((*1 *2 *3 *4) (-12 (-5 *3 - (-583 - (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) - (|:| |wcond| (-583 (-857 *5))) + (-584 + (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) + (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1179 (-350 (-857 *5)))) - (|:| -2012 (-583 (-1179 (-350 (-857 *5)))))))))) - (-5 *4 (-1073)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-861 *5 *7 *6)) - (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-484)) - (-5 *1 (-835 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) - (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) - (-5 *2 - (-583 - (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) - (|:| |wcond| (-583 (-857 *5))) + (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) + (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) + (-5 *4 (-1074)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-862 *5 *7 *6)) + (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-485)) + (-5 *1 (-836 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) + (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) + (-5 *2 + (-584 + (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) + (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1179 (-350 (-857 *5)))) - (|:| -2012 (-583 (-1179 (-350 (-857 *5)))))))))) - (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) + (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) + (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) + (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-583 (-1090))) (-4 *8 (-861 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) - (-4 *7 (-717)) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-584 (-1091))) (-4 *8 (-862 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) + (-4 *7 (-718)) (-5 *2 - (-583 - (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) - (|:| |wcond| (-583 (-857 *5))) + (-584 + (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) + (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1179 (-350 (-857 *5)))) - (|:| -2012 (-583 (-1179 (-350 (-857 *5)))))))))) - (-5 *1 (-835 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) + (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) + (-5 *1 (-836 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) - (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) + (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) + (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 - (-583 - (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) - (|:| |wcond| (-583 (-857 *4))) + (-584 + (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) + (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1179 (-350 (-857 *4)))) - (|:| -2012 (-583 (-1179 (-350 (-857 *4)))))))))) - (-5 *1 (-835 *4 *5 *6 *7)))) + (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) + (|:| -2013 (-584 (-1180 (-350 (-858 *4)))))))))) + (-5 *1 (-836 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 *9)) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7)) - (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1090)))) - (-4 *8 (-717)) + (-12 (-5 *3 (-631 *9)) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) + (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) + (-4 *8 (-718)) (-5 *2 - (-583 - (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) - (|:| |wcond| (-583 (-857 *6))) + (-584 + (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) + (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1179 (-350 (-857 *6)))) - (|:| -2012 (-583 (-1179 (-350 (-857 *6)))))))))) - (-5 *1 (-835 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) + (-2 (|:| |partsol| (-1180 (-350 (-858 *6)))) + (|:| -2013 (-584 (-1180 (-350 (-858 *6)))))))))) + (-5 *1 (-836 *6 *7 *8 *9)) (-5 *4 (-584 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1090))) (-5 *5 (-830)) - (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717)) + (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-831)) + (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 - (-583 - (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) - (|:| |wcond| (-583 (-857 *6))) + (-584 + (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) + (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1179 (-350 (-857 *6)))) - (|:| -2012 (-583 (-1179 (-350 (-857 *6)))))))))) - (-5 *1 (-835 *6 *7 *8 *9)))) + (-2 (|:| |partsol| (-1180 (-350 (-858 *6)))) + (|:| -2013 (-584 (-1180 (-350 (-858 *6)))))))))) + (-5 *1 (-836 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-830)) (-4 *8 (-861 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) - (-4 *7 (-717)) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-831)) (-4 *8 (-862 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) + (-4 *7 (-718)) (-5 *2 - (-583 - (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) - (|:| |wcond| (-583 (-857 *5))) + (-584 + (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) + (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1179 (-350 (-857 *5)))) - (|:| -2012 (-583 (-1179 (-350 (-857 *5)))))))))) - (-5 *1 (-835 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) + (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) + (-5 *1 (-836 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1073)) - (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717)) (-5 *2 (-484)) - (-5 *1 (-835 *6 *7 *8 *9)))) + (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 *9)) (-5 *5 (-1074)) + (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) + (-5 *1 (-836 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1090))) (-5 *5 (-1073)) - (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) - (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717)) (-5 *2 (-484)) - (-5 *1 (-835 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *8)) (-5 *4 (-1073)) (-4 *8 (-861 *5 *7 *6)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) - (-4 *7 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *5 *6 *7 *8)))) + (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-1074)) + (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) + (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) + (-5 *1 (-836 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-631 *8)) (-5 *4 (-1074)) (-4 *8 (-862 *5 *7 *6)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) + (-4 *7 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 *10)) (-5 *5 (-830)) (-5 *6 (-1073)) - (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) - (-4 *8 (-13 (-756) (-553 (-1090)))) (-4 *9 (-717)) (-5 *2 (-484)) - (-5 *1 (-835 *7 *8 *9 *10)))) + (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 *10)) (-5 *5 (-831)) (-5 *6 (-1074)) + (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) + (-4 *8 (-13 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485)) + (-5 *1 (-836 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 (-1090))) (-5 *5 (-830)) (-5 *6 (-1073)) - (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) - (-4 *8 (-13 (-756) (-553 (-1090)))) (-4 *9 (-717)) (-5 *2 (-484)) - (-5 *1 (-835 *7 *8 *9 *10)))) + (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 (-1091))) (-5 *5 (-831)) (-5 *6 (-1074)) + (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) + (-4 *8 (-13 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485)) + (-5 *1 (-836 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 *9)) (-5 *4 (-830)) (-5 *5 (-1073)) (-4 *9 (-861 *6 *8 *7)) - (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1090)))) - (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9))))) + (-12 (-5 *3 (-631 *9)) (-5 *4 (-831)) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7)) + (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) + (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-4 *2 (-1155 *4)) - (-5 *1 (-834 *4 *2))))) + (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-4 *2 (-1156 *4)) + (-5 *1 (-835 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-832)) (-5 *2 (-2 (|:| -3954 (-583 *1)) (|:| -2409 *1))) - (-5 *3 (-583 *1))))) + (-12 (-4 *1 (-833)) (-5 *2 (-2 (|:| -3955 (-584 *1)) (|:| -2410 *1))) + (-5 *3 (-584 *1))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-832)) (-5 *2 (-632 (-583 *1))) (-5 *3 (-583 *1))))) + (-12 (-4 *1 (-833)) (-5 *2 (-633 (-584 *1))) (-5 *3 (-584 *1))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1090))) (-4 *4 (-392)) - (-5 *1 (-829 *4))))) + (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392)) + (-5 *1 (-830 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1090))) (-4 *4 (-392)) - (-5 *1 (-829 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) - ((*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-816 (-484))) (-5 *1 (-828))))) -(((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) - ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) - ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) - ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) - ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) - ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) - ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828))))) -(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) - ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))) -(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) - ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))) -(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) - ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))) -(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) - ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))) + (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392)) + (-5 *1 (-830 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) + ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))) +(((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829))))) +(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) + ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829))))) +(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) + ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829))))) +(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) + ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829))))) +(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) + ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829))))) +(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) + ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829))))) +(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) + ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829))))) +(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) + ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))) +(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) + ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))) +(((*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))) +(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) + ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))) +(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) + ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2)) - (-4 *2 (-861 *5 *3 *4)))) + (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2)) + (-4 *2 (-862 *5 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1085 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) - (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) + (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) - (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-825 *2)))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) + (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-826 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) - (-5 *2 (-51)) (-5 *1 (-826 *5)))) + (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) + (-5 *2 (-51)) (-5 *1 (-827 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-348 (-857 *6))) (-5 *5 (-1090)) (-5 *3 (-857 *6)) - (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1085 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258))))) -(((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258))))) + (-12 (-5 *4 (-348 (-858 *6))) (-5 *5 (-1091)) (-5 *3 (-858 *6)) + (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1086 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258))))) +(((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258))))) (((*1 *2 *2) - (-12 (-4 *3 (-1155 (-350 (-484)))) (-5 *1 (-824 *3 *2)) - (-4 *2 (-1155 (-350 *3)))))) + (-12 (-4 *3 (-1156 (-350 (-485)))) (-5 *1 (-825 *3 *2)) + (-4 *2 (-1156 (-350 *3)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1155 (-350 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3)) - (-4 *3 (-1155 (-350 *4)))))) + (-12 (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3)) + (-4 *3 (-1156 (-350 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))))) - (-4 *4 (-1155 (-350 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *5)) - (-4 *5 (-1155 (-350 *4)))))) + (-12 (-5 *3 (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))))) + (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *5)) + (-4 *5 (-1156 (-350 *4)))))) (((*1 *2 *3) - (-12 (-4 *3 (-1155 (-350 (-484)))) - (-5 *2 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))) (-5 *1 (-824 *3 *4)) - (-4 *4 (-1155 (-350 *3))))) + (-12 (-4 *3 (-1156 (-350 (-485)))) + (-5 *2 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))) (-5 *1 (-825 *3 *4)) + (-4 *4 (-1156 (-350 *3))))) ((*1 *2 *3) - (-12 (-4 *4 (-1155 (-350 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3)) - (-4 *3 (-1155 (-350 *4)))))) + (-12 (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3)) + (-4 *3 (-1156 (-350 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-1155 (-350 *3))) (-5 *2 (-830)) - (-5 *1 (-824 *4 *5)) (-4 *5 (-1155 (-350 *4)))))) + (-12 (-5 *3 (-485)) (-4 *4 (-1156 (-350 *3))) (-5 *2 (-831)) + (-5 *1 (-825 *4 *5)) (-4 *5 (-1156 (-350 *4)))))) (((*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) - (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *4 (-13 (-495) (-950 (-484)))) - (-5 *2 (-2 (|:| -3772 (-694)) (|:| -2383 *8))) - (-5 *1 (-822 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-283 (-350 (-484)) *4 *5 *6)) - (-4 *4 (-1155 (-350 (-484)))) (-4 *5 (-1155 (-350 *4))) - (-4 *6 (-291 (-350 (-484)) *4 *5)) - (-5 *2 (-2 (|:| -3772 (-694)) (|:| -2383 *6))) (-5 *1 (-823 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1155 *5)) - (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) - (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85)) - (-5 *1 (-822 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-283 (-350 (-484)) *4 *5 *6)) (-4 *4 (-1155 (-350 (-484)))) - (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 (-350 (-484)) *4 *5)) (-5 *2 (-85)) - (-5 *1 (-823 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-392)))) + (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *4 (-13 (-496) (-951 (-485)))) + (-5 *2 (-2 (|:| -3773 (-695)) (|:| -2384 *8))) + (-5 *1 (-823 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) + (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-1156 (-350 *4))) + (-4 *6 (-291 (-350 (-485)) *4 *5)) + (-5 *2 (-2 (|:| -3773 (-695)) (|:| -2384 *6))) (-5 *1 (-824 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1156 *5)) + (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) + (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85)) + (-5 *1 (-823 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-350 (-485)))) + (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-85)) + (-5 *1 (-824 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-392)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1085 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) - (-4 *5 (-821)) (-5 *1 (-397 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-821))))) -(((*1 *2 *3) - (-12 (-5 *2 (-348 (-1085 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1085 *1)) - (-4 *4 (-392)) (-4 *4 (-495)) (-4 *4 (-1013)))) - ((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-348 (-1085 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1085 *1)) - (-4 *4 (-392)) (-4 *4 (-495)) (-4 *4 (-1013)))) - ((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1))))) + (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) + (-4 *5 (-822)) (-5 *1 (-397 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-822))))) +(((*1 *2 *3) + (-12 (-5 *2 (-348 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1)) + (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014)))) + ((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-348 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1)) + (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014)))) + ((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 (-1085 *5))) (-5 *3 (-1085 *5)) (-4 *5 (-139 *4)) - (-4 *4 (-483)) (-5 *1 (-122 *4 *5)))) + (|partial| -12 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-139 *4)) + (-4 *4 (-484)) (-5 *1 (-122 *4 *5)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-1155 *4)) + (|partial| -12 (-5 *2 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 (-1085 (-484)))) (-5 *3 (-1085 (-484))) - (-5 *1 (-508)))) + (|partial| -12 (-5 *2 (-584 (-1086 (-485)))) (-5 *3 (-1086 (-485))) + (-5 *1 (-509)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 (-1085 *1))) (-5 *3 (-1085 *1)) (-4 *1 (-821))))) + (|partial| -12 (-5 *2 (-584 (-1086 *1))) (-5 *3 (-1086 *1)) (-4 *1 (-822))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-299)) (-5 *2 (-1179 *1)))) + (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-299)) (-5 *2 (-1180 *1)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-118)) (-4 *1 (-821)) - (-5 *2 (-1179 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)))) + (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-118)) (-4 *1 (-822)) + (-5 *2 (-1180 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)))) ((*1 *1 *1) (-4 *1 (-299))) - ((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-821))))) + ((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)) (-4 *1 (-822))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-756)) (-4 *5 (-821)) (-4 *6 (-717)) - (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-348 (-1085 *8))) (-5 *1 (-818 *5 *6 *7 *8)) - (-5 *4 (-1085 *8)))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-757)) (-4 *5 (-822)) (-4 *6 (-718)) + (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-348 (-1086 *8))) (-5 *1 (-819 *5 *6 *7 *8)) + (-5 *4 (-1086 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-821)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5))) - (-5 *1 (-819 *4 *5)) (-5 *3 (-1085 *5))))) + (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5))) + (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5))))) (((*1 *2) - (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-397 *3 *4 *2 *5)) - (-4 *5 (-861 *2 *3 *4)))) + (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-397 *3 *4 *2 *5)) + (-4 *5 (-862 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-818 *2 *3 *4 *5)) - (-4 *5 (-861 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-821)) (-5 *1 (-819 *2 *3)) (-4 *3 (-1155 *2))))) + (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-819 *2 *3 *4 *5)) + (-4 *5 (-862 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-822)) (-5 *1 (-820 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) - (-5 *2 (-348 (-1085 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) + (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) + (-5 *2 (-348 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-821)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5))) - (-5 *1 (-819 *4 *5)) (-5 *3 (-1085 *5))))) + (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5))) + (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) - (-5 *2 (-348 (-1085 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) + (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) + (-5 *2 (-348 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-821)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5))) - (-5 *1 (-819 *4 *5)) (-5 *3 (-1085 *5))))) + (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5))) + (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 (-1085 *7))) (-5 *3 (-1085 *7)) - (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) - (-5 *1 (-818 *4 *5 *6 *7)))) + (|partial| -12 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7)) + (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) + (-5 *1 (-819 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 (-1085 *5))) (-5 *3 (-1085 *5)) - (-4 *5 (-1155 *4)) (-4 *4 (-821)) (-5 *1 (-819 *4 *5))))) + (|partial| -12 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5)) + (-4 *5 (-1156 *4)) (-4 *4 (-822)) (-5 *1 (-820 *4 *5))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-583 (-1085 *7))) (-5 *3 (-1085 *7)) - (-4 *7 (-861 *5 *6 *4)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *4 (-756)) - (-5 *1 (-818 *5 *6 *4 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *6)) - (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830)))) ((*1 *1) (-4 *1 (-483))) - ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 (-583 (-694)))) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) + (|partial| -12 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7)) + (-4 *7 (-862 *5 *6 *4)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *4 (-757)) + (-5 *1 (-819 *5 *6 *4 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *6)) + (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) ((*1 *1) (-4 *1 (-484))) + ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) + (-12 (-5 *2 (-584 (-584 (-695)))) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-583 *4))) (-5 *1 (-816 *4)) - (-5 *3 (-583 *4)))) + (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-584 *4))) (-5 *1 (-817 *4)) + (-5 *3 (-584 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-1009 *4))) (-5 *1 (-816 *4)) - (-5 *3 (-1009 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) + (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-1010 *4))) (-5 *1 (-817 *4)) + (-5 *3 (-1010 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) (((*1 *2 *1) - (-12 (-5 *2 (-1009 (-1009 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-1010 (-1010 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694))) - (-5 *1 (-816 *4))))) + (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695))) + (-5 *1 (-817 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694))) - (-5 *1 (-816 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) + (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695))) + (-5 *1 (-817 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-815 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-4 *1 (-815 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1056 *4 *2)) (-14 *4 (-830)) - (-4 *2 (-13 (-961) (-10 -7 (-6 (-3997 "*"))))) (-5 *1 (-814 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) - (-5 *1 (-813 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-813 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1009 *3)) (-5 *1 (-813 *3)) (-4 *3 (-320)) (-4 *3 (-1013))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013))))) -(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1129)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694)))) + (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-816 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-4 *1 (-816 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1057 *4 *2)) (-14 *4 (-831)) + (-4 *2 (-13 (-962) (-10 -7 (-6 (-3998 "*"))))) (-5 *1 (-815 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-584 *3)) (|:| |image| (-584 *3)))) + (-5 *1 (-814 *3)) (-4 *3 (-1014))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1010 *3)) (-5 *1 (-814 *3)) (-4 *3 (-320)) (-4 *3 (-1014))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014)))) + ((*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014))))) +(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1129)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1129)))) - ((*1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1129)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130)))) + ((*1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) - (-4 *4 (-1013)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) + (-4 *4 (-1014)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-5 *1 (-807 *2 *4)) (-4 *2 (-1155 *4))))) + (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-5 *1 (-808 *2 *4)) (-4 *2 (-1156 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-312)) (-5 *1 (-807 *2 *3)) (-4 *2 (-1155 *3))))) + (|partial| -12 (-4 *3 (-312)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1156 *3))))) (((*1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-473))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-4 *1 (-663))) - ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) - ((*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756))))) + ((*1 *1) (-5 *1 (-474))) ((*1 *1) (-4 *1 (-660))) ((*1 *1) (-4 *1 (-664))) + ((*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) + ((*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) - (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) + (-5 *2 (-584 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |k| (-803 *3)) (|:| |c| *4)))) - (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) - (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-614 *3))) (-5 *1 (-803 *3)) (-4 *3 (-756))))) + (-12 (-5 *2 (-584 (-2 (|:| |k| (-804 *3)) (|:| |c| *4)))) + (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) + (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-615 *3))) (-5 *1 (-804 *3)) (-4 *3 (-757))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) - (-14 *4 (-583 (-1090))))) + (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) + (-14 *4 (-584 (-1091))))) ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1129)))) + (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1130)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) - (-14 *4 (-583 (-1090))))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-803 *3)) (-4 *3 (-756))))) + (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) + (-14 *4 (-584 (-1091))))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-757))))) (((*1 *2 *3) - (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-583 *5)) (-5 *1 (-801 *4 *5)) - (-4 *5 (-1129))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) + (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-584 *5)) (-5 *1 (-802 *4 *5)) + (-4 *5 (-1130))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-801 *4 *3)) (-4 *3 (-1129))))) + (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1130))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) - (-5 *1 (-798 *4 *5)) (-4 *5 (-1013)))) + (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-85)) + (-5 *1 (-799 *4 *5)) (-4 *5 (-1014)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-801 *5 *3)) - (-4 *3 (-1129)))) + (-12 (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-802 *5 *3)) + (-4 *3 (-1130)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1129)) - (-5 *2 (-85)) (-5 *1 (-801 *5 *6))))) + (-12 (-5 *3 (-584 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1130)) + (-5 *2 (-85)) (-5 *1 (-802 *5 *6))))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-473))) ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))) + ((*1 *1) (-5 *1 (-474))) ((*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2513 (-86)) (|:| |arg| (-583 (-800 *3))))) - (-5 *1 (-800 *3)) (-4 *3 (-1013)))) + (|partial| -12 (-5 *2 (-2 (|:| -2514 (-86)) (|:| |arg| (-584 (-801 *3))))) + (-5 *1 (-801 *3)) (-4 *3 (-1014)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-800 *4))) (-5 *1 (-800 *4)) - (-4 *4 (-1013))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-800 *3)) (|:| |den| (-800 *3)))) - (-5 *1 (-800 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-801 *4))) (-5 *1 (-801 *4)) + (-4 *4 (-1014))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-801 *3)) (|:| |den| (-801 *3)))) + (-5 *1 (-801 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1090)) (-5 *3 (-85)) (-5 *1 (-800 *4)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-1091)) (-5 *3 (-85)) (-5 *1 (-801 *4)) (-4 *4 (-1014))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-51)) (-5 *1 (-800 *4)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-51)) (-5 *1 (-801 *4)) (-4 *4 (-1014))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-583 (-1090))) (|:| |pred| (-51)))) - (-5 *1 (-800 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) -(((*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-51)))) + (-5 *1 (-801 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) +(((*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))) + (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))) (((*1 *2 *1) - (-12 (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013)) - (-4 *5 (-608 *4)))) + (-12 (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) + (-4 *5 (-609 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-85)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) (((*1 *1) - (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013)) - (-4 *4 (-608 *3)))) - ((*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) + (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014)) + (-4 *4 (-609 *3)))) + ((*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) - (-5 *1 (-798 *4 *2))))) + (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) + (-5 *1 (-799 *4 *2))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014))))) (((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1013)) (-4 *6 (-796 *5)) (-5 *2 (-795 *5 *6 (-583 *6))) - (-5 *1 (-797 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-553 (-800 *5))))) + (-12 (-4 *5 (-1014)) (-4 *6 (-797 *5)) (-5 *2 (-796 *5 *6 (-584 *6))) + (-5 *1 (-798 *5 *6 *4)) (-5 *3 (-584 *6)) (-4 *4 (-554 (-801 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 *3))) (-5 *1 (-797 *5 *3 *4)) - (-4 *3 (-950 (-1090))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) + (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 *3))) (-5 *1 (-798 *5 *3 *4)) + (-4 *3 (-951 (-1091))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 (-857 *3)))) (-5 *1 (-797 *5 *3 *4)) - (-4 *3 (-961)) (-2560 (-4 *3 (-950 (-1090)))) (-4 *3 (-796 *5)) - (-4 *4 (-553 (-800 *5))))) + (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 (-858 *3)))) (-5 *1 (-798 *5 *3 *4)) + (-4 *3 (-962)) (-2561 (-4 *3 (-951 (-1091)))) (-4 *3 (-797 *5)) + (-4 *4 (-554 (-801 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1013)) (-5 *2 (-798 *5 *3)) (-5 *1 (-797 *5 *3 *4)) - (-2560 (-4 *3 (-950 (-1090)))) (-2560 (-4 *3 (-961))) (-4 *3 (-796 *5)) - (-4 *4 (-553 (-800 *5)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1090)) (-5 *2 (-85)))) + (-12 (-4 *5 (-1014)) (-5 *2 (-799 *5 *3)) (-5 *1 (-798 *5 *3 *4)) + (-2561 (-4 *3 (-951 (-1091)))) (-2561 (-4 *3 (-962))) (-4 *3 (-797 *5)) + (-4 *4 (-554 (-801 *5)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1090)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013)))) + (-12 (-5 *3 (-1091)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) + (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-796 *5)) - (-4 *4 (-553 (-800 *5))))) + (-12 (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-797 *5)) + (-4 *4 (-554 (-801 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *6)) (-4 *6 (-796 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) - (-5 *1 (-797 *5 *6 *4)) (-4 *4 (-553 (-800 *5)))))) + (-12 (-5 *3 (-584 *6)) (-4 *6 (-797 *5)) (-4 *5 (-1014)) (-5 *2 (-85)) + (-5 *1 (-798 *5 *6 *4)) (-4 *4 (-554 (-801 *5)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-798 *4 *5)) (-5 *3 (-798 *4 *6)) (-4 *4 (-1013)) - (-4 *5 (-1013)) (-4 *6 (-608 *5)) (-5 *1 (-795 *4 *5 *6))))) + (-12 (-5 *2 (-799 *4 *5)) (-5 *3 (-799 *4 *6)) (-4 *4 (-1014)) + (-4 *5 (-1014)) (-4 *6 (-609 *5)) (-5 *1 (-796 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *5)) (-5 *1 (-795 *3 *4 *5)) - (-4 *3 (-1013)) (-4 *5 (-608 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-484))))) + (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *5)) (-5 *1 (-796 *3 *4 *5)) + (-4 *3 (-1014)) (-4 *5 (-609 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-485))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))) + (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) ((*1 *2 *3) - (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484)))))) + (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *3 (-583 (-484))) (-5 *1 (-793))))) + (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *3 (-584 (-485))) (-5 *1 (-794))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1069 (-583 (-830)))) (-5 *1 (-793))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-787 *2)) (-4 *2 (-1129)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-789 *2)) (-4 *2 (-1129)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-792 *2)) (-4 *2 (-1129))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1129))))) -(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-583 (-1095))) (-5 *1 (-790))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783))))) -(((*1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-199)) (-5 *3 (-1073)))) - ((*1 *2 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-199)))) - ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783))))) -(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1129)) (-4 *3 (-1129))))) -(((*1 *2 *1) - (-12 (-5 *2 (-148 (-350 (-484)))) (-5 *1 (-90 *3)) (-14 *3 (-484)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) + (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1070 (-584 (-831)))) (-5 *1 (-794))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-788 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-790 *2)) (-4 *2 (-1130)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-793 *2)) (-4 *2 (-1130))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-791))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784))))) +(((*1 *2 *3) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-199)) (-5 *3 (-1074)))) + ((*1 *2 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-199)))) + ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784))))) +(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))) +(((*1 *2 *1) + (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-90 *3)) (-14 *3 (-485)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-148 (-484))) (-5 *1 (-689 *3)) (-4 *3 (-347)))) + ((*1 *2 *3) (-12 (-5 *2 (-148 (-485))) (-5 *1 (-690 *3)) (-4 *3 (-347)))) ((*1 *2 *1) - (-12 (-5 *2 (-148 (-350 (-484)))) (-5 *1 (-780 *3)) (-14 *3 (-484)))) + (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-781 *3)) (-14 *3 (-485)))) ((*1 *2 *1) - (-12 (-14 *3 (-484)) (-5 *2 (-148 (-350 (-484)))) (-5 *1 (-781 *3 *4)) - (-4 *4 (-779 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) - ((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) - ((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3986)) (-4 *1 (-347)))) - ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830)))) - ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-1069 (-484)))))) + (-12 (-14 *3 (-485)) (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-782 *3 *4)) + (-4 *4 (-780 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) + ((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) + ((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3987)) (-4 *1 (-347)))) + ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) + ((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-1070 (-485)))))) (((*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1155 *3)) (-14 *5 (-1 *4 *4 *2)) + (-4 *4 (-1156 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-146)) + (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) + ((*1 *2) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-146)) + (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484))))) -(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484))))) -(((*1 *1 *1) (-4 *1 (-779 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1) (-5 *1 (-772))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *3 (-484)) (-4 *1 (-779 *4))))) + ((*1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485))))) +(((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485))))) +(((*1 *1 *1) (-4 *1 (-780 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *3 (-485)) (-4 *1 (-780 *4))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-350 *6)) - (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5)))) + (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-350 *6)) + (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5)))) ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-312)) - (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-350 (-1148 *6 *5))) - (-5 *1 (-777 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312)) + (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-350 (-1149 *6 *5))) + (-5 *1 (-778 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-312)) - (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-350 (-1148 *6 *5))) - (-5 *1 (-777 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312)) + (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-350 (-1149 *6 *5))) + (-5 *1 (-778 *5 *6 *7))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-148 *6)) - (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-5 *2 (-583 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129)) - (-5 *2 (-583 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-381))) (-5 *1 (-774))))) -(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-772))))) -(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-772))))) -(((*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-772))))) -(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))) - ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-694)))) - ((*1 *2 *3) - (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239))) - (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) - ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772))))) -(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))) -(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) - ((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) - ((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) -(((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772))))) -(((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254)))) - ((*1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) -(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) - ((*1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) - ((*1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254)))) + (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-148 *6)) + (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -3996)) (-4 *1 (-429 *3)) (-4 *3 (-1130)) + (-5 *2 (-584 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1014)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-381))) (-5 *1 (-775))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-773))))) +(((*1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773))))) +(((*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) + ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-695)))) + ((*1 *2 *3) + (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) + (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) + ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773))))) +(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773))))) +(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))) +(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) + ((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) + ((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) +(((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773))))) +(((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254)))) + ((*1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) +(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) + ((*1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) + ((*1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254)))) ((*1 *1 *1) (-4 *1 (-254))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) - ((*1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) + ((*1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) - ((*1 *1 *1 *1) (-5 *1 (-772)))) + ((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) + ((*1 *1 *1 *1) (-5 *1 (-773)))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-739 *3)) (|:| |rm| (-739 *3)))) - (-5 *1 (-739 *3)) (-4 *3 (-756)))) - ((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-694))) - ((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-694))) - ((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-772)))) -(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-771)))) - ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-513)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-771))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-101))) (-5 *3 (-101))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-488))) (-5 *3 (-488))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-1138))) (-5 *3 (-1138))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-102)) (-5 *2 (-694))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1185)) (-5 *1 (-768))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-740 *3)) (|:| |rm| (-740 *3)))) + (-5 *1 (-740 *3)) (-4 *3 (-757)))) + ((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-695))) + ((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-695))) + ((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-773)))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-772)))) + ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-772))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-514)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-101))) (-5 *3 (-101))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-489))) (-5 *3 (-489))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-1139))) (-5 *3 (-1139))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *3 (-102)) (-5 *2 (-695))))) +(((*1 *2 *3) (-12 (-5 *3 (-584 (-51))) (-5 *2 (-1186)) (-5 *1 (-769))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-38 (-350 (-484)))) + (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-146))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) - (-4 *1 (-761 *3)))) + (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) + (-4 *1 (-762 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961)) - (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) - (-4 *3 (-761 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962)) + (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3)) + (-4 *3 (-762 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) - (-5 *1 (-690 *3 *4)) (-4 *3 (-645 *4)))) + (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) + (-5 *1 (-691 *3 *4)) (-4 *3 (-646 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) - (-4 *1 (-761 *3)))) + (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) + (-4 *1 (-762 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961)) - (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) - (-4 *3 (-761 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962)) + (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3)) + (-4 *3 (-762 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) - (-4 *1 (-761 *3)))) + (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) + (-4 *1 (-762 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961)) - (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) - (-4 *3 (-761 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962)) + (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3)) + (-4 *3 (-762 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2902 *1))) - (-4 *1 (-761 *3)))) + (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2903 *1))) + (-4 *1 (-762 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961)) - (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-762 *5 *3)) - (-4 *3 (-761 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962)) + (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-763 *5 *3)) + (-4 *3 (-762 *5))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-961)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-761 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-630 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-962)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-762 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-631 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-762 *2 *3)) - (-4 *3 (-761 *2))))) + (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962)) (-5 *1 (-763 *2 *3)) + (-4 *3 (-762 *2))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-762 *5 *2)) - (-4 *2 (-761 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) + (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962)) (-5 *1 (-763 *5 *2)) + (-4 *2 (-762 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) + (|partial| -12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) + (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-961)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) - (-4 *1 (-761 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) + (-12 (-4 *3 (-312)) (-4 *3 (-962)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) + (-4 *1 (-762 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) + (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *3 (-961)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) - (-4 *1 (-761 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) + (-12 (-4 *3 (-312)) (-4 *3 (-962)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) + (-4 *1 (-762 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) (((*1 *1) - (-12 (-4 *1 (-347)) (-2560 (|has| *1 (-6 -3986))) - (-2560 (|has| *1 (-6 -3978))))) - ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1013)) (-4 *2 (-756)))) - ((*1 *2 *1) (-12 (-4 *1 (-742 *2)) (-4 *2 (-756)))) ((*1 *1) (-4 *1 (-752))) - ((*1 *1 *1 *1) (-4 *1 (-759)))) + (-12 (-4 *1 (-347)) (-2561 (|has| *1 (-6 -3987))) + (-2561 (|has| *1 (-6 -3979))))) + ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757)))) + ((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-757)))) ((*1 *1) (-4 *1 (-753))) + ((*1 *1 *1 *1) (-4 *1 (-760)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1179 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) - (-14 *4 (-694))))) + (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) + (-14 *4 (-695))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1179 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) - (-14 *4 (-694))))) + (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) + (-14 *4 (-695))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1179 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) - (-14 *4 (-694))))) -(((*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472)))) - ((*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013))))) -(((*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472)))) - ((*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013))))) + (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) + (-14 *4 (-695))))) +(((*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473)))) + ((*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014))))) +(((*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473)))) + ((*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-750 *3)) (-4 *3 (-1013))))) -(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-167 (-441))) (-5 *1 (-748))))) -(((*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-55))))) -(((*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) - ((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-629 *4 *5 *6 *3)) - (-4 *3 (-627 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014)))) + ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-751 *3)) (-4 *3 (-1014))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-167 (-442))) (-5 *1 (-749))))) +(((*1 *2 *1) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-55))))) +(((*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) + ((*1 *2 *3) + (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-630 *4 *5 *6 *3)) + (-4 *3 (-628 *4 *5 *6)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) + (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) ((*1 *1 *1) - (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) - ((*1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961))))) + (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) + ((*1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962))))) (((*1 *2 *2) - (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961))))) + (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-86)) (-5 *4 (-583 *2)) (-5 *1 (-87 *2)) - (-4 *2 (-1013)))) + (|partial| -12 (-5 *3 (-86)) (-5 *4 (-584 *2)) (-5 *1 (-87 *2)) + (-4 *2 (-1014)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1013)) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-584 *4))) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-87 *4)) - (-4 *4 (-1013)))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-584 *4))) (-5 *1 (-87 *4)) + (-4 *4 (-1014)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) - (-5 *1 (-651 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) + (-5 *1 (-652 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) - (-5 *1 (-651 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) + (-5 *1 (-652 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-86)) (-4 *4 (-961)) (-5 *1 (-651 *4 *2)) (-4 *2 (-590 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-745 *2)) (-4 *2 (-961))))) + (-12 (-5 *3 (-86)) (-4 *4 (-962)) (-5 *1 (-652 *4 *2)) (-4 *2 (-591 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-746 *2)) (-4 *2 (-962))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-310 (-86))) (-4 *2 (-961)) (-5 *1 (-651 *2 *4)) - (-4 *4 (-590 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-745 *2)) (-4 *2 (-961))))) -(((*1 *2) (-12 (-5 *2 (-743 (-484))) (-5 *1 (-472)))) - ((*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1013))))) -(((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-741 *2 *3)) (-4 *2 (-645 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-645 *3)) (-5 *1 (-741 *2 *3)) (-4 *3 (-961))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-739 *3)) (-4 *3 (-756))))) + (-12 (-5 *3 (-310 (-86))) (-4 *2 (-962)) (-5 *1 (-652 *2 *4)) + (-4 *4 (-591 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-746 *2)) (-4 *2 (-962))))) +(((*1 *2) (-12 (-5 *2 (-744 (-485))) (-5 *1 (-473)))) + ((*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1014))))) +(((*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-742 *2 *3)) (-4 *2 (-646 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-646 *3)) (-5 *1 (-742 *2 *3)) (-4 *3 (-962))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-740 *3)) (-4 *3 (-757))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-1179 *4)) - (-5 *1 (-734 *4 *3)) (-4 *3 (-600 *4))))) + (|partial| -12 (-5 *5 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-1180 *4)) + (-5 *1 (-735 *4 *3)) (-4 *3 (-601 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4)) (-5 *1 (-734 *4 *5)) - (-4 *5 (-600 *4)))) + (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4)) (-5 *1 (-735 *4 *5)) + (-4 *5 (-601 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-312)) (-5 *2 (-630 *5)) - (-5 *1 (-734 *5 *6)) (-4 *6 (-600 *5))))) + (-12 (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-312)) (-5 *2 (-631 *5)) + (-5 *1 (-735 *5 *6)) (-4 *6 (-601 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1090))) (-4 *5 (-495)) - (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-693 *5)))) + (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) + (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495)) - (-5 *2 (-583 (-583 (-249 (-350 (-857 *4)))))) (-5 *1 (-693 *4)))) + (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496)) + (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 *7)) + (-12 (-5 *3 (-631 *7)) (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2012 (-583 *6))) *7 *6)) - (-4 *6 (-312)) (-4 *7 (-600 *6)) + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2013 (-584 *6))) *7 *6)) + (-4 *6 (-312)) (-4 *7 (-601 *6)) (-5 *2 - (-2 (|:| |particular| (-3 (-1179 *6) "failed")) - (|:| -2012 (-583 (-1179 *6))))) - (-5 *1 (-733 *6 *7)) (-5 *4 (-1179 *6))))) + (-2 (|:| |particular| (-3 (-1180 *6) "failed")) + (|:| -2013 (-584 (-1180 *6))))) + (-5 *1 (-734 *6 *7)) (-5 *4 (-1180 *6))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 - (-2 (|:| A (-630 *5)) + (-2 (|:| A (-631 *5)) (|:| |eqs| - (-583 - (-2 (|:| C (-630 *5)) (|:| |g| (-1179 *5)) (|:| -3266 *6) + (-584 + (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5)) (|:| -3267 *6) (|:| |rh| *5)))))) - (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *5)) (-5 *4 (-1179 *5)) - (-4 *6 (-600 *5)))) + (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) + (-4 *6 (-601 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-600 *5)) - (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1179 *5)))) - (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *6)) (-5 *4 (-1179 *5))))) + (-12 (-4 *5 (-312)) (-4 *6 (-601 *5)) + (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5)))) + (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-597 (-350 *6))) (-5 *4 (-1 (-583 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-4 *6 (-1155 *5)) (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6)))) + (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-584 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-4 *6 (-1156 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-597 (-350 *7))) (-5 *4 (-1 (-583 *6) *7)) + (-12 (-5 *3 (-598 (-350 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) - (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-4 *7 (-1155 *6)) (-5 *2 (-583 (-350 *7))) (-5 *1 (-732 *6 *7)))) + (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-4 *7 (-1156 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *6 (-350 *6))) (-5 *4 (-1 (-583 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-4 *6 (-1155 *5)) (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6)))) + (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-584 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-4 *6 (-1156 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-598 *7 (-350 *7))) (-5 *4 (-1 (-583 *6) *7)) + (-12 (-5 *3 (-599 *7 (-350 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) - (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-4 *7 (-1155 *6)) (-5 *2 (-583 (-350 *7))) (-5 *1 (-732 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-597 (-350 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-5 *2 (-583 (-350 *5))) (-5 *1 (-732 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-597 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 *5 (-350 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-5 *2 (-583 (-350 *5))) (-5 *1 (-732 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-583 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) - (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3266 *3)))) - (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-350 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-583 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-4 *6 (-1155 *5)) - (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3266 (-598 *6 (-350 *6)))))) - (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-350 *6)))))) + (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-4 *7 (-1156 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-598 (-350 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 *5 (-350 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-584 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) + (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3267 *3)))) + (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-584 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-4 *6 (-1156 *5)) + (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3267 (-599 *6 (-350 *6)))))) + (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-583 *7) *7 (-1085 *7))) (-5 *5 (-1 (-348 *7) *7)) - (-4 *7 (-1155 *6)) (-4 *6 (-13 (-312) (-120) (-950 (-350 (-484))))) - (-5 *2 (-583 (-2 (|:| |frac| (-350 *7)) (|:| -3266 *3)))) - (-5 *1 (-729 *6 *7 *3 *8)) (-4 *3 (-600 *7)) (-4 *8 (-600 (-350 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) - (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-5 *2 (-583 (-2 (|:| |frac| (-350 *6)) (|:| -3266 (-598 *6 (-350 *6)))))) - (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-350 *6)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *7 (-1155 *5)) (-4 *4 (-661 *5 *7)) - (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1179 *5)))) - (-5 *1 (-731 *5 *6 *7 *4 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-597 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-730 *4 *2)) - (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 *2 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-730 *4 *2)) - (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-597 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1155 *5)) - (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) - (-5 *1 (-730 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-597 (-350 *6))) (-4 *6 (-1155 *5)) - (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-5 *2 (-2 (|:| -2012 (-583 (-350 *6))) (|:| |mat| (-630 *5)))) - (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-350 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1155 *5)) - (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) - (-5 *1 (-730 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-598 *6 (-350 *6))) (-4 *6 (-1155 *5)) - (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-5 *2 (-2 (|:| -2012 (-583 (-350 *6))) (|:| |mat| (-630 *5)))) - (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-350 *6)))))) + (-12 (-5 *4 (-1 (-584 *7) *7 (-1086 *7))) (-5 *5 (-1 (-348 *7) *7)) + (-4 *7 (-1156 *6)) (-4 *6 (-13 (-312) (-120) (-951 (-350 (-485))))) + (-5 *2 (-584 (-2 (|:| |frac| (-350 *7)) (|:| -3267 *3)))) + (-5 *1 (-730 *6 *7 *3 *8)) (-4 *3 (-601 *7)) (-4 *8 (-601 (-350 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-5 *2 (-584 (-2 (|:| |frac| (-350 *6)) (|:| -3267 (-599 *6 (-350 *6)))))) + (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-312)) (-4 *7 (-1156 *5)) (-4 *4 (-662 *5 *7)) + (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5)))) + (-5 *1 (-732 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-598 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2)) + (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 *2 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2)) + (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) + (-5 *1 (-731 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-598 (-350 *6))) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5)))) + (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) + (-5 *1 (-731 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-599 *6 (-350 *6))) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5)))) + (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-1155 *4)) - (-5 *1 (-729 *4 *3 *2 *5)) (-4 *2 (-600 *3)) (-4 *5 (-600 (-350 *3))))) + (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-1156 *4)) + (-5 *1 (-730 *4 *3 *2 *5)) (-4 *2 (-601 *3)) (-4 *5 (-601 (-350 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) - (-4 *5 (-1155 *4)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *2 (-600 *5)) - (-4 *6 (-600 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-583 *5) *6)) - (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) - (-5 *2 (-583 (-2 (|:| -3952 *5) (|:| -3266 *3)))) (-5 *1 (-729 *5 *6 *3 *7)) - (-4 *3 (-600 *6)) (-4 *7 (-600 (-350 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) - (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -3266 *5)))) - (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-350 *5)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1155 *4)) (-5 *1 (-729 *4 *2 *3 *5)) - (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-600 *2)) - (-4 *5 (-600 (-350 *2)))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1155 *4)) (-5 *1 (-728 *4 *2 *3 *5)) - (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-600 *2)) - (-4 *5 (-600 (-350 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1155 *4)) (-5 *1 (-728 *4 *2 *5 *3)) - (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-600 *2)) - (-4 *3 (-600 (-350 *2)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) - (-5 *2 (-583 (-2 (|:| -3773 *5) (|:| -3226 *5)))) (-5 *1 (-728 *4 *5 *3 *6)) - (-4 *3 (-600 *5)) (-4 *6 (-600 (-350 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *4 (-1155 *5)) - (-5 *2 (-583 (-2 (|:| -3773 *4) (|:| -3226 *4)))) (-5 *1 (-728 *5 *4 *3 *6)) - (-4 *3 (-600 *4)) (-4 *6 (-600 (-350 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) - (-5 *2 (-583 (-2 (|:| -3773 *5) (|:| -3226 *5)))) (-5 *1 (-728 *4 *5 *6 *3)) - (-4 *6 (-600 *5)) (-4 *3 (-600 (-350 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *4 (-1155 *5)) - (-5 *2 (-583 (-2 (|:| -3773 *4) (|:| -3226 *4)))) (-5 *1 (-728 *5 *4 *6 *3)) - (-4 *6 (-600 *4)) (-4 *3 (-600 (-350 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1155 *5)) - (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) - (-4 *3 (-600 *2)) (-4 *6 (-600 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-350 *2))) (-4 *2 (-1155 *5)) (-5 *1 (-728 *5 *2 *3 *6)) - (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-600 *2)) - (-4 *6 (-600 (-350 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-597 *4)) (-4 *4 (-291 *5 *6 *7)) - (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4)))) - (-5 *1 (-727 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-726 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1115) (-871)))))) + (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) + (-4 *5 (-1156 *4)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *2 (-601 *5)) + (-4 *6 (-601 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-584 *5) *6)) + (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) + (-5 *2 (-584 (-2 (|:| -3953 *5) (|:| -3267 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) + (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) + (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -3267 *5)))) + (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1156 *4)) (-5 *1 (-730 *4 *2 *3 *5)) + (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) + (-4 *5 (-601 (-350 *2)))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *3 *5)) + (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) + (-4 *5 (-601 (-350 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *5 *3)) + (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-601 *2)) + (-4 *3 (-601 (-350 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) + (-5 *2 (-584 (-2 (|:| -3774 *5) (|:| -3227 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) + (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1156 *5)) + (-5 *2 (-584 (-2 (|:| -3774 *4) (|:| -3227 *4)))) (-5 *1 (-729 *5 *4 *3 *6)) + (-4 *3 (-601 *4)) (-4 *6 (-601 (-350 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) + (-5 *2 (-584 (-2 (|:| -3774 *5) (|:| -3227 *5)))) (-5 *1 (-729 *4 *5 *6 *3)) + (-4 *6 (-601 *5)) (-4 *3 (-601 (-350 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1156 *5)) + (-5 *2 (-584 (-2 (|:| -3774 *4) (|:| -3227 *4)))) (-5 *1 (-729 *5 *4 *6 *3)) + (-4 *6 (-601 *4)) (-4 *3 (-601 (-350 *4)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1156 *5)) + (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) + (-4 *3 (-601 *2)) (-4 *6 (-601 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-584 (-350 *2))) (-4 *2 (-1156 *5)) (-5 *1 (-729 *5 *2 *3 *6)) + (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) + (-4 *6 (-601 (-350 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-598 *4)) (-4 *4 (-291 *5 *6 *7)) + (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4)))) + (-5 *1 (-728 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-727 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1116) (-872)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1115) (-871)))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-872)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1090)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) - (-4 *4 (-13 (-29 *6) (-1115) (-871))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4)))) - (-5 *1 (-724 *6 *4 *3)) (-4 *3 (-600 *4))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-909 *3)) (-4 *3 (-146)) (-5 *1 (-722 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))) + (-12 (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) + (-4 *4 (-13 (-29 *6) (-1116) (-872))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4)))) + (-5 *1 (-725 *6 *4 *3)) (-4 *3 (-601 *4))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-146)) (-5 *1 (-723 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))) +(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))) (((*1 *1 *1) (-4 *1 (-201))) ((*1 *1 *1) - (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2)) + (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1129))) - (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1129))))) + (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130))) + (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1130))))) ((*1 *1 *1) (-4 *1 (-413))) - ((*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) -(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))) - ((*1 *1 *1 *1) (-4 *1 (-717)))) + ((*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-312))))) +(((*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) + ((*1 *1 *1 *1) (-4 *1 (-718)))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-711)) (-5 *5 (-484))))) + (-5 *1 (-712)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-711)) (-5 *5 (-484))))) + (-5 *1 (-712)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-711)) (-5 *5 (-484))))) + (-5 *1 (-712)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-711)) (-5 *5 (-484))))) + (-5 *1 (-712)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-711)) (-5 *5 (-484))))) + (-5 *1 (-712)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-711)) (-5 *5 (-484))))) + (-5 *1 (-712)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-711)) (-5 *5 (-484))))) + (-5 *1 (-712)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-711)) (-5 *5 (-484))))) + (-5 *1 (-712)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 - (-2 (|:| -3402 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) + (-2 (|:| -3403 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) - (-5 *1 (-711)) (-5 *5 (-484))))) + (-5 *1 (-712)) (-5 *5 (-485))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) - (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710))))) + (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) + (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711))))) (((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-484)) - (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330)))) - (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) - (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))) + (-12 (-5 *4 (-485)) + (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330)))) + (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) + (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-484)) - (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330)))) - (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) - (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710))))) + (-12 (-5 *4 (-485)) + (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330)))) + (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) + (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) - (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710))))) + (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) + (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) - (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))) + (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) + (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) - (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-330)) (-5 *1 (-709))))) -(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-330)) (-5 *1 (-709))))) -(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-830)) (-5 *1 (-709))))) -(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1073)) (-5 *1 (-709))))) -(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-830)) (-5 *1 (-709))))) -(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1073)) (-5 *1 (-709))))) + (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) + (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-330)) (-5 *1 (-710))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-330)) (-5 *1 (-710))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710))))) +(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710))))) +(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) + (|partial| -12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) - (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) + (|partial| -12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) + (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) + (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) - (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) + (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) + (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) + (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) - (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) + (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) + (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-350 (-857 (-142 *4)))) (-4 *4 (-495)) - (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) + (|partial| -12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496)) + (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-350 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495)) - (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) + (|partial| -12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496)) + (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) - (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) + (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) + (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) - (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) + (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) + (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756)) - (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) + (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757)) + (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495)) - (-4 *5 (-756)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) - (-5 *1 (-708 *5))))) + (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496)) + (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) + (-5 *1 (-709 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) - (-5 *2 (-330)) (-5 *1 (-708 *4)))) + (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) + (-5 *2 (-330)) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) - (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))) + (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) + (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2)) - (-5 *2 (-330)) (-5 *1 (-708 *4)))) + (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) + (-5 *2 (-330)) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) - (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))) + (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) + (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) - (-4 *4 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *4)))) + (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) + (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) - (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5))))) + (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) + (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-142 (-330))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-330))))) + (-12 (-5 *2 (-142 (-330))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-330))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-830)) (-5 *2 (-142 (-330))) (-5 *1 (-708 *3)) - (-4 *3 (-553 (-330))))) + (-12 (-5 *4 (-831)) (-5 *2 (-142 (-330))) (-5 *1 (-709 *3)) + (-4 *3 (-554 (-330))))) ((*1 *2 *3) - (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-553 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) + (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-554 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-142 *5)) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) + (-12 (-5 *3 (-142 *5)) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) + (-12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) - (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) + (-12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) + (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) + (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) + (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) + (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) - (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) + (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) + (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-350 (-857 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-553 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) + (-12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495)) - (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) + (-12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496)) + (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-330))) - (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) + (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) + (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) - (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) + (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) + (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756)) - (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) + (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757)) + (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) - (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2)))) + (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) + (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-830)) (-5 *2 (-330)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2)))) + (-12 (-5 *4 (-831)) (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-330)) - (-5 *1 (-708 *4)))) + (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-330)) + (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2)) - (-5 *2 (-330)) (-5 *1 (-708 *5)))) + (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) + (-5 *2 (-330)) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2)) (-5 *2 (-330)) - (-5 *1 (-708 *4)))) + (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) (-5 *2 (-330)) + (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 *2)) - (-5 *2 (-330)) (-5 *1 (-708 *5)))) + (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 *2)) + (-5 *2 (-330)) (-5 *1 (-709 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 *2)) - (-5 *2 (-330)) (-5 *1 (-708 *4)))) + (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 *2)) + (-5 *2 (-330)) (-5 *1 (-709 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) - (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5))))) + (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) + (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-350 (-484)))) + (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-146))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-350 (-484)))) + (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-146))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-583 (-704 *3))) (-5 *1 (-704 *3)) (-4 *3 (-495)) - (-4 *3 (-961))))) + (-12 (-5 *2 (-584 (-705 *3))) (-5 *1 (-705 *3)) (-4 *3 (-496)) + (-4 *3 (-962))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| -3756 *3) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) - (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961))))) + (-5 *2 (-2 (|:| -3757 *3) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) + (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3756 *3) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3)) - (-4 *3 (-495)) (-4 *3 (-961))))) + (-12 (-5 *2 (-2 (|:| -3757 *3) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) + (-4 *3 (-496)) (-4 *3 (-962))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3756 *3) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) - (-4 *3 (-495)) (-4 *3 (-961))))) + (-12 (-5 *2 (-2 (|:| -3757 *3) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) + (-4 *3 (-496)) (-4 *3 (-962))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-350 (-484)))) + (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 - (-583 - (-2 (|:| |outval| *4) (|:| |outmult| (-484)) - (|:| |outvect| (-583 (-630 *4)))))) - (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755)))))) + (-584 + (-2 (|:| |outval| *4) (|:| |outmult| (-485)) + (|:| |outvect| (-584 (-631 *4)))))) + (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-350 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-702 *4)) - (-4 *4 (-13 (-312) (-755)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-630 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))) + (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-703 *4)) + (-4 *4 (-13 (-312) (-756)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-631 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-146)) (-4 *2 (-1155 *4)) (-5 *1 (-151 *4 *2 *3)) - (-4 *3 (-661 *4 *2)))) + (-12 (-4 *4 (-146)) (-4 *2 (-1156 *4)) (-5 *1 (-151 *4 *2 *3)) + (-4 *3 (-662 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-350 (-857 *5)))) (-5 *4 (-1090)) (-5 *2 (-857 *5)) + (-12 (-5 *3 (-631 (-350 (-858 *5)))) (-5 *4 (-1091)) (-5 *2 (-858 *5)) (-5 *1 (-248 *5)) (-4 *5 (-392)))) ((*1 *2 *3) - (-12 (-5 *3 (-630 (-350 (-857 *4)))) (-5 *2 (-857 *4)) (-5 *1 (-248 *4)) + (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-5 *2 (-858 *4)) (-5 *1 (-248 *4)) (-4 *4 (-392)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-630 (-142 (-350 (-484))))) (-5 *2 (-857 (-142 (-350 (-484))))) - (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))) + (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-858 (-142 (-350 (-485))))) + (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-142 (-350 (-484))))) (-5 *4 (-1090)) - (-5 *2 (-857 (-142 (-350 (-484))))) (-5 *1 (-688 *5)) - (-4 *5 (-13 (-312) (-755))))) + (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *4 (-1091)) + (-5 *2 (-858 (-142 (-350 (-485))))) (-5 *1 (-689 *5)) + (-4 *5 (-13 (-312) (-756))))) ((*1 *2 *3) - (-12 (-5 *3 (-630 (-350 (-484)))) (-5 *2 (-857 (-350 (-484)))) - (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755))))) + (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-858 (-350 (-485)))) + (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-350 (-484)))) (-5 *4 (-1090)) - (-5 *2 (-857 (-350 (-484)))) (-5 *1 (-702 *5)) (-4 *5 (-13 (-312) (-755)))))) + (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *4 (-1091)) + (-5 *2 (-858 (-350 (-485)))) (-5 *1 (-703 *5)) (-4 *5 (-13 (-312) (-756)))))) (((*1 *2 *3) - (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-583 (-694))) - (-5 *1 (-701 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *6)) (-4 *7 (-861 *6 *4 *5))))) + (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-584 (-695))) + (-5 *1 (-702 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *6)) (-4 *7 (-862 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1155 *9)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-258)) - (-4 *10 (-861 *9 *7 *8)) + (-12 (-4 *6 (-1156 *9)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-258)) + (-4 *10 (-862 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-583 (-1085 *10))) - (|:| |dterm| (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) - (-5 *1 (-701 *6 *7 *8 *9 *10)) (-5 *3 (-1085 *10)) (-5 *4 (-583 *6)) - (-5 *5 (-583 *10))))) + (-2 (|:| |deter| (-584 (-1086 *10))) + (|:| |dterm| (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-584 *6)) (|:| |nlead| (-584 *10)))) + (-5 *1 (-702 *6 *7 *8 *9 *10)) (-5 *3 (-1086 *10)) (-5 *4 (-584 *6)) + (-5 *5 (-584 *10))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1155 *5)) (-5 *2 (-583 *3)) - (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6)) (-14 *7 (-830))))) + (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5)) (-5 *2 (-584 *3)) + (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) (-14 *7 (-831))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) - (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) + (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1073)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) - (-4 *4 (-977 *6 *7 *8)) (-5 *2 (-1185)) (-5 *1 (-699 *6 *7 *8 *4 *5)) - (-4 *5 (-983 *6 *7 *8 *4))))) + (-12 (-5 *3 (-1074)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) + (-4 *4 (-978 *6 *7 *8)) (-5 *2 (-1186)) (-5 *1 (-700 *6 *7 *8 *4 *5)) + (-4 *5 (-984 *6 *7 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2)) - (-4 *2 (-13 (-27) (-1115) (-364 *3))))) + (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-364 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) - (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) + (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) ((*1 *1 *1) (-5 *1 (-330))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) - (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) - (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))) + (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) + (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) + (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *2 (-977 *4 *5 *6)) - (-5 *1 (-699 *4 *5 *6 *2 *3)) (-4 *3 (-983 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-330)))) - ((*1 *1 *1 *1) (-4 *1 (-483))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) - ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-694))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-431)) (-5 *4 (-865)) (-5 *2 (-632 (-471))) (-5 *1 (-471)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-865)) (-4 *3 (-1013)) (-5 *2 (-632 *1)) (-4 *1 (-691 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-142 (-350 (-484))))) - (-5 *2 - (-583 - (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-484)) - (|:| |outvect| (-583 (-630 (-142 *4))))))) - (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-630 (-142 (-350 (-484))))) (-5 *2 (-583 (-142 *4))) - (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-685)))) -(((*1 *1 *1 *1) (-4 *1 (-413))) ((*1 *1 *1 *1) (-4 *1 (-685)))) -(((*1 *1 *1 *1) (-4 *1 (-685)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-683 *3)) (-4 *3 (-146))))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *2 (-978 *4 *5 *6)) + (-5 *1 (-700 *4 *5 *6 *2 *3)) (-4 *3 (-984 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) + ((*1 *1 *1 *1) (-4 *1 (-484))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) + ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-695))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-431)) (-5 *4 (-866)) (-5 *2 (-633 (-472))) (-5 *1 (-472)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-866)) (-4 *3 (-1014)) (-5 *2 (-633 *1)) (-4 *1 (-692 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-142 (-350 (-485))))) + (-5 *2 + (-584 + (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-485)) + (|:| |outvect| (-584 (-631 (-142 *4))))))) + (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-584 (-142 *4))) + (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-686)))) +(((*1 *1 *1 *1) (-4 *1 (-413))) ((*1 *1 *1 *1) (-4 *1 (-686)))) +(((*1 *1 *1 *1) (-4 *1 (-686)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-684 *3)) (-4 *3 (-146))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1085 *6)) (-5 *3 (-484)) (-4 *6 (-258)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5))))) + (-12 (-5 *2 (-1086 *6)) (-5 *3 (-485)) (-4 *6 (-258)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1085 *9)) (-5 *4 (-583 *7)) (-4 *7 (-756)) - (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-4 *8 (-258)) (-5 *2 (-583 (-694))) - (-5 *1 (-681 *6 *7 *8 *9)) (-5 *5 (-694))))) + (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-4 *7 (-757)) + (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-4 *8 (-258)) (-5 *2 (-584 (-695))) + (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-695))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-484)) (-5 *4 (-348 *2)) (-4 *2 (-861 *7 *5 *6)) - (-5 *1 (-681 *5 *6 *7 *2)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-258))))) + (-12 (-5 *3 (-485)) (-5 *4 (-348 *2)) (-4 *2 (-862 *7 *5 *6)) + (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-258))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1085 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) - (-4 *7 (-756)) (-4 *8 (-258)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) + (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) + (-4 *7 (-757)) (-4 *8 (-258)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 - (-2 (|:| |upol| (-1085 *8)) (|:| |Lval| (-583 *8)) - (|:| |Lfact| (-583 (-2 (|:| -3732 (-1085 *8)) (|:| -2401 (-484))))) + (-2 (|:| |upol| (-1086 *8)) (|:| |Lval| (-584 *8)) + (|:| |Lfact| (-584 (-2 (|:| -3733 (-1086 *8)) (|:| -2402 (-485))))) (|:| |ctpol| *8))) - (-5 *1 (-681 *6 *7 *8 *9))))) + (-5 *1 (-682 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-258)) - (-4 *6 (-717)) (-4 *9 (-861 *8 *6 *7)) + (-12 (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-258)) + (-4 *6 (-718)) (-4 *9 (-862 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) - (|:| |suPart| (-583 (-2 (|:| -3732 (-1085 *9)) (|:| -2401 (-484))))))) - (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1085 *9))))) + (|:| |suPart| (-584 (-2 (|:| -3733 (-1086 *9)) (|:| -2402 (-485))))))) + (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-484)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-258)) - (-4 *9 (-861 *8 *6 *7)) - (-5 *2 (-2 (|:| -2004 (-1085 *9)) (|:| |polval| (-1085 *8)))) - (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1085 *9)) (-5 *4 (-1085 *8))))) + (-12 (-5 *5 (-485)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-258)) + (-4 *9 (-862 *8 *6 *7)) + (-5 *2 (-2 (|:| -2005 (-1086 *9)) (|:| |polval| (-1086 *8)))) + (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9)) (-5 *4 (-1086 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-258)) (-5 *2 (-348 *3)) - (-5 *1 (-681 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4))))) + (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) + (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-2 (|:| -3732 (-1085 *6)) (|:| -2401 (-484))))) - (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484)) - (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5))))) + (-12 (-5 *3 (-584 (-2 (|:| -3733 (-1086 *6)) (|:| -2402 (-485))))) + (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485)) + (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-348 *3)) - (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-678 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-677))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-675 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013)))) - ((*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013))))) + (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) + (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-679 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-678))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-676 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014)))) + ((*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014))))) (((*1 *2 *1) - (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-694)))) + (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-695)))) ((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-694)))) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-695)))) ((*1 *2 *1) - (-12 (-5 *2 (-694)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663))))) + (-12 (-5 *2 (-695)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-495)) (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) - (-5 *3 (-350 (-857 *6))) (-4 *5 (-717)) - (-4 *4 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $)))))))) + (-12 (-4 *6 (-496)) (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) + (-5 *3 (-350 (-858 *6))) (-4 *5 (-718)) + (-4 *4 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 (-857 *6))) (-4 *6 (-495)) - (-4 *2 (-861 (-350 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) - (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $)))))))) + (-12 (-5 *3 (-1086 (-858 *6))) (-4 *6 (-496)) + (-4 *2 (-862 (-350 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) + (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 *2)) (-4 *2 (-861 (-350 (-857 *6)) *5 *4)) - (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717)) - (-4 *4 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $))))) (-4 *6 (-495))))) + (-12 (-5 *3 (-1086 *2)) (-4 *2 (-862 (-350 (-858 *6)) *5 *4)) + (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) + (-4 *4 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $))))) (-4 *6 (-496))))) (((*1 *2 *3) - (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3972 ((-1090) $))))) - (-4 *6 (-495)) (-5 *2 (-2 (|:| -2483 (-857 *6)) (|:| -2058 (-857 *6)))) - (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-350 (-857 *6)) *4 *5))))) + (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3973 ((-1091) $))))) + (-4 *6 (-496)) (-5 *2 (-2 (|:| -2484 (-858 *6)) (|:| -2059 (-858 *6)))) + (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-350 (-858 *6)) *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) - (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) + (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) - (-4 *8 (-961)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5))))) + (-12 (-5 *3 (-584 *9)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) + (-4 *8 (-962)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1155 *5)) - (-5 *1 (-666 *5 *2)) (-4 *5 (-312))))) + (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1156 *5)) + (-5 *1 (-667 *5 *2)) (-4 *5 (-312))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -3089 (-348 *3)) (|:| |special| (-348 *3)))) - (-5 *1 (-666 *5 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-72))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-664 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -3090 (-348 *3)) (|:| |special| (-348 *3)))) + (-5 *1 (-667 *5 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-72))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-665 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) - (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-85))))) + (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) + (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) - (-14 *4 (-583 (-1090))))) + (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) + (-14 *4 (-584 (-1091))))) ((*1 *1 *2) - (-12 (-5 *2 (-694)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) - (-14 *4 (-583 (-1090))))) + (-12 (-5 *2 (-695)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) + (-14 *4 (-584 (-1091))))) ((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-4 *2 (-291 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-4 *2 (-291 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-694)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) - ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1155 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) - (-4 *1 (-661 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1155 *5)) (-5 *2 (-630 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) - ((*1 *1 *1) (|partial| -4 *1 (-659)))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) - ((*1 *1 *1) (|partial| -4 *1 (-659)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))) + ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1156 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1180 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) + (-4 *1 (-662 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) + ((*1 *1 *1) (|partial| -4 *1 (-660)))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) + ((*1 *1 *1) (|partial| -4 *1 (-660)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))) (((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1160 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) - (-14 *4 (-1090)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-484)))) - ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-348 *3)) (-4 *3 (-495)))) + (-12 (-5 *2 (-1161 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) + (-14 *4 (-1091)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) + ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) ((*1 *2 *1) - (-12 (-4 *2 (-1013)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-756)) + (-12 (-4 *2 (-1014)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-757)) (-14 *4 - (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *2)) - (-2 (|:| -2400 *3) (|:| -2401 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-320)))) - ((*1 *2 *1) (-12 (-4 *2 (-759)) (-5 *1 (-453 *3 *2)) (-4 *3 (-72)))) + (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *2)) + (-2 (|:| -2401 *3) (|:| -2402 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-320)))) + ((*1 *2 *1) (-12 (-4 *2 (-760)) (-5 *1 (-454 *3 *2)) (-4 *3 (-72)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-830)) (-5 *2 (-1179 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) + (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) ((*1 *2 *1) - (-12 (-4 *2 (-756)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1013)) + (-12 (-4 *2 (-757)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1014)) (-14 *4 - (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3)) - (-2 (|:| -2400 *2) (|:| -2401 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1155 *3))))) + (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3)) + (-2 (|:| -2401 *2) (|:| -2402 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-961)) (-5 *2 (-1179 *3)) (-5 *1 (-649 *3 *4)) - (-4 *4 (-1155 *3))))) + (-12 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4)) + (-4 *4 (-1156 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-961)) (-5 *1 (-649 *3 *4)) - (-4 *4 (-1155 *3))))) + (-12 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-650 *3 *4)) + (-4 *4 (-1156 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-961)) (-5 *2 (-1179 *3)) (-5 *1 (-649 *3 *4)) - (-4 *4 (-1155 *3))))) + (-12 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4)) + (-4 *4 (-1156 *3))))) (((*1 *2) - (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) - (-4 *4 (-1155 *3))))) + (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) + (-4 *4 (-1156 *3))))) (((*1 *2) - (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) - (-4 *4 (-1155 *3))))) + (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) + (-4 *4 (-1156 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-299)) (-4 *2 (-961)) (-5 *1 (-649 *2 *3)) (-4 *3 (-1155 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647))))) + (-12 (-4 *2 (-299)) (-4 *2 (-962)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1156 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648))))) +(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648))))) +(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648))))) (((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-583 (-1085 *13))) (-5 *3 (-1085 *13)) - (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) - (-5 *7 (-583 (-583 (-2 (|:| -3078 (-694)) (|:| |pcoef| *13))))) - (-5 *8 (-583 (-694))) (-5 *9 (-1179 (-583 (-1085 *10)))) (-4 *12 (-756)) - (-4 *10 (-258)) (-4 *13 (-861 *10 *11 *12)) (-4 *11 (-717)) - (-5 *1 (-644 *11 *12 *10 *13))))) + (|partial| -12 (-5 *2 (-584 (-1086 *13))) (-5 *3 (-1086 *13)) + (-5 *4 (-584 *12)) (-5 *5 (-584 *10)) (-5 *6 (-584 *13)) + (-5 *7 (-584 (-584 (-2 (|:| -3079 (-695)) (|:| |pcoef| *13))))) + (-5 *8 (-584 (-695))) (-5 *9 (-1180 (-584 (-1086 *10)))) (-4 *12 (-757)) + (-4 *10 (-258)) (-4 *13 (-862 *10 *11 *12)) (-4 *11 (-718)) + (-5 *1 (-645 *11 *12 *10 *13))))) (((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1085 *9))) (-5 *6 (-583 *9)) - (-5 *7 (-583 *12)) (-5 *8 (-583 (-694))) (-4 *11 (-756)) (-4 *9 (-258)) - (-4 *12 (-861 *9 *10 *11)) (-4 *10 (-717)) (-5 *2 (-583 (-1085 *12))) - (-5 *1 (-644 *10 *11 *9 *12)) (-5 *3 (-1085 *12))))) + (|partial| -12 (-5 *4 (-584 *11)) (-5 *5 (-584 (-1086 *9))) (-5 *6 (-584 *9)) + (-5 *7 (-584 *12)) (-5 *8 (-584 (-695))) (-4 *11 (-757)) (-4 *9 (-258)) + (-4 *12 (-862 *9 *10 *11)) (-4 *10 (-718)) (-5 *2 (-584 (-1086 *12))) + (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1086 *12))))) (((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-583 (-1085 *11))) (-5 *3 (-1085 *11)) - (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-694))) - (-5 *7 (-1179 (-583 (-1085 *8)))) (-4 *10 (-756)) (-4 *8 (-258)) - (-4 *11 (-861 *8 *9 *10)) (-4 *9 (-717)) (-5 *1 (-644 *9 *10 *8 *11))))) + (|partial| -12 (-5 *2 (-584 (-1086 *11))) (-5 *3 (-1086 *11)) + (-5 *4 (-584 *10)) (-5 *5 (-584 *8)) (-5 *6 (-584 (-695))) + (-5 *7 (-1180 (-584 (-1086 *8)))) (-4 *10 (-757)) (-4 *8 (-258)) + (-4 *11 (-862 *8 *9 *10)) (-4 *9 (-718)) (-5 *1 (-645 *9 *10 *8 *11))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7)) - (-4 *3 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *7 (-1129)))) + (-12 (-5 *4 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7)) + (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *3 *5 *6)) - (-4 *3 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129))))) + (-12 (-5 *4 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6)) + (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130))))) (((*1 *2 *3) - (-12 (-5 *3 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *4 *5 *6)) - (-4 *4 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129))))) + (-12 (-5 *3 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6)) + (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-642 *3 *4)) - (-4 *3 (-1129)) (-4 *4 (-1129))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-1090)) (-5 *1 (-473)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4)) + (-4 *3 (-1130)) (-4 *4 (-1130))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-1091)) (-5 *1 (-474)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1090)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) + (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1090)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) + (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-583 (-1090))) (-5 *2 (-1090)) (-5 *1 (-641 *3)) - (-4 *3 (-553 (-473)))))) + (-12 (-5 *4 (-584 (-1091))) (-5 *2 (-1091)) (-5 *1 (-642 *3)) + (-4 *3 (-554 (-474)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-640 *3)) - (-4 *3 (-553 (-473))))) + (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-641 *3)) + (-4 *3 (-554 (-474))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-640 *3)) - (-4 *3 (-553 (-473)))))) + (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-641 *3)) + (-4 *3 (-554 (-474)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7)) - (-4 *4 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *7 (-1129))))) + (-12 (-5 *3 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7)) + (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130))))) (((*1 *2 *3 *3) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-629 *3 *4 *5 *6)) - (-4 *6 (-627 *3 *4 *5)))) + (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-630 *3 *4 *5 *6)) + (-4 *6 (-628 *3 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -1972 *3) (|:| -2902 *3))) (-5 *1 (-638 *3)) + (-12 (-5 *2 (-2 (|:| -1973 *3) (|:| -2903 *3))) (-5 *1 (-639 *3)) (-4 *3 (-258))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3))))) (((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) - (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *1 (-636))))) + (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *1 (-637))))) (((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) - (-5 *6 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-636))))) + (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) + (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637))))) (((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) - (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1047 (-179))) - (-5 *1 (-636))))) + (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) + (-5 *1 (-637))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined")) - (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1047 (-179))) - (-5 *1 (-636)))) + (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) + (-5 *1 (-637)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179))) - (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-636)))) + (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-179))) + (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637)))) ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-1 (-854 (-179)) (-179) (-179))) - (-5 *4 (-1001 (-179))) (-5 *5 (-583 (-221))) (-5 *1 (-636))))) + (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1 (-855 (-179)) (-179) (-179))) + (-5 *4 (-1002 (-179))) (-5 *5 (-584 (-221))) (-5 *1 (-637))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4)))) + (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))) ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1155 *3))))) + (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-2 (|:| |deg| (-694)) (|:| -2575 *5)))) (-4 *5 (-1155 *4)) - (-4 *4 (-299)) (-5 *2 (-583 *5)) (-5 *1 (-170 *4 *5)))) + (-12 (-5 *3 (-584 (-2 (|:| |deg| (-695)) (|:| -2576 *5)))) (-4 *5 (-1156 *4)) + (-4 *4 (-299)) (-5 *2 (-584 *5)) (-5 *1 (-170 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-2 (|:| -3732 *5) (|:| -3948 (-484))))) (-5 *4 (-484)) - (-4 *5 (-1155 *4)) (-5 *2 (-583 *5)) (-5 *1 (-635 *5))))) + (-12 (-5 *3 (-584 (-2 (|:| -3733 *5) (|:| -3949 (-485))))) (-5 *4 (-485)) + (-4 *5 (-1156 *4)) (-5 *2 (-584 *5)) (-5 *1 (-636 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-484)) (-5 *2 (-583 (-2 (|:| -3732 *3) (|:| -3948 *4)))) - (-5 *1 (-635 *3)) (-4 *3 (-1155 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1155 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-1013)))) - ((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1013))))) + (-12 (-5 *4 (-485)) (-5 *2 (-584 (-2 (|:| -3733 *3) (|:| -3949 *4)))) + (-5 *1 (-636 *3)) (-4 *3 (-1156 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-1014)))) + ((*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1014))))) (((*1 *2 *1) - (-12 (-4 *1 (-634 *3)) (-4 *3 (-1013)) - (-5 *2 (-583 (-2 (|:| |entry| *3) (|:| -1946 (-694)))))))) -(((*1 *1 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772)))))) -(((*1 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772)))))) + (-12 (-4 *1 (-635 *3)) (-4 *3 (-1014)) + (-5 *2 (-584 (-2 (|:| |entry| *3) (|:| -1947 (-695)))))))) +(((*1 *1 *2) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773)))))) +(((*1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773)))))) (((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-324 *3)) - (-4 *5 (-324 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) + (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3)) + (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) + (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) - (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6))))) + (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) + (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) - (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6))))) + (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) + (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) - (-5 *1 (-629 *4 *5 *6 *2)) (-4 *2 (-627 *4 *5 *6))))) + (-12 (-5 *3 (-485)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) + (-5 *1 (-630 *4 *5 *6 *2)) (-4 *2 (-628 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))) (((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))) (((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) + (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-625 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-625 *4 *5 *6)) (-4 *4 (-1013))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1014))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-1013))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1014))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013)) (-4 *6 (-1013)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *5 *4 *6))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1014)) (-4 *4 (-1014)) (-4 *6 (-1014)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-624 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-625 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5)) - (-5 *1 (-624 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5)) + (-5 *1 (-625 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-624 *4 *3)) (-4 *4 (-1013)) - (-4 *3 (-1013))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1014)) + (-4 *3 (-1014))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-694) *2)) (-5 *4 (-694)) (-4 *2 (-1013)) - (-5 *1 (-619 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-694) *3)) (-4 *3 (-1013)) (-5 *1 (-623 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1013))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-623 *2)) (-4 *2 (-1013)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-484)) (-5 *2 (-583 *5)) - (-5 *1 (-623 *5)) (-4 *5 (-1013))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1130))) (-5 *3 (-1130)) (-5 *1 (-622))))) + (-12 (-5 *3 (-1 *2 (-695) *2)) (-5 *4 (-695)) (-4 *2 (-1014)) + (-5 *1 (-620 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-695) *3)) (-4 *3 (-1014)) (-5 *1 (-624 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1014))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1014)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-584 *5) (-584 *5))) (-5 *4 (-485)) (-5 *2 (-584 *5)) + (-5 *1 (-624 *5)) (-4 *5 (-1014))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1131))) (-5 *3 (-1131)) (-5 *1 (-623))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) - (-4 *2 (-1013)) (-5 *1 (-621 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) + (-4 *2 (-1014)) (-5 *1 (-622 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-621 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-621 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-694)) (-4 *2 (-1013)) (-5 *1 (-619 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-85))))) -(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129))))) -(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-694))))) -(((*1 *2 *3) - (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-85)) (-5 *1 (-614 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-695)) (-4 *2 (-1014)) (-5 *1 (-620 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))) +(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-695))))) +(((*1 *2 *3) + (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-85)) (-5 *1 (-615 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3))))) + (|partial| -12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) - (-5 *2 (-58 (-583 (-614 *5)))) (-5 *1 (-614 *5))))) + (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) + (-5 *2 (-58 (-584 (-615 *5)))) (-5 *1 (-615 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-583 (-614 *5))) - (-5 *1 (-614 *5))))) + (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-584 (-615 *5))) + (-5 *1 (-615 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-756)) - (-4 *8 (-861 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *7)) (-4 *7 (-757)) + (-4 *8 (-862 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-5 *2 - (-2 (|:| |particular| (-3 (-1179 (-350 *8)) "failed")) - (|:| -2012 (-583 (-1179 (-350 *8)))))) - (-5 *1 (-611 *5 *6 *7 *8))))) + (-2 (|:| |particular| (-3 (-1180 (-350 *8)) "failed")) + (|:| -2013 (-584 (-1180 (-350 *8)))))) + (-5 *1 (-612 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3996)))) - (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3996)))) (-5 *2 (-85)) - (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) + (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3997)))) + (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3997)))) (-5 *2 (-85)) + (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-5 *2 (-85)) - (-5 *1 (-610 *5))))) + (-12 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-85)) + (-5 *1 (-611 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 (-1085 *4))) (-5 *3 (-1085 *4)) (-4 *4 (-821)) - (-5 *1 (-605 *4))))) -(((*1 *1 *1) (-4 *1 (-604)))) -(((*1 *1 *1 *1) (-4 *1 (-604)))) -(((*1 *1 *1 *1) (-4 *1 (-604)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) + (|partial| -12 (-5 *2 (-584 (-1086 *4))) (-5 *3 (-1086 *4)) (-4 *4 (-822)) + (-5 *1 (-606 *4))))) +(((*1 *1 *1) (-4 *1 (-605)))) +(((*1 *1 *1 *1) (-4 *1 (-605)))) +(((*1 *1 *1 *1) (-4 *1 (-605)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2)) - (-4 *2 (-600 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2)) + (-4 *2 (-601 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-4 *1 (-600 *3)) (-4 *3 (-961)) (-4 *3 (-312)))) + (-12 (-5 *2 (-695)) (-4 *1 (-601 *3)) (-4 *3 (-962)) (-4 *3 (-312)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-694)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-602 *5 *2)) - (-4 *2 (-600 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) + (-12 (-5 *3 (-695)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-603 *5 *2)) + (-4 *2 (-601 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2)) - (-4 *2 (-600 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2)) + (-4 *2 (-601 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) - (-4 *5 (-1155 *4)) (-5 *2 (-583 (-597 (-350 *5)))) (-5 *1 (-601 *4 *5)) - (-5 *3 (-597 (-350 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-484))) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1129))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-593 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3943 *4)))) - (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4)))) + (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) + (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5)) + (-5 *3 (-598 (-350 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-594 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) + (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3944 *4)))) + (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2) - (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3943 *4)))) (-4 *3 (-1013)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3944 *4)))) (-4 *3 (-1014)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-336 *4)) (-4 *4 (-1013)) (-5 *2 (-694)))) + (-12 (-5 *3 (-485)) (-4 *1 (-336 *4)) (-4 *4 (-1014)) (-5 *2 (-695)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5)) (-4 *4 (-1013)) + (-12 (-5 *3 (-485)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1014)) (-14 *5 *2)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1013)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-336 *2)) (-4 *2 (-1013)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495)))) + (-12 (-5 *3 (-485)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1014)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-336 *2)) (-4 *2 (-1014)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-1013)) (-5 *1 (-591 *2 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *3 (-485)) (-4 *2 (-1014)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)))) - ((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)))) + ((*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) - ((*1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-324 *2)) (-4 *2 (-1129)))) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) + ((*1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-324 *2)) (-4 *2 (-1130)))) ((*1 *1 *1) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) + (-12 (-5 *2 (-85)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-484) (-484))) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-1 (-485) (-485))) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-694) (-694))) (-4 *1 (-336 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-1 (-695) (-695))) (-4 *1 (-336 *3)) (-4 *3 (-1014)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)) - (-4 *3 (-1013))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)) + (-4 *3 (-1014))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-310 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1013)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-310 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1014)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-591 *3 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-589 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1013))))) -(((*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-583 *3)) (-4 *3 (-1129))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1129))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1129))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1129))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1129))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-590 *3)) (-4 *3 (-1014))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1014))))) +(((*1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-584 *3)) (-4 *3 (-1130))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-581 *3 *4)) - (-14 *4 (-583 (-1090)))))) + (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-582 *3 *4)) + (-14 *4 (-584 (-1091)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) - (-5 *2 (-2 (|:| |mat| (-630 *4)) (|:| |vec| (-1179 *4)))))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) + (-5 *2 (-2 (|:| |mat| (-631 *4)) (|:| |vec| (-1180 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4))))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-630 *1)) (-5 *4 (-1179 *1)) (-4 *1 (-580 *5)) (-4 *5 (-961)) - (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1179 *5)))))) + (-12 (-5 *3 (-631 *1)) (-5 *4 (-1180 *1)) (-4 *1 (-581 *5)) (-4 *5 (-962)) + (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-630 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4))))) + (-12 (-5 *3 (-631 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-579 *3 *4)) - (-14 *4 (-583 (-1090)))))) + (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-580 *3 *4)) + (-14 *4 (-584 (-1091)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 *5))) - (-4 *5 (-312)) (-4 *5 (-495)) (-5 *2 (-1179 *5)) (-5 *1 (-578 *5 *4)))) + (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 *5))) + (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 (-1180 *5)) (-5 *1 (-579 *5 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 *5))) - (-2560 (-4 *5 (-312))) (-4 *5 (-495)) (-5 *2 (-1179 (-350 *5))) - (-5 *1 (-578 *5 *4))))) + (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 *5))) + (-2561 (-4 *5 (-312))) (-4 *5 (-496)) (-5 *2 (-1180 (-350 *5))) + (-5 *1 (-579 *5 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1179 *5)) (-4 *5 (-13 (-961) (-580 *4))) - (-4 *4 (-495)) (-5 *2 (-1179 *4)) (-5 *1 (-578 *4 *5))))) + (|partial| -12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-962) (-581 *4))) + (-4 *4 (-496)) (-5 *2 (-1180 *4)) (-5 *1 (-579 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-495)) - (-5 *2 (-85)) (-5 *1 (-578 *4 *5))))) + (-12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-496)) + (-5 *2 (-85)) (-5 *1 (-579 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-750 *3))) (-4 *3 (-13 (-27) (-1115) (-364 *5))) - (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) + (-12 (-5 *4 (-249 (-751 *3))) (-4 *3 (-13 (-27) (-1116) (-364 *5))) + (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 - (-3 (-750 *3) - (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-750 *3) #1#))) + (-3 (-751 *3) + (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-751 *3) #1#))) "failed")) - (-5 *1 (-575 *5 *3)))) + (-5 *1 (-576 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1073)) - (-4 *3 (-13 (-27) (-1115) (-364 *6))) - (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-750 *3)) - (-5 *1 (-575 *6 *3)))) + (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1074)) + (-4 *3 (-13 (-27) (-1116) (-364 *6))) + (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-751 *3)) + (-5 *1 (-576 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-750 (-857 *5)))) (-4 *5 (-392)) + (-12 (-5 *4 (-249 (-751 (-858 *5)))) (-4 *5 (-392)) (-5 *2 - (-3 (-750 (-350 (-857 *5))) - (-2 (|:| |leftHandLimit| (-3 (-750 (-350 (-857 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-750 (-350 (-857 *5))) #2#))) + (-3 (-751 (-350 (-858 *5))) + (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-751 (-350 (-858 *5))) #2#))) #3="failed")) - (-5 *1 (-576 *5)) (-5 *3 (-350 (-857 *5))))) + (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-350 (-857 *5)))) (-5 *3 (-350 (-857 *5))) (-4 *5 (-392)) + (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392)) (-5 *2 - (-3 (-750 *3) - (-2 (|:| |leftHandLimit| (-3 (-750 *3) #2#)) - (|:| |rightHandLimit| (-3 (-750 *3) #2#))) + (-3 (-751 *3) + (-2 (|:| |leftHandLimit| (-3 (-751 *3) #2#)) + (|:| |rightHandLimit| (-3 (-751 *3) #2#))) #3#)) - (-5 *1 (-576 *5)))) + (-5 *1 (-577 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-249 (-350 (-857 *6)))) (-5 *5 (-1073)) - (-5 *3 (-350 (-857 *6))) (-4 *6 (-392)) (-5 *2 (-750 *3)) - (-5 *1 (-576 *6))))) + (|partial| -12 (-5 *4 (-249 (-350 (-858 *6)))) (-5 *5 (-1074)) + (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-751 *3)) + (-5 *1 (-577 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-249 (-743 *3))) - (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-743 *3)) - (-5 *1 (-575 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) + (|partial| -12 (-5 *4 (-249 (-744 *3))) + (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-744 *3)) + (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-743 (-857 *5)))) (-4 *5 (-392)) - (-5 *2 (-743 (-350 (-857 *5)))) (-5 *1 (-576 *5)) (-5 *3 (-350 (-857 *5))))) + (-12 (-5 *4 (-249 (-744 (-858 *5)))) (-4 *5 (-392)) + (-5 *2 (-744 (-350 (-858 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-249 (-350 (-857 *5)))) (-5 *3 (-350 (-857 *5))) (-4 *5 (-392)) - (-5 *2 (-743 *3)) (-5 *1 (-576 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-571))))) -(((*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1) (-5 *1 (-571)))) + (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392)) + (-5 *2 (-744 *3)) (-5 *1 (-577 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-572))))) +(((*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-1014)))) + ((*1 *1 *1) (-5 *1 (-572)))) (((*1 *2 *3) - (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-392)) - (-5 *2 (-421 *4 *5)) (-5 *1 (-570 *4 *5))))) + (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) + (-5 *2 (-421 *4 *5)) (-5 *1 (-571 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-583 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-583 (-1090))) - (-4 *5 (-392)) (-5 *1 (-570 *4 *5))))) + (-12 (-5 *3 (-584 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-584 (-1091))) + (-4 *5 (-392)) (-5 *1 (-571 *4 *5))))) (((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-583 (-421 *4 *5))) (-5 *3 (-773 *4)) (-14 *4 (-583 (-1090))) - (-4 *5 (-392)) (-5 *1 (-570 *4 *5))))) + (-12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-774 *4)) (-14 *4 (-584 (-1091))) + (-4 *5 (-392)) (-5 *1 (-571 *4 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-206 *5 *6))) (-4 *6 (-392)) - (-5 *2 (-206 *5 *6)) (-14 *5 (-583 (-1090))) (-5 *1 (-570 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) + (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-206 *5 *6))) (-4 *6 (-392)) + (-5 *2 (-206 *5 *6)) (-14 *5 (-584 (-1091))) (-5 *1 (-571 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *3 (-583 (-221))) + (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-421 *5 *6))) (-5 *3 (-421 *5 *6)) (-14 *5 (-583 (-1090))) - (-4 *6 (-392)) (-5 *2 (-1179 *6)) (-5 *1 (-570 *5 *6))))) + (-12 (-5 *4 (-584 (-421 *5 *6))) (-5 *3 (-421 *5 *6)) (-14 *5 (-584 (-1091))) + (-4 *6 (-392)) (-5 *2 (-1180 *6)) (-5 *1 (-571 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 (-421 *3 *4))) (-14 *3 (-583 (-1090))) (-4 *4 (-392)) - (-5 *1 (-570 *3 *4))))) + (-12 (-5 *2 (-584 (-421 *3 *4))) (-14 *3 (-584 (-1091))) (-4 *4 (-392)) + (-5 *1 (-571 *3 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-583 (-421 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1090))) - (-5 *2 (-421 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-392)))) + (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1091))) + (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-421 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1090))) - (-5 *2 (-421 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-392))))) + (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1091))) + (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-421 *4 *5))) (-14 *4 (-583 (-1090))) (-4 *5 (-392)) - (-5 *2 (-583 (-206 *4 *5))) (-5 *1 (-570 *4 *5))))) + (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) + (-5 *2 (-584 (-206 *4 *5))) (-5 *1 (-571 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-583 (-1090))) (-4 *5 (-392)) - (-5 *2 (-2 (|:| |glbase| (-583 (-206 *4 *5))) (|:| |glval| (-583 (-484))))) - (-5 *1 (-570 *4 *5)) (-5 *3 (-583 (-206 *4 *5)))))) + (-12 (-14 *4 (-584 (-1091))) (-4 *5 (-392)) + (-5 *2 (-2 (|:| |glbase| (-584 (-206 *4 *5))) (|:| |glval| (-584 (-485))))) + (-5 *1 (-571 *4 *5)) (-5 *3 (-584 (-206 *4 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-421 *4 *5))) (-14 *4 (-583 (-1090))) (-4 *5 (-392)) - (-5 *2 (-2 (|:| |gblist| (-583 (-206 *4 *5))) (|:| |gvlist| (-583 (-484))))) - (-5 *1 (-570 *4 *5))))) + (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) + (-5 *2 (-2 (|:| |gblist| (-584 (-206 *4 *5))) (|:| |gvlist| (-584 (-485))))) + (-5 *1 (-571 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) - (-4 *2 (-13 (-364 *3) (-915) (-1115))))) - ((*1 *1 *1) (-4 *1 (-569)))) + (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) + (-4 *2 (-13 (-364 *3) (-916) (-1116))))) + ((*1 *1 *1) (-4 *1 (-570)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) - (-4 *2 (-13 (-364 *3) (-915) (-1115))))) - ((*1 *1 *1) (-4 *1 (-569)))) + (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) + (-4 *2 (-13 (-364 *3) (-916) (-1116))))) + ((*1 *1 *1) (-4 *1 (-570)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) - (-4 *2 (-13 (-364 *3) (-915) (-1115))))) - ((*1 *1 *1) (-4 *1 (-569)))) + (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) + (-4 *2 (-13 (-364 *3) (-916) (-1116))))) + ((*1 *1 *1) (-4 *1 (-570)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) - (-4 *2 (-13 (-364 *3) (-915) (-1115))))) - ((*1 *1 *1) (-4 *1 (-569)))) + (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) + (-4 *2 (-13 (-364 *3) (-916) (-1116))))) + ((*1 *1 *1) (-4 *1 (-570)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) - (-4 *2 (-13 (-364 *3) (-915) (-1115))))) - ((*1 *1 *1) (-4 *1 (-569)))) + (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) + (-4 *2 (-13 (-364 *3) (-916) (-1116))))) + ((*1 *1 *1) (-4 *1 (-570)))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) - (-4 *2 (-13 (-364 *3) (-915) (-1115))))) - ((*1 *1 *1) (-4 *1 (-569)))) + (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) + (-4 *2 (-13 (-364 *3) (-916) (-1116))))) + ((*1 *1 *1) (-4 *1 (-570)))) (((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) + (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-364 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) + (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-364 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) - (-4 *5 (-13 (-364 *4) (-915))))) + (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) + (-4 *5 (-13 (-364 *4) (-916))))) ((*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254)))) ((*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5)) + (-12 (-5 *3 (-86)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5)) (-4 *4 (-364 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) + (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) (-4 *5 (-364 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-568 *4 *5)) - (-4 *5 (-13 (-364 *4) (-915) (-1115)))))) + (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-569 *4 *5)) + (-4 *5 (-13 (-364 *4) (-916) (-1116)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) - (-14 *6 (-583 (-1090))) - (-5 *2 (-583 (-1060 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) - (-5 *1 (-567 *5 *6))))) + (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) + (-14 *6 (-584 (-1091))) + (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) + (-5 *1 (-568 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) - (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6))))) + (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) + (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) - (-14 *4 (-583 (-1090))))) + (-12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) + (-14 *4 (-584 (-1091))))) ((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6)))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) - (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7)))) + (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) + (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) - (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7)))) + (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) + (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) - (-4 *5 (-861 *2 *3 *4)))) + (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) + (-4 *5 (-862 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-392)) - (-14 *4 (-583 (-1090))) (-5 *1 (-567 *3 *4))))) + (-12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392)) + (-14 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) - (-14 *4 (-583 (-1090))))) + (|partial| -12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) + (-14 *4 (-584 (-1091))))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-392)) - (-14 *4 (-583 (-1090))) (-5 *1 (-567 *3 *4))))) + (|partial| -12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392)) + (-14 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-392)) (-5 *2 (-85)) - (-5 *1 (-309 *4 *5)) (-14 *5 (-583 (-1090))))) + (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-85)) + (-5 *1 (-309 *4 *5)) (-14 *5 (-584 (-1091))))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-703 *4 (-773 *5)))) (-4 *4 (-392)) - (-14 *5 (-583 (-1090))) (-5 *2 (-85)) (-5 *1 (-567 *4 *5))))) + (-12 (-5 *3 (-584 (-704 *4 (-774 *5)))) (-4 *4 (-392)) + (-14 *5 (-584 (-1091))) (-5 *2 (-85)) (-5 *1 (-568 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-606 *4 *5))) - (-5 *1 (-566 *4 *5 *6)) (-4 *5 (-13 (-146) (-654 (-350 (-484))))) - (-14 *6 (-830))))) + (-12 (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-607 *4 *5))) + (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-146) (-655 (-350 (-485))))) + (-14 *6 (-831))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |k| (-614 *3)) (|:| |c| *4)))) - (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) - (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830))))) + (-12 (-5 *2 (-584 (-2 (|:| |k| (-615 *3)) (|:| |c| *4)))) + (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) + (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-583 (-249 *4))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) - (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830))))) + (-12 (-5 *2 (-584 (-249 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) + (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))) (((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) - (|:| -1779 (-583 (-2 (|:| |irr| *10) (|:| -2395 (-484))))))) - (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-756)) (-4 *3 (-258)) - (-4 *10 (-861 *3 *9 *8)) (-4 *9 (-717)) + (|:| -1780 (-584 (-2 (|:| |irr| *10) (|:| -2396 (-485))))))) + (-5 *6 (-584 *3)) (-5 *7 (-584 *8)) (-4 *8 (-757)) (-4 *3 (-258)) + (-4 *10 (-862 *3 *9 *8)) (-4 *9 (-718)) (-5 *2 - (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) - (|:| |corrfact| (-583 (-1085 *3))))) - (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-583 (-1085 *3)))))) + (-2 (|:| |polfac| (-584 *10)) (|:| |correct| *3) + (|:| |corrfact| (-584 (-1086 *3))))) + (-5 *1 (-565 *8 *9 *3 *10)) (-5 *4 (-584 (-1086 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-694)) (-5 *5 (-583 *3)) (-4 *3 (-258)) (-4 *6 (-756)) - (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-564 *6 *7 *3 *8)) - (-4 *8 (-861 *3 *7 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) - (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-983 *3 *4 *5 *6)) - (-4 *2 (-1020 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1155 *2))))) + (-12 (-5 *4 (-695)) (-5 *5 (-584 *3)) (-4 *3 (-258)) (-4 *6 (-757)) + (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-565 *6 *7 *3 *8)) + (-4 *8 (-862 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) + (-5 *1 (-564 *3 *4 *5 *6 *7 *2)) (-4 *7 (-984 *3 *4 *5 *6)) + (-4 *2 (-1021 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) - (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1115) (-871) (-29 *4)))))) -(((*1 *1) (-5 *1 (-556)))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) + (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-1116) (-872) (-29 *4)))))) +(((*1 *1) (-5 *1 (-557)))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-120) (-27) (-950 (-484)) (-950 (-350 (-484))))) - (-4 *5 (-1155 *4)) (-5 *2 (-1085 (-350 *5))) (-5 *1 (-554 *4 *5)) + (|partial| -12 (-4 *4 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485))))) + (-4 *5 (-1156 *4)) (-5 *2 (-1086 (-350 *5))) (-5 *1 (-555 *4 *5)) (-5 *3 (-350 *5)))) ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) - (-4 *5 (-13 (-120) (-27) (-950 (-484)) (-950 (-350 (-484))))) - (-5 *2 (-1085 (-350 *6))) (-5 *1 (-554 *5 *6)) (-5 *3 (-350 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-550 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) - (-5 *1 (-551 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-550 *4)) (-5 *1 (-551 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) -(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1115)))) - ((*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-550 *3)) (-4 *3 (-1013))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254)))) + (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485))))) + (-5 *2 (-1086 (-350 *6))) (-5 *1 (-555 *5 *6)) (-5 *3 (-350 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-551 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) + (-5 *1 (-552 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-551 *4)) (-5 *1 (-552 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) +(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1116)))) + ((*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1014))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) - ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) + ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-86)) (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-1013)) - (-5 *1 (-550 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-550 *3)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-86)) (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-1014)) + (-5 *1 (-551 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-85))))) + (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-583 *3))))) + (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-584 *3))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) -(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-545)))) + (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) +(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546)))) +(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546)))) +(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546)))) +(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546)))) +(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546)))) +(((*1 *1) (-5 *1 (-546)))) +(((*1 *1) (-5 *1 (-546)))) +(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-546)))) +(((*1 *1) (-5 *1 (-546)))) (((*1 *1) (-5 *1 (-545)))) -(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-545)))) (((*1 *1) (-5 *1 (-545)))) (((*1 *1) (-5 *1 (-544)))) (((*1 *1) (-5 *1 (-544)))) +(((*1 *1) (-5 *1 (-544)))) +(((*1 *1) (-5 *1 (-544)))) +(((*1 *1) (-5 *1 (-544)))) +(((*1 *1) (-5 *1 (-544)))) +(((*1 *1) (-5 *1 (-544)))) +(((*1 *1) (-5 *1 (-544)))) +(((*1 *1) (-5 *1 (-544)))) +(((*1 *1) (-5 *1 (-544)))) +(((*1 *1) (-5 *1 (-544)))) (((*1 *1) (-5 *1 (-543)))) (((*1 *1) (-5 *1 (-543)))) -(((*1 *1) (-5 *1 (-543)))) -(((*1 *1) (-5 *1 (-543)))) -(((*1 *1) (-5 *1 (-543)))) -(((*1 *1) (-5 *1 (-543)))) -(((*1 *1) (-5 *1 (-543)))) -(((*1 *1) (-5 *1 (-543)))) -(((*1 *1) (-5 *1 (-543)))) -(((*1 *1) (-5 *1 (-543)))) -(((*1 *1) (-5 *1 (-543)))) -(((*1 *1) (-5 *1 (-542)))) -(((*1 *1) (-5 *1 (-542)))) -(((*1 *2 *1) (-12 (-5 *2 (-869 (-158 (-112)))) (-5 *1 (-282)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-539))))) +(((*1 *2 *1) (-12 (-5 *2 (-870 (-158 (-112)))) (-5 *1 (-282)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-540))))) (((*1 *2 *1) - (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1129)) (-5 *2 (-583 *4))))) + (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-584 *4))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1129)) (-5 *2 (-85))))) + (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1129)) (-5 *2 (-583 *3))))) + (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-584 *3))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -3995)) (-4 *1 (-538 *4 *3)) (-4 *4 (-1013)) - (-4 *3 (-1129)) (-4 *3 (-1013)) (-5 *2 (-85))))) + (-12 (|has| *1 (-6 -3996)) (-4 *1 (-539 *4 *3)) (-4 *4 (-1014)) + (-4 *3 (-1130)) (-4 *3 (-1014)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1013)) (-4 *2 (-756))))) + (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1014)) (-4 *2 (-757))))) (((*1 *2 *1) - (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1013)) (-4 *2 (-756))))) + (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1014)) (-4 *2 (-757))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1129)) (-4 *3 (-324 *2)) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -3996)) (-4 *1 (-538 *3 *2)) (-4 *3 (-1013)) - (-4 *2 (-1129))))) + (-12 (|has| *1 (-6 -3997)) (-4 *1 (-539 *3 *2)) (-4 *3 (-1014)) + (-4 *2 (-1130))))) (((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -3996)) (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) - (-4 *4 (-1129)) (-5 *2 (-1185))))) + (-12 (|has| *1 (-6 -3997)) (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) + (-4 *4 (-1130)) (-5 *2 (-1186))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-583 (-1090))) - (-4 *2 (-13 (-364 (-142 *5)) (-915) (-1115))) (-4 *5 (-495)) - (-5 *1 (-535 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-915) (-1115)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-142 *5)) (-5 *1 (-535 *4 *5 *3)) - (-4 *5 (-13 (-364 *4) (-915) (-1115))) - (-4 *3 (-13 (-364 (-142 *4)) (-915) (-1115)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *2 (-13 (-364 (-142 *4)) (-915) (-1115))) - (-5 *1 (-535 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-915) (-1115)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-495)) (-4 *2 (-13 (-364 *4) (-915) (-1115))) - (-5 *1 (-535 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-915) (-1115)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-915) (-1115))) (-4 *4 (-495)) - (-4 *2 (-13 (-364 (-142 *4)) (-915) (-1115))) (-5 *1 (-535 *4 *5 *2))))) -(((*1 *1) (-5 *1 (-532)))) -(((*1 *1) (-5 *1 (-532)))) -(((*1 *1) (-5 *1 (-532)))) -(((*1 *1) (-5 *1 (-532)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-532))) (-5 *1 (-532))))) + (-12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-584 (-1091))) + (-4 *2 (-13 (-364 (-142 *5)) (-916) (-1116))) (-4 *5 (-496)) + (-5 *1 (-536 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-916) (-1116)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-496)) (-5 *2 (-142 *5)) (-5 *1 (-536 *4 *5 *3)) + (-4 *5 (-13 (-364 *4) (-916) (-1116))) + (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1116)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1116))) + (-5 *1 (-536 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-916) (-1116)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 *4) (-916) (-1116))) + (-5 *1 (-536 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1116)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-916) (-1116))) (-4 *4 (-496)) + (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1116))) (-5 *1 (-536 *4 *5 *2))))) +(((*1 *1) (-5 *1 (-533)))) +(((*1 *1) (-5 *1 (-533)))) +(((*1 *1) (-5 *1 (-533)))) +(((*1 *1) (-5 *1 (-533)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-533))) (-5 *1 (-533))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-939 (-750 (-484)))) - (-5 *3 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *4)))) (-4 *4 (-961)) - (-5 *1 (-530 *4))))) + (-12 (-5 *2 (-940 (-751 (-485)))) + (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *4)))) (-4 *4 (-962)) + (-5 *1 (-531 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-939 (-750 (-484)))) (-5 *1 (-530 *3)) (-4 *3 (-961))))) + (-12 (-5 *2 (-940 (-751 (-485)))) (-5 *1 (-531 *3)) (-4 *3 (-962))))) (((*1 *2 *1) - (-12 (-5 *2 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-5 *1 (-530 *3)) - (-4 *3 (-961))))) + (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-5 *1 (-531 *3)) + (-4 *3 (-962))))) (((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961))))) -(((*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961))))) + (|partial| -12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962))))) +(((*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *6)))) - (-5 *4 (-939 (-750 (-484)))) (-5 *5 (-1090)) (-5 *7 (-350 (-484))) - (-4 *6 (-961)) (-5 *2 (-772)) (-5 *1 (-530 *6))))) + (-12 (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *6)))) + (-5 *4 (-940 (-751 (-485)))) (-5 *5 (-1091)) (-5 *7 (-350 (-485))) + (-4 *6 (-962)) (-5 *2 (-773)) (-5 *1 (-531 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-350 (-484))) (-5 *1 (-530 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-961))))) + (-12 (-5 *2 (-350 (-485))) (-5 *1 (-531 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *1 *1) - (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))) + (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *3)) (-4 *3 (-1020 *5 *6 *7 *8)) - (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) - (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-527 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-584 *3)) (-4 *3 (-1021 *5 *6 *7 *8)) + (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) + (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-528 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-830))) (-5 *4 (-813 (-484))) (-5 *2 (-630 (-484))) - (-5 *1 (-526)))) + (-12 (-5 *3 (-584 (-831))) (-5 *4 (-814 (-485))) (-5 *2 (-631 (-485))) + (-5 *1 (-527)))) ((*1 *2 *3) - (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526)))) + (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-813 (-484)))) - (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-694)) (-5 *1 (-526))))) + (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-814 (-485)))) + (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527))))) +(((*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-695)) (-5 *1 (-527))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) - (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1115) (-29 *4))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) + (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1116) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-120)) - (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *5)) - (-5 *1 (-525 *5))))) + (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-120)) + (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *5)) + (-5 *1 (-526 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-519 *2)) (-4 *2 (-13 (-29 *4) (-1115))) (-5 *1 (-521 *4 *2)) - (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))))) + (-12 (-5 *3 (-520 *2)) (-4 *2 (-13 (-29 *4) (-1116))) (-5 *1 (-522 *4 *2)) + (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))))) ((*1 *2 *3) - (-12 (-5 *3 (-519 (-350 (-857 *4)))) - (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *4)) - (-5 *1 (-525 *4))))) + (-12 (-5 *3 (-520 (-350 (-858 *4)))) + (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *4)) + (-5 *1 (-526 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-524 *4)) (-4 *4 (-299))))) -(((*1 *2 *2) (-12 (-5 *1 (-523 *2)) (-4 *2 (-483))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-523 *2)) (-4 *2 (-483))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483))))) + (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-525 *4)) (-4 *4 (-299))))) +(((*1 *2 *2) (-12 (-5 *1 (-524 *2)) (-4 *2 (-484))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-484))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483)))) + (|partial| -12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2694 *3) (|:| -2401 (-694)))) (-5 *1 (-523 *3)) - (-4 *3 (-483))))) + (-12 (-5 *2 (-2 (|:| -2695 *3) (|:| -2402 (-695)))) (-5 *1 (-524 *3)) + (-4 *3 (-484))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-694)) (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522))))) + (-12 (-5 *4 (-695)) (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523))))) (((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-583 - (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 *2)) - (|:| |logand| (-1085 *2))))) - (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) - (-5 *1 (-519 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312))))) + (-584 + (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 *2)) + (|:| |logand| (-1086 *2))))) + (-5 *4 (-584 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) + (-5 *1 (-520 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312))))) (((*1 *2 *1) (-12 (-5 *2 - (-583 - (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 *3)) - (|:| |logand| (-1085 *3))))) - (-5 *1 (-519 *3)) (-4 *3 (-312))))) -(((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-519 *3)) (-4 *3 (-312))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-519 *3)) (-4 *3 (-312))))) -(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-518))))) -(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-515))))) -(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-515))))) -(((*1 *2 *3) (-12 (-5 *3 (-431)) (-5 *2 (-632 (-515))) (-5 *1 (-515))))) -(((*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-473) (-583 (-473))))) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-473) (-583 (-473)))) (-5 *1 (-86)))) - ((*1 *1) (-5 *1 (-514)))) -(((*1 *1) (-5 *1 (-514)))) -(((*1 *1) (-5 *1 (-514)))) -(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-513)))) - ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-513))))) + (-584 + (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 *3)) + (|:| |logand| (-1086 *3))))) + (-5 *1 (-520 *3)) (-4 *3 (-312))))) +(((*1 *2 *1) + (-12 (-5 *2 (-584 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-520 *3)) (-4 *3 (-312))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-520 *3)) (-4 *3 (-312))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-519))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-516))))) +(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-516))))) +(((*1 *2 *3) (-12 (-5 *3 (-431)) (-5 *2 (-633 (-516))) (-5 *1 (-516))))) +(((*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-474) (-584 (-474))))) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-474) (-584 (-474)))) (-5 *1 (-86)))) + ((*1 *1) (-5 *1 (-515)))) +(((*1 *1) (-5 *1 (-515)))) +(((*1 *1) (-5 *1 (-515)))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-514)))) + ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-514))))) (((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1090)) - (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-511 *4 *2)) - (-4 *2 (-13 (-1115) (-871) (-1053) (-29 *4)))))) + (|partial| -12 (-5 *3 (-1091)) + (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-512 *4 *2)) + (-4 *2 (-13 (-1116) (-872) (-1054) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-510 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-511 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 - (-2 (|:| |ir| (-519 (-350 *6))) (|:| |specpart| (-350 *6)) + (-2 (|:| |ir| (-520 (-350 *6))) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) - (-5 *1 (-510 *5 *6)) (-5 *3 (-350 *6))))) + (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-562 *4 *5)) - (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3137 *4) (|:| |sol?| (-85))) (-484) *4)) - (-4 *4 (-312)) (-4 *5 (-1155 *4)) (-5 *1 (-510 *4 *5))))) + (|partial| -12 (-5 *2 (-563 *4 *5)) + (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3138 *4) (|:| |sol?| (-85))) (-485) *4)) + (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *1 (-511 *4 *5))))) (((*1 *2 *2 *3 *4) (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-312)) (-5 *1 (-510 *4 *2)) (-4 *2 (-1155 *4))))) + (-5 *3 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-312)) (-5 *1 (-511 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-350 *7))) (-4 *7 (-1155 *6)) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-584 (-350 *7))) (-4 *7 (-1156 *6)) (-5 *3 (-350 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-510 *6 *7))))) + (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-511 *6 *7))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) - (-5 *2 (-2 (|:| -2136 (-350 *6)) (|:| |coeff| (-350 *6)))) - (-5 *1 (-510 *5 *6)) (-5 *3 (-350 *6))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) + (-5 *2 (-2 (|:| -2137 (-350 *6)) (|:| |coeff| (-350 *6)))) + (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3137 *7) (|:| |sol?| (-85))) (-484) *7)) - (-5 *6 (-583 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1155 *7)) (-5 *3 (-350 *8)) + (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3138 *7) (|:| |sol?| (-85))) (-485) *7)) + (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-510 *7 *8))))) + (-5 *1 (-511 *7 *8))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2136 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-583 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1155 *7)) (-5 *3 (-350 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2137 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-510 *7 *8))))) + (-5 *1 (-511 *7 *8))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3137 *6) (|:| |sol?| (-85))) (-484) *6)) - (-4 *6 (-312)) (-4 *7 (-1155 *6)) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3138 *6) (|:| |sol?| (-85))) (-485) *6)) + (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) - (-2 (|:| -2136 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) - (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7))))) + (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) + (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-312)) (-4 *7 (-1155 *6)) + (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) - (-2 (|:| -2136 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) - (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7))))) + (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) + (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-484) *6 *6)) - (-4 *6 (-312)) (-4 *7 (-1155 *6)) - (-5 *2 (-2 (|:| |answer| (-519 (-350 *7))) (|:| |a0| *6))) - (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7))))) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-584 *6) "failed") (-485) *6 *6)) + (-4 *6 (-312)) (-4 *7 (-1156 *6)) + (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) + (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3137 *6) (|:| |sol?| (-85))) (-484) *6)) - (-4 *6 (-312)) (-4 *7 (-1155 *6)) - (-5 *2 (-2 (|:| |answer| (-519 (-350 *7))) (|:| |a0| *6))) - (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7))))) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3138 *6) (|:| |sol?| (-85))) (-485) *6)) + (-4 *6 (-312)) (-4 *7 (-1156 *6)) + (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) + (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-312)) (-4 *7 (-1155 *6)) - (-5 *2 (-2 (|:| |answer| (-519 (-350 *7))) (|:| |a0| *6))) - (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7))))) + (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-312)) (-4 *7 (-1156 *6)) + (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) + (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-519 *3) *3 (-1090))) + (-12 (-5 *5 (-1 (-520 *3) *3 (-1091))) (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1090))) - (-4 *3 (-239)) (-4 *3 (-569)) (-4 *3 (-950 *4)) (-4 *3 (-364 *7)) - (-5 *4 (-1090)) (-4 *7 (-553 (-800 (-484)))) (-4 *7 (-392)) - (-4 *7 (-796 (-484))) (-4 *7 (-1013)) (-5 *2 (-519 *3)) - (-5 *1 (-509 *7 *3))))) + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1091))) + (-4 *3 (-239)) (-4 *3 (-570)) (-4 *3 (-951 *4)) (-4 *3 (-364 *7)) + (-5 *4 (-1091)) (-4 *7 (-554 (-801 (-485)))) (-4 *7 (-392)) + (-4 *7 (-797 (-485))) (-4 *7 (-1014)) (-5 *2 (-520 *3)) + (-5 *1 (-510 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-392)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) + (-12 (-5 *3 (-1091)) (-4 *4 (-392)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2)) (-4 *2 (-239)) (-4 *2 (-364 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) + (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2)) (-4 *2 (-364 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *6)) (-5 *4 (-1090)) (-4 *6 (-364 *5)) (-4 *5 (-1013)) - (-5 *2 (-583 (-550 *6))) (-5 *1 (-509 *5 *6))))) + (-12 (-5 *3 (-584 *6)) (-5 *4 (-1091)) (-4 *6 (-364 *5)) (-4 *5 (-1014)) + (-5 *2 (-584 (-551 *6))) (-5 *1 (-510 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-583 (-550 *6))) (-5 *4 (-1090)) (-5 *2 (-550 *6)) - (-4 *6 (-364 *5)) (-4 *5 (-1013)) (-5 *1 (-509 *5 *6))))) + (-12 (-5 *3 (-584 (-551 *6))) (-5 *4 (-1091)) (-5 *2 (-551 *6)) + (-4 *6 (-364 *5)) (-4 *5 (-1014)) (-5 *1 (-510 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-550 *5))) (-4 *4 (-1013)) (-5 *2 (-550 *5)) - (-5 *1 (-509 *4 *5)) (-4 *5 (-364 *4))))) + (-12 (-5 *3 (-584 (-551 *5))) (-4 *4 (-1014)) (-5 *2 (-551 *5)) + (-5 *1 (-510 *4 *5)) (-4 *5 (-364 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-583 (-550 *5))) (-5 *3 (-1090)) (-4 *5 (-364 *4)) - (-4 *4 (-1013)) (-5 *1 (-509 *4 *5))))) + (-12 (-5 *2 (-584 (-551 *5))) (-5 *3 (-1091)) (-4 *5 (-364 *4)) + (-4 *4 (-1014)) (-5 *1 (-510 *4 *5))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)) (-120))) - (-5 *2 (-2 (|:| -2136 (-350 (-857 *5))) (|:| |coeff| (-350 (-857 *5))))) - (-5 *1 (-506 *5)) (-5 *3 (-350 (-857 *5)))))) + (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-120))) + (-5 *2 (-2 (|:| -2137 (-350 (-858 *5))) (|:| |coeff| (-350 (-858 *5))))) + (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-583 (-350 (-857 *6)))) - (-5 *3 (-350 (-857 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-120))) + (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 (-350 (-858 *6)))) + (-5 *3 (-350 (-858 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-506 *6))))) + (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-507 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-350 (-857 *4))) (-5 *3 (-1090)) - (-4 *4 (-13 (-495) (-950 (-484)) (-120))) (-5 *1 (-506 *4))))) + (|partial| -12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1091)) + (-4 *4 (-13 (-496) (-951 (-485)) (-120))) (-5 *1 (-507 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) - (-5 *2 (-519 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1115) (-29 *5))))) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) + (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)) (-120))) - (-5 *2 (-519 (-350 (-857 *5)))) (-5 *1 (-506 *5)) (-5 *3 (-350 (-857 *5)))))) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-120))) + (-5 *2 (-520 (-350 (-858 *5)))) (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2))))) + (|partial| -12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-583 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1155 *5)) - (-4 *5 (-13 (-312) (-120) (-950 (-484)))) + (|partial| -12 (-5 *4 (-584 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-312) (-120) (-951 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-504 *5 *6))))) + (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-505 *5 *6))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4)) - (-5 *2 (-2 (|:| -2136 (-350 *5)) (|:| |coeff| (-350 *5)))) - (-5 *1 (-504 *4 *5)) (-5 *3 (-350 *5))))) + (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) + (-5 *2 (-2 (|:| -2137 (-350 *5)) (|:| |coeff| (-350 *5)))) + (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) - (-4 *3 (-13 (-312) (-120) (-950 (-484)))) (-5 *1 (-504 *3 *4))))) + (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) + (-4 *3 (-13 (-312) (-120) (-951 (-485)))) (-5 *1 (-505 *3 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-553 (-800 (-484)))) - (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) - (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) + (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485)))) + (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) + (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1090)) (-5 *4 (-750 *2)) (-4 *2 (-1053)) - (-4 *2 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-553 (-800 (-484)))) - (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484)))) - (-5 *1 (-503 *5 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-553 (-800 (-484)))) - (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) - (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484)))) - (-5 *2 (-2 (|:| -2338 *3) (|:| |nconst| *3))) (-5 *1 (-503 *5 *3)) - (-4 *3 (-13 (-27) (-1115) (-364 *5)))))) + (|partial| -12 (-5 *3 (-1091)) (-5 *4 (-751 *2)) (-4 *2 (-1054)) + (-4 *2 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-554 (-801 (-485)))) + (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) + (-5 *1 (-504 *5 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485)))) + (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) + (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) + (-5 *2 (-2 (|:| -2339 *3) (|:| |nconst| *3))) (-5 *1 (-504 *5 *3)) + (-4 *3 (-13 (-27) (-1116) (-364 *5)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-550 *4)) (-5 *6 (-1090)) (-4 *4 (-13 (-364 *7) (-27) (-1115))) - (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4)))) - (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013))))) + (-12 (-5 *5 (-551 *4)) (-5 *6 (-1091)) (-4 *4 (-13 (-364 *7) (-27) (-1116))) + (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4)))) + (-5 *1 (-503 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014))))) (((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1090))) - (-4 *2 (-13 (-364 *5) (-27) (-1115))) - (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) - (-5 *1 (-502 *5 *2 *6)) (-4 *6 (-1013))))) + (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1091))) + (-4 *2 (-13 (-364 *5) (-27) (-1116))) + (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) + (-5 *1 (-503 *5 *2 *6)) (-4 *6 (-1014))))) (((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) - (-4 *3 (-13 (-364 *6) (-27) (-1115))) - (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) + (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) + (-4 *3 (-13 (-364 *6) (-27) (-1116))) + (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1013))))) + (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-503 *6 *3 *7)) (-4 *7 (-1014))))) (((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1115))) - (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) - (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-502 *5 *3 *6)) - (-4 *6 (-1013))))) + (|partial| -12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1116))) + (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) + (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-503 *5 *3 *6)) + (-4 *6 (-1014))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1115))) - (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) - (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013))))) + (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1116))) + (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) + (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1014))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) - (-4 *7 (-1155 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2135 *3))) - (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) + (-4 *7 (-1156 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2136 *3))) + (-5 *1 (-501 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 - (-2 (|:| |answer| (-350 *6)) (|:| -2135 (-350 *6)) + (-2 (|:| |answer| (-350 *6)) (|:| -2136 (-350 *6)) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) - (-5 *1 (-501 *5 *6)) (-5 *3 (-350 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-694)) (-5 *1 (-499))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) -(((*1 *2 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-499)) (-5 *3 (-484))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) -(((*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-499)) (-5 *3 (-484))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) + (-5 *1 (-502 *5 *6)) (-5 *3 (-350 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-695)) (-5 *1 (-500))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) +(((*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) +(((*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-500)) (-5 *3 (-485))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-258)) + (-12 (-5 *3 (-584 (-584 *4))) (-5 *2 (-584 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 *8)) + (-12 (-5 *3 (-584 *8)) (-5 *4 - (-583 - (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-630 *7))))) - (-5 *5 (-694)) (-4 *8 (-1155 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-299)) + (-584 + (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-631 *7))))) + (-5 *5 (-695)) (-4 *8 (-1156 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-299)) (-5 *2 - (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7)))) + (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7)))) (-5 *1 (-438 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-550 *4)) (-5 *6 (-1085 *4)) - (-4 *4 (-13 (-364 *7) (-27) (-1115))) - (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) - (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))) + (-12 (-5 *5 (-551 *4)) (-5 *6 (-1086 *4)) + (-4 *4 (-13 (-364 *7) (-27) (-1116))) + (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) + (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-550 *4)) (-5 *6 (-350 (-1085 *4))) - (-4 *4 (-13 (-364 *7) (-27) (-1115))) - (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) - (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013))))) + (-12 (-5 *5 (-551 *4)) (-5 *6 (-350 (-1086 *4))) + (-4 *4 (-13 (-364 *7) (-27) (-1116))) + (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) + (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014))))) (((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-550 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1090))) (-5 *5 (-1085 *2)) - (-4 *2 (-13 (-364 *6) (-27) (-1115))) - (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) - (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))) + (|partial| -12 (-5 *3 (-551 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1091))) (-5 *5 (-1086 *2)) + (-4 *2 (-13 (-364 *6) (-27) (-1116))) + (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) + (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1090))) - (-5 *5 (-350 (-1085 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1115))) - (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) - (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013))))) + (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1091))) + (-5 *5 (-350 (-1086 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1116))) + (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) + (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014))))) (((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1085 *3)) - (-4 *3 (-13 (-364 *7) (-27) (-1115))) - (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) + (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-1086 *3)) + (-4 *3 (-13 (-364 *7) (-27) (-1116))) + (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))) + (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-350 (-1085 *3))) - (-4 *3 (-13 (-364 *7) (-27) (-1115))) - (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) + (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-350 (-1086 *3))) + (-4 *3 (-13 (-364 *7) (-27) (-1116))) + (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013))))) + (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014))))) (((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-1085 *3)) - (-4 *3 (-13 (-364 *6) (-27) (-1115))) - (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) - (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) - (-4 *7 (-1013)))) + (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3)) + (-4 *3 (-13 (-364 *6) (-27) (-1116))) + (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) + (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) + (-4 *7 (-1014)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-350 (-1085 *3))) - (-4 *3 (-13 (-364 *6) (-27) (-1115))) - (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) - (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) - (-4 *7 (-1013))))) + (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1086 *3))) + (-4 *3 (-13 (-364 *6) (-27) (-1116))) + (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) + (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) + (-4 *7 (-1014))))) (((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-550 *3)) (-5 *5 (-1085 *3)) - (-4 *3 (-13 (-364 *6) (-27) (-1115))) - (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) - (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) + (-12 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3)) + (-4 *3 (-13 (-364 *6) (-27) (-1116))) + (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) + (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-550 *3)) (-5 *5 (-350 (-1085 *3))) - (-4 *3 (-13 (-364 *6) (-27) (-1115))) - (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) - (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-497 *2)) (-4 *2 (-483))))) -(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483))))) + (-12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1086 *3))) + (-4 *3 (-13 (-364 *6) (-27) (-1116))) + (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) + (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-498 *2)) (-4 *2 (-484))))) +(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484))))) (((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1090)) (-5 *6 (-583 (-550 *3))) (-5 *5 (-550 *3)) - (-4 *3 (-13 (-27) (-1115) (-364 *7))) - (-4 *7 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) - (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) - (-5 *2 (-519 *3)) (-5 *1 (-496 *5 *3)) - (-4 *3 (-13 (-27) (-1115) (-364 *5)))))) + (|partial| -12 (-5 *4 (-1091)) (-5 *6 (-584 (-551 *3))) (-5 *5 (-551 *3)) + (-4 *3 (-13 (-27) (-1116) (-364 *7))) + (-4 *7 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) + (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) + (-5 *2 (-520 *3)) (-5 *1 (-497 *5 *3)) + (-4 *3 (-13 (-27) (-1116) (-364 *5)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1090)) - (-4 *4 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-496 *4 *2)) - (-4 *2 (-13 (-27) (-1115) (-364 *4)))))) + (|partial| -12 (-5 *3 (-1091)) + (-4 *4 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-497 *4 *2)) + (-4 *2 (-13 (-27) (-1116) (-364 *4)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-583 *3)) - (-4 *3 (-13 (-27) (-1115) (-364 *6))) - (-4 *6 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) + (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 *3)) + (-4 *3 (-13 (-27) (-1116) (-364 *6))) + (-4 *6 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-496 *6 *3))))) + (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-497 *6 *3))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1090)) - (-4 *5 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) - (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3)) - (-4 *3 (-13 (-27) (-1115) (-364 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1772 *1) (|:| -3982 *1) (|:| |associate| *1))) - (-4 *1 (-495))))) -(((*1 *1 *1) (-4 *1 (-495)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85))))) + (|partial| -12 (-5 *4 (-1091)) + (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) + (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *5 *3)) + (-4 *3 (-13 (-27) (-1116) (-364 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1773 *1) (|:| -3983 *1) (|:| |associate| *1))) + (-4 *1 (-496))))) +(((*1 *1 *1) (-4 *1 (-496)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85))))) (((*1 *1 *2) - (-12 (-5 *2 (-350 (-484))) (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115))))) - ((*1 *1 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115)))))) -(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115)))))) + (-12 (-5 *2 (-350 (-485))) (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))))) + ((*1 *1 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116)))))) +(((*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116)))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-492))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492))))) + (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-493))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1155 *5)) - (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-495) (-950 (-484)))) - (-4 *7 (-1155 (-350 *6))) (-5 *1 (-491 *4 *5 *6 *7 *2)) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1156 *5)) + (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-496) (-951 (-485)))) + (-4 *7 (-1156 (-350 *6))) (-5 *1 (-492 *4 *5 *6 *7 *2)) (-4 *2 (-291 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-364 *5))) - (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1155 (-350 *7))) - (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-364 *5))) + (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1156 (-350 *7))) + (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-364 *5))) - (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1155 (-350 *7))) - (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-364 *5))) + (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1156 (-350 *7))) + (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-550 *3)) (-5 *5 (-1 (-1085 *3) (-1085 *3))) - (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-495)) (-5 *2 (-519 *3)) - (-5 *1 (-490 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85))))) -(((*1 *1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-483)))) -(((*1 *1 *1 *1) (-4 *1 (-483)))) + (-12 (-5 *4 (-551 *3)) (-5 *5 (-1 (-1086 *3) (-1086 *3))) + (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-496)) (-5 *2 (-520 *3)) + (-5 *1 (-491 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85))))) +(((*1 *1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-484)))) +(((*1 *1 *1 *1) (-4 *1 (-484)))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-484) #1="failed") *5)) (-4 *5 (-961)) - (-5 *2 (-484)) (-5 *1 (-481 *5 *3)) (-4 *3 (-1155 *5)))) + (|partial| -12 (-5 *4 (-1 (-3 (-485) #1="failed") *5)) (-4 *5 (-962)) + (-5 *2 (-485)) (-5 *1 (-482 *5 *3)) (-4 *3 (-1156 *5)))) ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-484)) - (-5 *1 (-481 *4 *3)) (-4 *3 (-1155 *4)))) + (|partial| -12 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-485)) + (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-484)) - (-5 *1 (-481 *4 *3)) (-4 *3 (-1155 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1155 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-400 *3 *2)) (-4 *2 (-1155 *3)))) + (|partial| -12 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-485)) + (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1156 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-400 *3 *2)) (-4 *2 (-1156 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-694))) - (-5 *1 (-477 *3 *2 *4 *5)) (-4 *2 (-1155 *3))))) + (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-695))) + (-5 *1 (-478 *3 *2 *4 *5)) (-4 *2 (-1156 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-477 *4 *2 *5 *6)) - (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694)))))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) + (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695)))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-477 *4 *2 *5 *6)) - (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694)))))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) + (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1090))) (-4 *6 (-312)) - (-5 *2 (-583 (-249 (-857 *6)))) (-5 *1 (-476 *5 *6 *7)) (-4 *5 (-392)) - (-4 *7 (-13 (-312) (-755)))))) + (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1091))) (-4 *6 (-312)) + (-5 *2 (-584 (-249 (-858 *6)))) (-5 *1 (-477 *5 *6 *7)) (-4 *5 (-392)) + (-4 *7 (-13 (-312) (-756)))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1090))) (-4 *6 (-392)) - (-5 *2 (-583 (-583 *7))) (-5 *1 (-476 *6 *7 *5)) (-4 *7 (-312)) - (-4 *5 (-13 (-312) (-755)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 *5)) (-4 *5 (-392)) (-5 *2 (-583 *6)) - (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-857 *5)) (-4 *5 (-392)) (-5 *2 (-583 *6)) - (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755)))))) -(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-473)))) - ((*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *1 (-474 *2)) (-4 *2 (-1129))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1090)) (-5 *2 (-473)) (-5 *1 (-474 *4)) (-4 *4 (-1129))))) -(((*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-77)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-473))) (-5 *1 (-473))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-473))))) -(((*1 *1 *1) (-5 *1 (-473)))) -(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-473))))) -(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-473))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 (-473))) (-5 *2 (-1090)) (-5 *1 (-473))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-583 (-473))) (-5 *1 (-473))))) + (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-4 *6 (-392)) + (-5 *2 (-584 (-584 *7))) (-5 *1 (-477 *6 *7 *5)) (-4 *7 (-312)) + (-4 *5 (-13 (-312) (-756)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1086 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6)) + (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-858 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6)) + (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756)))))) +(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-474)))) + ((*1 *2 *3) (-12 (-5 *3 (-474)) (-5 *1 (-475 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1091)) (-5 *2 (-474)) (-5 *1 (-475 *4)) (-4 *4 (-1130))))) +(((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-474))) (-5 *1 (-474))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-474))))) +(((*1 *1 *1) (-5 *1 (-474)))) +(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-474))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-474))))) +(((*1 *2 *3) (-12 (-5 *3 (-584 (-474))) (-5 *2 (-1091)) (-5 *1 (-474))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-584 (-474))) (-5 *1 (-474))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-630 *6)) (-5 *5 (-1 (-348 (-1085 *6)) (-1085 *6))) + (-12 (-5 *3 (-631 *6)) (-5 *5 (-1 (-348 (-1086 *6)) (-1086 *6))) (-4 *6 (-312)) (-5 *2 - (-583 - (-2 (|:| |outval| *7) (|:| |outmult| (-484)) - (|:| |outvect| (-583 (-630 *7)))))) - (-5 *1 (-470 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-755)))))) + (-584 + (-2 (|:| |outval| *7) (|:| |outmult| (-485)) + (|:| |outvect| (-584 (-631 *7)))))) + (-5 *1 (-471 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-756)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 *5)) (-4 *5 (-312)) (-5 *2 (-583 *6)) - (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755)))))) + (-12 (-5 *3 (-1086 *5)) (-4 *5 (-312)) (-5 *2 (-584 *6)) + (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756)))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 *4)) (-4 *4 (-312)) (-5 *2 (-1085 *4)) - (-5 *1 (-470 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-755)))))) + (-12 (-5 *3 (-631 *4)) (-4 *4 (-312)) (-5 *2 (-1086 *4)) + (-5 *1 (-471 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-756)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25)))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25)))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-467)))) - ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-467))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-467))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-468)))) + ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-468))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-468))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-830)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1085 *1)) + (-12 (-5 *3 (-831)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1086 *1)) (-4 *1 (-280 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1085 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1155 *3)))) + (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1156 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-1085 *4)) (-5 *1 (-466 *4))))) + (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4))))) (((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) ((*1 *2 *3) - (-12 (-5 *3 (-830)) (-5 *2 (-1179 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299))))) (((*1 *2 *2) - (-12 (-5 *2 (-1179 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-495)) + (-12 (-5 *2 (-1180 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-830)) (-4 *4 (-312)) (-5 *2 (-1179 *1)) (-4 *1 (-280 *4)))) - ((*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1179 *1)) (-4 *1 (-280 *3)))) + (-12 (-5 *3 (-831)) (-4 *4 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *4)))) + ((*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *3)))) ((*1 *2) - (-12 (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *1)) + (-12 (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *1)) (-4 *1 (-353 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6)) - (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-950 *4))))) + (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) + (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6)) + (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-4 *6 (-353 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1179 *1)) (-4 *1 (-361 *3)))) + ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-361 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-830)) (-5 *2 (-1179 (-1179 *4))) (-5 *1 (-466 *4)) + (-12 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 *4))) (-5 *1 (-467 *4)) (-4 *4 (-299))))) (((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-466 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-830)))) + (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-467 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-831)))) ((*1 *2 *3) - (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-830)) (-5 *1 (-466 *4))))) + (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-831)) (-5 *1 (-467 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1179 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4))))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1033)) (-4 *4 (-299)) (-5 *1 (-466 *4))))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1034)) (-4 *4 (-299)) (-5 *1 (-467 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1179 *4)) (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-466 *4))))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-467 *4))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1179 *5)) (-5 *3 (-694)) (-5 *4 (-1033)) (-4 *5 (-299)) - (-5 *1 (-466 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-694)) (-5 *2 (-1085 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-1085 *4)) (-5 *1 (-466 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1179 (-583 (-2 (|:| -3402 *4) (|:| -2400 (-1033)))))) - (-4 *4 (-299)) (-5 *2 (-1185)) (-5 *1 (-466 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-101)))))) -(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-488)))))) -(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1138)))))) -(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-485)))))) -(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1135)))))) -(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-486)))))) -(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1136)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-465)) (-5 *3 (-102)) (-5 *2 (-694))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-463))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-462))))) + (-12 (-5 *2 (-1180 *5)) (-5 *3 (-695)) (-5 *4 (-1034)) (-4 *5 (-299)) + (-5 *1 (-467 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-695)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3403 *4) (|:| -2401 (-1034)))))) + (-4 *4 (-299)) (-5 *2 (-1186)) (-5 *1 (-467 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-101)))))) +(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-489)))))) +(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1139)))))) +(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-486)))))) +(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1136)))))) +(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-487)))))) +(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1137)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-466)) (-5 *3 (-102)) (-5 *2 (-695))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-464))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-463))))) (((*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) - (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-458))))) -(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-458))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-278 *3)))) + (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459))))) +(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-278 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-457 *3 *4)) (-14 *4 (-484))))) -(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-278 *3)) (-4 *3 (-1129)))) + (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-458 *3 *4)) (-14 *4 (-485))))) +(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) ((*1 *2 *1) - (-12 (-5 *2 (-694)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1129)) (-14 *4 (-484))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-278 *3)) (-4 *3 (-1129)))) + (-12 (-5 *2 (-695)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-484)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1129)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1129)))) + (-12 (-5 *2 (-485)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) ((*1 *2 *2) - (-12 (-5 *2 (-85)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1129)) (-14 *4 (-484))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-453 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759))))) + (-12 (-5 *2 (-85)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-454 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760))))) (((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) - (-5 *1 (-450 *4 *5)) (-4 *5 (-759))))) -(((*1 *2 *1) (-12 (-4 *1 (-449 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759))))) -(((*1 *1) (-5 *1 (-446)))) + (-5 *1 (-451 *4 *5)) (-4 *5 (-760))))) +(((*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760))))) +(((*1 *1) (-5 *1 (-447)))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) + (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) + (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) ((*1 *2 *2 *3) (-12 (-5 *2 - (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))) - (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1090))) (-14 *5 (-694)) - (-5 *1 (-444 *4 *5))))) + (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) + (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1091))) (-14 *5 (-695)) + (-5 *1 (-445 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-583 (-1090))) (-14 *5 (-694)) + (-12 (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 - (-583 - (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484)))))) - (-5 *1 (-444 *4 *5)) + (-584 + (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))) + (-5 *1 (-445 *4 *5)) (-5 *3 - (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484)))))))) + (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))))) (((*1 *2 *2) (-12 (-5 *2 - (-443 (-350 (-484)) (-197 *4 (-694)) (-773 *3) (-206 *3 (-350 (-484))))) - (-14 *3 (-583 (-1090))) (-14 *4 (-694)) (-5 *1 (-444 *3 *4))))) + (-444 (-350 (-485)) (-197 *4 (-695)) (-774 *3) (-206 *3 (-350 (-485))))) + (-14 *3 (-584 (-1091))) (-14 *4 (-695)) (-5 *1 (-445 *3 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))) - (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5))))) + (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) + (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))) - (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5))))) + (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) + (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) - (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6))))) + (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) + (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) - (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) + (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) - (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6))))) + (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) + (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) - (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) + (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) - (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6))))) + (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) + (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2)) - (-4 *2 (-861 *3 *4 *5)))) + (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2)) + (-4 *2 (-862 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) - (-4 *5 (-861 *2 *3 *4))))) + (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) + (-4 *5 (-862 *2 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) + (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *2 - (-2 (|:| |mval| (-630 *4)) (|:| |invmval| (-630 *4)) - (|:| |genIdeal| (-443 *4 *5 *6 *7)))) - (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6))))) + (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4)) + (|:| |genIdeal| (-444 *4 *5 *6 *7)))) + (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-630 *3)) (|:| |invmval| (-630 *3)) - (|:| |genIdeal| (-443 *3 *4 *5 *6)))) - (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) - (-4 *6 (-861 *3 *4 *5))))) + (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3)) + (|:| |genIdeal| (-444 *3 *4 *5 *6)))) + (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) + (-4 *6 (-862 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) - (-4 *5 (-861 *2 *3 *4))))) + (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) + (-4 *5 (-862 *2 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) + (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-356 *4 (-350 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-1179 *6)) (-4 *6 (-13 (-353 *4 *5) (-950 *4))) - (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-4 *3 (-258)) + (-12 (-5 *2 (-1180 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))) + (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *3 (-258)) (-5 *1 (-356 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6))))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6))))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) - (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) + (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) - (-5 *1 (-443 *4 *5 *6 *2)) (-4 *2 (-861 *4 *5 *6)))) + (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) + (-5 *1 (-444 *4 *5 *6 *2)) (-4 *2 (-862 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2)) - (-4 *2 (-861 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2)) + (-4 *2 (-862 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *6 (-553 (-1090))) - (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) - (-5 *2 (-1080 (-583 (-857 *4)) (-583 (-249 (-857 *4))))) - (-5 *1 (-443 *4 *5 *6 *7))))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *6 (-554 (-1091))) + (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) + (-5 *2 (-1081 (-584 (-858 *4)) (-584 (-249 (-858 *4))))) + (-5 *1 (-444 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-830)) (-5 *2 (-1185)) (-5 *1 (-167 *4)) + (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-167 *4)) (-4 *4 - (-13 (-756) - (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 (*2 $)) - (-15 -1963 (*2 $))))))) + (-13 (-757) + (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 (*2 $)) + (-15 -1964 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1185)) (-5 *1 (-167 *3)) + (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3)) (-4 *3 - (-13 (-756) - (-10 -8 (-15 -3800 ((-1073) $ (-1090))) (-15 -3617 (*2 $)) - (-15 -1963 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-441))))) + (-13 (-757) + (-10 -8 (-15 -3801 ((-1074) $ (-1091))) (-15 -3618 (*2 $)) + (-15 -1964 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-442))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1155 *5)) - (-5 *2 (-1085 (-1085 *7))) (-5 *1 (-440 *5 *6 *4 *7)) (-4 *4 (-1155 *6))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *6 (-1156 *5)) + (-5 *2 (-1086 (-1086 *7))) (-5 *1 (-441 *5 *6 *4 *7)) (-4 *4 (-1156 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-630 (-1085 *8))) - (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1155 *5)) (-5 *2 (-630 *6)) - (-5 *1 (-440 *5 *6 *7 *8)) (-4 *7 (-1155 *6))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-631 (-1086 *8))) + (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *6)) + (-5 *1 (-441 *5 *6 *7 *8)) (-4 *7 (-1156 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1085 *7)) - (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1155 *5)) (-5 *1 (-440 *5 *2 *6 *7)) - (-4 *6 (-1155 *2))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1086 *7)) + (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7)) + (-4 *6 (-1156 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1085 *7)) (-4 *5 (-961)) (-4 *7 (-961)) - (-4 *2 (-1155 *5)) (-5 *1 (-440 *5 *2 *6 *7)) (-4 *6 (-1155 *2)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1086 *7)) (-4 *5 (-962)) (-4 *7 (-962)) + (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7)) (-4 *6 (-1156 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1155 *5)) - (-5 *2 (-1085 *7)) (-5 *1 (-440 *5 *4 *6 *7)) (-4 *6 (-1155 *4))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *4 (-1156 *5)) + (-5 *2 (-1086 *7)) (-5 *1 (-441 *5 *4 *6 *7)) (-4 *6 (-1156 *4))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) - (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *4 (-1155 *3)) + (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) + (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) - (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) + (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) - (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) + (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) - (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) + (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) + (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-694)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) - (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) + (-12 (-5 *2 (-695)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) + (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4))))) (((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-630 *2)) (-5 *4 (-484)) - (-4 *2 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *5 (-1155 *2)) + (-12 (-5 *3 (-631 *2)) (-5 *4 (-485)) + (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *5 (-1156 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-630 *2)) (-5 *4 (-694)) - (-4 *2 (-13 (-258) (-10 -8 (-15 -3971 ((-348 $) $))))) (-4 *5 (-1155 *2)) + (-12 (-5 *3 (-631 *2)) (-5 *4 (-695)) + (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *5 (-1156 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-694)) (-4 *5 (-299)) (-4 *6 (-1155 *5)) + (-12 (-5 *4 (-695)) (-4 *5 (-299)) (-4 *6 (-1156 *5)) (-5 *2 - (-583 - (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-630 *6))))) + (-584 + (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-631 *6))))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 - (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6)))) - (-4 *7 (-1155 *6))))) + (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6)))) + (-4 *7 (-1156 *6))))) (((*1 *2 *1) (-12 (-5 *2 - (-583 + (-584 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-484))))) - (-5 *1 (-348 *3)) (-4 *3 (-495)))) + (|:| |xpnt| (-485))))) + (-5 *1 (-348 *3)) (-4 *3 (-496)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-694)) (-4 *3 (-299)) (-4 *5 (-1155 *3)) - (-5 *2 (-583 (-1085 *3))) (-5 *1 (-438 *3 *5 *6)) (-4 *6 (-1155 *5))))) + (-12 (-5 *4 (-695)) (-4 *3 (-299)) (-4 *5 (-1156 *3)) + (-5 *2 (-584 (-1086 *3))) (-5 *1 (-438 *3 *5 *6)) (-4 *6 (-1156 *5))))) (((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-435))))) -(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-431))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-431))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3995)) (-4 *1 (-429 *4)) - (-4 *4 (-1129)) (-5 *2 (-85))))) + (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3996)) (-4 *1 (-429 *4)) + (-4 *4 (-1130)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3995)) (-4 *1 (-429 *4)) - (-4 *4 (-1129)) (-5 *2 (-85))))) + (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3996)) (-4 *1 (-429 *4)) + (-4 *4 (-1130)) (-5 *2 (-85))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-694)))) + (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-695)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-694)))) + (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-695)))) ((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -3995)) (-4 *1 (-429 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) - (-5 *2 (-694)))) + (-12 (|has| *1 (-6 -3996)) (-4 *1 (-429 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) + (-5 *2 (-695)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3995)) (-4 *1 (-429 *4)) - (-4 *4 (-1129)) (-5 *2 (-694))))) -(((*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-427))))) -(((*1 *2 *3) - (-12 (-5 *3 (-583 (-484))) (-5 *2 (-484)) (-5 *1 (-426 *4)) - (-4 *4 (-1155 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1155 (-484))) (-5 *1 (-426 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1155 (-484))) (-5 *1 (-426 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1155 (-484)))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-424 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-785))) (-5 *1 (-423))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-446))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-785))) (-5 *1 (-423))))) + (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3996)) (-4 *1 (-429 *4)) + (-4 *4 (-1130)) (-5 *2 (-695))))) +(((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427))))) +(((*1 *2 *3) + (-12 (-5 *3 (-584 (-485))) (-5 *2 (-485)) (-5 *1 (-426 *4)) + (-4 *4 (-1156 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485)))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-424 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-786))) (-5 *1 (-423))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-447))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-786))) (-5 *1 (-423))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-484))) (-5 *1 (-206 *3 *4)) (-14 *3 (-583 (-1090))) - (-4 *4 (-961)))) + (-12 (-5 *2 (-584 (-485))) (-5 *1 (-206 *3 *4)) (-14 *3 (-584 (-1091))) + (-4 *4 (-962)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-484))) (-14 *3 (-583 (-1090))) (-5 *1 (-394 *3 *4 *5)) - (-4 *4 (-961)) (-4 *5 (-196 (-3957 *3) (-694))))) + (-12 (-5 *2 (-584 (-485))) (-14 *3 (-584 (-1091))) (-5 *1 (-394 *3 *4 *5)) + (-4 *4 (-962)) (-4 *5 (-196 (-3958 *3) (-695))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-484))) (-5 *1 (-421 *3 *4)) (-14 *3 (-583 (-1090))) - (-4 *4 (-961))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-420))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-420))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1090))) (-4 *6 (-392)) - (-5 *2 (-2 (|:| |dpolys| (-583 (-206 *5 *6))) (|:| |coords| (-583 (-484))))) - (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-392))))) + (-12 (-5 *2 (-584 (-485))) (-5 *1 (-421 *3 *4)) (-14 *3 (-584 (-1091))) + (-4 *4 (-962))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-420))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-420))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1091))) (-4 *6 (-392)) + (-5 *2 (-2 (|:| |dpolys| (-584 (-206 *5 *6))) (|:| |coords| (-584 (-485))))) + (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-583 (-421 *4 *5))) (-5 *3 (-583 (-773 *4))) - (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *1 (-411 *4 *5 *6)) + (|partial| -12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-584 (-774 *4))) + (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-411 *4 *5 *6)) (-4 *6 (-392))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1090))) (-4 *6 (-392)) - (-5 *2 (-583 (-583 (-206 *5 *6)))) (-5 *1 (-411 *5 *6 *7)) - (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-392))))) + (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1091))) (-4 *6 (-392)) + (-5 *2 (-584 (-584 (-206 *5 *6)))) (-5 *1 (-411 *5 *6 *7)) + (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392))))) (((*1 *1) (-5 *1 (-408)))) (((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) - (-5 *4 (-583 (-830))) (-5 *5 (-583 (-221))) (-5 *1 (-408)))) + (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) + (-5 *4 (-584 (-831))) (-5 *5 (-584 (-221))) (-5 *1 (-408)))) ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) - (-5 *4 (-583 (-830))) (-5 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-408)))) + (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) + (-5 *4 (-584 (-831))) (-5 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) ((*1 *1 *1) (-5 *1 (-408)))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-408))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-221)))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-408)))) - ((*1 *2 *1) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-408))))) + (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408)))) + ((*1 *2 *1) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408))))) (((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1185)) + (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1186)) (-5 *1 (-408)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1185)) (-5 *1 (-408)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-408)))) ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-783)) (-5 *5 (-830)) - (-5 *2 (-1185)) (-5 *1 (-408))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1185)) (-5 *1 (-408))))) + (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-784)) (-5 *5 (-831)) + (-5 *2 (-1186)) (-5 *1 (-408))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-408))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) + (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *1 (-408))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-179))) + (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-179))) (-5 *1 (-408))))) (((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) ((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407))))) (((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) @@ -11196,440 +11196,440 @@ (((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) ((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407))))) (((*1 *2 *3) - (-12 (-5 *3 (-830)) (-5 *2 (-1179 (-1179 (-484)))) (-5 *1 (-406))))) + (-12 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 (-485)))) (-5 *1 (-406))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1179 (-1179 (-484)))) (-5 *3 (-830)) (-5 *1 (-406))))) + (-12 (-5 *2 (-1180 (-1180 (-485)))) (-5 *3 (-831)) (-5 *1 (-406))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-756)) (-4 *5 (-717)) (-4 *6 (-495)) - (-4 *7 (-861 *6 *5 *3)) (-5 *1 (-402 *5 *3 *6 *7 *2)) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-757)) (-4 *5 (-718)) (-4 *6 (-496)) + (-4 *7 (-862 *6 *5 *3)) (-5 *1 (-402 *5 *3 *6 *7 *2)) (-4 *2 - (-13 (-950 (-350 (-484))) (-312) - (-10 -8 (-15 -3946 ($ *7)) (-15 -2998 (*7 $)) (-15 -2997 (*7 $)))))))) + (-13 (-951 (-350 (-485))) (-312) + (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))))) (((*1 *2 *1) - (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) + (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-14 *6 - (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *2)) - (-2 (|:| -2400 *5) (|:| -2401 *2)))) - (-4 *2 (-196 (-3957 *3) (-694))) (-5 *1 (-401 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-756)) (-4 *7 (-861 *4 *2 (-773 *3)))))) + (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *2)) + (-2 (|:| -2401 *5) (|:| -2402 *2)))) + (-4 *2 (-196 (-3958 *3) (-695))) (-5 *1 (-401 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-757)) (-4 *7 (-862 *4 *2 (-774 *3)))))) (((*1 *2 *1) - (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *5 (-196 (-3957 *3) (-694))) + (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3958 *3) (-695))) (-14 *6 - (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5)) - (-2 (|:| -2400 *2) (|:| -2401 *5)))) - (-4 *2 (-756)) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-861 *4 *5 (-773 *3)))))) + (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5)) + (-2 (|:| -2401 *2) (|:| -2402 *5)))) + (-4 *2 (-757)) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-862 *4 *5 (-774 *3)))))) (((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-583 (-1090))) (-4 *2 (-146)) (-4 *4 (-196 (-3957 *5) (-694))) + (-12 (-14 *5 (-584 (-1091))) (-4 *2 (-146)) (-4 *4 (-196 (-3958 *5) (-695))) (-14 *6 - (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *4)) - (-2 (|:| -2400 *3) (|:| -2401 *4)))) - (-5 *1 (-401 *5 *2 *3 *4 *6 *7)) (-4 *3 (-756)) - (-4 *7 (-861 *2 *4 (-773 *5)))))) + (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *4)) + (-2 (|:| -2401 *3) (|:| -2402 *4)))) + (-5 *1 (-401 *5 *2 *3 *4 *6 *7)) (-4 *3 (-757)) + (-4 *7 (-862 *2 *4 (-774 *5)))))) (((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-583 (-1090))) (-4 *2 (-146)) (-4 *3 (-196 (-3957 *4) (-694))) + (-12 (-14 *4 (-584 (-1091))) (-4 *2 (-146)) (-4 *3 (-196 (-3958 *4) (-695))) (-14 *6 - (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *3)) - (-2 (|:| -2400 *5) (|:| -2401 *3)))) - (-5 *1 (-401 *4 *2 *5 *3 *6 *7)) (-4 *5 (-756)) - (-4 *7 (-861 *2 *3 (-773 *4)))))) + (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *3)) + (-2 (|:| -2401 *5) (|:| -2402 *3)))) + (-5 *1 (-401 *4 *2 *5 *3 *6 *7)) (-4 *5 (-757)) + (-4 *7 (-862 *2 *3 (-774 *4)))))) (((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-583 *3)) (-5 *5 (-830)) (-4 *3 (-1155 *4)) (-4 *4 (-258)) + (-12 (-5 *2 (-584 *3)) (-5 *5 (-831)) (-4 *3 (-1156 *4)) (-4 *4 (-258)) (-5 *1 (-400 *4 *3))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-830)) (-4 *5 (-258)) (-4 *3 (-1155 *5)) - (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-400 *5 *3)) - (-5 *4 (-583 *3))))) + (-12 (-5 *6 (-831)) (-4 *5 (-258)) (-4 *3 (-1156 *5)) + (-5 *2 (-2 (|:| |plist| (-584 *3)) (|:| |modulo| *5))) (-5 *1 (-400 *5 *3)) + (-5 *4 (-584 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *5)) (-4 *5 (-1155 *3)) (-4 *3 (-258)) (-5 *2 (-85)) + (-12 (-5 *4 (-584 *5)) (-4 *5 (-1156 *3)) (-4 *3 (-258)) (-5 *2 (-85)) (-5 *1 (-395 *3 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1179 (-583 *3))) (-4 *4 (-258)) (-5 *2 (-583 *3)) - (-5 *1 (-395 *4 *3)) (-4 *3 (-1155 *4))))) + (|partial| -12 (-5 *5 (-1180 (-584 *3))) (-4 *4 (-258)) (-5 *2 (-584 *3)) + (-5 *1 (-395 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-694)) (-4 *4 (-258)) (-4 *6 (-1155 *4)) - (-5 *2 (-1179 (-583 *6))) (-5 *1 (-395 *4 *6)) (-5 *5 (-583 *6))))) + (|partial| -12 (-5 *3 (-695)) (-4 *4 (-258)) (-4 *6 (-1156 *4)) + (-5 *2 (-1180 (-584 *6))) (-5 *1 (-395 *4 *6)) (-5 *5 (-584 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-258)) (-5 *2 (-694)) + (-12 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-258)) (-5 *2 (-695)) (-5 *1 (-395 *5 *3))))) (((*1 *2) - (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3)))) + (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) - (|:| -2012 (-583 (-393 *3 *4 *5 *6))))) - (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) - (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3)))))) + (|:| -2013 (-584 (-393 *3 *4 *5 *6))))) + (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) + (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3)))))) (((*1 *2) - (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3)))) + (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) - (|:| -2012 (-583 (-393 *3 *4 *5 *6))))) - (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) - (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3)))))) + (|:| -2013 (-584 (-393 *3 *4 *5 *6))))) + (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) + (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1179 (-1090))) (-5 *3 (-1179 (-393 *4 *5 *6 *7))) - (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) - (-14 *6 (-583 (-1090))) (-14 *7 (-1179 (-630 *4))))) + (-12 (-5 *2 (-1180 (-1091))) (-5 *3 (-1180 (-393 *4 *5 *6 *7))) + (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) + (-14 *6 (-584 (-1091))) (-14 *7 (-1180 (-631 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1090)) (-5 *3 (-1179 (-393 *4 *5 *6 *7))) - (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 *2)) - (-14 *7 (-1179 (-630 *4))))) + (-12 (-5 *2 (-1091)) (-5 *3 (-1180 (-393 *4 *5 *6 *7))) + (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 *2)) + (-14 *7 (-1180 (-631 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-1179 (-393 *3 *4 *5 *6))) (-5 *1 (-393 *3 *4 *5 *6)) - (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) - (-14 *6 (-1179 (-630 *3))))) + (-12 (-5 *2 (-1180 (-393 *3 *4 *5 *6))) (-5 *1 (-393 *3 *4 *5 *6)) + (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) + (-14 *6 (-1180 (-631 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1179 (-1090))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) - (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) + (-12 (-5 *2 (-1180 (-1091))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) + (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1090)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) - (-14 *4 (-830)) (-14 *5 (-583 *2)) (-14 *6 (-1179 (-630 *3))))) + (-12 (-5 *2 (-1091)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) + (-14 *4 (-831)) (-14 *5 (-584 *2)) (-14 *6 (-1180 (-631 *3))))) ((*1 *1) - (-12 (-5 *1 (-393 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-830)) - (-14 *4 (-583 (-1090))) (-14 *5 (-1179 (-630 *2)))))) + (-12 (-5 *1 (-393 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-831)) + (-14 *4 (-584 (-1091))) (-14 *5 (-1180 (-631 *2)))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1085 (-857 *4))) (-5 *1 (-360 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) - (-5 *2 (-1085 (-857 *3))))) + (-5 *2 (-1086 (-858 *3))))) ((*1 *2) - (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) - (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) - (-14 *6 (-1179 (-630 *3)))))) + (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) + (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) + (-14 *6 (-1180 (-631 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) - (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) - (-14 *6 (-1179 (-630 *3)))))) + (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) + (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) + (-14 *6 (-1180 (-631 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) - (-14 *6 (-1179 (-630 *3)))))) + (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) + (-14 *6 (-1180 (-631 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) - (-14 *6 (-1179 (-630 *3)))))) + (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) + (-14 *6 (-1180 (-631 *3)))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-1085 (-857 *4))) (-5 *1 (-360 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) - (-5 *2 (-1085 (-857 *3))))) + (-5 *2 (-1086 (-858 *3))))) ((*1 *2) - (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) - (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) - (-14 *6 (-1179 (-630 *3)))))) + (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) + (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) + (-14 *6 (-1180 (-631 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) - (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) - (-14 *6 (-1179 (-630 *3)))))) + (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) + (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) + (-14 *6 (-1180 (-631 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) - (-14 *6 (-1179 (-630 *3)))))) + (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) + (-14 *6 (-1180 (-631 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) - (-14 *6 (-1179 (-630 *3)))))) + (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) + (-14 *6 (-1180 (-631 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) - (-14 *6 (-1179 (-630 *3)))))) + (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) + (-14 *6 (-1180 (-631 *3)))))) (((*1 *2) - (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) - (-14 *6 (-1179 (-630 *3)))))) + (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) + (-14 *6 (-1180 (-631 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) - (-14 *6 (-1179 (-630 *3)))))) + (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) + (-14 *6 (-1180 (-631 *3)))))) (((*1 *2) - (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) - (-14 *6 (-1179 (-630 *3)))))) + (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) + (-14 *6 (-1180 (-631 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) - (-5 *2 (-583 (-857 *4))))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) + (-5 *2 (-584 (-858 *4))))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))) (-5 *1 (-360 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-583 (-857 *3))))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-584 (-858 *3))))) ((*1 *2) - (-12 (-5 *2 (-583 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) - (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) - (-14 *6 (-1179 (-630 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1179 (-393 *4 *5 *6 *7))) (-5 *2 (-583 (-857 *4))) - (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *4 (-146)) (-14 *5 (-830)) - (-14 *6 (-583 (-1090))) (-14 *7 (-1179 (-630 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-392)))) + (-12 (-5 *2 (-584 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) + (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) + (-14 *6 (-1180 (-631 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *2 (-584 (-858 *4))) + (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *4 (-146)) (-14 *5 (-831)) + (-14 *6 (-584 (-1091))) (-14 *7 (-1180 (-631 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392)))) ((*1 *1 *1 *1) (-4 *1 (-392)))) (((*1 *2 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694)) - (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6))))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)) + (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-694)) (|:| -2004 *4))) (-5 *5 (-694)) - (-4 *4 (-861 *6 *7 *8)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-695)) (|:| -2005 *4))) (-5 *5 (-695)) + (-4 *4 (-862 *6 *7 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-390 *6 *7 *8 *4))))) (((*1 *2 *3 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-756)) + (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) - (-5 *2 (-1185)) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6))))) + (-12 (-5 *3 (-485)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) + (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *2 (-1185)) (-5 *1 (-390 *4 *5 *6 *7))))) + (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-484)) + (-12 (-5 *2 (-485)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-756)) + (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *4))))) (((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-484)) + (-12 (-5 *2 (-485)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-756)) + (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1185)) - (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6))))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186)) + (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-484)) - (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6))))) + (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-485)) + (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *1 (-390 *3 *4 *5 *6))))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-583 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) + (-584 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-756)) + (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *2) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *2) (|:| |polj| *2))) - (-4 *5 (-717)) (-4 *2 (-861 *4 *5 *6)) (-5 *1 (-390 *4 *5 *6 *2)) - (-4 *4 (-392)) (-4 *6 (-756))))) + (-4 *5 (-718)) (-4 *2 (-862 *4 *5 *6)) (-5 *1 (-390 *4 *5 *6 *2)) + (-4 *4 (-392)) (-4 *6 (-757))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 *3)))) (-5 *4 (-694)) - (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) + (-12 (-5 *2 (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 *3)))) (-5 *4 (-695)) + (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-390 *3 *4 *5 *2)) - (-4 *2 (-861 *3 *4 *5))))) + (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *2)) + (-4 *2 (-862 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *3)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) - (-4 *7 (-756)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-12 (-5 *4 (-584 *3)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) + (-4 *7 (-757)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-390 *5 *6 *7 *3))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-583 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-694)) (|:| |poli| *6) + (-584 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *3 (-717)) (-4 *6 (-861 *4 *3 *5)) (-4 *4 (-392)) (-4 *5 (-756)) + (-4 *3 (-718)) (-4 *6 (-862 *4 *3 *5)) (-4 *4 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *4 *3 *5 *6))))) (((*1 *2 *2) (-12 (-5 *2 - (-583 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) + (-584 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-756)) + (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-583 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *3) + (-584 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *3) (|:| |polj| *3)))) - (-4 *5 (-717)) (-4 *3 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-756)) + (-4 *5 (-718)) (-4 *3 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-392)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) - (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5))))) + (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) + (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-392)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) - (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5))))) + (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) + (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-756)) + (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-583 *7)) (-5 *3 (-484)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) - (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-390 *4 *5 *6 *7))))) + (-12 (-5 *2 (-584 *7)) (-5 *3 (-485)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) + (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *1 (-390 *4 *5 *6 *2))))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *1 (-390 *4 *5 *6 *2))))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-389 *4 *5 *6 *7)) - (-5 *3 (-583 *7)))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) + (-5 *3 (-584 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) - (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-389 *5 *6 *7 *8)) - (-5 *3 (-583 *8)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) + (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) + (-5 *3 (-584 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-389 *4 *5 *6 *7)) - (-5 *3 (-583 *7)))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) + (-5 *3 (-584 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) - (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-389 *5 *6 *7 *8)) - (-5 *3 (-583 *8))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) + (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) + (-5 *3 (-584 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) - (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-389 *4 *5 *6 *7)) - (-5 *3 (-583 *7)))) + (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) + (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) + (-5 *3 (-584 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) - (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-389 *5 *6 *7 *8)) - (-5 *3 (-583 *8))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) + (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) + (-5 *3 (-584 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-717)) - (-4 *5 (-756)) (-5 *1 (-388 *3 *4 *5 *6)))) + (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-718)) + (-4 *5 (-757)) (-5 *1 (-388 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258)) - (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-388 *4 *5 *6 *7)))) + (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258)) + (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258)) - (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-388 *4 *5 *6 *7))))) + (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258)) + (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717)) - (-4 *6 (-756)) (-5 *1 (-388 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-386)) (-5 *3 (-484))))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718)) + (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-386)) (-5 *3 (-485))))) (((*1 *2 *2) - (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961)))) - ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961))))) + (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) + ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962))))) (((*1 *2 *3) - (-12 (-5 *2 (-484)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961))))) + (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962))))) (((*1 *2 *3) - (-12 (-5 *2 (-484)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961))))) -(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-385 *3)) (-4 *3 (-961))))) -(((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-961))))) -(((*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-961)))) - ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-961))))) + (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962))))) +(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-385 *3)) (-4 *3 (-962))))) +(((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962))))) +(((*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) + ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-694)) (-5 *4 (-484)) (-5 *1 (-385 *2)) (-4 *2 (-961))))) + (-12 (-5 *3 (-695)) (-5 *4 (-485)) (-5 *1 (-385 *2)) (-4 *2 (-962))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-830)) (-5 *4 (-348 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-961)) - (-5 *2 (-583 *6)) (-5 *1 (-384 *5 *6))))) + (-12 (-5 *3 (-831)) (-5 *4 (-348 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-962)) + (-5 *2 (-584 *6)) (-5 *1 (-384 *5 *6))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-830)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484))))) + (|partial| -12 (-5 *3 (-831)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-830)) (-5 *4 (-694)) (-5 *1 (-382 *2)) - (-4 *2 (-1155 (-484))))) + (|partial| -12 (-5 *3 (-831)) (-5 *4 (-695)) (-5 *1 (-382 *2)) + (-4 *2 (-1156 (-485))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *1 (-382 *2)) - (-4 *2 (-1155 (-484))))) + (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *1 (-382 *2)) + (-4 *2 (-1156 (-485))))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) - (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484))))) + (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) + (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) - (-5 *6 (-85)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484))))) + (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) + (-5 *6 (-85)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-830)) (-5 *4 (-348 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-384 *5 *2)) - (-4 *5 (-961))))) + (-12 (-5 *3 (-831)) (-5 *4 (-348 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-384 *5 *2)) + (-4 *5 (-962))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-2 (|:| -3732 *4) (|:| -3948 (-484))))) - (-4 *4 (-1155 (-484))) (-5 *2 (-675 (-694))) (-5 *1 (-382 *4)))) + (-12 (-5 *3 (-584 (-2 (|:| -3733 *4) (|:| -3949 (-485))))) + (-4 *4 (-1156 (-485))) (-5 *2 (-676 (-695))) (-5 *1 (-382 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-348 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-961)) - (-5 *2 (-675 (-694))) (-5 *1 (-384 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3))))) + (-12 (-5 *3 (-348 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-962)) + (-5 *2 (-676 (-695))) (-5 *1 (-384 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239))) - (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) + (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239))) - (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) + (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *5 *3 *6)) - (-4 *3 (-1155 *5)) (-4 *6 (-13 (-347) (-950 *5) (-312) (-1115) (-239))))) + (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *5 *3 *6)) + (-4 *3 (-1156 *5)) (-4 *6 (-13 (-347) (-951 *5) (-312) (-1116) (-239))))) ((*1 *2 *3) - (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4)) - (-4 *5 (-13 (-347) (-950 *4) (-312) (-1115) (-239)))))) + (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) + (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239)))))) (((*1 *2 *3) - (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4)) - (-4 *5 (-13 (-347) (-950 *4) (-312) (-1115) (-239)))))) + (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) + (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239)))))) (((*1 *2 *3) - (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239))) - (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) + (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) + (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-830)) (-4 *5 (-961)) - (-4 *2 (-13 (-347) (-950 *5) (-312) (-1115) (-239))) (-5 *1 (-383 *5 *3 *2)) - (-4 *3 (-1155 *5))))) + (-12 (-5 *4 (-831)) (-4 *5 (-962)) + (-4 *2 (-13 (-347) (-951 *5) (-312) (-1116) (-239))) (-5 *1 (-383 *5 *3 *2)) + (-4 *3 (-1156 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4)) - (-4 *5 (-13 (-347) (-950 *4) (-312) (-1115) (-239)))))) + (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) + (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239)))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-85)) (-5 *5 (-1009 (-694))) (-5 *6 (-694)) - (-5 *2 - (-2 (|:| |contp| (-484)) - (|:| -1779 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) - (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484)))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484)))))) -(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484)))))) -(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2578 (-484)) (|:| -1779 (-583 *3)))) (-5 *1 (-382 *3)) - (-4 *3 (-1155 (-484)))))) -(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-348 *3)) (-4 *3 (-495)))) - ((*1 *2 *3) - (-12 (-5 *3 (-583 (-2 (|:| -3732 *4) (|:| -3948 (-484))))) - (-4 *4 (-1155 (-484))) (-5 *2 (-694)) (-5 *1 (-382 *4))))) -(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) - ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484)))))) -(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) - ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484)))))) + (-12 (-5 *4 (-85)) (-5 *5 (-1010 (-695))) (-5 *6 (-695)) + (-5 *2 + (-2 (|:| |contp| (-485)) + (|:| -1780 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) + (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2579 (-485)) (|:| -1780 (-584 *3)))) (-5 *1 (-382 *3)) + (-4 *3 (-1156 (-485)))))) +(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) + ((*1 *2 *3) + (-12 (-5 *3 (-584 (-2 (|:| -3733 *4) (|:| -3949 (-485))))) + (-4 *4 (-1156 (-485))) (-5 *2 (-695)) (-5 *1 (-382 *4))))) +(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) + ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) + ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))) (((*1 *1 *2 *3) (-12 (-5 *3 - (-583 + (-584 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-484))))) - (-4 *2 (-495)) (-5 *1 (-348 *2)))) + (|:| |xpnt| (-485))))) + (-4 *2 (-496)) (-5 *1 (-348 *2)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |contp| (-484)) - (|:| -1779 (-583 (-2 (|:| |irr| *4) (|:| -2395 (-484))))))) - (-4 *4 (-1155 (-484))) (-5 *2 (-348 *4)) (-5 *1 (-382 *4))))) + (-2 (|:| |contp| (-485)) + (|:| -1780 (-584 (-2 (|:| |irr| *4) (|:| -2396 (-485))))))) + (-4 *4 (-1156 (-485))) (-5 *2 (-348 *4)) (-5 *1 (-382 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3910 "void"))) (-5 *1 (-379))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-857 (-484)))) (-5 *1 (-379))))) + (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 "void"))) (-5 *1 (-379))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-858 (-485)))) (-5 *1 (-379))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379))))) (((*1 *1) (-5 *1 (-379)))) (((*1 *1) (-5 *1 (-379)))) @@ -11639,319 +11639,319 @@ (((*1 *1) (-5 *1 (-379)))) (((*1 *1) (-5 *1 (-379)))) (((*1 *2 *3) - (|partial| -12 (-4 *5 (-950 (-48))) (-4 *4 (-13 (-495) (-950 (-484)))) - (-4 *5 (-364 *4)) (-5 *2 (-348 (-1085 (-48)))) (-5 *1 (-378 *4 *5 *3)) - (-4 *3 (-1155 *5))))) + (|partial| -12 (-4 *5 (-951 (-48))) (-4 *4 (-13 (-496) (-951 (-485)))) + (-4 *5 (-364 *4)) (-5 *2 (-348 (-1086 (-48)))) (-5 *1 (-378 *4 *5 *3)) + (-4 *3 (-1156 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-364 *4)) + (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 - (-3 (|:| |overq| (-1085 (-350 (-484)))) (|:| |overan| (-1085 (-48))) - (|:| -2639 (-85)))) - (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5))))) + (-3 (|:| |overq| (-1086 (-350 (-485)))) (|:| |overan| (-1086 (-48))) + (|:| -2640 (-85)))) + (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-364 *4)) - (-5 *2 (-348 (-1085 (-350 (-484))))) (-5 *1 (-378 *4 *5 *3)) - (-4 *3 (-1155 *5))))) + (|partial| -12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) + (-5 *2 (-348 (-1086 (-350 (-485))))) (-5 *1 (-378 *4 *5 *3)) + (-4 *3 (-1156 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3)) - (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5))))) + (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3)) + (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))) (((*1 *2) - (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *2 (-1185)) (-5 *1 (-376 *3 *4)) + (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *2 (-1186)) (-5 *1 (-376 *3 *4)) (-4 *4 (-364 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-350 (-484))) + (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-376 *4 *3)) (-4 *3 (-364 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-550 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-495) (-950 (-484)))) - (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-376 *5 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))) + (-12 (-5 *4 (-551 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-496) (-951 (-485)))) + (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-376 *5 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-484))))) - (-4 *2 (-13 (-756) (-21)))))) + (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))) + (-4 *2 (-13 (-757) (-21)))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-484))))) - (-4 *2 (-13 (-756) (-21)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) - (-5 *2 (-519 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1115) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1013)) (-5 *2 (-694))))) -(((*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1013)) (-4 *2 (-320))))) -(((*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1013))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1115) (-364 *3))) - (-14 *4 (-1090)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-4 *2 (-13 (-27) (-1115) (-364 *3) (-10 -8 (-15 -3946 ($ *4))))) - (-4 *4 (-755)) + (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))) + (-4 *2 (-13 (-757) (-21)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) + (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1014)) (-5 *2 (-695))))) +(((*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-320))))) +(((*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1014))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1116) (-364 *3))) + (-14 *4 (-1091)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-4 *2 (-13 (-27) (-1116) (-364 *3) (-10 -8 (-15 -3947 ($ *4))))) + (-4 *4 (-756)) (-4 *5 - (-13 (-1158 *2 *4) (-312) (-1115) - (-10 -8 (-15 -3758 ($ $)) (-15 -3812 ($ $))))) - (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-896 *5)) (-14 *7 (-1090))))) + (-13 (-1159 *2 *4) (-312) (-1116) + (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $))))) + (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-897 *5)) (-14 *7 (-1091))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-4 *3 (-13 (-27) (-1115) (-364 *6) (-10 -8 (-15 -3946 ($ *7))))) - (-4 *7 (-755)) + (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-4 *3 (-13 (-27) (-1116) (-364 *6) (-10 -8 (-15 -3947 ($ *7))))) + (-4 *7 (-756)) (-4 *8 - (-13 (-1158 *3 *7) (-312) (-1115) - (-10 -8 (-15 -3758 ($ $)) (-15 -3812 ($ $))))) + (-13 (-1159 *3 *7) (-312) (-1116) + (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) - (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-896 *8)) - (-14 *10 (-1090))))) + (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) + (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8)) + (-14 *10 (-1091))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-4 *3 (-13 (-27) (-1115) (-364 *6) (-10 -8 (-15 -3946 ($ *7))))) - (-4 *7 (-755)) + (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-4 *3 (-13 (-27) (-1116) (-364 *6) (-10 -8 (-15 -3947 ($ *7))))) + (-4 *7 (-756)) (-4 *8 - (-13 (-1158 *3 *7) (-312) (-1115) - (-10 -8 (-15 -3758 ($ $)) (-15 -3812 ($ $))))) + (-13 (-1159 *3 *7) (-312) (-1116) + (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) - (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-896 *8)) - (-14 *10 (-1090))))) + (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) + (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8)) + (-14 *10 (-1091))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) - (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) - (-14 *6 (-1090)) (-14 *7 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) - ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) - ((*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013))))) + (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) + (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) + (-14 *6 (-1091)) (-14 *7 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) + ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))) +(((*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) + ((*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1090)) (-5 *3 (-583 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1013)))) + (-12 (-5 *2 (-1091)) (-5 *3 (-584 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) - (-5 *2 (-2 (|:| -3954 (-484)) (|:| |var| (-550 *1)))) (-4 *1 (-364 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-495)) (-5 *1 (-362 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) + (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014)) + (-5 *2 (-2 (|:| -3955 (-485)) (|:| |var| (-551 *1)))) (-4 *1 (-364 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-496)) (-5 *1 (-362 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1134)) - (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1155 (-350 *3))))) + (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) + (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-350 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-146)) - (-4 *1 (-322 *4 *5)) (-4 *5 (-1155 *4)))) + (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146)) + (-4 *1 (-322 *4 *5)) (-4 *5 (-1156 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) - (-4 *4 (-1155 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) + (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) + (-4 *4 (-1156 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) ((*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) +(((*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) ((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) ((*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-360 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3))))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-360 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) - ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3))))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3))))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3))))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-258)) - (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-4 *6 (-353 *4 *5)) - (-14 *7 (-1179 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-951 *4)) (-4 *3 (-258)) + (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *6 (-353 *4 *5)) + (-14 *7 (-1180 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-1179 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-904 *3)) - (-4 *5 (-1155 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-1180 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-905 *3)) + (-4 *5 (-1156 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-14 *7 *2)))) (((*1 *1 *1) - (-12 (-4 *2 (-258)) (-4 *3 (-904 *2)) (-4 *4 (-1155 *3)) - (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-950 *3)))))) + (-12 (-4 *2 (-258)) (-4 *3 (-905 *2)) (-4 *4 (-1156 *3)) + (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-694)) (-5 *4 (-1179 *2)) (-4 *5 (-258)) (-4 *6 (-904 *5)) - (-4 *2 (-13 (-353 *6 *7) (-950 *6))) (-5 *1 (-356 *5 *6 *7 *2)) - (-4 *7 (-1155 *6))))) + (-12 (-5 *3 (-695)) (-5 *4 (-1180 *2)) (-4 *5 (-258)) (-4 *6 (-905 *5)) + (-4 *2 (-13 (-353 *6 *7) (-951 *6))) (-5 *1 (-356 *5 *6 *7 *2)) + (-4 *7 (-1156 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1155 *4)) (-5 *2 (-630 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) ((*1 *2) - (-12 (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-630 *4)) + (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)) (-5 *1 (-352 *3 *4 *5)) (-4 *3 (-353 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) - (-5 *2 (-630 *3))))) + (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) + (-5 *2 (-631 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) - (-4 *5 (-1155 *4)) (-5 *2 (-630 *4)))) + (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) + (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) - (-5 *2 (-630 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495))))) + (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) + (-5 *2 (-631 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3943 (-484))))) (-5 *1 (-310 *3)) - (-4 *3 (-1013)))) + (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3944 (-485))))) (-5 *1 (-310 *3)) + (-4 *3 (-1014)))) ((*1 *2 *1) - (-12 (-4 *1 (-336 *3)) (-4 *3 (-1013)) - (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3943 (-694))))))) + (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014)) + (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3944 (-695))))))) ((*1 *2 *1) - (-12 (-5 *2 (-583 (-2 (|:| -3732 *3) (|:| -2401 (-484))))) (-5 *1 (-348 *3)) - (-4 *3 (-495))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-348 *3)) (-4 *3 (-495))))) + (-12 (-5 *2 (-584 (-2 (|:| -3733 *3) (|:| -2402 (-485))))) (-5 *1 (-348 *3)) + (-4 *3 (-496))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-348 *4)) (-4 *4 (-495))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495))))) + (-12 (-5 *3 (-485)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-348 *4)) (-4 *4 (-496))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-484)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-348 *2)) (-4 *2 (-495))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-330))) (-5 *1 (-221)))) - ((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))) - ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-495))))) -(((*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-495))))) -(((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-484))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-85)) (-5 *1 (-81)))) - ((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3986)) (-4 *1 (-347)))) - ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830))))) -(((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3986)) (-4 *1 (-347)))) - ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830))))) -(((*1 *2 *3) - (-12 (-5 *3 (-484)) (|has| *1 (-6 -3986)) (-4 *1 (-347)) (-5 *2 (-830))))) -(((*1 *2 *3) - (-12 (-5 *3 (-484)) (|has| *1 (-6 -3986)) (-4 *1 (-347)) (-5 *2 (-830))))) -(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-694)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-694))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-694)))) + (-12 (-5 *3 (-485)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-348 *2)) (-4 *2 (-496))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-221)))) + ((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))) + ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496))))) +(((*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496))))) +(((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-85)) (-5 *1 (-81)))) + ((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3987)) (-4 *1 (-347)))) + ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831))))) +(((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3987)) (-4 *1 (-347)))) + ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831))))) +(((*1 *2 *3) + (-12 (-5 *3 (-485)) (|has| *1 (-6 -3987)) (-4 *1 (-347)) (-5 *2 (-831))))) +(((*1 *2 *3) + (-12 (-5 *3 (-485)) (|has| *1 (-6 -3987)) (-4 *1 (-347)) (-5 *2 (-831))))) +(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-695)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-695))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-695)))) ((*1 *1 *1) (-4 *1 (-345)))) (((*1 *1 *2) - (-12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-312) (-120))) + (-12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-1155 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120)))))) + (-12 (-4 *2 (-1156 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120)))))) (((*1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) - (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3773 *4) (|:| |num| *4)))) - (-5 *1 (-342 *3 *4)) (-4 *4 (-1155 *3))))) + (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3774 *4) (|:| |num| *4)))) + (-5 *1 (-342 *3 *4)) (-4 *4 (-1156 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) + (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) (-4 *5 (-146))))) (((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) + (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) (-4 *5 (-146))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-339))))) -(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073))))) -(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-339))))) +(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074))))) +(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074))))) (((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85))))) (((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85))))) (((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 (-350 (-857 (-484))))) (-5 *4 (-583 (-1090))) - (-5 *2 (-583 (-583 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-755) (-312))))) + (-12 (-5 *3 (-584 (-350 (-858 (-485))))) (-5 *4 (-584 (-1091))) + (-5 *2 (-584 (-584 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-756) (-312))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-857 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-332 *4)) - (-4 *4 (-13 (-755) (-312)))))) + (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-332 *4)) + (-4 *4 (-13 (-756) (-312)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-857 (-142 (-484))))) (-5 *2 (-583 (-142 *4))) - (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-755))))) + (-12 (-5 *3 (-350 (-858 (-142 (-485))))) (-5 *2 (-584 (-142 *4))) + (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-583 (-350 (-857 (-142 (-484)))))) (-5 *4 (-583 (-1090))) - (-5 *2 (-583 (-583 (-142 *5)))) (-5 *1 (-331 *5)) - (-4 *5 (-13 (-312) (-755)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-350 (-857 (-142 (-484)))))) - (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-331 *4)) - (-4 *4 (-13 (-312) (-755))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-249 (-350 (-857 (-142 (-484))))))) - (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-331 *4)) - (-4 *4 (-13 (-312) (-755))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-350 (-857 (-142 (-484))))) - (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-331 *4)) - (-4 *4 (-13 (-312) (-755))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-249 (-350 (-857 (-142 (-484)))))) - (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-331 *4)) - (-4 *4 (-13 (-312) (-755)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-484)) (-5 *1 (-330))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-179)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-179)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-330)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-330))))) + (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485)))))) (-5 *4 (-584 (-1091))) + (-5 *2 (-584 (-584 (-142 *5)))) (-5 *1 (-331 *5)) + (-4 *5 (-13 (-312) (-756)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485)))))) + (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4)) + (-4 *4 (-13 (-312) (-756))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-584 (-249 (-350 (-858 (-142 (-485))))))) + (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4)) + (-4 *4 (-13 (-312) (-756))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-350 (-858 (-142 (-485))))) + (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4)) + (-4 *4 (-13 (-312) (-756))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-249 (-350 (-858 (-142 (-485)))))) + (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4)) + (-4 *4 (-13 (-312) (-756)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-485)) (-5 *1 (-330))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330))))) (((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-330))) ((*1 *1) (-5 *1 (-330)))) (((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-330))) ((*1 *1) (-5 *1 (-330)))) (((*1 *1) (-5 *1 (-179))) ((*1 *1) (-5 *1 (-330)))) -(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330)))) - ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330))))) -(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330)))) - ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330))))) -(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330)))) - ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330))))) -(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330))))) +(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))) + ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330))))) +(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))) + ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330))))) +(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))) + ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330))))) +(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2)) - (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996))))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2)) + (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3997))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2)) - (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996))))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2)) + (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3997))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2)) - (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3996))))))) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2)) + (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3997))))))) (((*1 *1 *2) - (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146))))) + (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-756)) (-5 *2 (-85)))) + (-12 (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-757)) (-5 *2 (-85)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1129)) + (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1130)) (-5 *2 (-85))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-484)) (|has| *1 (-6 -3996)) (-4 *1 (-324 *3)) (-4 *3 (-1129))))) + (-12 (-5 *2 (-485)) (|has| *1 (-6 -3997)) (-4 *1 (-324 *3)) (-4 *3 (-1130))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -3996)) (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-756)))) + (-12 (|has| *1 (-6 -3997)) (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3996)) (-4 *1 (-324 *3)) - (-4 *3 (-1129))))) -(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1179 *1)) (-4 *1 (-316 *3))))) + (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3997)) (-4 *1 (-324 *3)) + (-4 *3 (-1130))))) +(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-316 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) (((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) (((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) (((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146))))) -(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1085 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1085 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3))))) (((*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) @@ -11996,1176 +11996,1176 @@ (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *4 (-146)) (-5 *2 (-583 (-1179 *4))) (-5 *1 (-315 *3 *4)) + (-12 (-4 *4 (-146)) (-5 *2 (-584 (-1180 *4))) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) ((*1 *2) - (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) - (-5 *2 (-583 (-1179 *3)))))) + (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) + (-5 *2 (-584 (-1180 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1085 *3))))) + (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1085 *3))))) -(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146))))) -(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146))))) + (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3))))) +(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146))))) +(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1073)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1013)) (-4 *4 (-1013)))) - ((*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) + (-12 (-5 *3 (-1074)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1014)) (-4 *4 (-1014)))) + ((*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1073)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))) + (-12 (-5 *2 (-1074)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))) (((*1 *1 *1) (-4 *1 (-147))) - ((*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))) + ((*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))) (((*1 *2 *1) - (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-1073))))) -(((*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))) + (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-1074))))) +(((*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))) (((*1 *2 *3) - (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-4 *2 (-13 (-345) - (-10 -7 (-15 -3946 (*2 *4)) (-15 -2010 ((-830) *2)) - (-15 -2012 ((-1179 *2) (-830))) (-15 -3928 (*2 *2))))) + (-10 -7 (-15 -3947 (*2 *4)) (-15 -2011 ((-831) *2)) + (-15 -2013 ((-1180 *2) (-831))) (-15 -3929 (*2 *2))))) (-5 *1 (-306 *2 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-869 (-1085 *4))) (-5 *1 (-305 *4)) - (-5 *3 (-1085 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (-12 (-4 *4 (-299)) (-5 *2 (-870 (-1086 *4))) (-5 *1 (-305 *4)) + (-5 *3 (-1086 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) + (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) + (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) -(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) -(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) -(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) + (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))) +(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) +(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) +(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299))))) (((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))) (((*1 *2) - (-12 (-5 *2 (-1179 (-583 (-2 (|:| -3402 (-817 *3)) (|:| -2400 (-1033)))))) - (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) + (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3403 (-818 *3)) (|:| -2401 (-1034)))))) + (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) ((*1 *2) - (-12 (-5 *2 (-1179 (-583 (-2 (|:| -3402 *3) (|:| -2400 (-1033)))))) - (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1085 *3) *2)))) + (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3403 *3) (|:| -2401 (-1034)))))) + (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) *2)))) ((*1 *2) - (-12 (-5 *2 (-1179 (-583 (-2 (|:| -3402 *3) (|:| -2400 (-1033)))))) - (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830))))) + (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3403 *3) (|:| -2401 (-1034)))))) + (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831))))) (((*1 *2) - (-12 (-5 *2 (-630 (-817 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) - (-14 *4 (-830)))) + (-12 (-5 *2 (-631 (-818 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) + (-14 *4 (-831)))) ((*1 *2) - (-12 (-5 *2 (-630 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) + (-12 (-5 *2 (-631 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 - (-3 (-1085 *3) (-1179 (-583 (-2 (|:| -3402 *3) (|:| -2400 (-1033))))))))) + (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3403 *3) (|:| -2401 (-1034))))))))) ((*1 *2) - (-12 (-5 *2 (-630 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830))))) + (-12 (-5 *2 (-631 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179 (-583 (-2 (|:| -3402 *4) (|:| -2400 (-1033)))))) - (-4 *4 (-299)) (-5 *2 (-694)) (-5 *1 (-296 *4)))) + (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3403 *4) (|:| -2401 (-1034)))))) + (-4 *4 (-299)) (-5 *2 (-695)) (-5 *1 (-296 *4)))) ((*1 *2) - (-12 (-5 *2 (-694)) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) + (-12 (-5 *2 (-695)) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) ((*1 *2) - (-12 (-5 *2 (-694)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) + (-12 (-5 *2 (-695)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 - (-3 (-1085 *3) (-1179 (-583 (-2 (|:| -3402 *3) (|:| -2400 (-1033))))))))) + (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3403 *3) (|:| -2401 (-1034))))))))) ((*1 *2) - (-12 (-5 *2 (-694)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830))))) + (-12 (-5 *2 (-695)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831))))) (((*1 *2) (-12 (-4 *1 (-299)) - (-5 *2 (-583 (-2 (|:| -3732 (-484)) (|:| -2401 (-484)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-484)) (-5 *2 (-1102 (-830) (-694)))))) + (-5 *2 (-584 (-2 (|:| -3733 (-485)) (|:| -2402 (-485)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-485)) (-5 *2 (-1103 (-831) (-695)))))) (((*1 *1) (-4 *1 (-299)))) (((*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-830)) + (-12 (-5 *3 (-831)) (-5 *2 - (-3 (-1085 *4) (-1179 (-583 (-2 (|:| -3402 *4) (|:| -2400 (-1033))))))) + (-3 (-1086 *4) (-1180 (-584 (-2 (|:| -3403 *4) (|:| -2401 (-1034))))))) (-5 *1 (-296 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-830)) - (-5 *2 (-1179 (-583 (-2 (|:| -3402 *4) (|:| -2400 (-1033)))))) + (|partial| -12 (-5 *3 (-831)) + (-5 *2 (-1180 (-584 (-2 (|:| -3403 *4) (|:| -2401 (-1034)))))) (-5 *1 (-296 *4)) (-4 *4 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179 (-583 (-2 (|:| -3402 *4) (|:| -2400 (-1033)))))) - (-4 *4 (-299)) (-5 *2 (-630 *4)) (-5 *1 (-296 *4))))) + (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3403 *4) (|:| -2401 (-1034)))))) + (-4 *4 (-299)) (-5 *2 (-631 *4)) (-5 *1 (-296 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) - (-5 *2 (-1179 (-583 (-2 (|:| -3402 *4) (|:| -2400 (-1033)))))) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) + (-5 *2 (-1180 (-584 (-2 (|:| -3403 *4) (|:| -2401 (-1034)))))) (-5 *1 (-296 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-869 (-1033))) + (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-870 (-1034))) (-5 *1 (-296 *4))))) (((*1 *2) - (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-293 *3 *4)) (-14 *3 (-830)) - (-14 *4 (-830)))) + (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-293 *3 *4)) (-14 *3 (-831)) + (-14 *4 (-831)))) ((*1 *2) - (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) - (-14 *4 (-1085 *3)))) + (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) + (-14 *4 (-1086 *3)))) ((*1 *2) - (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) - (-14 *4 (-830))))) + (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) + (-14 *4 (-831))))) (((*1 *2) - (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) - (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) + (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) + (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-694))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-695))))) (((*1 *2) - (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) + (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1134)) (-4 *5 (-1155 *3)) (-4 *6 (-1155 (-350 *5))) + (-12 (-4 *3 (-1135)) (-4 *5 (-1156 *3)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) - (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) + (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) - (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) + (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) - (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) + (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) ((*1 *2 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) (((*1 *2) - (-12 (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) - (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5))))) + (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) + (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) - (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) + (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) ((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))) (((*1 *2 *2) - (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) - (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4)))))) + (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) + (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) - (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4)))))) + (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) + (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) - (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4)))))) + (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) + (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4)))))) (((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) - (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) + (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) - (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) + (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1134)) - (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1155 (-350 *3)))))) + (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) + (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-350 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1134)) - (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) - (-5 *2 (-2 (|:| |num| (-630 *5)) (|:| |den| *5)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135)) + (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) + (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1115) (-915))))) + (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-916))))) ((*1 *2) - (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 (-350 *2))) (-4 *2 (-1155 *4)) + (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1134)) - (-4 *4 (-1155 (-350 *2))) (-4 *2 (-1155 *3))))) + (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135)) + (-4 *4 (-1156 (-350 *2))) (-4 *2 (-1156 *3))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 (-350 *2))) (-4 *2 (-1155 *4)) + (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1134)) - (-4 *4 (-1155 (-350 *2))) (-4 *2 (-1155 *3))))) + (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135)) + (-4 *4 (-1156 (-350 *2))) (-4 *2 (-1156 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-1134)) - (-4 *6 (-1155 (-350 *5))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-1135)) + (-4 *6 (-1156 (-350 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-291 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *5 (-1134)) (-4 *6 (-1155 *5)) - (-4 *7 (-1155 (-350 *6))) (-5 *2 (-583 (-857 *5))) + (-12 (-5 *3 (-1091)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) + (-4 *7 (-1156 (-350 *6))) (-5 *2 (-584 (-858 *5))) (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1134)) - (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-4 *4 (-312)) - (-5 *2 (-583 (-857 *4)))))) + (-12 (-5 *3 (-1091)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135)) + (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-4 *4 (-312)) + (-5 *2 (-584 (-858 *4)))))) (((*1 *2) - (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) - (-5 *2 (-583 (-583 *4))) (-5 *1 (-290 *3 *4 *5 *6)) + (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) + (-5 *2 (-584 (-584 *4))) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-583 (-583 *3)))))) + (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-584 (-584 *3)))))) (((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-312)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) + (-12 (-4 *4 (-312)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-484)) (-4 *2 (-312)) (-4 *4 (-1155 *2)) - (-4 *5 (-1155 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6)) + (-12 (-5 *3 (-485)) (-4 *2 (-312)) (-4 *4 (-1156 *2)) + (-4 *5 (-1156 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6)) (-4 *6 (-291 *2 *4 *5)))) ((*1 *1 *2 *2) - (-12 (-4 *2 (-312)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-350 *3))) + (-12 (-4 *2 (-312)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-350 *3))) (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) + (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) + (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) (-4 *1 (-286 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) - (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85))))) + (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) + (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) - (-5 *2 (-1179 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) + (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) - (-5 *2 (-1179 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) + (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) + (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5))))) (((*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-1095) (-694)))) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-869 (-694))) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-282))))) -(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-756))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-1096) (-695)))) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-870 (-695))) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-282))))) +(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-757))))) (((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1085 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312))))) + (-12 (-5 *2 (-1086 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312))))) (((*1 *2 *1) - (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1085 *3))))) + (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1086 *3))))) (((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) - (-5 *2 (-1085 *3)))) + (-5 *2 (-1086 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1085 *3))))) + (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1086 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-694)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) + (-12 (-5 *2 (-695)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *3 (-146))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-484)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1013)) (-4 *2 (-104))))) + (-12 (-5 *3 (-485)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1014)) (-4 *2 (-104))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)) (-4 *3 (-716))))) + (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104)) (-4 *3 (-717))))) (((*1 *2 *3) - (-12 (-5 *3 (-484)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-961)) - (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-861 *2 *4 *5))))) + (-12 (-5 *3 (-485)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-962)) + (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-862 *2 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1085 *7)) (-5 *3 (-484)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) - (-4 *5 (-756)) (-4 *6 (-961)) (-5 *1 (-272 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1086 *7)) (-5 *3 (-485)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) + (-4 *5 (-757)) (-4 *6 (-962)) (-5 *1 (-272 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1085 *6)) (-4 *6 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) - (-5 *2 (-1085 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5))))) + (-12 (-5 *3 (-1086 *6)) (-4 *6 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) + (-5 *2 (-1086 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1085 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) - (-4 *6 (-961)) (-5 *2 (-1085 *6)) (-5 *1 (-272 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) + (-4 *6 (-962)) (-5 *2 (-1086 *6)) (-5 *1 (-272 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1085 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-756)) - (-4 *8 (-961)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-1085 *8)) + (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 *8)) (-4 *7 (-757)) + (-4 *8 (-962)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-1086 *8)) (-5 *1 (-272 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-350 (-484))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) - (-14 *4 (-1090)) (-14 *5 *3)))) + (-12 (-5 *2 (-350 (-485))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) + (-14 *4 (-1091)) (-14 *5 *3)))) (((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) - (-5 *6 (-484)) (-5 *2 (-1125 (-838))) (-5 *1 (-269)))) + (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) + (-5 *6 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) - (-5 *6 (-484)) (-5 *7 (-1073)) (-5 *2 (-1125 (-838))) (-5 *1 (-269)))) + (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) + (-5 *6 (-485)) (-5 *7 (-1074)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) - (-5 *6 (-179)) (-5 *7 (-484)) (-5 *2 (-1125 (-838))) (-5 *1 (-269)))) + (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) + (-5 *6 (-179)) (-5 *7 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) - (-5 *6 (-179)) (-5 *7 (-484)) (-5 *8 (-1073)) (-5 *2 (-1125 (-838))) + (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) + (-5 *6 (-179)) (-5 *7 (-485)) (-5 *8 (-1074)) (-5 *2 (-1126 (-839))) (-5 *1 (-269))))) (((*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179))))) (((*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-364 *5)) - (-4 *5 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6)))) + (-4 *5 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-583 *7)) (-4 *7 (-364 *6)) - (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) + (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-584 *7)) (-4 *7 (-364 *6)) + (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7)) - (-4 *7 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) + (-12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7)) + (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-583 (-249 *8))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *8)) - (-5 *6 (-583 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-495) (-553 (-473)))) + (-12 (-5 *3 (-584 (-249 *8))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *8)) + (-5 *6 (-584 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7)) - (-4 *7 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) + (-12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7)) + (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-86))) (-5 *6 (-583 (-249 *8))) - (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-495) (-553 (-473)))) + (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-86))) (-5 *6 (-584 (-249 *8))) + (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-364 *6)) - (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) + (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) - (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) + (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) - (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) + (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-583 *3)) (-4 *3 (-364 *7)) - (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3))))) + (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-584 *3)) (-4 *3 (-364 *7)) + (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-484)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013))))) + (-12 (-5 *2 (-485)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85))))) -(((*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-694))))) +(((*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-695))))) (((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-258)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) (-4 *1 (-258))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-258))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1129)))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-584 *1)) (-4 *1 (-258))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1130)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-583 (-550 *1))) (-5 *3 (-583 *1)) (-4 *1 (-254)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-584 (-551 *1))) (-5 *3 (-584 *1)) (-4 *1 (-254)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *1))) (-4 *1 (-254)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254))))) (((*1 *1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-4 *1 (-254)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-550 *1)) (-4 *1 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254))))) -(((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-583 (-86)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1090)) (-5 *2 (-85)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-551 *1)) (-4 *1 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254))))) +(((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-584 (-86)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85))))) (((*1 *2 *3) - (-12 (-5 *3 (-550 *5)) (-4 *5 (-364 *4)) (-4 *4 (-950 (-484))) (-4 *4 (-495)) - (-5 *2 (-1085 *5)) (-5 *1 (-32 *4 *5)))) + (-12 (-5 *3 (-551 *5)) (-4 *5 (-364 *4)) (-4 *4 (-951 (-485))) (-4 *4 (-496)) + (-5 *2 (-1086 *5)) (-5 *1 (-32 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-550 *1)) (-4 *1 (-961)) (-4 *1 (-254)) (-5 *2 (-1085 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252)))) - ((*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-262)) (-5 *1 (-252)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252)))) + (-12 (-5 *3 (-551 *1)) (-4 *1 (-962)) (-4 *1 (-254)) (-5 *2 (-1086 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))) + ((*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-262)) (-5 *1 (-252)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252))))) + (-12 (-5 *4 (-584 (-1074))) (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252))))) (((*1 *2 *2) - (-12 (-4 *3 (-961)) (-4 *4 (-1155 *3)) (-5 *1 (-137 *3 *4 *2)) - (-4 *2 (-1155 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129))))) -(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129))))) -(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1129))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1129))))) + (-12 (-4 *3 (-962)) (-4 *4 (-1156 *3)) (-5 *1 (-137 *3 *4 *2)) + (-4 *2 (-1156 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1130))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1130))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-495)) - (-4 *3 (-1129))))) + (-12 (-5 *2 (-584 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-496)) + (-4 *3 (-1130))))) (((*1 *2 *3) (-12 (-4 *4 (-392)) (-5 *2 - (-583 - (-2 (|:| |eigval| (-3 (-350 (-857 *4)) (-1080 (-1090) (-857 *4)))) - (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-350 (-857 *4)))))))) - (-5 *1 (-248 *4)) (-5 *3 (-630 (-350 (-857 *4))))))) + (-584 + (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4)))) + (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 *4)))))))) + (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4))))))) (((*1 *2 *3) (-12 (-4 *4 (-392)) (-5 *2 - (-583 - (-2 (|:| |eigval| (-3 (-350 (-857 *4)) (-1080 (-1090) (-857 *4)))) - (|:| |geneigvec| (-583 (-630 (-350 (-857 *4)))))))) - (-5 *1 (-248 *4)) (-5 *3 (-630 (-350 (-857 *4))))))) + (-584 + (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4)))) + (|:| |geneigvec| (-584 (-631 (-350 (-858 *4)))))))) + (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-350 (-857 *6)) (-1080 (-1090) (-857 *6)))) (-5 *5 (-694)) - (-4 *6 (-392)) (-5 *2 (-583 (-630 (-350 (-857 *6))))) (-5 *1 (-248 *6)) - (-5 *4 (-630 (-350 (-857 *6)))))) + (-12 (-5 *3 (-3 (-350 (-858 *6)) (-1081 (-1091) (-858 *6)))) (-5 *5 (-695)) + (-4 *6 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *6))))) (-5 *1 (-248 *6)) + (-5 *4 (-631 (-350 (-858 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-350 (-857 *5)) (-1080 (-1090) (-857 *5)))) - (|:| |eigmult| (-694)) (|:| |eigvec| (-583 *4)))) - (-4 *5 (-392)) (-5 *2 (-583 (-630 (-350 (-857 *5))))) (-5 *1 (-248 *5)) - (-5 *4 (-630 (-350 (-857 *5))))))) + (-2 (|:| |eigval| (-3 (-350 (-858 *5)) (-1081 (-1091) (-858 *5)))) + (|:| |eigmult| (-695)) (|:| |eigvec| (-584 *4)))) + (-4 *5 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5)) + (-5 *4 (-631 (-350 (-858 *5))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-350 (-857 *5)) (-1080 (-1090) (-857 *5)))) (-4 *5 (-392)) - (-5 *2 (-583 (-630 (-350 (-857 *5))))) (-5 *1 (-248 *5)) - (-5 *4 (-630 (-350 (-857 *5))))))) + (-12 (-5 *3 (-3 (-350 (-858 *5)) (-1081 (-1091) (-858 *5)))) (-4 *5 (-392)) + (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5)) + (-5 *4 (-631 (-350 (-858 *5))))))) (((*1 *2 *3) - (-12 (-5 *3 (-630 (-350 (-857 *4)))) (-4 *4 (-392)) - (-5 *2 (-583 (-3 (-350 (-857 *4)) (-1080 (-1090) (-857 *4))))) + (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-4 *4 (-392)) + (-5 *2 (-584 (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4))))) (-5 *1 (-248 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-997))) (-5 *1 (-247))))) -(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-1015))) (-5 *1 (-247))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-247))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-583 (-876))) (-5 *1 (-247))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-247))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-998))) (-5 *1 (-247))))) +(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-1016))) (-5 *1 (-247))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-247))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-584 (-877))) (-5 *1 (-247))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-247))))) (((*1 *1) (-5 *1 (-247)))) (((*1 *1) (-5 *1 (-247)))) (((*1 *1) (-5 *1 (-247)))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2)) + (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -3996)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) - (-4 *2 (-1129))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-312)) (-5 *2 (-583 (-1069 *4))) (-5 *1 (-240 *4 *5)) - (-5 *3 (-1069 *4)) (-4 *5 (-1172 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-484))) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1129))))) + (-12 (|has| *1 (-6 -3997)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) + (-4 *2 (-1130))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-312)) (-5 *2 (-584 (-1070 *4))) (-5 *1 (-240 *4 *5)) + (-5 *3 (-1070 *4)) (-4 *5 (-1173 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3995)) (-4 *1 (-193 *3)) - (-4 *3 (-1013)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129))))) + (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3996)) (-4 *1 (-193 *3)) + (-4 *3 (-1014)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-522)) (-5 *3 (-532)) (-5 *4 (-247)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-532)) (-5 *1 (-235))))) + (-12 (-5 *2 (-523)) (-5 *3 (-533)) (-5 *4 (-247)) (-5 *1 (-235))))) +(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-235))))) +(((*1 *2 *1) (-12 (-5 *2 (-533)) (-5 *1 (-235))))) (((*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235))))) -(((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-234))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1015)) (-5 *1 (-234))))) +(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-234))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1016)) (-5 *1 (-234))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-350 (-484))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) - (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4)))))) + (-12 (-5 *3 (-350 (-485))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) + (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-550 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))) - (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2))))) + (-12 (-5 *3 (-551 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))) + (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2))))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-1090)) - (-4 *2 (-13 (-27) (-1115) (-364 *5))) - (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *5 *2))))) + (|partial| -12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-1091)) + (-4 *2 (-13 (-27) (-1116) (-364 *5))) + (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2)) - (-4 *2 (-13 (-27) (-1115) (-364 *3))))) + (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2)) + (-4 *2 (-13 (-27) (-1116) (-364 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) - (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4)))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) + (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) + (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-583 (-550 *3))) (|:| |vals| (-583 *3)))) - (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))) + (-2 (|:| |func| *3) (|:| |kers| (-584 (-551 *3))) (|:| |vals| (-584 *3)))) + (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) - (-4 *3 (-13 (-364 *4) (-915)))))) + (-12 (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) + (-4 *3 (-13 (-364 *4) (-916)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-85))))) - (-4 *2 (-13 (-364 *4) (-915))) (-4 *4 (-495)) (-5 *1 (-230 *4 *2))))) + (|partial| -12 (-5 *3 (-584 (-2 (|:| |func| *2) (|:| |pole| (-85))))) + (-4 *2 (-13 (-364 *4) (-916))) (-4 *4 (-496)) (-5 *1 (-230 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))) + (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-364 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495))))) + (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496))))) (((*1 *2) - (-12 (-4 *2 (-13 (-364 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229))))) -(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-229))))) -(((*1 *2 *1) - (-12 (-4 *3 (-190)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) - (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) - (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-228 *2)) (-4 *2 (-756))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) - ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) + (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229))))) +(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-229))))) +(((*1 *2 *1) + (-12 (-4 *3 (-190)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) + (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) + (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-228 *2)) (-4 *2 (-757))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) + ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) - (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) + (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) ((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) - (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694))))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) + (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1090)) (-5 *2 (-51)) + (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *2 (-51)) (-5 *1 (-221)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1090)) (-5 *1 (-223 *2)) - (-4 *2 (-1129))))) + (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *1 (-223 *2)) + (-4 *2 (-1130))))) (((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) (((*1 *1) (-5 *1 (-117))) - ((*1 *1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-221)))) - ((*1 *2 *3) (-12 (-5 *3 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) + ((*1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-221)))) + ((*1 *2 *3) (-12 (-5 *3 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) (((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) -(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))) (((*1 *2 *3) - (-12 (-5 *3 (-836)) + (-12 (-5 *3 (-837)) (-5 *2 - (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) - (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) + (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) + (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-836)) (-5 *4 (-350 (-484))) + (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485))) (-5 *2 - (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) - (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) + (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) + (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) - (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) - (-5 *1 (-126)) (-5 *3 (-583 (-854 (-179)))))) + (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) + (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) + (-5 *1 (-126)) (-5 *3 (-584 (-855 (-179)))))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) - (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) - (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 (-179))))))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-221)))) + (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) + (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) + (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 (-179))))))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) +(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) +(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221))))) (((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-350 (-484))))) (-5 *1 (-221)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-221))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-350 (-485))))) (-5 *1 (-221)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-221))) (-5 *4 (-1090)) (-5 *2 (-85)) (-5 *1 (-221))))) + (-12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *2 (-85)) (-5 *1 (-221))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) - (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) + (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) + (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1004 (-330))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) - (-4 *3 (-13 (-553 (-473)) (-1013))))) + (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) + (-4 *3 (-13 (-554 (-474)) (-1014))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-787 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) - (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-788 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) + (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-787 *5)) (-5 *4 (-1004 (-330))) - (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-788 *5)) (-5 *4 (-1005 (-330))) + (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) - (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) + (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-330))) - (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330))) + (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1183)) - (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) + (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) + (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1004 (-330))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) - (-4 *3 (-13 (-553 (-473)) (-1013))))) + (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) + (-4 *3 (-13 (-554 (-474)) (-1014))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) - (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *6)))) + (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) + (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-330))) - (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *5)))) + (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330))) + (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) - (-5 *2 (-1182)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) + (-5 *2 (-1183)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1182)) + (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) - (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) + (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) + (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *2 (-1182)) + (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) - (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) + (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) + (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183)) + (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330))) - (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) + (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183)) + (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330))) - (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) + (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183)) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330))) - (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) + (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330))) - (-5 *2 (-1183)) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) + (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330))) - (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) + (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) + (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330))) - (-5 *2 (-1183)) (-5 *1 (-216)))) + (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) + (-5 *2 (-1184)) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-249 *7)) (-5 *4 (-1090)) (-5 *5 (-583 (-221))) - (-4 *7 (-364 *6)) (-4 *6 (-13 (-495) (-756) (-950 (-484)))) (-5 *2 (-1182)) + (-12 (-5 *3 (-249 *7)) (-5 *4 (-1091)) (-5 *5 (-584 (-221))) + (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-757) (-951 (-485)))) (-5 *2 (-1183)) (-5 *1 (-217 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1182)) (-5 *1 (-220)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1183)) (-5 *1 (-220)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1182)) + (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-220)))) - ((*1 *2 *3) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *2 (-1182)) (-5 *1 (-220)))) + ((*1 *2 *3) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *2 (-1183)) (-5 *1 (-220)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-583 (-221))) (-5 *2 (-1182)) + (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-220)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1183)) (-5 *1 (-220)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1184)) (-5 *1 (-220)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1183)) + (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-220))))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218))))) -(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218))))) +(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) - (-5 *2 (-1183)) (-5 *1 (-218))))) + (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179))) + (-5 *2 (-1184)) (-5 *1 (-218))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) - (-5 *5 (-85)) (-5 *2 (-1183)) (-5 *1 (-218))))) + (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179))) + (-5 *5 (-85)) (-5 *2 (-1184)) (-5 *1 (-218))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-854 (-179)) (-179) (-179))) + (-12 (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) - (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179))) + (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) + (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-330))) - (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179))) + (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330))) + (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) - (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) + (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) + (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1004 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *3)) - (-4 *3 (-13 (-553 (-473)) (-1013))))) + (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *3)) + (-4 *3 (-13 (-554 (-474)) (-1014))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) - (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179))) + (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) + (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-330))) - (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179))) + (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330))) + (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) - (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) + (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) - (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) + (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330))) - (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) + (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330))) - (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) + (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330))) - (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) + (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330))) - (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) + (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330))) - (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) + (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330))) - (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) + (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330))) - (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) + (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) + (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330))) - (-5 *2 (-1047 (-179))) (-5 *1 (-216))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-176 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-4 *1 (-214 *3)))) - ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) - (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 *4))))) + (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) + (-5 *2 (-1048 (-179))) (-5 *1 (-216))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-176 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-214 *3)))) + ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) + (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) - (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))) + (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) + (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) ((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) - (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 (-694)))))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) + (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 (-695)))))) (((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) - (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-85))))) + (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) + (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-85))))) (((*1 *2 *1) - (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-717)) + (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-718)) (-4 *2 (-228 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) - (-4 *4 (-228 *3)) (-4 *5 (-717))))) + (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) + (-4 *4 (-228 *3)) (-4 *5 (-718))))) (((*1 *1 *1) - (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) - (-4 *4 (-228 *3)) (-4 *5 (-717))))) + (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) + (-4 *4 (-228 *3)) (-4 *5 (-718))))) (((*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) ((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) ((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207))))) (((*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207))))) (((*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207))))) -(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-207))))) +(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-207))))) (((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-694)) - (-4 *3 (-13 (-663) (-320) (-10 -7 (-15 ** (*3 *3 (-484)))))) + (|partial| -12 (-5 *2 (-695)) + (-4 *3 (-13 (-664) (-320) (-10 -7 (-15 ** (*3 *3 (-485)))))) (-5 *1 (-204 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-203 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129))))) -(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-202 *2)) (-4 *2 (-1129))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-202 *2)) (-4 *2 (-1129))))) -(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-484)) (-5 *1 (-199)))) - ((*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-484)) (-5 *1 (-199))))) -(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-199)))) - ((*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1185)) (-5 *1 (-199))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-484)) (-5 *1 (-199))))) -(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-199))))) -(((*1 *1 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1129)) (-4 *1 (-196 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-249 (-857 (-484)))) - (-5 *2 - (-2 (|:| |varOrder| (-583 (-1090))) - (|:| |inhom| (-3 (-583 (-1179 (-694))) "failed")) - (|:| |hom| (-583 (-1179 (-694)))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-203 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-202 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-202 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-199)))) + ((*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-485)) (-5 *1 (-199))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-199)))) + ((*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1186)) (-5 *1 (-199))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199))))) +(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-199))))) +(((*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1130)) (-4 *1 (-196 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-249 (-858 (-485)))) + (-5 *2 + (-2 (|:| |varOrder| (-584 (-1091))) + (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed")) + (|:| |hom| (-584 (-1180 (-695)))))) (-5 *1 (-194))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-193 *3)))) - ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1013))))) -(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115)))))) -(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115)))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-193 *3)))) + ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1014))))) +(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))) +(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) (((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) ((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179))))) (((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *3 (-857 *6)) (-5 *4 (-1090)) - (-5 *5 (-750 *7)) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-4 *7 (-13 (-1115) (-29 *6))) (-5 *1 (-178 *6 *7)))) + (|partial| -12 (-5 *2 (-85)) (-5 *3 (-858 *6)) (-5 *4 (-1091)) + (-5 *5 (-751 *7)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-4 *7 (-13 (-1116) (-29 *6))) (-5 *1 (-178 *6 *7)))) ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1085 *6)) (-5 *4 (-750 *6)) - (-4 *6 (-13 (-1115) (-29 *5))) - (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *5 *6))))) + (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1086 *6)) (-5 *4 (-751 *6)) + (-4 *6 (-13 (-1116) (-29 *5))) + (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *5 *6))))) (((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-750 *4)) (-5 *3 (-550 *4)) (-5 *5 (-85)) - (-4 *4 (-13 (-1115) (-29 *6))) - (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *6 *4))))) + (|partial| -12 (-5 *2 (-751 *4)) (-5 *3 (-551 *4)) (-5 *5 (-85)) + (-4 *4 (-13 (-1116) (-29 *6))) + (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) - (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1115) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1090))))) + (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) + (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1116) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1091))))) ((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) - (-14 *3 (-583 (-1090)))))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) + (-14 *3 (-584 (-1091)))))) (((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) - (-14 *4 (-583 (-1090))))) + (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) + (-14 *4 (-584 (-1091))))) ((*1 *2 *1) - (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) - (-14 *4 (-583 (-1090)))))) + (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) + (-14 *4 (-584 (-1091)))))) (((*1 *1 *2) - (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4)) - (-14 *4 (-583 (-1090)))))) + (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4)) + (-14 *4 (-584 (-1091)))))) (((*1 *1 *1) - (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) - (-14 *3 (-583 (-1090)))))) + (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) + (-14 *3 (-584 (-1091)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1090)) (-5 *6 (-85)) - (-4 *7 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) - (-4 *3 (-13 (-1115) (-871) (-29 *7))) + (-12 (-5 *4 (-1091)) (-5 *6 (-85)) + (-4 *7 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) + (-4 *3 (-13 (-1116) (-872) (-29 *7))) (-5 *2 - (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| "failed") + (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-173 *7 *3)) (-5 *5 (-750 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-171))))) + (-5 *1 (-173 *7 *3)) (-5 *5 (-751 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4))))) + (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4))))) + (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-299)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -2575 *3)))) - (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4))))) + (-12 (-4 *4 (-299)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -2576 *3)))) + (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) - (|:| -1779 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) - (-5 *1 (-170 *5 *3)) (-4 *3 (-1155 *5))))) + (|:| -1780 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) + (-5 *1 (-170 *5 *3)) (-4 *3 (-1156 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1155 (-350 *2))) - (-4 *2 (-1155 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1156 (-350 *2))) + (-4 *2 (-1156 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-694)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)) (-4 *2 (-1013))))) -(((*1 *2 *3) (-12 (-5 *2 (-348 (-1085 (-484)))) (-5 *1 (-165)) (-5 *3 (-484))))) -(((*1 *2 *3) (-12 (-5 *2 (-583 (-1085 (-484)))) (-5 *1 (-165)) (-5 *3 (-484))))) + (-12 (-5 *3 (-695)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)) (-4 *2 (-1014))))) +(((*1 *2 *3) (-12 (-5 *2 (-348 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485))))) +(((*1 *2 *3) (-12 (-5 *2 (-584 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-583 (-484))) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164))))) + (-12 (-5 *3 (-584 (-485))) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 (-830))) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164))))) + (-12 (-5 *3 (-584 (-831))) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1092 (-350 (-484)))) (-5 *2 (-350 (-484))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164))))) -(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179 (-630 *4))) (-4 *4 (-146)) - (-5 *2 (-1179 (-630 (-857 *4)))) (-5 *1 (-163 *4))))) + (-12 (-5 *3 (-1093 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) +(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-146)) + (-5 *2 (-1180 (-631 (-858 *4)))) (-5 *1 (-163 *4))))) (((*1 *1) (-5 *1 (-161)))) (((*1 *1) (-5 *1 (-161)))) (((*1 *1) (-5 *1 (-161)))) (((*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) ((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161))))) -(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-85)))))) -(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-774)))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) -(((*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-157))) (-5 *1 (-157))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1129)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-85)))))) +(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-775)))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-158 *3)) (-4 *3 (-160))))) +(((*1 *2 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-157))) (-5 *1 (-157))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1129)) (-5 *2 (-694)) (-5 *1 (-156 *4 *3)) (-4 *3 (-616 *4))))) + (-12 (-4 *4 (-1130)) (-5 *2 (-695)) (-5 *1 (-156 *4 *3)) (-4 *3 (-617 *4))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-1129)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3))))) + (|partial| -12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-755))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1779 (-348 *3)))) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1155 (-142 *4)))))) + (-12 (-4 *4 (-13 (-312) (-756))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1780 (-348 *3)))) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1156 (-142 *4)))))) (((*1 *2 *2) - (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1155 (-142 *2)))))) + (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1156 (-142 *2)))))) (((*1 *2 *3) - (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-755))) - (-4 *3 (-1155 *2))))) + (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-756))) + (-4 *3 (-1156 *2))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1155 (-142 *2))))) + (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1156 (-142 *2))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) - (-4 *3 (-1155 (-142 *2)))))) + (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) + (-4 *3 (-1156 (-142 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-1155 (-142 *3)))))) + (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-1156 (-142 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) + (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) - (-4 *3 (-1155 (-142 *4)))))) + (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) + (-4 *3 (-1156 (-142 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2)) - (-4 *2 (-1155 (-142 *3)))))) + (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-1156 (-142 *3)))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-755))) - (-5 *2 (-583 (-2 (|:| -1779 (-583 *3)) (|:| -1596 *5)))) - (-5 *1 (-155 *5 *3)) (-4 *3 (-1155 (-142 *5))))) + (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-756))) + (-5 *2 (-584 (-2 (|:| -1780 (-584 *3)) (|:| -1597 *5)))) + (-5 *1 (-155 *5 *3)) (-4 *3 (-1156 (-142 *5))))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-312) (-755))) - (-5 *2 (-583 (-2 (|:| -1779 (-583 *3)) (|:| -1596 *4)))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4)))))) + (-12 (-4 *4 (-13 (-312) (-756))) + (-5 *2 (-584 (-2 (|:| -1780 (-584 *3)) (|:| -1597 *4)))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-583 (-142 *4))) (-5 *1 (-128 *3 *4)) - (-4 *3 (-1155 (-142 (-484)))) (-4 *4 (-13 (-312) (-755))))) + (-12 (-5 *2 (-584 (-142 *4))) (-5 *1 (-128 *3 *4)) + (-4 *3 (-1156 (-142 (-485)))) (-4 *4 (-13 (-312) (-756))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) + (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4))) - (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) + (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4))) + (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1115) (-915)))))) + (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-916)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1115) (-915)))))) + (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-916)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1115) (-915)))))) + (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-916)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1115) (-915)))))) + (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-916)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1115) (-915)))))) + (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-916)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1115) (-915)))))) + (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-916)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) - (-4 *3 (-13 (-312) (-1115) (-915)))))) + (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) + (-4 *3 (-13 (-312) (-1116) (-916)))))) (((*1 *2 *2) - (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) + (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) + (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) + (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) + (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) + (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) + (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) + (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-78))) (-5 *1 (-149))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-78))) (-5 *1 (-149))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) (((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1069 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1069 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1049)) (-5 *3 (-247)) (-5 *1 (-141))))) -(((*1 *2 *3) (-12 (-5 *3 (-1049)) (-5 *2 (-632 (-235))) (-5 *1 (-141))))) -(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-583 (-632 (-235)))) (-5 *1 (-141))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1050)) (-5 *3 (-247)) (-5 *1 (-141))))) +(((*1 *2 *3) (-12 (-5 *3 (-1050)) (-5 *2 (-633 (-235))) (-5 *1 (-141))))) +(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-633 (-235)))) (-5 *1 (-141))))) (((*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) (((*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))) (((*1 *2 *1) - (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-973)) (-4 *3 (-1115)) + (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-974)) (-4 *3 (-1116)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *1 *1 *1) (-5 *1 (-134))) - ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-134))))) -(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-134))))) +(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090)))) + (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) ((*1 *1 *1) (-4 *1 (-133)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) + (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1004 *2)) (-4 *2 (-364 *4)) (-4 *4 (-495)) + (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))) (((*1 *1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-483)) (-5 *1 (-132 *2))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-484)) (-5 *1 (-132 *2))))) (((*1 *1 *1) (-4 *1 (-116))) - ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))) + ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-495))))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-496))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-495))))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-496))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-495))))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-496))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-495))))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-496))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-495))))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-496))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) - (-4 *4 (-495))))) -(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) + (-4 *4 (-496))))) +(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))) (((*1 *1) (-5 *1 (-130)))) -(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-130))))) +(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-130))))) (((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 - (-2 (|:| |brans| (-583 (-583 (-854 *4)))) (|:| |xValues| (-1001 *4)) - (|:| |yValues| (-1001 *4)))) - (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 *4))))))) + (-2 (|:| |brans| (-584 (-584 (-855 *4)))) (|:| |xValues| (-1002 *4)) + (|:| |yValues| (-1002 *4)))) + (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-836)) + (-12 (-5 *3 (-837)) (-5 *2 - (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) - (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) + (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) + (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-836)) (-5 *4 (-350 (-484))) + (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485))) (-5 *2 - (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) - (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) + (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) + (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126))))) (((*1 *1 *2) - (-12 (-5 *2 (-830)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) - (-14 *5 (-906 *3 *4))))) + (-12 (-5 *2 (-831)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) + (-14 *5 (-907 *3 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1129))))) + (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -3995)) (-4 *1 (-124 *2)) (-4 *2 (-1129)) - (-4 *2 (-1013))))) + (-12 (|has| *1 (-6 -3996)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) + (-4 *2 (-1014))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) + (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-350 *5)) - (|:| |c2| (-350 *5)) (|:| |deg| (-694)))) - (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1155 (-350 *5)))))) + (|:| |c2| (-350 *5)) (|:| |deg| (-695)))) + (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-350 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1155 *2)) (-4 *2 (-1134)) (-5 *1 (-121 *2 *4 *3)) - (-4 *3 (-1155 (-350 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-350 *6)) (-4 *5 (-1134)) (-4 *6 (-1155 *5)) - (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3954 *3) (|:| |radicand| *6))) - (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-694)) (-4 *7 (-1155 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) - (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-694)))) - (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1155 (-350 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) - (-5 *2 (-2 (|:| -3954 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) - (-4 *3 (-1155 (-350 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-117))))) -(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-117)))) - ((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-117))))) + (-12 (-4 *4 (-1156 *2)) (-4 *2 (-1135)) (-5 *1 (-121 *2 *4 *3)) + (-4 *3 (-1156 (-350 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-350 *6)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) + (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3955 *3) (|:| |radicand| *6))) + (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-695)) (-4 *7 (-1156 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) + (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-695)))) + (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-350 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) + (-5 *2 (-2 (|:| -3955 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) + (-4 *3 (-1156 (-350 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-117))))) +(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-117)))) + ((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-117))))) (((*1 *1) (-5 *1 (-117)))) (((*1 *1) (-5 *1 (-117)))) (((*1 *1) (-5 *1 (-117)))) @@ -13181,997 +13181,997 @@ (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 (-117))) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-114))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 (-117))) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-114))))) (((*1 *1) (-5 *1 (-114)))) (((*1 *1) (-5 *1 (-114)))) (((*1 *1) (-5 *1 (-114)))) (((*1 *1) (-5 *1 (-114)))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-749))) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-750))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-583 (-484))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) - (-14 *4 (-694)) (-4 *5 (-146))))) + (-12 (-5 *2 (-584 (-485))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) + (-14 *4 (-695)) (-4 *5 (-146))))) (((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146))))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146))))) (((*1 *1) - (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146))))) + (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146))))) (((*1 *2 *1) - (-12 (-5 *2 (-583 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) - (-14 *4 (-694)) (-4 *5 (-146))))) + (-12 (-5 *2 (-584 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) + (-14 *4 (-695)) (-4 *5 (-146))))) (((*1 *1 *2) - (-12 (-5 *2 (-583 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) - (-14 *4 (-694))))) -(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-107))))) + (-12 (-5 *2 (-584 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) + (-14 *4 (-695))))) +(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-107))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) (((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) (((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-694)) (-5 *2 (-1185))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-695)) (-5 *2 (-1186))))) (((*1 *1 *1 *1) (|partial| -4 *1 (-104)))) (((*1 *1) (-5 *1 (-103)))) (((*1 *1) (-5 *1 (-103)))) (((*1 *1) (-5 *1 (-103)))) -(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102))))) -(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-102))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102))))) -(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-101))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013)))) - ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-99 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1013))))) +(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102))))) +(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-102))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102))))) +(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-101))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014)))) + ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-99 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1014))))) (((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) (((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-94 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484)))))) -(((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484))))) - ((*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484)))))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484)))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-92 *2)) (-4 *2 (-1129))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3996)) (-4 *1 (-92 *2)) (-4 *2 (-1129))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-312) (-950 (-350 *2)))) (-5 *2 (-484)) (-5 *1 (-88 *4 *3)) - (-4 *3 (-1155 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1013))))) -(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1013))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-94 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) + ((*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485)))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-92 *2)) (-4 *2 (-1130))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-92 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-312) (-951 (-350 *2)))) (-5 *2 (-485)) (-5 *1 (-88 *4 *3)) + (-4 *3 (-1156 *4))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1014))))) +(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1014))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1013)) + (-12 (-5 *2 (-86)) (-5 *3 (-584 (-1 *4 (-584 *4)))) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) + (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-1 *4 (-583 *4)))) - (-5 *1 (-87 *4)) (-4 *4 (-1013))))) -(((*1 *2 *1) (-12 (-5 *2 (-583 (-876))) (-5 *1 (-78)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1073) (-696))) (-5 *1 (-86))))) + (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-1 *4 (-584 *4)))) + (-5 *1 (-87 *4)) (-4 *4 (-1014))))) +(((*1 *2 *1) (-12 (-5 *2 (-584 (-877))) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1074) (-697))) (-5 *1 (-86))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) (((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-85)) (-5 *1 (-86))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-86))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-696)) (-5 *1 (-86)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-696)) (-5 *1 (-86))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1073) (-696))) (-5 *1 (-86))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-79 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-78))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-4 *1 (-76 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-3997 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) - (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2)) - (-4 *4 (-627 *2 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-85)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-86))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-697)) (-5 *1 (-86)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-697)) (-5 *1 (-86))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1074) (-697))) (-5 *1 (-86))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-79 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-78))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-76 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-3998 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) + (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) + (-4 *4 (-628 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-3997 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) - (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2)) - (-4 *4 (-627 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-3998 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) + (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) + (-4 *4 (-628 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) - (-4 *3 (-1155 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))) + (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1156 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) - (-4 *3 (-1155 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-73 *3)) (-4 *3 (-1013))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3))))) + (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1156 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-73 *3)) (-4 *3 (-1014))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1013))))) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1014))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2)))) + (-12 (-5 *3 (-1 (-584 *2) *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))) (((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *4 *3)) - (-4 *3 (-1155 *4)))) + (-4 *3 (-1156 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-583 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-13 (-392) (-120))) + (-12 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-69 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-62 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-69 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-62 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-312)) (-4 *5 (-495)) + (-12 (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 - (-2 (|:| |minor| (-583 (-830))) (|:| -3266 *3) - (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 *3)))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5))))) + (-2 (|:| |minor| (-584 (-831))) (|:| -3267 *3) + (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 *3)))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-1179 (-630 *4))) (-5 *1 (-61 *4 *5)) - (-5 *3 (-630 *4)) (-4 *5 (-600 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-61 *4 *5)) + (-5 *3 (-631 *4)) (-4 *5 (-601 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-495)) - (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1179 (-583 (-830)))))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-58 *3)) (-4 *3 (-1129)))) - ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-58 *3))))) + (-12 (-4 *5 (-496)) + (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 (-584 (-831)))))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-58 *3)) (-4 *3 (-1130)))) + ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-58 *3))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1129)) (-4 *3 (-324 *4)) + (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-324 *4)) (-4 *5 (-324 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1129)) (-4 *5 (-324 *4)) + (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1130)) (-4 *5 (-324 *4)) (-4 *3 (-324 *4))))) (((*1 *1) (-5 *1 (-55)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-583 (-1090))) (-4 *4 (-1013)) - (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4))))))) + (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-1014)) + (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-583 (-987 *4 *5 *2))) (-4 *4 (-1013)) - (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) - (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2)))) + (-12 (-5 *3 (-584 (-988 *4 *5 *2))) (-4 *4 (-1014)) + (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) + (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-583 (-987 *5 *6 *2))) (-5 *4 (-830)) (-4 *5 (-1013)) - (-4 *6 (-13 (-961) (-796 *5) (-553 (-800 *5)))) - (-4 *2 (-13 (-364 *6) (-796 *5) (-553 (-800 *5)))) (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1015)) (-5 *3 (-696)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-51))))) + (-12 (-5 *3 (-584 (-988 *5 *6 *2))) (-5 *4 (-831)) (-4 *5 (-1014)) + (-4 *6 (-13 (-962) (-797 *5) (-554 (-801 *5)))) + (-4 *2 (-13 (-364 *6) (-797 *5) (-554 (-801 *5)))) (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1016)) (-5 *3 (-697)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-697)) (-5 *1 (-51))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) + (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) + (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) + (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) (((*1 *2) - (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) + (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) + (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-86)) (-5 *4 (-694)) (-4 *5 (-13 (-392) (-950 (-484)))) - (-4 *5 (-495)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5)) + (-12 (-5 *3 (-86)) (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485)))) + (-4 *5 (-496)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2998 ((-1039 *5 (-550 $)) $)) - (-15 -2997 ((-1039 *5 (-550 $)) $)) - (-15 -3946 ($ (-1039 *5 (-550 $)))))))))) + (-10 -8 (-15 -2999 ((-1040 *5 (-551 $)) $)) + (-15 -2998 ((-1040 *5 (-551 $)) $)) + (-15 -3947 ($ (-1040 *5 (-551 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2998 ((-1039 *3 (-550 $)) $)) - (-15 -2997 ((-1039 *3 (-550 $)) $)) - (-15 -3946 ($ (-1039 *3 (-550 $)))))))))) + (-10 -8 (-15 -2999 ((-1040 *3 (-551 $)) $)) + (-15 -2998 ((-1040 *3 (-551 $)) $)) + (-15 -3947 ($ (-1040 *3 (-551 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2998 ((-1039 *3 (-550 $)) $)) - (-15 -2997 ((-1039 *3 (-550 $)) $)) - (-15 -3946 ($ (-1039 *3 (-550 $)))))))))) + (-10 -8 (-15 -2999 ((-1040 *3 (-551 $)) $)) + (-15 -2998 ((-1040 *3 (-551 $)) $)) + (-15 -3947 ($ (-1040 *3 (-551 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-392) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2998 ((-1039 *3 (-550 $)) $)) - (-15 -2997 ((-1039 *3 (-550 $)) $)) - (-15 -3946 ($ (-1039 *3 (-550 $)))))))))) + (-10 -8 (-15 -2999 ((-1040 *3 (-551 $)) $)) + (-15 -2998 ((-1040 *3 (-551 $)) $)) + (-15 -3947 ($ (-1040 *3 (-551 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-495)) (-5 *2 (-1085 *3)) (-5 *1 (-41 *4 *3)) + (-12 (-4 *4 (-496)) (-5 *2 (-1086 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-312) (-254) - (-10 -8 (-15 -2998 ((-1039 *4 (-550 $)) $)) - (-15 -2997 ((-1039 *4 (-550 $)) $)) - (-15 -3946 ($ (-1039 *4 (-550 $)))))))))) + (-10 -8 (-15 -2999 ((-1040 *4 (-551 $)) $)) + (-15 -2998 ((-1040 *4 (-551 $)) $)) + (-15 -3947 ($ (-1040 *4 (-551 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2998 ((-1039 *3 (-550 $)) $)) - (-15 -2997 ((-1039 *3 (-550 $)) $)) - (-15 -3946 ($ (-1039 *3 (-550 $))))))))) + (-10 -8 (-15 -2999 ((-1040 *3 (-551 $)) $)) + (-15 -2998 ((-1040 *3 (-551 $)) $)) + (-15 -3947 ($ (-1040 *3 (-551 $))))))))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2998 ((-1039 *3 (-550 $)) $)) - (-15 -2997 ((-1039 *3 (-550 $)) $)) - (-15 -3946 ($ (-1039 *3 (-550 $))))))))) + (-10 -8 (-15 -2999 ((-1040 *3 (-551 $)) $)) + (-15 -2998 ((-1040 *3 (-551 $)) $)) + (-15 -3947 ($ (-1040 *3 (-551 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-583 *2)) + (-12 (-5 *3 (-584 *2)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2998 ((-1039 *4 (-550 $)) $)) - (-15 -2997 ((-1039 *4 (-550 $)) $)) - (-15 -3946 ($ (-1039 *4 (-550 $))))))) - (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))) + (-10 -8 (-15 -2999 ((-1040 *4 (-551 $)) $)) + (-15 -2998 ((-1040 *4 (-551 $)) $)) + (-15 -3947 ($ (-1040 *4 (-551 $))))))) + (-4 *4 (-496)) (-5 *1 (-41 *4 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-583 (-550 *2))) + (-12 (-5 *3 (-584 (-551 *2))) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2998 ((-1039 *4 (-550 $)) $)) - (-15 -2997 ((-1039 *4 (-550 $)) $)) - (-15 -3946 ($ (-1039 *4 (-550 $))))))) - (-4 *4 (-495)) (-5 *1 (-41 *4 *2))))) + (-10 -8 (-15 -2999 ((-1040 *4 (-551 $)) $)) + (-15 -2998 ((-1040 *4 (-551 $)) $)) + (-15 -3947 ($ (-1040 *4 (-551 $))))))) + (-4 *4 (-496)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) - (-10 -8 (-15 -2998 ((-1039 *3 (-550 $)) $)) - (-15 -2997 ((-1039 *3 (-550 $)) $)) - (-15 -3946 ($ (-1039 *3 (-550 $)))))))))) + (-10 -8 (-15 -2999 ((-1040 *3 (-551 $)) $)) + (-15 -2998 ((-1040 *3 (-551 $)) $)) + (-15 -3947 ($ (-1040 *3 (-551 $)))))))))) (((*1 *2 *3) - (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-4 *5 (-1155 *4)) (-5 *2 (-1185)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1155 (-350 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48)))))) + (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *2 (-1186)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1156 (-350 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) - (-5 *2 (-632 (-2 (|:| -3860 *3) (|:| |entry| *4))))))) + (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) + (-5 *2 (-633 (-2 (|:| -3861 *3) (|:| |entry| *4))))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-484)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-950 *4)) - (-4 *3 (-495))))) + (-12 (-5 *4 (-485)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-951 *4)) + (-4 *3 (-496))))) (((*1 *2 *3) - (-12 (-5 *3 (-583 *5)) (-4 *5 (-364 *4)) (-4 *4 (-495)) (-5 *2 (-772)) + (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-496)) (-5 *2 (-773)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1085 *2)) (-4 *2 (-364 *4)) (-4 *4 (-495)) + (-12 (-5 *3 (-1086 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) (-5 *1 (-32 *4 *2))))) (((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-857 (-484))) (-5 *3 (-1090)) (-5 *4 (-1001 (-350 (-484)))) + (-12 (-5 *2 (-858 (-485))) (-5 *3 (-1091)) (-5 *4 (-1002 (-350 (-485)))) (-5 *1 (-30))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) + (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1090)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) + (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3))))) + (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))) -((-1214 . 631475) (-1215 . 631079) (-1216 . 630777) (-1217 . 630381) - (-1218 . 630260) (-1219 . 630158) (-1220 . 630045) (-1221 . 629929) - (-1222 . 629876) (-1223 . 629742) (-1224 . 629667) (-1225 . 629511) - (-1226 . 629283) (-1227 . 628319) (-1228 . 628072) (-1229 . 627788) - (-1230 . 627504) (-1231 . 627220) (-1232 . 626901) (-1233 . 626809) - (-1234 . 626717) (-1235 . 626625) (-1236 . 626533) (-1237 . 626441) - (-1238 . 626349) (-1239 . 626254) (-1240 . 626159) (-1241 . 626067) - (-1242 . 625975) (-1243 . 625883) (-1244 . 625791) (-1245 . 625699) - (-1246 . 625597) (-1247 . 625495) (-1248 . 625393) (-1249 . 625301) - (-1250 . 625250) (-1251 . 625198) (-1252 . 625128) (-1253 . 624708) - (-1254 . 624514) (-1255 . 624487) (-1256 . 624364) (-1257 . 624241) - (-1258 . 624097) (-1259 . 623927) (-1260 . 623803) (-1261 . 623564) - (-1262 . 623491) (-1263 . 623266) (-1264 . 623020) (-1265 . 622967) - (-1266 . 622789) (-1267 . 622620) (-1268 . 622544) (-1269 . 622471) - (-1270 . 622318) (-1271 . 622165) (-1272 . 621981) (-1273 . 621800) - (-1274 . 621745) (-1275 . 621690) (-1276 . 621617) (-1277 . 621541) - (-1278 . 621464) (-1279 . 621396) (-1280 . 621253) (-1281 . 621146) - (-1282 . 621078) (-1283 . 621008) (-1284 . 620938) (-1285 . 620888) - (-1286 . 620838) (-1287 . 620788) (-1288 . 620667) (-1289 . 620351) - (-1290 . 620282) (-1291 . 620203) (-1292 . 620084) (-1293 . 620004) - (-1294 . 619924) (-1295 . 619771) (-1296 . 619622) (-1297 . 619546) - (-1298 . 619489) (-1299 . 619417) (-1300 . 619354) (-1301 . 619291) - (-1302 . 619230) (-1303 . 619158) (-1304 . 619042) (-1305 . 618990) - (-1306 . 618935) (-1307 . 618883) (-1308 . 618831) (-1309 . 618803) - (-1310 . 618775) (-1311 . 618747) (-1312 . 618703) (-1313 . 618632) - (-1314 . 618581) (-1315 . 618533) (-1316 . 618482) (-1317 . 618430) - (-1318 . 618314) (-1319 . 618198) (-1320 . 618106) (-1321 . 618014) - (-1322 . 617891) (-1323 . 617825) (-1324 . 617759) (-1325 . 617700) - (-1326 . 617672) (-1327 . 617644) (-1328 . 617616) (-1329 . 617588) - (-1330 . 617478) (-1331 . 617427) (-1332 . 617376) (-1333 . 617325) - (-1334 . 617274) (-1335 . 617223) (-1336 . 617172) (-1337 . 617144) - (-1338 . 617116) (-1339 . 617088) (-1340 . 617060) (-1341 . 617032) - (-1342 . 617004) (-1343 . 616976) (-1344 . 616948) (-1345 . 616920) - (-1346 . 616817) (-1347 . 616765) (-1348 . 616599) (-1349 . 616415) - (-1350 . 616204) (-1351 . 616089) (-1352 . 615856) (-1353 . 615757) - (-1354 . 615664) (-1355 . 615549) (-1356 . 615151) (-1357 . 614933) - (-1358 . 614884) (-1359 . 614856) (-1360 . 614780) (-1361 . 614681) - (-1362 . 614582) (-1363 . 614483) (-1364 . 614384) (-1365 . 614285) - (-1366 . 614186) (-1367 . 614028) (-1368 . 613952) (-1369 . 613785) - (-1370 . 613727) (-1371 . 613669) (-1372 . 613360) (-1373 . 613106) - (-1374 . 613022) (-1375 . 612890) (-1376 . 612832) (-1377 . 612780) - (-1378 . 612698) (-1379 . 612623) (-1380 . 612552) (-1381 . 612498) - (-1382 . 612447) (-1383 . 612373) (-1384 . 612299) (-1385 . 612218) - (-1386 . 612137) (-1387 . 612082) (-1388 . 612008) (-1389 . 611934) - (-1390 . 611860) (-1391 . 611783) (-1392 . 611729) (-1393 . 611671) - (-1394 . 611572) (-1395 . 611473) (-1396 . 611374) (-1397 . 611275) - (-1398 . 611176) (-1399 . 611077) (-1400 . 610978) (-1401 . 610864) - (-1402 . 610750) (-1403 . 610636) (-1404 . 610522) (-1405 . 610408) - (-1406 . 610294) (-1407 . 610177) (-1408 . 610101) (-1409 . 610025) - (-1410 . 609638) (-1411 . 609293) (-1412 . 609191) (-1413 . 608930) - (-1414 . 608828) (-1415 . 608623) (-1416 . 608510) (-1417 . 608408) - (-1418 . 608251) (-1419 . 608162) (-1420 . 608068) (-1421 . 607988) - (-1422 . 607914) (-1423 . 607836) (-1424 . 607777) (-1425 . 607719) - (-1426 . 607617) (-7 . 607589) (-8 . 607561) (-9 . 607533) (-1430 . 607414) - (-1431 . 607332) (-1432 . 607250) (-1433 . 607168) (-1434 . 607086) - (-1435 . 607004) (-1436 . 606910) (-1437 . 606840) (-1438 . 606770) - (-1439 . 606679) (-1440 . 606585) (-1441 . 606503) (-1442 . 606421) - (-1443 . 606323) (-1444 . 606163) (-1445 . 605965) (-1446 . 605829) - (-1447 . 605729) (-1448 . 605629) (-1449 . 605536) (-1450 . 605477) - (-1451 . 605144) (-1452 . 605044) (-1453 . 604926) (-1454 . 604714) - (-1455 . 604535) (-1456 . 604377) (-1457 . 604174) (-1458 . 603756) - (-1459 . 603705) (-1460 . 603596) (-1461 . 603481) (-1462 . 603412) - (-1463 . 603343) (-1464 . 603274) (-1465 . 603208) (-1466 . 603083) - (-1467 . 602866) (-1468 . 602788) (-1469 . 602738) (-1470 . 602667) - (-1471 . 602524) (-1472 . 602383) (-1473 . 602302) (-1474 . 602221) - (-1475 . 602165) (-1476 . 602109) (-1477 . 602036) (-1478 . 601896) - (-1479 . 601843) (-1480 . 601784) (-1481 . 601725) (-1482 . 601570) - (-1483 . 601518) (-1484 . 601401) (-1485 . 601284) (-1486 . 601167) - (-1487 . 601036) (-1488 . 600757) (-1489 . 600622) (-1490 . 600566) - (-1491 . 600510) (-1492 . 600451) (-1493 . 600392) (-1494 . 600336) - (-1495 . 600280) (-1496 . 600083) (-1497 . 597741) (-1498 . 597614) - (-1499 . 597469) (-1500 . 597341) (-1501 . 597289) (-1502 . 597237) - (-1503 . 597185) (-1504 . 593147) (-1505 . 593053) (-1506 . 592914) - (-1507 . 592705) (-1508 . 592603) (-1509 . 592501) (-1510 . 591586) - (-1511 . 591510) (-1512 . 591381) (-1513 . 591256) (-1514 . 591179) - (-1515 . 591102) (-1516 . 590975) (-1517 . 590848) (-1518 . 590682) - (-1519 . 590555) (-1520 . 590428) (-1521 . 590211) (-1522 . 589777) - (-1523 . 589413) (-1524 . 589361) (-1525 . 589302) (-1526 . 589214) - (-1527 . 589126) (-1528 . 589035) (-1529 . 588944) (-1530 . 588853) - (-1531 . 588762) (-1532 . 588671) (-1533 . 588580) (-1534 . 588489) - (-1535 . 588398) (-1536 . 588307) (-1537 . 588216) (-1538 . 588125) - (-1539 . 588034) (-1540 . 587943) (-1541 . 587852) (-1542 . 587761) - (-1543 . 587670) (-1544 . 587579) (-1545 . 587488) (-1546 . 587397) - (-1547 . 587306) (-1548 . 587215) (-1549 . 587124) (-1550 . 587033) - (-1551 . 586942) (-1552 . 586851) (-1553 . 586760) (-1554 . 586598) - (-1555 . 586490) (-1556 . 586247) (-1557 . 585960) (-1558 . 585765) - (-1559 . 585609) (-1560 . 585449) (-1561 . 585398) (-1562 . 585336) - (-1563 . 585285) (-1564 . 585222) (-1565 . 585169) (-1566 . 585117) - (-1567 . 585065) (-1568 . 585013) (-1569 . 584923) (-1570 . 584736) - (-1571 . 584582) (-1572 . 584502) (-1573 . 584422) (-1574 . 584342) - (-1575 . 584212) (-1576 . 583980) (-1577 . 583952) (-1578 . 583924) - (-1579 . 583896) (-1580 . 583816) (-1581 . 583739) (-1582 . 583662) - (-1583 . 583581) (-1584 . 583522) (-1585 . 583364) (-1586 . 583171) - (-1587 . 582686) (-1588 . 582444) (-1589 . 582182) (-1590 . 582081) - (-1591 . 582000) (-1592 . 581919) (-1593 . 581849) (-1594 . 581779) - (-1595 . 581621) (-1596 . 581317) (-1597 . 581089) (-1598 . 580967) - (-1599 . 580909) (-1600 . 580847) (-1601 . 580785) (-1602 . 580720) - (-1603 . 580658) (-1604 . 580379) (-1605 . 580311) (-1606 . 580101) - (-1607 . 580049) (-1608 . 579995) (-1609 . 579904) (-1610 . 579817) - (-1611 . 578070) (-1612 . 577991) (-1613 . 577246) (-1614 . 577129) - (-1615 . 576923) (-1616 . 576762) (-1617 . 576601) (-1618 . 576441) - (-1619 . 576303) (-1620 . 576209) (-1621 . 576111) (-1622 . 576017) - (-1623 . 575903) (-1624 . 575821) (-1625 . 575724) (-1626 . 575528) - (-1627 . 575437) (-1628 . 575343) (-1629 . 575276) (-1630 . 575207) - (-1631 . 575155) (-1632 . 575096) (-1633 . 575022) (-1634 . 574970) - (-1635 . 574813) (-1636 . 574656) (-1637 . 574504) (-1638 . 573746) - (-1639 . 573435) (-1640 . 573083) (-1641 . 572866) (-1642 . 572603) - (-1643 . 572228) (-1644 . 572044) (-1645 . 571910) (-1646 . 571744) - (-1647 . 571578) (-1648 . 571444) (-1649 . 571310) (-1650 . 571176) - (-1651 . 571042) (-1652 . 570911) (-1653 . 570780) (-1654 . 570649) - (-1655 . 570269) (-1656 . 570143) (-1657 . 570015) (-1658 . 569765) - (-1659 . 569642) (-1660 . 569392) (-1661 . 569269) (-1662 . 569019) - (-1663 . 568896) (-1664 . 568613) (-1665 . 568342) (-1666 . 568069) - (-1667 . 567771) (-1668 . 567669) (-1669 . 567524) (-1670 . 567383) - (-1671 . 567232) (-1672 . 567071) (-1673 . 566983) (-1674 . 566955) - (-1675 . 566873) (-1676 . 566776) (-1677 . 566308) (-1678 . 565957) - (-1679 . 565524) (-1680 . 565385) (-1681 . 565315) (-1682 . 565245) - (-1683 . 565175) (-1684 . 565084) (-1685 . 564993) (-1686 . 564902) - (-1687 . 564811) (-1688 . 564720) (-1689 . 564634) (-1690 . 564548) - (-1691 . 564462) (-1692 . 564376) (-1693 . 564290) (-1694 . 564216) - (-1695 . 564111) (-1696 . 563885) (-1697 . 563807) (-1698 . 563732) - (-1699 . 563639) (-1700 . 563535) (-1701 . 563439) (-1702 . 563270) - (-1703 . 563193) (-1704 . 563116) (-1705 . 563025) (-1706 . 562934) - (-1707 . 562734) (-1708 . 562581) (-1709 . 562428) (-1710 . 562275) - (-1711 . 562122) (-1712 . 561969) (-1713 . 561816) (-1714 . 561750) - (-1715 . 561597) (-1716 . 561444) (-1717 . 561291) (-1718 . 561138) - (-1719 . 560985) (-1720 . 560832) (-1721 . 560679) (-1722 . 560526) - (-1723 . 560452) (-1724 . 560378) (-1725 . 560323) (-1726 . 560268) - (-1727 . 560213) (-1728 . 560158) (-1729 . 560087) (-1730 . 559883) - (-1731 . 559782) (-1732 . 559594) (-1733 . 559501) (-1734 . 559365) - (-1735 . 559229) (-1736 . 559093) (-1737 . 559025) (-1738 . 558909) - (-1739 . 558793) (-1740 . 558677) (-1741 . 558624) (-1742 . 558539) - (-1743 . 558454) (-1744 . 558146) (-1745 . 558091) (-1746 . 557439) - (-1747 . 557124) (-1748 . 556840) (-1749 . 556722) (-1750 . 556603) - (-1751 . 556544) (-1752 . 556485) (-1753 . 556434) (-1754 . 556383) - (-1755 . 556332) (-1756 . 556279) (-1757 . 556226) (-1758 . 556167) - (-1759 . 556054) (-1760 . 555941) (-1761 . 555774) (-1762 . 555682) - (-1763 . 555569) (-1764 . 555485) (-1765 . 555370) (-1766 . 555279) - (-1767 . 555188) (-1768 . 555067) (-1769 . 554880) (-1770 . 554828) - (-1771 . 554773) (-1772 . 554586) (-1773 . 554463) (-1774 . 554390) - (-1775 . 554317) (-1776 . 554197) (-1777 . 554124) (-1778 . 554051) - (-1779 . 553711) (-1780 . 553638) (-1781 . 553418) (-1782 . 553085) - (-1783 . 552902) (-1784 . 552759) (-1785 . 552399) (-1786 . 552231) - (-1787 . 552063) (-1788 . 551807) (-1789 . 551551) (-1790 . 551356) - (-1791 . 551161) (-1792 . 550567) (-1793 . 550491) (-1794 . 550352) - (-1795 . 549945) (-1796 . 549818) (-1797 . 549661) (-1798 . 549344) - (-1799 . 548864) (-1800 . 548384) (-1801 . 547882) (-1802 . 547814) - (-1803 . 547743) (-1804 . 547672) (-1805 . 547500) (-1806 . 547381) - (-1807 . 547262) (-1808 . 547186) (-1809 . 547110) (-1810 . 546837) - (-1811 . 546723) (-1812 . 546672) (-1813 . 546621) (-1814 . 546570) - (-1815 . 546519) (-1816 . 546468) (-1817 . 546327) (-1818 . 546154) - (-1819 . 545923) (-1820 . 545737) (-1821 . 545709) (-1822 . 545681) - (-1823 . 545653) (-1824 . 545625) (-1825 . 545597) (-1826 . 545569) - (-1827 . 545541) (-1828 . 545490) (-1829 . 545424) (-1830 . 545334) - (-1831 . 544963) (-1832 . 544812) (-1833 . 544661) (-1834 . 544456) - (-1835 . 544334) (-1836 . 544260) (-1837 . 544183) (-1838 . 544109) - (-1839 . 544032) (-1840 . 543955) (-1841 . 543881) (-1842 . 543804) - (-1843 . 543571) (-1844 . 543418) (-1845 . 543123) (-1846 . 542970) - (-1847 . 542648) (-1848 . 542510) (-1849 . 542372) (-1850 . 542292) - (-1851 . 542212) (-1852 . 541948) (-1853 . 541217) (-1854 . 541081) - (-1855 . 540991) (-1856 . 540856) (-1857 . 540789) (-1858 . 540721) - (-1859 . 540634) (-1860 . 540547) (-1861 . 540380) (-1862 . 540306) - (-1863 . 540162) (-1864 . 539702) (-1865 . 539323) (-1866 . 538561) - (-1867 . 538417) (-1868 . 538273) (-1869 . 538111) (-1870 . 537874) - (-1871 . 537734) (-1872 . 537588) (-1873 . 537349) (-1874 . 537113) - (-1875 . 536874) (-1876 . 536682) (-1877 . 536559) (-1878 . 536355) - (-1879 . 536132) (-1880 . 535893) (-1881 . 535752) (-1882 . 535614) - (-1883 . 535475) (-1884 . 535222) (-1885 . 534966) (-1886 . 534809) - (-1887 . 534655) (-1888 . 534415) (-1889 . 534130) (-1890 . 533992) - (-1891 . 533905) (-1892 . 533239) (-1893 . 533063) (-1894 . 532881) - (-1895 . 532705) (-1896 . 532523) (-1897 . 532344) (-1898 . 532165) - (-1899 . 531978) (-1900 . 531596) (-1901 . 531417) (-1902 . 531238) - (-1903 . 531051) (-1904 . 530669) (-1905 . 529676) (-1906 . 529292) - (-1907 . 528908) (-1908 . 528790) (-1909 . 528633) (-1910 . 528491) - (-1911 . 528374) (-1912 . 528192) (-1913 . 528068) (-1914 . 527779) - (-1915 . 527490) (-1916 . 527207) (-1917 . 526924) (-1918 . 526646) - (-1919 . 526558) (-1920 . 526473) (-1921 . 526376) (-1922 . 526279) - (-1923 . 526059) (-1924 . 525959) (-1925 . 525856) (-1926 . 525778) - (-1927 . 525453) (-1928 . 525161) (-1929 . 525088) (-1930 . 524703) - (-1931 . 524675) (-1932 . 524476) (-1933 . 524302) (-1934 . 524061) - (-1935 . 524006) (-1936 . 523931) (-1937 . 523563) (-1938 . 523448) - (-1939 . 523371) (-1940 . 523298) (-1941 . 523217) (-1942 . 523136) - (-1943 . 523055) (-1944 . 522954) (-1945 . 522895) (-1946 . 522475) - (-1947 . 522258) (-1948 . 522041) (-1949 . 521988) (-1950 . 521934) - (-1951 . 521602) (-1952 . 521278) (-1953 . 521090) (-1954 . 520899) - (-1955 . 520735) (-1956 . 520400) (-1957 . 520233) (-1958 . 519992) - (-1959 . 519668) (-1960 . 519478) (-1961 . 519263) (-1962 . 519092) - (-1963 . 518670) (-1964 . 518443) (-1965 . 518172) (-1966 . 518035) - (-1967 . 517894) (-1968 . 517417) (-1969 . 517294) (-1970 . 517058) - (-1971 . 516804) (-1972 . 516554) (-1973 . 516261) (-1974 . 516121) - (-1975 . 515981) (-1976 . 515841) (-1977 . 515652) (-1978 . 515463) - (-1979 . 515288) (-1980 . 515014) (-1981 . 514579) (-1982 . 514551) - (-1983 . 514479) (-1984 . 514346) (-1985 . 514271) (-1986 . 514112) - (-1987 . 513949) (-1988 . 513788) (-1989 . 513621) (-1990 . 513568) - (-1991 . 513515) (-1992 . 513386) (-1993 . 513326) (-1994 . 513273) - (-1995 . 513203) (-1996 . 513143) (-1997 . 513084) (-1998 . 513024) - (-1999 . 512965) (-2000 . 512905) (-2001 . 512846) (-2002 . 512787) - (-2003 . 512645) (-2004 . 512550) (-2005 . 512459) (-2006 . 512343) - (-2007 . 512249) (-2008 . 512151) (-2009 . 512057) (-2010 . 511916) - (-2011 . 511654) (-2012 . 510798) (-2013 . 510642) (-2014 . 510273) - (-2015 . 510217) (-2016 . 510166) (-2017 . 510063) (-2018 . 509978) - (-2019 . 509890) (-2020 . 509744) (-2021 . 509595) (-2022 . 509305) - (-2023 . 509227) (-2024 . 509152) (-2025 . 509099) (-2026 . 509046) - (-2027 . 509015) (-2028 . 508952) (-2029 . 508834) (-2030 . 508745) - (-2031 . 508625) (-2032 . 508330) (-2033 . 508136) (-2034 . 507948) - (-2035 . 507803) (-2036 . 507658) (-2037 . 507372) (-2038 . 506930) - (-2039 . 506896) (-2040 . 506859) (-2041 . 506822) (-2042 . 506785) - (-2043 . 506748) (-2044 . 506717) (-2045 . 506686) (-2046 . 506655) - (-2047 . 506621) (-2048 . 506587) (-2049 . 506533) (-2050 . 506357) - (-2051 . 506123) (-2052 . 505889) (-2053 . 505660) (-2054 . 505608) - (-2055 . 505553) (-2056 . 505484) (-2057 . 505396) (-2058 . 505327) - (-2059 . 505255) (-2060 . 505025) (-2061 . 504974) (-2062 . 504920) - (-2063 . 504889) (-2064 . 504783) (-2065 . 504558) (-2066 . 504248) - (-2067 . 504074) (-2068 . 503892) (-2069 . 503621) (-2070 . 503548) - (-2071 . 503483) (-2072 . 503007) (-2073 . 502445) (-2074 . 501719) - (-2075 . 501158) (-2076 . 500530) (-2077 . 499951) (-2078 . 499877) - (-2079 . 499825) (-2080 . 499773) (-2081 . 499699) (-2082 . 499644) - (-2083 . 499592) (-2084 . 499540) (-2085 . 499488) (-2086 . 499418) - (-2087 . 498970) (-2088 . 498764) (-2089 . 498515) (-2090 . 498181) - (-2091 . 497927) (-2092 . 497625) (-2093 . 497422) (-2094 . 497133) - (-2095 . 496585) (-2096 . 496448) (-2097 . 496246) (-2098 . 495966) - (-2099 . 495881) (-2100 . 495548) (-2101 . 495407) (-2102 . 495116) - (-2103 . 494896) (-2104 . 494770) (-2105 . 494645) (-2106 . 494498) - (-2107 . 494354) (-2108 . 494238) (-2109 . 494107) (-2110 . 493735) - (-2111 . 493475) (-2112 . 493205) (-2113 . 492965) (-2114 . 492635) - (-2115 . 492295) (-2116 . 491887) (-2117 . 491469) (-2118 . 491272) - (-2119 . 490997) (-2120 . 490829) (-2121 . 490633) (-2122 . 490411) - (-2123 . 490256) (-2124 . 490071) (-2125 . 489968) (-2126 . 489940) - (-2127 . 489912) (-2128 . 489738) (-2129 . 489664) (-2130 . 489603) - (-2131 . 489550) (-2132 . 489481) (-2133 . 489412) (-2134 . 489293) - (-2135 . 489115) (-2136 . 489060) (-2137 . 488814) (-2138 . 488741) - (-2139 . 488671) (-2140 . 488601) (-2141 . 488512) (-2142 . 488322) - (-2143 . 488249) (-2144 . 488180) (-2145 . 488115) (-2146 . 488060) - (-2147 . 487969) (-2148 . 487678) (-2149 . 487352) (-2150 . 487278) - (-2151 . 486956) (-2152 . 486751) (-2153 . 486666) (-2154 . 486581) - (-2155 . 486496) (-2156 . 486411) (-2157 . 486326) (-2158 . 486241) - (-2159 . 486156) (-2160 . 486071) (-2161 . 485986) (-2162 . 485901) - (-2163 . 485816) (-2164 . 485731) (-2165 . 485646) (-2166 . 485561) - (-2167 . 485476) (-2168 . 485391) (-2169 . 485306) (-2170 . 485221) - (-2171 . 485136) (-2172 . 485051) (-2173 . 484966) (-2174 . 484881) - (-2175 . 484796) (-2176 . 484711) (-2177 . 484626) (-2178 . 484541) - (-2179 . 484439) (-2180 . 484351) (-2181 . 484143) (-2182 . 484085) - (-2183 . 484030) (-2184 . 483943) (-2185 . 483832) (-2186 . 483746) - (-2187 . 483600) (-2188 . 483538) (-2189 . 483510) (-2190 . 483482) - (-2191 . 483454) (-2192 . 483426) (-2193 . 483257) (-2194 . 483106) - (-2195 . 482955) (-2196 . 482783) (-2197 . 482575) (-2198 . 482451) - (-2199 . 482243) (-2200 . 482151) (-2201 . 482059) (-2202 . 481924) - (-2203 . 481829) (-2204 . 481735) (-2205 . 481640) (-2206 . 481516) - (-2207 . 481488) (-2208 . 481460) (-2209 . 481432) (-2210 . 481404) - (-2211 . 481376) (-2212 . 481348) (-2213 . 481320) (-2214 . 481292) - (-2215 . 481264) (-2216 . 481236) (-2217 . 481208) (-2218 . 481180) - (-2219 . 481152) (-2220 . 481124) (-2221 . 481096) (-2222 . 481068) - (-2223 . 481015) (-2224 . 480987) (-2225 . 480959) (-2226 . 480881) - (-2227 . 480828) (-2228 . 480775) (-2229 . 480722) (-2230 . 480644) - (-2231 . 480554) (-2232 . 480459) (-2233 . 480365) (-2234 . 480283) - (-2235 . 479977) (-2236 . 479781) (-2237 . 479686) (-2238 . 479578) - (-2239 . 479167) (-2240 . 479139) (-2241 . 478975) (-2242 . 478898) - (-2243 . 478711) (-2244 . 478532) (-2245 . 478108) (-2246 . 477956) - (-2247 . 477776) (-2248 . 477603) (-2249 . 477343) (-2250 . 477091) - (-2251 . 476280) (-2252 . 476113) (-2253 . 475895) (-2254 . 475071) - (-2255 . 474940) (-2256 . 474809) (-2257 . 474678) (-2258 . 474547) - (-2259 . 474416) (-2260 . 474285) (-2261 . 474090) (-2262 . 473896) - (-2263 . 473753) (-2264 . 473438) (-2265 . 473323) (-2266 . 472983) - (-2267 . 472823) (-2268 . 472684) (-2269 . 472545) (-2270 . 472416) - (-2271 . 472331) (-2272 . 472279) (-2273 . 471799) (-2274 . 470537) - (-2275 . 470410) (-2276 . 470268) (-2277 . 469932) (-2278 . 469827) - (-2279 . 469578) (-2280 . 469346) (-2281 . 469241) (-2282 . 469166) - (-2283 . 469091) (-2284 . 469016) (-2285 . 468957) (-2286 . 468887) - (-2287 . 468834) (-2288 . 468772) (-2289 . 468702) (-2290 . 468339) - (-2291 . 468052) (-2292 . 467942) (-2293 . 467755) (-2294 . 467662) - (-2295 . 467569) (-2296 . 467482) (-2297 . 467262) (-2298 . 467043) - (-2299 . 466625) (-2300 . 466353) (-2301 . 466210) (-2302 . 466117) - (-2303 . 465974) (-2304 . 465822) (-2305 . 465668) (-2306 . 465598) - (-2307 . 465391) (-2308 . 465214) (-2309 . 465005) (-2310 . 464828) - (-2311 . 464794) (-2312 . 464760) (-2313 . 464729) (-2314 . 464611) - (-2315 . 464298) (-2316 . 464020) (-2317 . 463899) (-2318 . 463772) - (-2319 . 463687) (-2320 . 463614) (-2321 . 463525) (-2322 . 463454) - (-2323 . 463398) (-2324 . 463342) (-2325 . 463286) (-2326 . 463216) - (-2327 . 463146) (-2328 . 463076) (-2329 . 462978) (-2330 . 462900) - (-2331 . 462822) (-2332 . 462679) (-2333 . 462600) (-2334 . 462528) - (-2335 . 462325) (-2336 . 462269) (-2337 . 462081) (-2338 . 461982) - (-2339 . 461864) (-2340 . 461743) (-2341 . 461600) (-2342 . 461457) - (-2343 . 461317) (-2344 . 461177) (-2345 . 461034) (-2346 . 460908) - (-2347 . 460779) (-2348 . 460656) (-2349 . 460533) (-2350 . 460428) - (-2351 . 460323) (-2352 . 460221) (-2353 . 460071) (-2354 . 459918) - (-2355 . 459765) (-2356 . 459621) (-2357 . 459467) (-2358 . 459391) - (-2359 . 459312) (-2360 . 459159) (-2361 . 459080) (-2362 . 459001) - (-2363 . 458922) (-2364 . 458820) (-2365 . 458761) (-2366 . 458699) - (-2367 . 458582) (-2368 . 458456) (-2369 . 458379) (-2370 . 458247) - (-2371 . 457941) (-2372 . 457758) (-2373 . 457213) (-2374 . 456993) - (-2375 . 456819) (-2376 . 456649) (-2377 . 456576) (-2378 . 456500) - (-2379 . 456421) (-2380 . 456124) (-2381 . 455962) (-2382 . 455728) - (-2383 . 455286) (-2384 . 455156) (-2385 . 455016) (-2386 . 454707) - (-2387 . 454405) (-2388 . 454089) (-2389 . 453683) (-2390 . 453615) - (-2391 . 453547) (-2392 . 453479) (-2393 . 453385) (-2394 . 453278) - (-2395 . 453171) (-2396 . 453070) (-2397 . 452969) (-2398 . 452868) - (-2399 . 452791) (-2400 . 452398) (-2401 . 451981) (-2402 . 451354) - (-2403 . 451290) (-2404 . 451171) (-2405 . 451052) (-2406 . 450944) - (-2407 . 450836) (-2408 . 450680) (-2409 . 450080) (-2410 . 449797) - (-2411 . 449718) (-2412 . 449664) (-2413 . 449496) (-2414 . 449374) - (-2415 . 448978) (-2416 . 448742) (-2417 . 448541) (-2418 . 448333) - (-2419 . 448140) (-2420 . 447873) (-2421 . 447694) (-2422 . 447625) - (-2423 . 447549) (-2424 . 447408) (-2425 . 447205) (-2426 . 447061) - (-2427 . 446811) (-2428 . 446503) (-2429 . 446147) (-2430 . 445988) - (-2431 . 445782) (-2432 . 445622) (-2433 . 445549) (-2434 . 445515) - (-2435 . 445450) (-2436 . 445413) (-2437 . 445276) (-2438 . 445038) - (-2439 . 444968) (-2440 . 444782) (-2441 . 444533) (-2442 . 444377) - (-2443 . 443854) (-2444 . 443657) (-2445 . 443445) (-2446 . 443283) - (-2447 . 442884) (-2448 . 442717) (-2449 . 441642) (-2450 . 441519) - (-2451 . 441302) (-2452 . 441172) (-2453 . 441042) (-2454 . 440885) - (-2455 . 440782) (-2456 . 440724) (-2457 . 440666) (-2458 . 440560) - (-2459 . 440454) (-2460 . 439538) (-2461 . 437411) (-2462 . 436597) - (-2463 . 434794) (-2464 . 434726) (-2465 . 434658) (-2466 . 434590) - (-2467 . 434522) (-2468 . 434454) (-2469 . 434376) (-2470 . 434020) - (-2471 . 433838) (-2472 . 433299) (-2473 . 433123) (-2474 . 432902) - (-2475 . 432681) (-2476 . 432460) (-2477 . 432242) (-2478 . 432024) - (-2479 . 431806) (-2480 . 431588) (-2481 . 431370) (-2482 . 431152) - (-2483 . 431051) (-2484 . 430318) (-2485 . 430263) (-2486 . 430208) - (-2487 . 430153) (-2488 . 430098) (-2489 . 429948) (-2490 . 429700) - (-2491 . 429539) (-2492 . 429359) (-2493 . 429072) (-2494 . 428686) - (-2495 . 427814) (-2496 . 427474) (-2497 . 427306) (-2498 . 427084) - (-2499 . 426834) (-2500 . 426486) (-2501 . 425476) (-2502 . 425165) - (-2503 . 424953) (-2504 . 424389) (-2505 . 423876) (-2506 . 422120) - (-2507 . 421648) (-2508 . 421049) (-2509 . 420799) (-2510 . 420665) - (-2511 . 420453) (-2512 . 420377) (-2513 . 420301) (-2514 . 420194) - (-2515 . 420012) (-2516 . 419847) (-2517 . 419669) (-2518 . 419088) - (-2519 . 418927) (-2520 . 418354) (-2521 . 418284) (-2522 . 418209) - (-2523 . 418137) (-2524 . 417999) (-2525 . 417812) (-2526 . 417705) - (-2527 . 417598) (-2528 . 417483) (-2529 . 417368) (-2530 . 417253) - (-2531 . 416975) (-2532 . 416825) (-2533 . 416682) (-2534 . 416609) - (-2535 . 416524) (-2536 . 416451) (-2537 . 416378) (-2538 . 416305) - (-2539 . 416162) (-2540 . 416012) (-2541 . 415838) (-2542 . 415688) - (-2543 . 415538) (-2544 . 415412) (-2545 . 415026) (-2546 . 414742) - (-2547 . 414458) (-2548 . 414049) (-2549 . 413765) (-2550 . 413692) - (-2551 . 413545) (-2552 . 413439) (-2553 . 413365) (-2554 . 413295) - (-2555 . 413216) (-2556 . 413139) (-2557 . 413062) (-2558 . 412913) - (-2559 . 412810) (-2560 . 412752) (-2561 . 412688) (-2562 . 412624) - (-2563 . 412527) (-2564 . 412430) (-2565 . 412270) (-2566 . 412184) - (-2567 . 412098) (-2568 . 412013) (-2569 . 411954) (-2570 . 411895) - (-2571 . 411836) (-2572 . 411777) (-2573 . 411607) (-2574 . 411519) - (-2575 . 411422) (-2576 . 411388) (-2577 . 411357) (-2578 . 411273) - (-2579 . 411217) (-2580 . 411155) (-2581 . 411121) (-2582 . 411087) - (-2583 . 411053) (-2584 . 411019) (-2585 . 410985) (-2586 . 410951) - (-2587 . 410917) (-2588 . 410883) (-2589 . 410849) (-2590 . 410737) - (-2591 . 410703) (-2592 . 410652) (-2593 . 410618) (-2594 . 410521) - (-2595 . 410459) (-2596 . 410368) (-2597 . 410277) (-2598 . 410222) - (-2599 . 410170) (-2600 . 410118) (-2601 . 410066) (-2602 . 410014) - (-2603 . 409591) (-2604 . 409425) (-2605 . 409372) (-2606 . 409303) - (-2607 . 409250) (-2608 . 408948) (-2609 . 408792) (-2610 . 408271) - (-2611 . 408130) (-2612 . 408096) (-2613 . 408041) (-2614 . 407331) - (-2615 . 407016) (-2616 . 406512) (-2617 . 406434) (-2618 . 406382) - (-2619 . 406330) (-2620 . 406146) (-2621 . 406094) (-2622 . 406042) - (-2623 . 405966) (-2624 . 405904) (-2625 . 405686) (-2626 . 405619) - (-2627 . 405525) (-2628 . 405431) (-2629 . 405248) (-2630 . 405166) - (-2631 . 405044) (-2632 . 404898) (-2633 . 404247) (-2634 . 403545) - (-2635 . 403441) (-2636 . 403340) (-2637 . 403239) (-2638 . 403128) - (-2639 . 402960) (-2640 . 402756) (-2641 . 402663) (-2642 . 402586) - (-2643 . 402530) (-2644 . 402460) (-2645 . 402340) (-2646 . 402239) - (-2647 . 402142) (-2648 . 402062) (-2649 . 401982) (-2650 . 401905) - (-2651 . 401835) (-2652 . 401765) (-2653 . 401695) (-2654 . 401625) - (-2655 . 401555) (-2656 . 401485) (-2657 . 401392) (-2658 . 401264) - (-2659 . 401022) (-2660 . 400852) (-2661 . 400483) (-2662 . 400314) - (-2663 . 400198) (-2664 . 399702) (-2665 . 399321) (-2666 . 399075) - (-2667 . 398983) (-2668 . 398886) (-2669 . 398224) (-2670 . 398111) - (-2671 . 398037) (-2672 . 397945) (-2673 . 397755) (-2674 . 397565) - (-2675 . 397494) (-2676 . 397423) (-2677 . 397342) (-2678 . 397261) - (-2679 . 397136) (-2680 . 397003) (-2681 . 396922) (-2682 . 396848) - (-2683 . 396683) (-2684 . 396526) (-2685 . 396298) (-2686 . 396150) - (-2687 . 396046) (-2688 . 395942) (-2689 . 395857) (-2690 . 395489) - (-2691 . 395408) (-2692 . 395321) (-2693 . 395240) (-2694 . 395044) - (-2695 . 394824) (-2696 . 394637) (-2697 . 394315) (-2698 . 394022) - (-2699 . 393729) (-2700 . 393419) (-2701 . 393102) (-2702 . 392950) - (-2703 . 392762) (-2704 . 392289) (-2705 . 392207) (-2706 . 391991) - (-2707 . 391775) (-2708 . 391516) (-2709 . 391095) (-2710 . 390582) - (-2711 . 390452) (-2712 . 390178) (-2713 . 389999) (-2714 . 389884) - (-2715 . 389780) (-2716 . 389725) (-2717 . 389648) (-2718 . 389578) - (-2719 . 389505) (-2720 . 389450) (-2721 . 389377) (-2722 . 389322) - (-2723 . 388967) (-2724 . 388559) (-2725 . 388406) (-2726 . 388253) - (-2727 . 388172) (-2728 . 388019) (-2729 . 387866) (-2730 . 387731) - (-2731 . 387596) (-2732 . 387461) (-2733 . 387326) (-2734 . 387191) - (-2735 . 387056) (-2736 . 387000) (-2737 . 386847) (-2738 . 386736) - (-2739 . 386625) (-2740 . 386540) (-2741 . 386430) (-2742 . 386327) - (-2743 . 382176) (-2744 . 381728) (-2745 . 381301) (-2746 . 380684) - (-2747 . 380083) (-2748 . 379865) (-2749 . 379687) (-2750 . 379428) - (-2751 . 379017) (-2752 . 378723) (-2753 . 378280) (-2754 . 378102) - (-2755 . 377709) (-2756 . 377316) (-2757 . 377131) (-2758 . 376924) - (-2759 . 376704) (-2760 . 376398) (-2761 . 376199) (-2762 . 375570) - (-2763 . 375413) (-2764 . 375024) (-2765 . 374973) (-2766 . 374924) - (-2767 . 374873) (-2768 . 374825) (-2769 . 374773) (-2770 . 374627) - (-2771 . 374575) (-2772 . 374429) (-2773 . 374377) (-2774 . 374231) - (-2775 . 374180) (-2776 . 373805) (-2777 . 373754) (-2778 . 373705) - (-2779 . 373654) (-2780 . 373606) (-2781 . 373554) (-2782 . 373505) - (-2783 . 373453) (-2784 . 373404) (-2785 . 373352) (-2786 . 373303) - (-2787 . 373237) (-2788 . 373119) (-2789 . 371957) (-2790 . 371540) - (-2791 . 371432) (-2792 . 371190) (-2793 . 371040) (-2794 . 370890) - (-2795 . 370729) (-2796 . 368522) (-2797 . 368261) (-2798 . 368107) - (-2799 . 367961) (-2800 . 367815) (-2801 . 367596) (-2802 . 367464) - (-2803 . 367389) (-2804 . 367314) (-2805 . 367179) (-2806 . 367050) - (-2807 . 366921) (-2808 . 366795) (-2809 . 366669) (-2810 . 366543) - (-2811 . 366417) (-2812 . 366314) (-2813 . 366214) (-2814 . 366120) - (-2815 . 365990) (-2816 . 365839) (-2817 . 365463) (-2818 . 365349) - (-2819 . 365108) (-2820 . 364650) (-2821 . 364340) (-2822 . 363773) - (-2823 . 363204) (-2824 . 362194) (-2825 . 361652) (-2826 . 361339) - (-2827 . 361001) (-2828 . 360670) (-2829 . 360350) (-2830 . 360297) - (-2831 . 360170) (-2832 . 359668) (-2833 . 358525) (-2834 . 358470) - (-2835 . 358415) (-2836 . 358339) (-2837 . 358220) (-2838 . 358145) - (-2839 . 358070) (-2840 . 357992) (-2841 . 357769) (-2842 . 357710) - (-2843 . 357651) (-2844 . 357548) (-2845 . 357445) (-2846 . 357342) - (-2847 . 357239) (-2848 . 357158) (-2849 . 357084) (-2850 . 356869) - (-2851 . 356635) (-2852 . 356601) (-2853 . 356567) (-2854 . 356539) - (-2855 . 356511) (-2856 . 356294) (-2857 . 356016) (-2858 . 355866) - (-2859 . 355736) (-2860 . 355606) (-2861 . 355506) (-2862 . 355329) - (-2863 . 355169) (-2864 . 355069) (-2865 . 354892) (-2866 . 354732) - (-2867 . 354573) (-2868 . 354434) (-2869 . 354284) (-2870 . 354154) - (-2871 . 354024) (-2872 . 353877) (-2873 . 353750) (-2874 . 353647) - (-2875 . 353540) (-2876 . 353443) (-2877 . 353278) (-2878 . 353130) - (-2879 . 352715) (-2880 . 352615) (-2881 . 352512) (-2882 . 352424) - (-2883 . 352344) (-2884 . 352194) (-2885 . 352064) (-2886 . 352012) - (-2887 . 351939) (-2888 . 351864) (-2889 . 351706) (-2890 . 351594) - (-2891 . 351282) (-2892 . 351105) (-2893 . 349507) (-2894 . 348879) - (-2895 . 348819) (-2896 . 348701) (-2897 . 348583) (-2898 . 348439) - (-2899 . 348287) (-2900 . 348128) (-2901 . 347969) (-2902 . 347763) - (-2903 . 347576) (-2904 . 347424) (-2905 . 347269) (-2906 . 347114) - (-2907 . 346962) (-2908 . 346825) (-2909 . 346402) (-2910 . 346276) - (-2911 . 346150) (-2912 . 346024) (-2913 . 345884) (-2914 . 345743) - (-2915 . 345602) (-2916 . 345458) (-2917 . 344710) (-2918 . 344552) - (-2919 . 344366) (-2920 . 344211) (-2921 . 343973) (-2922 . 343728) - (-2923 . 343483) (-2924 . 343273) (-2925 . 343136) (-2926 . 342926) - (-2927 . 342789) (-2928 . 342579) (-2929 . 342442) (-2930 . 342232) - (-2931 . 341929) (-2932 . 341785) (-2933 . 341644) (-2934 . 341421) - (-2935 . 341280) (-2936 . 341058) (-2937 . 340861) (-2938 . 340705) - (-2939 . 340378) (-2940 . 340219) (-2941 . 340060) (-2942 . 339901) - (-2943 . 339730) (-2944 . 339559) (-2945 . 339385) (-2946 . 339033) - (-2947 . 338910) (-2948 . 338748) (-2949 . 338675) (-2950 . 338602) - (-2951 . 338529) (-2952 . 338456) (-2953 . 338383) (-2954 . 338310) - (-2955 . 338187) (-2956 . 338014) (-2957 . 337891) (-2958 . 337805) - (-2959 . 337739) (-2960 . 337673) (-2961 . 337607) (-2962 . 337541) - (-2963 . 337475) (-2964 . 337409) (-2965 . 337343) (-2966 . 337277) - (-2967 . 337211) (-2968 . 337145) (-2969 . 337079) (-2970 . 337013) - (-2971 . 336947) (-2972 . 336881) (-2973 . 336815) (-2974 . 336749) - (-2975 . 336683) (-2976 . 336617) (-2977 . 336551) (-2978 . 336485) - (-2979 . 336419) (-2980 . 336353) (-2981 . 336287) (-2982 . 336221) - (-2983 . 336155) (-2984 . 336089) (-2985 . 335442) (-2986 . 334795) - (-2987 . 334667) (-2988 . 334544) (-2989 . 334421) (-2990 . 334280) - (-2991 . 334126) (-2992 . 333982) (-2993 . 333807) (-2994 . 333197) - (-2995 . 333073) (-2996 . 332949) (-2997 . 332271) (-2998 . 331574) - (-2999 . 331473) (-3000 . 331417) (-3001 . 331361) (-3002 . 331305) - (-3003 . 331249) (-3004 . 331190) (-3005 . 331126) (-3006 . 331018) - (-3007 . 330910) (-3008 . 330802) (-3009 . 330523) (-3010 . 330449) - (-3011 . 330223) (-3012 . 330142) (-3013 . 330064) (-3014 . 329986) - (-3015 . 329908) (-3016 . 329829) (-3017 . 329751) (-3018 . 329658) - (-3019 . 329559) (-3020 . 329491) (-3021 . 329442) (-3022 . 328751) - (-3023 . 328111) (-3024 . 327320) (-3025 . 327239) (-3026 . 327135) - (-3027 . 327044) (-3028 . 326953) (-3029 . 326879) (-3030 . 326805) - (-3031 . 326731) (-3032 . 326676) (-3033 . 326621) (-3034 . 326555) - (-3035 . 326489) (-3036 . 326427) (-3037 . 326152) (-3038 . 325660) - (-3039 . 325202) (-3040 . 324949) (-3041 . 324761) (-3042 . 324420) - (-3043 . 324124) (-3044 . 323956) (-3045 . 323825) (-3046 . 323685) - (-3047 . 323530) (-3048 . 323361) (-3049 . 321975) (-3050 . 321842) - (-3051 . 321701) (-3052 . 321472) (-3053 . 321413) (-3054 . 321357) - (-3055 . 321301) (-3056 . 321036) (-3057 . 320824) (-3058 . 320685) - (-3059 . 320578) (-3060 . 320461) (-3061 . 320395) (-3062 . 320322) - (-3063 . 320208) (-3064 . 319955) (-3065 . 319855) (-3066 . 319661) - (-3067 . 319353) (-3068 . 318887) (-3069 . 318782) (-3070 . 318676) - (-3071 . 318527) (-3072 . 318387) (-3073 . 317975) (-3074 . 317731) - (-3075 . 317073) (-3076 . 316920) (-3077 . 316806) (-3078 . 316696) - (-3079 . 315876) (-3080 . 315682) (-3081 . 314656) (-3082 . 314208) - (-3083 . 312819) (-3084 . 311968) (-3085 . 311919) (-3086 . 311870) - (-3087 . 311821) (-3088 . 311754) (-3089 . 311679) (-3090 . 311489) - (-3091 . 311417) (-3092 . 311342) (-3093 . 311270) (-3094 . 311153) - (-3095 . 311102) (-3096 . 311023) (-3097 . 310944) (-3098 . 310865) - (-3099 . 310814) (-3100 . 310570) (-3101 . 310268) (-3102 . 310186) - (-3103 . 310104) (-3104 . 310043) (-3105 . 309654) (-3106 . 308782) - (-3107 . 308209) (-3108 . 306974) (-3109 . 306167) (-3110 . 305917) - (-3111 . 305667) (-3112 . 305242) (-3113 . 304998) (-3114 . 304754) - (-3115 . 304510) (-3116 . 304266) (-3117 . 304022) (-3118 . 303778) - (-3119 . 303536) (-3120 . 303294) (-3121 . 303052) (-3122 . 302810) - (-3123 . 302232) (-3124 . 302116) (-3125 . 302062) (-3126 . 301220) - (-3127 . 301189) (-3128 . 300844) (-3129 . 300618) (-3130 . 300519) - (-3131 . 300420) (-3132 . 298654) (-3133 . 298542) (-3134 . 297492) - (-3135 . 297400) (-3136 . 296478) (-3137 . 296145) (-3138 . 295812) - (-3139 . 295709) (-3140 . 295598) (-3141 . 295487) (-3142 . 295376) - (-3143 . 295265) (-3144 . 294178) (-3145 . 294058) (-3146 . 293923) - (-3147 . 293791) (-3148 . 293659) (-3149 . 293365) (-3150 . 293071) - (-3151 . 292726) (-3152 . 292500) (-3153 . 292274) (-3154 . 292163) - (-3155 . 292052) (-3156 . 290590) (-3157 . 288886) (-3158 . 288577) - (-3159 . 288425) (-3160 . 287902) (-3161 . 287573) (-3162 . 287380) - (-3163 . 287187) (-3164 . 286994) (-3165 . 286801) (-3166 . 286688) - (-3167 . 286565) (-3168 . 286451) (-3169 . 286337) (-3170 . 286244) - (-3171 . 286151) (-3172 . 286041) (-3173 . 285840) (-3174 . 284696) - (-3175 . 284603) (-3176 . 284489) (-3177 . 284396) (-3178 . 284149) - (-3179 . 284038) (-3180 . 283824) (-3181 . 283706) (-3182 . 283409) - (-3183 . 282681) (-3184 . 282105) (-3185 . 281627) (-3186 . 281383) - (-3187 . 281139) (-3188 . 280796) (-3189 . 280190) (-3190 . 279747) - (-3191 . 279592) (-3192 . 279448) (-3193 . 279128) (-3194 . 278973) - (-3195 . 278833) (-3196 . 278693) (-3197 . 278553) (-3198 . 278278) - (-3199 . 278059) (-3200 . 277540) (-3201 . 277328) (-3202 . 277116) - (-3203 . 276736) (-3204 . 276562) (-3205 . 276353) (-3206 . 276045) - (-3207 . 275853) (-3208 . 275680) (-3209 . 274544) (-3210 . 274179) - (-3211 . 273979) (-3212 . 273779) (-3213 . 272943) (-3214 . 272915) - (-3215 . 272847) (-3216 . 272777) (-3217 . 272613) (-3218 . 272585) - (-3219 . 272557) (-3220 . 272503) (-3221 . 272353) (-3222 . 272294) - (-3223 . 271601) (-3224 . 270216) (-3225 . 270155) (-3226 . 269831) - (-3227 . 269759) (-3228 . 269702) (-3229 . 269645) (-3230 . 269588) - (-3231 . 269531) (-3232 . 269456) (-3233 . 268866) (-3234 . 268506) - (-3235 . 268432) (-3236 . 268372) (-3237 . 268254) (-3238 . 267311) - (-3239 . 267184) (-3240 . 266971) (-3241 . 266897) (-3242 . 266843) - (-3243 . 266789) (-3244 . 266680) (-3245 . 266285) (-3246 . 266177) - (-3247 . 266074) (-3248 . 265913) (-3249 . 265812) (-3250 . 265714) - (-3251 . 265576) (-3252 . 265438) (-3253 . 265300) (-3254 . 265038) - (-3255 . 264829) (-3256 . 264691) (-3257 . 264400) (-3258 . 264248) - (-3259 . 263973) (-3260 . 263753) (-3261 . 263601) (-3262 . 263449) - (-3263 . 263297) (-3264 . 263145) (-3265 . 262993) (-3266 . 262786) - (-3267 . 262399) (-3268 . 262068) (-3269 . 261729) (-3270 . 261382) - (-3271 . 261043) (-3272 . 260704) (-3273 . 260323) (-3274 . 259942) - (-3275 . 259561) (-3276 . 259196) (-3277 . 258478) (-3278 . 258131) - (-3279 . 257686) (-3280 . 257261) (-3281 . 256650) (-3282 . 256058) - (-3283 . 255671) (-3284 . 255340) (-3285 . 254953) (-3286 . 254622) - (-3287 . 254402) (-3288 . 253881) (-3289 . 253668) (-3290 . 253455) - (-3291 . 253242) (-3292 . 253064) (-3293 . 252851) (-3294 . 252673) - (-3295 . 252291) (-3296 . 252113) (-3297 . 251903) (-3298 . 251813) - (-3299 . 251723) (-3300 . 251632) (-3301 . 251520) (-3302 . 251430) - (-3303 . 251323) (-3304 . 251134) (-3305 . 251078) (-3306 . 250997) - (-3307 . 250916) (-3308 . 250835) (-3309 . 250758) (-3310 . 250623) - (-3311 . 250488) (-3312 . 250364) (-3313 . 250243) (-3314 . 250125) - (-3315 . 249989) (-3316 . 249856) (-3317 . 249737) (-3318 . 249479) - (-3319 . 249194) (-3320 . 249122) (-3321 . 249026) (-3322 . 248885) - (-3323 . 248828) (-3324 . 248771) (-3325 . 248711) (-3326 . 248407) - (-3327 . 248012) (-3328 . 247490) (-3329 . 247213) (-3330 . 246793) - (-3331 . 246681) (-3332 . 246243) (-3333 . 246013) (-3334 . 245810) - (-3335 . 245628) (-3336 . 245498) (-3337 . 245292) (-3338 . 245085) - (-3339 . 244895) (-3340 . 244330) (-3341 . 244074) (-3342 . 243783) - (-3343 . 243489) (-3344 . 243192) (-3345 . 242892) (-3346 . 242762) - (-3347 . 242629) (-3348 . 242493) (-3349 . 242354) (-3350 . 241137) - (-3351 . 240829) (-3352 . 240465) (-3353 . 240368) (-3354 . 240128) - (-3355 . 239835) (-3356 . 239542) (-3357 . 239283) (-3358 . 239109) - (-3359 . 239031) (-3360 . 238944) (-3361 . 238844) (-3362 . 238750) - (-3363 . 238669) (-3364 . 238599) (-3365 . 237808) (-3366 . 237738) - (-3367 . 237410) (-3368 . 237340) (-3369 . 237012) (-3370 . 236942) - (-3371 . 236497) (-3372 . 236427) (-3373 . 236323) (-3374 . 236249) - (-3375 . 236175) (-3376 . 236104) (-3377 . 235762) (-3378 . 235634) - (-3379 . 235557) (-3380 . 235326) (-3381 . 235183) (-3382 . 235040) - (-3383 . 234701) (-3384 . 234371) (-3385 . 234158) (-3386 . 233903) - (-3387 . 233553) (-3388 . 233328) (-3389 . 233103) (-3390 . 232878) - (-3391 . 232653) (-3392 . 232440) (-3393 . 232227) (-3394 . 232077) - (-3395 . 231896) (-3396 . 231791) (-3397 . 231669) (-3398 . 231561) - (-3399 . 231453) (-3400 . 231128) (-3401 . 230864) (-3402 . 230553) - (-3403 . 230251) (-3404 . 229942) (-3405 . 229213) (-3406 . 228624) - (-3407 . 228449) (-3408 . 228305) (-3409 . 228150) (-3410 . 228027) - (-3411 . 227922) (-3412 . 227807) (-3413 . 227712) (-3414 . 227231) - (-3415 . 227121) (-3416 . 227011) (-3417 . 226901) (-3418 . 225829) - (-3419 . 225318) (-3420 . 225251) (-3421 . 225178) (-3422 . 224305) - (-3423 . 224232) (-3424 . 224177) (-3425 . 224122) (-3426 . 224090) - (-3427 . 224004) (-3428 . 223972) (-3429 . 223886) (-3430 . 223466) - (-3431 . 223046) (-3432 . 222494) (-3433 . 221390) (-3434 . 219680) - (-3435 . 218130) (-3436 . 217338) (-3437 . 216838) (-3438 . 216352) - (-3439 . 215950) (-3440 . 215300) (-3441 . 215225) (-3442 . 215134) - (-3443 . 215063) (-3444 . 214992) (-3445 . 214936) (-3446 . 214816) - (-3447 . 214762) (-3448 . 214701) (-3449 . 214647) (-3450 . 214544) - (-3451 . 214104) (-3452 . 213664) (-3453 . 213224) (-3454 . 212702) - (-3455 . 212541) (-3456 . 212380) (-3457 . 212069) (-3458 . 211983) - (-3459 . 211893) (-3460 . 211535) (-3461 . 211418) (-3462 . 211337) - (-3463 . 211179) (-3464 . 211066) (-3465 . 210991) (-3466 . 210145) - (-3467 . 208963) (-3468 . 208864) (-3469 . 208765) (-3470 . 208436) - (-3471 . 208358) (-3472 . 208283) (-3473 . 208177) (-3474 . 208021) - (-3475 . 207914) (-3476 . 207779) (-3477 . 207644) (-3478 . 207522) - (-3479 . 207427) (-3480 . 207279) (-3481 . 207184) (-3482 . 207029) - (-3483 . 206874) (-3484 . 206322) (-3485 . 205770) (-3486 . 205155) - (-3487 . 204603) (-3488 . 204051) (-3489 . 203499) (-3490 . 202946) - (-3491 . 202393) (-3492 . 201840) (-3493 . 201287) (-3494 . 200734) - (-3495 . 200181) (-3496 . 199629) (-3497 . 199077) (-3498 . 198525) - (-3499 . 197973) (-3500 . 197421) (-3501 . 196869) (-3502 . 196765) - (-3503 . 196180) (-3504 . 196075) (-3505 . 196000) (-3506 . 195858) - (-3507 . 195766) (-3508 . 195675) (-3509 . 195583) (-3510 . 195488) - (-3511 . 195383) (-3512 . 195260) (-3513 . 195138) (-3514 . 194774) - (-3515 . 194652) (-3516 . 194554) (-3517 . 194193) (-3518 . 193664) - (-3519 . 193589) (-3520 . 193514) (-3521 . 193422) (-3522 . 193241) - (-3523 . 193146) (-3524 . 193071) (-3525 . 192980) (-3526 . 192889) - (-3527 . 192730) (-3528 . 192181) (-3529 . 191632) (-3530 . 188925) - (-3531 . 188753) (-3532 . 187343) (-3533 . 186783) (-3534 . 186668) - (-3535 . 186296) (-3536 . 186233) (-3537 . 186170) (-3538 . 186107) - (-3539 . 185829) (-3540 . 185562) (-3541 . 185510) (-3542 . 184869) - (-3543 . 184818) (-3544 . 184630) (-3545 . 184557) (-3546 . 184477) - (-3547 . 184364) (-3548 . 184174) (-3549 . 183810) (-3550 . 183538) - (-3551 . 183487) (-3552 . 183436) (-3553 . 183366) (-3554 . 183247) - (-3555 . 183218) (-3556 . 183114) (-3557 . 182992) (-3558 . 182938) - (-3559 . 182761) (-3560 . 182700) (-3561 . 182519) (-3562 . 182458) - (-3563 . 182386) (-3564 . 181911) (-3565 . 181537) (-3566 . 178005) - (-3567 . 177953) (-3568 . 177825) (-3569 . 177675) (-3570 . 177623) - (-3571 . 177482) (-3572 . 175424) (-3573 . 167781) (-3574 . 167630) - (-3575 . 167560) (-3576 . 167509) (-3577 . 167459) (-3578 . 167408) - (-3579 . 167357) (-3580 . 167161) (-3581 . 167019) (-3582 . 166905) - (-3583 . 166784) (-3584 . 166666) (-3585 . 166554) (-3586 . 166436) - (-3587 . 166331) (-3588 . 166250) (-3589 . 166146) (-3590 . 165212) - (-3591 . 164992) (-3592 . 164755) (-3593 . 164673) (-3594 . 164329) - (-3595 . 163190) (-3596 . 163116) (-3597 . 163021) (-3598 . 162947) - (-3599 . 162743) (-3600 . 162652) (-3601 . 162536) (-3602 . 162423) - (-3603 . 162332) (-3604 . 162241) (-3605 . 162152) (-3606 . 162063) - (-3607 . 161974) (-3608 . 161886) (-3609 . 161398) (-3610 . 161334) - (-3611 . 161270) (-3612 . 161206) (-3613 . 161145) (-3614 . 160405) - (-3615 . 160344) (-3616 . 160283) (-3617 . 159657) (-3618 . 159605) - (-3619 . 159477) (-3620 . 159413) (-3621 . 159359) (-3622 . 159250) - (-3623 . 157953) (-3624 . 157872) (-3625 . 157783) (-3626 . 157725) - (-3627 . 157585) (-3628 . 157500) (-3629 . 157426) (-3630 . 157341) - (-3631 . 157284) (-3632 . 157068) (-3633 . 156929) (-3634 . 156322) - (-3635 . 155768) (-3636 . 155214) (-3637 . 154660) (-3638 . 154053) - (-3639 . 153499) (-3640 . 152939) (-3641 . 152379) (-3642 . 152117) - (-3643 . 151678) (-3644 . 151345) (-3645 . 151006) (-3646 . 150701) - (-3647 . 150568) (-3648 . 150435) (-3649 . 150047) (-3650 . 149954) - (-3651 . 149861) (-3652 . 149768) (-3653 . 149675) (-3654 . 149582) - (-3655 . 149489) (-3656 . 149396) (-3657 . 149303) (-3658 . 149210) - (-3659 . 149117) (-3660 . 149024) (-3661 . 148931) (-3662 . 148838) - (-3663 . 148745) (-3664 . 148652) (-3665 . 148559) (-3666 . 148466) - (-3667 . 148373) (-3668 . 148280) (-3669 . 148187) (-3670 . 148094) - (-3671 . 148001) (-3672 . 147908) (-3673 . 147815) (-3674 . 147722) - (-3675 . 147537) (-3676 . 147227) (-3677 . 145599) (-3678 . 145445) - (-3679 . 145308) (-3680 . 145166) (-3681 . 144964) (-3682 . 143037) - (-3683 . 142910) (-3684 . 142786) (-3685 . 142659) (-3686 . 142438) - (-3687 . 142217) (-3688 . 142090) (-3689 . 141889) (-3690 . 141713) - (-3691 . 141196) (-3692 . 140679) (-3693 . 140402) (-3694 . 139993) - (-3695 . 139476) (-3696 . 139292) (-3697 . 139150) (-3698 . 138655) - (-3699 . 138024) (-3700 . 137968) (-3701 . 137874) (-3702 . 137755) - (-3703 . 137685) (-3704 . 137612) (-3705 . 137382) (-3706 . 136763) - (-3707 . 136333) (-3708 . 136251) (-3709 . 136109) (-3710 . 135635) - (-3711 . 135513) (-3712 . 135391) (-3713 . 135251) (-3714 . 135064) - (-3715 . 134948) (-3716 . 134668) (-3717 . 134600) (-3718 . 134402) - (-3719 . 134222) (-3720 . 134067) (-3721 . 133960) (-3722 . 133909) - (-3723 . 133532) (-3724 . 133004) (-3725 . 132782) (-3726 . 132560) - (-3727 . 132321) (-3728 . 132231) (-3729 . 130489) (-3730 . 129907) - (-3731 . 129829) (-3732 . 124369) (-3733 . 123579) (-3734 . 123202) - (-3735 . 123131) (-3736 . 122866) (-3737 . 122691) (-3738 . 122206) - (-3739 . 121784) (-3740 . 121344) (-3741 . 120481) (-3742 . 120357) - (-3743 . 120230) (-3744 . 120121) (-3745 . 119969) (-3746 . 119855) - (-3747 . 119716) (-3748 . 119635) (-3749 . 119554) (-3750 . 119450) - (-3751 . 119032) (-3752 . 118611) (-3753 . 118537) (-3754 . 118274) - (-3755 . 118010) (-3756 . 117631) (-3757 . 116932) (-3758 . 115889) - (-3759 . 115830) (-3760 . 115756) (-3761 . 115682) (-3762 . 115560) - (-3763 . 115310) (-3764 . 115224) (-3765 . 115149) (-3766 . 115074) - (-3767 . 114979) (-3768 . 111204) (-3769 . 110034) (-3770 . 109374) - (-3771 . 109190) (-3772 . 106985) (-3773 . 106660) (-3774 . 106178) - (-3775 . 105737) (-3776 . 105502) (-3777 . 105257) (-3778 . 105167) - (-3779 . 103732) (-3780 . 103654) (-3781 . 103549) (-3782 . 102073) - (-3783 . 101668) (-3784 . 101267) (-3785 . 101165) (-3786 . 101083) - (-3787 . 100925) (-3788 . 99771) (-3789 . 99689) (-3790 . 99610) - (-3791 . 99255) (-3792 . 99198) (-3793 . 99126) (-3794 . 99069) - (-3795 . 99012) (-3796 . 98882) (-3797 . 98680) (-3798 . 98312) - (-3799 . 97891) (-3800 . 94081) (-3801 . 93479) (-3802 . 93012) - (-3803 . 92799) (-3804 . 92586) (-3805 . 92420) (-3806 . 92207) - (-3807 . 92041) (-3808 . 91875) (-3809 . 91709) (-3810 . 91543) - (-3811 . 91273) (-3812 . 85859) (** . 82906) (-3814 . 82490) (-3815 . 82249) - (-3816 . 82193) (-3817 . 81701) (-3818 . 78893) (-3819 . 78743) - (-3820 . 78579) (-3821 . 78415) (-3822 . 78319) (-3823 . 78201) - (-3824 . 78077) (-3825 . 77934) (-3826 . 77763) (-3827 . 77637) - (-3828 . 77493) (-3829 . 77341) (-3830 . 77182) (-3831 . 76669) - (-3832 . 76580) (-3833 . 75915) (-3834 . 75723) (-3835 . 75628) - (-3836 . 75320) (-3837 . 74148) (-3838 . 73942) (-3839 . 72767) - (-3840 . 72692) (-3841 . 71511) (-3842 . 67930) (-3843 . 67566) - (-3844 . 67289) (-3845 . 67197) (-3846 . 67104) (-3847 . 66827) - (-3848 . 66734) (-3849 . 66641) (-3850 . 66548) (-3851 . 66164) - (-3852 . 66093) (-3853 . 66001) (-3854 . 65843) (-3855 . 65489) - (-3856 . 65331) (-3857 . 65223) (-3858 . 65194) (-3859 . 65127) - (-3860 . 64973) (-3861 . 64815) (-3862 . 64421) (-3863 . 64346) - (-3864 . 64240) (-3865 . 64168) (-3866 . 64090) (-3867 . 64017) - (-3868 . 63944) (-3869 . 63871) (-3870 . 63799) (-3871 . 63727) - (-3872 . 63654) (-3873 . 63413) (-3874 . 63073) (-3875 . 62925) - (-3876 . 62852) (-3877 . 62779) (-3878 . 62706) (-3879 . 62452) - (-3880 . 62308) (-3881 . 60972) (-3882 . 60778) (-3883 . 60507) - (-3884 . 60359) (-3885 . 60211) (-3886 . 59971) (-3887 . 59777) - (-3888 . 59509) (-3889 . 59313) (-3890 . 59284) (-3891 . 59183) - (-3892 . 59082) (-3893 . 58981) (-3894 . 58880) (-3895 . 58779) - (-3896 . 58678) (-3897 . 58577) (-3898 . 58476) (-3899 . 58375) - (-3900 . 58274) (-3901 . 58159) (-3902 . 58044) (-3903 . 57993) - (-3904 . 57876) (-3905 . 57818) (-3906 . 57717) (-3907 . 57616) - (-3908 . 57515) (-3909 . 57399) (-3910 . 57370) (-3911 . 56639) - (-3912 . 56514) (-3913 . 56389) (-3914 . 56249) (-3915 . 56131) - (-3916 . 56006) (-3917 . 55851) (-3918 . 54868) (-3919 . 54009) - (-3920 . 53955) (-3921 . 53901) (-3922 . 53693) (-3923 . 53321) - (-3924 . 52910) (-3925 . 52552) (-3926 . 52194) (-3927 . 52042) - (-3928 . 51740) (-3929 . 51584) (-3930 . 51258) (-3931 . 51188) - (-3932 . 51118) (-3933 . 50909) (-3934 . 50300) (-3935 . 50096) - (-3936 . 49723) (-3937 . 49214) (-3938 . 48949) (-3939 . 48468) - (-3940 . 47987) (-3941 . 47862) (-3942 . 46762) (-3943 . 45686) - (-3944 . 45113) (-3945 . 44895) (-3946 . 36569) (-3947 . 36384) - (-3948 . 34301) (-3949 . 32133) (-3950 . 31987) (-3951 . 31809) - (-3952 . 31402) (-3953 . 31107) (-3954 . 30759) (-3955 . 30593) - (-3956 . 30427) (-3957 . 29945) (-3958 . 16071) (-3959 . 14964) (* . 10917) - (-3961 . 10663) (-3962 . 10479) (-3963 . 9522) (-3964 . 9469) (-3965 . 9409) - (-3966 . 9140) (-3967 . 8513) (-3968 . 7240) (-3969 . 5996) (-3970 . 5127) - (-3971 . 3864) (-3972 . 420) (-3973 . 306) (-3974 . 173) (-3975 . 30))
\ No newline at end of file +((-1215 . 631475) (-1216 . 631079) (-1217 . 630777) (-1218 . 630381) + (-1219 . 630260) (-1220 . 630158) (-1221 . 630045) (-1222 . 629929) + (-1223 . 629876) (-1224 . 629742) (-1225 . 629667) (-1226 . 629511) + (-1227 . 629283) (-1228 . 628319) (-1229 . 628072) (-1230 . 627788) + (-1231 . 627504) (-1232 . 627220) (-1233 . 626901) (-1234 . 626809) + (-1235 . 626717) (-1236 . 626625) (-1237 . 626533) (-1238 . 626441) + (-1239 . 626349) (-1240 . 626254) (-1241 . 626159) (-1242 . 626067) + (-1243 . 625975) (-1244 . 625883) (-1245 . 625791) (-1246 . 625699) + (-1247 . 625597) (-1248 . 625495) (-1249 . 625393) (-1250 . 625301) + (-1251 . 625250) (-1252 . 625198) (-1253 . 625128) (-1254 . 624708) + (-1255 . 624514) (-1256 . 624487) (-1257 . 624364) (-1258 . 624241) + (-1259 . 624097) (-1260 . 623927) (-1261 . 623803) (-1262 . 623564) + (-1263 . 623491) (-1264 . 623266) (-1265 . 623020) (-1266 . 622967) + (-1267 . 622789) (-1268 . 622620) (-1269 . 622544) (-1270 . 622471) + (-1271 . 622318) (-1272 . 622165) (-1273 . 621981) (-1274 . 621800) + (-1275 . 621745) (-1276 . 621690) (-1277 . 621617) (-1278 . 621541) + (-1279 . 621464) (-1280 . 621396) (-1281 . 621253) (-1282 . 621146) + (-1283 . 621078) (-1284 . 621008) (-1285 . 620938) (-1286 . 620888) + (-1287 . 620838) (-1288 . 620788) (-1289 . 620667) (-1290 . 620351) + (-1291 . 620282) (-1292 . 620203) (-1293 . 620084) (-1294 . 620004) + (-1295 . 619924) (-1296 . 619771) (-1297 . 619622) (-1298 . 619546) + (-1299 . 619489) (-1300 . 619417) (-1301 . 619354) (-1302 . 619291) + (-1303 . 619230) (-1304 . 619158) (-1305 . 619042) (-1306 . 618990) + (-1307 . 618935) (-1308 . 618883) (-1309 . 618831) (-1310 . 618803) + (-1311 . 618775) (-1312 . 618747) (-1313 . 618703) (-1314 . 618632) + (-1315 . 618581) (-1316 . 618533) (-1317 . 618482) (-1318 . 618430) + (-1319 . 618314) (-1320 . 618198) (-1321 . 618106) (-1322 . 618014) + (-1323 . 617891) (-1324 . 617825) (-1325 . 617759) (-1326 . 617700) + (-1327 . 617672) (-1328 . 617644) (-1329 . 617616) (-1330 . 617588) + (-1331 . 617478) (-1332 . 617427) (-1333 . 617376) (-1334 . 617325) + (-1335 . 617274) (-1336 . 617223) (-1337 . 617172) (-1338 . 617144) + (-1339 . 617116) (-1340 . 617088) (-1341 . 617060) (-1342 . 617032) + (-1343 . 617004) (-1344 . 616976) (-1345 . 616948) (-1346 . 616920) + (-1347 . 616817) (-1348 . 616765) (-1349 . 616599) (-1350 . 616415) + (-1351 . 616204) (-1352 . 616089) (-1353 . 615856) (-1354 . 615757) + (-1355 . 615664) (-1356 . 615549) (-1357 . 615151) (-1358 . 614933) + (-1359 . 614884) (-1360 . 614856) (-1361 . 614780) (-1362 . 614681) + (-1363 . 614582) (-1364 . 614483) (-1365 . 614384) (-1366 . 614285) + (-1367 . 614186) (-1368 . 614028) (-1369 . 613952) (-1370 . 613785) + (-1371 . 613727) (-1372 . 613669) (-1373 . 613360) (-1374 . 613106) + (-1375 . 613022) (-1376 . 612890) (-1377 . 612832) (-1378 . 612780) + (-1379 . 612698) (-1380 . 612623) (-1381 . 612552) (-1382 . 612498) + (-1383 . 612447) (-1384 . 612373) (-1385 . 612299) (-1386 . 612218) + (-1387 . 612137) (-1388 . 612082) (-1389 . 612008) (-1390 . 611934) + (-1391 . 611860) (-1392 . 611783) (-1393 . 611729) (-1394 . 611671) + (-1395 . 611572) (-1396 . 611473) (-1397 . 611374) (-1398 . 611275) + (-1399 . 611176) (-1400 . 611077) (-1401 . 610978) (-1402 . 610864) + (-1403 . 610750) (-1404 . 610636) (-1405 . 610522) (-1406 . 610408) + (-1407 . 610294) (-1408 . 610177) (-1409 . 610101) (-1410 . 610025) + (-1411 . 609638) (-1412 . 609293) (-1413 . 609191) (-1414 . 608930) + (-1415 . 608828) (-1416 . 608623) (-1417 . 608510) (-1418 . 608408) + (-1419 . 608251) (-1420 . 608162) (-1421 . 608068) (-1422 . 607988) + (-1423 . 607914) (-1424 . 607836) (-1425 . 607777) (-1426 . 607719) + (-1427 . 607617) (-7 . 607589) (-8 . 607561) (-9 . 607533) (-1431 . 607414) + (-1432 . 607332) (-1433 . 607250) (-1434 . 607168) (-1435 . 607086) + (-1436 . 607004) (-1437 . 606910) (-1438 . 606840) (-1439 . 606770) + (-1440 . 606679) (-1441 . 606585) (-1442 . 606503) (-1443 . 606421) + (-1444 . 606323) (-1445 . 606163) (-1446 . 605965) (-1447 . 605829) + (-1448 . 605729) (-1449 . 605629) (-1450 . 605536) (-1451 . 605477) + (-1452 . 605144) (-1453 . 605044) (-1454 . 604926) (-1455 . 604714) + (-1456 . 604535) (-1457 . 604377) (-1458 . 604174) (-1459 . 603756) + (-1460 . 603705) (-1461 . 603596) (-1462 . 603481) (-1463 . 603412) + (-1464 . 603343) (-1465 . 603274) (-1466 . 603208) (-1467 . 603083) + (-1468 . 602866) (-1469 . 602788) (-1470 . 602738) (-1471 . 602667) + (-1472 . 602524) (-1473 . 602383) (-1474 . 602302) (-1475 . 602221) + (-1476 . 602165) (-1477 . 602109) (-1478 . 602036) (-1479 . 601896) + (-1480 . 601843) (-1481 . 601784) (-1482 . 601725) (-1483 . 601570) + (-1484 . 601518) (-1485 . 601401) (-1486 . 601284) (-1487 . 601167) + (-1488 . 601036) (-1489 . 600757) (-1490 . 600622) (-1491 . 600566) + (-1492 . 600510) (-1493 . 600451) (-1494 . 600392) (-1495 . 600336) + (-1496 . 600280) (-1497 . 600083) (-1498 . 597741) (-1499 . 597614) + (-1500 . 597469) (-1501 . 597341) (-1502 . 597289) (-1503 . 597237) + (-1504 . 597185) (-1505 . 593147) (-1506 . 593053) (-1507 . 592914) + (-1508 . 592705) (-1509 . 592603) (-1510 . 592501) (-1511 . 591586) + (-1512 . 591510) (-1513 . 591381) (-1514 . 591256) (-1515 . 591179) + (-1516 . 591102) (-1517 . 590975) (-1518 . 590848) (-1519 . 590682) + (-1520 . 590555) (-1521 . 590428) (-1522 . 590211) (-1523 . 589777) + (-1524 . 589413) (-1525 . 589361) (-1526 . 589302) (-1527 . 589214) + (-1528 . 589126) (-1529 . 589035) (-1530 . 588944) (-1531 . 588853) + (-1532 . 588762) (-1533 . 588671) (-1534 . 588580) (-1535 . 588489) + (-1536 . 588398) (-1537 . 588307) (-1538 . 588216) (-1539 . 588125) + (-1540 . 588034) (-1541 . 587943) (-1542 . 587852) (-1543 . 587761) + (-1544 . 587670) (-1545 . 587579) (-1546 . 587488) (-1547 . 587397) + (-1548 . 587306) (-1549 . 587215) (-1550 . 587124) (-1551 . 587033) + (-1552 . 586942) (-1553 . 586851) (-1554 . 586760) (-1555 . 586598) + (-1556 . 586490) (-1557 . 586247) (-1558 . 585960) (-1559 . 585765) + (-1560 . 585609) (-1561 . 585449) (-1562 . 585398) (-1563 . 585336) + (-1564 . 585285) (-1565 . 585222) (-1566 . 585169) (-1567 . 585117) + (-1568 . 585065) (-1569 . 585013) (-1570 . 584923) (-1571 . 584736) + (-1572 . 584582) (-1573 . 584502) (-1574 . 584422) (-1575 . 584342) + (-1576 . 584212) (-1577 . 583980) (-1578 . 583952) (-1579 . 583924) + (-1580 . 583896) (-1581 . 583816) (-1582 . 583739) (-1583 . 583662) + (-1584 . 583581) (-1585 . 583522) (-1586 . 583364) (-1587 . 583171) + (-1588 . 582686) (-1589 . 582444) (-1590 . 582182) (-1591 . 582081) + (-1592 . 582000) (-1593 . 581919) (-1594 . 581849) (-1595 . 581779) + (-1596 . 581621) (-1597 . 581317) (-1598 . 581089) (-1599 . 580967) + (-1600 . 580909) (-1601 . 580847) (-1602 . 580785) (-1603 . 580720) + (-1604 . 580658) (-1605 . 580379) (-1606 . 580311) (-1607 . 580101) + (-1608 . 580049) (-1609 . 579995) (-1610 . 579904) (-1611 . 579817) + (-1612 . 578070) (-1613 . 577991) (-1614 . 577246) (-1615 . 577129) + (-1616 . 576923) (-1617 . 576762) (-1618 . 576601) (-1619 . 576441) + (-1620 . 576303) (-1621 . 576209) (-1622 . 576111) (-1623 . 576017) + (-1624 . 575903) (-1625 . 575821) (-1626 . 575724) (-1627 . 575528) + (-1628 . 575437) (-1629 . 575343) (-1630 . 575276) (-1631 . 575207) + (-1632 . 575155) (-1633 . 575096) (-1634 . 575022) (-1635 . 574970) + (-1636 . 574813) (-1637 . 574656) (-1638 . 574504) (-1639 . 573746) + (-1640 . 573435) (-1641 . 573083) (-1642 . 572866) (-1643 . 572603) + (-1644 . 572228) (-1645 . 572044) (-1646 . 571910) (-1647 . 571744) + (-1648 . 571578) (-1649 . 571444) (-1650 . 571310) (-1651 . 571176) + (-1652 . 571042) (-1653 . 570911) (-1654 . 570780) (-1655 . 570649) + (-1656 . 570269) (-1657 . 570143) (-1658 . 570015) (-1659 . 569765) + (-1660 . 569642) (-1661 . 569392) (-1662 . 569269) (-1663 . 569019) + (-1664 . 568896) (-1665 . 568613) (-1666 . 568342) (-1667 . 568069) + (-1668 . 567771) (-1669 . 567669) (-1670 . 567524) (-1671 . 567383) + (-1672 . 567232) (-1673 . 567071) (-1674 . 566983) (-1675 . 566955) + (-1676 . 566873) (-1677 . 566776) (-1678 . 566308) (-1679 . 565957) + (-1680 . 565524) (-1681 . 565385) (-1682 . 565315) (-1683 . 565245) + (-1684 . 565175) (-1685 . 565084) (-1686 . 564993) (-1687 . 564902) + (-1688 . 564811) (-1689 . 564720) (-1690 . 564634) (-1691 . 564548) + (-1692 . 564462) (-1693 . 564376) (-1694 . 564290) (-1695 . 564216) + (-1696 . 564111) (-1697 . 563885) (-1698 . 563807) (-1699 . 563732) + (-1700 . 563639) (-1701 . 563535) (-1702 . 563439) (-1703 . 563270) + (-1704 . 563193) (-1705 . 563116) (-1706 . 563025) (-1707 . 562934) + (-1708 . 562734) (-1709 . 562581) (-1710 . 562428) (-1711 . 562275) + (-1712 . 562122) (-1713 . 561969) (-1714 . 561816) (-1715 . 561750) + (-1716 . 561597) (-1717 . 561444) (-1718 . 561291) (-1719 . 561138) + (-1720 . 560985) (-1721 . 560832) (-1722 . 560679) (-1723 . 560526) + (-1724 . 560452) (-1725 . 560378) (-1726 . 560323) (-1727 . 560268) + (-1728 . 560213) (-1729 . 560158) (-1730 . 560087) (-1731 . 559883) + (-1732 . 559782) (-1733 . 559594) (-1734 . 559501) (-1735 . 559365) + (-1736 . 559229) (-1737 . 559093) (-1738 . 559025) (-1739 . 558909) + (-1740 . 558793) (-1741 . 558677) (-1742 . 558624) (-1743 . 558539) + (-1744 . 558454) (-1745 . 558146) (-1746 . 558091) (-1747 . 557439) + (-1748 . 557124) (-1749 . 556840) (-1750 . 556722) (-1751 . 556603) + (-1752 . 556544) (-1753 . 556485) (-1754 . 556434) (-1755 . 556383) + (-1756 . 556332) (-1757 . 556279) (-1758 . 556226) (-1759 . 556167) + (-1760 . 556054) (-1761 . 555941) (-1762 . 555774) (-1763 . 555682) + (-1764 . 555569) (-1765 . 555485) (-1766 . 555370) (-1767 . 555279) + (-1768 . 555188) (-1769 . 555067) (-1770 . 554880) (-1771 . 554828) + (-1772 . 554773) (-1773 . 554586) (-1774 . 554463) (-1775 . 554390) + (-1776 . 554317) (-1777 . 554197) (-1778 . 554124) (-1779 . 554051) + (-1780 . 553711) (-1781 . 553638) (-1782 . 553418) (-1783 . 553085) + (-1784 . 552902) (-1785 . 552759) (-1786 . 552399) (-1787 . 552231) + (-1788 . 552063) (-1789 . 551807) (-1790 . 551551) (-1791 . 551356) + (-1792 . 551161) (-1793 . 550567) (-1794 . 550491) (-1795 . 550352) + (-1796 . 549945) (-1797 . 549818) (-1798 . 549661) (-1799 . 549344) + (-1800 . 548864) (-1801 . 548384) (-1802 . 547882) (-1803 . 547814) + (-1804 . 547743) (-1805 . 547672) (-1806 . 547500) (-1807 . 547381) + (-1808 . 547262) (-1809 . 547186) (-1810 . 547110) (-1811 . 546837) + (-1812 . 546723) (-1813 . 546672) (-1814 . 546621) (-1815 . 546570) + (-1816 . 546519) (-1817 . 546468) (-1818 . 546327) (-1819 . 546154) + (-1820 . 545923) (-1821 . 545737) (-1822 . 545709) (-1823 . 545681) + (-1824 . 545653) (-1825 . 545625) (-1826 . 545597) (-1827 . 545569) + (-1828 . 545541) (-1829 . 545490) (-1830 . 545424) (-1831 . 545334) + (-1832 . 544963) (-1833 . 544812) (-1834 . 544661) (-1835 . 544456) + (-1836 . 544334) (-1837 . 544260) (-1838 . 544183) (-1839 . 544109) + (-1840 . 544032) (-1841 . 543955) (-1842 . 543881) (-1843 . 543804) + (-1844 . 543571) (-1845 . 543418) (-1846 . 543123) (-1847 . 542970) + (-1848 . 542648) (-1849 . 542510) (-1850 . 542372) (-1851 . 542292) + (-1852 . 542212) (-1853 . 541948) (-1854 . 541217) (-1855 . 541081) + (-1856 . 540991) (-1857 . 540856) (-1858 . 540789) (-1859 . 540721) + (-1860 . 540634) (-1861 . 540547) (-1862 . 540380) (-1863 . 540306) + (-1864 . 540162) (-1865 . 539702) (-1866 . 539323) (-1867 . 538561) + (-1868 . 538417) (-1869 . 538273) (-1870 . 538111) (-1871 . 537874) + (-1872 . 537734) (-1873 . 537588) (-1874 . 537349) (-1875 . 537113) + (-1876 . 536874) (-1877 . 536682) (-1878 . 536559) (-1879 . 536355) + (-1880 . 536132) (-1881 . 535893) (-1882 . 535752) (-1883 . 535614) + (-1884 . 535475) (-1885 . 535222) (-1886 . 534966) (-1887 . 534809) + (-1888 . 534655) (-1889 . 534415) (-1890 . 534130) (-1891 . 533992) + (-1892 . 533905) (-1893 . 533239) (-1894 . 533063) (-1895 . 532881) + (-1896 . 532705) (-1897 . 532523) (-1898 . 532344) (-1899 . 532165) + (-1900 . 531978) (-1901 . 531596) (-1902 . 531417) (-1903 . 531238) + (-1904 . 531051) (-1905 . 530669) (-1906 . 529676) (-1907 . 529292) + (-1908 . 528908) (-1909 . 528790) (-1910 . 528633) (-1911 . 528491) + (-1912 . 528374) (-1913 . 528192) (-1914 . 528068) (-1915 . 527779) + (-1916 . 527490) (-1917 . 527207) (-1918 . 526924) (-1919 . 526646) + (-1920 . 526558) (-1921 . 526473) (-1922 . 526376) (-1923 . 526279) + (-1924 . 526059) (-1925 . 525959) (-1926 . 525856) (-1927 . 525778) + (-1928 . 525453) (-1929 . 525161) (-1930 . 525088) (-1931 . 524703) + (-1932 . 524675) (-1933 . 524476) (-1934 . 524302) (-1935 . 524061) + (-1936 . 524006) (-1937 . 523931) (-1938 . 523563) (-1939 . 523448) + (-1940 . 523371) (-1941 . 523298) (-1942 . 523217) (-1943 . 523136) + (-1944 . 523055) (-1945 . 522954) (-1946 . 522895) (-1947 . 522475) + (-1948 . 522258) (-1949 . 522041) (-1950 . 521988) (-1951 . 521934) + (-1952 . 521602) (-1953 . 521278) (-1954 . 521090) (-1955 . 520899) + (-1956 . 520735) (-1957 . 520400) (-1958 . 520233) (-1959 . 519992) + (-1960 . 519668) (-1961 . 519478) (-1962 . 519263) (-1963 . 519092) + (-1964 . 518670) (-1965 . 518443) (-1966 . 518172) (-1967 . 518035) + (-1968 . 517894) (-1969 . 517417) (-1970 . 517294) (-1971 . 517058) + (-1972 . 516804) (-1973 . 516554) (-1974 . 516261) (-1975 . 516121) + (-1976 . 515981) (-1977 . 515841) (-1978 . 515652) (-1979 . 515463) + (-1980 . 515288) (-1981 . 515014) (-1982 . 514579) (-1983 . 514551) + (-1984 . 514479) (-1985 . 514346) (-1986 . 514271) (-1987 . 514112) + (-1988 . 513949) (-1989 . 513788) (-1990 . 513621) (-1991 . 513568) + (-1992 . 513515) (-1993 . 513386) (-1994 . 513326) (-1995 . 513273) + (-1996 . 513203) (-1997 . 513143) (-1998 . 513084) (-1999 . 513024) + (-2000 . 512965) (-2001 . 512905) (-2002 . 512846) (-2003 . 512787) + (-2004 . 512645) (-2005 . 512550) (-2006 . 512459) (-2007 . 512343) + (-2008 . 512249) (-2009 . 512151) (-2010 . 512057) (-2011 . 511916) + (-2012 . 511654) (-2013 . 510798) (-2014 . 510642) (-2015 . 510273) + (-2016 . 510217) (-2017 . 510166) (-2018 . 510063) (-2019 . 509978) + (-2020 . 509890) (-2021 . 509744) (-2022 . 509595) (-2023 . 509305) + (-2024 . 509227) (-2025 . 509152) (-2026 . 509099) (-2027 . 509046) + (-2028 . 509015) (-2029 . 508952) (-2030 . 508834) (-2031 . 508745) + (-2032 . 508625) (-2033 . 508330) (-2034 . 508136) (-2035 . 507948) + (-2036 . 507803) (-2037 . 507658) (-2038 . 507372) (-2039 . 506930) + (-2040 . 506896) (-2041 . 506859) (-2042 . 506822) (-2043 . 506785) + (-2044 . 506748) (-2045 . 506717) (-2046 . 506686) (-2047 . 506655) + (-2048 . 506621) (-2049 . 506587) (-2050 . 506533) (-2051 . 506357) + (-2052 . 506123) (-2053 . 505889) (-2054 . 505660) (-2055 . 505608) + (-2056 . 505553) (-2057 . 505484) (-2058 . 505396) (-2059 . 505327) + (-2060 . 505255) (-2061 . 505025) (-2062 . 504974) (-2063 . 504920) + (-2064 . 504889) (-2065 . 504783) (-2066 . 504558) (-2067 . 504248) + (-2068 . 504074) (-2069 . 503892) (-2070 . 503621) (-2071 . 503548) + (-2072 . 503483) (-2073 . 503007) (-2074 . 502445) (-2075 . 501719) + (-2076 . 501158) (-2077 . 500530) (-2078 . 499951) (-2079 . 499877) + (-2080 . 499825) (-2081 . 499773) (-2082 . 499699) (-2083 . 499644) + (-2084 . 499592) (-2085 . 499540) (-2086 . 499488) (-2087 . 499418) + (-2088 . 498970) (-2089 . 498764) (-2090 . 498515) (-2091 . 498181) + (-2092 . 497927) (-2093 . 497625) (-2094 . 497422) (-2095 . 497133) + (-2096 . 496585) (-2097 . 496448) (-2098 . 496246) (-2099 . 495966) + (-2100 . 495881) (-2101 . 495548) (-2102 . 495407) (-2103 . 495116) + (-2104 . 494896) (-2105 . 494770) (-2106 . 494645) (-2107 . 494498) + (-2108 . 494354) (-2109 . 494238) (-2110 . 494107) (-2111 . 493735) + (-2112 . 493475) (-2113 . 493205) (-2114 . 492965) (-2115 . 492635) + (-2116 . 492295) (-2117 . 491887) (-2118 . 491469) (-2119 . 491272) + (-2120 . 490997) (-2121 . 490829) (-2122 . 490633) (-2123 . 490411) + (-2124 . 490256) (-2125 . 490071) (-2126 . 489968) (-2127 . 489940) + (-2128 . 489912) (-2129 . 489738) (-2130 . 489664) (-2131 . 489603) + (-2132 . 489550) (-2133 . 489481) (-2134 . 489412) (-2135 . 489293) + (-2136 . 489115) (-2137 . 489060) (-2138 . 488814) (-2139 . 488741) + (-2140 . 488671) (-2141 . 488601) (-2142 . 488512) (-2143 . 488322) + (-2144 . 488249) (-2145 . 488180) (-2146 . 488115) (-2147 . 488060) + (-2148 . 487969) (-2149 . 487678) (-2150 . 487352) (-2151 . 487278) + (-2152 . 486956) (-2153 . 486751) (-2154 . 486666) (-2155 . 486581) + (-2156 . 486496) (-2157 . 486411) (-2158 . 486326) (-2159 . 486241) + (-2160 . 486156) (-2161 . 486071) (-2162 . 485986) (-2163 . 485901) + (-2164 . 485816) (-2165 . 485731) (-2166 . 485646) (-2167 . 485561) + (-2168 . 485476) (-2169 . 485391) (-2170 . 485306) (-2171 . 485221) + (-2172 . 485136) (-2173 . 485051) (-2174 . 484966) (-2175 . 484881) + (-2176 . 484796) (-2177 . 484711) (-2178 . 484626) (-2179 . 484541) + (-2180 . 484439) (-2181 . 484351) (-2182 . 484143) (-2183 . 484085) + (-2184 . 484030) (-2185 . 483943) (-2186 . 483832) (-2187 . 483746) + (-2188 . 483600) (-2189 . 483538) (-2190 . 483510) (-2191 . 483482) + (-2192 . 483454) (-2193 . 483426) (-2194 . 483257) (-2195 . 483106) + (-2196 . 482955) (-2197 . 482783) (-2198 . 482575) (-2199 . 482451) + (-2200 . 482243) (-2201 . 482151) (-2202 . 482059) (-2203 . 481924) + (-2204 . 481829) (-2205 . 481735) (-2206 . 481640) (-2207 . 481516) + (-2208 . 481488) (-2209 . 481460) (-2210 . 481432) (-2211 . 481404) + (-2212 . 481376) (-2213 . 481348) (-2214 . 481320) (-2215 . 481292) + (-2216 . 481264) (-2217 . 481236) (-2218 . 481208) (-2219 . 481180) + (-2220 . 481152) (-2221 . 481124) (-2222 . 481096) (-2223 . 481068) + (-2224 . 481015) (-2225 . 480987) (-2226 . 480959) (-2227 . 480881) + (-2228 . 480828) (-2229 . 480775) (-2230 . 480722) (-2231 . 480644) + (-2232 . 480554) (-2233 . 480459) (-2234 . 480365) (-2235 . 480283) + (-2236 . 479977) (-2237 . 479781) (-2238 . 479686) (-2239 . 479578) + (-2240 . 479167) (-2241 . 479139) (-2242 . 478975) (-2243 . 478898) + (-2244 . 478711) (-2245 . 478532) (-2246 . 478108) (-2247 . 477956) + (-2248 . 477776) (-2249 . 477603) (-2250 . 477343) (-2251 . 477091) + (-2252 . 476280) (-2253 . 476113) (-2254 . 475895) (-2255 . 475071) + (-2256 . 474940) (-2257 . 474809) (-2258 . 474678) (-2259 . 474547) + (-2260 . 474416) (-2261 . 474285) (-2262 . 474090) (-2263 . 473896) + (-2264 . 473753) (-2265 . 473438) (-2266 . 473323) (-2267 . 472983) + (-2268 . 472823) (-2269 . 472684) (-2270 . 472545) (-2271 . 472416) + (-2272 . 472331) (-2273 . 472279) (-2274 . 471799) (-2275 . 470537) + (-2276 . 470410) (-2277 . 470268) (-2278 . 469932) (-2279 . 469827) + (-2280 . 469578) (-2281 . 469346) (-2282 . 469241) (-2283 . 469166) + (-2284 . 469091) (-2285 . 469016) (-2286 . 468957) (-2287 . 468887) + (-2288 . 468834) (-2289 . 468772) (-2290 . 468702) (-2291 . 468339) + (-2292 . 468052) (-2293 . 467942) (-2294 . 467755) (-2295 . 467662) + (-2296 . 467569) (-2297 . 467482) (-2298 . 467262) (-2299 . 467043) + (-2300 . 466625) (-2301 . 466353) (-2302 . 466210) (-2303 . 466117) + (-2304 . 465974) (-2305 . 465822) (-2306 . 465668) (-2307 . 465598) + (-2308 . 465391) (-2309 . 465214) (-2310 . 465005) (-2311 . 464828) + (-2312 . 464794) (-2313 . 464760) (-2314 . 464729) (-2315 . 464611) + (-2316 . 464298) (-2317 . 464020) (-2318 . 463899) (-2319 . 463772) + (-2320 . 463687) (-2321 . 463614) (-2322 . 463525) (-2323 . 463454) + (-2324 . 463398) (-2325 . 463342) (-2326 . 463286) (-2327 . 463216) + (-2328 . 463146) (-2329 . 463076) (-2330 . 462978) (-2331 . 462900) + (-2332 . 462822) (-2333 . 462679) (-2334 . 462600) (-2335 . 462528) + (-2336 . 462325) (-2337 . 462269) (-2338 . 462081) (-2339 . 461982) + (-2340 . 461864) (-2341 . 461743) (-2342 . 461600) (-2343 . 461457) + (-2344 . 461317) (-2345 . 461177) (-2346 . 461034) (-2347 . 460908) + (-2348 . 460779) (-2349 . 460656) (-2350 . 460533) (-2351 . 460428) + (-2352 . 460323) (-2353 . 460221) (-2354 . 460071) (-2355 . 459918) + (-2356 . 459765) (-2357 . 459621) (-2358 . 459467) (-2359 . 459391) + (-2360 . 459312) (-2361 . 459159) (-2362 . 459080) (-2363 . 459001) + (-2364 . 458922) (-2365 . 458820) (-2366 . 458761) (-2367 . 458699) + (-2368 . 458582) (-2369 . 458456) (-2370 . 458379) (-2371 . 458247) + (-2372 . 457941) (-2373 . 457758) (-2374 . 457213) (-2375 . 456993) + (-2376 . 456819) (-2377 . 456649) (-2378 . 456576) (-2379 . 456500) + (-2380 . 456421) (-2381 . 456124) (-2382 . 455962) (-2383 . 455728) + (-2384 . 455286) (-2385 . 455156) (-2386 . 455016) (-2387 . 454707) + (-2388 . 454405) (-2389 . 454089) (-2390 . 453683) (-2391 . 453615) + (-2392 . 453547) (-2393 . 453479) (-2394 . 453385) (-2395 . 453278) + (-2396 . 453171) (-2397 . 453070) (-2398 . 452969) (-2399 . 452868) + (-2400 . 452791) (-2401 . 452398) (-2402 . 451981) (-2403 . 451354) + (-2404 . 451290) (-2405 . 451171) (-2406 . 451052) (-2407 . 450944) + (-2408 . 450836) (-2409 . 450680) (-2410 . 450080) (-2411 . 449797) + (-2412 . 449718) (-2413 . 449664) (-2414 . 449496) (-2415 . 449374) + (-2416 . 448978) (-2417 . 448742) (-2418 . 448541) (-2419 . 448333) + (-2420 . 448140) (-2421 . 447873) (-2422 . 447694) (-2423 . 447625) + (-2424 . 447549) (-2425 . 447408) (-2426 . 447205) (-2427 . 447061) + (-2428 . 446811) (-2429 . 446503) (-2430 . 446147) (-2431 . 445988) + (-2432 . 445782) (-2433 . 445622) (-2434 . 445549) (-2435 . 445515) + (-2436 . 445450) (-2437 . 445413) (-2438 . 445276) (-2439 . 445038) + (-2440 . 444968) (-2441 . 444782) (-2442 . 444533) (-2443 . 444377) + (-2444 . 443854) (-2445 . 443657) (-2446 . 443445) (-2447 . 443283) + (-2448 . 442884) (-2449 . 442717) (-2450 . 441642) (-2451 . 441519) + (-2452 . 441302) (-2453 . 441172) (-2454 . 441042) (-2455 . 440885) + (-2456 . 440782) (-2457 . 440724) (-2458 . 440666) (-2459 . 440560) + (-2460 . 440454) (-2461 . 439538) (-2462 . 437411) (-2463 . 436597) + (-2464 . 434794) (-2465 . 434726) (-2466 . 434658) (-2467 . 434590) + (-2468 . 434522) (-2469 . 434454) (-2470 . 434376) (-2471 . 434020) + (-2472 . 433838) (-2473 . 433299) (-2474 . 433123) (-2475 . 432902) + (-2476 . 432681) (-2477 . 432460) (-2478 . 432242) (-2479 . 432024) + (-2480 . 431806) (-2481 . 431588) (-2482 . 431370) (-2483 . 431152) + (-2484 . 431051) (-2485 . 430318) (-2486 . 430263) (-2487 . 430208) + (-2488 . 430153) (-2489 . 430098) (-2490 . 429948) (-2491 . 429700) + (-2492 . 429539) (-2493 . 429359) (-2494 . 429072) (-2495 . 428686) + (-2496 . 427814) (-2497 . 427474) (-2498 . 427306) (-2499 . 427084) + (-2500 . 426834) (-2501 . 426486) (-2502 . 425476) (-2503 . 425165) + (-2504 . 424953) (-2505 . 424389) (-2506 . 423876) (-2507 . 422120) + (-2508 . 421648) (-2509 . 421049) (-2510 . 420799) (-2511 . 420665) + (-2512 . 420453) (-2513 . 420377) (-2514 . 420301) (-2515 . 420194) + (-2516 . 420012) (-2517 . 419847) (-2518 . 419669) (-2519 . 419088) + (-2520 . 418927) (-2521 . 418354) (-2522 . 418284) (-2523 . 418209) + (-2524 . 418137) (-2525 . 417999) (-2526 . 417812) (-2527 . 417705) + (-2528 . 417598) (-2529 . 417483) (-2530 . 417368) (-2531 . 417253) + (-2532 . 416975) (-2533 . 416825) (-2534 . 416682) (-2535 . 416609) + (-2536 . 416524) (-2537 . 416451) (-2538 . 416378) (-2539 . 416305) + (-2540 . 416162) (-2541 . 416012) (-2542 . 415838) (-2543 . 415688) + (-2544 . 415538) (-2545 . 415412) (-2546 . 415026) (-2547 . 414742) + (-2548 . 414458) (-2549 . 414049) (-2550 . 413765) (-2551 . 413692) + (-2552 . 413545) (-2553 . 413439) (-2554 . 413365) (-2555 . 413295) + (-2556 . 413216) (-2557 . 413139) (-2558 . 413062) (-2559 . 412913) + (-2560 . 412810) (-2561 . 412752) (-2562 . 412688) (-2563 . 412624) + (-2564 . 412527) (-2565 . 412430) (-2566 . 412270) (-2567 . 412184) + (-2568 . 412098) (-2569 . 412013) (-2570 . 411954) (-2571 . 411895) + (-2572 . 411836) (-2573 . 411777) (-2574 . 411607) (-2575 . 411519) + (-2576 . 411422) (-2577 . 411388) (-2578 . 411357) (-2579 . 411273) + (-2580 . 411217) (-2581 . 411155) (-2582 . 411121) (-2583 . 411087) + (-2584 . 411053) (-2585 . 411019) (-2586 . 410985) (-2587 . 410951) + (-2588 . 410917) (-2589 . 410883) (-2590 . 410849) (-2591 . 410737) + (-2592 . 410703) (-2593 . 410652) (-2594 . 410618) (-2595 . 410521) + (-2596 . 410459) (-2597 . 410368) (-2598 . 410277) (-2599 . 410222) + (-2600 . 410170) (-2601 . 410118) (-2602 . 410066) (-2603 . 410014) + (-2604 . 409591) (-2605 . 409425) (-2606 . 409372) (-2607 . 409303) + (-2608 . 409250) (-2609 . 408948) (-2610 . 408792) (-2611 . 408271) + (-2612 . 408130) (-2613 . 408096) (-2614 . 408041) (-2615 . 407331) + (-2616 . 407016) (-2617 . 406512) (-2618 . 406434) (-2619 . 406382) + (-2620 . 406330) (-2621 . 406146) (-2622 . 406094) (-2623 . 406042) + (-2624 . 405966) (-2625 . 405904) (-2626 . 405686) (-2627 . 405619) + (-2628 . 405525) (-2629 . 405431) (-2630 . 405248) (-2631 . 405166) + (-2632 . 405044) (-2633 . 404898) (-2634 . 404247) (-2635 . 403545) + (-2636 . 403441) (-2637 . 403340) (-2638 . 403239) (-2639 . 403128) + (-2640 . 402960) (-2641 . 402756) (-2642 . 402663) (-2643 . 402586) + (-2644 . 402530) (-2645 . 402460) (-2646 . 402340) (-2647 . 402239) + (-2648 . 402142) (-2649 . 402062) (-2650 . 401982) (-2651 . 401905) + (-2652 . 401835) (-2653 . 401765) (-2654 . 401695) (-2655 . 401625) + (-2656 . 401555) (-2657 . 401485) (-2658 . 401392) (-2659 . 401264) + (-2660 . 401022) (-2661 . 400852) (-2662 . 400483) (-2663 . 400314) + (-2664 . 400198) (-2665 . 399702) (-2666 . 399321) (-2667 . 399075) + (-2668 . 398983) (-2669 . 398886) (-2670 . 398224) (-2671 . 398111) + (-2672 . 398037) (-2673 . 397945) (-2674 . 397755) (-2675 . 397565) + (-2676 . 397494) (-2677 . 397423) (-2678 . 397342) (-2679 . 397261) + (-2680 . 397136) (-2681 . 397003) (-2682 . 396922) (-2683 . 396848) + (-2684 . 396683) (-2685 . 396526) (-2686 . 396298) (-2687 . 396150) + (-2688 . 396046) (-2689 . 395942) (-2690 . 395857) (-2691 . 395489) + (-2692 . 395408) (-2693 . 395321) (-2694 . 395240) (-2695 . 395044) + (-2696 . 394824) (-2697 . 394637) (-2698 . 394315) (-2699 . 394022) + (-2700 . 393729) (-2701 . 393419) (-2702 . 393102) (-2703 . 392950) + (-2704 . 392762) (-2705 . 392289) (-2706 . 392207) (-2707 . 391991) + (-2708 . 391775) (-2709 . 391516) (-2710 . 391095) (-2711 . 390582) + (-2712 . 390452) (-2713 . 390178) (-2714 . 389999) (-2715 . 389884) + (-2716 . 389780) (-2717 . 389725) (-2718 . 389648) (-2719 . 389578) + (-2720 . 389505) (-2721 . 389450) (-2722 . 389377) (-2723 . 389322) + (-2724 . 388967) (-2725 . 388559) (-2726 . 388406) (-2727 . 388253) + (-2728 . 388172) (-2729 . 388019) (-2730 . 387866) (-2731 . 387731) + (-2732 . 387596) (-2733 . 387461) (-2734 . 387326) (-2735 . 387191) + (-2736 . 387056) (-2737 . 387000) (-2738 . 386847) (-2739 . 386736) + (-2740 . 386625) (-2741 . 386540) (-2742 . 386430) (-2743 . 386327) + (-2744 . 382176) (-2745 . 381728) (-2746 . 381301) (-2747 . 380684) + (-2748 . 380083) (-2749 . 379865) (-2750 . 379687) (-2751 . 379428) + (-2752 . 379017) (-2753 . 378723) (-2754 . 378280) (-2755 . 378102) + (-2756 . 377709) (-2757 . 377316) (-2758 . 377131) (-2759 . 376924) + (-2760 . 376704) (-2761 . 376398) (-2762 . 376199) (-2763 . 375570) + (-2764 . 375413) (-2765 . 375024) (-2766 . 374973) (-2767 . 374924) + (-2768 . 374873) (-2769 . 374825) (-2770 . 374773) (-2771 . 374627) + (-2772 . 374575) (-2773 . 374429) (-2774 . 374377) (-2775 . 374231) + (-2776 . 374180) (-2777 . 373805) (-2778 . 373754) (-2779 . 373705) + (-2780 . 373654) (-2781 . 373606) (-2782 . 373554) (-2783 . 373505) + (-2784 . 373453) (-2785 . 373404) (-2786 . 373352) (-2787 . 373303) + (-2788 . 373237) (-2789 . 373119) (-2790 . 371957) (-2791 . 371540) + (-2792 . 371432) (-2793 . 371190) (-2794 . 371040) (-2795 . 370890) + (-2796 . 370729) (-2797 . 368522) (-2798 . 368261) (-2799 . 368107) + (-2800 . 367961) (-2801 . 367815) (-2802 . 367596) (-2803 . 367464) + (-2804 . 367389) (-2805 . 367314) (-2806 . 367179) (-2807 . 367050) + (-2808 . 366921) (-2809 . 366795) (-2810 . 366669) (-2811 . 366543) + (-2812 . 366417) (-2813 . 366314) (-2814 . 366214) (-2815 . 366120) + (-2816 . 365990) (-2817 . 365839) (-2818 . 365463) (-2819 . 365349) + (-2820 . 365108) (-2821 . 364650) (-2822 . 364340) (-2823 . 363773) + (-2824 . 363204) (-2825 . 362194) (-2826 . 361652) (-2827 . 361339) + (-2828 . 361001) (-2829 . 360670) (-2830 . 360350) (-2831 . 360297) + (-2832 . 360170) (-2833 . 359668) (-2834 . 358525) (-2835 . 358470) + (-2836 . 358415) (-2837 . 358339) (-2838 . 358220) (-2839 . 358145) + (-2840 . 358070) (-2841 . 357992) (-2842 . 357769) (-2843 . 357710) + (-2844 . 357651) (-2845 . 357548) (-2846 . 357445) (-2847 . 357342) + (-2848 . 357239) (-2849 . 357158) (-2850 . 357084) (-2851 . 356869) + (-2852 . 356635) (-2853 . 356601) (-2854 . 356567) (-2855 . 356539) + (-2856 . 356511) (-2857 . 356294) (-2858 . 356016) (-2859 . 355866) + (-2860 . 355736) (-2861 . 355606) (-2862 . 355506) (-2863 . 355329) + (-2864 . 355169) (-2865 . 355069) (-2866 . 354892) (-2867 . 354732) + (-2868 . 354573) (-2869 . 354434) (-2870 . 354284) (-2871 . 354154) + (-2872 . 354024) (-2873 . 353877) (-2874 . 353750) (-2875 . 353647) + (-2876 . 353540) (-2877 . 353443) (-2878 . 353278) (-2879 . 353130) + (-2880 . 352715) (-2881 . 352615) (-2882 . 352512) (-2883 . 352424) + (-2884 . 352344) (-2885 . 352194) (-2886 . 352064) (-2887 . 352012) + (-2888 . 351939) (-2889 . 351864) (-2890 . 351706) (-2891 . 351594) + (-2892 . 351282) (-2893 . 351105) (-2894 . 349507) (-2895 . 348879) + (-2896 . 348819) (-2897 . 348701) (-2898 . 348583) (-2899 . 348439) + (-2900 . 348287) (-2901 . 348128) (-2902 . 347969) (-2903 . 347763) + (-2904 . 347576) (-2905 . 347424) (-2906 . 347269) (-2907 . 347114) + (-2908 . 346962) (-2909 . 346825) (-2910 . 346402) (-2911 . 346276) + (-2912 . 346150) (-2913 . 346024) (-2914 . 345884) (-2915 . 345743) + (-2916 . 345602) (-2917 . 345458) (-2918 . 344710) (-2919 . 344552) + (-2920 . 344366) (-2921 . 344211) (-2922 . 343973) (-2923 . 343728) + (-2924 . 343483) (-2925 . 343273) (-2926 . 343136) (-2927 . 342926) + (-2928 . 342789) (-2929 . 342579) (-2930 . 342442) (-2931 . 342232) + (-2932 . 341929) (-2933 . 341785) (-2934 . 341644) (-2935 . 341421) + (-2936 . 341280) (-2937 . 341058) (-2938 . 340861) (-2939 . 340705) + (-2940 . 340378) (-2941 . 340219) (-2942 . 340060) (-2943 . 339901) + (-2944 . 339730) (-2945 . 339559) (-2946 . 339385) (-2947 . 339033) + (-2948 . 338910) (-2949 . 338748) (-2950 . 338675) (-2951 . 338602) + (-2952 . 338529) (-2953 . 338456) (-2954 . 338383) (-2955 . 338310) + (-2956 . 338187) (-2957 . 338014) (-2958 . 337891) (-2959 . 337805) + (-2960 . 337739) (-2961 . 337673) (-2962 . 337607) (-2963 . 337541) + (-2964 . 337475) (-2965 . 337409) (-2966 . 337343) (-2967 . 337277) + (-2968 . 337211) (-2969 . 337145) (-2970 . 337079) (-2971 . 337013) + (-2972 . 336947) (-2973 . 336881) (-2974 . 336815) (-2975 . 336749) + (-2976 . 336683) (-2977 . 336617) (-2978 . 336551) (-2979 . 336485) + (-2980 . 336419) (-2981 . 336353) (-2982 . 336287) (-2983 . 336221) + (-2984 . 336155) (-2985 . 336089) (-2986 . 335442) (-2987 . 334795) + (-2988 . 334667) (-2989 . 334544) (-2990 . 334421) (-2991 . 334280) + (-2992 . 334126) (-2993 . 333982) (-2994 . 333807) (-2995 . 333197) + (-2996 . 333073) (-2997 . 332949) (-2998 . 332271) (-2999 . 331574) + (-3000 . 331473) (-3001 . 331417) (-3002 . 331361) (-3003 . 331305) + (-3004 . 331249) (-3005 . 331190) (-3006 . 331126) (-3007 . 331018) + (-3008 . 330910) (-3009 . 330802) (-3010 . 330523) (-3011 . 330449) + (-3012 . 330223) (-3013 . 330142) (-3014 . 330064) (-3015 . 329986) + (-3016 . 329908) (-3017 . 329829) (-3018 . 329751) (-3019 . 329658) + (-3020 . 329559) (-3021 . 329491) (-3022 . 329442) (-3023 . 328751) + (-3024 . 328111) (-3025 . 327320) (-3026 . 327239) (-3027 . 327135) + (-3028 . 327044) (-3029 . 326953) (-3030 . 326879) (-3031 . 326805) + (-3032 . 326731) (-3033 . 326676) (-3034 . 326621) (-3035 . 326555) + (-3036 . 326489) (-3037 . 326427) (-3038 . 326152) (-3039 . 325660) + (-3040 . 325202) (-3041 . 324949) (-3042 . 324761) (-3043 . 324420) + (-3044 . 324124) (-3045 . 323956) (-3046 . 323825) (-3047 . 323685) + (-3048 . 323530) (-3049 . 323361) (-3050 . 321975) (-3051 . 321842) + (-3052 . 321701) (-3053 . 321472) (-3054 . 321413) (-3055 . 321357) + (-3056 . 321301) (-3057 . 321036) (-3058 . 320824) (-3059 . 320685) + (-3060 . 320578) (-3061 . 320461) (-3062 . 320395) (-3063 . 320322) + (-3064 . 320208) (-3065 . 319955) (-3066 . 319855) (-3067 . 319661) + (-3068 . 319353) (-3069 . 318887) (-3070 . 318782) (-3071 . 318676) + (-3072 . 318527) (-3073 . 318387) (-3074 . 317975) (-3075 . 317731) + (-3076 . 317073) (-3077 . 316920) (-3078 . 316806) (-3079 . 316696) + (-3080 . 315876) (-3081 . 315682) (-3082 . 314656) (-3083 . 314208) + (-3084 . 312819) (-3085 . 311968) (-3086 . 311919) (-3087 . 311870) + (-3088 . 311821) (-3089 . 311754) (-3090 . 311679) (-3091 . 311489) + (-3092 . 311417) (-3093 . 311342) (-3094 . 311270) (-3095 . 311153) + (-3096 . 311102) (-3097 . 311023) (-3098 . 310944) (-3099 . 310865) + (-3100 . 310814) (-3101 . 310570) (-3102 . 310268) (-3103 . 310186) + (-3104 . 310104) (-3105 . 310043) (-3106 . 309654) (-3107 . 308782) + (-3108 . 308209) (-3109 . 306974) (-3110 . 306167) (-3111 . 305917) + (-3112 . 305667) (-3113 . 305242) (-3114 . 304998) (-3115 . 304754) + (-3116 . 304510) (-3117 . 304266) (-3118 . 304022) (-3119 . 303778) + (-3120 . 303536) (-3121 . 303294) (-3122 . 303052) (-3123 . 302810) + (-3124 . 302232) (-3125 . 302116) (-3126 . 302062) (-3127 . 301220) + (-3128 . 301189) (-3129 . 300844) (-3130 . 300618) (-3131 . 300519) + (-3132 . 300420) (-3133 . 298654) (-3134 . 298542) (-3135 . 297492) + (-3136 . 297400) (-3137 . 296478) (-3138 . 296145) (-3139 . 295812) + (-3140 . 295709) (-3141 . 295598) (-3142 . 295487) (-3143 . 295376) + (-3144 . 295265) (-3145 . 294178) (-3146 . 294058) (-3147 . 293923) + (-3148 . 293791) (-3149 . 293659) (-3150 . 293365) (-3151 . 293071) + (-3152 . 292726) (-3153 . 292500) (-3154 . 292274) (-3155 . 292163) + (-3156 . 292052) (-3157 . 290590) (-3158 . 288886) (-3159 . 288577) + (-3160 . 288425) (-3161 . 287902) (-3162 . 287573) (-3163 . 287380) + (-3164 . 287187) (-3165 . 286994) (-3166 . 286801) (-3167 . 286688) + (-3168 . 286565) (-3169 . 286451) (-3170 . 286337) (-3171 . 286244) + (-3172 . 286151) (-3173 . 286041) (-3174 . 285840) (-3175 . 284696) + (-3176 . 284603) (-3177 . 284489) (-3178 . 284396) (-3179 . 284149) + (-3180 . 284038) (-3181 . 283824) (-3182 . 283706) (-3183 . 283409) + (-3184 . 282681) (-3185 . 282105) (-3186 . 281627) (-3187 . 281383) + (-3188 . 281139) (-3189 . 280796) (-3190 . 280190) (-3191 . 279747) + (-3192 . 279592) (-3193 . 279448) (-3194 . 279128) (-3195 . 278973) + (-3196 . 278833) (-3197 . 278693) (-3198 . 278553) (-3199 . 278278) + (-3200 . 278059) (-3201 . 277540) (-3202 . 277328) (-3203 . 277116) + (-3204 . 276736) (-3205 . 276562) (-3206 . 276353) (-3207 . 276045) + (-3208 . 275853) (-3209 . 275680) (-3210 . 274544) (-3211 . 274179) + (-3212 . 273979) (-3213 . 273779) (-3214 . 272943) (-3215 . 272915) + (-3216 . 272847) (-3217 . 272777) (-3218 . 272613) (-3219 . 272585) + (-3220 . 272557) (-3221 . 272503) (-3222 . 272353) (-3223 . 272294) + (-3224 . 271601) (-3225 . 270216) (-3226 . 270155) (-3227 . 269831) + (-3228 . 269759) (-3229 . 269702) (-3230 . 269645) (-3231 . 269588) + (-3232 . 269531) (-3233 . 269456) (-3234 . 268866) (-3235 . 268506) + (-3236 . 268432) (-3237 . 268372) (-3238 . 268254) (-3239 . 267311) + (-3240 . 267184) (-3241 . 266971) (-3242 . 266897) (-3243 . 266843) + (-3244 . 266789) (-3245 . 266680) (-3246 . 266285) (-3247 . 266177) + (-3248 . 266074) (-3249 . 265913) (-3250 . 265812) (-3251 . 265714) + (-3252 . 265576) (-3253 . 265438) (-3254 . 265300) (-3255 . 265038) + (-3256 . 264829) (-3257 . 264691) (-3258 . 264400) (-3259 . 264248) + (-3260 . 263973) (-3261 . 263753) (-3262 . 263601) (-3263 . 263449) + (-3264 . 263297) (-3265 . 263145) (-3266 . 262993) (-3267 . 262786) + (-3268 . 262399) (-3269 . 262068) (-3270 . 261729) (-3271 . 261382) + (-3272 . 261043) (-3273 . 260704) (-3274 . 260323) (-3275 . 259942) + (-3276 . 259561) (-3277 . 259196) (-3278 . 258478) (-3279 . 258131) + (-3280 . 257686) (-3281 . 257261) (-3282 . 256650) (-3283 . 256058) + (-3284 . 255671) (-3285 . 255340) (-3286 . 254953) (-3287 . 254622) + (-3288 . 254402) (-3289 . 253881) (-3290 . 253668) (-3291 . 253455) + (-3292 . 253242) (-3293 . 253064) (-3294 . 252851) (-3295 . 252673) + (-3296 . 252291) (-3297 . 252113) (-3298 . 251903) (-3299 . 251813) + (-3300 . 251723) (-3301 . 251632) (-3302 . 251520) (-3303 . 251430) + (-3304 . 251323) (-3305 . 251134) (-3306 . 251078) (-3307 . 250997) + (-3308 . 250916) (-3309 . 250835) (-3310 . 250758) (-3311 . 250623) + (-3312 . 250488) (-3313 . 250364) (-3314 . 250243) (-3315 . 250125) + (-3316 . 249989) (-3317 . 249856) (-3318 . 249737) (-3319 . 249479) + (-3320 . 249194) (-3321 . 249122) (-3322 . 249026) (-3323 . 248885) + (-3324 . 248828) (-3325 . 248771) (-3326 . 248711) (-3327 . 248407) + (-3328 . 248012) (-3329 . 247490) (-3330 . 247213) (-3331 . 246793) + (-3332 . 246681) (-3333 . 246243) (-3334 . 246013) (-3335 . 245810) + (-3336 . 245628) (-3337 . 245498) (-3338 . 245292) (-3339 . 245085) + (-3340 . 244895) (-3341 . 244330) (-3342 . 244074) (-3343 . 243783) + (-3344 . 243489) (-3345 . 243192) (-3346 . 242892) (-3347 . 242762) + (-3348 . 242629) (-3349 . 242493) (-3350 . 242354) (-3351 . 241137) + (-3352 . 240829) (-3353 . 240465) (-3354 . 240368) (-3355 . 240128) + (-3356 . 239835) (-3357 . 239542) (-3358 . 239283) (-3359 . 239109) + (-3360 . 239031) (-3361 . 238944) (-3362 . 238844) (-3363 . 238750) + (-3364 . 238669) (-3365 . 238599) (-3366 . 237808) (-3367 . 237738) + (-3368 . 237410) (-3369 . 237340) (-3370 . 237012) (-3371 . 236942) + (-3372 . 236497) (-3373 . 236427) (-3374 . 236323) (-3375 . 236249) + (-3376 . 236175) (-3377 . 236104) (-3378 . 235762) (-3379 . 235634) + (-3380 . 235557) (-3381 . 235326) (-3382 . 235183) (-3383 . 235040) + (-3384 . 234701) (-3385 . 234371) (-3386 . 234158) (-3387 . 233903) + (-3388 . 233553) (-3389 . 233328) (-3390 . 233103) (-3391 . 232878) + (-3392 . 232653) (-3393 . 232440) (-3394 . 232227) (-3395 . 232077) + (-3396 . 231896) (-3397 . 231791) (-3398 . 231669) (-3399 . 231561) + (-3400 . 231453) (-3401 . 231128) (-3402 . 230864) (-3403 . 230553) + (-3404 . 230251) (-3405 . 229942) (-3406 . 229213) (-3407 . 228624) + (-3408 . 228449) (-3409 . 228305) (-3410 . 228150) (-3411 . 228027) + (-3412 . 227922) (-3413 . 227807) (-3414 . 227712) (-3415 . 227231) + (-3416 . 227121) (-3417 . 227011) (-3418 . 226901) (-3419 . 225829) + (-3420 . 225318) (-3421 . 225251) (-3422 . 225178) (-3423 . 224305) + (-3424 . 224232) (-3425 . 224177) (-3426 . 224122) (-3427 . 224090) + (-3428 . 224004) (-3429 . 223972) (-3430 . 223886) (-3431 . 223466) + (-3432 . 223046) (-3433 . 222494) (-3434 . 221390) (-3435 . 219680) + (-3436 . 218130) (-3437 . 217338) (-3438 . 216838) (-3439 . 216352) + (-3440 . 215950) (-3441 . 215300) (-3442 . 215225) (-3443 . 215134) + (-3444 . 215063) (-3445 . 214992) (-3446 . 214936) (-3447 . 214816) + (-3448 . 214762) (-3449 . 214701) (-3450 . 214647) (-3451 . 214544) + (-3452 . 214104) (-3453 . 213664) (-3454 . 213224) (-3455 . 212702) + (-3456 . 212541) (-3457 . 212380) (-3458 . 212069) (-3459 . 211983) + (-3460 . 211893) (-3461 . 211535) (-3462 . 211418) (-3463 . 211337) + (-3464 . 211179) (-3465 . 211066) (-3466 . 210991) (-3467 . 210145) + (-3468 . 208963) (-3469 . 208864) (-3470 . 208765) (-3471 . 208436) + (-3472 . 208358) (-3473 . 208283) (-3474 . 208177) (-3475 . 208021) + (-3476 . 207914) (-3477 . 207779) (-3478 . 207644) (-3479 . 207522) + (-3480 . 207427) (-3481 . 207279) (-3482 . 207184) (-3483 . 207029) + (-3484 . 206874) (-3485 . 206322) (-3486 . 205770) (-3487 . 205155) + (-3488 . 204603) (-3489 . 204051) (-3490 . 203499) (-3491 . 202946) + (-3492 . 202393) (-3493 . 201840) (-3494 . 201287) (-3495 . 200734) + (-3496 . 200181) (-3497 . 199629) (-3498 . 199077) (-3499 . 198525) + (-3500 . 197973) (-3501 . 197421) (-3502 . 196869) (-3503 . 196765) + (-3504 . 196180) (-3505 . 196075) (-3506 . 196000) (-3507 . 195858) + (-3508 . 195766) (-3509 . 195675) (-3510 . 195583) (-3511 . 195488) + (-3512 . 195383) (-3513 . 195260) (-3514 . 195138) (-3515 . 194774) + (-3516 . 194652) (-3517 . 194554) (-3518 . 194193) (-3519 . 193664) + (-3520 . 193589) (-3521 . 193514) (-3522 . 193422) (-3523 . 193241) + (-3524 . 193146) (-3525 . 193071) (-3526 . 192980) (-3527 . 192889) + (-3528 . 192730) (-3529 . 192181) (-3530 . 191632) (-3531 . 188925) + (-3532 . 188753) (-3533 . 187343) (-3534 . 186783) (-3535 . 186668) + (-3536 . 186296) (-3537 . 186233) (-3538 . 186170) (-3539 . 186107) + (-3540 . 185829) (-3541 . 185562) (-3542 . 185510) (-3543 . 184869) + (-3544 . 184818) (-3545 . 184630) (-3546 . 184557) (-3547 . 184477) + (-3548 . 184364) (-3549 . 184174) (-3550 . 183810) (-3551 . 183538) + (-3552 . 183487) (-3553 . 183436) (-3554 . 183366) (-3555 . 183247) + (-3556 . 183218) (-3557 . 183114) (-3558 . 182992) (-3559 . 182938) + (-3560 . 182761) (-3561 . 182700) (-3562 . 182519) (-3563 . 182458) + (-3564 . 182386) (-3565 . 181911) (-3566 . 181537) (-3567 . 178005) + (-3568 . 177953) (-3569 . 177825) (-3570 . 177675) (-3571 . 177623) + (-3572 . 177482) (-3573 . 175424) (-3574 . 167781) (-3575 . 167630) + (-3576 . 167560) (-3577 . 167509) (-3578 . 167459) (-3579 . 167408) + (-3580 . 167357) (-3581 . 167161) (-3582 . 167019) (-3583 . 166905) + (-3584 . 166784) (-3585 . 166666) (-3586 . 166554) (-3587 . 166436) + (-3588 . 166331) (-3589 . 166250) (-3590 . 166146) (-3591 . 165212) + (-3592 . 164992) (-3593 . 164755) (-3594 . 164673) (-3595 . 164329) + (-3596 . 163190) (-3597 . 163116) (-3598 . 163021) (-3599 . 162947) + (-3600 . 162743) (-3601 . 162652) (-3602 . 162536) (-3603 . 162423) + (-3604 . 162332) (-3605 . 162241) (-3606 . 162152) (-3607 . 162063) + (-3608 . 161974) (-3609 . 161886) (-3610 . 161398) (-3611 . 161334) + (-3612 . 161270) (-3613 . 161206) (-3614 . 161145) (-3615 . 160405) + (-3616 . 160344) (-3617 . 160283) (-3618 . 159657) (-3619 . 159605) + (-3620 . 159477) (-3621 . 159413) (-3622 . 159359) (-3623 . 159250) + (-3624 . 157953) (-3625 . 157872) (-3626 . 157783) (-3627 . 157725) + (-3628 . 157585) (-3629 . 157500) (-3630 . 157426) (-3631 . 157341) + (-3632 . 157284) (-3633 . 157068) (-3634 . 156929) (-3635 . 156322) + (-3636 . 155768) (-3637 . 155214) (-3638 . 154660) (-3639 . 154053) + (-3640 . 153499) (-3641 . 152939) (-3642 . 152379) (-3643 . 152117) + (-3644 . 151678) (-3645 . 151345) (-3646 . 151006) (-3647 . 150701) + (-3648 . 150568) (-3649 . 150435) (-3650 . 150047) (-3651 . 149954) + (-3652 . 149861) (-3653 . 149768) (-3654 . 149675) (-3655 . 149582) + (-3656 . 149489) (-3657 . 149396) (-3658 . 149303) (-3659 . 149210) + (-3660 . 149117) (-3661 . 149024) (-3662 . 148931) (-3663 . 148838) + (-3664 . 148745) (-3665 . 148652) (-3666 . 148559) (-3667 . 148466) + (-3668 . 148373) (-3669 . 148280) (-3670 . 148187) (-3671 . 148094) + (-3672 . 148001) (-3673 . 147908) (-3674 . 147815) (-3675 . 147722) + (-3676 . 147537) (-3677 . 147227) (-3678 . 145599) (-3679 . 145445) + (-3680 . 145308) (-3681 . 145166) (-3682 . 144964) (-3683 . 143037) + (-3684 . 142910) (-3685 . 142786) (-3686 . 142659) (-3687 . 142438) + (-3688 . 142217) (-3689 . 142090) (-3690 . 141889) (-3691 . 141713) + (-3692 . 141196) (-3693 . 140679) (-3694 . 140402) (-3695 . 139993) + (-3696 . 139476) (-3697 . 139292) (-3698 . 139150) (-3699 . 138655) + (-3700 . 138024) (-3701 . 137968) (-3702 . 137874) (-3703 . 137755) + (-3704 . 137685) (-3705 . 137612) (-3706 . 137382) (-3707 . 136763) + (-3708 . 136333) (-3709 . 136251) (-3710 . 136109) (-3711 . 135635) + (-3712 . 135513) (-3713 . 135391) (-3714 . 135251) (-3715 . 135064) + (-3716 . 134948) (-3717 . 134668) (-3718 . 134600) (-3719 . 134402) + (-3720 . 134222) (-3721 . 134067) (-3722 . 133960) (-3723 . 133909) + (-3724 . 133532) (-3725 . 133004) (-3726 . 132782) (-3727 . 132560) + (-3728 . 132321) (-3729 . 132231) (-3730 . 130489) (-3731 . 129907) + (-3732 . 129829) (-3733 . 124369) (-3734 . 123579) (-3735 . 123202) + (-3736 . 123131) (-3737 . 122866) (-3738 . 122691) (-3739 . 122206) + (-3740 . 121784) (-3741 . 121344) (-3742 . 120481) (-3743 . 120357) + (-3744 . 120230) (-3745 . 120121) (-3746 . 119969) (-3747 . 119855) + (-3748 . 119716) (-3749 . 119635) (-3750 . 119554) (-3751 . 119450) + (-3752 . 119032) (-3753 . 118611) (-3754 . 118537) (-3755 . 118274) + (-3756 . 118010) (-3757 . 117631) (-3758 . 116932) (-3759 . 115889) + (-3760 . 115830) (-3761 . 115756) (-3762 . 115682) (-3763 . 115560) + (-3764 . 115310) (-3765 . 115224) (-3766 . 115149) (-3767 . 115074) + (-3768 . 114979) (-3769 . 111204) (-3770 . 110034) (-3771 . 109374) + (-3772 . 109190) (-3773 . 106985) (-3774 . 106660) (-3775 . 106178) + (-3776 . 105737) (-3777 . 105502) (-3778 . 105257) (-3779 . 105167) + (-3780 . 103732) (-3781 . 103654) (-3782 . 103549) (-3783 . 102073) + (-3784 . 101668) (-3785 . 101267) (-3786 . 101165) (-3787 . 101083) + (-3788 . 100925) (-3789 . 99771) (-3790 . 99689) (-3791 . 99610) + (-3792 . 99255) (-3793 . 99198) (-3794 . 99126) (-3795 . 99069) + (-3796 . 99012) (-3797 . 98882) (-3798 . 98680) (-3799 . 98312) + (-3800 . 97891) (-3801 . 94081) (-3802 . 93479) (-3803 . 93012) + (-3804 . 92799) (-3805 . 92586) (-3806 . 92420) (-3807 . 92207) + (-3808 . 92041) (-3809 . 91875) (-3810 . 91709) (-3811 . 91543) + (-3812 . 91273) (-3813 . 85859) (** . 82906) (-3815 . 82490) (-3816 . 82249) + (-3817 . 82193) (-3818 . 81701) (-3819 . 78893) (-3820 . 78743) + (-3821 . 78579) (-3822 . 78415) (-3823 . 78319) (-3824 . 78201) + (-3825 . 78077) (-3826 . 77934) (-3827 . 77763) (-3828 . 77637) + (-3829 . 77493) (-3830 . 77341) (-3831 . 77182) (-3832 . 76669) + (-3833 . 76580) (-3834 . 75915) (-3835 . 75723) (-3836 . 75628) + (-3837 . 75320) (-3838 . 74148) (-3839 . 73942) (-3840 . 72767) + (-3841 . 72692) (-3842 . 71511) (-3843 . 67930) (-3844 . 67566) + (-3845 . 67289) (-3846 . 67197) (-3847 . 67104) (-3848 . 66827) + (-3849 . 66734) (-3850 . 66641) (-3851 . 66548) (-3852 . 66164) + (-3853 . 66093) (-3854 . 66001) (-3855 . 65843) (-3856 . 65489) + (-3857 . 65331) (-3858 . 65223) (-3859 . 65194) (-3860 . 65127) + (-3861 . 64973) (-3862 . 64815) (-3863 . 64421) (-3864 . 64346) + (-3865 . 64240) (-3866 . 64168) (-3867 . 64090) (-3868 . 64017) + (-3869 . 63944) (-3870 . 63871) (-3871 . 63799) (-3872 . 63727) + (-3873 . 63654) (-3874 . 63413) (-3875 . 63073) (-3876 . 62925) + (-3877 . 62852) (-3878 . 62779) (-3879 . 62706) (-3880 . 62452) + (-3881 . 62308) (-3882 . 60972) (-3883 . 60778) (-3884 . 60507) + (-3885 . 60359) (-3886 . 60211) (-3887 . 59971) (-3888 . 59777) + (-3889 . 59509) (-3890 . 59313) (-3891 . 59284) (-3892 . 59183) + (-3893 . 59082) (-3894 . 58981) (-3895 . 58880) (-3896 . 58779) + (-3897 . 58678) (-3898 . 58577) (-3899 . 58476) (-3900 . 58375) + (-3901 . 58274) (-3902 . 58159) (-3903 . 58044) (-3904 . 57993) + (-3905 . 57876) (-3906 . 57818) (-3907 . 57717) (-3908 . 57616) + (-3909 . 57515) (-3910 . 57399) (-3911 . 57370) (-3912 . 56639) + (-3913 . 56514) (-3914 . 56389) (-3915 . 56249) (-3916 . 56131) + (-3917 . 56006) (-3918 . 55851) (-3919 . 54868) (-3920 . 54009) + (-3921 . 53955) (-3922 . 53901) (-3923 . 53693) (-3924 . 53321) + (-3925 . 52910) (-3926 . 52552) (-3927 . 52194) (-3928 . 52042) + (-3929 . 51740) (-3930 . 51584) (-3931 . 51258) (-3932 . 51188) + (-3933 . 51118) (-3934 . 50909) (-3935 . 50300) (-3936 . 50096) + (-3937 . 49723) (-3938 . 49214) (-3939 . 48949) (-3940 . 48468) + (-3941 . 47987) (-3942 . 47862) (-3943 . 46762) (-3944 . 45686) + (-3945 . 45113) (-3946 . 44895) (-3947 . 36569) (-3948 . 36384) + (-3949 . 34301) (-3950 . 32133) (-3951 . 31987) (-3952 . 31809) + (-3953 . 31402) (-3954 . 31107) (-3955 . 30759) (-3956 . 30593) + (-3957 . 30427) (-3958 . 29945) (-3959 . 16071) (-3960 . 14964) (* . 10917) + (-3962 . 10663) (-3963 . 10479) (-3964 . 9522) (-3965 . 9469) (-3966 . 9409) + (-3967 . 9140) (-3968 . 8513) (-3969 . 7240) (-3970 . 5996) (-3971 . 5127) + (-3972 . 3864) (-3973 . 420) (-3974 . 306) (-3975 . 173) (-3976 . 30))
\ No newline at end of file |